
/	 -
NASA Contractor Report-187556

0

5o 73 0/c

Advanced Information Processing System:
Inter-Computer Communication Services

AUVACc- iKM'TI
,OCESSING SYSTEM: INTER-COMPUTFR

iMMUNICATION SERVICES (Draper (Charles
•ark) Lab.) 340 p	 CSCL 098	 Unclas

G3/62 004448

Laura Burkhardt
Tom Masotto
J. Terry Sims
Roy Whittredge
Linda Alger

THE CHARLES STARK DRAPER LABORATORY, INC.
CAMBRIDGE, MA 02139

Contract NAS1-18565
September 1991

NASA
National Aeronautics and
Space Administration

LangeY Research Center
Hampton Virginia 23665-5225

,imt& CCIITMI

NASA Contractor Report-187556
	 tULBR

Advanced Information Processing System:
Inter-Computer Communication Services

Laura Burkhardt
Tom Masotto
J. Terry Sims
Roy Whittredge
Linda Alger

THE CHARLES STARK DRAPER LABORATORY, INC.
CAMBRIDGE, MA 02139

Contract NAS1-18565
September 1991

NASA
National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665-5225

TABLE OF CONTENTS

Title	 Page

LISTOF ILLUSTRATIONS ..vii

1.0 INTRODUCTION ...1-1
1.1 AiPSArchitecture ..1-1

1.1.1 AlPS Inter-Computer Overview... 1-4
1.2 AlPS System Software .. 1-4

1.2.1 AlPS Software Design Approach.. 1-5
1.2.2 AlPS System Software Overview 1-5

1.2.2.1 Local System Services... 1-5
1.2.2.2 I/O System Services 1-9
1.2.2.3 Inter-Computer Communication Services......................1-10
1.2.2.4 System Manager... 1-12

1.3 Inter-Computer Communication Services Guarantees 1-13
1.4 Inter-Computer Communication Services ISO Model............................. 1-15

2.0 THE PRESENTATION AND PROCESS LAYERS 2-1

3.0 THE SESSION LAYER... 3-1
3.1 Synchronous Communication	 Manager.. 3-1

3.1.1	 Functional Requirements ... 3-1
3.1.2	 Functional Design ... 3-2

3.1.2.1 Distributed	 Ada	 Objects ... 3-2
3.1.2.2 User Interface ... 3-2

3.1.2.2.1	Tasks 3-4
3.1.2.2.2	 Data... 3-6

3.1.2.3 Site Initialization.. 3-6
3.1.2.4 Distributed Task Rendezvous..................................... 3-6
3.1.2.5 Distributed	 Data	 Access.. 3-7

3.2 Synchronous Communication Manager: Software Specifications................ 3-9
12.1	 Distributed Rendezvous Process Descriptions............................. 3-11

3.2.1.1 Process Name: Kernel Entry Procedure........................ 3-11
3.2.1.2 Process Name: Server Surrogate Task......................... 3-13
3.2.1.3 Process Name: Client Surrogate Task 3-15
12.1.4 Process Name: Rendezvous Manager Task.................... 3-17

3.2.2	 Distributed Access Process Descriptions 3-19
3.2.2.1 Process Name: Global Object Access Procedure.............. 3-19
3.2.2.2 Process Name: Local —Access Surrogate Task................. 3-21
3.2.2.3 Process Name: Remote Access Surrogate Task............... 3-23
3.2.2.4 Process Name: Global Data Manager Task.................... 3-25

4.0 THE TRANSPORT LAYER.. 4-1
4.1 Functional Requirements and Design 4-1

4.1.1 Functional Requirements and Design: User Services 4-1
4.1.2 Functional Requirements and Design: Message Send-Receive Task. . . 4-4
4.1.3 Functional Requirements and Design: ICIS Redundancy

Management(RM) 4-5
4.1.3.1 Functional Requirements Associated With IC

Communications.. 4-6
4.1.3.1.1 Redundancy Management During Data Reception

Process... 4-6

ifi
PRECEDING PAGE BLANK NOT FILMED

4.1.3.1.2 Redundancy Management During Data Transmission
Process...4-6

4.1.3.2 Requirements for the Detection and Isolation of Faults (FDI)
Associated with the IC Hardware4-7
4.1.3.2.1	 FDI During Reception Process4-7
4.1.3.2.2 FDI During Data Transmission Process............4-7

4.1.3.3 Requirementsfor the Management of Responses to Detected
Errors in IC Hardware...4-8

4.1.3.4 Requirements for Performing Re-Initialization of ICIS Hardware
on Recovery of Channel and/or ICIS............................ 4-8

4.2 Software Specifications ..4-9
4.2.1	 Software Specifications: 	 User Services 4-9

4.2.1.1 ICCS User IDs ...4-9
4.2.1.2 Data	 Structures ...4-12
4.2.1.3 Process Descriptions..4-16

4.2.1.3.1	 Process Name: OUTPUT—SETUP4-16
4.2.1.3.2 Process Name: INPUT—SETUP4-17
4.2.1.3.3	 IDENTIFY—LOCATION4-18
4.2.1.3.4	 SEND _OUTPUT 4-19
4.2.1.3.5	 GET _INPUT ... 4-20
4.2.1.3.6 CHECK_OUTPUT_STATUS 4-21

4.2.2	 Software Specifications: Message Send-Receive Task..................4-22
4.2.2.1	 Data	 Structures...4-22
4.2.2.2	 Process Descriptions.. 4-27

4.2.2.2.1 MESSAGE SEND-RECEIVE Task Body4-29
4.2.2.2.2 CHECK_FOR_TIMEOUTS 4-30
4.2.2.2.3 PROCESS —IN—MESSAGES 4-31
4.2.2.2.4 SEND _PENDING_MES SAGES 4-31
4.2.2.2.5 SEND_CP_MESSAGES 4-32
4.2.2.2.6 SEND _lOP_MESSAGES 4-33
4.2.2.2.7 FORM _ MSG—PACKET4-33
4.2.2.2.8 FORM _ACK-PACKET 4-34
4.2.2.2.9 FORM_UNDELIV_PACKET4-34
4.2.2.2.10 FORM_MSG_CONT_PACKET 4-34
4.2.2.2.11 FORM—CHAIN _TO_ICIS_DPM 4-34
4.2.2.2.12 SEND	 MSG .. 4-35
4.2.2.2.13 SEND _MSG _CONT 4-35
4.2.2.2.14 SEND _ACK ... 4-36
4.2.2.2.15 SEND_UNDEL1V 4-36
4.2.2.2.16 BROADCAST—MSG4-36
4.2.2.2.17 UPDATE_OUTGOING_MSGS 4-37
4.2.2.2.18 GET—AVAIL _IN_BUF4-37
4.2.2.2.19 MOVE _DATA....................................... 4-38
4.2.2.2.20 CREATE_OUT_MSB4-38
4.2.2.2.21 CREATE_IN_MSB 4-38
4.2.2.2.22 CREATE _TEMP _MSB 4-39
4.2.2.2.23 FIND_OUTPUT_MSB4-39
4.2.2.2.24 FIND _INPUT_MSB4-40
4.2.2.2.25 REMOVE_INPUT_MSB 4-40
4.2.2.2.26 REMOVE_OUTPUT_MSB4-40
4.2.2.2.27 ADD_TO_PENDING_LIST4-41
4.2.2.2.28 SIGNAL _INPUT4-41
4.2.2.2.29 UPDATE_IN_MESSAGES 4-42
4.2.2.2.30 PROCESS_MSG_PACKET 4-42

iv

4.2.22.3 1 PROCESS_MSG_PACKET	 .4-43
4.2.2.2.32 PROCESS_ACK_PACKET 4-43
4.2.2.2.33 PROCESS_UNDELIV_PACKET 4-44
4.2.2.2.34 LOG _IC-ERROR4-44
4.2.2.2.35 DISPLAY_IC_ERROR_LOG4-45

4.2.3	 Software Specifications: ICIS Redundancy Management............... 4-45
4.2.3.1 ICIS_RM TASK ..4-47

4.2.3.1.1	 Process:	 Packet.-Process 4-51
4.2.3.1.2	 Process:	 Get_Active_Layers 4-53
4.2.3.1.3	 Process:	 Byte_Count_Analysis 4-54
4.2.3.1.4	 Process:	 SDLC_Error_Analysis 4-57
4.2.3.1.5	 Process: Correlate_Error_Information 4-58
4.2.3.1.6	 Process:	 Get_Congruent_Data 4-62

4.2.3.2 ICIS_Local_Manager (ILM)Task 4-65
4.2.3.2.1 Managing Responses to Failures Reported by

ICIS_RM Task.. 4-66
4.2.3.2.2 Managing Layer Status Updates from Network

Manager...4-68
4.2.3.2.3 Managing Requests for Re-initialization of ICIS

Hardware ...4-68
4.2.3.2.4	 Managing Retry Self-Tests 4-72

4.2.3.3 Starting	 Solicited	 Chain...4-74
4.2.3.4 Process to Check the Status of the ICIS........................ 4-77

5.0 THE NETWORK LAYER.. 5-1
5.1	 IC Network Growth Functional Requirements and Design 5-1

5.1.1 Overview of the IC Network Growth..5-3
5.1.2 Initialization of the IC Network 5-4
5.1.3 Assignment of the System Manager...5-7
5.1.4 Network	 Contention... 5-8
5.1.5 IC Network Growth Algorithm .. 5-9
5.1.6 Analysis of Network Contention Error Symptoms....................... 5-14

5.1.6.1 Symptom 1: Reception of Commands from a Remote FTP .5-14
5.1.6.2 Symptom 2: Connected Nodes Have Been Disconnected 5-15
5.1.6.3	 Symptom 3: Node Responses are Lost or Have Errors...... 5-15

5.1.7 Determination ... 5-16
5.1.8 The lC Network Diagnostics .. 5-16
5.1.9 Network Contention Examples ...5-17

5.1.9.1 Example 1: FourFTPS Contend - Three FTPS Back Off ...5-17
5.1.9.2 Example 2: Four FFPS Contend - Four FTPS Back Off... .5-18

5.2 IC Network FDIR Functional Requirements and Design......................... 5-19
5.2.1 The IC Network Layers and the IC Layer Managers.....................5-19
5.2.2 IC Network FDIR - Fault Detection.. 5-20
5.2.3 IC Network FDIR - Fault Analysis and Reconfiguration................ 5-20

5.2.3.1	 Fault	 Analysis..5-21
5.2.3.2	 Reconfiguration .. 5-23
5.2.3.3	 IC Layer Growth.. 5-26

5.2.4 IC Network FDIR - Layer Status Notification 5-32
5.3	 IC Network Growth Software Specifications 5-32

5.3.1 Process Name: IC	 Network	 Manager......................................5-32
5.3.2 Process Name: Send Site is Accessible Message......................... 5-33
5.3.3 Process Name: Send Network is In—Service Message 5-34
5.3.4 Process Name: Acknowledge Site is Accessible Message 5-34
5.3.5 Process Name: Perform Network Diagnostics 5-35

VA

5.3.6 Process Name: IC Network Growth 	 .5-37
5.3.7 Process Name: Execute Iteration 5-39

5.3.7.1	 Process Name: Execute Step 1 of the Iteration5-40
5.3.7.2 Process Name: Execute Step 2 of the Iteration5-40
5.3.7.3 Process Name: Execute Step 3 of the Iteration5-41

5.3.8 Process Name: Iteration Error Analysis...................................5-41
5.3.9 Process Name: Re-execution Delay..5-42
5.3.10 Process Name:	 Back Off.. 5-43

5.4	 IC Network FDIR Software Specifications .. 5-44
5.4.1 Process Name: IC Layer Manager... 5-44
5.4.2 Process Name: IC Layer Growth .. 5-45
5.4.3 Process Name: Establish Root Link 5-47
5.4.4 Process Name: Adding Nodes to Layer................................... 5-48
5.4.5 Process Name: Diagnostic Testing... 5-50
5.4.6 Process Name: Adding Remote FTPs 5-52
5.4.7 Process Name: Layer	 Maintenance... 5-53

5.4.7.1	 Process Name: Layer Status Collection........................ 5-53
5.4.7.2	 Process Name: Layer Fault Analysis........................... 5-55
5.4.7.3	 Process Name: Layer Reconfiguration......................... 5-57

6.0 THE PHYSICAL AND DATA LINK LAYERS ...6-1
6.1	 Functional Requirements .. 6-i
6.2	 Hardware Specifications... 6-1

6.2.1	 Physical and Data Link Layers ... 6-2
6.2.2	 Inter-Computer	 Network	 Contention.. 6-2

6.2.2.1	 The	 Laning	 Poll .. 6-4
6.2.2.2	 The AlPS Contention Protocol 6-4

6.2.2.2.1 The S Bit of the Redundancy Code Sequence..... 6-5
6.2.2.2.2 The T Bit of the Redundancy Code Sequence..... 6-5
6.2.2.2.3 The D Bit of the Redundancy Code Sequence.....6-5
6.2.2.2.4	 The Priority Sequence Bits 6-5

6.2.2.3	 Implementation of Network Contention Hardware.............6-6
6.2.2.3.1	 Poll Bit Timing .. 6-6
6.2.2.3.2	 Network Activity Monitors.......................... 6-7
6.2.2.3.3	 ICIS State Machine..................................6-11
6.2.2.3.4	 Cross-Strapping of ICIS Channels................ 6-13

6.2.3	 ICIS Interface to the FTP.. 6-16

7.0 CONCLUSIONS AND RECOMMENDATIONS7-1
7.1 Demonstration and Testing of Inter-Computer Communication Software.......7-1

7.1.1 Demonstration Hardware and Software 7-1
7.1.2 Preliminary Testing of Inter-Computer Communication Services.......7-2
7.1.3 Performance Metrics ..7-2

7.2 Future	 Work...7-3

8.0 REFERENCES...8-1

APPENDIXAA-i

APPENDIXB .. B-i

APPENDIXC .. C-i

APPENDIXD..D-1

vi

LIST OF ILLUSTRATIONS

Figure	 Title Page

1-1. ALPS Engineering Model Distributed Configuration 1-3
1-2. AlPS System Design Approach... 1-6
1-3. Centralized AlPS Configuration .. 1-7
1-4. Top	 Level	 View	 of	 System	 Services.. 1-8
1-5. Local System Services ... 1-9
1-6. 1/O System Services 1-11
1-7. Inter-Computer	 System	 Services .. 1-11
1-8. System Manager 1-13
1-9. Point To Point Communication Message Flow 1-14
1-10. Data Structure used for I/O Request Construction and Interprocessor

Communication .. 1-15
1-11. Inter-Computer Communication Services ISO Layer Components................ 1-17
3-1. FTP	 Address	 Space... 3-3
3-2. Distributed Task Rendezvous ... 3-8
3-3. Distributed Data Access... 3-10
3-4. Kernel Entry Procedure... 3-12
3-5. Server	 Surrogate	 Task... 3-14
3-6. Client Surrogate Task 3-16
3-7. Rendezvous Manager Task... 3-18
3-8. Global Object Access Procedure... 3-20
3-9. Local Access Surrogate Task... 3-22
3-10. Remote Access Surrogate Task .. 3-24
3-11. Global.	 Data	 Manager	 Task .. 3-26
4-1. Transport Layer Overview 4-2
4-2. Location of Tasks and Shared Data ..4-10
4-3. Transport Layer Packages ..4-11
4-4. Input and Output Buffers and Queues... 4-15
4-5. User	 Services..4-16
4-6. Basic Packet ...4-22
4-7. Output	 Packet...4-23
4-8. Input Packet .. 4-24
4-9. Message Status Block List.. 4-26
4-10. Pending Messages List.. 4-26
4-11. Message Send-Receive Task ... 4-27
4-11. Message Send-Receive Task(cont.) ... 4-28
4-12. ICIS Redundancy Management: Mapping of Functional Requirements to Software

Objects.. 4-46
4-13. Structure of ICIS_RM Task Body... 4-48
4-14. Structure of Packet-Process .. 4-52
4-15. Algorithm	 for	 Byte	 Count	 Analysis..4-56
4-16. Algorithm	 for	 SDLC	 Analysis...4-58
4-17. Layer/Channel 	 Deactivation... 4-60
4-1.8. Error	 Status	 Determination .. 4-61
4-19. Votes/Selects Used for Layer/Channel Combinations................................ 4-64
4-20. Analysis of Inter-Channel and Intra-Channel Votes................................. 4-65
5-1. AlPS Inter-Computer Network ... 5-2
5-2. IC Network Initialization - FTP Accessible After System Manager Assignment.. 5-6
5-3. IC Network Initialization - FTP Accessible Before System Manager Assignment 5-6
5-4. Processing of the Execution of Steps 1-3... 5-11

vu

5-5. Processing of the Re-execution of Steps 1-3 .5-12
5-6. Network Contention Example - FTP4 Grows the IC Network5-18
5-7. Network Contention Example - FTP1 Grows the IC Network5-19
5-8. Identifying A Failed Link..5-23
5-9. Removing A Node and Reconnecting Its Branches..................................5-26
5-10. The Layer Growth Algorithm ..5-28
5-11. No Fault Growth Algorithm..5-29
5-12. Layer Growth Used to Isolate a Babbling Node.....................................5-30
6-1. Poll Bit Timing .. 6-7
6-2. Network Monitor State Diagram..6-9
6-3. Polling Logic Blocks..6-10
6-4. ICIS State Machine..6-12
6-5. Next State Logic for Triplex ICIS ...6-14
6-6. Congruent State Exchange Logic For One ICIS 6-15
6-7. IC Network Interface for One FFP Channel.. 6-17
6-8. Data Flow through LMN and Cross-Channel Hardware............................ 6-18
6-9. Data Flow from CPtolClS ..6-18

A- 1. AlPS Node ..A-i
A-2. Node Port..A-3
B-i. ICCS_SYSTEM_USER_IDS Package .. B-2
B- 1. ICCS_SYSTEM_USER_IDS	 Package	 (cont.).. B-3
B-2. ICCS_APPLIC_USER_IDS	 Package.. B-4
B-2. APPLICUSER_IDS Package (cont.) ... ICCS_	 _ B-S
B-3. ICCS_DATA_TYPES Package... B-6
B-4. Recompilation Order for Packages Dependent on ICCS_DATA_TYPES B-7
B4. Recompilation Order for Packages Dependent on ICCS_DATA_1'YPES (cont.).B-8
B-S. Interface Routines for Transport Layer Users .. B-iO
B-6. Parameters Required for the Interface Routines B-il
B-6. Parameters Required for the Interface Routines (corn.) B-12
B-6. Parameters Required for the Interface Routines (cont.) B-i3
B-6. Parameters Required for the Interface - Routines (cont.) B-i4
B-6. Parameters Required for the Interface Routines (corn.) B-i5
B-6. Parameters Required for the Interface Routines (cont.) B-i6
B-7. Packages	 Defining	 Required Data	 Types ... B-i7
B-8. Example: Sensor Processing Application .. B-i9
B-8. Example: Sensor Processing Application (cont.) B-20
B-8. Example: Sensor Processing Application (cont.) B-2i
B-9. Example: Task Scheduled by Arrival of Input....................................... B-22
C- 1. ICIS Logic Blocks .. C-i

viii

1.0 INTRODUCTION

The purpose of this report is to document the functional requirements and detailed
specifications for the Inter-Computer Communication Services (ICCS) of the Advanced
Information Processing System (AlPS). This introductory section is provided to outline the
overall architecture and functional requirements of the AlPS system and to present a overview
of the Inter-Computer Communication Services. Section 1.1 gives an overview of the AlPS
architecture as well as a brief description of the AlPS inter-computer network architecture;
Section 1.2 provides an introduction to the AlPS system software; Section 1.3 provides the
guarantees of the Inter-Computer Communication Services; and Section 1.4 describes the
Inter-Computer Communication Services as a seven layered International Standards
Organization (ISO) model. Sections 2 through 6 describe the Inter-Computer Communication
Services functional requirements, functional design and detailed specifications. Each of these
sections describes one of the 'Layers' of the Inter-Computer Communication Services.
Section 7 concludes with a summary of results and suggestions for future work in this area.

1.1 AlPS Architecture

The Advanced Information Processing System is designed to provide a fault- and damage-
tolerant data processing architecture which can serve as the core avionics system for many of
the aerospace vehicles being researched and developed by NASA. These vehicles include
manned and unmanned space vehicles and platforms, deep space probes, commercial
transports, and tactical military aim-raft

AU'S is a multicomputer architecture composed of hardware and software 'building blocks'
that can be configured to meet a broad range of application requirements. The hardware
building blocks are fault-tolerant, general purpose computers (GPCs), fault- and damage-
tolerant inter-computer (IC) and input/output (I/O) networks, and interfaces between the
networks and the general purpose computers. The software building blocks are the major
software functions: local system services, input/output system services, inter-computer
communication services, and the system manager. This software provides the services
necessary in a traditional real-time computer, such as task scheduling and dispatching, and
communication with sensors and actuators. The software also supplies the redundancy
management services necessary in a redundant computer and the services necessary in a
distributed system such as inter-function communication across processing sites, management
of distributed redundancy, management of networks, and migration of functions between
processing sites.

The AU'S hardware consists of a number of computers which may be physically dispersed
throughout a vehicle. These dispersed computers are linked together by a reliable, damage-
tolerant data communication pathway called the IC network, or IC bus. (Since the hardware
implementation is a circuit-switched network which appears to the communication software
and the receiving and transmitting devices as a conventional bus, the terms 'network' and

1-1

I

'bus' are used interchangeably throughout this document.) A computer at any particular
processing site may also have access to varying numbers and types of I/O buses, which are
separate from the IC bus. The I/O buses may be global, regional or local in nature. I/O
devices on the global I/O bus are available to all, or at least a majority, of the AlPS computers.
Regional buses connect I/O devices in a given region to the processing sites located in their
vicinity. Local buses connect a computer to the I/O devices dedicated to that computer.
Additionally, I/O devices may be connected directly to the internal bus of a processor and
accessed as though the I/O devices reside in the computer memory (memory mapped I/O).
Both the I/O buses and the IC bus are time-division multiple-access contention buses. Figure
1-1 shows the laboratory engineering model for a distributed AlPS configuration. This
distributed AlPS configuration includes all the hardware and software building blocks
mentioned earlier and was conceived and built to demonstrate the feasibility of the AlPS
architecture.

The laboratory configuration of the distributed AlPS system shown in Figure 1-1 consists of
four processing sites: three of the GPCs are triplex FFPs, while the fourth GPC is a simplex.
Processing site 4 with its 15 node I/O network forms the centralized AlPS configuration,
which is a subset of the distributed AlPS configuration. The interfaces between the GPCs and
the IC network, shown in Figure 1-1, are called Inter-Computer Interface Sequencers (ICIS).
The interfaces between the FFP and the I/O network are called Input/Output Sequencers
(lOS). The redundant FTPs are built such that they can be physically dispersed for damage
tolerance; each of the redundant channels of a FTP can be as far as 5 meters from other
channels of the same FFP

The GPCs communicate with each other over the Inter-Computer Network, in which the
circuit-switching nodes have been configured into redundant virtual buses. Each redundant
bus is referred to as a layer (not to be confused with the ISO layers); these layers are totally
independent and are not cross-strapped to each other. Each layer contains a circuit-switched
node for each processing site; thus every processing site is serviced by three nodes of the IC
network. GPCs are designed to receive data on all three layers, but the capability of a GPC to
transmit on the network depends on the GPC redundancy level. Triplex FTPs can transmit on
all three layers, duplex FFPs on only two of the three layers, and simplex processors on only
a single layer. In duplex and triplex FTPs, a given processor can transmit on only one
network layer. Thus malicious behavior of a processor can disrupt only one layer.

The IC network and the interfaces into the network are designed in strict accordance with
fault-tolerant systems theory. An arbitrary random hardware fault, including Byzantine faults,
anywhere in the system can not disrupt communication between triplex FTPs. In other
words, the triplex IC network, in conjunction with the ICIS, provides error-masking
capability for communication between two triplex computers. The IC network architecture is
described in more detail in the following subsection.

1-2

IPS ENGINEERING MODEL CONFIGURATION

I/O NETWORK

15 NODE CONFIGURATION

FTP3	 FTP2

Figure 1-1. AlPS Engineering Model Distributed Configuration

1-3

ORIGINAL PAGE
COLOR PHOTOGRAPH

1.1.1 AlPS Inter-Computer Network Overview

Communication among the distributed computers of the Advanced Information Processing
System on the IC network is enabled by circuit switched nodes. These nodes are identical to
those used on the I/O network for communication between processors and sensors and
actuators. Each node has five identical ports and can interface with other nodes, GPCs and
1/0 subscribers (displays, etc.) through these ports. A detailed specification of the CSDL
node is contained in Appendix A.

The IC network for the distributed AlPS engineering model configuration consists of three
layers of a circuit switched network. Each layer consists of five nodes: one node for each of
the four sites and one spare node.

The three layers of the IC network are totally independent and are not cross-strapped to each
other. The initial no-fault configurations of the three layers are identical. However, after a
link failure in one layer the virtual bus configuration of that layer would change as the network
is reconfigured around the failed link. The other two layers do not have to be reconfigured to
make their virtual bus path identical to the third one.

The fault detection, isolation, and reconfiguration of the IC network is the responsibility of the
IC Network Manager. Nodes keep track of any transmission errors which are protocol related
and inform the Manager of these errors when queried by the Manager. These error data can be
analyzed by the Network Manager to determine the source of transient faults on the network.
The nodes also respond to status queries with the status of the node and the ports. Other than
these functions, the nodes are totally passive circuit switching devices. The common control
circuits in a node monitor messages coming in on all five ports whether that port is enabled or
not. This procedure is necessary for the initial growth of the network. It is also necessary to
monitor all ports so that the Network Manager can respond to certain kinds of failures where
the established paths have been disrupted by a malicious failure. The controller decodes the
message to determine if it is a valid message and if it is intended for that node. If the message
is valid and intended for the particular node, the node responds to the message. Messages
sent to nodes include requests for status and reconfiguration commands. The Network
Manager requests status as an input to its network monitoring task. The reconfiguration
messages establish or change the port enable status. Reconfiguration commands must be
preceded by an encoded node address. Nodes do not respond to messages which are not
preceded by valid addresses. This validity test is done in order to prevent a GPC with random
hardware failure from reconfiguring the network. The reconfiguration commands are
addressed to individual nodes although they are heard by all nodes.

1.2 AlPS System Software

The AlPS system software, as well as the hardware, has been designed to provide a virtual
machine architecture that hides hardware redundancy, hardware faults, multiplicity of

1-4

resources, and distributed system characteristics from the applications programmer. Section
1.2.1 discusses the approach used for the AlPS system software design. Section 1.2.2 is a
high level description of the system services that are provided for AlPS users;

1.2.1 AlPS Software Design Approach

The approach used to design the AlPS system software is part of the overall AlPS system
design methodology. An abbreviated form of this system design methodology is shown in
Figure 1-2. This methodology began with the application requirements and eventually led to a
set of architectural specifications. The architecture was then partitioned into hardware and
software functional requirements. This report documents the design approach used for Inter-
Computer Communication Services software and the ICIS hardware, beginning with the
functional requirements and proceeding through detailed specifications.

Hardware and software for the AlPS architecture is being designed and implemented in two
phases. The first phase was the centralized AlPS configuration. The centralized AlPS
architecture, as shown in Figure 1-3, consists of one triplex Fault Tolerant Processor (FFP),
an Input/Output network and the interfaces between the FTP and the network, the lOSes. The
laboratory demonstration of the Input/Output network consists of 15 circuit-switched nodes
which can be configured as multiple local I/O networks connected to the triplex GPC. The
second phase is the distributed AlPS configuration, which was explained earlier and shown in
Figure 1-1.

1.2.2 AlPS System Software Overview

As shown in Figure 1-4, AlPS system software provides the following AlPS System
Services: local system services, I/O system services, inter-computer communication services,
and system management. The system software is being developed in Ada. System services
are modular and partitioned naturally according to hardware building blocks. The distributed
AlPS configuration will include all the services. (At this time, all the system services with the
exception of system management have been completed.) Versions of the system software for
specific applications can be created by deleting unused services from this superset. The
System Manager functions may reside on only one triplex FTP or may be distributed among
several triplex FTPs. The other system services are replicated in each GPC. A brief
description of each of the services follows.

1.2.2.1 Local System Services

The local system services provided in each GPC are GPC initialization, real-time operating
system, local resource allocation, local GPC Fault Detection, Isolation, and Reconfiguration
(FDIR), GPC status reporting, and local time management (see Figure 1-5).

1-5

Application
Requirements

AlPS Attribute

AlPS Architectu
Specifications

&
.	 Guidelines

(System Hardwar
Functional
eq u ire me ntj

System Software
Functional

Requirements,/

fstem Hardware	 ystem Softwar
Specifications)
	 Specifications	

Communication
Services

ocal System (ho System "\ Fce	

e vices)\Services 9
Figure 1.2. AlPS System Design Approach

1-6

15-NODE I/O NETWORK

TRIPLEX FTP

O Node
- Active Link
- Spare Link
DIU Device Interface Unit
CS GPC/Network Interface (I/O Sequencer)

Figure 1-3. Centralized AlPS Configuration

1-7

SYSTEM	 OPERATOR
MANAGER

INTER	 I/O
COMPUTER
	

SYSTEM	 DIU
SYSTEM
	

SERVICES
SERVICES,

LOCAL
SYSTEM

SERVICES

Figure 1-4. Top Level View Of System Services

The function of GPC initialization is to bring the GPC to a known and operational state from
an unknown condition (cold start). GPC initialization synchronizes the Computational
Processors (CPs), synchronizes the Input/Output Processors (lOPs) and resets or initializes
the GPC hardware and interfaces (interval timers, real time clock, interface sequencers,
DUART, etc.). It makes the hardware state of the redundant channels congruent by alignment
of memory and control registers. It then activates the system baseline software that is
common to every GPC.

The AlPS real-time operating system supports task execution management, including
scheduling according to priority, time and event occurrence, and is responsible for task
dispatching, suspension and termination. It also supports memory management, software
exception handling, and intertask communication between companion processors (lOP and
CP). The ALPS operating system resides on every CP and lOP in the system. It uses the
vendor-supplied Ada Run Time System (RTS), and includes additional features required for
the AlPS real-time distributed operating system.

The GPC resource allocator coordinates and manages any global or migratable functions that
are assigned to the GPC.

The GPC status reporter collects status information from the local functions, the local GPC
FDIR, the IC system services and the I/O system services. It updates its local data base and
disseminates this status information to the system manager.

1-8

REALLOC	
FUNCTION

FL G

TASK	 REAL TIME	

LOCATION

GPC RESOURCE j)1iiuNG OPERATING

DATA	 SYSTEM SCHEDULIN ALLOCATOR
DATA

INIT	 CONFIG IC STATUS

SYNC COMD	 LOCAL
CMND	 110 STATUS

MANAGE REQUEff

GPC
FDIR
	 STATUS STATUS	

LOCAL	 SYSTEM
TIME	

TIME

LOCAL	 LOCAL
SYSTEM STATUS	 TIME STATUS

V	 $
Figure 1-5. Local System Services

GPC FDIR has the responsibility for detecting and isolating hardware faults in the CPs, lOPs,
and shared hardware. It is responsible for synchronizing both groups of processors in the
redundant channels of the FTP and for disabling outputs of failed channel(s) through
interlock hardware. After synchronization, all CPs will be executing the same machine
language instruction within a bounded skew, and all lOPs will be executing the same machine
language instruction within a bounded skew. GPC FDIR logs all faults and reports status to
the GPC status reporter. It is responsible for the CPU hardware exception handling, for
transient hardware fault detection, and for running low priority self tests to detect latent faults.
This redundancy management function is transparent to the application programmer.

The local time manager works in cooperation with the system time manager to initialize the
local real time and to keep it consistent with the universal time. It is also responsible for
providing time services to all users.

A detailed description of Local System Services is provided in [1].

1.2.2.2 I/O System Services

The I/O system services provide efficient and reliable communication between the user and
external devices (sensors and actuators). The I/O system services software is also responsible

1-9

for the fault detection, isolation and reconfiguration of the I/O network hardware and the
lOSes.

I/O system services is made up of three functional modules: I/O user interface, 110
communication management and the 1/0 network manager (Figure 1-6).

The 110 User Interface provides a user with read/write access to I/O devices or Device
Interface Units (DIUs), such that the devices appear to be memory mapped. It also gives the
user the ability to group I/O transactions into chains and 1/0 requests, and to schedule 1/0
requests either as periodic tasks or on demand tasks. A detailed description of the I/O user
interface is provided in [2].

The 110 Communication Manager provides the functions necessary to control the flow of data
between a GPC and the various 1/0 networks used by the GPC. It also performs source
congruency and error detection on inputs, votes all outputs, and reports communication errors
to the 1/0 Network Manager. Additionally, it is responsible for the management of the I/O
request queues. A detailed description of the 1/0 communication manager is provided in [2].

The 1/0 Network Manager is responsible for detecting and isolating hardware faults in I/O
nodes, links, and interfaces and for reconfiguring the network around any failed elements.
The network manager function is transparent to all application users of the network. A
detailed description of the I/O Network Manager is provided in [3].

1.2.2.3 Inter-Computer Communication Services

The Inter-Computer Communication Services provide two functions: (1) inter-computer user
communication services, that is, communication between functions not located in the same
GPC, and (2) inter-computer network management (Figure 1-7).

The characteristics of the Inter-Computer Communication Services are described in Section
1.3. The ICCS has been designed and implemented according to the ISO model [4]. This
model and the mapping of ICCS functions to the model are described in Section 1.4. Sections
2 through 6 describe the ICCS functional requirements, functional design and detailed
specifications. Each of these sections describes one of layers of the Inter-Computer
Communication Services.

The IC user communication service provides local and distributed inter-function
communication which is transparent to the application user. It provides synchronous and
asynchronous communication, performs error detection and source congruency on inputs, and
records and reports IC communication errors to IC network managers. Inter-Computer
communication can be done in either point to point or broadcast mode and executes in each
GPC.

1-10

IC NETWORK
CONFIG CMND

IC STATUS

IC
NETWORK
MANAGER

IOR Database	 110 Database

,f \	
Channel

	

Status	 vo
bR	 Services 110 Network

Specifications

	

	 Specification	 Specification

IOR ID Channel
Network State

\ User	 User	 FDIR
Interface	 Output	 I/O	 Command

User Input	 Communicatioi	
Run Networ IOR & Status Manager Network
Diagnostic Test (Manager
Dia nostic Test

i/O Request
Specification	 input Dynamic	 Result

/ IOR Commanth
and	 Voted

IOR	 User	 Data	 Commands
	

I/O Network

	

S
Output	 Data	 &	 /

Congruent	 / Manager
Node Data

flus,,,

Commands

/	 Status	 I/O Status
1/0 Service

Figure 1-6. 1/0 System Services

REALLOC
	

FUNCTION

	

FLAG
	

ALLOCATION I
IC NETWORK
IN1T CMND

USER
IC ERROR(COMMUNICATION
REPORTING	 SERVICES

GPC STATUS

LOCAL IC

Figure 1-7. Inter-Computer System Services

1-11

The IC Network Manager is responsible for the fault detection, isolation and reconfiguration
of the IC network. The AlPS distributed configuration consists of three identical, independent
IC network layers which operate in parallel to dynamically mask faults in a single layer and
provide reliable communication. The IC Network Manager is composed of three IC Layer
Managers. There is one Layer Manager for each network layer. However, the three Layer
Managers do not need to reside in the same GPC. They are responsible for detecting and
isolating hardware faults in IC nodes and links and for reconfiguring their respective network
layer around any failed elements. The Network Manager function is transparent to all
application users of the network.

1.2.2.4 System Manager

The system manager is a collection of system level services including the applications monitor,
the system resource manager, system fault detection, isolation and reconfiguration (FDIR),
and the system time manager (Figure 1-8).

The applications monitor interfaces with the applications programs and the AlPS system
operator. It accepts commands to migrate functions from one GPC to another, to display
system status, to change the state of the system by requesting a hardware element state
change, and to convey requests for desired hardware and software configurations to the
system resource manager.

The system resource manager allocates migratable functions to GPCs. This involves the
monitoring of the various triggers for function migration such as failure or repair of hardware
components, mission phase or workload change, operator or crew requests and timed events.
It reallocates functions in response to any of these events. It also designates managers for
shared resources and sets up the task location data base in each GPC.

The system FDIR is responsible for the collection of status from the IC Network Layer
Managers, the I/O Network Managers, and the local GPC redundancy managers. It resolves
conflicting local fault isolation decisions, isolates unresolved faults, correlates transient faults,
and handles processing site failures.

The system time manager, in conjunction with the local time manager on each GPC, has the
job of maintaining a.consistent time across all GPCs. The system time manager indicates to
the local time manager when to set its value of time. It also sends a periodic signal to enable
the local time manager to adjust its time to maintain consistency with an external time source
such as the GPS Satellites or an internal source such as the real time clock in the GPC which
hosts the system time manager software.

