
Research Institute for Advanced Computer Science
NASA Ames Research Center

Solving the Shallow Water Equations
on the Cray X-MP/48 t_/_

and the Connection Machine 2

Paul N. Swarztrauber and Richard K. Sato

December 1989

Research Institute for Advanced Computer Science

NASA Ames Research Center

RIACS Technical Report 89.48

NASA Cooperative Agreement Number NCC 2-387

(NASA-CR-188897) SOLVING TIlE SHALLOW WATER
EQUATIONS ON THE CRAY X-MP/48 AND THE
CONNECTION MACHINE 2 (R_search Inst. for
Advanced Computer Science) 19 p CSCL 09B

G3/al

N92-I1658

Unclas
0043099





Solving the Shallow Water Equations

on the Cray X-MP/48
and the Connection Machine 2

Paul N. Swarztrauber and Richard K. Sato

Research Institute for Advanced Computer Science
NASA Ames Research Center - MS: 230-5

Moffett Field, CA 94035

RIACS Technical Report 89.48

December 1989

Tile Research Institute of Advanced Computer Science is operated by Universities Spacc l[esearch
Association, The American City Building, Suite 311, Columbia, MD 2,14, (301)730-2656

Work reported herein was supported in part by Cooperative Agreements NCC 2-387 between the National
Aeronautics and Space Administration (NASA) and tim Universities Space l'tesearch Association (USI_.A).





Solving the shallow water equations on the

Gray X:-MP/48 and the Connection Machine 2

by

Paul N. Swarztrauber 1,2 and Richard K. Sato 1

December 1989

ABS TRA C T

The shallow water equations in Cartesian coordinates and two dimensions are

solved on the Connection Machine 2 (CM-2) using both the spectral and finite

difference methods. A description of these implementations is presented together

with a brief discussion of the CM-2 as it relates to these specUic computations.

The finite difference code was written both in C* and *LISP and the spectral code

was written in *LISP. The performance of the codes is compared with a FOR-

TRAN version that was optimised for the Cray X-MP/48.

• National Center for Atmospheric Research, Boulder, Colorado 80307, which is sponsored by
the National Science Foundation.

This work was supported by the NAS Systems Division via Cooperative Agreement NCC 2-

387 between NASA and the University Space Research Association (USRA.). It was per-

formed while this author was visiting the Research Institute for Advanced Computer Sci-

ence (RIACS), NASA Ames Research Center, Moffett Field, CA 94035.



-2-

1. Introduction. The Connection Machine 1 (CM-1) is a single instruction mul-

tiple data (SIMD) computer with 64K one-bit processors [3] that has been of

significant interest torte computer science community. However its performance

is below that of other_isupercomputers and consequently it has not generated

significant interest among institutions that require state-of-the-art performance.

However, a departure from the _one-bit n philosophy of the CM-1 resulted in the

CM-2 with a reported peak performance capability that is superior to most

supercomputers and has therefore generated a broad base of interest in the super-

computing community.

Although the fully configured CM-2 is still commonly referred to as a 64K one-

bit processor machine, its increased performance is due to the addition of 2K

Weitek 32-bit floating point processors. Each Weitek is rated at 16 M.flops and

therefore the peak rate of the CM-2 is presented as 32 billion floating point

operations per second (32 Gflops). It therefore became necessary for the scientific

computing community in general and the atmospheric science community in par-

ticular to examine the performance of the CM-2 on their particular type of com-

putations. As we will show, the performance of the CM-2 on the shallow water

equations is significantly less than 32 G flops but it is nevertheless in a range that

continues to make it interesting to scientific supercomputer users.

In a previous paper [8] we presented early results of the finite difference model

which will be updated in this paper together with new results for a spectral

model. The finite difference code is highly vectorizable and parallelizable and

runs at near peak rates on most computers. Consequently it provides a optimistic

view of the performance that is possible for problems in the atmospheric sciences.

