
J/,:i_ _._..:=i_r
• i

Weather Prediction Using A Genetic Memory

David Rogers _'1<_

February 1990

Research Institute for Advanced Computer Science
NASA Ames Research Center

RIACS Technical Report 90.6

NASA Cooperative Agreement Number NCC 2-408 and NCC 2-387

Research Institute for Advanced Computer Science
An Institute of the Universities Space Research Association

G_,_T IC _(!_(],_:Y (F',,_._; , lrc:tl It1 .t . for A ;v,_nc_,J

Coln;)uf,:r qcJ _:nce) 1;_ ;_ C_:';CL 0_

"_/47

Weather Prediction Using a Genetic Memory

David Rogers

Research Institute for Advanced Computer Science

MS 230-5, NASA Ames Research Center

Moffett Field, CA 94035

RIACS Technical Report 90.6

February 1990

Abstract. Kanaerva's sparse distributed memory (SDM) isan associative-

memory model based on the mathematical properties of high-dimensional binary

address spaces. Holland's genetic algorithms are a search technique for high-

dimensional spaces inspired by evolutionary processes of DNA. "Genetic

Memory" isa hybrid of the above two systems, in which the memory uses a

genetic algorithm to dynamically reconfigure its physical storage locations to

reflectcorrelations between the stored addresscs and data. For example, when

presented with raw weather station data the Cenetic Memory discovers specific

features in the weather data which correlate well with upcoming rain and

reconfigures the memory to utilizethis information effectively.This architecture

isdesigned to maximize the abilityof the system to scale-up to handle real-

world problems.

Thiswork was supportedinpartby CooperativeAgreements NCC 2-408and NCC 2-387from

theNationalAeronauticsand Space Administration(NASA) to theUniversitiesSpace Research

Association(USRA). _unding relatedto the ConnectionMachine was jointlyprovidedby NASA

and the DefenseAdvanced ResearchProjectsAgency (DARPA).

WEATHER PREDICTION USING A GENETIC MEMORY

David Rogers

Research Institute for Advanced Computer Science
MS 230-5, NASA Ames Research Center

Moffett Field, CA 94035

1. INTRODUCTION

Nature eliminates surplus and compensates for deficiency.

-Lao-Tzu

The future success of neural networks depends on an ability to "scale-up" from small

networks and low-dimensional toy problems to networks of thousands or millions of nodes

and high-dimensional real-world problems. (The dimensionality of a problem refers to the

number of variables needed to describe the problem domain.) Unless neural networks are

shown to be scalable to real-world problems, they will likely remain restricted to a few

specialized applications.

Scaling-up adds two types of computational demands to a system. First, there is a

linear increase in computational demand proportional to the increased number of variables.

Second, there is a greater, nonlinear increase in computational demand due to the number of

interactions that can occur between the variables. This latter effect is primarily responsible

for the difficulties encountered in scaling-up many systems. In general, it is difficult to scale-

up a system unless it is specifically designed to function well in high-dimensional domains.

Two systems designed to function well in high-dimensional domains are Kanerva's

sparse distributed memory (Kanerva, 1988) and Holland's genetic algorithms (Holland,

1986). I hypothesized that a hybrid of these two systems would preserve this ability to

operate well in high-dimensional environments, and offer greater functionality than either

individually. I call this hybrid Genetic Memory. To test its capabilities, I applied it to the

problem of forecasting rain from local weather data.

Kanerva's sparse distributed memory (SDM) is an associative-memory model based

on the mathematical properties of high-dimensional binary address spaces. It can be

represented as a three-layer neural-network with an extremely large number of nodes

(1,000,000+) in the middle layer. In its standard formulation, the connections between the

input layer and the hidden layer (the input representation used by the system) are fixed, and

learning is done by changing the values of the connections between the hidden layer and the

output layer.

Holland's genetic algorithms are a search technique for high-dimensional spaces

inspired by evolutionary processes of DNA. Members of a set of binary strings compete for

the opportunity to recombine. Recombination is done by selecting two "successful"

members of the population to be the parents. A new suing is created by splicing together

pieces of each parent. Finally, the new string is placed into the set, and some

"unsuccessful" older string removed.