1-12

OPERATOR

4PPLICATIO
SYSTEM STATU MONITOR

CONFIG REQUES

CONFIG RESPON

SYSTEM \REALLOC FLAG
RESOURCE 1
MANAGER I

SYSTEM
FAULT II

IC STATUS

9 SYSTEM
I/O STATUS' FDIR

GPC STATUS

CONFIG
COMMAND

GPC
CONFIG
CMND

SYSTEM
STATE

YSTEM	 TIME
TIME

MANAGER I

TIME STATUS
I/O NET	 SYSTEM TIME

CONFIG CMND IC NETWORK

 4	 CONFIG CMND

Figure 1-8. System Manager

1.3 Inter-Computer Communication Services Characteristics

The Inter-Computer Communication Services possess a number of characteristics that make it
much easier for the applications programmer to use these services. These characteristics also
off-load the applications programmer as well as the systems programmer from the tasks of
building reliable message delivery system on top of an unreliable communications medium and
ordering and timing of delivery of messages. The following is a list of terms and definitions
that are used in the subsequent discussion.

1. An FTP is 'on-line' if the majority of its channels are non-faulty.
2. A simplex is 'on-line' if it is non-faulty and its transmittal layer is non-faulty.

3. The 'source' site is the transmitting site.
4. The 'sink' site(s) is the recipient site(s).

5. The sink sites of a broadcast are all of the on-line sites except for the source site.
6. The IC Network is 'on-line' if the majority of its layers are non-faulty.

7. A fault in this context is a random hardware fault or an operational fault that affects
only a single fault containment region.

There are two types of communication supported by the ICCS, the IC Network, and ICISes:
point-to-point communication and broadcast communication. The characteristics of both types
of communication are the following.

1-13

r- Co m'r
I Network N

Simplex 1

In a fully operational state all triplex FTPs can communicate with each other,
even in the presence of an arbitrary malicious fault.

The following are the characteristics of AlPS for point to point (site to site) communication.

1. Messages sent by an on-line source site are correctly delivered to the
on-line sink site.

2. An on-line sink site receives messages in the order sent by the on-line
source site.

3. A task residing on an on-line sink site receives messages in the order
sent by tasks residing on one other on-line source site.

Figure 1-9 is a diagram of message flow for point to point communication. In the diagram,
Task A residing on FTP 2 sends two message to Task B residing on FTP 4. All four sites are
'on-line.' Message X is sent first and message Y is sent second. The messages are received
by Task B in the order they have been sent.

The following are the AlPS characteristics for broadcast or site to sites communication.

1. Broadcasts sent by an on-line source site are correctly delivered to all
other on-line sites.

2. On-line sink sites receive messages in the order sent by the
broadcasting sites.

3. On-line sink sites receive broadcast messages in identical order.

4. A task residing on an on-line sink site receives messages in the order
sent by tasks residing on the on-line source sites.

zi rn(. i1rn'i.i iii 1111 111 iT

Figure 1-9. Point To Point Communication Message Flow

1-14

FTP 2

ask B'

B1,B2

FTP4

Figure 1-10 is a diagram of message flow for broadcast communication. In the diagram, Task
A residing on FTP 4 sources the first two broadcast messages, B and 132. The recipient is
Task B, residing on all other sites. Another task, Task C (not shown on the diagram),
residing on FTP 3 then broadcasts the B3 message to a different recipient task, Task D (not
shown on the diagram), on all other sites. All four sites are 'on-line.' Task B on sites 1, 2,
and 3 receives the first two message in the order sent. Task D on sites 1, 2, and 4 then
receive message B3.

1.4 Inter-Computer Communication Services ISO Model

The ICCS was designed and implemented in a manner which is consistent with the ISO
model. This model is the standard for communication between data processing machines.
The architectural framework for the ISO is a hierarchical series of seven functional levels or
layers [4]. Different layers relate to different types of functions and services. Figure 1-11 is a
diagram of the relationship between the ISO layers and the hardware or software tasks of the
ICCS.

At the lowest level are the Physical Layer and the Data Link Layer. The Physical Layer is
concerned with the electrical connection between the data machine and the communication
circuit. The Data Link Layer is concerned with how blocks of data are sent over the physical
link. These two layers are provided by the ICIS hardware. Section 6 is a detailed description
of the functional requirements and design of the ICIS.

Figure 1-10. Broadcast Communication Message Flow

The next level is the Network Layer, which is concerned with setting up a virtual circuit
spanning one or more physical links. This layer is provided by the IC Network Manager
Task, which is responsible for the initial growth of the IC Network and the fault detection,
identification and reconfiguration of the redundant links and nodes of the network. Section 5

1-15

is a detailed description of the functional requirements and software specifications of the IC
Network Manager. These lower three ISO layers represent a common network which many
machines might share independently of one another.

The next layer, the Transport Layer is concerned with reliable end-to-end control of the
transmission between two user processes. The functions of this layer are provided by the
Message Send Receive Task, the ICIS Redundancy Management Task and the User Services.
The Message Send Receive Task is responsible for providing transmit and receive functions in
either point to point or broadcast mode. The ICIS Redundancy Management Task is
responsible for providing redundant processors with a congruent representation of received
data and for detecting and isolating ICIS faults. The User Services provide a standard
interface to the user. Section 4 is a detailed description of the functional requirements and
software specifications of the Transport Layer.

Above the Transport Layer is the Session Layer, whose function is to begin a session between
two users, maintain a dialogue according to an established protocol, and then terminate the
session. This function is provided by the Synchronous Communication Manager.
(Applications could also write their own Session Layer functions). Section 3 is a detailed
description of the functional requirements and software specifications of the Synchronous
Communication Manager.

A brief description of the highest layers, the Presentation and the Process Layers, is provided
in the following Section. These layers are responsible for the manipulation of data that has
been transmitted by the lower layers.

1-16

SYNCHRONOUS	 ASYNCHRONOUS
USER	 USER

SYNCHRONOUS
COMMUNICATION

MANAGER

U	 U.
I USER INTERFACE ROUTINES I

SESSION

Buffers	 Informati

rliL.iFE.	 MESSAGE SEND RCV
	 TRANSPORT

IC
	

IC'S
NETWORK
	

REDUNDANCY
MANAGEMENT
	

MANAGEMENT

LO(INTERCOMPUTER INTERFACE SEQUENCER
(ICIS)	 PHYSICAL

Figure 1-11. Inter-Computer Communication Services ISO Layer Components

1-17

2.0 THE PRESENTATION AND PROCESS LAYERS

The Presentation Layer and the Process Layer are the two outermost layers of the seven
standard layers that the ISO has defined for distributed processing. These layers are
concerned with the manipulation of data that has been transmitted by the lower layers. The
Inter-Computer Communication Services provided for AlPS do not include any functions
in these two layers, but a brief description is given here for completeness [4].

The Presentation Layer contains functions relating to the character set and data codes which
are used and to the way data is displayed on a-screen or printer. For example, when
communication is occurring between devices with different character sets, character
conversion needs to be performed. In order to save transmission costs, it may be desirable
to compact a character stream into a smaller bit stream. For security reasons data
encryption and decryption may be required. In order to have a character stream appear in
an attractive and readable format on a display device or printer, control characters need to
be inserted at appropriate places. Conversely, a user-friendly format may be displayed to
an operator for data entry, but only the entered data is transmitted. These are all functions
appropriately handled by the Presentation Layer.

The Process Layer is concerned with higher level functions which provide support to the
application or system activities, such as operator support, the use of remote data, file
transfer control, or distributed data base- activities. When distributed files and data bases
are used, for example, controls are needed to prevent integrity problems or deadlocks.
Some types of controls for this are strongly related to networking, for example the
timestamping of transactions and delivery of transactions in timestamp sequence. Another
example of a process layer function would be control of the pace of certain processes so
that a transmitting machine can send records continuously without flooding the receiving
machine, or so that an application can keep a distant printer going at maximum speed.

2-1

PON	 PRECEDING PAGE BLANK NOT FILMED

3.0 THE SESSION LAYER

The Session Layer of the ISO Standard Layer Model is responsible for managing
communications between two 'session-entities'. In an Ada context, a 'session-entity' can
be defined as an Ada task. Thus, in an Ada system, the Session Layer manages the
rendezvous between two communicating Ada tasks. These tasks may reside on the same or
different computing sites. If the communicating tasks reside on different sites, they are
said to be distributed. In the AlPS Inter-computer Communications Services (ICCS), the
distributed rendezvous function is performed by the Synchronous Communication Manager
(SCM). Further, the SCM is responsible for accessing distributed global data objects. The
actual location of the distributed tasks or data is transparent to the application.

The SCM also handles any error conditions encountered during task rendezvous or global
data access. These are usually reported back to the application as a system or application-
defined Ada exception.

In addition to the SCM, the Session Layer may contain application-specific communication
protocols for controlling specific task rendezvous (e.g., guard conditions on select
statements, etc.)

This section presents the SCM functional requirements and design for two distributed
processes: task rendezvous and global data access. The SCM has not yet been
implemented on the current AlPS system.

3.1 Synchronous Communication Manager

3.1.1 Functional Requirements

The SCM shall:

1) provide an interface between the Ada run time system and the User Services to
enable an Ada application to perform a simple rendezvous with parameter
passing between two distributed tasks.

2) provide an interface between the Ada run time system and the User Services to
enable an Ada application to perform a conditional rendezvous with parameter
passing between two distributed tasks. If the receiving or server task is not
available for rendezvous, the sending or client task shall execute the alternate
action.

3) provide an interface between the Ada run time system and the User Services to
enable an Ada application to perform a timed rendezvous with parameter
passing between two distributed tasks. If the receiving or server task is not

3-1

- I
	 PRECEDING PAGE BLANK NOT FILMED

available for rendezvous within the specified time interval, the sending or client
task shall execute the alternate action.

4) access distributed global data in a contention protected manner.

5) provide Ada exception handling in a distributed environment.

3.1.2 Functional Design

The following sections present the top level design of the Synchronous Communication
Manager.

3.1.2.1 Distributed Ada Objects

The design of the SCM supports two kinds of distributed Ada objects: tasks and data.
Practically, the actual objects of distribution are packages in which the tasks and data are
declared.

The mechanism for distributing these objects is represented in Figure 3-1. This illustration
shows the address space for a typical computing site or FTP. The physical address space
of the site is a subset of the total logical address space and is the same for all sites. The
load module for each FTP is linked in the logical address space and consists of all local
objects and the entire set of distributed objects (tasks and data). Each distributed object
resides in a unique location within the logical address space. At load time, the physical
address space of each site includes: (1) its local objects, (2) the specifications of all the
distributed tasks, and (3) Qth the task bodies and global data packages of those locally
resident distributed objects. When an FTP is initialized, its local Memory Management
Unit (MMU) is configured to translate the logical address space to the local physical
address space for the locally resident distributed objects. Furthermore, this local MMU is
set up to interrupt the FTP when any non-resident distributed object is accessed. In this
manner, all the distributed objects are visible to each FTP.

3.1.2.2 User Interface

Ideally, the accessing of distributed objects should be transparent to the user. In order for
this function to be performed in an efficient manner, it requires compiler support. Since
AlPS does not have this support, the user is constrained to access distributed tasks and data
in a specific, non-transparent manner.

3-2

C
4000
8000

100000

400000

[*NiI'Is

1000000

on-card PROM
on-card RAM
on-card hardware regs
local objects (LO)
distributed	 task
specifications

-

locally	 resident
distributed objects	 (DO)
stacks./ heaps
DO for site 1 CP

4

DO for site 1 lOP

DO for site 4 CP

DO for site 4 lOP

shared bus

Physical
—Address

Space

Logical Address Space

Figure 3-1. FTP Address Space

3-3

3.1.2.2.1 Tasks

To permit the specification of a distributed task to the AlPS system, the package
specification of a distributed task should be in the following form:

package Task—Package is

-- Task specification
task type Task_Name_i is

end Task_Name_t;

-- task creation
Task—Name: Task_Name_t;

-- define ICCS User ID
My_User_ID: constant ic_user_id := Task—User—ID;

-- Get run time system task ID (address of task control block)
function Get—Task—ED is new LSS_Task_IDs.IDQf(Task_Namet);
Task—Name—ID: LSS_Task_IDs.Task_ID:= Get_Task_ID(Task_Name);

-- Identify distributed task to ICCS
B: boolean := Identify_Task_Location(My_User_ID, 	 --user ID

Task—Site,	 --task site ID
Task—Processor,	 --CP or lOP
Task_Name_ID); --task ID

end Task_Package;

Refer to Sections 4.1.1 and 4.2.1.3.3 for a description of the Identify_Task_Location
function. The ICCS User ID identifies the task to the IC Communications Service and is
valid throughout all computing sites (see Section 4.2.1.1 and Appendix B for a description
of ICCS User IDs). The Task ID identifies the task to the local run time and is unique to
each site.

3-4

All distributed task entry declarations are of the form:

type param_mode is (in, out, inout);

entry entry—name(
no_of_param	 :	 in integer,
param_l	 :	 in system.address;
param_1....size	 :	 in integer,
pararn_ 1_mode : 	 in param_mode;

param_n	 :	 in system.address;
param_n_size	 :	 in integer,
param_n_mode :	 in param_mode

where
no_of_param

param_n

param_n_size

- param_n_mode

=	 number of formal
parameters to be
passed

=	 address of nth
parameter

=	 size of nth parameter
in bytes

=	 mode of nth parameter

The parameter no_of_param is required. If no parameters are being passed, it should be set
to 0.

3-5

3.1.2.2.2 Data

Global data can be accessed using the following procedure:

type access—mode is (read, write);

procedure Global—Access(
mode
object:
object—size:
data_addr:

in access_mode;
in system.address;
in integer,
in system.address;

where
mode	 = type of access (read or write)
object	 = address of global object

to be accessed
object—size	 = size of object to be

accessed ('size attribute)
data_addr	 = address where data is read to

or written from

3.1.2.3 Site Initialization

Because each site has the task specifications for all distributed tasks, a task control block
(TCB) for each distributed task in the system will be created, atelaboration, on each site.
However, only those TCBs on the site on which the corresponding-task bodies reside will
be active. The remaining TCBs will be inactive and merely contain task location
information. The ICCS task location directories (CP_Task_Location, TOP_ Task _Location)
will also be created at this time via the call to the Identify_Task_Location function.

No directory is needed for global data. The location of any particular variable is determined
when it is accessed. If the global data resides on a remote FT?, this determination is made
via MMU interrupt (see Section 3.2.2.1).

3.1.2.4 Distributed Task Rendezvous

The top level dataflow of a distributed task rendezvous is presented in Figure 3-2. In such
a scenario, a local-client task desires to rendezvous with a server task on a remote site. The
client task makes the required entry call to the Kernel Entry Procedure (Kernel—Entry).
Kernel—Entry checks to see if the desired server task is local or on a remote site. If local,
the normal Ada rendezvous is performed. If remote, Kernel —Entry selects and executes a
rendezvous with an idle (blocked) server surrogate task from the Surrogate Task Pool.
Any formal rendezvous parameters destined for the remote task are passed to the surrogate
task.

3-6

The surrogate task assembles the IC rendezvous message parameters including any data to
be sent to the remote task (Ada in, inout parameter mode). This message is transmitted to
the Rendezvous Manager Task (Rndv_Mgr) resident on the remote site via the User
Services of the Transport Layer. The surrogate task is then blocked waiting for a return
message which signals the completion of the rendezvous.

The IC message arrives at the remote site and is passed to the resident Rendezvous
Manager Task via a message received event. The Rndv_Mgr selects and performs a
rendezvous with an idle client surrogate task from the Surrogate Task Pool. The surrogate
task constructs a normal Ada rendezvous calling sequence from the received IC message
parameters and performs the desired rendezvous with the server task. After the rendezvous
has completed, the surrogate task assembles the IC end-of-rendezvous message parameters
including any parameters to be returned from the server task to the client task (Ada out,
inout parameter mode). This message is then transmitted back to the Rendezvous
Manager Task on the client task's site via the User Services. After the end-of-rendezvous
message is sent, the client surrogate task is returned to the local Surrogate Task Pool
(becomes 'blocked').

Back on the client task's FTP, the IC end-of-rendezvous message is received and the
Rendezvous Manager Task is started via the message received event. The Rendezvous
Manager Task then performs a rendezvous with the blocked server surrogate task. The
surrogate task returns to the client taskvià the run time kernel and passes any formal
rendezvous output parameters received from the server task. The server surrogate task is
subsequently returned to the local Surrogate Task Pool.

Assigning unique surrogate tasks to each rendezvous request allows multiple requests to
proceed concurrently (subject to priority) without requiring each rendezvous to go to
completion before commencing another. Exhaustion of the surrogate task pool on either
site results in an exception being raised in the client task.

3.1.2.5 Distributed Data Access

The top level dataflow of a distributed global data access is presented in Figure 3-3. As in
the distributed task rendezvous process, the design is based on utilizing surrogate tasks
from the Surrogate Task Pool. A local task that wishes to access distributed global data
potentially residing on a remote site calls the Global Object Access Procedure
(Global_Access). A check is made to determine if the desired data object is local or remote.
If local, the access is performed using the resident Local Object Access Procedure
(Local_Access) in Local System Services. If remote, a rendezvous is performed with an
idle local access surrogate task selected from the Surrogate Task Pool. The access
parameters are passed to the surrogate task.

3-7

2

0 I H o	 . IE.
I U I9 I I I	 QO

I	 •11	 i	 I

II

LI
	 N

t
I-

E

E

E1
U

_ft\ \
Im
0

U

.-

0.

1
k

-
I

F\ -

1

0.
O--

1*
0.

Figure 3-2.3-2.	 Distributed Task Rendezvous

Q
0

U bo

0

3-8

The surrogate task assembles the IC access message parameters which includes any data to
be written to the global data object (if write mode). This message is transmitted via the
User Services to the Global Data Manager Task (GlobalData_Mgr) that is resident on the
remote site. The surrogate task is then blocked waiting for a return message which signals
the completion of the access.

The IC message arrives at the remote site and is passed to the resident Global Data Manager
Task via a message received event. GlobalData_Mgr selects and performs a rendezvous
with an idle remote access surrogate task from the Surrogate Task Pool. The surrogate task
accesses the global data item via 'the resident Local Object Access Procedure
(Local_Access). After access has been completed, the surrogate task assembles the IC end-
of-access message parameters which includes any parameters to be returned to the local
task (if read mode). This message is then transmitted via the User Services to the Global
Data Manager Task on the local site. The remote access surrogate task is subsequently
returned to the local Surrogate Task Pool (becomes 'blocked').

Back on the local task site, the IC end-of-access message is received and the Global Data
Manager Task is started via the message received event. GlobalData_Mgr performs a
rendezvous with the blocked local access surrogate task The surrogate task returns to the
local task along with any global data object value (read mode). The local access surrogate
task is then returned to the local Surrogate Task Pool.

As. with the Distributed Task Rendezvous function, the assignment of unique surrogate
tasks to each access request allows multiple requests to proceed concurrently (subject to
priority) without requiring each access to complete before commencing another.
Contention protection is provided by the Local Object Access Procedure resident on the
remote site. Exhaustion of the surrogate task pool on either site results in an exception
being raised on the local site.

3.2 Synchronous Communication Manager: Software Specifications

The Synchronous Communication Manager consists of the following components:

Distributed Rendezvous
Kernel Entry Procedure
Server Surrogate Task
Client Surrogate Task
Rendezvous Manager

Global Object Access Procedure
Local Access Surrogate Task
Remote Access Surrogate Task
Global Data Manager Task

3-9

II
L
U

tU .
c,	 ci

I
pt

I —

I

0
9

rd

I.

ih	 YM

I

CIS

Cm	 t)Q

9

0

U

U —
U

Figure 3-3. Distributed Data Access

3-10

3.2.1 Distributed Rendezvous Process Descriptions

3.2.1.1 Process Name: Kernel Entry Procedure

Inputs:
• server calling parameters:

server-task-ID
server_entry_ID
server formal rendezvous parameters
entry _type
[client_wakeup_time]

Outputs:
To server surrogate task

• server surrogate start parameters:
server-task-ID
server-entry-ID
server formal rendezvous parameters
entry _type

or

To server task
server formal rendezvous parameters

This procedure (Figure 3-4) provides the interface between the application task and the run
time kernel for a rendezvous entry call. Three types of Ada rendezvous are supported:
simple, conditional, and timed. Upon entry to the kernel, a check (Test_Remote) is made
to determine if the desired server task is local or remote. This is determined by accessing
the task body start address in the local TCB for the server task. Since all tasks are linked in
the logical address space (see Section 3.1.2.1), the task body start address of a remote task
is not in the local physical address space and causes an MMU interrupt. If the server task
is local, the normal Ada rendezvous kernel routine (is_call) is executed.

If the server task is remote, Task_Select selects an idle ('blocked') server surrogate task
from the Surrogate Task Pool and a local rendezvous is made via is -call. The original
server formal rendezvous parameters are passed to the Start entry of the surrogate task.
Thus, the remote rendezvous of client with server has been changed to a local rendezvous
of client with server surrogate.

The number of server surrogate tasks in the Surrogate Task Pool determines the maximum
number of concurrent remote task rendezvouses permitted. If there are no idle (i.e.,
blocked at the Start entry) server surrogate tasks in the pool, a TASKING exception is
raised in the client task

-	 3-11

I	 Remote_Test	 I

test for remote task

or

server calling params:

server_task_ID
server—entry—ID
server mdv params
[client_wakeup_time]
entry—type

server calling params:

server task _ID
server__entry_ID
server mdv params
[client_wakeup_time]
entry—type

from client task

server calling pararns:

server_task_ID
server_entry_ID
server mdv params
[client_wakeup_time]
entry_type(simple,conditiona1, timed)

I	 Task—Select	 I

select server surrogate
task from Surrogate Task
Pool

-server_surrogate_task_ID
server_surrogate_entry_ID
server —task—ID
server_entry_ID
server mdv params
entry—type

I	 is—call

rendezvous with
server surrogate task

is_call

rendezvous with
locally resident server task
(simple, conditional,timed)

server mdv params

to server task

server surrogate start oarams

server—task-11D
server—entry—ID
server mdv params
entry _type

to server surrogate task

Figure 3-4. Kernel Entry Procedure

3-12

3.2.1.2 Process Name: Server Surrogate Task

Inputs:
Start entry

• server surrogate start parameters:
server.-task-ID
server-entry-ID
server formal rendezvous parameters
entry _type

Stop Entry
• rndv_status
• [server formal rendezvous out parameters]

Outputs:
To User Services

IC rendezvous message parameters

To kernel
• rndv_status
• [server rendezvous out parameters]

This task (Figure 3-5) provides the interface between the client task and the User Services
in the Transport Layer. The Start entry receives the server task calling parameters from the
kernel. The IC rendezvous message is constructed and transmitted to the remote site by the
Send-Output procedure of User Services (see Section 4.2.1.3.4) utilizing the following
parameters:

• dest_gpc	 Destination site identifier obtained from the task location directories
(CP_Task_Location, lOP_Task_Location).

• dest_task Message destination on remote site (Rendezvous Manager Task).
• msg_size Size of message data buffer.
• msg_prio Priority of message.
• msg_buffer Message data buffer:

msg_ID (= entry-type)
server_surrogate_task_ID
server_user_ID (from task location directories)
server_entry_ID
server formal rendezvous parameters

Since the in, inout server rendezvous parameters are given in terms of local reference
addresses, these are converted to the parameter values for transmission to the remote site.

3-13

After completion of the call to Send—Output, the surrogate task is blocked at the Stop entry
waiving for completion of the rendezvous on the remote site.

The Stop entry receives the rendezvous status indicator (rndv_status) and any server formal
rendezvous out parameters from the Rendezvous Manager Task (Rndv_Mgr). The
rendezvous status indicator tells the kernel whether or not the rendezvous was successfully
completed. The out parameters are passed to the client task via the kernel during normal
completion of the client-surrogate rendezvous. After the rendezvous has completed, the
surrogate task is blocked at the Start entry, effectively returning it to the Surrogate Task
Pool.	 V	 V

Any exception raised in the server surrogate task is returned to the client task as an Ada
TASKING exception.

from ts_call server surrogate start pararns
!	 server—task—ID

server_entry_ID
server mdv params
entry—type

ccept

Stop

acceDt Stop() do
end Stop;

end Start:A

IC mdv msg params

dest_gpc (from task location directories)
dest_task (=Rndv_Mgr)
msg_size
msg_prio
msg_buffer:

rndv_status,
server mdv
'out' params

rndv_status,
server mdv
'out' params

msg_ID (=entry—type)
server _ surrogate _task _ID
server_user_ID
server—entry—ID
server mdv params

from RndvMgr
ISénd_Output

to client task
via kernel	 transmit

msg to server
bask GPC

Figure 3-5. Server Surrogate Task

3-14

3.2.1.3 Process Name: Client Surrogate Task

Inputs:

• client surrogate start parameters:
msgID
source...gpc
server_surrogate_task_ID
server-user-ID
server-entry-ID
server formal rendezvous parameters

From server task
server formal rendezvous out parameters

Outputs:
To User Services

IC end-of-rendezvous message parameters

To server task
• server formal rendezvous parameters

This task (Figure 36) provides the interface between User Services in the Transport Layer
and the server task in a distributed rendezvous. The Start entry receives the server task
calling parameters, rendezvous type (msg_ID) and client task site ID (source_gpc) from the
Rendezvous Manager Task. The server formal rendezvous parameters are converted to
local address references and a rendezvous is performed with the server task via the local
kernel entry procedure (is-call). After the rendezvous has completed, the IC end-of-
rendezvous message is constructed and transmitted to the source site by the Send-Output
procedure of User Services utilizing the following parameters:

• dest_gpc	 Source site identifier (= source_gpc).
• dest_task Message destination on source site (Rendezvous Manager Task).
• msg_size Size of message data buffer.
• msg_prio Priority of message.
• msg_buffer Message data buffer:

msg_ID (= end_of_rudy)
server_surrogate_task_ID
rudy_status
server rendezvous out parameters

3-15

After the completion of the call to Send_Output, the client surrogate task is blocked at the
Start entry, effectively returning it to the Surrogate Task Pool.

Any exception raised in the client surrogate task is returned (via rndv_status) to the client
task at the source site as an Ada TASKING exception.

to server task	 from server task

server mdv	 server mdv
params	 'out' params

Start	
accegt StartO do

14	 end tam

dest_gpc (=source_gpc)
dest_task (=Rndv_Mgr)
msg_size
msg_prio
msg_buffer

msg_ID (=end_of_mdv)
server_surrogate_task_ID
mdv_status
server mdv 'out' params

endOutput

transmit IC
msg to
client task
gpc

client surrogate start

msgjD
source_gpc
server_surrogate_task_ID
server_user_ID
server_entry_ID
server mdv paranis

from Rndv_Mgr

Figure 3-6. Client Surrogate Task

3-16

3.2.1.4 Process Name: Rendezvous Manager Task

Inputs:

• rendezvous message parameters:
msg_ID (= entry-type)
server_surrogate_task_ID
server_user_ID
server-entry-ID
server formal rendezvous parameters
source_gpc

or

• end-of-rendezvous message parameters:
msg_ID (= end_of_rndv)
server_surrogate_task_ID
rndv_status
server formal rendezvous out parameters

Outputs:

To client surrogate task
• client surrogate Start parameters:

msg_ID (= entry-type)
server _surrogate_task_ID
server-user-ID
server-entry-ID
server formal rendezvous parameters
source_gpc

To server surrogate task
• client surrogate Start parameters:

rndv_status
server formal rendezvous out parameters

Upon receipt of an IC rendezvous or end-of-rendezvous message from a remote site, this
task (Figure 3-7) is initiated by an event signalled by the Message_Send_Rcv task (see
Section 4.2) in the Transport Layer. The message contents are obtained by calling the
Get-Input procedure in User Services (see Section 4.2.1.3.5).

If the message received was a rendezvous message, an idle client surrogate task is selected
from the Surrogate Task Pool and a rendezvous is made with the Start entry of the

3-17

surrogate task. The server task calling parameters, rendezvous type, and source site ID are
passed as formal rendezvous parameters.

If the message received was an end-of-rendezvous message, a rendezvous is made with the
Stop entry of the server surrogate task (server_surrogate_task_ID) handling the remote
rendezvous. The rendezvous status indicator and any server formal rendezvous out
parameters are passed as formal rendezvous parameters.

The above Start and Stop rendezvous entries are only for synchronization purposes; no
processing is performed during the rendezvous and control is returned immediately to the
Rendezvous Manager Task. The actual remote rendezvous processing is controlled by the
surrogate tasks, leaving the Rendezvous Manager Task free to concurrently handle any
other remote rendezvous requests.

to client	 to server
surrogate task surrogate task

qffMTIT,-711T- M7

msgID
sourcejpc
server_surrogate_task_ID
server_user_ID
server.entry_ID
server mdv params

Wait-For-Schedule;

server surrogate
stop params:
rndv_status
server mdv
'out' params

case msg_ID
when entry—type

event
interrupt

from

mdv ms params or

msg_ID (=entry-type)
server_surrogate_task_ID
serveruserlD
server_entry_ID
server mdv params
sourcegpc

end-of-mdv msg params

msgjD(=end_of_rndv)
server_surrogate_task_ID
mdv_status
server mdv 'out' params

Get_Input

fetch IC
msg

Figure 3-7. Rendezvous Manager Task

3-18

3.2.2 Distributed Access Process Descriptions

3.2.2.1 Process Name: Global Object Access Procedure

Inputs:
• access parameters:

access_type
object—address
object_size
[object_value]

Outputs:
To local access surrogate task

local access surrogate Start parameters:
access—type
object_address
object—size
[object--value]
object_gpc

To local task
• [object—value]

This procedure (Figure 3-8) allows an application to access a distributed global data object
without knowing its site location. Upon entry, a check (Remote _Test) is made to
determine if the desired data object is local or remote. This is determined by attempting to
access the object. Since all global data packages are linked in the logical address space (see
Section 3.1.2.1), the address of a global data object that resides on a remote F1'P is not in
the local physical address space and causes an MMU interrupt. In contrast, if the data
object is local, the object is accessed via the Local Access Procedure (Local_Access).

If the data object is remote, an idle local access surrogate task is selected from the Surrogate
Task Pool and a rendezvous is made with the Start entry of the surrogate task via the kernel
entry call procedure ts_call. The object access parameters and source site ID are passed as
formal rendezvous parameters.

The number of local surrogate tasks in the Surrogate Task Pool determines the maximum
number of concurrent global data accesses permitted. If there are no idle (i.e., blocked at
Start entry) local access surrogate tasks in the pool, a TASKING exception is raised in the
local task.

3-19

access pararns
access,.-type
object _address
object _size
[object-value] or

from local task
access pararns
access,.-type
object_address
object_size
[object_value]

Test for remote object

access params
access,-type
object_address
object-size
[object-value]
object_gpc

I	 Task-Select	 I
select local access
surrogate task from
Surrogate Task Pool

local-access-task-ID
local-access-entry-ID
access-type
object-address
object-size
[object-value]
object_gpc	 I	 t_ll

rendezvous with
local access surrogate
task

Local_Access

access locally resident
object

[object-value]

- return to local task

local access surrogate start params
access _type
object_address
object _size
[object_value]
object_gpc

to local access surrogate task

Figure 3-8. Global Object Access Procedure

3-20

3.2.2.2 Process Name: Local Access Surrogate Task

Inputs:
Start entry

local access surrogate start parameters:
access,-type
object-address
object-size
[object-value]
object_gpc

Stop Entry
local access surrogate stop parameters:

[object-value]

Outputs:
To User Services

• IC access message parameters

To kernel
• [object-value]

This task (Figure 3-9) provides the interface between the local task and the User Services in
the Transport Layer. The Start entry receives the object access parameters from the kernel.
The IC access message is constructed and transmitted to the remote site by the Send _Output
procedure of User Services (see Section 4.2.1.3.4) utilizing the following parameters:

• dest_gpc	 Destination site identifier (= object_gpc)
• dest_task Message destination on remote site (Global Data Manager Task).
• msg_size Size of message data buffer.
• msg_prio Priority of message.
• msg_buffer Message data buffer:

msg_ID (= access,.-type).
local_access_task_ID
object-address
object-size
[object-value]

Since global object addresses are valid on the remote site, these may be transmitted directly.
After completion of the call to Send-Output, the surrogate task is blocked at the Stop entry
to wait for completion of the data access at the remote site.

3-21

The Stop entry receives any global object value (read mode) from the Rendezvous Manager
Task (Rndv_Mgr). The object value is passed to the local task via the kernel during normal
completion of the local task-surrogate rendezvous. After the rendezvous has completed,
the surrogate task is blocked at the Start entry, effçctively returning it to the Surrogate Task
Pool.

Any exception raised in the local access surrogate task is returned to the local task as an
Ada TASKING exception.

from ts can local access surrogate start params
access _type
object—address

[object—value]

qMM
Start() do	 IC access msg params

from GlobalData_Mgr	 to local task
via kernel

dest_gpc (=object_gpc)
dest_task (=CilobalData_Mgr)
msg_size
msg_prio
msg_buffer:

msgjD (=access—type)
local_access_task _ID
object—address
object _size
[object—value]

ISend_Output
transmit IC
lmsg to remote

Stop
accept Stop() do
end stop;
end Start

local access surrogate
stop Darms:
[object_value]

Figure 3-9. Local Access Surrogate Task

3-22

3.2.2.3 Process Name: Remote Access Surrogate Task

Inputs:

• remote access surrogate start parameters:
msgD
source_gpc
local_access_task_ID
object-address
object-size	 0

[object-value]

From Local Access
[object_value]

Outputs:
To User Services

IC end-of-access message parameters

• access parameters:
access_type.
object_address
object-size
[object_value]

This task (Figure 3-10) provides the interface between User Services in the Transport
Layer and the Local Access Procedure (Local -Access) in a distributed global data access.
The Start entry receives the local access parameters, access type (msg_ID), and source site
ID (source_gpc) from the Global Data Manager Task. The locally resident global data is
accessed via a procedure call to Local -Access. The data is accessed in a contention
protected manner. After the access has completed, the IC end-of-access message is
constructed and transmitted to the source site by the Send-Output procedure of User
Services utilizing the following parameters:

• dest_gpc	 Source site identifier (= source_gpc).
• dest_task Message destination on source site (Global Data Manager Task).
• msg_size Size of message data buffer.
• msg_prio Priority of message.
• msg_buffer Message data buffer:

msg_ID (= end-of-access)
local-access-task-ID
[object-value]

3-23

After completion of the call to Send_Output, the remote access surrogate task is blocked at
the Start entry, effectively returning it to the Surrogate Task Pool.

Any exception raised in the remote access surrogate task is returned to the access requesting
task at the source site as an Ada TASKING exception.

to Local—Access from Local—Access

access params
accessjype
object—address
object_size
[object—Value]

Start	
accept Starto do
end Stan;

[object_valuel

IC end-of-access msa narams:

dest_gpc (=source_gpc)
dest_task (=GlobalData_Mgr)
msg_size
msg_prio
msg_buffer:

msg_ID (=end_of_access)
local—access—task—ID
[object—value]

Send—Output

transmit IC
msg to
local gpc

msgjD
sourcegpc
local—access—task—B)
object_address
object—size
[object_value]

from Global]Data_Mgr

Figure 3-10. Remote Access Surrogate Task

3-24

3.2.2.4 Process Name: Global Data Manager Task

Inputs:
From User Services

• access message parameters:
msg_ID (= access_type)
local_access_task_ID
object_address
object—size
[object.-value]
source_gpc

or

• end-of-access message parameters:
msg_ID (= end—of _access)
local _access _task _ID
[object_value]

Outputs:

To remote access surrogate task
• remote access surrogate Start parameters:

msg_ID (= access—type)
local—access—task—BD
object_address
object—size
[object—value]

To local access surrogate task
• local access surrogate Stop parameters:

[object—value]

Upon receipt of an IC access or end-of-access message from a remote site, this task (Figure
3-11) is initiated by an event signalled by the Message —Send _Rcv task (see Sections 4.2.1
and 4.2.2.2.28) in the Transport Layer. The message contents are obtained by calling the
Get_Input procedure in the Transport Layer.

If the message received was a access message, an idle remote access surrogate task is
selected from the Surrogate Task Pool and a rendezvous is made with the Start entry of the
surrogate task. The local access parameters and source site ID are passed as formal
rendezvous parameters.

3-25

remote access

msg_ID
sourcegpc
local-access-task-ID
object-address
object-size
[object_value]

local access
surrogate
stop params

[object-value]

If the message received was an end-of-access message, a rendezvous is made with the Stop
entry of the local access surrogate task (local -access-task-ID) handling the remote access.
Any access output value (read type) is passed as a formal rendezvous parameter.