The shallow water equations constitute a greatly simplified weather prediction

code [7] that has already been used to benchmark a number of machines [4].

Their solution is a relatively small but necessary step in the process of determin-

ing the applicability ofthe SIMD architecture to climate and weather prediction.

Ultimately these tests must be-C0nducted onthe sphere :w_ere-h-armonic

transforms are computed for the spectral method. A compressible model should

also be implemented. An explicit model with local communication should be

straightforward compared to a implicit model which requires global communica-

tion. A list of problems that can be used to evaluate the suitability of massively

parallel processing (MPP) is given in Table 1 below.



-3-

Table 1

PARALLEL GEODYNAMICS PROJECTS

Equations Geometries Methods

Shallow Water Cartesian Finite Difference

Incompressible Spherical Spectral

Compressible Irregular Semi-Lagrangian

The entries in Table 1 can be combined to provide a sequence of models and

experiments that could assist in determining the suitability of massively parallel

computing to the problems in the atmospheric and related sciences. For example,

we chose first to solve the shallow water equations in Cartesian coordinates using

finite differences on the Connection Machine. Our next step was to implement the

spectral method for the shallow water equations in Cartesian coordinates. We

will present the results of these experiments in the sections that follow; however,

we begin with a brief description of the Connection Machine.

2. The Connection Machine 2. Consider now several components of the CM-

2 and concepts that facilitate the implementation of scientific computations.

HOST

There is only one copy of the program which resides on the host or front end

which is physically distinct from the CM-2 but controls its execution. A CM-2

can support up to four front end systems that must currently be either a DEC

VAX 8000 series, Symbolics 3600 system or a Sun 4/280. Programs are

developed, stored, compiled, loaded, and executed on the front end. Instructions

to parallel variables are passed over an interface to the microcontroller where

they are broadcast for execution by all processors simultaneously. Program steps



-4-

that do not involve operations on parallel variables are executed on the front

end. Hence the CM-2 is essentially an extension to the front end which provides

computational power for operations on parallel variables. Note that any serial

portion of the code must therefore run at the speed of the host.

The CM-2 does not support multi-programming in the traditional sense. That is,

several jobs cannot share the same processors hut rather a job must complete

execution before another job can be allowed access to the processors. However, a

C/vi-2 can be configured as several smaller subsystems and each of these subsys-

tems can be simultaneously running independent jobs each from a separate front

end machine.

PROCESSORS

The CM-2 is a massively parallel SIMD machine. A fully configured CM-2 has

64K (65,536) single-bit processors that are packaged 16 per chip. For every two

chips (32 processors), there is a Weitek 3132 floating point chip. The CM-2

operates at an 8.0 MHz clock speed and the Weitek processors can produce an

add and a multiply per cycle for a peak computational rate of 16 million floating

point operations per second (Mflops). The 2048 Weitek processors therefore com-

bine for a total peak floating point computational rate of 32 billion floating point

operations per second (G flops). In practice the performance is considerably below

this figure because of the communication between the CM chips and the Weitek

3132. The actual performance figures are presented in the sections that follow.

MEMORY

Each processor has 8K (8192) bytes of memory for a total of 512 megabytes of

memory for a 64K processor system. Each processor can access data from its

memory at a rate of 5 megabits per second. The total memory bandwidth is

therefore over 300 gigabits per second. A processor can only operate on data

that is in its own memory but the processors are logically interconnected so that

data can be transferred between processors.

COMMUNICATIONS

The 4096 CM-2 chips are connected in a 12-dimensional hypercube network.

Communication is bit-wise rather than packet-wise with a maximum of 5)< 101°

bits transmitted per second (aggregate). However, like peak computational rates,

the peak communication rates are not achieved in practice, particularly by the

router. General communication between processors is handled by a router that



-5-

can transmit messages of any length. The throughput of the router depends on

the length of the messages and on the access patterns with typical bandwidths

from .1 to 1 billion bits per second.