"Genetic Memory" is a hybrid of the above two systems. In this hybrid, a genetic

algorithm is used to reconfigure the connections between the input layer and the hidden

layer. The connections between the hidden layer and the output layer are changed using the

standard method for a sparse distributed memory. The "success" of an input representation

is determined by how well it reflects correlations between addresses and data, using my

previously presented work on statistical prediction (Rogers, 1988). Thus, we have two

separate learning algorithms in the two levels. The memory uses a genetic algorithm to

dynamically reconfigure its input representation to better reflect correlations between

collections of input variables and the stored data.

I applied this Genetic Memory architecture to the problem of predicting rain given only

local weather features such as air pressure, cloud cover, month, temperature, etc. The

weather data contained 15 features, sampled every 4-hours over a 20-year period on the

Australian coast. I coded each state into a 256-bit address, and stored at that address a

single bit which denoted whether it rained in the 4 hours following that weather state. I

allowed the genetic algorithm to reconfigure the memory while it scanned the file of weather

states.

The success of this procedure was measured in two ways. First, once the training was

completed, the Genetic Memory was better at predicting rain than was the standard sparse

distributed memory. Second, I had access to the input representations discovered by the

Genetic Memory and could view the specific combinations of features that predicted rain.

Thus, unlike many neural networks, the Genetic Memory allows the user to inspect the

internal representations it discovers during training.

2. KANERVA'S SPARSE DISTRIBUTED MEMORY

Sparse distn'buted memory can be best illustrated as a variant of an algorithm commonly used to
implement random-access memory. The sWacture of such a random-access memory is shown in figure 1. (The
example given is for a RAM with 10-bit addresses and dam.)

2.1 Structure of Random.Access Memory

The address at which reading or writing will be requested is called the reference

address. The memory compares that address against the address of each of the memory

locations. The location that matches the reference address is selected, which is denoted by a

I in the select vector.

If writing to the memory, the input data is supplied. The input data is stored in the ten

1-bit data storage registers of the selected location.

If reading from the memory, the contents of the selected data registers are broadcast on

the data bus and made available as the output data.

2 Io

Location

Addresses

Reference Address

0000000011]

0000000000

0000000001

00000000|0

0000000011

0000000100

0000000101

°.o

1111111100

1111111101

1111111110

I111111111

Input Data

[O[1[O[1[O[!] O[1[O[1 [

1-bit

Resisters

I ol,lol,lolllol,I ol,I
Output Data

Figure 1: Structure of a simple random-access memory.

2.2 Structure of a Sparse Distributed Memory

Sparse distributed memory can be considered an extension of random-access memory.

The structure of a sparse distributed memory is shown in figure 2. (The reader should note

that a typical SDM often has 256-bits of address and data, and can have more than a

thousand bits; the example shown uses only 10 bits for ease of illustration.)

In each of the three computations done by SDM (addressing, reading, and writing) there

exists a major alteration to the RAM algorithm:

• Instead of looking for an exact match between the reference address and the location

addresses, the memory calculates the Hamming distance between the reference address and

each location address. Each distance is compared to a given radius; ff it is less than or equal

to that radius, then that location is selected. More than one location is usually selected in

this process.

• The data registers are now counters instead of single-bit storage elements. These

data counters arc n-bits wide, including a sign bit. When writing to the selected locations,

instead of overwriting, the memory increments the counter if the corresponding input data bit

is a 1, and decrements the counter if the corresponding input data bit is a O.

• When reading, the memory usually selects more than one location. The memory

sums the contents of the selected locations colunmwisc, then thresholds each sum. Sums

that arc greater than or equal to zero correspond to output bits of 1, and sums that arc less

than zero correspond to output bits of O.

Refermce Addre,u Radius InputData

I 1I-7 IIIIIIIIIII
_ _s, s_,))) t) t

.. oooroo0_o_z;l" -t" _l" o o o o o o
ooooo,,,_o1"_!*" -I*" o o oloo o°°"°"°°-----.--_1"-I*"I*" o o o o o o
,o,,,o,,oo1-- ---r'] o o olloloooo,o,o,,,, I"- _"ZI" o o o oio o _o._,
11OllOltO1.l'_ "_ I "_l o o ol[ol o o-I"I oooo,o
o,,o,.o,oo,1--i_.. _1._, o o oloioo
,o,,o,o,,ol..I .. i.. 1 o o olo.oo,._._.oo.o._._._j,. I- *"I-I*" o o o oi o oi
111111oo!1J*'1 -_])-_ o o o olo ol

s_:l II II II II II

IIIIIIIIIII
Output Data

Figure 2: Structure of a sparse, dislributed memory upon initialization. The

location addresses have been assigned, and the data counters zeroed, but no reading or

writing has been performed yet.