The above Start and Stop rendezvous entries are only for synchronization purposes; no
processing is performed during the rendezvous and control is returned immediately to the
Global Data Manager Task. The actual remote access processing is controlled by the
surrogate tasks, leaving the Global Data Manager Task free to concurrently handle any
other remote access requests.

to remote access to local access
surrogate task	 surrogate task

case msg_ID
when access-type
when end_of_access

end case;

event
interrupt access msg	 or

msgjD (=accesstye)
local-access-task-11)
object-address
object_size
[object-value]
source_gpc

end-of-access msg

msg_ID(=end_of_access)
local-access-task-ID
[object_value]

from Message_Send_Rcv

Get_Input

fetch IC
msg

Figure 3-11. Global Data Manager Task

3-26

4.0 THE TRANSPORT LAYER

4.1 Functional Requirements and Design

The purpose of the Transport Layer is to provide end-to-end data transfer which is reliable,
efficient and transparent to a user. The functions provided by this layer include producing
a correct message in the presence of physical transmission errors, controlling the flow of
messages so that they are not overwritten before being processed, and servicing multiple
users who may be attempting to transmit messages simultaneously.

As shown in Figure 4-1, the Transport Layer as designed for AlPS has several sub-layers.
At the highest level are the User Services, whose function is to provide a standard interface
to the Transport Layer user which is simple and insulates the user from the details of how
the lower sub-layers are implemented. Below the User Services is the Message Send
Receive function, which transmits outgoing messages that have been funnelled to it by the
User Services and distributes incoming messages to the appropriate user. Below the
Message Send Receive process on the input side is the ICIS Redundancy Management
function, whose job is to analyze the redundant copies of an input message available in the
ICIS, identify faults, and present a single congruent copy of the message to the Message
Send Receive function.

The Transport Layer must be able to service users residing on both processors of an FTP
channel, as well as multiple users on the same processor. To serve these diverse users
most efficiently, the User Services are designed as a set of re-entrant subroutines which
may be called by any Transport Layer user, while the Message Send-Receive process is a
separate task. Communication between the two sub-layers takes place through a set of
shared data structures that allow output messages to be queued for the Message Send-
Receive task and input messages to be queued for the user. The format of the data
structures and the program design allow the two sub-layers to operate asynchronously.
Similarly, the ICIS Redundancy Management function is designed as a separate task which
passes congruent input messages to the Message Send-Receive task through a shared data
structure. The format of this data structure allows these two sub-layers to also operate
asynchronously.

4.1.1 Functional Requirements and Design: User Services

A Transport Layer user is any process that wants to send a message without expecting any
session layer functions to be performed for it. System tasks such as the Status Reporter
and System Manager and applications such as the Central Command and Processing task
are examples of users that interface directly with the Transport Layer. The primary services
available to these users are:

•	 sending a message
•	 confirming that an outgoing message was successfully transmitted, and
•	 retrieving incoming messages which have previously arrived.

4-1

RASPOT

I

NE
La

OVERVIEW OF THE TRANSPORT LAYER

SESSOO

DATA LOK

PO-OYSOCAL

n
0

0

Figure 4-1. Transport Layer Overview

4-2

In addition, there are initialization services which a user.must invoke before beginning its
main task loop. These services enable the user to:

•	 specify the location (GPC and processor) where it will execute,
•	 specify the size of an "114" box, where incoming messages will be held until

the user retrieves them, and
•	 specify the size of an "OUT" box, where outgoing messages will be held until

they can be transmitted.

Message Sending. This service allows the user to send a particular message. In addition
to identifying the message to be sent, the user must also specify information required to
send it, such as the destination GPC and destination user. Point-to-point transmission and
broadcasting are both supported. A user may also specify that later on it will want
confirmation that the message was successfully transmitted. The user's message and
relevant control information required to send it are copied into the user's "OUT" box and
the message is added to the outgoing message queue. The Message Send-Receive task is
then notified that there is work to do.

Message Retrieval. As they arrive, incoming messages are stored in the destination user's
"IN" box. The message retrieval function hands over these accumulated input messages in
FIFO order to the user. In addition to the actual message, the user is also provided with the
GPCand task identification of the sender and a user-supplied message priority.

Status Checking. This service tells a sender the current status of a particular output
message. This feature might be appropriate for a user who is sending a one-time message
and wishes to retransmit if the message does not get through on the first attempt. The
status information indicates whether the transmission is still in progress or has completed,
and if completed, whether successfully or with a particular type of error.

Task Location Identification. This is a one-time service which a user must invoke in order
to identify itself to the Transport Layer. Here the user specifies its user ID, processor ID
(either CP or TOP), and GPC ID (either a specific GPC or ALL _GPCS). The information
is entered into a central database so that a message recipient can be located simply by its
user ID, if desired. This database will be updated when functions are migrated from one
GPC to another. This shields a user from having to know the specific location of a
particular task

Output Setup. This is a one-time service which must be invoked by users wishing to send
output messages. Here the user must specify the size of the largest message it will be
sending and the maximum number of output messages it expects to have ongoing at any
one time. Buffers of the size and number indicated are dynamically allocated and their
addresses stored in an Output Buffer List for the particular user.

4-3

Input Setup. This is a one-time service which must be invoked by users expecting to
receive input messages. Here the user must specify the size of the largest message it
expects to receive and the maximum number of input messages it anticipates may be queued
for it an any one time. Buffers of the size and number indicated are dynamically allocated
and their addresses stored in an Input Buffer List for the particular user. The user process
also specifies whether it wants to be signaled by an event when input arrives or whether it
is going to poll for input. If the user wants to be signaled, an event is allocated and
initialized and its address returned so that the user may schedule itself based on that event.

4.1.2 Functional Requirements and Design: Message Send-Receive Task

The Message Send-Receive task has two main functions: (1) to send output messages as
requested by Transport Layer users and (2) to distribute incoming messages.

The Send function has two main parts. The first part is to physically transmit a message via
the ICIS. This involves making a user message conform to the packet size required by the
ICIS and executing the ICIS chain required to start the physical transmission. The second
part is to guarantee the reliability of a particular communication by using a protocol which
confirms the arrival of the message at the end user level.

The Receive function does not read incoming packets from the ICIS; this work is done by
the ICIS Redundancy Management task. The Receive function takes the congruent packets
which have been formed by ICIS Redundancy Management, assembles them into a
complete message, and saves the message for the user's later reference. Optionally, it
causes the user to be signalled when input arrives.

Transforming Messages into Packets. The basic unit of data that can be transmitted and
received by the ICIS is a packet, which can be a maximum of 127 bytes. Not only must a
user message be divided into sections if it is bigger than the maximum packet size, but
control information must be attached to each message (or section of a message) so that the
message can be identified at its destination. Additional control information for the ICIS
hardware and for the ICIS Redundancy Management task must be attached before a
message is ready to be physically transmitted.

Message Sending Protocol. Packets are sent using a limited send-acknowledge protocol.
The "send-acknowledge" part of this protocol enables the sending GPC to receive explicit
confirmation that each packet was received. This confirms that the destination GPC is
functioning correctly; in the case of a simplex GPC it also confirms that the ICIS and
communication links are functioning correctly. The "limited" part of the protocol controls
the flow of messages so that input packets are not read into the destination ICIS dual-ported
memory faster than they can be handled by the processor. Specifically, the number of
outgoing packets to any other one GPC at any given time is limited. When the maximum
number has been reached, a new output packet cannot be sent until an acknowledgement is

4-4

received for a previous one. Messages that do not fit into one packet require a series of
transmissions: each packet that is sent must be acknowledged before the next section of the
message can be sent.

Output messages are sent in FIFO order. There is no provision for ordering them
according to the priority of the originating task or user-assigned priority of the individual
message.

Assembling and Distributing Input Messages. Input packets must be stripped of the
header information inserted by the sending Transport Layer before the packet is presented	 - -
to the end user. In the case of messages consisting of multiple packets, the entire message
must be assembled, with successive packets being checked for correct sequencing. It is
also necessary to check that a user's "IN" box, where the message is held until the user
requests it, is not full. In this case, which indicates that the user is far behind in his
processing, an Undeliverable indication is returned to the sending GPC.

4.1.3 Functional Requirements and Design: ICIS Redundancy
Management (RM)

The hardware modular redundancy scheme used to provide highly reliable processing in the
core AlPS FTP is extended to the inter-computer communication hardware for the
distributed AlPS system. Three redundant communication paths or layers are available for
passing redundant copies of communicated data between FTPs. Each channel of an AlPS
FTP has a hardware module, the Inter-Computer Interface Sequencer (ICIS), which
provides an interface into the AlPS communication network. Each ICIS provides a means
for the channel to transmit on only one of the three redundant communication layers and to
receive redundant copies of data packets from all three layers. The ICISes for redundant
channels of an FFP transmit on distinct layers; when a triplex transmits on the network
under non-faulty conditions, a packet is sourced onto each of the three layers from one and
only one of the channels. At the receiving end of this communication path is another set of
ICISes, one per channel of the receiving FTP, each of which receives a copy of the
communication packet from each active layer. Since the specification for the AlPS
distributed system calls for the support of mixed redundancy levels of the FTPs
subscribing to communication services, the number of active layers and the number of
redundant copies of data packets received are time-varying parameters even in a fault-free
system.

Unique functional requirements are made of the system software to support this redundant
communication system. That is, there are software functions to be performed in this
system which are not necessary to support a non-redundant communication system.
Software operations are required to distill a single, channel-congruent representation of a
data packet from the multiple redundant packets received. Error detection and fault
isolation operations must be performed. Status updates must be made in response to error

4-5

detections to assure synchronous, valid operation of the communication hardware. The
congruent state of the ICIS hardware must be maintained during the recovery of channels,
communication layers, and ICISes following repair operations or alter transient faults.

4.1.3.1 Functional Requirements Associated With IC Communications

A software interface is required between the higher level software functions of the ICCS
Transport Layer and the redundant ICIS hardware. This software interface hides the
redundancy of the communication hardware from the other Transport Layer software. That
is, the higher levels of the Transport Layer need no knowledge. of the redundancy of
incoming packets and are not required to perform any special operations related to the
redundant hardware during the transmission of packets.

4.1.3.1.1 Redundancy Management During Data Reception Process

The source congruency function has the responsibility of processing the redundant
communication packets received from the IC network such that all redundant channels of
the receiving VFP obtain a congruent representation of this data. This function requires that
the received data be exchanged among the channels of the receiving FTP and that voting
operations be performed for fault masking purposes. Congruent data and congruent
decisions about the fault status of this data are required to be returned by this function
under any fault scenario which is to be tolerated by the core FT?.

The ICIS RM software is responsible for making all decisions related to the -reception of
data from the IC network. A channel congruent decision must be made as to whether new
data has been received by the ICIS and is ready for processing. A decision must be made
as to which layer or layers had data on them during a packet communication event. A
congruent decision must be made as to the number of data bytes received within an input
packet. All of these decisions are made in support of the source congruency function for
the received data.

4.1.3.1.2 Redundancy Management During Data Transmission Process

Software support is required for correct operation of the ICIS hardware during the
transmission of data packets on the IC network. Note that this operational phase is
assumed to include the network polling function as well as the sourcing of raw data on the
network once a subscriber has gained network possession. The correct redundancy level
encoding must be updated before an ICIS p011 operation is initiated to insure correct
operation during the "redundancy contention sequence" of the network poll. The masks for
the ICIS state exchange voters must be updated on the basis of the current channel/ICIS
configuration: A determination as to which layers will have data transmitted on them must
be made in order to correctly encode the layer redundancy level in the outgoing packet (for
layer fault detection and isolation purposes), and in order to enable the outputs to the

4-6

appropriate layers. A channel congruent decision must be made as to when the ICIS has
completed previous transmission activity and is available for transmitting another packet.
Each channel must synchronously command its ICIS to begin the polling and data
transmission operation.

4.1.3.2 Requirements for the Detection and Isolation of Faults (FDI)
Associated With the IC Hardware

The detection of error states in the IC hardware and the isolation of faults related to such
states are required functions of the ICIS redundancy management software. These required
functions facilitate a more robust communication process. Valid communicated data is
more likely to be transferred if hardware faults are detected, isolated, and masked.

4.1.3.2.1 FDI During Data Reception Process

Faults in the IC hardware may result in erroneous data and status values being received at a
network site. Comparisons of received redundant copies of data and status values are used
to detect the presence of such errors. The location of the fault responsible for the error is
isolated to a "fault isolation region" on the basis of these same comparisons of redundant
data and status. It is recognized that there are cases in which the redundancy of the
received information may not be sufficient for making unambiguous. fault isolation
decisions. No received data is passed along to the Transport Layer when the ambiguity can
not be- resolved. But the fact that there has been a disruption in the operation of the IC
network will be reported to the System FDIR Manager, which may have access to
information required to accurately isolate the fault.

The FDI process is able to determine error patterns indicative of a situation where two or
more simultaneous faults have manifested errors. The processing of received data
associated with a communication packet exhibiting such"double fault" error patterns can be
aborted with no data being passed on to the Transport Layer.

4.1.3.2.2 FDI During Data Transmission Process

The transmission of data from an ICIS onto the IC network requires a successful network
polling operation in which the site is granted network possession, followed by the
execution of a chain of ICIS instructions responsible for outputting the data. All requests
by the Message Send-Receive function and the IC Network Manager for transmitting data
must be funnelled through an ICIS RM function. This function is required to detect errors
associated with network arbitration and network possession. Errors related to the inability
to execute ICIS instruction chains are also detected by this function.

4-7

4.1.3.3 Requirements for the Management of Responses to Detected
Errors in IC Hardware

The ICIS RM software makes responses to detected errors as required to maximize the
likelihood of continued correct communication of data across the IC network. In response
to certain detected faults, the ICIS RM notifies other ICCS functions (e.g., Network
Manager) of a fault and lets these functions manage subsequent error correction or fault
masking operations. The ICIS RM is responsible for corrective actions or fault masking
operations involving the local ICIS resource. Status variables reflecting the health and
availability of ICISes and layers are maintained and used in masking of data/status during
the processing of packets received from the network. Certain ICIS control registers (e.g.,
"voter" mask for the ICIS state exchange) are also updated in response to detected errors.

In response to detected errors, the ICIS RM executes retry self-tests and evaluates the
results of these tests to determine if a fault has been removed or if a transient error
condition has subsided. These self-tests are only required to evaluate the state of faulty
hardware local to the FFP (i.e., the ICIS itself or inter-ICIS links), and not faults on the
actual network (i.e., nodes and inter-nodal links) which are handled by the IC Network
Manager.

4.1.3.4 Requirements for Performing Re-Initialization of ICIS Hardware
on Recovery of Channel and/or ICIS

The ICIS RM software is responsible for all functions required to bring the ICIS hardware
back into operation following the recovery of a previously failed FTP channel and/or ICIS.
Some ICIS registers associated with network polling and the execution of solicited chains
used for outputting data onto the network are also re-initialized, while other registers are
dynamically updated when each request to execute a solicited chain is made. All necessary
ICIS registers and ICIS instruction sequences required to receive unsolicited input are
initialized following a recovery event. The re-initialization function is implemented such
that no unsolicited input to the FTP from the IC network is lost during the course of
bringing an ICIS back on-line. This ICIS re-initialization function is also required to
manage information regarding the state of the unsolicited input data buffers in ICIS dual-
port memory at the time of the re-initialization. This information is needed by the ICIS RM
software processing incoming data; a determination must be made as to which received data
packets came before and which came after the recovered ICIS was brought on-line. An
interface to the Local System Services software is provided so that requests to re-initialize
the ICIS of a recovered channel can be made to the ICIS RM software.

The current implementation of the ICIS hardware requires software intervention to recover
from a "possession default" event. A possession default is said to have occurred if an ICIS
is in a state of network possession and it recognizes network activity in the form of "poll
pulses" used to initiate network arbitration sequencing. The ICIS RM software must

4-8

provide a function to reset the ICIS state machine following a possession default; otherwise
the ICIS will never be able to start another required poll sequence .preceding the
transmission of data on the network.

4.2 Software Specifications

As mentioned previously, the Transport Layer must be able to support users residing on
both processors of an VFP channel. The lower sub-layers of the Transport Layer, i.e., the
Message Send Receive and ICIS Redundancy Management functions, execute on only one
processor (TOP), while the User Interface routines reside on both the CP and TOP. This
allocation of tasks and the location of their shared data is illustrated in Figure 42.

The Ada packages used to implement the Transport Layer must be structured so that the CP
link does not include modules used only on the TOP. In particular, the User Services must
not reference packages used on the IOP

'
such as the Message Send-Receive package. The

Ada packages which make up the Transport Layer are shown in Figure 4-3. The arrows in
this figure indicate one package referencing ("with"ing in Ada terminology) another. The
end of the arrow represents the package making the reference; the arrow point touches the
package being referenced. The long dashed line separates Transport Layer users from the
Transport Layer. The short dashed line separates packages located on both the CP and lOP
from those located only on the TOP.

4.2.1 Software Specifications: User Services

4.2.1.1 ICCS User IDs

Transport Layer users need a way of identifying themselves, both to each other and to the
Transport Layer. The most straightforward way to do this is to define an enumeration type
in a package which can then be referenced by all user packages as well as packages in the
Transport Layer.

This scheme becomes cumbersome, however, when new users must be added to the
system. Each time a new user is added numerous packages must be recompiled, including
many system files. In addition, it is desirable to separate system users from application
users, so that when new application user IDs are added, only application tasks need to be
recompiled. To deal with these issues, a scheme has been adopted which defines some
maximum number of user IDs and then separates them into two packages, system user IDs
and application user IDs. Each package defines its own IDs in a fixed position and leaves
space for the users it cannot see. Intermediate USER—SERVICES packages are then
employed to take the user ID as defined for the user (i.e., the enumeration type) and use the
'pos Ada attribute to translate it into the user ID as defined for the Transport Layer (i.e., an
integer). This scheme is illustrated in Figure 4-3. The reader should refer to Appendix B:
Transport Layer User's Guide for specific details and examples.

4-9

Figure 4-2. Location of Tasks and Shared Data

4-10

	

APPL	 SYSTEM 	 r

	

USER	 USER • _______

	

APPL USER 	 SYSTEM USER

	

IDS	 IDS
ca •IIIIII• USER SERVICES 	 USER SERVICES

	

APP	 SYS USER DATA TYPES
USER SERVICES

I	 - USER o	 : DATA TYPES
I	 ,-

	

ERROR 	 CP-IOP LOG	 CCMMON	 DATA TYPES
- -

VMESSAGE SEND o	 RECEIVE
2

ICIS	 I	 I	 I	 I
LOCAL I p	 ICIS	 ________	 ICIS 	 ICIS MANAGER	 I	 RM	 I	 r'ps	 INIT

Figure 4-3. Transport Layer Packages

4-11

4.2.1.2 Data Structures

The User Services routines use the following data structures:

•	 User Output Buffer
•	 Output Buffer List
•	 User Input Buffer
•	 Input Buffer List
•	 CP / TOP Output Queue
•	 User Input Queues	 - -
•	 Input Event List
•	 Error Log
•	 CP and lOP Task Location Tables

All of these structures except for the Output Buffer List are shared With the Message Send-
Receive task.

User Outnut Buffers. These buffers serve as a user's "OUT" box, where messages are
held until they can be transmitted. The buffers are dynamically allocated in the User
Services routine OUTPUT—SETUP, which the user process calls as part of its initialization
procedure. The size of the buffers and the number allocated are specified by the user.

In addition to the actual data the user wants to send, the buffer contains control information
used in transmitting the message:

• Flag. Current state of the buffer, i.e., whether it is unused, currently having
an output message transferred into it, holding a message in the process of
being sent, or holding a message which has been completely transmitted.

•	 Message Priority. A number from 1 to 100 which is assigned by the user.
•	 Destination GPC. A code identifying the destination GPC.
•	 Destination User. A code identifying the destination user.
•	 Byte Count. Length of the user message to be sent.
•	 Error Code. A code identifying the result of the transmission, e.g., message

sent correctly, destination GPC not responding, etc.
•	 User Error Check.. A flag indicating whether or not the user will later inquire

about the status of the message transmission.
•	 User Message ID. A user-supplied 16-bit field used to identify the message

when the user inquires about its transmission status.
• User Check Time. Latest time that status about the particular message will be

held. If the user has not inquired about its status by this time, all information
about the message will be deleted.

4-12

• Outgoing Count. Number of GPCs which have not yet acknowledged
receiving the message. This field is used to determine how long to retain
information about a broadcast message.

OutDut Buffer List. This list is a two-dimensional array which identifies the output
buffers which have been allocated for all ICCS users. A user can allocate a maximum of
20 output buffers, implying that at most it can have 20 output messages in progress at one
time.

User Input Buffers. These buffers serve as a user's "IN" box, where messages are
held until a user requests them. The buffers are dynamically allocated in the User Services
routine INPUT_SETUP, which the user process calls as part of its initialization procedure.
The size of the buffers and the number allocated are specified by the user.

In addition to the actual data that is the user's message, the buffer contains control
information:

•	 Flag. Current state of the buffer, i.e., whether it's empty, in the process of
being filled, or contains a complete message ready for delivery to a user.

•	 Message Priority. A number from 1 to 100 which is assigned by the user.
•	 Source GPC. A code identifying the originating GPC.	 -
•	 Source User. A code identifying the originating user.
•	 Byte Count. Length of the user message.

Input Buffer List. This list is a two-dimensional array which identifies input buffers
which have been allocated for all IC users. A user process can allocate a maximum of 20
input buffers, implying that at most it can have 20 input messages pending.

CP / TOP Outnut Queue. The output queue is a one-dimensional array which identifies
all buffers which currently have messages to be sent. The originating task is identified for
each buffer, since there is only one queue per processor for all users. Output messages are
sent from each queue in FIFO order, there is no provision for ordering according to the
priority of the originating task or the priority of the individual message.

Each processor's queue is controlled by two indices: the add index and the process index.
Since User Services and the Message Send-Receive task are operating on this queue
asynchronously (User Services is adding entries; Message Send-Receive function is
removing them), each uses its own index to maintain its current position in the array. The
add index indicates the next available slot in the array where User Services can queue a new
message. The process index indicates the next message in the queue to be transmitted by
the Message Send-Receive function. When the process index is the same as the add index
the queue is empty. In order for these indices to work correctly, the array can never be
full. Since there is a maximum of 35 users, each of which could allocate 20 output buffers,

4-13

the theoretical maximum size of this queue is 700 entries. But given all the constraints of
the system, it would be impossible to have this many output messages in progress at one
time, and so only 50 entries have been allocated for each queue.

User InDut Oueue. This queue is a two-dimensional array which identifies for each
user all buffers holding input messages. Input messages for any particular user are handed
over in FIFO order, there is no provision for ordering them according to the priority of the
sending task or the priority of the individual message. Each user's queue is controlled by
two indices: the add index and the process index. Since the Message Send-Receive task
and User Services are operating on this-buffer asynchronously (Message Send-Receive is
adding entries; User Services is removing them), each uses its own index to maintain its
current position in the array. The add index indicates the next available slot in the array
where Message Send-Receive can queue a new message. The process index indicates the
next message in the queue to be given to a user via the User Services routine GET—INPUT.
When the process index is the same as the add index the queue is empty. In order for these
indices to work correctly, the array for any particular user can never be full. Since a user
can allocate a maximum of 20 input buffers, each array has room for 21 entries.

The relationship between the various input and output buffers and queues is shown in
Figure 4-4.

In put Event List. This list is a one-dimensional array which indicates for each user
whether or not it should be signaled when an input message arrives. If the user does wish
to be signaled, the list contains the address of the event to be used to start the user task.

Error Log. This structure is used by both User Services and the Message Send-Receive
function to record unexpected events and error conditions. Refer to Section 4.2.2.1 for a
complete description of this log.

CP and TOP Task Location Tables. These tables identify the processor ID, GPC ID,
and Task Control Block for each ICCS user. Information about CP users is entered in the
CP table; information about lOP users is entered in the lOP table.

4-14

z

CIO

•

0

0

.. -4

-
C
- - -

ILl

-

Figure 4-4. Input and Output Buffers and Queues

4-15

4.2.1.3 Process Descriptions

USER SERVICES
ROUTINES

Output
	 ^Task

Identify '	 (Get
Setup) 	Locatio)	 (Input

I Input "	 (Send
(Setup)	 L Output J

Check
Output Status

Figure 4-5. User Services

4.2.1.3.1 Process Name: OUTPUT—SETUP

Inputs:
•	 User ID
•	 Number and size of output buffers to be allocated

Outputs:
•	 Output buffers with state initialized to UNUSED
•	 CPIIOP output buffer lists

Description:

This routine is called by Transport Layer users during task initialization. Its function is to
allocate buffers which will be used as temporary holding areas for messages the user
wishes to send.

Versions of this routine exist in three packages:
USER_SERVICES_SYS (for system users)
USER—SERVICES—APP (for application users)
USER—SERVICES	 (Transport Layer version)

The purpose of the version called directly by a user is to translate the enumeration-type user
ID known to the user into the integer-type user ID known to the Transport Layer. It then
calls the Transport Layer version of the routine to do the actual work.

4-16

The user has specified the number of buffers to be allocated and the length of the longest
message. The actual buffer size is calculated by adding the size of the control information
stored with each output message to the user's message length. Buffers for CP users are
allocated from shared memory and their addresses stored in the CP Output Buffer List for
the particular user. Buffers for TOP users are allocated from local memory and their
addresses stored in the TOP Output Buffer List for the particular user. The flag field in each
buffer allocated is initialized to UNUSED.

A user may allocate a maximum of 20 output buffers, if a user tries to allocate more than
this number, 20 buffers will be allocated and an error will be recorded in the ICCS Error
Log.

4.2.1.3.2 Process Name: INPUT—SETUP

Inputs:
User ID
Number and size of input buffers to be allocated

Outputs:
Input buffers with state initialized to UNUSED
CP/IOP Output Buffer Lists
Event to trigger user task

Description:

This routine is called by Transport Layer users during task initialization. Its function is to
allocate buffers to temporarily hold input messages that arrive for the user.

Versions of this routine exist in three packages:
USER_SERVICES_SYS (for system users)
USER—SERVICES —APP (for application users)
USER—SERVICES	 (Transport Layer version)

The purpose of the version called directly by a user is to translate the enumeration-type user
ID known to the user into the integer-type user ID known to the Transport Layer. It then
calls the Transport Layer version of the routine to do the actual work.

The user has specified the number of buffers to be allocated and the length of the longest
message expected to be received. The total buffer size is calculated by adding the size of
the control information stored with each input message to the user's message length.
Buffers for CP users are allocated from shared memory and their addresses stored in the
CP Input Buffer List for the particular user. If a user wants to be signaled by an event
when input arrives, the address of a previously allocated event is passed back so that the

4-17

user may schedule itself based on that event. Buffers for lOP users are allocated from local
memory and their addresses stored in the lOP Input Buffer List for the particular user. As
is the case for CP users, an lOP user who wants to be signaled by an event when input
arrives is returned the address of a previously allocated event. The flag field in each buffer
allocated is initialized to UNUSED.

A user may allocate a maximum of 20 input buffers. If a user tries to allocate more than
this number, 20 buffers will be allocated and an error will be recorded in the ICCS Error
Log.

4.2.1.3.3 IDENTIFY_TASK_LOCATION

Inputs:
•	 User ID
•	 GPC1D
•	 Processor ID
•	 Address of Task Control Block

Outputs:
CP/IOP Task Location Tables

Description:

This routine is called by Transport Layer users during task initialization. Its function is to
enter the initial location of each user into a central database so that its GPC, processor and
task control block address are known globally.

Versions of this routine exist in three packages:
USER_SERVILCES_SYS (for system users)
USER—SERVICES—APP (for application users)
USER—SERVICES	 (Transport Layer version)

The purpose of the version called directly by a user is to translate the enumeration-type user
ID known to the user into the integer-type user ID known to the Transport Layer. It then
calls the Transport Layer version of the routine to do the actual work, which involves
entering the GPC lID for the particular user into either the CP Task Location Table or lOP
Task Location Table.

This routine is written as a function which returns a boolean, but the value being returned
has no meaning. The routine was written in this way so that it could be invoked as part of
the package specification which defined the user task, rather than having to be invoked in
the package body. This, in turn, was a result of the design of the distributed system, in

4-18

which a given package body might reside on only one GPC but package specifications
would reside on all GPCs.

4.2.1.3.4 SEND—OUTPUT

Inputs:
•	 User ID
•	 Address of message to be sent
•	 Destination GPC
•	 Destination user
•	 Message length
•	 Message priority
•	 User-specified message ID
•	 Flag for later error checking

Outputs:
CP/IOP output message queues
Selected output buffer
Error code for caller

Description:

This routine is called by a Transport Layer user that wishes to send an output message.
Since the Transport Layer must be independent of user-defined types, the message is
specified by its starting address and size.

Versions of this routine exist in three packages:
USER_SERVICES_SYS (for system users)
USER_SERVICES_APP (for application users)
USER—SERVICES	 (Transport Layer version)

The purpose of the version called directly by a user is to translate the enumeration-type user
ID known to the user into the integer-type user ID known to the Transport Layer. It then
calls the Transport Layer version of the routine to do the actual work.

The Transport Layer version finds a free holding buffer from among those the user has
allocated at initialization and copies the message into it. It also enters all the control
information required to send the message. Finally, it adds the buffer to the appropriate CP
or lOP outgoing message queue. Since there is only one output queue per processor but
multiple users, some strategy must be employed to ensure that the integrity of the queue is
not compromised by users interrupting each other. This routine uses the lock feature
provided by the operating system, so that the queue is locked before updates are begun and

4-19

unlocked when they are complete. Any task that attempts to lock the queue when it is
already locked will be suspended until it is unlocked.

This routine returns to the caller any errors which prevented a message from being added to
the output queue. Typical errors conditions are no free holding buffers, message size
greater than that of the holding buffers, or IC network currently not in service. The error is
also recorded in the ICCS Error Log.

4.2.1.3.5 GET—INPUT

Inputs:
User ID
Location for a message to be copied to
User's input message queue

Outputs:
•	 IDs of originating user and GPC
•	 Message priority
•	 The message
•	 Input-available flag
•	 User's input message queue

Description:

This routine is called by a Transport Layer user that wants to determine if it has pending
input messages and, if so, receive the oldest one. Since the Transport Layer must be
independent of user-defined types, the message is specified by its starting address and size.

Versions of this routine exist in three packages:
USER_SERVICES_SYS (for system users)
USER—SERVICES —APP (for application users)
USER—SERVICES	 (Transport Layer version)

The purpose of the version called directly by a user is to translate the enumeration-type user
ID known to the user into the integer-type user ID known to the Transport Layer. It then
calls the Transport Layer version of the routine to do the actual work.

The Transport Layer version checks the user's input queue for messages and sets a flag
indicating whether or not there are messages pending. If messages are pending, it copies
the oldest one to the user's area and also returns the ID of the originating user, the ID of the
originating GPC, and the message priority. Finally, the message is removed from the input
queue.

4-20

4.2.1.3.6 CHECK—OUTPUT—STATUS

Inputs:
•
	

User ID
•	 User message 1D

Outputs:
Current status of the specified output message

Description:

This routine is called by a Transport Layer user that wants to check on the current status of
a particular output message. The status information returned indicates whether the
transmission is still in progress or has completed, and if completed, whether successfully
or with a particular type of error.

Versions of this routine exist in three packages:
USER_SERVICES_SYS (for system users)
USER_SERVICES_APP (for application users)
USER—SERVICES	 (Transport Layer version)

The purpose of the version called directly by a user is to translate the enumeration-type user
ID known to the user into the integer-type user II) known to the Transport Layer. It then
calls the Transport Layer version of the routine to do the actual work.

The user's output buffers are searched to find a match with the user's message ID field. If
no match is found, a status of MSG —ID—NOT—FOUND is returned. Otherwise, the current
status from the buffer is returned. It will be one of the following:

NO_ERRORS
MSG_NOTCOMPLETE
TRANSMIT—ERROR
DEST_GPC_NOT_RESPONDING
DEST_GPC_CANT_DELIV

4-21

I

4.2.2 Software Specifications: Message Send-Receive Task

4.2.2.1 Data Structures

The Message Send-Receive task uses the following data structures:

•	 Basic Packet
•	 Output Packet
•	 Input Packet
•	 Message Status Block	 -.
•	 Message Status Block List
•	 Pending Message List
•	 Outgoing Message Counts
•	 Message Send-Receive Input Buffer
•	 Error Log

The Message Send-Receive Input Buffer is shared with the ICIS Redundancy Management
function; the other structures are internal to the Message Send-Receive task.

Basic Packet. The maximum data (packet) size that can be handled by the ICIS during a
transmit or receive operation is 127 bytes. Not only must a user message be divided into
sections if it is bigger than this maximum size, but 12 bytes of control information must be
attached to each message (or section-of a message) so that the message can be identified to
the Message Send-Receive task at its destination. After allowing for additional control
information required by the hardware for transmission and status information which is
appended by the hardware when a message is received, the maximum amount of user data
that can be included in one packet is 104 bytes. The format of the basic packet used by
Message Send-Receive is shown in Figure 4-6.

Header	 User Message

12 bytes -'1	 104 bytes

Figure 4-6. Basic Packet

The packet header contains the following information:

• Packet type. A code indicating whether the packet is the first packet of a
message (MSG), a continuation packet (MSG_CONT), an acknowledgement
(ACK), or an acknowledgement for a packet which could not be delivered to
its end user (UNDELIV).

•	 Packer number. Sequence number of the packet within the message.

Id-

	

•	 Total packers. Total number of packets in this message.

	

•	 Message priority. The user-assigned priority for this message.

	

•	 Source.GPC. A code identifying the originating GPC.

	

•	 Source user. A code identifying the originating user.

	

•	 Destination GPC. A code identifying the destination GPC.

	

•	 Destination user. A code identifying the destination user.

	

•	 Message ID. A 32-bit field that, uniquely identifies the message when the
source and destination 1D fields are the same.

The contents of a packet vary according to the packet type. ACK and UNDELIV packets
contain only the header information. The MSG packet is used to send the first (or only)
packet of a message and contains the header plus up to 104 bytes of user data. The
MSG_CONT packet is used to send continuation packets of messages longer than 104
bytes. It also contains the header plus up to 104 bytes of user data.

Output Packet. Additional information must be inserted at the front of a packet before it
can be transmitted. The first two bytes are required by the ICIS hardware, and the next
two bytes are used by the ICIS Redundancy Management function on the receiving GPC.
The format of the output packet transmitted by the Message Send-Receive task is shown in
Figure 4-7.

Hardware RM	 Header	 User Message
Control Control

	

*-byte 	
2	 116 bytes bytes I

Figure 4-7. Output Packet

The two control bytes required by the ICIS hardware are:

	

•	 Byte count. Number of bytes to be transmitted in this packet. This count
includes all data after the byte count field. It is expressed in the form 128 -
where n is the number of bytes.

	

•	 Address of destination GPC. A code to which the destination GPC will
respond when it sees the message on the network. This code uses the same
values as the destination GPC code mentioned elsewhere in this chapter.

The control information required by the receiving ICIS Redundancy Management function
is:

Sender redundancy. A code identifying which layers the sending GPC is
transmitting on. This information is used by the ICIS Redundancy
Management in its fault detection function.

4-23

Input Packet. An incoming packet has certain status information attached to it by the
ICIS hardware before it is stored in the ICIS dual-ported memory. The ICIS Redundancy
Management function removes most of this information but extracts selected pieces before
presenting a packet to Message Send-Receive. The format of the input packet available to
Message Send-Receive is shown in Figure 4-8.

IC'S
Hardware	 Header	 i	 User Message

Status 	 -.

116 bytes

Figure 4-8. Input Packet

The two bytes of ICIS hardware information include the following:

Byte count. Number of bytes in this packet. This count does not include the
2 bytes of ICIS hardware information.
Time. Time the input packet was read into the ICIS dual-ported memory.
This value is derived from the fault-tolerant clock and has a granularity of 66
microseconds.

Message Status Block. The Message Send-Receive task keeps information about each
ongoing message in a Message Status Block. This structure is allocated dynamically when
a message first appears and deallocated when all handling of the message is complete. The
Message Status Block enables the Message Send-Receive task to match an incoming
acknowledgement with the source message, to control the sending of multi-packet output
messages, and to assemble multi-packet input messages. Since several messages may be
in progress at any one time, Message Status Blocks are connected to each other in a linked
list.

A Message Status Block contains the following information.

•	 Source GPC. A code identifying the originating GPC.
• . Source User. A code identifying the originating user.
•	 Destination GPC. A code identifying the destination GPC.
•	 Destination User. A code identifying the destination user.
•	 Message ID. A 32-bit field that uniquely identifies the message when the

source and destination id fields are the same.
• Packet send time. The time the packet was transmitted. This field is used to

determine if a message has timed out, i.e., not been acknowledged within the
allowable-time.

4-24

• Message status. Current status of the message, i.e., whether it is an output
message waiting for an acknowledgement, an multi-packet input message
waiting for continuation packets, or an output message on the pending list.