A second, faster mechanism for communications between chips is a programm-

able NEWS grid that can be configured to support multi-dimensional

configurations. The NEWS grid allows processors to transmit data between pro-

cessors according to a regular rectangular pattern. For example, in a 2-

dimensional grid, each processor could simultaneously execute the same instruc-

tion to fetch data from its neighbor to the north, east, west or south. Use of the

NEWS grid eliminates the overhead of the router. This feature will also be avail-

able in FORTRAN which is currently in beta test phase.

VIRTUAL PROCESSORS

The CM-2 is a data parallel computer. For variables that are declared to be

parallel,each processor willhave a single element of that variable in itsmemory.

If this number exceeds the number of physical processors then virtual processors

are created. When an operation isperformed on a parallel variable, each proces-

sor performs the operation on its element. For example, if A, B, and C are

declared as parallelvariables, then each processor will have a single element from

each of the three arrays and a paralleloperation such as C = A + B willbe exe-

cuted by each processor using itsA, B, and C variables.

Through the concept of virtual processors, the CM-2 can support applications

that require more processors than are physically available. For example, parallel

variables with 64K elements will have one value associated with each processor.

If,however, parallel variables have 256K elements, then four virtual processors

are created for each physical processor at the time the CM-2 isinitializedfor the

application.

There are several

a)

b)

advantages to an SIMI) architecture:

It is not necessary to synchronize the processors which simplifies code

development, debugging and fault isolation.

The issue of whether or not to paralleiizeisnonexistent. The nagging issue

that persiststhroughout the multiprocessing community iswhether or not to

encourage users to multitask or to simply run separate job streams.



-6-

c) The host or front end contains the only copy of the code. Multiple copies of

a weather code would require a substantial memory resource since these

codes can occupy several M_oytes of memory. Indeed the code would occupy

all of the memory if the CM-2 were configured as a multiple instruction

multiple data (1VHMD) machine that required multiple copies of the code.

This aspect of an SIMI) computer highlights the fundamental design philoso-

phy of the CM; namely, that the electronics should be dedicated to items

such as data and arithmetic where it is used frequently rather than memory

for multiple copies of a code where its use is relatively infrequent. Memory

for address space can also be minimal since arrays rather than their indivi-

dual elements are referenced.

There are also some disadvantages to SIIvD.

a) The scalar part of any code will perform at the speed of the host. This sim-

ply emphasizes what is already known from Amdahl's rule, namely that

scalar code must be kept at a minimum for efBcient multiprocessing. For

certain computations such as the physical parameterizations in atmospheric

models, this may require a creative reformulation of the computations.

b) Computations on smaller arrays take the same time as computations on

larger arrays. The computing time depends only on the length of the for-

mula and is independent of the size or dimensions of the array. If the formu-

las for the boundary and interior of a domain have about the same arith-

metic operations per point then they will require about the same amount of

computing time.

c) Nested gridpoint conditionals are expensive since all possible branches must

be computed. The appropriate alternative is then selected via a mask. How-

ever this increase in computation is bounded once the model is fixed unlike

the computations as a function of grid size.

difference model3. The finite of the shallow water equations. The

benchmark code for the CM-2 is a simple=atmospheric dynamics model based on

the s=h:liow water equations [7] which repr_ent a primitive_ut useful model of

th_ d_amics of the atmosphere. Its performance provides a rough estimate of

the performance of more complex atmospheric models on various computer



-7-

systems. This estimate isgenerally of the high side since state-of-the-artmodels

would have a higher percentage of scalar computations that would run on the

host or front end system.

The shallow water Lequations consist of the following system of three time depen-

dent, partial differentialequations. Two additional equations define relationships

for the vorticity and for the height field.

au aH
---Lv+ -0
at az

av aH
--+_u+-----O
at ap

aP a a
-- + --(e.)+ --(Po)= 0

at as 8X/

where u and v are velocitiesin the z and y direction respectively; P ispressure;

H - P + ½(u S + vz) is the height fieldand _ isthe vorticity given by

au au

az ay

This form of the shallow water equations was used by Sadourney [7] because it

yielded a conservative finitedifference approximation. Using these equations and

his numerical formulation, a solution was obtained on a rectangular domain in

Cartesian coordinates with periodic boundary conditions in both directions.The

leapfrog time differencing scheme was used and second order centered finite

differenceapproximations were used for spatialderivatives.