This example shows that a datum is distributed over the data counters of the selected

locations when writing, and that the datum is reconstructed during reading by averaging the

sums of these counters. However, depending on what additional data were written into

some of the selected locations, and depending on how these data correlate with the original

data, the reconstruction may contain noise.

2.3 Sparse Distributed Memory as a Neural Network

Though the RAM analogy is perhaps the clearest way to explain the structure of a

sparse distributed memory, the SDM model can also be described as a fully-connected

three-layer feed-forward neural network. A neural-network equivalent to sparse distributed

memory is shown in figure 4.

The bottom layer is where the reference address is given; that is, there is one node in

this layer for each bit of the reference address. These nodes are locked at either 1 or - 1

depending on whether the corresponding bit of the reference address is 1 or 0.

The connections between the bottom layer and the nodes of the so-called h/dden layer

are either 1 or -1 in strength. These strengths are never changed, as they determine the

address of the physical memory locations.

Location

Addresses

Reference Address Radius

[01010101lO] [_]

I101100111

1010101010

0000011110

0011011001

1011101100

0010101111

1101101101

0100000110

0110101001

1011010110

1100010111

1111110011

m

"_ 3

"_ 6

"_ 7

"_ 7

-_ 6

"_ 2

8

"_" 5

Select

•_ 0

"_ 0

•_ 0

-i

"_ 0

Input Dam

IIIIIIIIIII

n-bit

Co_

Sum:

_ _ _ _ _ _ _ _ _ Thresholding

Output Data

Figure 3: Reading from a sparse distributed memory after two write operations.

Each of the hidden-layernodes correspondstoa memory locationin the SDM model. A

memory locationisselectedifthe sum of itsinputs(i.e.,thedot product of the reference

addressand the location'sweight vector)isgreaterthan or equal toitsthreshold.This

thresholdcorresponds tothe radiusin the SDM model, and the sum of the inputsis

effectivelytakingthe Hamming distancebetween the memory location'saddressand the

referenceaddress.

The top layer is where the output data appear. Each hidden-layer node is fully

connected to the top-layernodes. The data counters of a memory locationare representedin

the strengthsof the connections between a hidden unit and the output nodes. This is the

only partof the network thatisplastic.

Reading the memory involves sctdng the values of the reference address and reading

the output from the output nodes. Writing to the memory involves setting both the reference

address and the data input nodes to the desired values; internal nodes that are active then

add the value of each data input node (one or minus one) to its connection.

In this form, the SDM appears quite similar to other neural architectures. However, for

an SDM the number of hidden-layer nodes is much larger than is commonly used for neural

Output Layer

Weightschangedusing
lrmmmxm._

Weights FIXED -'_

(Dam Input/ OutpuO

(Dam Counters)

Hidden Unit Layer
(Selected Locations)

(l.ocafion Addres,_s)

(ReferenceAddress)

InputLayer

Figure4:Neural-networkrepresentationofasparsedistributedmemory.

Forareasonablesizememory,theremightbe 1,000nodesineachthetopand

bottomlayersand 1,000,000nodesinthe"hidden"layer.

networks. A reasonable size memory may have an address and data size of 1,000 bits,

which would correspond to 1,000 nodes in each of the top and bottom layers. This is large,

but not beyond the capabilitiesof current neural-network algorithms. However, if the

memory has 1,000,000 memory locations,thiswould correspond to a network with 1,000,000

nodes in the hidden layer. It is unclear how standard algorithms,such as back'propagation,

would perform with such a largenumber of unitsinthe hidden layer.

3. HOLLAND'S GENETIC ALGORITHMS

The most extensive computation known has been conducted over the lastbillionyears

on a planet-wide scale: it is the evolution of life. The power of this computation is

illustratedby the complexity and beauty of itscrowning achievement, the human brain. What

is the centralcomputational technique thatallowed the development of such an object,and of

allnature,so quickly?