•	 Output buffer pointer. Address of the holding buffer for an output message.
•	 Output data. Address of the user data within the holding output buffer.
•	 Input buffer pointer. Address of the holding buffer for an input message.
•	 Input data. Address of the user data within the holding input buffer.
•	 Last packet byte count. Number of bytes to be transmitted in the last packet

•	 of a multi-packet output message.
•	 Total packets. Total number of packets in a multi-packet message.
•	 Current packet being transmitted. Number of the packet currently being sent

in a multi-packet output message.
•	 Total packets received. Number of packets received so far of a multi-packet

input message.
•	 Last packer received. Number of the most recently received packet in a multi-

packet input message.
•	 Previous Message Status Block. A pointer to the previous Message Status

Block in the linked list.
•	 Next Message Status Block. A pointer to the next Message Status Block in

the linked list.

Message Status Block List. This list identifies all-messages currently in progress on
the particularGPC. Initialentry into the list is made through an array indexed by user ID
(source user for output messages, destination user for input messages). All Message
Status Blocks for a particular user are then joined in a linked list. The Message Status
Block List is illustrated in Figure 4-9.

Pending Messages List. As described in Section 4.1.2 on the functional design of the
Message Send-Receive task, messages are sent using a protocol which requires that each
packet transmitted must be explicitly acknowledged and that the number of packets allowed
to be unacknowledged at any one time is limited. When a message is to be sent to a GPC
already receiving its maximum messages, the latest message is put on the pending list and
will be transmitted as soon as an acknowledgement to an outstanding packet arrives. A
separate pending list is maintained for each destination GPC.

The Pending Messages List is illustrated in Figure 4-10. Each GPC's list is a one-
dimensional array of pointers to Message Status Blocks and is controlled by two indices:
the add index and the process index. Since two different processes are operating on this
list asynchronously (one process to add messages, another process to remove them), each

4-25

User!

User2

UserN

Figure 4-9. Message Status Block List

GPC1	 GPCn
I addindex	 I
	

add index
I process index	 I
	 i process inaex	 I

I MSB pointer(1) -•1	 I MSB pointer(1) ...

MSB pointer(2)
	 I MSB pointer(2) I

I MSB pointer(11) -	 I MSBpointer(11) —j

Figure 4-10. Pending Messages List

process uses its own index to maintain its current position in the array. The add index
indicates the next available slot where a new message can be added; the process index
indicates the next message to be sent and then removed from the array. When the add
index is the same as the process index, the list is empty. In order for these indices to work
correctly, the array can never be full. An arbitrary maximum of 10 pending messages per
GPC has been established; therefore each Pending Message List has room for 11 entries.

Outgoing Message Counts. The number of output messages currently being sent to
each GPC is maintained in a one-dimensional array indexed by GPC ID. For programming
convenience, a total count is also maintained as an integer variable.

4-26

4.2.2.2 Process Descriptions

Figure 4-11. Message Send-Receive Task

4-27

I (\

-Jill

L&
00

8 CA

I -

CI,

$

Cl,

Figure 4-11. Message Send-Receive Task (cont.)

4-28

Message Send-Receive In put Buffer. This data structure is used by the ICIS
Redundancy Management task to pass to the Message Send-Receive task the congruent
packets which it has formed from the multiple copies available in the ICIS dual-ported
memory.

This structure is a one-dimensional array which is controlled by two indices: the FDIR
index and the MSR index. Since ICIS Redundancy Management and Message Send-
Receive are operating on this buffer asynchronously (ICIS Redundancy Management is
adding packets; Message Send-Receive is removing them), each uses its own index to
maintain its current position in the array. The FDIR index indicates the next available slot
in the array where ICIS Redundancy Management can add a new packet. The MSR index
indicates the next packet to be removed from the array and distributed to a user. When the
MSR index is the same as the FDIR index, the array is empty. In order for these indices to
work correctly, the array can never be full. Since 36 input buffers have been allocated in
the ICIS dual-ported memory, this array has room for 37 entries.

Error Log. This structure is used by both User Services and the Message Send-Receive
function to record unexpected events and error conditions. Each entry in the log contains
an identifier for the routine logging the entry, a code identifying the error condition, the
user and GPC involved, and the time of day. There is one log on each processor. Only
User Services makes entries in the CP log, while both User Services and Message Send-
Receive make entries in the lOP log.

4.2.2.2.1 MESSAGE SEND-RECEIVE Task Body

Inputs:
•	 Count of ongoing messages
•	 Count of pending messages
•	 Indices of Message Send-Receive input buffer
•	 Indices of CP output queue
•	 Indices of lOP output queue

Outputs:
•	 None

4-29

Description:

The Message Send-Receive task has two main functions: (1) to transmit output messages as
requested by Transport Layer users, and (2) to distribute incoming messages. It has two
additional functions which are offshoots of these primary ones: (1) to check for packets
which have not been responded to within the time limit, and (2) to determine if messages
on the pending queue can be sent. Accordingly, the subtasks of Message Send-Receive
are:

(1) check for timeouts
(2) process incoming packets
(3) check pending messages
(4) send output messages

The Message Send-Receive task is started by an event, which can be set either by the ICIS
Redundancy Management when there are input packets to process or by User Services
when a user has a message to send. Every time it is scheduled, however, it checks its
entire list of possible things to be done. Furthermore, as long as it has handled either an
input message or a new output message during any particular iteration, it continues to
check. This strategy allows multiple processors (CP, TOP) to be signaling the task
simultaneously and allows Message Send-Receive to handle all requests as promptly as
possible with a minimum of context switching. The Message Send-Receive task thus
operates asynchronously with the processes it is serving.

The order in which the subtasks are done is important. Timeouts must be checked first so
that resources used by any timed-out messages can be freed. Input packets need to be
checked next so that acknowledgments can free resources being used for output messages.
Pending messages must be sent before newly queued output messages.

Normally the setting of an event when a task is not at its Wait _ For _Schedule causes the
event to be lost. The Message Send-Receive task uses a special parameter provided by the
SCHEDULE routine so that this does not happen. This task will always be scheduled after
its event was set, even if it was not previously at its Wait —For—Schedule point.

4.2.2.2.2 CHECK_FOR_TIMEOUTS

Inputs:
Message Status Block list

Outputs:
•	 Count of ongoing messages

Status fields in output buffers

4-30

Description:

Messages in progress might time out in one of two ways. An output message could time
out because an acknowledgment was not received, either for the first packet in a message or
for continuation packets in a multi-packet message. A multi-packet input message could
time out because an expected continuation packet was not received. This routine compares
the current time to the time the outgoing packet in question (MSG, MSG_CONT for output
messages, ACK for input messages) was sent. A time limit of 400 milliseconds is allowed
for the expected packet to arrive. After this time, the Message Status Block is deleted. For
output messages, the error code field in the user's output buffer is set to
DEST_GPC_NOT_RESPONDING. For an input message, the user's input buffer is
freed.

4.2.2.2.3 PROCESS—IN—MESSAGES

Inputs:
•	 Indices of Message Send-Receive input buffer
•	 Next available packet from Message Send-Receive input buffer

Outputs:
MSR_index of Message Send-Receive input buffer

Description:

This routine determines if there are input packets to be processed by comparing the
MSR_index to the FDIR_index in the Message Send-Receive input buffer. There are
packets to be processed whenever the two indices are not equal. One of four subroutines is
called to process the packet, depending on the packet type.

4.2.2.2.4 SEND—PENDING—MESSAGES

Inputs:
•	 Outgoing message count for each GPC
•	 Indices of Pending Message List for each GPC

Outputs:
•
	

Process—index of Pending Message List for each GPC
Count of pending messages

Description:

This routine is invoked when there is at least one pending output message. It checks the
current output message count and the Pending Message List for each GPC to determine
which pending messages can be sent.

4-31

4.2.2.2.5 SEND_CP_MESSAGES

Inputs:
•	 Indices of CP output queue
•	 Next entry from CP output queue
•	 CP and lOP Task Location Tables
•	 Outgoing message count for each GPC

Outputs:
Process,-index of CP output queue
Local destination user's input buffer and input, queue

Description:

This routine sends messages as requested by CP users by sequentially processing entries in
the CP output queue. The steps required to send a message vary according to the
destination GPC, which will fall into one of three categories:

Local GPC (i.e., destination and source GPCs are the same)
All GPCs
Single remote GPC

Local GPC. It may be that the destination 'user of a particular message resides on the same
GPC as the sender. This would be the case, for example, where a migratable function
currently is executing on the same GPC as a task with which it communicates, or where a
message must be sent to some user residing on all GPCs, including the one sending the
message. In this case, the IC network is not used; rather the message is moved directly
into one of the destination user's holding input buffers and added to its input queue. If no
input buffers are available to hold the message, an error is recorded in the ICCS Error Log.

All GPCs. When a message is to be sent to all GPCs in the system, the preferred method
is to transmit it in broadcast mode (i.e., addressed to all GPCs). Although only one output
packet needs to be formed and one ICIS chain executed, a Message Status Block must be
created for every destination GPC. This is because the receiving GPCs will be
acknowledging the message asynchronously and, if it is a multi-packet message, receiving
continuation packets asynchronously.

The message cannot be transmitted in broadcast mode if any of the other GPCs is currently
receiving its maximum messages from the sending GPC. In this case the message is put on
the pending queue for the GPC currently at its maximum and is sent individually to the
other GPCs.

4-32

Single Remote GPC. A Message Status Block is created for the destination GPC. if the
GPC is currently receiving its maximum messages from the sending GPC, the message is
put on the pending queue; otherwise the packet is sent immediately.

The routine that is invoked to format and transmit the message returns a boolean indicating
whether or not the packet was successfully transmitted. If it was not, the Message Status
Block(s) is immediately deleted.

This procedure concludes by updating the process index of the CP output queue.

4.2.2.2.6 SEND_lOP_MESSAGES

Inputs:
•	 Indices of lOP output queue
•	 Next entry from lOP output queue
•	 CP and lOP Task Location Tables
•	 Outgoing message count for each GPC

Outputs:
Process_index of lOP output queue
Local destination user's input buffer and input queue

Description:

This routine sends messages as requested by lOP users by sequentially processing entries
in the lOP output queue. The steps required are exactly the same as those required to send
a CP message except that the lOP rather than the CP output queue is used. The reader
should refer to the previous section for details.

4.2.2.2.7 FORM—MSG—PACKET

Inputs:
Message Status Block
Holding buffer containing the message to be sent

Outputs:
MSG output packet

Description:

This routine forms a MSG packet for a message that is to be transmitted. The MSG packet
is used to send the first 104 bytes of any message; if the total message is shorter than this,
only the number of bytes in the total message is sent. The necessary control information is
inserted at the front of the packet.

4-33

4.2.2.2.8 FORM_ACK_PACKET

Inputs:
Current packet from Message Send-Receive input buffer

Outputs:
ACK output packet

Description:

This routine formats an ACK for the MSG or MSG_CONT packet currently being
processed from the Message Send-Receive input buffer. An ACK packet contains only the
12 bytes of control information needed to identify the message back at its originating GPC.

4.2.2.2.9 FORM_UNDELIV_PACKET

Inputs:
•	 Current packet from Message Send-Receive input buffer

Outputs:
•	 UNDELIV output packet

Description:

This routine formats an UNDELIV packet for the MSG packet currently being processed
from the Message Send-Receive input buffer. An UNDELIV packet contains only the 12
bytes of control information needed to identify the message back at its originating GPC.

4.2.2.2.10 FORM_MSG_CONTPACKET

Inputs:
•	 Message Status Block
•	 Holding buffer containing the message to be sent

Outputs:
MSG_CONT output packet

Description:

This routine forms MSG_CONT packets for messages that are too long to be transmitted in
one packet. The last MSG_CONT packet for the message will contain only the number of
bytes in the message not yet sent; otherwise it will contain 104 bytes of message data. The
necessary control information is inserted at the front of the packet.

4.2.2.2.11 MOVE CHAIN TO ICIS DPM

Inputs:
•	 Output chain to be used for transmission

Outputs:
•	 Solicited chain in ICIS DPM

4-34

Description:

This routine copies the chain to be used for ICIS transmission from local RAM to the ICIS
dual-ported memory. This chain is defined as a constant and is copied to the ICIS dual-
ported memory before every transmission.

4.2.2.2.12 SEND MSG

Inputs:
Message Status Block for the message

Outputs:
•	 MSG output packet in ICIS dual-ported memory
•	 Status of transmission

Description:

This routine transmits a MSG packet. The packet to be transmitted and the solicited chain
to be used are moved to ICIS dual-ported memory. Then a subroutine provided by the
ICIS_LOCAL_MANAGER is called to check that the ICIS is ready to transmit and to start
the output chain. The status field in the Message Status Block is set to AWAITING_ACK,
and the packet send time field is set to the current time. Finally, the count variables for
outgoing messages are updated.

If the output chain could not be started or did not complete successfully, an error is
recorded in the ICCS Error Log and an error indication is returned to the caller.

4.2.2.2.13 SEND_MSG_CONT

Inputs:
•	 Message Status Block for the message

Outputs:
•	 MSG_CONT output packet in ICIS dual-ported memory
•	 Status of transmission

Description:

This routine transmits a MSG_CONT packet. The packet to be transmitted and the solicited
chain to be used are moved to ICIS dual-ported memory. Then a subroutine provided by
the ICIS_LOCAL_MANAGER is called to check that the ICIS is ready to transmit and to
start the output chain. The status field in the Message Status Block is set to
AWAITING_ACK, and the packet send time field is set to the current time. Finally, the
count variable in the output buffer is updated.

If the output chain could not be started or did not complete successfully, an error is
recorded in the ICCS Error Log and an error indication returned to the caller.

4-35

4.2.2.2.14 SEND_ACK

Inputs:
Message Status Block for the message

Outputs:
ACK output packet in ICIS dual-ported memory

Description:

This routine transmits an ACK packet. The packet to be transmitted and the solicited chain
to be used are moved to ICIS dual-ported memory. Then a subroutine provided by the
ICIS_LOCAL_MANAGER is called to check that the ICIS is ready to transmit and to start
the output chain. The status field in the Message Status Block is set to
AWA1TING_MSG_CONT, and the packet send time field is set to the current time.

If the output chain could not be started or did not complete successfully, an error is
recorded in the ICCS Error Log.

4.2.2.2.15 SEND_UNDELIV

Inputs:
None

Outputs:
UNDELIV output packet in ICIS dual-ported memory

Description:

This routine transmits an UNDELIV packet. The packet to be transmitted and the solicited
chain to be used are moved to ICIS dual-ported memory. Then a subroutine provided by
the ICIS --- LOCAL_MANAGER is called to check that the ICIS is ready to transmit and to
start the output chain. If the output chain could not be started or did not complete
successfully, an error is recorded in the ICCS Error Log.

4.2.2.2.16 BROADCAST MSG

Inputs:
Message Status Blocks for the message

Outputs:
•	 MSG output packet in ICIS dual-ported memory
•	 Status of transmission

4-36

Description:

This routine broadcasts a MSG packet. The packet to be transmitted and the solicited chain
to be used are moved to ICIS dual-ported memory. The destination address at the
beginning of the output packet is set to address all GPCs. Then a subroutine provided by
the ICIS_LOCAL_MANAGER is called to check that the ICIS is ready to transmit and to
start the output chain.

For a broadcast message, a Message Status Block has previously been created for each
receiving GPC. This routine sets the status field in each Message Status Block to 	 -
AWAmNG_ACK and sets the packet send time field to the current time. Then the count
variables for outgoing messages are updated.

If the output chain could not be started or did not complete successfully, an error is
recorded in the ICCS Error Log and an error indication is returned to the caller.

4.2.2.2.17 UPDATE_OUTGOING_MSGS

Inputs:
•	 Increment value
•	 Destination GPC

Outputs:
•	 Outgoing message count for the destination GPC
•	 Total outgoing message count

Description:

This routine updates two variables which contain the number of outgoing messages in
progress on the particular GPC. One variable is an array which identifies for each GPC the
number of outgoing messages addressed to that GPC. The other variable contains the total
number of outgoing messages currently in progress.

4.2.2.2.18 GET_AVAIL_IN_BUF

Inputs:
•	 Processor ID of the destination user
•	 Destination user
•	 Holding input buffer list for that user

Outputs:
•	 Flag field in the selected holding buffer

4-37

Description:

This routine scans all of the holding input buffers allocated for a particular user until it finds
an empty one. It sets the flag in that buffer to BEING—FILLED and returns the buffer
address to the calling routine. If there are no empty buffers, a null address is returned.

4.2.2.2.19 MOVE—DATA

Inputs:
•	 Source address
•	 Destination address
•	 Number of bytes to be copied

Outputs:
Area pointed to by the destination address

Description:

This is an assembly language routine that copies data, for the length specified, from one
memory location to another. Its purpose is to copy data in the most efficient way possible
and in a way independent of particular data types.

4.2.2.2.20 CRE4TE_OUT_MS.B

Inputs:
•	 Current message from CP or lOP output message queue
•	 Destination GPC
•	 Message ID

Outputs:
•	 Message Status Block
•	 Message Status Block List for the source user

Description:

This routine dynamically allocates a Message Status Block for the output message currently
being processed, initializes its fields, and adds it to the list of Message Status Blocks for
the task originating the message.

4.2.2.2.21 CREATE_IN_MSB

Inputs:
•	 Current packet from the Message Send-Receive input buffer
•	 Address of holding buffer for this packet

4-38	 -

Outputs:
•	 Message Status Block
•	 Message Status Block List for the destination user

Description:

This routine dynamically allocates a Message Status Block for the input message currently
being processed from the Message Send-Receive input buffer. It initializes the fields in the
Message Status Block and adds it to the list of Message Status Blocks for the destination
user. Note that this routine is only called for multi-packet input;, messages. For single-
packet messages a temporary Message Status Block is created (see following section).

4.2.2.2.22 CREATE_TEMP_MSB

Inputs:
•	 Current packet from the Message Send-Receive input buffer
•	 Address of holding buffer for this packet

Outputs:
Message Status Block

Description:

This routine dynamically allocates a Message Status Block for the input message currently
being processed from the Message Send-Receive input buffer and initializes the fields.
This routine is only called when an input message is contained in a single packet, and the
Message Status Block is not added to the list of Message Status Blocks for the destination
user.

4.2.2.2.23 FIND_OUTPUT_MSB

Inputs:
•	 Source GPC
•	 Source user
•	 Destination GPC
•	 Destination user
•	 Message ID

Outputs:
•	 Address of Message Status Block

Description:

This routine searches the Message Status Block list for the source user for a match on the
input parameters listed above. If a match is found, the address of the Message Status
Block is returned to the caller, otherwise a null address is returned.

4-39

4.2.2.2.24 FIND_INPUT_MSB

Inputs:
•	 Destination GPC
•	 Destination user
•	 Source GPC
•	 Source user
•	 Message ID

Outputs:
Address of the Message Status Block

Description:

This routine searches the Message Status Block list for the destination user for a match on
the input parameters listed above. If a match is found, the address of the Message Status
Block is returned to the caller, otherwise a null address is returned.

4.2.2.2.25 REMOVE_INPUT_MSB

Inputs:
Message Status Block

Outputs:
•	 Message Status Block List for source user

Description:

This routine removes the specified Message Status Block from the linked list of Message
Status Blocks for the destination user. It then dynamically deallocates the memory used by
the Message Status Block. If the Message Status Block cannot be found in the linked list,
an error is recorded in the ICCS Error Log.

4.2.2.2.26 REMOVE_OUTPUT_MSB

Inputs:
•	 Message Status Block

Outputs:
•	 Message Status Block for destination user

Description:

This routine removes the specified Message Status Block from the linked list of Message
Status Blocks for the source user. It then dynamically deallocates the memory used by the
Message Status Block. If the Message Status Block cannot be found in the linked list, an
error is recorded in the ICCS Error Log.

4-40

4.2.2.2.27 ADD—TO—PENDING—LIST

Inputs:
Message Status Block for the message to be added

Outputs:
•	 List of pending messages for the appropriate GPC
•	 Status field in Message Status Block
•	 Count of pending messages

Description:

This routine adds to the pending list a message which cannot currently be sent because the
destination GPC is already receiving its maximum number of messages. There is a
separate pending list for each GPC. The new message is added in the slot pointed to by the
add_index; this index is then updated to point to the next slot.

A maximum of 10 messages may be pending for any GPC. If the pending list for a
particular GPC is full, the new message is not added and an error is recorded in the ICCS
Error Log.

4.2.2.2.28 SIGNAL—INPUT

Inputs:
•	 Destination user
•	 CP, lOP Task Location Tables
•	 CP, lOP Signal Arrays
•	 CP, lOP Event Arrays

Outputs:
•	 Destination user's event

Description:

This routine is called after a complete input message has been assembled for a user. If the
particular user has specified that it is to be signaled (i.e., scheduled by event) when an
input message arrives, this routine causes the appropriate event to be set.

-	 4-41

4.2.2.2.29 UPDATE_IN_MESSAGES

Inputs:
Message Status Block
CP, lOP Task Location Tables
CP, lOP Input Queues

Outputs:
Input Queue for the destination user

Description:

This routine adds the message referenced by the Message Status Block to the input queue
for the destination user. The message is added in the slot indicated by the queue's add
index; then the add index is updated to point to the next slot.

4.2.2.2.30 PROCESS—MSG—PACKET

Inputs:
Current packet from the Message Send-Receive input buffer
CP and lOP Task Location Tables

Outputs:
Message Status Block
Holding buffer containing the input message

Description:

This routine processes an incoming MSG packet, which is the first (and possibly only)
packet of any message. It uses the destination task ID from the packet to look up in the
Task Location Tables whether the message should be delivered to the CP or lOP. Then it
gets a free holding buffer from among those allocated by the user. If no holding buffers
are available, the message is not deliverable, and an UNDELIV packet is returned to the
originating GPC. In addition, an error is recorded in the ICCS Error Log. If a holding
buffer is available, a Message Status Block is created to keep track of the message. In the
case of a message which fits completely into the MSG packet, the Message Status Block is
only temporary and will be deleted at the end of the routine. The message data is then
moved to the user's holding buffer.

If the entire message is contained in this one packet, the message may now be added to the
user's input queue and the user signaled (if he has previously specified that this should
occur). If more packets are expected, variables are updated so that the current position in
the message is correctly maintained. In either case, an ACK is sent to the originating GPC.

4-42

4.2.2.2.31 PROCESS_MSG_CONT_PACKET

Inputs:
Current packet from the Message Send-Receive input buffer
Message Status Block previously created for the message

Outputs:
Message Status Block
Holding buffer containing the input message

Description:

This routine adds a continuation packet to the packets previously received in a multi-packet
message, so that the complete message is eventually reassembled at the receiving site.

First the Message Status Block previously created for the message is located. The input
packet is then stripped of its control data and moved to the current position in the holding
buffer. The fields in the Message Status Block which are maintaining information about
how much of the message has been received are updated to reflect the new packet., and an
ACK is sent to the originating GPC.

If the message is now completely assembled (i.e., this packet is the last one), the message
may now be added to the user's input queue and the user signaled (if he has previously
specified that this should occur).

If the Message Status Block created for the message cannot be found or a packet arrives out
of sequence, an error is recorded in the ICCS Error Log.

4.2.2.2.32 PROCESS_ACK_PACKET

Inputs:
Message Status Block previously created for the message
Holding buffer for the message

Outputs:
Error-code and flag fields in the holding buffer
Outgoing message counts

Description:

This routine processes an ACK that is received for a previously transmitted packet.

First the Message Status Block previously created for the message is located. If the
message could fit into one packet, the transmission is now complete, so the error-code field
in the holding buffer is set to NO —ERRORS and the flag field is set to MSG —SENT. The

4-43

Message Status Block is deleted, and the counts of outgoing messages are updated. If the
message could not fit into one packet, a continuation packet must now be sent.

If the Message Status Block previously created for the message cannot be found, an error is
recorded in the ICCS Error Log.

4.2.2.2.33 PROCESS_UNDELIV_PACKET

Inputs:
•	 Message Status Block previously created for the message
•	 Holding buffer for the message

Outputs:
•	 Error-code and flag fields in the holding buffer
•	 Outgoing message counts

Description:

This routine processes an UNDELIV that is received for a previously transmitted packet.
The transmitted packet could not be delivered to the end user because there were no free
holding buffers. Note that an UNDELIV may occur only in response to the first packet of
a message.

The UNDELIV indication is recorded in the ICCS Erroi Log. The error-code field in the
holding buffer is set to DEST_GPC_CANT_DELIV and the flag field' is set to
MSG—SENT. The Message Status Block is deleted, and the counts of outgoing messages
are updated.

4.2.2.2.34 LOG—IC—ERROR

Inputs:
•	 Error identification
•	 Error location within Message Send-Receive task
•	 Source or destination user for the message being processed
•	 Source or destination GPC for the message being processed

Outputs:
•	 Entry in error log
•	 Error log index

Description:

This routine creates a new entry in the ICCS Error Log. It fills in the error identification,
error location, user and GPC fields from the input parameters. It gets the current date and
time from the standard -"CLOCK" routine. It then updates the log index to point to the next
available slot.

4-44

4.2.2.2.35 DISPLAY—IC—ERROR—LOG

Inputs:
ICCS Error Log

Outputs:
Formatted CRT display

Description:

This routine translates the codes contained in each entry in the ICCS Error Log into
character strings using the Ada 'image attribute. It formats each entry in the log for display
on a V7220 screen.

4.2.3 Software Specifications: ICIS Redundancy Management

The software objects used to implement the ICIS Redundancy Management functions are
shown in Figure 4-12. The software architecture for these functions is driven by real-time
system requirements. The implementation of the functions related to the processing of data
received from the IC network, both the Source Congruency function and the FDI function
related to received data, must take into consideration the functions' impact on the time lag
being introduced into the inter-computer communications process. These data reception
functions are separated into a single task, the ICIS Redundancy Management (ICIS_RM)
task, which is scheduled whenever new input has arrived. Since the ICIS hardware itself
does not generate an interrupt when input is received, a dedicated interval timer is set to go
off every 5 milliseconds, and the interrupt handler checks if new ICIS input has arrived.
The ICIS_RM task then performs the Source Congruency and FDI functions on a packet-
by-packet basis until all of the new input packets have been processed. A single congruent
copy of each received packet is passed to the Message Send-Receive task through the
Message Send-Receive Input Buffer (see Section 4.2.2.1). In the event of a hardware
error condition being detected while a received data packet is being processed, status
variables reflecting the health and availability of layers and ICISes are updated immediately
within the ICIS_RM task. An error detection report is passed to another task responsible
for additional fault isolation functions and for managing further responses to the fault
which can be deferred until remaining received packets are processed.

ICIS RM functions which are less time critical have been implemented as part of this
second, lower priority task referred to as the ICIS_LOCAL_MANAGER. Included in this
task are those functions required to manage responses to detected error conditions and
those required to re-initialize the ICIS hardware. This task maintains an interface with the
Network Manager task wherein layer faults can be reported to the Network Manager and
updates to the status of communication layers can be passed to the
ICIS_LOCAL_MANAGER which will, in turn, update local status variables. This task
also maintains an interface such that the system software managing the redundancy of the

4-45

c22

core FFP can make requests to have a particular ICIS "re-aligned" following the recovery
of a channel. The ICIS_LOCAL_MANAGER task, in response to hardware errors detected
by the ICIS_RM task, will also perform the less time critical functions such as error
logging and scheduling of self tests to either further isolate the fault and/or to determine
when a fault is no longer present. The execution of these self-tests and the evaluation of
their results are included in the set of ICIS_LOCAL_MANAGER functions. Finally, this
task is responsible for re-initializing an ICIS when the results of its self-tests indicate that a
fault has been removed or subsided.

ICIS RMTASK
-- R14' Functions associated with reception of data

from network
-- Fault Detection and Isolation Functions associated

with reception of data from network

ICISLOCAL_MANAGER TASK
-- Managemen

_	
t of responses to detected faults

-- Management of recovery and re-initialization
of ICIS hardware

START—SOLICITED—CHAIN PROCEDURE

-- RM Functions associated with transmitting data
-- Fault Detection and Isolation Functions associated

with transmitting data

CHECK _ICIS_STATUS PROCEDURE
-- Fault Detection and Isolation Functions
-- ICIS hardware recovery

Figure 4-12. ICIS Redundancy Management: Mapping of
Functional Requirements to Software Objects

Two other ICIS RM functions are made available in the form of simple subroutines which
execute in the context of the task calling them. Any task which executes an ICIS solicited
chain of instructions (e.g., to transmit data packets or to perform network management
functions involving the network nodes) must call the START—SOLICITED—CHAIN
procedure. This procedure manages the redundancy of the communication hardware
during the data transmission process and it also provides FDI functions related to
arbitration for network possession and the transmission of data on the network. A second
subroutine, CHECK_ICIS_STATUS, is available to be called by any task which detects a
problem in executing solicited chains or in accessing the ICIS memory.

4-46

CHECK_ICIS_STATUS provides FDI functions and, to a lesser extent, it provides an
ICIS re-initialization function in the case of a detected possession default state.

4.2.3.1 ICIS_RM TASK

Input:
Redundant data packets received from IC network
Redundant status from ICIS hardware

Output:
Source Congruent representation of received data
Fault detection and isolation information for IC hardware

Description:

This task provides the redundancy management functions associated with the reception of
data from the IC network. The IC source congruency function applied to the received data
and the FDI function related to the reception of network data have been combined within
the body of this task. This software directly interfaces with the ICIS hardware to get
redundant copies of data and status and transforms this input into a source congruent
representation and provides error detection and fault isolation information as output. The
task executes only on the TOP. The structure of this task is shown in Figure 4-13.

Each iteration of the ICIS_RM task's main loop begins with a check to see if new data
packets have been received since the last time the task ran. Before making the check,
however, a determination must be made as to which channel's ICISes are to be included in
this process of polling for new input. The data from a particular channel's ICIS is
considered usable if (1) the channel is considered non-faulty by the core FTP redundancy
management services, (2) the ICIS is considered non-faulty on the basis of status variables
maintained by the ICIS RM software, and (3) the ICIS has been initialized. The primary
means of detecting newly received packets is a comparison of two variables - Last—Pack
and First—Pack. The First—Pack variable maintains an index value for the last packet
processed by the ICIS_RM task. The Last —Pack variable maintains an index for the last
packet received by the ICIS and is updated by the ICIS instruction sequencer as part of the
execution of the unsolicited chain of instructions responsible for accepting packets from the
IC network. Both indices take on values 1..N, where N is the number of slots in the
circular buffer allocated within the ICIS dual-port memory and used to buffer received
packets of data. The First_Pack variable is updated by the processor during the course of
processing the received packets and should always be channel congruent. However, since
the Last—Pack variable is maintained in ICIS dual-port memory and is updated by the ICIS
instruction sequencer, the redundant copies of* this variable can not be assumed to be
congruent. The comparison of First —Pack is made against a single-sourced exchanged
copy of the Last—Pack variable. A separate comparison is made for each channel

4-47

determined to have usable ICIS data. If any comparison indicates Last_Pack and
First_Pack are not the same, then it is assumed that new input needs to be processed.

Initialize ICIS, Layer, and Inter-ICIS link status

loop

when task scheduled

determine which ICIS(es) to use
?? are new input packets available for processing??

no

	

	 yes
determine which layer(s) to use
determine how many new packets to process

for each new packet available

clear error status record

perform source congruency and
FDI function on packet

?? error condition detected??

no	 yes

?? has a channel just been removed from config??

no	 yes

re-evaluate ICIS fault status based upon
new channel status

update layer, ICIS, and inter-ICIS link status
-	 based upon new fault-isolation information

notify ICIS_LOCAL_MANAGER task
of new fault

Figure 4-13. Structure of ICIS_RM Task Body

4-48

(NOTE: A registered bit of information, the Unsolicited _Input—Received (UTR) bit, is
available on the ICIS and is set when the ICIS receives an input packet while operating in
the unsolicited mode. This bit can be used to check for new data. However, this
mechanism was not used to determine when input packets need to be processed, due to an
anomaly in the ICIS hardware implementation. The ICIS hardware will advance through
an INPUT instruction in the Unsolicited Chain due to mode context switches - Unsolicited
to Solicited and back to Unsolicited modes - itidependently of the reception of a network
packet. This advancement of INPUT instructions results in the "skipping" of the input
buffer associated with the "skipped" INPUT instruction. This input buffer obviously has
no data to process, yet it must at least be processed to the point of determining that it is a
"null" input packet. The Uffi bit does not get set due to this "skipping" of input
instructions and if it were used alone for polling purposes, multiple null packets could
accumulate before the ICIS_RM task decided to process these packets. The Last—Pack
variable, on the other hand, does get updated when INPUT instructions are.skipped.)

If the check for newly received packets indicates there is currently no processing to be
performed, the iteration of the ICIS_RM task is completed and the task is suspended.
Otherwise, the task will continue to execute until all of the newly received packets have
been processed. The number of packets to be processed is a function of the current values
of First_Pack and Last_Pack. Again, care must be taken to ensure that the channels of the
FTP use a congruent value of Last_Pack which may be non-congruent either because there
is an ICIS failure or because the instruction sequencers for the different channels' ICISes
are not synchronized and therefore don't update the Last_Pack variable at exactly the same
time. In the case where two or three ICISes are being used, the Last—Pack variable is read
repeatedly with an implicit voted exchange until two successive reads return the same
value. When only one ICIS is being used, the Last —Pack is read once using an implicit
single channel select.

An inner loop of the ICIS_RM task's main loop is executed where each iteration of this
inner loop provides the necessary processing for performing the source congruency and
FDI functions on an individual input packet. The details of the Process _Packet process as
applied to a single . input packet are provided in Section 4.2.3.1.1. An error record is
maintained for the processing of an individual packet and accumulates information derived
by the FDI function. The processing of the individual packet nominally culminates in the
writing of a source congruent copy of the received data into a buffer in local processor
memory which provides an interface to the Message Send-Receive task (refer to Section
4.2.2.1). (There are certain error conditions where no data can be derived, and the
processing of "null" data packets discussed above does not result in the updating of the
Message Send-Receive input buffer.)

If an error condition is detected during , the Process—Packet procedure, a check is made to
determine if a fault isolated to an ICIS is not really the result of a channel failure. As
documented below, much of the FDI processing of ICIS data and status relies on the use of

4-49

the data exchange voter hardware and accompanying error registers to detect non-
congruencies across layers and ICISes. Attributing the cause of a non-congruency
indication to a fault in an ICIS (i.e., there really is non-congruent data or status) can be
confounded by the fact that a channel failed during the time that the data or status was being
processed. This check consists of calls to the FFP redundancy management services to
confirm the synchronous presence of a channel and consists of an actual voted exchange
test and abbreviated data exchange error latch analysis to confirm that a voted exchange of
congruent data does not set bits in the error latches. A recording of a fault isolated to an
ICIS which is found to be confounded by a channel failure is purged. No fault reports are
logged nor are any responses made (i.e., updates to status variables-to mask out data from
the ICIS, or scheduling of self-tests).

If a new error condition is detected during the processing of a packet, responses are made
immediately within the packet processing inner loop of the ICIS ...RM task. The status
variables indicating the fault status need to be updated immediately as their values will
determine which set of redundant copies of data and status will be eligible for use in
processing subsequent input packets. The Healthy_Layer or the Healthy_ICIS status
variables are updated when a layer or a total ICIS, respectively, is determined to have
failed. The response to a fault isolated to the region of a partial ICIS or one of the inter-
ICIS links (e.g., the ICIS seems to receive fault-free data on two out of three layers and
other ICISes receive fault free data on all three layers) is more complex. If there is only
one ICIS available and a partial ICIS failure is detected, then the data from the layer
involved in the fault will be marked "unavailable" for subsequent packet processing. Note

.that the fault response in this case does not include any attempt to implicate the layer as
faulty as there is not enough information to do so. Another case in which the layer data is
marked "unavailable" is where two out of three ICISes receive faulty data from the same
layer while the non-faulty copy is in complete agreement with redundant copies received on
at least one other layer. Again, the network layer can not be presumed to be failed on the
basis of this evidence; more likely there is a problem in the inter-ICIS data links associated
with that layer. In other cases involving faults isolated to a partial ICIS region where there
is at least one other fault-free ICIS available to the FT?, all data from the ICIS with the
partial failure will be made "unavailable" for processing subsequent input packets. No
response is made when it is determined that a double simultaneous fault has occurred or
when the FTP sourcing the received packet sent confusing and non-congruent data across
two layers.

If any error condition is detected while processing an individual, input packet, an error
report including the fault isolation information is passed along to the ICIS_ Local _Manager
(JLM) task. This inter-task communication is implemented using a circular buffer structure
for passing the error reports and the setting of an event to trigger the execution of the ILM
task once the higher priority ICIS_RM task has finished its current execution wherein all

4-50

currently received input packets are processed. The subsequent actions taken in response
to the detected error condition are managed by the ILM task and are documented in Section.
4.2.3.2.

When all the outstanding input packets have been processed, the First_Pack variable is
updated with the index of the last processed packet and the outer loop of the ICIS_RM task
comes back to the point where the task suspends itself.