The model is in-memory with variables declared as two-dimensional arrays that

are the size of the grid plus I (an extra row and column are defined for storage of

periodic boundary values). For a grid of 256)<256 points, the memory require-

ment on the Cray X-MP/48 isabout one million words. Secondary storage isnot

used and hence there was no requirement for I/O to external devices. The com-

putationally intensive portions of the code consist of three doubly-nested DO-

loops in which various quantities are computed over the two-dimensional grid.



-8-

Each of the loops is evaluated in a separate subroutine and the computations in

the loops account for more than 90% of the floating point operations in the code.

The inner loops are easily vectorized and for systems like the CM-2 which sup-

port parallel execution on multiple processors, the computations that correspond

to both the inner and outer loops can be executed in parallel.

The FOttTRA_ code appeared in [4] where it was used to benchmark several

supercomputers other than the CM-2 for meteorological modeling. The FOR-

TRAN code was converted to *LISP and on TMC's System V the LISP version

ran at 1.4 Gflops. This figure was extrapolated from a speed of .18 Gflops on the

NCAR 8K system. Both a C* and *LISP version were coded for the CM-2 and

these codes appear in [8]. The benchmark results are presented in Table 2. All

cases were run on an 8K processor system using 32-bit precision floating point

arithmetic. Performance figures on the CM are usually reported for a full system

but as extrapolations from figures that are obtained from a smaller system. This

is justified by the observation that the additional processors simply add addi-

tional flops if the size of the grid is increased without an increase in communica-

tion or the scalar part of the computation.

The first three rows of Table 2 give the performance achieved by an unoptimized

C* version of the model. Calls to a lower level language (PARIS) subroutine

library were required to access data from neighboring processors. For example,

the line

CM_get_from_west_always(&pW, &p, FLEN)

fetches the value of the variable WpW from the processor to the west and stores it

in the local varrable WpW". The grid size was specified as a power of two in

order to e_ciently map it onto the the CNi-2 and to obtain the highest computa-

tional rates. For Case A, a mode_ grid of 64 x 128 was specified to correspond to

the 8K processors of the CM-2 and hence there was a physical processor for each

point of the model grid giving a VP ratio of 1.

For Case B, the model grid was specified as 64)<4096 which has 32 times more

points than the number of physical processors giving a VP ratio of 32. Case C

was a run with a 256)<256 model grid. Again there are more points than the

total number of physlcal processors, and int this configuration, each physical pro-

cessor represents a 4)< 2 array of virtual processors for a VP ratio of eight. For

both Case B and Case C, the performance achieved was 110 Mflops on the 8K



-9-

system which corresponds to 880 Mops on a full 64K system. Although the per-

formance improved when the _P ratios increased from one to eight and from one

to 32, performance did not improve when the VP ratio increased from eight to

32. This is evidently because the communications overhead is less efficient for

the 64x4096 configuration than for the 256x256 configuration.

Optimized C* Version

The optimized C* version and the unoptimized C* version are compared in the

next three entries of Table 2. In the optimized version, additional subroutines

were added to the lower-level subroutines library and invoked in the C* program.

These additional routines allowed more efficient use of the processors by overlap-

ping communications with computations. For example, if a value was fetched

from a neighboring processor and was to be added to another variable a Ufetch

and add W instruction was issued rather than a nfetch u instruction followed by an

WaddW instruction. The line

CM_get_from_west_with_f_add_always (&cu, &cu, FLOAT)

fetches the value of WcuW from the west neighbor and adds it to the local value of

'cu". The optimized C* version resulted in Mflops rate improvements of 35%,

49%, and 66_o over the unoptimized version for the three cases that were run

with a top rate of 1464 Mfiops for the 256x 256 grid.