Darwin (1859) postulated that the process of evolution is based in part on the technique

of random mutation. That view is reflected in the mildly disparaging modem belief that life is

"just a product of chance". However, pure randomness can hardly account for the progress

made in such a short period of time. A billion monkeys, typing one character a .second for a

billion years, would likely hot stumble onto even the irn'st line of "Hamlet". But if simple

mutation is not sufficient to account for the grandeur of creation, what technique does

evolution use which has the power to create all that we see? Or with the power to create us?

The answer to this question was anticipated by Mendel (1884), who observed that a

offspring inherits a combination of distinct attributes from each parent, rather than a blend of

both parent's attributes. The basis for this recombination of attributes was found later with

the discovery of DNA, and is called _ recombination or crossover. In crossover we find

the key to the power of evolution. The crossover mechanism is the basis for a class of

algorithms known as genetic algorithms. These algorithms constitute powerful tools for

searching complex, high-dimensional domains.

110110011101101101

101010101011111111

000001111001000001

001101100101101100

101110110000101101

001010111111101000

110110110110110110

010000011000000000

011010100100001000

101101011001110011

110001011101010101.

...e_ ...

PopulationofBinarystrngs

• •

(17)

(S12) _ Good selection

(222)

(32)

(87)

(lS6)

(302) .a-----Good selection

(3)
(1) _ Bad selection

(ss)

(210

(...)

Fitness scores

Figure 5: A genetic algorithm operates over a domain of binary strings. Each string

has an assigned fitness score. New members are created by crossing-over two highly

rated suing and replacing a lowly-rated suing.

The domain of a genetic algorithm is a population of fixed-length binary strings and a

fitness function, which is a method for evaluating the fitness of each of the members. We

use this fitness function to select two highly-ranked members for recombination, and one

lowly-ranked member for replacement. (The selection may be done either absolutely, with

the best and worst members always being selected, or probabilisticly, with the members

being chosen proportional to their fitness scores.)

The member selected as bad is removed from the population. The two members

selected as good are then recombined to create a new member to take its place in the

population. In effect, the genetic algorithm is a search over a high-dimensional space for

strings which are highly-rated by the fitness function.

The core of the algorithm is the crossover process. To crossover, we align the ends of

the two good candidates and segment them at one or more crossover-points. We then

create a new string by starting the transcription of bits at one of the parent strings, and

switching the transcription to the other parent at the crossover-points. This new string is

placed into the population, taking the place of the poorly-rated member.

 g0111111

110110110_10...

First parent

Second parent

New member

Figure 6: Crossover of two binary strings

Output Layer
Weights chan[_ed using
l_l'c_lXron rulc

Hidden Unit Layer

Weights changed using

Input Layer

Figure 7: Structure of a Genetic Memory as a Neural Network

By running the genetic algorithm over the population many times, the population

"evolves" towards members which are rated more fit by our fitness function.

Holland has a mathematical proof that genetic algorithms based on the crossover

procedure are an extremely efficient method for searching a high-dimensional space.

4. GENETIC MEMORY

Genetic Memory is a hybrid of Kanerva's sparse distributed memory and Holland's

genetic algorithms. In this hybrid, the location addresses of the SDM are not held constant;

rather, a genetic algorithm is used to move them to more advantageous positions in the

address space. In other words, location addresses are the population of binary strings that

serve as the domain of the genetic algorithm.

If we view SDM as a neural net, the Genetic Memory uses a genetic algorithm to

change the weights in the connections between the input layer and the hidden unit layer,

while the connections between the hidden unit layer and the output layer are changed using
the standard method for a SDM.

The role of the fitness function is filled by a value that is derived from the data counters;

this value is a measure of the statistical predictiveness of the memory locations towards that

bit in the data (Rogers 1989). The data counter value is a measure of the correlation

between the selection of a location and the occurrence of a given bit value. Thus, we can use

the data counters to judge the fitness, i.e., the predictiveness, of each memory location.

Highly-predictive locations are recombined using crossover;, the newly-created location

address is given to a location which is relatively unpredictive.

The Genetic Memory is operated by presenting the memory with data samples; after a

number of samples are seen (~10), it ranks the locations by their predictiveness. Two

highly-ranked locations are selected as parents, and one lowly-ranked location is selected

for replacement. Genetic crossover is performed on the parents, and the newly-created

address replaces the address of the lowly-ranked location. Any data in the lowly-rated

location are cleared. More data samples are then presented to the memory and the process

is repeated.