4.2.3.1.1 Process: Packet—Process

Input:
Redundant copies of individual input packets from IC network

Output:
Source congruent copy of input packet
Fault detection and isolation information

Description:

This process embodies the redundancy management functions related to the processing of
redundant data and Status information associated with a single, received IC network packet.
The structure of this process is shown in Figure 4-14. The process is invoked from the
main loop of the ICIS_RM task for each new element of the input packet buffer determined
to have been "updated". by the .ICIS instruction sequencer eitherin response to actual data
received from the network or to the mode switching anomaly previously described. This
process is responsible for:

1. determining upon which layers data was received,
2. analyzing the redundant byte count values associated with the redundant packets,
3. analyzing the redundant SDLC protocol status associated with the redundant packets,
4. analyzing the redundant data values associated with the redundant packets.

Each of these subprocesses is implemented as a separate subroutine which is only called by
the Packet—Process routine. It should be noted that subprocesses are invoked only
conditionally on the basis of the outcome of preceding subprocesses. For example, if the
subprocess responsible for determining upon which layer(s) data was received indicates
that data was not received on any of the three layers (i.e., this is a "null" packet resulting
for a ICIS unsolicited-to-solicited mode transition), then there is no need to perform any of
the other subprocesses. Also, the parameters used by a subprocess may be determined on
the basis of the outcomes of previous subprocesses. For example, if a layer is determined
to be faulty during the subprocess involving the analysis of byte count values, then the data
from that layer will not be used within the subprocess which does the voting/selecting of
the data values in forming a single, channel-congruent representation of the received data.

4-51

The output of this process consists of an error status record identifying any error conditions
detected while processing the current input packet, and a single channel-congruent
representation of the received data which is conditionally placed in the Message Send-
Receive Input Buffer. The error status record is a function of the error detection results of
the byte count, SDLC protocol, and received data analyses and their inter-correlations.
Only the subprocess responsible for forming the congruent data representation updates the
Message Send-Receive Input Buffer.

determine which network layer(s) sourced data and do preliminary byte count analysis

?? number of active layers >O?? -
0 yes

?? was an error condition detected in preliminary
byte count analysis??

no yes

•do complete byte count analysis

?? was a Double_Fault detected??

yes no

analyze SDLC protocol error flags

?? was a Double_Fault detected??

yes no

?? have	 error conditions been detected??

no yes

correlate error information

?? are valid ICIS' >0 and valid Layers > 0??

no yes

form congruent data representaion and do data error analysis

Figure 4-14. Structure of Packet—Process

4-52

4.2.3.1.2	 Process: Get_Active_Layers

Input:
Redundant copies of individual input packets from IC network
Indication of which network layers are non-faulty
Indication of which channels' ICISes are available.

Output:
Indication of which network layers sourced data for this packet
Fault status from comparisons of redundant. byte counts -.
Congruent byte count value for received packet (may be modified in later

processing of faulty packets)

Description:

This process is responsible for determining which, if any, layers sourced data for the
current input packet being processed. The need for this process arises from the fact that the
transmitting sites in the AlPS distributed system can be of mixed redundancy. A simplex
site will transmit data only on one layer whereas a triplex site will transmit on all three
network layers. The redundancy level of a transmitting site is not known a priori and must
be analytically determined on the basis of the redundant data received from the network for
each and every input packet In addition, the possible "null" packet scenario resulting from
the unsolicited-to-solicited, mode transition of the ICIS must be detected by the
Get—Active—Layer process. The process, in this "null" packet case, returns an indication
that zero layers have active data, resulting in the termination of any further processing of
the current input packet.

The determination as to whether a network layer sourced data for a particular input packet is
based upon an analysis of the byte count value associated with each copy of the received
input packet. While receiving each redundant data packet from the separate network layers,
the ICIS hardware maintains a count of the number of bytes of information associated with
each incoming SDLC packet. At the completion of an ICIS INPUT instruction, the
independent byte count values associated with the separate layer interfaces are written into
the ICIS dual-port memory as part of the recorded input packets' headers. When an
INPUT instruction is completed and no SDLC packet data was received for a particular
layer, then the byte count value recorded is 4- representing only the number of bytes in an
ICIS-generated header for a received packet. (This header includes the byte count value,
status values associated with the hardware device performing the SDLC protocol, the ICIS
Chain_Status_Register value, and a time tag value.)

For each fault-free network layer, the redundant byte counts associated with valid (i.e.,
fault-free channels and ICIS hardware) ICISes are voted/selected. The "LMN space
voter/select" hardware built into the AlPS hardware is used for this operation. A particular

4-53

layer is considered to be "inactive" '(i.e., did not receive input for this current input packet)
only if the voted/selected byte count for the layer is a value of either 0 or 4 by consensus.
That is, all valid ICISes must have seen no data sourced on the layer before it is marked
inactive. The voted byte count for a layer may be 0 or 4, but if a voter error indicates an
incongruous value across the channels then the layer is still considered active so that its data
will be included in the more elaborate fault detection and isolation processing of the byte
count, SDLC protocol, and data values which follows.

Note that this same processing of the redundant byte count values is needed to derive a
single, channel-congruent byte count value used in processing the data within the input
packets. 'Thus, instead of doing the same vote/select operations on the byte count values
for both determining which layers are active and to determine "the real" number of data
bytes received, both pieces of information are gathered at the same time within this process
if possible. The byte count values voted/selected across the channels for each layer are
compared against one another. Under no-fault conditions, all redundant byte counts will be
equivalent and the congruent byte count value is returned for use in all subsequent
processing of the input packet. The detection of any byte count inequalities or byte count
range check failures results in the return of a error detection flag that will be used to invoke
a more complete analysis of the byte counts to localize the fault.

4.2.3.1.3	 Process: Byte—Count—Analysis

Input:
Redundant copies of individual input packets from IC network
Indication of which network layers have valid data
Indication of which channels' ICISes are available

Output:
Channel-congruent representation of byte count for input packet
Byte Count Fault Detection and Isolation record

Description:

This is a subprocess called by the Packet —Process process only when the preliminary
analysis of the redundant byte count values associated with an input packet indicates that
there is a fault to be more completely analyzed and that the "real" number of bytes received,
as determined in the preliminary analysis, may need to be re-evaluated on the basis of the
results of this fault isolation operation. A byte count is considered erroneous and indicative
of a fault if it deviates from the majority byte count value (i.e., the byte count value
observed most frequently in the set of redundant input packets from the fault-free layers
and ICISes). This process detects erroneous byte counts and locates them in the two-
dimensional space formed by the crossing of the available network layers and the available
redundant ICISes of the receiving site. The number of "minority" byte count values and

4-54

their location in this "Layer x ICIS" matrix are used for isolating the fault to a fault isolation
region. This process is also responsible for detecting the case in which a double
simultaneous fault is present and the case where there is no single majority byte count but
two byte count values are "TIED" in terms of frequency of occurrence.

The possible byte count error states returned by this process are:

NONE -- no byte count errors

DOUBLE—FAULT -- indicative of double simultaneous error condition; no further
processing to be applied to this input packet

POINT -- one minority byte count found, or 2 out of 3 redundant byte counts for a
particular layer are minorities

TOTAL_LAYER -- multiple minority byte counts in one layer; the layer will not be used

TOTAL_ICIS -- unanimous, multiple minority byte counts in one channel's ICIS; the data
from this ICIS will not be used

TIE—LAYER -- all byte counts within a layer are the same yet different from the byte count
of a second layer which also has consistent byte counts; to be resolved with SDLC error
analysis

TJE_ICIS -- all byte counts within a channel's ICIS are the same yet different from the byte
count of a second channel's ICIS which also has consistent byte counts; to be resolved
with SDLC error analysis

This information will be later coordinated with the fault status associated with the SDLC
protocol analysis and the analysis of the actual packet data before a conclusive
determination of a fault location is made.

The byte count analysis algorithm is summarized in Figure 4-15 and discussed in detail
below.

1. The "Layer x ICIS" matrix of byte count values is formed by reading the individual
byte count values stored in the header of each redundant copy of the input packet being
processed. This data is read in a "single channel select" mode from only those layers
and ICISes currently considered to be providing valid input packets. As the byte count
values are read, a tabulation of the frequency of occurrence of each distinct byte count
value is maintained.

4-55

NO TIE
	

TIE

NO FAULT N/A

POINT FAILURE FOR IF NUMBER OF LAYERS =2
SINGLE LAYER, icis THEN TIE-LAYER

LOGGED. ELSIF NUMBER OF ICIS' =2
THEN TIE_ICIS

IF ALL MINORiTIES IN 1 LAYER IF ALL BYTE COUNTS
THEN TOTAL.-LAYER FAILURE EQUIVALENT WiTHIN EACH

ELSIF ALL MINORiTIES IN 1 ACI1VE LAYER
ICIS THEN TIE_LAYER
THEN TOTAL_ICIS FAILURE ELSIF ALL

BYTE COUNTS
ELSE EQUIVALENT WiTHIN EACH

DOUBLE FAULT ACrIVE las
THEN TIE_IGS

con 9 0
C
c-)

=
>1

C
z

Figure 4-15. Algorithm for Byte Count Analysis

2. The frequency of occurrence data is scanned to determine the majority byte count value
and to detect a TIE byte count situation.

3. A preliminary check of the frequency of occurrence of the majority byte count is made
to detect a double-fault case. The threshold for the frequency of occurrence is a
function of the number of current valid layers and ICISes. For example, if there are
currently three valid layers and three valid channels (i.e, a triplex is receiving a
transmission from another triplex and no previously detected IC error conditions have
been noted), then at least six out of the nine redundant input packets must have the
same byte count or there is a double simultaneous fault condition present in the system.

4. If there is no TIE condition, then the byte count status to be returned is formed
according to the location of any minority byte count values in the "Layer x ICIS"
matrix. Obviously, if there are no minority byte count values then a byte count status
of NONE is returned. If there is only one minority byte count value, then a POINT
byte count status is returned along with the identification of which ICIS and layer are
involved. The determination of the returned status is more complex when there are
multiple minority byte count values involved. If all the dissenting byte counts are
located in the same layer then either a TOTAL status is returned when all
redundant byte counts for packets received on that layer are minorities, or a POINT
status is returned in the case where only two out of three of the byte counts for the layer
are minorities. If all the dissenting byte counts are located in the same ICIS, then a

4-56

TOTAL..JCIS status is returned. If all minorities are not located either all in one layer
or all in one ICIS, then a DOUBLE—FAULT status return is made.

5. If a TIE condition is indicated, a determination must be made as to whether the TIE is
between two sets of byte counts distributed evenly between two layers (TIE—LAYER),
or between two ICISes (TLE_ICIS). Any other distribution of byte count values is
considered indicative of a DOUBLE _FAULT condition. In the case of a TIE, then both
byte count values are range checked to determine if they are legal byte counts. If one
value is determined to be illegal and the other is legal, the legal value is considered to be
the "real" byte count to use.

4.2.3.1.4	 Process: SDLC_Error_Analysis

Input:
Redundant copies of individual input packets from IC network
Indication of which network layers have valid data
Indication of which channels' ICISes are available

Output:
SDLC protocol error detection and isolation record

Description:

This subprocess is responsible for analyzing any SDLC protocol error indications
associated with the input packet currently being processed. For each redundant copy of the
input packet, a single bit of information is stored in the header of the input packet which
indicates whether or not the hardware device implementing the SDLC protocol detected an
error while receiving the packet. These protocol errors consist of:

1. Cyclical Redundancy Checks (CRC) - The transmitting SDLC device forms a CRC
value for the outgoing packet and appends the value to the end of the packet. The
receiving SDLC device performs the same CRC operation on the incoming packet data.
If the determined CRC value does not match the value appended to the packet, then
there was a transmission error.

2. Data overrun - The receiving SDLC device was not read quickly enough by the
controlling ICIS hardware to keep up with the incoming SDLC serial bit stream.

3. Format error - The incoming bit stream does not conform to the SDLC protocol (e.g.,
no closing flag detected after the maximum possible number of data bytes per packet
was received).

4-57

These three error conditions are ORed together into one status bit (RCVR_ERR) in the
SDLC device's Interface_Register (IR), a copy of which is stored in the input packet's
header by the ICIS hardware at the conclusion of an INPUT instruction.

The analysis process consists of first reading all redundant copies of the RCVR_ERR bit
from the input packets associated with the currently valid layers and ICISes. These reads
are performed with the "select single channel" mode (i.e., an implicit single-sourced
exchange is performed). The number of packets with protocol error indications is noted as
well as the location of the faulty packet(s) in the "Layer x ICIS" matrix. The SDLC error
status returned is a function of the number and location of packets with protocol errors:

NONE -- no SDLC errors detected

DOUBLE -- multiple SDLC errors detected and they aren't either all in one layer or all in
one ICIS; further processing for this packet is cancelled

POINT -- single SDLC error detected or 2 out of 3 packets for a particular layer have
errors; the identification of the layer and ICIS (or ICISes) involved is also returned

TOTAL_LAYER -- multiple SDLC errors all found within one layer

TOTAL_ICIS -- multiple SDLC errors all found within one channel's ICIS

The SDLC analysis algorithm is summarized in Figure 4-16.

Cn

W. iJ
	

NO ERROR

POINT FAILURE
C-)
	 FOR SINGLE LAYER, ICIS

LOGGED

IF ALL SDLC ERRORS IN ONE LAYER
THEN TOTAL-LAYER

>1
	

ELSIF ALL SDLC ERRORS IN ONE ICIS
THEN TOTAL_ICIS

ELSE
DOUBLE-FAULT

Figure 4-16. Algorithm for SDLC Analysis

4.2.3.1.5	 Process: Correlate—Error—Information

Input:
Error status from Byte_Count_Analysis
Error status from SDLC_Error_Analysis

4-58

Output:
Error detection and fault location record
Indication of from which layers and ICISes to process data
Final byte count value (following resolution of TIE byte Counts)

Description:

This subprocess is called from within the Packet—Process code only if an error detection
indicator has been set during either the processing of the byte count values or the SDLC
error flags. The subprocess is responsible for correlating the fault location information
returned from the byte count and SDLC error processing for the current input packet. The
execution of this subprocess provides an updated fault location record which is based upon
the composite information provided by the byte count and SDLC error information. It also
provides an updated indication of which layers and ICISes are to be used in forming the
single, congruent representation of the redundant data. An additional operation provided
by this subprocess is the conditional resolution of the ambiguous TIE byte count situation
where the inclusion of the SDLC error information may help in determining which set of
packets with one particular byte count value might be faulty.

The following two tables (Figures 4-17 and 4-18) list the actions taken depending upon the
byte count error status and the SDLC error status. Figure 4-17 indicates the logic used in
deactivating channels or layers based upon these error status values. Note that the
deactivation of a channel or layer refers to the change in status regarding the valid channels
and layers to be used in forming congruent data. That is, if a channel or layer is
deactivated, its data is not used in the subsequent vote/comparison process. Figure 4-18
lists the rules used to determine a collaborative error status based upon both the byte count
status and the SDLC status

In attempting to understand the derivation of the actions specified in these two tables,
consider two transparent sheets of plastic each of which has a 3 x 3 matrix inscribed to
represent the "Layer x ICIS" matrix. One of the sheets will represent the fault status
returned by the byte count analysis and the other indicates the fault status returned by the
SDLC error analysis. A fault is indicated by darkening the appropriate part of the matrix
associated with the fault's location:

-- a point fault has only one or two elements of the matrix darkened (all in same column)

-- a total ICIS fault has a complete column darkened

-- a total layer fault has a complete row darkened

The two transparencies are overlaid forming a single matrix. The indicated faults (i.e.,
darkened areas) of the composite are localized with the same basic rules used in the original

4-59

DEACTIVATE Erfl-!ER
LATER OR ICIS DEACTIVATE DEACTIVATE DEPENDING UPON TIM NOTHING TOTAL RESOURCES ICIs

TIM

AVAILABLE LAYER

IF B011! POINTS SAME
1IIEN DEACTIVATE IF SAME LAYER DEACTIVA1E FI ER EITHER LAYER OR 1CT5 IF SAME ICIS FOR BOTH ERRORS LAYER OR ICIS DEPENDING UPON FOR BOTH ERRORS

DEPENDING UPON TOTAL RESOURCES MEN DEACT. LAYER TOTAL RESOURCES AVAILABLE DEACT. ICIS
AVAILABLE ELSE TREAT AS 1UFAL ELSE

DOUBLE FAULT
ICIS, TOTAL LAYER, OR DOUBLE FAULT
DOUBLE FAULT BASED
UPON LOC. OF POINTS

IF SAME LAYER
DEACTIVATE IF SAME LAYER FOR BOTH ERRORS

THE FOR BOTH ERRORS DOUBLE FAULT THEN
LAYER THEN DEACT. LAYER

DEACT. LAYER
ELSE DOUBLE FAULT

DOUBLE FAULT

IF SAME ICIS
FOR BOTH ERRORS

DEACTIVATE DOUBLE FAULT
um
ICIS DEACT. cis

ELSE
DOUBLE FAULT

DEACTIVATE ICIS wmi

DOUBLE FAULT SDLC ERROR,
DOUBLE FAULT USE BYTE COUNT OF

NONERRONEOUS CHANNEL

DEACI1VATE LAYER I DEAMWATELAYER
SOURCE GPC FAULT WFH SDLC ERRORS, WTFH SDLC ERRORS,
NOUSABLEDATA USE BYTE COUNT OF DOUBLE FAULT USE BYTE COUNT OF

NONERRONEOUS LAYER

I
NONERRONEOUS LAYER

NONE

POINT

C

TOTAL
LAYER

z

C

TOTAL
IC'S

TIE
ICIS

TIE
LAYER

SDLC ERROR STATUS
TOTAL	 TOTAL

NONE	 POINT	 ICIS	 LAYER

Figure 4-17. Layer/Channel Deactivation

PARTIAL _ICIS icis LAYER
NO ERROR OR

ICIS-LINK FAILURE FAILURE

FAILURE

IF BOTH POINTS SAME
THEN

-. IF SAME ICIS IF SAME LAYER
PARTIAL _ICIS PARTIAL _TCIS OR

FOR BOTH ERRORS FOR BOTH ERRORS
OR ICLS-LINK FAILURE

ICIS-LINK ELSE
ICIS FAIL LAYER FAILURE

FAILURE ICIS FAILURE,
ELSE ELSE

LAYER FAILURE, OR DOUBLE FAULT
DOUBLE FAULE D DOUBLE FAULT
DEPENDING ON
LOCATION OF POINTh

IF SAME LAYER
IF SAME LAYER FOR BOTH ERRORS
FOR BOTH ERRORS DOUBLE FAULT

LAYER THEN LAYER FAILURE
FAILURE LAYER FAILURE ELSE

ELSE DOUBLE FAULT
DOUBLE FAULT

IF SAME ICIS
FOR BOTH ERRORS
TEENTHEN DOUBLE FAULT

MIS
FAILURE

FAILURE ELSE
DOUBLE FAULT

IC'S
DOUBLE FAULT -	 FAILURE DOUBLE FAULT

SOURCE GPC FAULT LAYER FAILURE DOUBLE FAULT LAYER FAILURE

NONE

con POINT

C

TOTAL
LAYER

z

C c.)

TOTAL
ICIS

TIE
IC'S

TIE
LAYER

SDLC ERROR STATUS

TOTAL	 TOTAL
NONE	 POINT	 ICIS	 LAYER

Figure 4-18. Error Status Determination

4-61

byte count and SDLC error analysis. All errors must be localized either to one and only
one row or column (i.e., one layer or one ICIS); else a double fault condition is indicated.

The handling of the POINT-type fault indicators is relatively more complex than the other
types. A POINT fault is indicative of either a partial ICIS failure or a failure in the inter-
ICIS communication links used to distribute incoming network data to the redundant
ICISes of an FTP. Thus, a POINT-type failure may involve more than one channel's ICIS
in the cases where one of the inter-ICIS links is faulty within the daisy-chain before two
ICISes receive the data, but at least one ICIS receives fault-free data on that particular layer.
When two ICISes are involved and there are at least two fault-free network layers available,
the layer is deactivated although the layer is not considered faulty (i.e., there is nothing the
Network Manager could do to alleviate this problem). When two ICISes are involved and
there is only one layer available, then two ICISes are deactivated and the site is left to
receive only one copy of the input packet. If only one channel's ICIS is implicated in the
fault, then whether the layer or the ICIS is deactivated must be decided. When there is
more than one ICIS available the ICIS is deactivated; otherwise the layer is deactivated.

4.2.3.1.6	 Process: Get—Congruent—Data

Input:
Redundant copies of individual input packets from IC network
Indication of which fault-free layers sourced data
Indication of which channels' ICISes are available
Byte counts for this input packet

Output:
Error detection and fault location record
Single, congruent representation of received packet data

Description:

This subprocess attempts to produce a single, channel-congruent representation of the data
included in a received packet. When miscomparisons in the redundant copies of data are
detected, a detailed analysis of the miscomparisons is invoked for fault isolation purposes.
An additional function provided by this subprocess is the checking of the actually observed
network layer activity against the expected layer activity as determined by the layer
redundancy encoding placed in the data packet by the transmitting FT?. This check is done
to provide a mechanism to determine when data failed to show up on a particular layer
when it should have (i.e., there is a layer fault). The check is made only after a congruent
representation of the layer redundancy encoding is formed.

4-62

The ALPS hardware support for performing vote/select operations across redundant layers
within a single ICIS and for performing vote/select operations across redundant ICISes is
used extensively in this subprocess. Only data from layers and ICISes considered to be
fault-free is included in the vote/selects. For example, when a triplex site receives a
transmission from a simplex site on one layer, the data is selected only from that single
layer within each ICIS and then voted across the three channels of the receiving FTP. In
the case where a triplex transmits to another triplex the data is first voted across all three
layers within each ICIS and the resulting voted values are again voted across the channels.
(Refer to Figure 4-19, which indicates the types of votes/selects performed as a function of
the number of valid layers and valid ICISes involved in the current-input packet.) Note that
both the vote and the select operations across channels imply that a data exchange function
is executed and the resulting data is guaranteed to be congruent across the channels. The
vote/selects are done implicitly during the movement of the data from the ICIS dual-port
memory into the local processor memory. The processed packet is stored as one element in
the Message Send-Receive Input Buffer (refer to Section 4.2.2.1).

There are error latches associated with both the voters used to operate on data across layers
and the voters used to operate on data across channels. These latches are used to
accumulate status indicative of miscomparisons in the data moved out of the ICIS dual-port
memory. The error analysis logic is summarized in Figure 4-20. The results of this error
analysis are combined with the error detection and fault isolation information already
accumulated during the processing of this packet (i.e., from byte count and SDLC error
analyses) to determine a final error status and fault location record for this processed
packet.

Once the data has been made source congruent, the layer redundancy encoding is extracted
and compared against the observed layer activity associated with this packet reception. If a
layer was expected to source data for this packet according to the layer redundancy
encoding but no data was detected on this layer, then the layer is flagged as faulty. This
information is integrated into the final error status record.

Only if the final error status accumulated after all of this processing indicates that there is no
double fault condition and no unresolvable ambiguity in the received data, is the new input
data passed to the Message—Send—Receive task by updating the FDIR_index in the
Message Send-Receive Input Buffer. An event is set to signal the Message—Send—Receive
task that new input is available for processing. if no valid data can be passed, the buffer
index is not updated and the Message —Send—Receive task is not notified.

4-63

NUMBER OF VALID CHANNELS

EXCHANGE VALID
CHANNELS
DATA FROM SINGLE DATA
PACKET.
(IF NO PREVIOUS ERROR
THIS IS SIMN. - SIMPLEX)

COMPARE DATA ACROSS
LAYERSINIRACHANNEI-
EXAMINEEJ-
IF MISCOMPARE THEN

NO USABLE DATA
IF NO PREVIOUS ERROR
THEN

SOURCE_GPC FAILURE
ELSE

DOUBLE FAULT

2

COMPARE DATA
ThERQL
EXCHANGE LL'S.
IF MLSCOMPARE THEN

NO USABLE DATA
IF NO PREVIOUS FAULT
THEN

PARTIALJCIS OR laS_LINK
FAILURE

ELSE

DOUBLE FAULT

COMPARE DATA ACROSS
LAYERS ThiIRACHANNEL
AND THEN COMPARE
RESULT ACROSS CHANNELS.
EXCHANGE E_IJS FOR LMN
INTRACHANNEL COMPARISONS.
IF MISCOMPARE THEN
IF NO PREVIOUS ERROR
IF ONE CHANNEL MISCOMPARE

PARTIAL ICIS OR ICIS-LINK FAIL
ELSIF BOTH CHANNELS

MISCOMPARE
SOURCE_GPC FAIL
NO USABLE DATA

END IF
ELSE

DOUBLE FAULT
END IF

END IF

IF MISCOMPARE BEIWEEN
CHANNELS

IF NO INTRACHAN MISCOMP.
DOUBLE FAULT

ELSIF ONLY ONE CHANNEL
HAS INTR.ACH MISCOMP

THEN
EXCHANGE DATA FROM CHAN.
WITH 2 CONGRUENT LAYERS

END IF
END IF

VOTE DATA
INIERCHANNEL
EXCHANGE EJJS.
IF MISCOMPARE THEN

IF NO PREVIOUS FAULT
THEN

PARTIAL_ICIS
OR ICIS_UNK FAILURE

ELSE
DOUBLE FAULT

OMPARE DATA ACROSS
AYERS IN'IRAQ{ANNEL
ND THEN VOTE ACROSS
HA.
XCHANGEE...L'S FOR LMN
RACHANNEL COMPARISON

OUNT# OF CHANNELS WITH
MISCOMPARES.

WHEN 0, CHECK FOR ERROR
IN VOTE ACROSS CHANS.
IF ONE CHANNEL MISCOMP
THEN ICIS FAIL

IF >1 CHAN. MISCOMP.
THEN DOUBLE FAULT

WHEN 1, IF NO PREVIOUS
ERRORS THEN

PARIAL_ICIS OR
ICIS LINK FAILURE

ELSE
DOUBLE FAULT

WHEN 2, DOUBLE FAULT
WHEN 3, IF NO MISCOMP.

ACROSS CHANNELS
11

SOURCE_GPC FAIL
NO USABLE DATA

ELSE
DOUBLE FAULT

>1

2

z

VOTE DATA INIRACHANNEL VOTE DATA ACROSS LAYERS IN1RACHANNEL
ACROSS LAYERS. EXCHANGE AND VOTE RESULT ACROSS CHANNELS.
RESULT FROM VALID ClAN. EXCHANGE LMN INrRA ERROR LATCHES.
EXAMINE LMN INTRA E_L

IF THERE ARE ANY MISCOMPARES INDICATED
IF ONE LAYER MISCOMP. BY THESE ERROR LATCHES:
'lIIEN

-COUNT THE# OF LAYERS WITH MISCOMPS.
IF NO PREVIOUS ERROR -COUNT THE # OF CHANNELS WITH MISCOMPS
PARTIAL ICIS OR ICIS LINK

-USE THE LOGIC ILLUSTRATED IN FOLLOWING
FAILURE TABLETO ISOLATE ERRORS AND TO

ELSE
DETERMINE WHETHER DATA IS USABLE

DOUBLE FAULT IF THERE ARE NO INTRACHANNEL MISCOMPARES
END IF YET THERE IS A MISCOMPARISON ACROSS

ELSIF >1 LAYER MISCOMP. CHANNELS TMEN
THEN IF ONLY ONE CHANNEL MISCOMPARES ICIS FAIL

DOUBLE FAULT ELSE DOUBLE FAULT

Figure 4-19. Votes/Selects Used for Layer/Channel Combinations

4-64

IF NO INRCHANNEL ERRORS IFNO IN1ERCHANNEL IF NO IN1ERCHANNEL
THEN ERRORS ERRORS

PARTIAL _ICIS OR THEN THEN
INTER-ICIS LINK FAILURE LAYER FAILURE SOURCEJ3PC FAULT

ELSIF BOTH IN1RA- AND INTER- ELSE ELSE
CHANNEL ERRORS POINT TO DOUBLE FAULT DOUBLE FAULT
SAME ICIS
THEN

ICIS FAIL
-	 -

ELSE
DOUBLE FAULT

IF NO IN'TERCHANNEL
ERROR
OR INTERCHANNEL ERROR DOUBLE FAULT DOUBLE FAULT

POINTS TO SAME CHANNEL
AS DOES INTHACHANNEL
ERROR THEN

ICIS FAULT
ELSE

DOUBLE FAULT

1

2
OR

3

NUMBER OF CHANNELS WITH MISCOMPARES ACROSS LAYERS

1	 20UTOF3	 ALL

Figure.-4-20. Analysis of Inter-Channel and Intra-Channel Votes

4.2.3.2 ICIS_Local_Manager (ILM) Task

The functions provided by this task include (1) managing responses to detected error
conditions, (2) managing responses to updated network layer status received from the
Network Manger, (3) providing the capabilities to re-initialize an ICIS, and (4) managing
the local retry self tests associated with the ICIS hardware. The task is executed both on an
"on-demand" basis in response to an event being set by one of several other tasks
requesting services, and on a periodic basis when there are self tests to be executed
periodically to check if a previously failed resource has recovered. The ELM task can be
activated on demand for the following reasons:

1. the ICIS_RM task reports the detection of a new error condition,
2. the FFP redundancy management software requests that an ICIS be re-initialized,
3. a message has arrived from the Network Manager task.

These relatively diverse functions could have been partitioned into separate tasks but were
not due to considerations of minimizing the system's tasking overhead and complexity. As
implemented, the task's body is fairly simplistic. The four main functions provided by this
task have been individually encapsulated within separate procedures. The main loop of the

4-65

ILM task includes a call to each of these procedures. Each procedure checks to see if its
function requires action at the current time and, if so, it does what is needed before
returning. Each function is given an opportunity to execute each time the task is scheduled
to execute.

4.2.3.2.1 Managing Responses to Failures Reported by ICIS RM Task

The ICIS_RM task performs fault detection and isolation functions on the basis of the
received communication packets that it processes. In response to a detected error
condition, it must immediately make the responses required to permit continued processing
of subsequent input packets (e.g., mask out data from a faulty ICIS). However, there are
other less time-critical responses which can be deferred. The ICIS_RM task notifies the
ILM task of a new fault condition by calling the ICCS_RM_Failure_Report procedure
which provides the inter-task communication and synchronization support required to allow
the ELM task to manage these deferred responses. The Check—for—Failure—Report
procedure is called from within the main 1LM task loop to see if there are any new failure
reports enqueued for processing. This procedure manages this processing which includes
any further fault isolation functions, fault logging, and scheduling of retry self tests.

Process: ICCS_RM_Failure_Report

Input:
Fault isolation information from ICIS_RM task

Output:
Entry in queue of fault reports

Description:

This process provides a procedure to be called by the ICIS_RM task when it needs to pass
new fault isolation information to the ICIS_Local_Manager task. The information is
enqueued in a circular buffer structure and an event is set which will result in the execution
of the ILM task as some later time. The higher priority ICIS_RM task will not be blocked
by the inter-task communication process.

Process: Check_forFailure_Report

Input:
Fault isolation information from ICIS_RM task

Output:
Error logging information (not currently implemented)
Additional entry in list of requested self-tests to be executed
Conditionally, a message to Network Manager if layer failed

Srefli

Description:

This process is responsible for dequeueing any failure reports posted by the ICIS_RM task
as a consequence of error detections made while processing input packets. Responses to
the failures are enacted here with less priority than in the actual ICIS_RM task which has
the more time critical responsibility of processing input packets as quickly as possible. The
check for new failure reports consists of a comparison of two indices which are part of a
FIFO structure used for inter-task communication of the reports.

The enacted responses are conditional on the fault isolation information passed in the failure
report. In response to a layer failure, a self test is executed to determine whether the fault is
located between the FFP's ICISes and the root node for the layer or is located elsewhere in
the layer. This finer localization of the fault is important in that a fault in the ICIS-root
node interface can not be circumvented by an intervention of the Network Manager. On the
other hand, the Network Manager may be able to correct a fault located elsewhere in the
layer by switching inter-nodal links. The self test used to differentiate these two fault
conditions involves the execution of an ICIS instruction chain which sends a message to
the root node on the layer in question asking the node to respond with a status message.
The returned status message is checked for syntactical correctness. A valid status message
reception is taken to mean that the root node interface is fault free and it is assumed the
layer problem is located elsewhere and will be handled by the IC Layer Manager for that
layer. A fault in the root node interface is assumed if no valid status message is returned.
In this case, an entry is added to a queue of self test requests manáged by the
ICIS_Local_Manager task which executes the retry self tests to determine when faults
associated with the local ICIS hardware have gone away. This request will be for a
periodic check of the root node interface.

In response to fault isolation information passed in the failure report indicative of a total
ICIS or a partial ICIS fault, an entry is made requesting retry self tests to determine when
the particular type of fault is no longer present. The retry self tests for these types of
failures also consist of attempts to "echo" transmissions off of the root node in attempt to
determine if the local ICIS hardware is capable of transmitting and receiving on a specific
layer or layers. Refer to Section 4.2.3.2.4 for a description of the retry self-test process,
the types of self tests executed for the various fault conditions, and the criterion used to
determine when a total or partial ICIS fault is recovered.

If the list of retry self tests happens to be empty when this new entry is added, a new task
scheduling procedure call is made to the run-time system causing the ILM task to be
scheduled for execution on a periodic basis. The task will be run at least every 2 seconds
when there is a retry self test to be run. Execution of the task on an "on-demand" basis via
the setting of an event remains in effect at all times.

4-67

4.2.3.2.2 Managing Layer Status Updates from Network Manager

Process: Check_For_Layer_Repair_Report

Input:
Message from Network Manager received via ICCS

Output:
Updated layer fault status

Description:

This provides an ELM task entry point for receiving communicated messages from a
Network Manager indicating the recovery of a previously failed layer. This process is in
the form of a procedure which is called on each iteration of the main ELM task loop to check
for an updated layer status. Since the location of the Network Manager can be on any FTP
in the distributed system, ICCS must be used for inter-task communication. An initial
check is made to the ICCS interface available for polling for new messages. If a new
message is available, it is evaluated and the status variable maintained by the ICIS RM
software reflecting the fault status of each layer is updated if the Network Manager says
that a layer has been repaired. The updated status variable will immediately affect all ICIS
RM operations (e.g., upon which layers data is expected to be received).

4.2.3.2.3 Managing Requests for Re-initialization of ICIS Hardware

The software responsible for managing the redundancy associated with the core FTP needs
to be able to command the re-initialization of the ICIS hardware following the restoration of
a channel which has for whatever reason been removed temporarily from the configuration
of channels composing the FTP. The re-initialization and alignment of the state of the ICIS
hardware could be done within the context of the task managing the re-alignment of the
core FTP hardware. However, it was decided not to include the additional time required to
initialize this ICIS hardware in the total channel re-alignment time, since the channel re-
alignment is done while application tasks are suspended. Furthermore, the time to do the
ICIS re-alignment is not time deterministic, as will be shown in the following description
of the Align_ICIS process. Therefore the re-alignment is deferred until the lower priority
ELM task can process the ICIS alignment request made by the core FTP redundancy
management task responsible for managing the re-initialization of FTP channels.

Process: Request_ICIS_Align

Input:
Identification of which channel's ICIS is to be initialized

Output:
ICIS alignment request

4-68

Description:

This process enqueues a request by the core FTP redundancy management software to have
the ICIS of a particular channel re-initialized. This process is in the form of a subroutine to
be called directly by the FTP redundancy management software. The subroutine hides the
implementation of the inter-task communication mechanism from the calling task. The
subroutine sets an event which will invoke the lower priority ICIS_Local_Manager task to
do the actual ICIS alignment when it eventually gets a chance to run.

Process: Check_For_Align_Request 	 -

Input:
Request to align the ICIS of a specified channel

Output:
None

Description:

This process is called by the main loop of the ILM task body and checks to see if there are
any outstanding requests to align an ICIS. When needed, the process dequeues any
available requests made from the FTP redundancy management software to have the ICIS
of a particular channel re-initialized. The Align_ICIS process is invoked to actually
perform the hardware re-initialization.

Process: Align_ICIS

Input:
Identification of ICIS to align

Output:
Update to variable indicating alignment status of ICISes
Index of "current" buffer used for receiving input packets

Description:

This process is responsible for bringing a specified channel's ICIS into an aligned state
with a currently aligned ICIS or ICISes such that all ICISes will synchronously receive and
transmit data on the IC network. Much of the state of the ICIS hardware is statically
initialized. The more problematic state variables, in the context of re-alignment, are those
which dynamically change during the course of receiving and transmitting data.- One
approach to this problem would be to stop all ICIS operations and do a complete alignment
(i.e., replacement of state variables with voted exchange values) of all ICIS state variables

SEVE

in a fashion similar to the alignment of a channel's processor. However, it is desirable to
minimize the disruption of normal ICIS communication activities imposed by the alignment
operation and the alignment of the complete state of an ICIS would take tens of
milliseconds in its current hardware implementation.