*LISP Version

The *LISP version resulted in the highest performance rates although the

corresponding model configuration 512)<512 was not run for the optimized C*

version. The *LISP version ran at 215 Mflops on the 8K processor system.

Assuming a linear scale up in performance, a 64K system would execute at a rate

of 1.7 Gfiops ifa VP ratio of 32 ismaintained. The *LISP compiler isconsidered

to be more highly optimized than the C* compiler.

Cray X-MP Version

The Cray X-MP version is written in FORTRAN which ishighly vectorized and

a listingof the code is provided in [8].The 256x256 grid requires one million

words of memory and executes at 148 Mfiops on a one processor Cray X-MP.

The 512×512 case requires 3.9 million words of memory and also executes at 148

Mflops. A microtasked version runs at 560 Mflops on the full Cray X-MP/48.

The Cray X-MP fioating point operations are performed with 64-bit precision

compared with 32-bit precision on the CM-2.



- 10-

Table 2

Mflops for Shallow Water Code on Thinking Machine CM-2

Case Language CM Size Model Grid VP ratio Mflops Mflops

(measured) (for full 64K sys)

A Unopt C* 8192 64 × 128 1 77 616

B Unopt C* 8192 64 × 4096 32 102 816

C Unopt C* 8192 256 × 256 8 102 816

D Opt C* 8192 64 × 128 1 112 896

E Opt C* 8192 64 x 4096 32 164 1312

F Opt C* 8192 256 × 256 8 183 1464

G *LISP 8192 512 × 512 32 215 1720

Observations

As with all computational models of multidimensional phenomena, the bench-

mark includes loops of lower dimension. For example, periodic boundary condi-

tions are implemented in the FORTRAN version by one dimensional loops in

which the left boundary is copied to the right as well as the top to the bottom.

These loops are usually implemented on a serial or vector computer without

much consideration since it is known that their contribution to the computing

time is an order of magnitude below that of the two dimensional loops. However,

when implemented in this manner on the Connection Machine, the total comput-

ing time (for the *LISP version) was increased by a factor of 2.5 to 4 depending

on the VP ratio. The largest increase corresponded to the highest VP ratios for

which the least amount of interprocessor communications is required and hence

the highest computational rates are achieved. Although the boundary



- 11-

computations are performed on a subset of the grid, they require the same

amount of time as computations on the interior when the amount of arithmetic

per point is the same. In addition, the communications that were explicitly

specified by the code are not directly supported by the NEWS communication.

These reduced rates were not representative of the rates that could be obtained

via alternate algorithmic and coding efforts and therefore the periodic boundary

conditions were implemented using the periodic communications that are avail-

able using NEWS communication. This was achieved by simply branching

around the code that explicitly implemented the boundary conditions and

increasing the number of grid points to the nearest power of two.

This modification in the computation is representative of the efforts that will be

necessary to implement existing codes on a parallel processor. The periodic

boundary conditions could be implemented using more efficient communications

methods such as the scan instruction or perhaps in microcode using the hyper-

cube communications.. These efforts are seen as typical for any significant change

in computer architecture and not unlike the efforts that were required to adapt

codes to early vector architectures.

4. The spectral model of the finite difference equations. A natural next

step in the progression of models toward weather and climate prediction on the

CM-2 is one in which the spectral method is used to solve the shallow water

equations. The techniques that are used to ensure stability of the computations

for the spectral method are different from those used for the finite difference

method and therefore the conservative form of the equations that were used

above in Section 3. for the finite difference method can be replaced by the more

traditional form of the shallow water equations.

au au 8u ah
_ + u _+ v _- [v = -g _
at az ay az

av av av ah

at az ay ay

_+u_ +v_+h _+

at ax ay a=
--0



F

- 12-

whereg ffi 9.8 rn/sec 2, / - 10-4/see, and h'_ 1 x 104 .