Most other work which combined neural networks and genetic algorithms kept multiple

networks (Davis 1987); the genetic algorithm was used to recombine the more successful of

these networks to create new entire networks. In a Genetic Memory there is a single

network with different algorithms changing the weights in different layers. Thus, a Genetic

Memory incorporates the genetic algorithm directly into the operation of a single network.

Many of these systems require the networks to be presented with the full set of data

samples, often a large number of times, before the genetic algorithm is executed. In a

Genetic Memory the genetic algorithm operates as the data is being presented to the

memory. Thus, the Genetic Memory can reconfigure itself without having access to the
entire sample data set.

5. AUSTRALIAN WEATHER DATA

Weather data was collected at a single site on the Australian coast. Samples were

taken every 4 hours for 25 years, resulting in a data file containing over 58,000 weather
samples.

The data file contained 15 distinct features: station number, year, month, day of the

month, time of day, pressure, dry bulb temperature, wet bulb temperature, dew point, wind

speed, wind direction, cloud cover, present weather code, past weather code, and whether it

rained in the past four hours.

For this work, I coded each weather sample into a 256-bit word. Each weather sample

was coded into a 256-bit binary address, giving each feature a 16-bit field in that address.

The feature values were coarse-coded into a simple thermometer-style code. For example,

the following is the 0od¢ used for the month field:

JAN:

FEB:

MAR:

_R:

mY :

_N:

IIiiiiii00000000 JUL:

0111111111000000 AUG:

0011111111100000 SEP:

0000111111110000 0CT:

0000011111111000 NOV:

0000001111111110 DEC:

I000000001111111

II00000000111111

1111000000011111

1111100000001111

iiiiii0000000011

1111111000000001

Each of the 15 fields is coded into its 16-bit representation, and the results

concatenated into a 256-bit address that represents the current weather state. For example,

here is the weather state for 1 January, 1961, at midnight:

llllllll000(X)0_llllllll00000000111111110000(g)0011111111000(ggg_

11111111_011111111000000000011111111100000000011111111100

01X)(gg_llllllll0 lll0000(X)0011111 0111111111000000000(gg)lllllllll0

11111111100000000111111110000000__

(Note that while the data samples must be of this form, the location addresses in the

memory are not so restricted: 16-bit fields which do not represent any specific weather

feature value are possible. Indeed, a Genetic Memory begins with completely random bit

patterns in its location addresses. The analysis of location addresses after training will be

discussed in depth in the experimental section.)

To train the memory, we present it with each weather state in turn. The memory is not

shown the data a multiple number of times. For each state, the memory is addressed with

the 256-bit address which represents it. "0" is written to the memory if it does not rain in

the next four hours, and "1" if it does.

After the memory has seen a given number of weather samples, the genetic algorithm is

performedto replacea poorly.prMictivelocationwith a new addressmat_ from two
......... n,t__ ___.____._ : a ,,,_! th-. rnbn,ma'v ha¢ _e_.n 5fl.{'_0 weather

Cloud cover (13
tit I f I I'

B

o

Dry bulb temp (12)

I_" " " " 1 I L-

'i -

6.1 Experiment 1: Features important in predicting rain

When the training is completed, we can analyze the structure of memory locations

which performed well to discover which features they found most discriminatory and which

values of those features were preferred. For example, here is a memory location which was

rated highly-fit for predicting rain after training. (The 16-bit field corresponding to pressure

is underlined.)

1101001100000011 1111011110101011 011111110001000011000(0)011011010

0100110011111011 11111100(0)0(0)011 01111110110000000011101101100110

0000001011110110 011000000100001000010011101101000100000111111111

000000011111111000(00000111111110011011111111111 0100110000001000

By measuring the distance between a given 16-bit field and all possible values for that

field, we can discover which values of the feature are most desired. (Closer in hamming

distance is better.) The absolute range of values is the sensitivity of the location to changes

along that feature dimension. Figure 8 shows an analysis of the 16-bit field for month in the

given memory location:

II Feature (sensitivityl
Location's 16-bit field II Month (12)
for month:0111111100010000 .[_ ,. , , ._

B I

II I

Values for months D istance[l Less deniable ,. / _

JAN: iiiiiiii00000000 2 I[Value desirability

F .B-01111111100000002 II Moredesirable
MAR:O0 nlxlnO00000 a II /

JFMAMJJASOND.e= II Values

Figure8: Analyzing a location field

In this case, the location finds January and February the most desirable months for rain,

and July and August the least desirable months.