The approach taken to this alignment problem is to align the static variables of the ICIS
totally asynchronously to the operations being performed by the ICIS or ICISes already
aligned. This alignment process takes place within the context of the ICIS_Local_Manager
task while the reception of input packets takes place within the context of the ICIS_RM
task, and the execution of ICIS operations to transmit data is performed within the context
of the task sending the data out on the network (e.g., the Message Send-Receive task).
Once the static variables have been initialized, the dynamic variables are initialized while the
ICIS is in a known quiescent state - no data is coming into the ICIS and it is not executing
instructions to transmit data. Also, the number of dynamic state variables to align is
minimized. Instead of aligning all of the buffer space allocated for storage of the raw,
redundant input packet data, only the "unsolicited chain pointer" which points to the current
ICIS instruction of the chain of instructions managing the reception of input data and the
Last—Pack variable in the ICIS dual-port memory which indicates the last input packet
received are aligned. This scheme requires coordination between the ICIS_RM task, which
is processing the input packets, and the ICIS_Local_Manager task, which is performing the
alignment, so that the resulting non-congruent data across ICISes is not misinterpreted as a
fault, indication. The Align_ICIS process provides information available to the input packet
processing software to determine which input packets are expected to be congruent and
which are not necessarily congruent because they were received before the alignment of all'
currently aligned ICISes. It should be pointed out here that there are other dynamic state
variables associated with arbitration for the network and executing solicited chains of
instructions (e.g., the state exchange voter masks involved with the inter-channel exchange
of states of the polling sequence). These variables, however, are initialized "on the fly"
each time a new network polling sequence is started before the execution of a solicited
chain and do not require alignment here.

It must be guaranteed that the alignment of even these dynamic state variables related to the
reception of data does not occur at a point in time just as new input packets arrive. The
variables are aligned during a short window of time following the successful acquisition of
the network by the FFP in which the ICIS alignment is taking place. Network possession
guarantees that no other FTP in the system can be transmitting data to this FTP. The
acquisition of the network is made in the normal manner, i.e., by instructing the ICIS
hardware to go through a polling sequence and then execute a specified chain of
instructions. (This polling operation is not time-deterministic and introduces variability into
the total time required of the Align_ICIS process.) The ICIS instructions cause a
continuous stream of "flag" characters to be sourced on the network and thereby assure
continued network possession. (The IC network protocol is such that a 512 microsecond
period without network activity is an indication that the network is "idle" and therefore a

4-70

new arbitration. sequence can begin. The current implementation of the ICIS alignment
software will always guarantee that the amount of time required to possess the network to
perform the alignment of the dynamic variables is much less than 512 microseconds and the
"flagging" is not necessary. However, the amount of code executed during network
possession can be reduced and this implementation will continue to work.) The minimal,
critical alignment code is executed while the FTP has network possession; then the FTP
immediately releases the network allowing any waiting sites to begin a new arbitration
sequence.

Before the overall ICIS alignment process is started, a check is made to see if the channel in
which the specified ICIS resides is currently in synchronous operation with the majority;
the ICIS alignment is only attempted if the channel is capable of synchronous operation.
The initialization of the static state variables proceeds in four steps:

1. The chain of ICIS instructions required to execute while the FTP maintains network
possession such that dynamic state variables are aligned is initialized in the ICIS dual-
port memory. This simple chain consists of an infinite loop in which SDLC "auto
flags" are turned on.

2. The chain of ICIS instructions required to execute the ICIS "retry" self tests is
initialized in ICIS dual-port memory.

3. The chain of ICIS instructions forming the unsolicited chain used while the ICIS is in
unsolicited mode and supports the reception of input packets is initialized.

4. The ICIS hardware control registers of the ICIS being aligned are initialized such that
the ICIS can begin to execute the unsolicited chain of instructions and can begin to
receive input packets.. Note that the registers are loaded with constant initial values and
not with values resulting from a voted exchange among the channels.

If the ICIS being aligned is the only ICIS available in the FTP either because this is a
simplex processing site or because of massive ICIS failures at a non-simplex site, the ICIS
alignment process concludes at this point with the starting of the execution of the
unsolicited chain used to receive packets.

Otherwise, the FTP's ICIS complex must get network possession, align the dynamic state
variables, and bring the ICIS into synchronous operation with the already aligned ICIS or
ICISes (i.e., it will place new input packets in the same dual-port memory buffer and will
have the same Last_Pack value to indicate which was the last packet received). The aligned
ICIS is queried to determine when it is not executing a solicited chain. When available, the
sequencer is directed to poll for network possession and to execute the "dummy" null loop
chain. After the command is issued to the sequencer to poll for network possession, the
lOP must begin a poll of the ICIS chain Status Register to determine when the ICIS
actually has obtained network possession. Once network possession is confirmed, the
unsolicited chain pointer from the ICIS or ICISes already aligned is copied into the chain
pointer for the ICIS being aligned. A similar alignment operation is made for the

4-71

Last_Pack variable along with a recording of the variable's current value to be used by the
ICIS_RM task for determining when the newly aligned ICIS should have congruent input
packets. A status variable is updated to indicate that the new ICIS is officially aligned. The
processor then writes directly to ICIS control registers to shut off the "auto flagging"
activity, to release the network, and to transition the ICIS back to unsolicited mode. Note
that the execution of this "alignment" solicited chain is no different than the execution of
any other chains and that all the error detection checks associated with executing a chain
(e.g., check for time-outs waiting for the sequencer to become available to execute a chain)
are made.

4.2.3.2.4 Managing Retry Self-Tests

It is assumed that the detected error conditions associated with the IC hardware local to a
FTP (e.g., total ICIS, inter-ICIS links, interface between ICIS and layer root node) may be
transient in nature. The benefit of being able to recover from transient faults is increased
communication reliability. Retry self tests have been developed to determine if a previously
failed resource is usable at some later point in time. Following the recording of a fault by
the ELM task, the faulty resource is retried periodically via one of these self tests to
determine if it is again fault-free. If the test results indicate that the resource is fault-free, it
is again used for normal communication activities. Note that the implementation supports
multiple, simultaneously outstanding faults in the IC hardware complex local to a FT?.

Process: Run_ICIS_Retries

Input:
List of records indicating current faulty ICIS resources

Output:
Modification of status variables if resource recovered

Description:

The Run_ICIS_Retries process manages the self-test retries to determine when a faulty
ICIS resource has recovered. The implementation supports the management of multiple
faulty resources at the same time. The term "resource" refers to a fault isolation region of
either a total ICIS, a partial ICIS, or the interface with the root node. Recovery of a layer
fault is managed by the Network Manager.

The execution or retry self-tests associated with a particular fault are performed at time
intervals which are exponentially lengthened as the self-tests fail to indicate a recovery.
That is, less and less processor and ICIS throughput is dedicated to checking on the
recovery status of a resource as time goes on following the initial error detection. The
current implementation- has the initial retry interval set for 2 seconds and the maximum retry

4-72

interval limited at 5 seconds. The operations performed during the course of a self-test, the
criterion for recovery, and the responses made to a recovery all depend upon the fault
isolation region associated with the fault, i.e., total ICIS, partial ICIS, or root node
interface. In all cases, an entry in the list of outstanding faults is maintained for the
particular fault until it is deemed recovered. If a recovery is detected for the one and only
outstanding fault recorded in the list of faults maintained for managing the retry self tests,
the task scheduling parameters for the ILM task are updated such that the task is no longer
scheduled on a periodic basis but only "on-demand."

Total ICIS Fault

The retry self-test associated with a total ICIS fault is executed only if the corresponding
channel is in synchronous operation . The ICIS to be tested is first initialized using the
standard Align_ICIS process. For each of the three layers on which it is expected that this
FTP can both transmit and receive, a self-test solicited chain is executed. Each chain
executes the appropriate OUTPUT and INPUT instructions for getting status from a layer's
root node to the FFP. Each channel's ICIS should receive a copy of the node's return
status. Each redundant status packet is individually validated and indicates which channel's
ICIS passes the test. The criteria for considering a total ICIS recovered is:

1. the ICIS can transmit data to and receive data from the root node on the layer which it,
the ICIS, physically transmits on, and

2. the ICIS is at a simplex FTP site and it can pass the self test on at least one layer, or it is
not a simplex site and it can pass the test on more than one layer.

When these criteria are met, the recovered ICIS is again aligned and its "health" status
variable is changed to non-faulty; the ICIS will be included in other ICIS RM operations
such as receiving and transmitting data.

Partial ICIS Fault

Here it is assumed that a fault is localized to only an ICIS subsection associated with the
reception of data on a single layer, or the fault may be associated with the inter-ICIS links
used to relay layer data from one ICIS to another in the same FTP. The retry self test
consists of the transmission of a status request message to the root node on the affected
layer. If only one ICIS is affected by the fault, it must be able to receive a valid status
message from the root node before the ICIS is considered to be recovered. If two ICISes
are affected, both must pass the self test before a recovery is declared. The recovery
response made depends upon which type of reconfiguration response was made by the
ICIS_RM task when the 'fault was initially localized. Either the ICIS involved with the
fault was marked as not usable or the layer was marked as not usable. The type of initial
reconfiguration response is recorded in the fault entry on the list maintained by Run_
ICIS_Retries. If the ICIS was made unavailable it is reinstated after an alignment operation

4-73

is performed. If the layer was made unavailable, it is again made available by updating the
appropriate status variable.

Root Node Interface Fault

The retry self-test for a root node interface fault consists of an attempt to transmit a "give-
me-status" request to a single layer's root node and then attempt to receive a valid status
packet from the node. If any channel's ICIS successfully receives a valid return status
packet, then the interface fault is judged to be recovered. The status variable associated
with the health of layers is. updated when a recovery is detected; the layer will be included
in all ICIS RM operations once again.

4.2.3.3 Starting Solicited Chain

The ICIS hardware redundancy is not completely transparent during the processes of
arbitrating for network possession and the execution of instruction chains in the solicited
mode. ICIS control registers and a layer redundancy status value in all communicated
packets must be dynamically updated just before every network arbitration and solicited
chain execution sequence. The registers and status value are updated on the basis of the
currently known layer, ICIS, and channel redundancy levels. This redundancy
management support is required for fault-free IC communication.

This redundancy management software also provides error detection functions. ICIS status
is analyzed in an attempt to detect faults associated with network arbitration and the
execution of solicited chains.

Process: Start—Solicited—Chain

Input:
Address of solicited chain to be executed

Output:
Return status indicating error detection results

Description:

The Start_Solicited_Chain process is multi-faceted in terms of the required functions that it
supports. It manages the hardware redundancy involved in arbitrating for the network and
in executing solicited chains. It performs error detection functions related to the execution
of solicited chains where data is transmitted on the network. It provides a limited amount
of fault recovery functionality in the sense that it will invoke the "possession default
recovery" process when a possession default state exists. And finally, the process
synchronizes the attempts made by multiple tasks to execute solicited chains.

4-74

This process is embodied in a procedure with one input parameter - the address of the
solicited chain to be executed. The procedure is called after the solicited chain and any
output packet data have been written in the ICIS dual-port memory. After performing a
range check of the start address parameter, the process of executing the chain is begun. A
loop of code is executed repeatedly with each iteration consisting of three steps: (1) the
determination of the appropriate values for certain ICIS control registers, (2) a read of the
Chain—Status—Register (CSR) to determine if there is still a solicited chain in progress, and
(3) a conditional updating of control registers and the commanding of the ICIS sequencer to
execute the solicited chain if the previous chain has completed. The CSR value read also
contains bits of information indicating the presence, of possession —default, poll_tx_fail, and
data_tx_fail error conditions. These error bits are checked on each loop iteration.
Execution of the loop continues until:

1. the new chain can be started with no error conditions noted, or
2. an error associated with the previous solicited chain execution is detected (will still

attempt to start this new chain), or
3. a time limit expires before the previous chain completes.

Each iteration of the Start—Solicited—Chain loop consists of the following operations:

1. A determination must be made as to which redundant ICISes will be instructed to
execute the chain and from which set of ICISes read accesses will be made to collect
status. Aligned, fault-free ICISes from channels reported to be in synchronous
operation by the FTP redundancy management software are included in this process.

2. A new value to be loaded into the Poll—Priority (PP) ICIS register is calculated as a
function of the available fault-free channels, ICISes, and layers. The PP register value
defines the sequence of polling bits to be placed on the network when this FTP
participates in the network arbitration process. The first part of the poll bit sequence is
referred to as the "redundancy contention sequence" in which the network subscribers
of differing redundancy levels will arbitrate. One of the polling bits is the Triplex bit
which is only placed on the network by triplex network sites. Another bit, the Duplex
bit, is used to denote that the source of the poll bit is a duplex site. Thus sites of higher
redundancy level will always win a polling sequence at the very beginning of the
polling sequence. The Triplex bit in the PP register has additional significance - it
determines whether redundant, incoming poll bits monitored on the redundant layers
are voted or logically ORed. That is, when the Triplex bit is set the poll bits from the
three layers are voted; otherwise the bits are ORed. The PP value will only have the
Triplex bit set if all three channels and all three ICISes of the FTP are fault-free and the
FTP does not perceive any current layer faults (including faults on the root node
interface). The lower level poll priority bits are used to break ties and are always
initialized with the particular FTP's unique ID.

4-75

3. The voters used for inter-channel exchanges of the ICIS state machine's states have two
bits of registered information required to select the masking of the three inputs to the
voters. These bits are located as the most significant two bits of the ICIS register
located at address 1516 in the ICIS address space and are referred to as M0 and M 1 in
the hardware documentation. These control bits are determined on the basis of the
current channel configuration, the channel's ID, and the configuration of aligned and
fault-free ICISes currently available.

4. The configuration of network layers on which data is to be transmitted must be
determined. This information is used to enable the HDLC transmitters linked to
particular layers and is used to encode in the outgoing packet the expected layer
redundancy of this transmission which is used at the receiving site for layer fault
detection purposes. A layer is said to be available for transmission if the ICIS
transmitting on it is healthy and aligned and is in a channel in the current configuration
(i.e., its monitor interlock is engaged). Also, the layer must be fault-free from the
perspective of the transmitting FFP before it is considered available for transmission.
Note that this requirement for non-faulty layer status is relaxed if the solicited chain to
be executed is part of a retry self-test process.

5. A mask value is created to disable the inclusion of incoming poll-bit information from
any layers considered to be faulty.

6. The Chain Status Register (CSR) is read and the Chain —Complete status bit is tested to
determine if the ICIS is free to start a new solicited chain; the ICIS may be busy even in
a fault-free condition. All interrupts to the processor are disabled while the
Chain—Complete status check is made and the new solicited chain is started. This
section of code is a "critical section" and can not be preempted by another task Which
may happen to also want to start its own solicited chain at this same time. The "ICIS
solicited chain executer" is a shared resource among the multiple tasks of the system
and access to it is protected by the Chain —Complete bit. The starting of a new solicited
chain involves the following steps:

1. Load the Poll Priority register
2. Load the ICIS "Location 15" control register
3. Write the layer redundancy encoding in output packet
4. Set the Solicited—Chain—Pointer to start of new chain
5. Set the Interface_Control_Register (ICR) with value to poll for network possession

and execute solicited chain

The Chain—Complete bit is cleared upon the write to the ICR. The processor interrupts
are re-enabled.

4-76

A copy of the sampled CSR register is analyzed after each attempt to start the solicited
chain. The bits in the CSR associated with ICIS error conditions are checked and a
check is also made as to the time which has elapsed while attempting to execute a new
chain. If an error condition is detected, a response is made immediately (e.g., attempt
to recover from a possession default condition) and the error condition is reported back
to the subroutine caller in the form of a return value.

Process: Possession—Default—Recover

Input:
None

Output:
None

Description:

This process performs a reset function on the ICIS state machine which releases it from
being infinitely stuck in the possession—default state and from never being able to poll for
network possession again. All transmitter outputs to the network layers are turned off just
in case the ICIS is "babbling." The state machine is reset by setting the STOP bit in the
Interface Control Register and then clearing the STOP bit. The state machine should then
reset to the Not_polling state and be ready to respond to the next request to poll for network
possession.

4.2.3.4. Process to Check the Status of the ICIS

A subroutine is available which checks the current status of the ICIS and returns a status
indication to a caller. This subroutine checks for possession default conditions and checks
for stuck layer conditions (i.e., a network layer's physical signal level remains high for
more than 512 microseconds). If a possession default condition is detected, the possession
default recovery process is invoked. If a stuck layer condition is detected, the layer's status
is changed to a faulty state and the appropriate Network Manager is notified.

4-77

S. 0 THE NETWORK LAYER

To permit inter-computer communication in the AlPS distributed system, a data
communication mechanism was developed. This facility uses high-speed links to attain
high throughput and hardware redundancy to achieve fault tolerance. Additionally, it
employs a suite of software modules to implement the Network Layer of the ISO Model,
thus enabling abstracted inter-process communication. The Network Layer is responsible
for creating a virtual circuit, providing a standard interface to this path, and hiding the
complex mechanisms of its operation from the higher layers of software [4]. This chapter
describes the Network Layer that was' designed for the AlPS Distributed Engineering
Model.

The AlPS IC network consists of three identical independent IC layers (not to be confused
with the ISO Layers) which operate in parallel to provide reliable communication and to
dynamically mask faults (illustrated in Figure 5-1). To allow inter-computer
communication, a virtual path is routed, or grown, between the distributed computers.
This path is constructed by the IC Network Manager, which is part of the IC
Communication Services. The IC Communication Services is a set of processes that
support inter-computer communication between fault tolerant FTPs of varying redundancy.
The IC Network Manager is the process which grows and maintains the AlPS IC network.
Since the AlPS Distributed Model utilizes three independent layers, the IC Network
Manager is composed of three IC Layer Managers. Each Layer Manager is responsible for'
detecting, isolating; and reconfiguring around hardware faults in its respective network
layer. Additionally, to enable a completely distributed system, the three Layer Managers
may reside on different FTPs.

Sections 5.1 and 5.2 provide the functional requirements and design for the IC network
growth and FDIR respectively. Similarly, Sections 5.3 and 5.4 present the software
specifications for the IC growth and FDIR.

5.1 IC Network Growth Functional Requirements and Design

To enable fault-tolerant communication between the AlPS distributed processors, a
redundant set of communication paths was constructed. These paths are referred to as the
Inter-Computer Network, and the process that leads to their creation is called the IC
Network Growth. As stated earlier, the growth of the IC network is performed by the IC
Network Manager.

5-1

ackl-f	 PRECEDING PAGE BLANK NOT FILMED
RTF147inn" WOW,

AlPS INTER-COMPUTER(IC) NETWORK

Simplex
FTP3	 FTP1

FTP2	 FTP4

Figure 5-1. AlPS Inter-Computer Network

5-2

To permit a dynamically reconfigurable system, each triplex (or higher redundancy) FTP
may attempt to grow the IC network. Although multiple VIPs are capable of performing
the growth, only one FTP successfully completes it. That is, if two or more triplex FTPs
simultaneously try to grow the IC network (contend for the growth), then one or more of
these FTPs is "backed off' (suspended). The IC Network Growth Algorithm ensures that
a virtual communication path is constructed, even if multiple FTPs contend for the growth.

The IC Network Manager and the IC Network Growth Algorithm are described in this
section.	 -	 -

5.1.1 Overview of the IC Network Growth

The growth of the IC network entails the creation of a virtual path allowing the
communication of information between the FTP sites. In steady state, the communication
path operates as a time division multiplex bus. This bus differs from a conventional linear
bus in that data is routed by Circuit switched nodes through one of several possible paths
(depicted in Figure 5-1). The use of circuit switched nodes allows spare interconnections,
which can be brought into service if a hardware fault occurs (or a network component is
damaged). This network architecture provides coverage for many failure modes which
cause a standard linear bus to either fall completely or provide service to a reduced set of
subscribers.

Data flow in the IC network is controlled by the configuration of the ports in each node.
For a link to carry data between two nodes, the ports at either end of the link must both be
enabled. Nodes retransmit messages received from an enabled port on its other enabled
ports, but not on the port that received the message. When a node receives a message
addressed to itself from any port, disabled or enabled, it carries out the command encoded
in the message and then transmits its status on all of its enabled ports, including the port
which received the message if that port is enabled. A node obeys the reconfiguration
commands sent by the IC Network Manager by enabling or disabling its ports in
accordance with the value of the command's port enable field. Once the new configuration
is in effect, the node returns a status message. For proper operation, there can be no loops
in any layer. Accordingly, a data bit travels through each enabled link exactly once.

The IC Network Manager performs the growth of the IC network by executing a series of
node reconfiguration and status chains. The reconfiguration chains instruct one or more
nodes to configure their ports. Alternatively, the status chains merely query a set of nodes
for their status. These chains are used to simultaneously grow each layer of the IC
network. To permit this coincident growth of the IC layers, each reconfiguration chain
utilizes three transactions, one transaction per layer. A transaction is an autonomous
command to configure a node's ports or request a node's status. A reconfiguration
transaction is a command that configures a node's ports such that the node is added to the

5-3

IC virtual path. After the designated node processes the reconfiguration transaction, it
returns its status. If the transaction is executed successfully, then a fault free response
from the node is returned.

If the reconfiguration chain and corresponding status chains execute without any errors,
then the associated nodes are added to the IC network. If one or more transactions in a
chain has an error, then either contention for the network growth has occurred or faults
exist in the IC network (the details concerning the differentiation of network contention
from hardware faults are discussed in Sections 5.1.4 and 5.1.5). If network contention
occurs, then IC Network Managers on the contending sites are backed off. Alternatively, if
faults exist, then the IC Network Manager modifies the reconfiguration chain to bypass the
faults and then re-executes the chain.

The virtual path in each layer is constructed incrementally. The details concerning the
algorithm used to select the next node to add and the corresponding route are described in
Section 5.3.6, IC Network Growth.

After the IC Network is grown, the System Manager is assigned to a particular FTP. The
System Manager is a collection of functions that allocate migratable functions to the FTPs,
supervise system FDIR, and maintain a consistent time. To simplify the IC Network
growth and the subsequent assignment of the System Manager, several restrictions are
currently imposed:

1. The IC Network Manager that performs the IC network growth assumes the
network FDIR responsibilities for all layers. That is, the IC Layer Managers are
allocated to the same FTP as the IC Network Manager that grows the IC network.
Accordingly, these Layer Managers respond to all IC network FDI.R requests.

2. Any IC Network Manager that does not perform the growth of the IC network is an
Alternate IC Network Manager. An Alternate Manager does not respond to an IC
network FDIR request unless the FDIR function is migrated to it.

3. The FTP that performs the IC network growth assumes the System Manager
responsibilities.

4. A triplex (or higher redundancy) FTP may attempt to grow the IC network only if it
can communicate on all three layers of the network. Loss of communication to a
layer can be due to a faulty root node, ICIS, channel, etc.

5.1.2 Initialization of the IC Network

The IC Network growth is a small part of the IC network initialization. In brief, this
initialization process involves the activation of the local FTP processes (or Local System

5-4

Services), the actuation of IC Communication Services, the growth of the IC network, the
assignment of the System Manager, and the completion of network diagnostics.

When an FFP is powered up, the Local System Services are started. These Services are
responsible for synchronizing the FTP channels and initializing the required local tasks.
After the local tasks are started, the IC Communication Services are activated. The IC
Communication Services provide the Session and Transport layers of the ISO Model, and
they are started to support the initialization the IC Network. During this initialization
phase, these Services are used to determine whether or not the IC network has been grown.

To decide if the IC network has already been grown, the local FTP Resource Allocator
broadcasts a "Site is Accessible" (SA) message to all. remote sites (using the IC
Communications Service). The FTP Resource Allocator is a Local System Services
process which coordinates and manages any global or migratable functions that are
assigned to the FTP. The Resource Allocator sends the SA message to indicate that this
FTP has completed the initialization of its Local System Services.

After the FTP Resource Allocator transmits the SA broadcast, it waits for a response from
the System Manager for a predetermined period of time (period> worst case IC network
growth time + IC communications overhead). This response will be either a specific
acknowledgement to the SA message or a general "Network is In —Service" (NIS)
broadcast. The "Site is Accessible" acknowledgement is sent by the System Manager if the
Manager was activated before the SA message was transmitted. The System Manager
broadcasts the SA acknowledgement to all FTP Resource Allocators to inform them that the
IC network is in—service. This acknowledgement is composed of: the FTPs that have
previously completed initialization, the redundancy levels of these initialized FTPs, the
location of the System Manager, and any updated status information. The "SA message,
SA acknowledgement" scenario is illustrated in Figure 5-2.

Alternatively, the "Network is In... Service" message is broadcast by the System Manager
and received by the FTP Resource Allocator, if the Manager was assigned after the SA
message was issued but before the SA time out had expired. If the FTP Resource Allocator
receives the NIS message, then it re-broadcasts its SA message. The SA message is re-
sent, because the System Manager did not receive the first transmission. The "SA
message, NIS message, SA message" scenario is depicted in Figure 5-3.

If neither the "Site is Accessible" nor the "Network is In—Service" message is received by
the Resource Allocator before the SA time out expires and theFTP is at least a triplex, then
the Resource Allocator requests that the resident IC Network Manager attempt to grow the
network. In contrast, if the time out expires and the FTP is a simplex or duplex, then the
FTP Resource Allocator continues to wait for the "Network is In—Service" message.

5-5

0	 1 2T 31 41 51 61 71 81 91 lOT liT 12T

FTP 1

FTP 2

FTP 1

FFP2	 L9

0	 1 2T 3T 4T 51 61 71 81 9T lOT lIT 121

LEGEND:

- Power On
- Start Growth

SMA- System Mgr. Assigned;
Net. Is In—Service Broadcast

CBO - Contention and Back Off
- Attempt to Regrow Network

SA - Site Accessible Broadcast

GC - IC Growth Completed
9viR - System Mgr. Responds to SA
NDC - Net. Diagnostics Completed

- Multiple Layer Fault
Occurred during Growth

Nw - Multiple Layer Fault
Exists before Growth

T - Worst Case Growth Time

Figure 5-2. IC Network Initialization - FTP Accessible
After System Manager Assignment

LEGEND:

po - Power On
- Start Growth

SMA - System Mgr. Assigned;
Net, is In Service Broadcast

CBD - Contention and Back Off
FG - Attempt to Regrow Network
SA - Site Accessible Broadcast

- IC Growth Completed
9vlR System Mgr. Responds to SA
NDC - Net. Diagnostics Completed
Pv13 - Multiple Layer Fault

Occurred during Growth
Pv	 - Multiple Layer Fault

Exists before Growth
I - Worst Case Growth Time

Figure 5-3. IC Network Initialization - FTP Accessible
Before System Manager Assignment

UP

When resident IC Network Manager endeavors to grow the IC Network, either of two
outcomes is possible: (1) the Manager completes the growth, or (2) another FTP contests
the growth and this Manager backs off. If the IC Network Manager backs off, then, after
the back off period expires, it performs the the same initialization protocol that the FTP
Resource Allocator previously initiated. Specifically,

The IC Network Manager broadcasts an SA message. This message is sent to
determine if the IC network was grown while the FTP was backed off.

2. The IC Network Manager waits for a response from the-System Manager for a
predetermined period of time. This response will be either the SA
acknowledgement or the MS broadcast.

3. If neither response is received before the SA time out expires, then the IC Network
Manager re-attempts to grow the network.

4. If the SA acknowledgement is received, then the IC Network Manager informs the
FTP Resource Allocator that the IC network is in_service.

5. If the MS message is received, then the IC Network Manager re-sends the "Site is
Accessible" message and waits for the subsequent acknowledgement.

5.1.3 Assignment of the System Manager

After an IC Network Manager completes the growth of the IC network, it notifies the
resident FFP Resource Allocator that the network is in—service. Since this FTP completed
the IC network growth, it assumes the System Manager responsibilities. Furthermore, the
IC Network Manager notifies the System Manager of the presence and location of any
network faults.

After the System Manager has been actuated, it uses the IC Communications Service to
broadcast the "Network is In —Service" message. In addition to informing all FTPs that the
network is in—service, this message specifies the location of the System Manager and any
updated status information. Subsequently, the System Manager delays for a pre-
determined time waiting for any "Site is Accessible" messages sent by remote FTPs. When
it receives an SA message, it responds by broadcasting an acknowledgement to inform all
FTPs that the VIP which transmitted the SA message is available. After the NIS time out
has expired, the System Manager updates its FTP configuration database.

After all FTPs are accessible, a suite of IC network diagnostics is performed by the IC
Network Manager. These diagnostics attempt to detect hardware faults in the spare
network components and recheck any failed nodes or links. After the diagnostics are

5-7

completed, the IC User Communications are enabled permitting inter-processor
transmission between application tasks.

5.1.4 Network Contention

When two or more FTPs simultaneously attempt to grow the IC network, network
contention occurs. As stated earlier, these contending sites are backed off and may attempt
the growth at a later time. Additionally, to complicate the IC growth process, hardware
faults may also exist in the network. Consequently, the algorithm must be capable of
distinguishing between FTP contention and network faults.

The occurrence of network contention can be easily detected if either of the following two
assumptions is made.

1. The IC network is fault free.
- If the network is guaranteed to be fault free during the IC network growth,

then all chains will execute without errors unless two or more FTPs
simultaneously attempt to grow the network. As a result, if a transaction in
a reconfiguration or status chain has an error, then network contention has
occurred.

2. A fault can only exist on a single layer.
- If faults are restricted toone of the three layers of the IC network, then all

chains will execute with a maximum of one error (these chains employ one
transaction per layer) unless two or more FTPs simultaneously attempt to
grow the network. As a result, if a reconfiguration or status chain has two
or more errors, then network contention has occurred.

However, if assumptions are not made concerning the existence or position of hardware
faults, then it is sometimes difficult to detect the occurrence of network contention, because
contention and faults can generate the same error symptoms. For example, network
contention can generate the following error symptoms:

1) The FTP performing the growth of the IC network receives a message other
than a node response (such as reconfiguration or status commands from a
different FTP).

2) The disconnection of nodes that were previously connected to the IC network.

3) The loss of multiple node responses or the occurrence of errors in multiple node
responses.

5-8

Nevertheless, these identical symptoms can be caused by the following hardware faults:

1) Babblers retransmitting old command frames.

2) Faults that manifest themselves during the growth of the network.

3) Multiple link or node faults on different layers.

Since the occurrence of network contention and existence of hardware faults can generate
similar error symptoms, the growth algorithm can not differentiate between contention and
faults based on a single set of error information. Consequently, in order to consistently
distinguish network contention from faults, each iteration of the growth algorithm (the
attempt to add three nodes to the network, one per layer) must involve multiple steps,
where each step performs an independent task. As a result, if contention occurs or faults
exist, each iteration will generate several independent sets of errors (rather than just one set
if a single step iteration is used). Accordingly, if the steps of each iteration are chosen
correctly, the resulting set of error symptoms will allow the algorithm to consistently
differentiate between the occurrence of network contention and the existence of hardware
faults.

5.1.5 IC Network Growth Algorithm

During the AlPS power-on sequence, all the layers of the IC network must be grown. The
IC Network can be grown using a centralized algorithm, but a fully distributed system
should be able to perform a distributed growth. The primary advantages of a distributed
growth algorithm are that: a deterministic power-on sequence is not required and the AlPS
system can automatically adapt to failures in processing sites.

The fundamental process in the algorithm for the distributed growth of the IC network is
the incremental addition of nodes to each layer of the IC network. The incremental addition
of three nodes, one per layer, is considered an iteration of the growth. Each iteration of the
growth algorithm involves the following steps:

1) Request the status of the nodes that have been previously added to the IC
network.

2) Execute a reconfiguration chain to add three target nodes (one per layer) to the
IC network.

3) Request the status of the nodes that should be connected to the IC network (the
nodes of step 1 + the target nodes).

5-9

Step 1 of each iteration is primarily used to detect the occurrence of network contention.
This step is a valid means of perceiving contention, because of the method that is used to
add the circuit switched nodes to the IC network. Specifically, when an attempt is made to
add a node to the network, all ports of the node are disabled except the port through which
the connection to the node is made (the node's inboard port). As a result, if two FFPs are
simultaneously growing the network, one FTP will eventually disable the ports of a node
that another FTP has enabled, thus causing the latter FTP to have an inconsistent view of
the network. Accordingly, when step 1 is executed, this latter Fl? (or possibly both FTPs
depending on the timing) will detect errors and conclude that network contention has
occurred.

Step 2 attempts to add three target nodes to the IC. network. One node is added to each
layer. Further,.these nodes may or may not be in the same relative position within each
layer (e.g. nodes 1, 6, and 11 in Figure 5-1 are in the same relative position in each layer,
whereas nodes 3, 6, and 12 are in different relative positions). If this step is adding nodes
that are in the same relative position, then the iteration is performing a "uniform growth".
Conversely, if the execution of this step is adding nodes to the network that are in different
relative positions, then a "non-uniform growth" is being performed.

Finally, step 3 is a confirmation step. When executed, it verifies that the nodes addressed
in. step 1 and the target nodes added in step 2 are still accessible. This step is also used to
detect the occurrence of network contention.

After each iteration is executed, the node responses from each step must be processed (the
nodes return data *in response to the reconfiguration and status chains). These responses
are utilized to indicate whether a hardware fault exists, network contention occurred, or the
nodes were added successfully. The analysis performed by the IC Network Growth
Algorithm is illustrated in Figures 5-4 and 5-5 and- is outlined below:

1. If errors do not occur during the execution of all three steps of the iteration,
then the associated nodes are added to the IC network.

2. If a single error occurs during the execution of step 1, then the algorithm
assumes that a remote FTP is performing a non-uniform growth and has
modified the port configuration of a node.

a. The algorithm presumes that contention has occurred and backs off.

b. It is possible that the error is due to a node (or link) that failed during the
execution of the growth rather than network contention. However, if a
hardware fault is the cause of the error, it will be detected during the re-
growth of the network (by a remote FTP or this FTP after its back off
time has expired).

5-10

Errors	 Inconsistent
Consistent	 Errors
with Step 2

En

Initial Execution of Steps 1 -3

Step 	 Step 	 Step

No	 Errors	 No	 Errors	 No	 Errors

U	

Add	 Network	 Re-Execute	 Network

	

Target	 Contention	 Steps 1 - 3	 Contention

	

Nodes	 to Confirm

	

to	 Existence of
Established	 Hardware Faults

Path

Figure 5-4. Processing of the Execution of Steps 1 - 3

3. If errors occur on two or more layers in step 1, then the algorithm assumes that
a remote FTP is performing a non-uniform or uniform growth and network
contention has occurred.

a. The algorithm backs off.

b. It is possible that the errors are due to a nodes or links that failed during
the execution of the growth rather than network contention. However,
if a hardware faults are the cause of the errors, it will be detected during
the re-growth of the network (by a remote FTP or this FTP after its back
off time has expired).

4. If errors do not occur in step 1, one or more errors occur during the execution
of step 2, and consistent errors occur in step 3, then steps 1 - 3 are executed
again using the same set of chains.

a. The chains are re-executed to confirm that the multiple errors were due
to hardware faults rather than network contention.

5-11

Re-Execution of Steps 1 -3

Step 1	 Step 	 Step

No	 Errors	 No	 Errors	 No	 Errors
Errors Errors

Add	 Errors

	

/

	

Errors	 Inconsistent
Target Consistent	 Errors	 Consistent	 Errors
Nodes with Initial

Established
to	 Executic,,\...._#. Step 2

Path

	

Network	 Hardware	 Network	 Network
Contention	 Fault(s)	 Contention	 Contention

Figure 5-5. Processing of the Re-execution of Steps 1 - 3

b. Each FTP will delay a different non-zero length of time before re-
executing steps 1 - 3. This delay is incorporated to ensure that if two or
more FTPs that "directly contend" during the first execution of the
chains, then they will not contend during the second execution. (In this
context, direct contention occurs when two or more chains are executed
at the exact same time by different FTPs, thus causing the loss of or
errors in the expected node responses). The delay that is imposed must
be greater than the time required to execute and process steps 1 - 3
(Delay >= FFP_.ID * worst case time).

5. If errors do not occur in step 1, errors occur during the execution of step 2,
and inconsistent errors occur in step 3, then the algorithm assumes that
network contention has occurred.

- Network contention is assumed, jbecause of the dissimilar data that
resulted from the execution of steps 2 and 3.

6. If errors do not occur in steps 1 or 2 and one or more errors occur during the
execution of step 3, then the algorithm assumes that a remote FTP is

5-12

performing a non-uniform or uniform growth and network contention has
occurred.

7. If errors do not occur during the re-execution (re-executions are only
performed to verify the existence of hardware faults - case # 4) of steps 1 - 3,
then the algorithm assumes that either network contention or transient errors
caused the errors in the initial execution of the procedure.

a. Since the re-execution of the procedure did not have any errors, then the
associated nodes are added to the network.

b. It is possible that the errors which occurred during the initial execution
of steps 1 - 3 were due to contention with one triplex FTP and that
errors did not occur in the re-execution of the steps because of the
different delay between retries. As a result, the procedure will not detect
the occurrence of network contention during this iteration of the
algorithm. However, as the contending FTPs continue to grow toward
each other, the detection of network contention (via errors in step 1 or 3)
is inevitable.