These equations are solved subject to periodic boundary conditions using the

computational approach that is outlined below.

1. The spectral representations of u, v, and h are computed using a multiple

FFT program developed by TMC [5]

2. The upper third of the coefIicients are truncated to significantly reduce (but

not completely eliminate) aliasing. This approach was also used in [1].

3. The spatial derivatives uz, uv, vz, vy,hz, and hv in physical space are com-

puted by formal differentiation of the spectral representations computed in

1. followed by the inverse FFT.

4. The time derivatives ut, vt, and h t are computed by substituting the spatial

derivatives into the right hand side of the shallow water equations given

above.

5. The solution is advanced to the next time level using _leap frog w time

d_erencing.

This approach is in fact called the pseudo-spectral method which is a significant

variant of the spectral method. A comparison of three different methods for

solving differential equations is given in [1]. The steps 1 through 5 were imple-

mented in FORTR.A.N/CAL on the Cray X-MP/48 and in *LISP by Oliver

McBryan on the CM-2. The codes were optimized for the particular machine

rather than |ine for line translations from one machine to the other.

are given below in Table 3.

The results



- 13-

Table 3

Spectral Shallow Water Equations Model

Cray X-MP/48 and Thinking Machine CM-2

Resolution

256 x 256

512 × 512

2048 x 2048

_ops

X-MP X-MP CM2

Time/Grid point

(1 proc) (4 proc) (65K proc)

125 397 601

129 476 806

1162

X-MP X-MP CM2

(1 proc) (4 proc) (65K proc)

2.41 .75 .77

2.59 .70 .64

.53

NOTE: The X-MP/48 time is for 64 bit precision and

the CM-2 time is for 32 bit precision.

Observations

a) Most of the computing time is in subroutine FFT991 which is a fast Fourier

transform (FFT) written in Cray machine language by Clive Temperton at

ECMWF. Because of the difficulty in converting this code to a multitasked

version, the use of four processors was made possible by separating the



- 14-

rectangle into four subdomains and creating four separate tasks which called

FFT991 on these subdomalns. There is some overhead in this operation since

the length of the vectors is divided by four.

b) The time for an ordered transform on the GM-2 was prohibitive because of

the cost of the global communication required for bit reversal. An ordered

transform on the Clvi-2 takes two to three times as long as an unordered

transform [6]. However, since the order of the FFT in spectral space is not

particularly relevant to the solution which is presented in physical space, it

is not necessary to order the FFT. The spectral representations of the

derivatives were computed by multiplying the bit reversed coefficients by

wave numbers that were also in bit reversed order. The inverse FFT then

accepts the bit reversed coefficients and provides the derivatives on the grid

which is ordered in physical space.

c) The spectral code makes extensive use of the FFT and indeed the perfor-

mance on the shallow water equations is about the same as the performance

on the FFT. The vectorization and parallelization of the FFT is nontrivial

[9], [10], particularly when compared with the finite difference method.

Nevertheless methods have been developed over the years that enable the

FFT to perform at near peak rates and FFT codes have been repeatedly

groomed for optimum performance on the Gray X-MP. This fact should be

kept in mind when comparing the performance of the computers since the

FFT on the CM-2 is both a new code and a new implementation of the

FFT. It was written by the staff at Thinking Machines Corporation [5]

under the supervision of Lennart Johnsson and was provided to NCAR on a

beta test basis.

d) Tempertons FFT on the Cray X-MP/48 is for real sequences and requires

about half the time required for a complex transform. On the other hand

the TMC FFT is for complex sequences. This apparent disadvantage was for

all practical purposes overcome by combining two real variables into a single

complex variable which could then be transformed concurrently [6].