The relative sensitivity towards different features measures which features are most

important in making the prediction of rain. In this case, we have a change of distance of 12

bits, which makes this location very sensitive to the value of the month.

We can estimate which features are the most important in predicting rain by looking at

the relative sensitivity of the different fields in the location to changes in their feature. The

following graphs show the most sensitive features of the previously shown memory location

towards predicting rain; that is, the location is very sensitive to the combination of all these

fields with the proper values.

Cloud cover (13

15 ""1 I [....

None Low High

Dry bulb temp (12)

ImL--' ' " " I 1

D I

210 240 270

Pressure (12)

'/'\)
J

n I I I_

10000 10100

Month (12)
to;- I 1 "_

1o i-- / \

_t I t,

JF]vLZkMJJASOND

Figure 9: The four most sensitive features

The "most preferred values" of these fields are the rn/n/ma of these graphs. For

example, this location greatly prefers January and February over June and July. The other

preferences of this location are for low pressure, high cloud cover, and low temperature.

Surprisingly, whether it rained in the last four hours is not one of the most important features
for this location.

We can also look some of the leastsensitivefeatures. The following graphs show the

leastsensitivefeaturesof the memory locationtowards predictingrain;thatis,the location

isrelativelyinsensitiveto thevaluesof thesefeatures.

Year (5)
16 I |

0

,0 _ I

61 73 80

Wet bulb temp (5)
.... |,,, , , . |16-

re

0 +''''! I

210 240 270

Wind direction (4)
"''! IZ6

" _/--x___
O

0 I I

N E S W

Figure 10: The three least sensitive features

This set contains some fields that one would expect to be relatively unimportant, such

as year. Fields such as wind direction is unimportant to this location, but interestingly other

highly-rated locations find it to he very useful in other regions of the weather space.

6.2 Experiment 2: Discovery of feature changes that predict rain

The previous experiment used the information in a single weather state to predict rain.

However, for some fields, it may not be the current value that is important, but the change in

that value since the last reading. I wanted to know whether the Genetic Memory would be
able to discover such feature combinations.

In the previous experiment, I presented the memory with 256-bit addresses which

represented the current weather state. In this experiment, I presented the memory with 512-
bit addresses which were a concatenation of the current weather state and the weather state

from 4 hours ago. The memory was shown 50,000 of these data samples. After training, a

small number of locations were rated as much better than average at predicting rain.

Of special interest to me was the pressure feature, since I knew that falling pressure

was a useful harbinger of upcoming rain. Each memory location address now contained two

16-bit fields which represented pressure; the first was for the preferred current pressure,

and the second was for the pressure 4 hours ago. Figure 11 shows the value of these fields

in one of the memory locations which was better at predicting rain. (Remember, the

preferred values of the fields are the minima of the graphs.)

Pressure (current)
.... I I

,°
o

_m I lalll

tO000 10100

Pressure (4 hours ago)
.... I I

100(30

.... I I

10100

Figure 11: Pressure sensitivity in a predictive memccy locations

This location prefers the current pressure to be relatively low, which is expected.

However, it also prefers the pressure 4 hours ago to be higher than the current pressure, that

is, for the pressure to be falling. Thus, this memory location has discovered that falling

pressure is a useful predictor for rain.

This experiment shows that the Genetic Memory can be presented with values that are

changing over time, and use information in those changes to add to the predictiveness of the

memory. It should be noted that the feature combinations I noted were ones that confirmed

my limited intuitions on what features predict rain. A more detailed analysis of successful

memory locations by an expert in meteorology would likely show the locations to also

contain more subtle but equally important combinations that I missed in my cursory

extraction of "interesting" feature combinations.

7. COMPARISON WITH DAVIS' METHOD

Davis' algorithm has been shown to be a powerful new method for augmenting the

power of a backpropagation-based system. The following is an attempt to contrast our

approaches, without denigrating the importance his groundbreaking work. The reader is

referred to his book for detailed information about his approach (Davis, 1987).

It is difficult to directly compare the performance of these techniques given the

preliminary nature of the experiments done with Genetic Memory. However, it is possible to

compare architectural features of the systems and estimate the relative strengths and
weaknesses.