8. If one or more errors occur during the re-execution of step 1, then the
algorithm assumes that network contention has occurred.

a. Network contention is assumed, because of the dissimilar data that
resulted from the execution and re-execution of the procedure.

b. It is possible that the errors are due to nodes (or links) that failed during
the execution of the growth rather than network contention. However,
if hardware faults are the cause of the errors, they will be detected
during the re-growth of the network (by a remote FTP or this FTP after
its back off time has expired).

9. If errors do not occur in step 1, one or more errors occur in step 2 during the
re-execution of of the procedure (errors similar to the errors resulting from the
initial execution of step 2), and consistent errors occur in step 3, then the
algorithm assumes that hardware faults exist on multiple layers of the IC
network.

a. The corresponding reconfiguration chain is modified to bypass the faults
and steps 1 - 3 are executed again.

b. It is possible that the errors which occurred during the initial execution
of steps 1 - 3 were due to contention with one triplex FTP and that the

5-13

I

errors which occurred in the re-execution of the procedure were due to
contention with a different FT?. As a result, the procedure will falsely
assume that network faults exist. However, this situation will be
rectified during the final phase of the growth because all previously
failed components are re-tested.

10. If the errors that occur during the re-execution of step 2 are not consistent with
the errors that result from the initial execution of step 2, then the algorithm
assumes that network contention has occurred.

11. if errors do not occur in step 1, errors occur during the re-execution of step 2,
and inconsistent errors occur in step 3, then the algorithm assumes that
network contention has occurred.

- Network contention is assumed, because of the dissimilar data that
resulted from the re-execution of steps 2 and 3.

12. If errors do not occur in steps 1 or 2 and one or more errors occur during the
re-execution of step 3, then the algorithm assumes that a remote FTP is
performing a non-uniform or uniform growth and network contention has
occurred.

5.1. 6 Analysis of Network Contention Error Symptoms

As mentioned in Section 5.1.4, the motivation behind the development of a multi-step
growth algorithm is to provide the capability of differentiating between the existence of
hardware faults and the occurrence of network contention. In that section, three error
symptoms were listed that could result from either faults or contention. These symptoms
are:

1) The reception of reconfiguration or status commands from a different FTP.

2) The disconnection of nodes that were previously connected to the IC network.

3) The loss of node responses or the occurrence of errors in the node responses.

In the following sections, the growth algorithm is examined with respect to each of these
error symptoms to illustrate some of the issues involved in the IC network growth.

5.1.6.1 Symptom 1: Reception of Commands from a Remote FTP

The reception of reconfiguration or status commands from a remote FTP can result if either
a babbler retransmits old command frames or multiple FTPs contend for the growth. If this

5-14

error symptom is due to one or more babblers, then the algorithm will detect the babblers
through the execution and re-execution of steps 2 and 3. The babblers will be detected,
because they will disrupt the node responses during both executions (it is assumed that
intermittent babblers do not exist). Accordingly, the algorithm will modify the
reconfiguration chains, disconnect the babblers, and continue growing the network.

Alternatively, if this error symptom is due to network contention, then the algorithm will
eventually detect the occurrence via step 1 or step 3. Specifically, as the contending FTPs
continue their respective growths, the FTPs will begin to "disrupt" each other (modify the
other FFPs' virtual path through the network), and the algorithm-will detect the network
contention.

Under certain improbable circumstances, the growth algorithm may initially confuse
multiple FTP contention with multiple babblers and cause network components to be
falsely failed. However, this situation is rectified in the final phase of the growth, because
all previously failed network elements are re-tested.

5.1.6.2 Symptom 2: Connected Nodes Have Been Disconnected

Nodes previously added to the IC network can be disconnected because of hardware faults
that arise during the growth or multiple FIT contention. The loss of previously connected
nodes will be detected in step 1 or step 3. In this situation, the algorithm always assumes
that network contention is the cause of the problem. However, as stated, the loss of these
connections may be due to hardware failures that manifest themselves during the growth.
If faults are the cause of the problem, they will be detected during a subsequent regrowth of
the network (by a different FTP or this FTP after its back off period has elapsed).
Specifically, these faults will be isolated during the execution and re-execution of step 2.

5.1.6.3 Symptom 3: Node Responses are Lost or Have Errors

The loss of node responses (or errors in the node responses) can be due to hardware faults
or the occurrence of network contention. If this error symptom is the result of faults, then
the algorithm will detect these faults through the execution and re-execution of step 2.
They will be detected, because both executions will have errors. As a result, the algorithm
will modify the reconfiguration chains, bypass the faults, and continue the growth.

Under certain improbable circumstances, the growth algorithm may initially confuse
multiple FTP contention with multiple faults and cause network components to be falsely
failed. However, this situation is rectified in the final phase of the growth, because all
previously failed network elements are re-tested.

5-15

5.1.7 Determination of a Back Off Period

If an FFP that is growing the jç network detects that another FTP is also attempting the
growth, it will back off. That is, the IC Network Manager on this site stops performing the
growth and delays a predetermined period of time. This back off period is calculated using
the following equation:

Delay = [((# of triplex FTPs) - 1) + ((FTP_ID - 1) * 2)] * (Worst Case Grow Time)

The Worst Case Grow Time is the primary factor in the back off delay, because it is the
basic offset necessary to avoid network contention. The procedure to compute this
parameter for a given network topology is described in Section 5.2.3.3. A typical value for
this parameter for the AlPS engineering model 5-node IC network is 2.6 seconds. This
value is derived from empirically measured network transaction time and the worst case
number of transactions that are required to grow the network for the engineering model IC
network topology. The ((# of triplex FTPs) - 1) component is used to create a non-zero
offset that is based on the maximum number of FTPs that could contend for the growth.
Further, the (FTP_ID - 1) component is utilized to prioritize the FTPs contending for the
growth. Finally, the. factor of 2 is required to allow enough time to grow the IC network
when consecutive numbered sites contend and back off.

The back off delay is not designed to minimize the IC network growth time in the presence
of network contention. The delay is designed to ensure that the IC network can be
successfully grown even if two or more FTPs contend for growth of the network.

5.1.8 The IC Network Diagnostics

As stated earlier, after the IC network is grown and all FTPs are accessible, IC network
diagnostic tests are performed. These tests are used to detect hardware faults in the spare
network components, to verify that network elements were not falsely failed during
growth, and to exercise the network nodes. The diagnostics are performed by the IC
Network Manager and are completed in a centralized manner on a layer by layer basis.

To determine if faults exist in an IC layer's spare links and nodes, the virtual
communication path is reconfigured to employ these components. After the IC growth is
completed, the IC Network Manager is capable of communicating with each node in the
network. To verify that a spare element is working, it is cycled into the active path (using a
reconfiguration chain) and an attempt is made to again communicate to all network nodes
(via a status chain). If these nodes can still be reached without communication errors, then
the newly utilized component is deemed working. Alternatively, if transmission errors
occur, then the previous virtual path is restored and the element under test is marked as
failed. This process is continued until all spare network components are examined.

5-16

To verify that the components failed during the IC network growth were not falsely failed,
the IC Network Manager attempts to utilize these elements. If a failed link is being re-
tested, then the Manager cycles it into the active virtual path and attempts to communicate to
the network nodes. If all nodes respond without errors, then the link is presumed to be
working. Conversely, if errors are encountered, then the previous path is restored and the
component is confirmed to be faulty.

The diagnostics tests performed to recheck a failed node differ slightly from those used to
test a failed link. Similar to the link verification process, the failed node is tested by
attempting to communicate to it. However, as illustrated in Figure 5-1, each node can
typically be reached by multiple paths. The diagnostic tests select one possible route, use a
reconfiguration chain to actuate the path, and process the response from the chain to
determine if the node was reached successfully. If errors were observed, then this route to
the node is considered faulty, and another is selected. If all paths to the node under test
have been checked and are faulty, then the node is marked as failed. Nonetheless, if a path
to the node is found that appears error-free, then the node is deemed working. After such a
node is re-instated as working, then any links that are now spare are checked for faults.

These diagnostic tests are also performed to exercise and stress the network nodes. The IC
network growth focuses on the construction of a virtual path. This growth process does
not comprehensively check the network nodes, because of the possibility of network
contention. Accordingly, these diagnostics are employed to verify that all nodes operate as
expected. For example, these tests verify that the nodes do not transmit on disabled ports,
do not respond to the wrong address, and are capable of quick reconfiguration.

5.1.9 Network Contention Examples

To summarize the discussion of the IC network growth algorithm, two network contention
examples are presented. These examples involve four triplex FTPs and are described in the
Sections 5.1.9.1 and 5.1.9.2.

5.1.9.1 Example 1: Four FTPS Contend - Three FTPS Back Off

Example 1 is illustrated in Figure 5-6. In this scenario, each FTP powers up and attempts
to grow the IC network at a different time. FT? 1, FTP 2, and FTP 3 eventually realize
that other FTPs are attempting to grow the IC network, and each site backs off (the back
off period is calculated using the aforementioned equation). FTP 4 does not detect network
contention and completes the growth of the IC network. Accordingly, FT? 4 assumes the
System Manager and IC network FDIR responsibilities, and it broadcasts the "Network is
In—Service" message. When back off time for FTP 1 expires, the site broadcasts a "Site is
Accessible" message. The System Manager on FTP 4 responds to the message by
broadcasting an acknowledgement. Eventually, the back off times for FTPs 2 and 3
expire, and a similar procedure is performed. Finally, all of the FTPs are accessible and

5-17

network diagnostics are performed. After the diagnostic procedure has been completed, the
IC User Communications are enabled.

5.1.9.2 Example 2: Four FTPS Contend - Four FTPS Back Off

Example 2 is illustrated in Figure 5-7. Example 2 is identical to Example 1 except that all
four FTPs detect contention and back off. Since FTP 1 has the shortest back off time, it is
the first site to "wake up". After its back off period expires, FFP 1 broadcasts a "Site is
Accessible" message. The IC Network Manager on FTP 1 waits for a predetermined time
period (greater than the worst case growth time, T) for a response . from System Manager.
Since the System Manager has not been assigned, FTP 1 times out and re-attempts to grow
the network. FT? 1 completes the growth uncontested, because the other VFPs are still
backed off. FTP 1 assumes the System Manager and IC network FDIR responsibilities.
The System Manager broadcasts the "Network is In —Service" message and subsequently
acknowledges each "Site is Accessible" message (FTP 2 sends the "Site is Accessible"
message twice, because it received the "Network is In_Service" broadcast - see Section
5.1.2). Finally, after all FFPs are accessible, the network diagnostics are performed, and
the IC User Communications are enabled.

FTP 1

PO SA SJ3 CBO FTP 2

FTP3

PQ SA SG Gc SMA
FTP4	 -------

A

SA

SMR-1 S1R.2	 SMR.3 NDC

0	 T 2T 31 41 5T 61 7T 81 91 lOT liT 121 131 14T 15T 16T

LEGEND:

Fo Power On
93 - Start Growth
SMA- System Mgr. Assigned;

Net, is In Service Broadcast
Ca) Contention and Back Ott
FG - Attempt to Regrow Network
SA	 Site Accessible Broadcast

GO - IC Growth Completed
System Mgr. Responds to SA

NDC • Net. Diagnostics Completed
- Multiple Layer Fault

Occurred during Growth
- Multiple Layer Fault

Exists before Growth
T - Worst Case Growth Time

Figure 5-6. Network Contention Example - FTP 4
Grows the IC Network

5-18

POSAScBO
FTP 1

FFP 2 SGI SA

P POSASGCBO SA

FTP 4	 POSASGCBP : SA

o 1	 2T	 31	 4T	 51	 61	 7T 8T	 9T	 lOT	 lIT	 12T 13T	 14T	 15T	 16T

• LEGEND:

FO	 - Power On Go	 - IC Growth Completed
93	 - Start Growth 9c - System Mgr. Responds to SA
SMA - System Mgr. Assigned; NDC - Net. Diagnostics Completed

Net. is In—Service Broadcast - Multiple Layer Fault
CBO	 Contention and Back Off Occurred during Growth
FG	 Attempt to Regrow Network NM - Multiple Layer Fault
SA	 . Site Accessible Broadcast Exists before Growth

T	 Worst Case Growth Time

Figure 5-7. Network Contention Example - FTP 1
Grows the IC Network

5.2 IC Network FDIR Functional Requirements -and Design

In contrast to the IC network growth, the network fault detection, isolation, and
reconfiguration (FDIR) function is assigned to a particular FT?. The IC Network Manager
that performs the IC network growth assumes the network FDIR responsibilities for all
layers. That is, the three IC Layer Managers are assigned to the same FTP as the IC
Network Manager that grows the IC network, and they are responsible for maintaining the
layers of the IC network. These "IC Layer Manager to FDIR" assignments are changed
only if a hardware fault necessitates it.

The functional requirements and design of the IC network FDIR process are discussed in
this section.

5.2.1 The IC Network Layers and the IC Layer Managers

As illustrated in Figure 5-1, each layer of the AlPS IC network employs five nodes, seven
inter-node links, and four FT?-node links. The IC network growth creates a virtual path
through each layer to permit reliable inter-FTP communication. Given this topology, each
layer has a spare node and three spare inter-node links. When necessary, these spares can
be brought into service to reconfigure around faults or damaged components.

5-19

After the IC network is grown and the System Manager is activated, the IC network FDIR
responsibilities are assigned. As outlined in Section 5.1.1, these responsibilities are given
to the FFP that hosts the IC Network Manager which grows the IC network. This IC
Network Manager allocates and initializes three IC Layer Managers. Each IC Layer
Manager controls the FDIR activities for a particular layer.

The IC Network Managers that did not grow the IC network are considered Alternate IC
Network Managers. Similarly, their corresponding IC Layer Managers are designated as
Alternate IC Layer Managers. These processes are capable of assuming the IC network
FDIR responsibilities but are dormant until such FDIR functions are migrated to them.

5.2.2 IC Network FDIR - Fault Detection

The presence of a fault (or damaged component) is detected during normal inter-computer
communication. The fault (or faults) is perceived, because it disrupts the transmission
from one site to another. More specifically, when the IC Communication Services on an
FTP sends a message, three copies are transmitted. One copy is sent on each layer of the
IC network. If a fault exists such that the virtual path on a layer is disrupted, then the copy
transmitted on this layer will be corrupted. As a result, the destination FFP will correctly
receive only two of the three copies. The destination FTP, specifically the ICIS
Redundancy Management and Source Congruency process (discussed in Section ***),
performs a suite of diagnostic tests to determine if this information loss was due to a fault
in the network interface (the ICIS) Or in the network layer. If the ICIS Redundancy
Management procedure suspects that the communication problem is due to a layer fault, it
notifies the the IC Network Manager (which may reside on a remote FT?) and identifies the
questionable layer. Subsequently, the IC Network Manager takes the IC layer out of
service, broadcasts this updated layer status to all FTPs, and sends a "repair" command to
the corresponding IC Layer Manager. The IC Layer Manager inspects the layer to verify
the presence of a fault, attempts to identify the fault, and reconfigures the layer around the
failed component.

5.2.3 IC Network FDIR - Fault Analysis and Reconfiguration

When an IC Layer Manager receives a repair request, it executes a "verification" status
chain to determine if all nodes in the questionable layer can be reached. If all nodes return
an error-free response, then the Layer Manager presumes that the fault was transient or that
it exists somewhere external to the layer. In either situation, the IC Layer Manager deems
the layer to be working and accordingly notifies the IC Network Manager which informs
the System Manager and all remote FTPs. Alternatively, if all nodes have errors, then it is
presumed that the ICIS interface to the layer has failed. As a result, the IC Layer Manager
informs the IC Network Manager and the FTP Resource Allocator that it is unable to
perform FDIR on this layer. If the ICIS is working and the response from the verification
status chain has one or more errors, then the layer under test has at least one faulty

5-20

component. The IC Layer Manager then invokes a fault analysis procedure to try to
identify the type and location of the failed component. After this analysis is complete, the
Layer Manager enters the fault .reconfiguration phase and the faulty network element is
bypassed. The next two sub-sections discuss the fault analysis and reconfiguration
processes respectively.

5.2.3.1 Fault Analysis

The fault analysis process utilizes the results of the verification status chain to speculate on
both the type of fault and its location within the IC layer. This hypothesis is constructed
using two procedures: the node data analysis and the error analysis. (It should be noted
that the assumption underlying all the deductive reasoning in these algorithms is that only
one component has failed).

The data analysis process examines the response from the verification status chain to
determine if a node is transmitting on a port that should be disabled. Initially, this
algorithm decides if a babbler is present, because a babbler causes the network nodes to
return invalid data. If such a fault is not detected, then this process analyzes the data from
the error-free node responses, determines the nodes that have received messages, and
examines the origin of these messages. If a non-failed, disabled port reports the reception
of a message, the node adjacent to that port is transmitting on a disabled port (adjacent ports
are always in the same configuration, either both enabled or both disabled). If a node is
located with such a fault signature, then the fault is attributed to the node transmitting on the
disabled port and the fault reconfiguration procedure is invoked. In contrast, if more than
one node is found to have this fault, the analysis is deemed not successful, and the error
analysis process is called.

The error analysis process attempts to deduce which component produced the set of errors
present in the verification status chain. Although these errors may indicate several faulty
network nodes, they usually result from only one faulty component. Of course not all sets
of errors are capable of being analyzed. The input space of this procedure has many
combinations which do not pinpoint a specific network component as being faulty.
Further, as stated previously, the presumption underlying the error analysis is that only one
component has failed.

If all nodes in the layer have errors, the error analysis algorithm attributes the errors to an
interface node or interface link failure. If some nodes have errors and others do not, two
possible failure modes are considered: (1) a failed link or node through which no
transmission takes place or (2) a single node failure. The single node failure symptom
could be indicative of a node which does not respond to commands but which continues to
retransmit messages as it did before the failure. It could also be a node which itself is not
failed but to whose address another node in the network responds. The single node failure
is easy to diagnose since exactly one node in the status collection chain shows an error.

5-21

If two or more but fewer than all nodes have errors, then the remaining problem is to
determine if the cause of those errors is a link or node whose transmission/retransmission
function is no longer operational. The basic idea is that when a link or a node fails in this
manner, then all nodes downline of this fault also have errors. The signature of such a
failure is that these nodes form a treelike pattern in the network. It should be noted that
another failure mode that produces a similar pattern of errors is a node which babbles on all
outboard ports (outboard ports are all ports except the one through which the connection to
the IC Layer Manager is made). To determine whether the observed errors fit the pattern
for a failed link, node, or outbound babbler is a three step process. The first step is to
identify a node which qualifies as the root of the failed tree. Such a node is one that had
errors itself but that has an inboard port (the port which receives the commands sent by the
IC Layer Manager) adjacent to a non-failed node. To prove this hypothesis, exactly one
node should have this characteristic. If two or more such nodes exist, the fault is
considered undiagnosable. Nonetheless, if a root is found, the second step is invoked to
determine whether or not all nodes downline of the root had errors attributed to them. This
is accomplished by a recursive algorithm. First, the algorithm processes information about
the current node. The initial current node is the root of the failed tree. Next, the recursion
procedure examines the nodes that are adjacent to the outboard ports of the current node
(i.e. downline of the current node). If none of the adjacent nodes have errors attributed to
them, then the desired pattern is not present and the fault is considered undiagnosable.
However, if the nodes downline of the current node do have errors, then the recursion
continues until every downline node has been visited. If a treelike pattern is established,the
third step of the pattern checking process can proceed. This step verifies that all the nodes
that have errors appear in the failed tree, i.e. no nodes with errors lie outside the tree. If
nodes with errors are found outside the tree, the fault is considered undiagnosable.
Alternatively, if all of these nodes are in the tree, the fault reconfiguration algorithm is
called to make the final determination of whether or not the fault is due to a failed link, a
failed node, or an outbound babbler. If the fault was diagnosable, the error analysis
process informs the reconfiguration algorithm of its speculated type and location.

Figure 5-8 shows a network which has a broken link. In this situation, the verification
status chain would not return responses from the shaded nodes in the figure. Since Node 2
is the only node with an inboard port facing a non-failed node, it is identified as the root of
the failed tree. Furthermore, all nodes downline of Node 2 are failed and no nodes outside
the tree had errors. Thus, error analysis identifies this fault as a failed link between Node 1
and Node 2 or a failure of Node 2. The final identification of the fault takes place during
network reconfiguration.

5-22

Figure 5-8. Identifying A Failed Link

5.2.3.2 Reconfiguration

The purpose of this process is to reconfigure the layer so as to restore error-free
communication to all reachable, non-failed nodes. The reconfiguration action depends on
the type of failure determined by the fault analysis process. The fault identified in this
report is actually a hypothesis about what is causing the errors on the layer. The
reconfiguration process, in effect, tests this hypothesis and then verifies that the layer is
again fully operational. Therefore, the layer may go through several intermediate
configurations before the reconfiguration process is. complete. 	 -

The fault analysis process identifies five classes of faults: a babbler, a link or node failure,
a node which transmits on a disabled port, a single node failure, and an undiagnosable
failure. A separate strategy exists to deal with each of these fault classes.

The reconfiguration process is considered complete when the node status chain is executed
on the reconfigured layer and does not detect any errors. The backup stratagem for dealing
with unanticipated error phenomena which occur during a reconfiguration attempt is the
layer regrowth (detailed in Section 5.2.3.3). This is also the strategy when the fault
analysis is unable to diagnose the failure mode.

In general, reconfiguration strategies are designed to deal with both active and passive
faults in the hardware. Passive faults are characterized by the non-retransmission of data,
i.e. a barrier or obstacle to the flow of data in the layer. A disconnected cable is an example
of such a fault; data cannot be retransmitted over this cable but transmission between other
connections in the layer is not affected. Active faults are characterized by the disruption of
data flow in the layer beyond the boundaries of the failed component itself. An ICIS with a
transmitter stuck on high is an example of this type of fault; the stuck on condition is
retransmitted throughout the layer, possibly disrupting transmissions between all layer
inter-connections. Since different faults can produce identical error symptoms (e.g. a

5-23

broken root link and an ICIS transmitter stuck on high result in zero byte counts for all
node responses), the reconfiguration algorithm must identify the specific cause of the
problem so as to effect a repair.

When a babbler is detected in the layer, the layer is regrown. A babbler is an active fault
that is detected by the ICIS at its receiving interface to the layer. (The ICIS cannot observe
a stuck on high condition on its transmitting interface.) For a layer of N nodes which has a
babbler, the cost of regrowing the layer is N + P chains, where P is the number of spare
ports on the babbling node which must be tried. Strategies to lessen this cost are possible
in layers that are either maximally branching or fully linear. Nonetheless, the current
design uses regrowth to reconfigure the layer in which a babbler is present.

A failed node generates the same error pattern as a failed link. Thus, when the fault
analysis reveals the presence of this failure mode, the reconfiguration algorithm must
determine which fault has actually occurred and reconfigure the layer accordingly. It is first
assumed that a link has failed. The failed link is disconnected, and an attempt to reach the
failed node, i.e. the node immediately downline from the link, is made by using any spare
ports on that node which are adjacent to non-failed nodes. The chain used to reconnect this
node to the rest of the layer contains three transactions. The first two transactions enable
the ports on either side of the new inboard link; the third transaction disables the former
inboard port of this node in case the node adjacent to that inboard port is a babbler. If this
strategy fails to restore communication with the failed node (possibly because no spare
ports are available), data is assembled which will allow each branch of the failed tree to be
reconnected to the active layer. This data consists of a list of nodes for each branch
stemming from the failed node (i.e. a separate list for each set of nodes which lie downline
of each of its outboard ports). Only one successful connection to any spare port on a
branch is necessary to restore communication to the entire branch (and possibly to the failed
node and all other nodes in the failed tree). Again a three transaction chain is used, this
time for a different purpose. The first two transactions enable the ports on either side of the
new link while the third transaction attempts to obtain status from the failed node. If the
failed node correctly returns its status, the repair is complete and the absence of errors •is
verified by collecting status from every node in the layer. If the failed node is still not
reachable, the port connecting this node to the present branch is disconnected and the
proper functioning of the newly enabled link is verified. Then all nodes on this branch are
removed from the failed node set. The net effect of this process is to restore
communication with all reachable nodes in the layer while isolating the failed node. As
communication to each branch is restored, the possible pool of spare links increases. Thus
if any branch was not connected because of a lack of spare links, this branch is retried
whenever a connection to another branch is successful. Any nodes which are still
unreachable at the end of this exhaustive process are assigned a status of failed.

If a node retransmits valid data on a port which should be disabled, the node must be
removed from the layer. This failure mode is distinguished from a babbler which is always

5-24

transmitting a random bit stream or is stuck on one. When a babbling port is identified, the
adjacent port of the neighboring node is disabled. This neighboring node will not
retransmit on its other enabled ports anything received from the disabled port.
Furthermore, the node will ignore any random bit patterns it receives. However, if the
neighboring node receives a request for its status on a disabled port (as might occur if a
failed node is transmitting on a disabled port), it will transmit its status on all of its enabled
ports. If this failed node is not removed, each time the Layer Manager asks for status from
the node adjacent to this port, it would receive two valid commands to report its status,
which will result in two status responses. However, only one response is expected. Once
the first response is received by the Layer Manager, another node will be commanded to
report its status. The second response of the node may interfere with the reply of a node
whose transaction is later in the chain, making it appear that this next node has failed to
respond correctly to a command. Once the failed node has been removed from the layer,
status is collected from the remaining nodes to verify that in fact the fault has been
identified and isolated. If errors are still detected in the layer, a full regrowth, with a
complete set of diagnostic tests, is performed.

Removing a node is a simple matter if the node is a leaf; only the link connecting it to the
layer needs to be disconnected. This is accomplished with one reconfiguration chain. If
the failed node is not a leaf, the nodes downline from it need to be reconnected to the layer
through alternate links. These downline nodes are added to a reconnection queue. Each of
these nodes is also added to a set of unreachable nodes. The link connecting the inboard
port of the failed node to the layer is then disabled. Next, an attempt is made to re-establish
a connection to each isolated branch via a spare link from a node which is still reachable
(i.e. is not a member of the unreachable node set). Only one such connection needs to be
made to restore communication to all the nodes in the branch. After the new connection is
enabled, the link connecting the failed node to this branch is disconnected. As each branch
is reconnected, the nodes in that branch are removed from the reconnection queue. If any
branch is successfully reconnected, the branches that were not connected during earlier
attempts are tried again (since more spare links become available as communication is
restored to nodes in other branches). This algorithm, while isolating the failed node,
restores communication to every reachable node in the layer. Nodes which cannot be
reached because earlier failures have depleted the pool of spare links are marked failed.

Figure 5-9 illustrates the steps needed to isolate a node from the layer. Suppose that Node
2 is to be removed from the layer. First the link connecting Node 1 to Node 2 is disabled.
When this step is completed, Nodes 2, 3, 4, 5, and 6 are also isolated from the FTP as
shown in part II. Node 2 is the root of a tree with two branches, each of which must be
reconnected in turn. By enabling the link between Nodes 1 and 6 and disconnecting the
link between Nodes 2 and 4, one of these branches is reconnected to the active layer as
shown in part ifi. Finally, a link is enabled between Nodes 5 and 6 and the link between
Nodes 2 and 3 is disabled. In this reconfiguration, Node 2 is isolated while preserving
several links in the layer.

5-25

I FTPI

A .b.

I
	

II
	

III	 Iv

Figure 5-9. Removing A Node And Reconnecting Its Branches

A single node failure can occur: (1) if the failed node is a leaf node, (2) if its retransmission
function still works correctly but its status reporting capability is impaired, or (3) if another
node is responding to this node's address thus making this node appear failed. The failed
node is isolated from the layer, as described in the previous discussion. However, care is
taken not to address this node directly because of the possible addressing problem (the
aforementioned fault scenario 3). After the node is isolated (disconnected from the active
layer path), it is again queried for its status. If a valid response is received indicating the
presence of a node which responds to the addresses of other nodes, the layer is regrown to
isolate this faulty node. Otherwise, an attempt is made to find an alternate route to this
node using any port except its previously failed inboard port. In addition to establishing a
different route to the node, the reconfiguration command sent to this node disables the
failed inboard port.

If the attempt to reconfigure the layer does not succeed in eliminating errors, then the IC
Layer Manager regrows the layer (discussed in the following section). This is the back up
reconfiguration strategy, used when all else fails.

5.2.3.3 IC Layer Growth

Layer growth is the process whereby the links between the nodes in the layer are enabled to
form a virtual bus which supports communication among the layer subscribers (FTPs).
Data flow in the layer is controlled by the configuration of the ports in each node. For a
link to carry data between two nodes, the ports at either end of the link must both be
enabled. Nodes retransmit messages received from an enabled port on its other enabled
ports, but not on the port on which received the message. (The purpose of the
retransmission is to maintain the integrity of the waveform and it only imposes a delay of
one half the transmission clock period.) When a node receives a message addressed to

5-26

itself from any port, disabled or enabled, it carries out the command encoded in the
message and then transmits its status on all of its enabled ports, including the port which
received the message if that port is enabled. A node obeys reconfiguration commands sent
by the IC Layer Manager by enabling or disabling its ports in accordance with the value of
the port enable field in the command. Once the new configuration is in effect, the node
returns a status message. For proper operation, there can be no loops in the layer. A data
bit travels through each enabled link exactly once. Further, once it is grown, a layer
operates like a time division multiplex bus.

Nodes are added one by one to the virtual bus. To determine which node to add next, the 	 - -
IC Layer Manager refers to the Layer Topology, a database which describes all physical
interconnections that exist in the layer on a node by node basis. The algorithm used to add
these nodes grows the bus in a treelike manner. Because of its resemblance to a tree, the
nodes that are part of the virtual bus are said to be part of the active tree. The growth
algorithm generates a maximally branching, minimum length path to every node in the
layer. This configuration is later changed in order to repair faults. In addition to joining
layer nodes into a virtual bus, the growth process is also concerned with enabling the
communication paths to layer subscribers, the remote VFPs. This is accomplished by
enabling the node ports adjacent to these devices and determining whether or not these
components correctly obey the established communicationprotocols. The detection of
protocol violations results in the subscriber being disconnected. In fact, the detection of a
protocol violation when any new link is called into service results in the disabling of that
link. Furthermore, the growth algorithm may employ a set of diagnostic tests that detect
the presence of some malicious failure modes (such as nodes which transmit on disabled
ports or nodes that respond to commands addressed to other nodes).

The layer growth algorithm assumes that, although hardware faults may be present in the
layer before the growth process commences, no additional faults will occur while growth is
taking place. However, if errors are detected during growth which indicate an additional
failure, then the growth process is restarted. If a fault occurs repeatedly after a layer is
partially grown, an intermittent-failure can be inferred. Strategies to deal with short lived,
intermittent failures need to be developed (beyond the scope of this functional design).

Layer growth begins by establishing an active link to the root node and ensuring that the
root node has an outboard port to the rest of the nodes in the layer. Next, the remaining
nodes are added to the active tree. Any nodes that are not connected to the active tree after
this stage is complete are unreachable. After the layer is established through the active root
link, the layer subscribers, that is the remote FTPs, are connected to the layer. Finally,
status is collected from all nodes in the layer to verify that no failures have occurred in the
layer during the growth process. Figure 5-10 summarizes the major steps in the layer
growth algorithm. The following discussion details the logic employed in each major step.

5-27

For the growth of a layer to be considered successful, an active root link must connect the
FFP to the layer. This implies the existence of a properly functioning ICIS and a root node
that is able to communicate with the ICIS and at least one adjacent node. Establishing this
connection is a two step procedure. In the first step, the hardware is put in a state which
supports communication between the FTP and the root node. In the second step, the
correct operation of this hardware is verified.

The first step in setting up a root link is to configure the root node so that the port adjacent
to the ICIS is enabled and all of its other ports are disabled. The second step is to verify
that the hardware involved in this root link is operating properly and that the root node can
be used as a springboard to the rest of the layer. The absence of communication errors in
the reconfiguration chain and the corresponding node response is evidence of a properly
functioning communication link between the ICIS and the root node. If communication
errors do not occur, then a determination is made about the root node's ability to function
as a jumping off point for the addition of the remaining nodes in the layer. This decision is
made by finding a link to an adjacent node which can be enabled without errors.

The algorithm for adding nodes to the layer is designed to conduct an exhaustive search for
a properly functioning connection to every node in the layer. The failure of a single port of
a node does not cause the entire node to be considered failed. However, some nodes may
not be reachable by any path. The identity of these unreachable nodes is apparent only after
this phase of the growth process is complete.

Repeat until growth is successful or two attempts fail to produce a stable
layer:

Establish a working connection to a root node.
If an active root link is established then

Add remaining nodes to the layer.
Mark idle nodes failed.
Add Remote FTPs.
Collect Node Status - from all layer nodes as defined by topology.
Validate Layer Status.
If no discrepancies in Layer Status then

Layer is grown successfully.

Figure 5-10. The Layer Growth Algorithm

This stage of layer growth begins after a root link has been established. The root node
becomes the first entry in a spawning queue, which is a data structure used to control the
growth of the layer. An entry in this queue consists simply of a node that has been
successfully added to the layer but from which growth has not yet taken place. Two
positions are marked in the queue: the top and the next entry. The top holds the node in the
queue from which growth is currently taking place. This node is called the spawning node.

-	 5-28

The next entry is the next empty position in the queue. As nodes are added to the layer,
they are placed on the spawning queue at the next entry point and the next entry point is
advanced to an empty position in the queue. As growth of the layer proceeds, the topmost
node in the spawning queue is removed from the queue and used as the jumping off point,
or spawning node, for further growth. Each node in the spawning queue is processed in
turn until the queue is empty.

The spawning node is processed on a port by port basis. The action taken depends on the
type of element that is adjacent to each port. If the adjacent element is a remote FFP, the
spawning node and the port that faces the FTP are recorded for-future reference. Such
ports are enabled after the growth of the layer is complete. However, if the adjacent
element is a node whose status is idle, i.e. not yet part of the active tree, an attempt is made
to enable the link to that node (which is referred to as the target node). If the attempt to
enable the link between these nodes is not successful, the link is disconnected.
Alternatively, if the attempt is successful, the target node is placed at the end of the
spawning queue. When all ports of the spawning node have been processed, the next node
in the spawning queue is removed and it becomes the new spawning node.

Figure 5-11 shows the entries made to the spawning queue for the growth of a fault-free,
six node layer. Node 1, the root node, is the first entry. The three nodes adjacent to Node
1 are each added in turn to the layer. As each node is connected to the virtual path, it is
added to the spawning queue. When all nodes adjacent to Node 1 have been added to the
layer, Node 2 becomes the spawning node. Node 2 has an active link, an idle link adjacent
to Node 3, and an idle link adjacent to Node 4. Since Node 3 is already active, the only
node to be added to the layer from Node 2 is Node 4. The next spawning node is Node 6.
Node 5, the only idle node adjacent to Node 6, is the last node added to the layer. Nodes
3, 4 and 5 each become a spawning node. However, since none of these nodes is adjacent
to an idle node, no further nodes are added to the layer or to the spawning queue which is
now empty.

Spawning Queue

1	 Top

2
6

4
5

Next

Figure 5-11. No Fault Growth Algorithm

5-29

The growth algorithm also detects and isolates babbling layer components, thus making it a
useful backup strategem for layer maintenance. When a port of a spawning node adjacent
to a babbling port is enabled, the babbler is detected because its transmissions interfere with
the response of the spawning node. Following the detection of the babbler, the spawning
node is sent a reconfiguration transaction instructing it to disable the port adjacent to the
babbler, thus isolating the babbler from the rest of the properly functioning layer. The
method works, because the layer links are full duplex (separate physical data links exist for
the transmission and reception of data). As a result, the reconfiguration command reaches
the spawning node through a path not corrupted by the babbler.

The use of the growth algorithm to isolate a node that is babbling on all of its ports is
illustrated in Figure 5-12. Node 2 is shaded to denote it as the babbler. When Node 1 is
the spawning node, the attempt to connect Node 2 fails, because the babbler violates the
established communication protocols. Hence, Node 2 is not added to the spawning queue.
Nevertheless, Nodes 6 and 3 are added as before. Node 6 is the second spawning node
from which Nodes 4 and 5 are added to the active tree. When Node 3 becomes the
spawning node, a second attempt is made to reach Node 2. This attempt is made, because
a node may be babbling on one port only. When this attempt fails, Node 4 becomes the
spawning node. Since Node 2 is still not in the active tree, a third and final attempt to reach
Node 2 is made from Node 4. Although Node 2 is babbling, the ports facing it on Nodes
1, 3, and 4 are disabled and therefore its faulty transmissions cannot disturb other layer
communication.

Spawning Queue

*- Top

161
ifi
w

Eii14
Next

Figure 5-12. Layer Growth Used To Isolate A Babbling Node

As each node is added to the layer, a series of fault detection diagnostic tests may be
performed. The tests are sequential in nature, and if any test fails, the remaining tests in the
sequence are not performed. If this test sequence is employed throughout the layer growth,
every layer link will be exercised.

5-30

The first diagnostic test determines if the link between two nodes can be activated. It is
performed by enabling the link between the newly added node and its adjacent node. If the
attempt to enable the link is successful, the link is left in the enabled state so that the next
test can be executed. If the link is not enabled, the ports on either end of the link are failed.