Although the complex transform would have to be postprocessed to recover

the real transforms, it was not necessary for the reasons already mentioned

in b) above. It was simply sufficient to multiply each coefficient by its

corresponding wave number followed by an inverse transform which yielded

the derivatives of two distinct variables as the real and imaginary parts

respectively. This technique works best if the number of variables is even



- 15 -

which unfortunately is not the case here were the variables are u, v, , and

P. However it is possible to extract two different derivatives, say with

respect to both z and V with one complex transform [6].

e) CM FORTRAN is currently under beta test at several institutions and is

expected to make the CM-2 more attractive to the scientific computing com-

munity.

5. Conclusions. A status report has been provided on a continuing project;

namely, to determine the suitability of massively parallel processing to the com-

putational needs of the atmospheric science community. As of this report, two

data points have been obtained. The first is 1.7 Gfiops for an elementary weather

model in Cartesian coordinates using the finite difference method and the second

is about 1 Gflop for the same model using the spectral method. These results are

encouraging and suggest the need for further investigation into the suitability of

massively parallel processing and in particular the suitability of SIMD architec-

tures. Optimum codes for the CM-2 were compared with codes that were optim-

ized for the Cray X-MP/48 rather than a comparison of Gflops for the two

machines on the same code.

The Gflops that were obtained on the CM-2 were not obtained on the first runs

and indeed more than a modest effort was required by individuals with consider-

able knowledge about parallel computing and the machine itself. This effort must

be weighed against any increase in flops/dollars. A substantial increase in perfor-

mance is necessary to justify the effort that is required to convert a major pro-

duction code to a new architecture. This study is a beginning and much work

remains to be done before a definitive statement can be made regarding the

future relationship of SIMD and computing in the atmospheric and related geos-

ceinces. In particular more data points should be obtained for more complex

problems, perhaps selected from Table 1 in section 1.

ACKNOW'LED GEMENTS

We are grateful to the staff at Thinking Machines Corporation for their support

of this project and in particular we wish to thank Dr. Lennart Johnsson and his

staff for their counsel and for providing the CM FFT under beta test. We would

also like to thank Dr. John Richards (TMC) for developing the C* version of the



- 16-

finite difference model and Dr. Oliver McBryan at the University of Colorado for

his extensive support of this project including the development of *LISP codes

for both the spectral and finite difference methods.



- 17-

REFERENCES

[1] G.L. Browning, J.J. Hack and P.N. Swarztrauber, A comparison of three

numerical methods for solving differential equations on the sphere, The

Monthly Weather Review, 117(1989), pp. 1058-1075.

[2] Connection Machine Model CM-£ Technical Summary, Thinking Machines

Technical Report HA87-4, April, 1987.

[3] D. Hillis, The Connection Machine, MIT Press, Cambridge, MA., 1985.

[4] G.-R. Hoffman, P. N. Swarztrauber, and R. A. Sweet, Aspects of using mul-

tiproeessors for meteorological modeling, in: Multiprocessing in Meteorologi-

cal Models, G.-R. Hoffmann and D. F. Shelling, eels., Springer-Verlag, New

York, 1988.

[5] L. Johnsson, R. Krawitz, and R. Frye, Computing radix-_ FFT on the Con-

nection Machine, Technical Report, Thinking Machines Corp., Cambridge,

MA, 02142, 1989.

[6] O.A. McBryan, Connection Machine application performance, Rpt. CU-CS-

434-89, Department of Computer Science, University of Colorado at

Boulder, Boulder, Colorado, 80309, 1989.

[7] R. Sadourney, The Dynamics of finite-difference models of the shallow-water

equations, Journal of Atmospheric Sciences, 32, {1975), p680-689.

{8] R.K. Sato, and P.N. Swarztrauber, Benchmarking the Connection Machine,

Orlando Florida,

19]

Proceedings of the IEEE Supercomputer Conference,

November 14-18, 1988, pp. 304-309.

P.N. Swarztrauber, Vectorizing the FFT's, In: Parallel

Rodrigue, ed., Academic Press, New York, 1982.

[10] P.N. Swarztrauber, Multiprocessor FFTs, Parallel Computing. 5 (1987), pp.

197-210.

Computations, G.