• Backpropagation vs. Associative Memories: Davis' approach relies on the

performance of the backpropagation algorithm for the central learning cycle of the system.

Associative memories have a far quicker learning cycle than backpropagation networks, and

have been shown to have preferential characteristics after training in some domains. A

system based on an associative memory may share these advantages over a system based

on back'propagation.

• Scalability: Many issues concerning the scalability of backpropagation networks

remain unresolved. It is not simple to build backpropagation networks of thousands or

hundreds of thousands of units. In contrast, Kanerva's Sparse Distributed Memory is

specifically designed for such massive construction; one implementation on the Connection

Machine can contain 1,000,000 hidden units. The Genetic Memory shares this property.

* Unity: Davis' algorithm has two levels of processing. The f'n'st level consists of

standard backpropagation networks, and the second a meta-level which manipulates these

networks. The Genetic Memory has incorporated both algorithms into a single network;

both algorithms are operating simultaneously.

My intuition is that different algorithms may be best suited for the different layers of a

neural network. Layers with a large fan-out (such as the input layer to the layer of hidden

units) may be best driven by an algorithm suited to high-dimensional searching, such as

genetic algorithms or a Kohonen-style self-organizing system. Layers with a large fan-in

(such as the hidden-unit layer to the output layer) may be best driven by a hill-climbing

algorithms such a backpropagation.

8. CONCLUSIONS

• Real-world problems are often "high-dimensional", that is, are described by large

numbers of dependent variables. Algorithms must be specifically designed to function well in

such hi_h-dimensional spaces. Genetic Memory is such an algorithm .

• Genetic Memory, while sharing some features with Davis' approach, has fundamental

differences that may make it more appropriate to som_ problems and _asier to scale to

extremely-large (> 100,000. node) systems.

• The incorporation of the genetic algorithm improv¢s the recall performance of a

standard associative memory.

• The structure of the Genetic Memory allow8 _h_ _ser to access the parameters

discovered by the genetic algorithm and used to assist in making the associations stored in

the memory.

Acknowledgments

This work was supported in part by Cooperative Agreements NCC 2-408 and NCC 2-

387 from the National Aeronautics and Space Administration (NASA) to the Universities

Space Research Association (USRA). Funding related to the Connection Machine was

jointly provided by NASA and the Defense Advanced Research Projects Agency (DARPA).

All agencies involved were very helpful in promoting this work, for which I am grateful.

The entire RIACS staff and the SDM group has been supportive of my work. Bruno

Olshausen was a vital sounding-board. Richard Sincovec supported my work faithfully

although it must have appeared very removed from his far more practical world of

computational fluid dynamics. Pentti Kanerva trusted my intuitions even when the payoff

wasn't yet clear. And finally, thanks to Doug Brockman, who decided to wait for me.

References

Darwin, Charles, The Origin of the Species, (1859), paperback version: New York:

Washington Square Press, (1963).

Davis, L., Genetic algorithms and simulated annealing, London, England: Pitman Publishing
(1987).

Holland, J. H., Adaptation in natural and artificial systems, Ann Arbor: University of

Michigan Press (1975).

Holland, J. H., "Escaping brittleness: the possibilities of general-purpose learning

algorithms applied to parallel rule-based systems," in Maclu'ne learning, an artificial

intelligence approach, Volume H, R. J. Michalski, J. G. Carbonell, and T. M. Mitchell,

eds. Los Altos, California: Morgan Kaufmann (1986).

Kanerva, Pentti., "Self-propagating Search: A Unified Theory of Memory," Center for the

Study of Language and Information Report No. CSLI-84-7 (1984).

Kanerva, Pentti., Sparse distributed memory, Cambridge, Mass: MIT Press, 1988.

Rogers, David, "Using data-tagging to improve the performance of Kanerva's sparse

distributed memory," Research Institute for Advanced Computer Science Technical

Report 88.1, NASA Ames Research Center (1988a).

Rogers, David, "Kanerva's Sparse Distributed Memory: an Associative Memory Algorithm

Well-Suited to the Connection Machine," Int. J. High-Speed Comput., 2, pp. 349-365
(1989).

Rogers, David, "Statistical Prediction with Kanerva's Sparse Distributed Memory,"

Advances in Neural Information Processing Systems I, San Mateo: Morgan-Kaufmann
(1989).