The second test determines whether or not the adjacent node transmits on a port after it has
been disabled. In this test, a configuration command is sent to the adjacent node over the
newly enabled link instructing it to disable all of its ports. The node protocol is such that it
carries out this command before transmitting a reply. A properly functioning node
transmits a reply on all enabled ports to every command it receives. Since no ports are
enabled, this message should not be transmitted. Thus, the node passes this test if a reply
to the command is not received. If a node reply is received, then it is considered failed and
its status is marked accordingly. Because the execution of this test, the adjacent node has
all of its ports disabled prior to starting the third test.

The third test determines whether or not the newly added node retransmits a message on a
disabled port. This test requires three transactions to be transmitted on the layer. The first
transaction is sent to the newly added node commanding it to disable all of its ports except
its inboard port (the port that connects the node to the established layer). The second
transaction is sent to the adjacent node commanding it to enable the port facing the newly
added node for one transmission only. The third transaction is sent to the newly added
node asking for its status. If the newly added node is functioning properly, it will not
retransmit any messages, including the command making up the second transaction, to the
adjacent node. On the other hand, if it has failed such that it does retransmit a message on a
disabled port, the adjacent node will send a reply which may or may not be transmitted
back to the ICIS. In either case, the transmission of this message causes the valid message
detector for the port facing the adjacent node to record the transmission and to return this
information as part of its status message. The newly added node passes this third test if no
message from the adjacent node is received and the status indicator for the port in question
shows no valid message received on that port. However, if it fails the test, the status of the
node is marked failed.

When the above three tests have been performed for every idle port of the newly added
node, the newly added node remains configured such that only its inboard port is enabled.
It is then ready for the last test.

If the preceding tests are completed without error, the fOurth test is performed. This final
test determines if the newly added node responds to commands sent to other nodes in the
layer. In this test, each node in the layer is commanded to report its status, whether or not
it is in the active tree. If an unconnected node responds to this command, it implies that the
most recently connected node is responding to this address. Because of this protocol
violation, this node must be disconnected from the active tree. Furthermore, its status is
marked failed, since the address decoding function of the node is faulty. It is also possible
that a previously connected node could respond with errors. This means that either this

5-31

node has recently failed or the most recently added node is talking out of turn. This last
added node is then removed from the layer as described above. The node (or nodes) which
had errors on the previous test are again queried for status. If the error indicators are gone,
it confirms the talker Out of turn hypothesis, and the status of the removed node is set to
failed. If the errors are still present, it indicates that a failure has occurred during the
growth process. In the former case, the growth process is continued. In the latter case, the
growth process is restarted.

After all non-failed nodes are added to the virtual layer path, the ports adjacent to remote
FTPs are enabled. An FFP which is facing a disabled port will not detect any layer
activity. Accordingly, it may be attempting to use the layer at the time that the port is
enabled. This could result in errors being detected in the node's reply to its configuration
command. Thus any errors in the node status, which is returned after enabling the port
towards a remote FTP, are ignored.

After the initial growth of the layer is completed, the status collection chain is executed
through the root link. The chain response is analyzed to detect any discrepancies between
the node status perceived by the IC Layer Manager and the status returned by this chain.
This examination is performed to confirm or disprove the assumption that failures did not
occur during the growth. If the data returned by this chain indicates the presence of a
babbler or failed nodes which the IC Layer Manager reported as active, then a discrepancy
exists between the actual state of the layer and its state as decided during layer growth. It
cannot be determined whether these failures occurred during or after the growth of the
layer. Thus, the layer is regrown. If this second try is unsuccessful, an intermittent failure
exists on the layer. The present algorithm does not handle intermittent faults. Hence, the
layer is declared to be inactive.

5.2.4 IC Network FDIR - Layer Status Notification

After the IC Layer Manager has reconfigured the IC layer, the IC Network Manager and
System Manager are notified. If the layer has been repaired successfully, its status is
marked to in—service. Alternatively, if the layer could not be restored, it is kept
out_of_service. In either case, the IC Network Manager broadcasts a messages to all FTPs
informing them of the updated layer status.

5.3 IC Network Growth Software Specifications

5.3.1
Process Name:	 IC Network Manager

Inputs:	 Layer FDIR Request
Layer Identifier
Layer Topology
Layer Usability

5-32

Layer Status

Outputs:	 Layer Status

Requirements	 IC Network Growth Functional Requirements,
Reference:	 Section 5.1

Notes:	 None.

Description:

Each triplex or higher redundancy FTP may create an instance of the IC Network Manager
process to attempt to grow the IC Network. Since multiple FTPs may attempt the IC
network growth but only one completes it, only one FTP that activates this process will
grow the network. If an FTP does not perform the IC network growth, the associated
instance of the Network Manager is deactivated and the process becomes an Alternate IC
Network Manager. Such a Manager is only re-actuated if a network FDIR function is
migrated to the FTP that hosts it.

Conversely, if this IC Network Manager does grow the IC network, it allocates and
initializes three IC Layer Managers. Each Layer Manager is assigned to a particular layer
and is responsible for the corresponding layer FDIR. After the Layer Managers are
activated and initialized, the IC Network Manager suspends itself.

The arrival of a network FDIR request causes the IC Network Manager to resume. The
request identifies a layer that is speculated to have a faulty component. The IC Network
Manager takes the IC layer out of service, broadcasts this updated layer status to all FTPs,
and sends a repair command to the corresponding IC Layer Manager.

When the IC Layer Manager completes the FDIR process, it notifies the IC Network
Manager process by setting the Layer Usability field to repaired and informs it of the layer
status. The Network Manager process subsequently informs the System Manager and
broadcasts the updated layer status to all FTPs. After the layer status message has been
sent, the IC Network Manager suspends until another IC network FDIR request is posted.

5.3.2
Process Name:	 Send Site is Accessible Message

Inputs:	 VIP Identifier

Outputs:	 Message to System Manager

Requirements	 IC Network Growth Functional Requirements,
Reference:	 Section 5.1.2

Notes:	 None.

5-33

Description:

The Send Site is Accessible Message process is part of the IC network initialization
protocol. It is invoked by either the FTP Resource Allocator or the IC Network Manager to
inform the System Manager that this FTP has completed its local initialization procedure.
The process uses the FTP ID as an input parameter and employs the IC Communication
Services to broadcast the Site is Accessible message.

5.3.3
Process Name:

Inputs:

Outputs:

Requirements
Reference:

Notes:

Send Network is In—Service Message

FTP Identifier

Network is In—Service Broadcast

IC Network Growth Functional Requirements,
Section 5.1.2, 5.1.3

None.

Description:

The Send Network is In—Service Message process is part of the IC network initialization
protocol. It is invoked by the System Manager to inform all activated FTP Resource
Allocators that the IC network is in—service and that the System Manager has been assigned
to an FTP. The process uses the FTP ID as an input parameter and employs the IC
Communication Services to broadcast the Network is In —Service message.

Outputs:

Acknowledge Site is Accessible Message

Site is Accessible Message
Initialized FTPs
Redundancy of Initialized FTPs
Location of System Manager
System Status

Siteis Accessible Acknowledgement
Initialized FTPs
Redundancy of Initialized FTPs
Location of System Manager
System Status

5.3.4

Process Name:

Inputs:

5-34

Requirements	 IC Network Growth Functional Requirements,
Reference:	 Section 5.1.2

Notes:.	 None.

Description:

The Acknowledge Site is Accessible Message process is part of the IC network
initialization protocol. It is invoked by the System Manager to inform all activated FTP
Resource Allocators that the IC network is in—service and that the FTP which sent the Site
is Accessible message has completed its local initialization. This acknowledgement is
composed of: the FTPs that have completed initialization, the redundancy levels of these
initialized FTPs, the location of the System Manager, and other status information.

The process employs the IC Communication Services to broadcast the Site is Accessible
acknowledgement.
5.3.5
Process Name:	 Perform Network Diagnostics

Inputs:	 IC Network Topology
IC Network Configuration
1C Network Status
Status Collection Report

Outputs:	 IC Network Status
IC Network Configuration

Requirements	 IC Network Growth Functional Requirements,
Reference:	 Section 5.1.8

Notes:	 None.

Description:

After the IC network is grown and all FTPs are accessible, the Perform Network
Diagnostics process iscalled by the IC Network Manager. This procedure is used to detect
hardware faults in the spare network components, to verify that network elements were not
falsely failed during the growth, and to exercise the network nodes. It executes the
diagnostic tests in a centralized manner on a layer by layer basis.

To determine if faults exist in an IC layer's spare links and nodes, the virtual
communication path is reconfigured to employ these components. After the IC growth is

5-35

completed, the IC Network Manager is capable of communicating with each node in the
network. To verify that a spare element is working, it is cycled into the active path (by
executing a reconfiguration chain from the ICIS interface) and an attempt is made to again
communicate to all network nodes (via the Layer Status Collection process as described in
Section 5.4.7.1). If these nodes can still be reached without communication errors, then
the newly utilized component is deemed working. Alternatively, if transmission errors
occur, then the previous virtual path is restored and the element under test is marked as
failed. This process is continued until all spare network components are examined.

To verify that the components failed during the IC network growth were not falsely failed,
the IC Network Manager attempts to utilize these elements. If a failed link is being re-
tested, then the Manager cycles it into the active virtual path and attempts to communicate to
the network nodes. If all nodes respond without errors (again using the Layer Status
Collection procedure), then the link is presumed to be working. Conversely, if errors are
encountered, then the previous path is restored and the component is confirmed to be
faulty.

The diagnostic tests performed to recheck a failed node differ slightly from those used to
test a failed link. Similar to the link verification process, the failed node is tested by
attempting to communicate to it. However, each node can typically be reached by multiple
paths. The diagnostic tests select one possible route, use a reconfiguration chain to actuate
the path, and process the response from the chain to determine if the node was reached
successfully. If errors were observed, then this route to the node is considered faulty, and
another is selected. If all paths to the node under test have been checked and are faulty,
then the node is marked as failed. However, if a path to the node is found that appears

•	 error-free, then the node is deemed working. After such a node is reinstated as working,
then any links that are now spare are checked for faults.

These diagnostic tests are also performed to exercise and stress the network nodes. The IC
network growth focuses on the construction of a virtual path. This growth process does
not comprehensively check the network nodes, because of the possibility of network
contention. Accordingly, these diagnostics are employed to verify that all nodes operate as
expected. For example, these tests verify that the nodes do not transmit on disabled ports,
do not respond to the wrong address, and are capable of quick reconfiguration.

As stated earlier, several of the network diagnostic tests utilize the Layer Status Collection
procedure. The Collection algorithm returns a Status Collection Report. This Report
represents the results of a preliminary error analysis that is conducted on the nodes' status
response. This Report is reviewed by the Perform Network Diagnostics process to
determine if errors occurred in a particular test.

5-36

5.3.6
Process Name:	 IC Network Growth

Inputs:	 IC Network Topology
IC Network Configuration
IC Network Status
Iteration Results
Iteration Completed
Error Analysis Report

Outputs:	 IC Network Status
IC Network Configuration
Network Grown
Network Grown by This FTP

Requirements	 IC Network Growth Functional Requirements,
Reference:	 Section 5.1.5

Notes:	 None.

Description:

The IC Network Growth process is responsible for executing the IC network growth
algorithm. It repeatedly invokes the Execute Iteration function to incrementally add nodes
to the IC network. After each growth iteration has completed, it calls the Iteration Error
Analysis procedure to decide if the nodes were appended correctly. If communication
errors occur in an attempt to add a set of nodes, the IC Network Growth process
determines if contention occurred or hardware faults exist. Further, for each step of the
growth, it decides which set of nodes to add next and by which routes to connect them.

First, this process enters an initialization phase. This phase involves setting: the status of
the nodes and ports to idle (which initializes the IC Network Status database), each port of
IC Network Configuration to disabled, the Network —Grown flag to false, and the
Network_Grown_by_This_FTP flag to false.

As stated earlier, this process grows the IC Network incrementally. Each increment, it tries
to append three target nodes to the established IC network path. It determines the next
nodes to add, the path by which these nodes can be reached, and initializes the required
reconfiguration chains and data in the ICIS Dual Ported Memory to establish this route. It
then invokes the Execute Iteration process to attempt to create the path and waits for the
iteration to complete.

5-37

The completion of each growth iteration is indicated by the Iteration Completed flag. When
the flag is set, the IC Network Growth process calls the Iteration Error Analysis function to
determine if errors disrupted the execution of reconfiguration or status collection chains.
The Error Analysis process queries the ICIS registers and nodes' response data to detect
the presence of a transmission error (or errors). This procedure returns its results in the
Error Analysis Report record. The IC Network Growth function examines this record to
decide the resultant course of action. If errors were not encountered, the Network Status
and Network Configuration databases are updated to reflect the addition of the target nodes.
Alternatively, if one or more errors occurred, this process follows the growth algorithm, as
described in Section 5.1.5, to distinguish between network contention and hardware faults.

If an error pattern indicates that contention for the network growth occurred, this process
calls the Back Off procedure, providing the FTP ID as an input parameter. On the other
hand, if hardware faults on one or more layers are hypothesized, then it examines the
Network Topology with respect to speculated faults and, if possible, devises an alternate
route to the target nodes. Subsequently, the chains and data in the ICIS DPM are updated,
and the Execute Iteration procedure is called again.

The growth of the IC network is composed of three general steps: (1) establish a root
connection, (2) add the network nodes, and (3) enable the remote FTPs. Initially, the IC
Network Growth algorithm attempts to create three root link connections to the IC network.
The establishment of such connections requires that the root nodes be configured so that
their ports which face the FTP (that is performing the IC network growth) are enabled. If
one or more of these communication links is faulty, the FTP can not continue the growth
and backs off. Conversely, if these links are established, then the process begins to add
the nodes to the IC network. 	 -

The algorithm for determining the next set of nodes to append to the IC network path is
similar to that employed for the IC layer growth. It uses the Network Topology, Network
Status, and Network Configuration databases to decide which nodes can be added and the
route to reach them. Furthermore, it utilizes the spawning queue methodology as detailed
in Section 5.2.3.3.

Finally, after all of the reachable nodes have been connected to the IC network, the remote
FFP subscribers are given access to the network. This is performed by enabling the node
ports that face these sites. 	 -

If this process backs off, then when its back off period expires, it invokes the Send Site is
Accessible Message process. The Site is Accessible process is called to determine if the IC
network was grown while the FTP was suspended. If the network has been established,
the IC Network Growth process sets the Network —Grown flag to true and returns to the
calling procedure. If the IC network has not been constructed, it re-attempts to perform the
growth.

5-38

If this process completes the growth of the IC Network, it notifies the FTP Resource
Allocator and System Manager by setting the Network_Grown_by_This_FTP Flag.

5.3.7

Process Name:	 Execute Iteration

Inputs:	 IC Network Topology
IC Network Configuration
IC Network Status
Chain to Add Target Nodes

Outputs:	 IC Network Status
IC Network Configuration
Iteration Completed
Iteration Results

Requirements
	

IC Network Growth Functional Requirements,
Reference:
	

Section 5.1.5

Notes:
	

None.

Description:

The Execute Iteration process is called by the IC Network Growth procedure to add three
target nodes to the established virtual communication path. This process attempts this
addition by executing the three steps that comprise the iteration:

1. Request the status of the previously added nodes.
2. Execute a reconfiguration chain to append the three target nodes.
3. Request the status of the previously added nodes and the target nodes.

This is completed by executing three procedures: Execute Step 1 of the Iteration, Execute
Step 2 of the Iteration, and Execute Step 3 of the Iteration.

This process correlates the error information returned from the aforementioned steps and
uses the Iteration—Results record to send the information to the IC Network Growth
procedure. In addition, the completion of an iteration is signaled by setting the
Iteration—Completed flag.

5-39

5.3.7.1
Process Name:

Inputs:

Outputs:

Requirements
Reference:

Execute Step 1 of the Iteration

Node Status Collection Chain

Chain Data Response.

IC Network Growth Functional Requirements,
Section 5.1.5

Notes:
	

None.

Description:

The Execute Step 1 of the Iteration executes the Node Status Collection Chain which
queries each node in the IC network (whether connected or not) for its status. The process
saves the relevant ICIS register information and the nodes' status response (in the Chain
Data Response record) to be subsequently examined. This information must be recorded
after the execution of the chain, because the execution of steps 2 and 3 over-writes the
return data.

5.3.7.2

Process Name:

Inputs:

Outputs:

Requirements
Reference:

Execute Step 2 of the Iteration

IC Network Reconfiguration Chain

Chain Data Response

IC Network Growth Functional Requirements,
Section 5.1.5

Notes:
	

None.

Description:

The Execute Step 2 of the Iteration executes the IC Network Reconfiguration Chain which
attempts to configure three target nodes so as to add them to the established virtual IC path.
The process saves the relevant ICIS register information and the nodes' status response (in
the Chain Data Response record) to be subsequently examined. This information must be
recorded after the execution of the chain, because the execution of step 3 over-writes the
return data.

5-40

5.3.7.3
Process Name:

Inputs:

Outputs:

Requirements
Reference:

Execute Step 3 of the Iteration

Node Status Collection Chain

None

IC Network Growth Functional Requirements,
Section 5.1.5

Notes:
	

None.

Description:

The Execute Step 3 of the Iteration executes the Node Status Collection Chain which
queries each node in the IC network (whether connected or not) for its status. The process
does not read the relevant ICIS register information or the nodes' status. This data is read
directly by the Iteration Error Analysis procedure.

5.3.8
Process Name:	 Iteration Error Analysis

Inputs:	 IC Network Topology
IC Network Configuration
IC Network Status
Iteration Results

Outputs:	 IC Network Status
IC Network Configuration
Error Analysis Report

Requirements	 IC Network Growth Functional Requirements,
Reference:	 Section 5.1.5

Notes:	 None.

Description:

This Iteration Error Analysis process reviews the results of the three steps of the iteration to
determine if errors occurred during their execution. The data from steps 1 and 2 are passed
into this procedure while the data from step 3 is retrieved directly from the ICIS DPM. The
results attained from this examination are returned to the IC Network Growth process in the
Error Analysis Report.

5-41

The resultant Error Analysis Report provides the IC Network Growth Algorithm with a
summary of the error information obtained from a preliminary analysis of the response data
from the reconfiguration and status collection chains. When the ICIS transmits messages
on the layer to a node, it observes aspects of the communication and records those
observations in registers and buffers for later processing. This constitutes a first stage of
fault detection, and it includes detection of: the failure of a node to respond to a command
in a reasonable length of time, the presence of transmission errors on the layer, an incorrect
number of bytes in a response, and other violations of the communication protocol. In
addition to detecting errors on transactions to individual nodes, the overall performance of
the layer is monitored for failures which impede the proper functioning of the contention
sequence. These failures include a babbler which is flooding the bus with meaningless
signals and a data line which is holding the layer in a "stuck on one" condition.

This Error Analysis Report presents a summary of the information provided by the ICIS
with conclusions drawn about the following error conditions: an interface failure, a
babbler, and individual errors detected for each node. If the summary reports that an
interface failure has occurred, it also states whether the cause is a failed ICIS or a failed
channel connected to the active ICIS. If the summary reports that a babbler is present on
the layer, it also specifies whether the babbler was detected during contention for the layer
or during data transmission. When either of these errors are present, no further data is
provided since the integrity of this data is in question. Finally, if neither an interface failure
or a babbler is detected, an error indicator is provided for each active node in the layer.
This error indicator simply notes that an error has occurred. The error could be due to a
variety of causes, including a no response error, an H1)LC protocol violation, or a check
sum error. The type of error is is not passed back in the Error Analysis Report since the IC
Network Growth Algorithm does not require this level of granularity.

5.3.9
Process Name:	 Re-execution Delay

Inputs:	 FTP Identifier

Outputs:	 None

Requirements	 IC Network Growth Functional Requirements,
Reference:	 Section 5.1.5

Notes:	 None.

5-42

Description:

This Re-execution Delay process detains the re-execution of a Growth Iteration to avoid
successive network contention incidences. Each FTP will delay a different non-zero length
of time before re-executing steps 1 - 3. This delay is incorporated to ensure that if two or
more FTPs "directly contend" during the first execution of the chains, then they will not
contend during the second execution. (In this context, direct contention occurs when two
or more chains are executed at exactly the same time by different FTPs, thus causing the
loss of or errors in the expected node responses). The delay that is imposed must be
greater than the time required to execute and process steps 1 - 3 (the Delay >= FTP_ID *
worst case time to process the iteration).

5.3.10
Process Name:	 Back Off

Inputs:	 FTP Identifier
Worst Case Growth Time

Outputs:	 None

Requirements	 IC Network Growth Functional Requirements,
Reference:	 Section 5.1.7

Notes:	 None.

Description:

If an FTP that is growing the IC network detects that another FTP is also attempting the
growth, it will back off. That is, the IC Network Manager on this site stops performing the
growth and delays a predetermined period of time. This back off period is calculated using
the following equation:

Delay = [((# of triplex FTPs) - 1) + ((VIP_ID - 1) * 2)] * (Worst Case Grow Time)

The Worst Case Grow Time is the primary factor in the back off delay, because it is the
basic offset necessary to avoid network contention. The ((# of triplex FTPs) - 1)
component is used to create a non-zero offset that is based on the maximum number of
FTPs that could contend for the growth. Further, the (FTP_ID - 1) component is utilized
to prioritize the FTPs contending for the growth. Finally, the factor of 2 is required to
allow enough time to grow the IC network when consecutive numbered sites contend and
back off.

5-43

The back off equation is not designed to minimize the IC network growth time in the
presence of network contention. The equation is designed to ensure that the IC network
can be successfully grown even if two or more FTPs contend for growth of the network.

This Back Off process employs the aforementioned equation to determine the back off
period and then suspends the IC Network Manager for this time period.

5.4 IC Network FDIR Software Specifications

5.4.1
Process Name:	 IC Layer Manager

Inputs:	 Layer Identifier
Layer FDIR Request
Layer Topology
Layer Status
Layer Topology

Outputs:	 Layer Status
Layer Usability
Layer Configuration

Requirements	 IC Network FDIR Functional Requirements,
Reference:	 Section 5.2.1, 5.2.3

Notes:	 None.

Description:

An instance of this process is created for each layer of the IC network. Each process
remains in a quiescent state until it is activated by the IC Network Manager. At any given
time, only one actuated IC Layer Manager exists for a specific layer. The activation of this
Layer Manager only requires the scheduling of the process on the associated FTP.
Memory allocation, process instantiation, and the initialization of variables used by this
process will already have taken place. As a result, the actuation of a Layer Manager can be
accomplished very quickly if necessary.

When a Layer Manager process is created, some software initializations take place which
need to be performed by this process only once. These include: obtaining the Layer
Identifier of the layer it will manage, reading the Layer Topology from the Layer Topology
Database, and retrieving a copy of the Layer Status. This sequence is accomplished during
the power on phase of system operation. This preliminary work is not considered part of
the routine operation of the Layer Manager.

5-44

Once it has been activated, the Layer Manager is responsible for maintaining its assigned
layer. It uses the Layer Status Collection procedure (discussed in Section 5.4.7.1) to query
the layer to determine: (1) if a fault exists and (2) if the interface from this FTP to the layer
is working. If this query does not detect a fault, then the IC Layer Manager presumes that
the fault was transient or lies external to the layer. Accordingly, the process informs the IC
Network Manager and returns the layer status to in_service. Alternatively, if the FTP
interface to this layer is faulty, it notifies the IC Network Manager and FTP Resource
Allocator and assists in the migration of the Layer Manager function. If the interface is
working and a layer fault exists, the IC Layer Manager invokes the error analysis and
reconfiguration subprograms to perform layer FDIR (described in Sections 5.4.7).

Each time the Layer Manager initializes or reconfigures a layer in response to a call from the
IC Network Manager, it indicates that it has completed its actions by writing a value of
repaired to the Layer Usability field. In addition, it indicates the status of the layer in the
Layer Status field, either in service or out_of_service. The IC Layer Manager also informs
the IC Network Manager of the existence of hardware faults and the occurrence of transient
faults.

5.4.2
Process Name:	 IC Layer Growth

Inputs:	 Layer Identifier
Layer Topology
Diagnostics Option
Layer Status
Layer Configuration

Outputs:	 Layer Status
Layer Configuration

Requirements	 IC Network FDIR Functional Requirements,
Reference:	 Section 5.2.3.3

Notes:	 None

Description:

This process makes two attempts to grow the designated layer which is specified in the IC
Layer Topology Database. The Layer Topology describes all of the interconnections which
exist in the layer on a node by node basis. Layer growth is accomplished by a set of nested
subprograms. The outermost subprogram verifies and validates the results of a second
inner subprogram which assumes that, although hardware faults may be present in the layer

5-45

before the growth process commences, no additional faults will occur while growth is
being performed. This inner subprogram conducts the majority of the layer growth. It
calls other subprograms to perform the layer growth and then returns a boolean parameter
to its caller indicating whether or not the layer has been grown successfully. For growth of
a layer to be considered successful, an active root link must connect the FTP to the layer,
and all non-failed nodes in the layer must be part of the active tree. If the subprogram
indicates that growth is not successful, it is called a second time. Alternatively, if the
growth is successful, the outermost subprogram of the IC Layer Growth process executes
a status collection chain. Further, it analyzes the resultant status data looking for any
discrepancies between the nodes' status as perceived by the Growth procedure and that
returned by the chain. This is to confirm or disprove the assumption made by the inner
growth subprogram that failures did not occur in the layer during growth.

If the data from this status chain indicates the presence of a babbler, a failed ICIS, or failed
nodes which the growth process reported as active, then a discrepancy exists between the
real state of the layer and its state as recorded by the inner subprogram. It can not be
determined whether these failures occurred after or during the layer growth. Thus, if a
discrepancy exists, the layer is regrown. If the second try is unsuccessful, a serious
problem exists on the layer requiring either a function migration or operator intervention to
correct the problem. The choice of action is made by the System Manager.

As mentioned, faults can occur during layer growth. If such faults are detected, the growth
process Is restarted. This subprogram tries up to two times' to grow the layer. If faults
continue to occur during the growth process, then the subprogram informs the IC Layer
Manager that growth was not successful.

The growth of the layer begins by establishing an active root link to the root node and
ensuring that this root node has a port which can be used as the springboard to the rest of
the nodes in the layer. If the root link is working, the remaining nodes are added to the
active tree. This process conducts an exhaustive search for a properly functioning
connection to every node in the layer. Once a particular connection is established, the
status of the associated node is upgraded to active. The failure of a single port of a node
does not cause the entire node to be considered failed.. Some nodes may not be reachable
by any path. However, the identity of these unreachable nodes will be apparent only after
this phase of the growth process is complete. If a node has a status of idle after layer
growth is completed, then it is not reachable by any port and its status is changed to failed.
In addition, after the layer is established through the active root link, the ports adjacent to
remote FTPs are enabled.

The growth process is summarized below. Further details on each aspect of the process
are available in the indicated sections.

5-46

Repeat until growth is successful or two attempts fail to produce a stable layer
Establish a working connection to a root node (5.4.3)
If an active root link is established then

Add remaining nodes to the layer (5.4.4)
Mark idle nodes failed
Add Remote FTPs (5.4.6)
Collect Node Status from all layer nodes as defined by topology (5.4.7.1)
Validate Layer Status
If no discrepancies in Layer Status then

Layer is grown successfully

5.4.3
Process Name:	 Establish Root Link

Inputs:	 Layer Identifier
Layer Topology
Diagnostics Option
Layer Status
Layer Configuration

Outputs:	 Layer Status
Layer Configuration
Spawning Queue
Active Root Link

Requirements	 IC Network FDIR Functional Requirements,
Reference:	 Section 5.2.3.3

Notes:	 None

Description:

This process is the first step in the growth of a layer. Its job is to set up a properly
functioning a connection to the layer. The hardware involved in the connection consists of
an ICIS, the root node, and the link between them. Establishing the connection is a two
step procedure. It requires that this hardware be configured to support communication
between the FFP and the root node and that the operation of this hardware be verified.

If a successful connection to the root node can be made, the value of the Active Root Link
flag is set to true to indicate to the calling subprogram that a communication link has been
established. Additionally, the Spawning Queue is initialized with the root node.
Conversely, if no root link is established, the value of the Active Root Link flag is set to
false.

5-47

To set up a root link, the root node is configured so that its port facing the ICIS is enabled
and all of its other ports are disabled. This is accomplished by preparing a reconfiguration
command (causing it to configure its ports as described) and then executing a chain which
sends this command to the root node. After the chain is executed, the response from the
root node is examined to determine if any communication errors occurred.

The second step in setting up the root link is to verify that the communication hardware is
operating properly and that this root node can be used as a springboard to the rest of the
layer. The absence of errors in the first step is evidence of a properly functioning full
duplex communication link, and it implies that the ICIS and node hardware is fully
operational. If the Diagnostics Option has been selected, a full set of diagnostic tests are
conducted on the root node. These are described in more detail in Section 5.4.5. If the
root node passes all the diagnostic tests or if the tests are bypassed because the Diagnostics
Option is not chosen, a determination is made about the ability of the root node to function
as a jumping off point for the addition of the remaining nodes in the layer. If diagnostic
tests are performed, this determination is made by identifying a non-failed port on the root
node which is adjacent to another node. This is performed by querying the Layer
Topology and the Node Status information. However, in the case when diagnostic testing
is bypassed, this is accomplished by finding a link to an adjacent node which can be
enabled to support full duplex communication. If such a link is found, the status of the
root node, its port facing the ICIS, and the ICIS interface is marked active. Furthermore,
the configuration of the root node is recorded in Layer Configuration. The Layer
Configuration indicates that this node's enabled port is designated as Inboard and the other
ports are specified as Idleport. This process is then complete.

The preceding paragraph describes the actions taken by this process if no protocol errors
are detected when the configuration command is sent to the root node. When errors are
detected, they are processed before a second try is made. The error processing proceeds as
follows. If the error detected is a channel failure, a retry is not undertaken since it is
unlikely that the channel can be restored in time to make this a viable root link. Instead, the
Interface Status is marked Failed Channel and the Layer Manager informs the IC Network
Manager. If any other errors are detected such as no response or HDLC protocol errors,
the same configuration chain is simply run a second time. If errors are detected on the
second try, the ICIS and the status of the port adjacent to the ICIS are marked failed, and
the IC Layer Manager informs the IC Network Manager of the fault.

5.4.4

Process Name:	 Adding Nodes to Layer

Inputs: Layer Identifier
Layer Topology
Diagnostics Option

5-48

Layer Status
Layer Configuration
Spawning Queue

Outputs:	 Layer Status
Layer Configuration
Layer Subscribers

Requirements	 IC Network FDIR Functional Requirements,
Reference:	 Section 5.2.3.3

Notes:	 None

Description:

This growth algorithm generates the shortest path from the source FTP to any node in the
layer. Furthermore, if a path exists to any node in a layer, this algorithm ensures that it will
be found and activated, even if the layer is degraded by failures.

This subprogram is called into service after Establish Root Link (Section 5.4.3) has
established a fully operational link to a root node of this layer. The root node is the first
entry in the spawning queue, a data structure that is used to control the growth of the layer.
An entry in the queue -consists simply of the number of the node which has been
successfully added to the layer but from which growth has not yet taken place. Two

- pointers are used to mark positions in the queue: the Top and the Next Entry. The Top
points to the node in the queue from which growth is currently taking place. This node is
called the spawning node. The Next Entry points to the next empty position in the queue.
As nodes are added to the layer, they are placed on the spawning queue at the Next Entry
point and the Next Entry point is incremented to an empty position in the queue. The
spawning queue thus grows from the bottom. As growth of the layer proceeds, the
topmost node in the spawning queue is removed from the queue and used as the jumping
off point for further growth. The growth algorithm then enters a loop in which each node
in the spawning queue is processed in turn until the spawning queue is empty.

The processing of the spawning node proceeds on a port by port basis. The action taken
depends on the kind of element found adjacent to each port. The identity of that element is
obtained from the Layer Topology. If the adjacent element is a remote FTP, the spawning
node and the port of the spawning node that faces the FTP is placed on the subscriber list.
These ports will be enabled after the layer growth is complete. However, if the adjacent
element is a node whose status is idle, i.e. not yet part of the active tree, an attempt is made
to set up a functional link to that node (which is referred to as the target node). If the
attempt is successful, the target node is placed at the end of the spawning queue. Creating
such a link requires that a port of the spawning node and a port of the target node be

5-49

enabled; the spawning node is enabled first. If the attempt to enable the link between these
nodes is not successful, the nodes are disconnected. If the reason for the failure is the
detection of a babbler, this subprogram runs a babbler test to ensure that the attempt to
disconnect the babbling node was successful. If it is not, an exception is raised which
causes the growth to begin again from the start. If the attempt to enable the link is not
successful, the link is left in an disconnected state and the status of the corresponding two
ports are marked failed, if the link is connected successfully and the Diagnostics Option is
not selected, the target node is added to the spawning queue, its status is marked active,
and the status of the ports connecting the spawning node and the target node are marked
active. Additionally, the updated configuration of the spawning and target nodes is
recorded in Layer Configuration (the configuration of the spawning node's port is marked
outboard and target node's port is marked inboard, reflecting the flow of data with respect
to the ICIS). However, if the Diagnostic Option is selected, the target node is subjected to
a set of diagnostic tests which it must pass before being added to the spawning queue.
These tests are described in Section 5.4.5. If it does not pass these tests, the status of the
target node is marked failed. If it passes the diagnostics, it is added to the spawning queue
and the various status fields are updated as before. When all ports of the spawning node
have been processed in this way, the next node in the spawning queue becomes the new
spawning node. Layer growth continues until the spawning queue is empty.

As mentioned above, this algorithm detects and isolates babbling layer components, thus
making it a useful backup tool for layer maintenance. When a port of a spawning node
adjacent to a babbler is enabled, the babbler is detected, because its babbling transmissions
interfere with the spawning node's status report (which is sent following the node's
reconfiguration). Following the detection of the babbler, the spawning node is sent another
command instructing it to disable the port adjacent to the babbler, thus isolating the babbler
from the rest of the properly functioning layer. The method works because the layer links
are full duplex and the reconfiguration command will reach the spawning node through the
data line not corrupted by the babbler.

5.4.5
Process Name:	 Diagnostic Testing

Inputs:	 Node Under Test
Inboard Port of Node Under Test
Layer Identifier
Layer Topology
Layer Status
Layer Configuration

Outputs:	 Layer Status
Layer Configuration
Passed Diagnostic Tests

5-50

Requirements	 IC Network FDIR Functional Requirements,
Reference:	 Section 5.2.3.3

Notes:	 None

Description:

For each port of the Node Under Test that is adjacent to an idle node, a series of fault
detecting diagnostic tests is performed; The tests. aresequential in- nature, and if any test
fails, the remaining tests in the sequence are not performed. The first test determines if the
link between two nodes can be activated. The second test determines whether or not the
adjacent node transmits on a port that has been disabled. The third test determines whether
or not the Node Under Test retransmits a message on a disabled port. If this suite of tests
is completed without any errors, the last test is performed. This final test determines if the
Node Under Test responds to the address of another node in the layer.

The first test is performed by using a reconfiguration chain to establish a link between the
Node Under Test and an adjacent node. If the attempt to enable the link is successful, the
link is left in the enabled state so that the next test can be executed.

In the second test, a configuration command is sent to the adjacent node, utilizing the link
enabled during the first test, instructing it to disable all its ports. The node protocol is such
that it will carry out this command before transmitting a reply. A properly functioning node
transmits a reply from all enabled ports to every command it receives. Since no ports are
enabled, this message should not be transmitted. Thus, the node passes this test if a reply
to the command is not received. If the node sends a reply, it is considered failed and its
status is marked accordingly. Prior to starting the third test, the adjacent node has all its
ports disabled.

In the third test, a chain of three transactions is transmitted on the layer. The first
transaction is sent to the Node Under Test commanding it to disable all of its ports except
its inboard port which connects it to the established layer. The second transaction is sent to
the adjacent node commanding it to enable the port facing the Node Under Test for one
transmission only. The third transaction is sent to the Node Under Test asking for its
status. If the Node Under Test is functioning properly, it will not retransmit any messages,
including the command making up the second transaction, to the adjacent node. On the
other hand, if it is has failed such that it does retransmit a message on a disabled port, the
adjacent node will send a reply which may or may not be transmitted back to the ICIS. In
either case, the transmission of this reply will cause the the Node Under Test's valid
message detector for the port facing the adjacent node to record the transmission and this
information is returned as part of its status message. The Node Under Test passes this
third test if the status indicator for the port in question shows no activity and a valid

5-51

message was not received. If the Node Under Test fails, its status and the status of its
ports are marked failed.

When the above three tests have been performed for every port of the node under test
adjacent to an idle node, the node under test is configured so that only its inboard port is
enabled. It is then ready for the last test.

In the last diagnostic test, each node in the layer is commanded to report its status, whether
or not it is in the active tree. If an unconnected node (i.e. one which is not on either the
spawning queue or the active node list) responds to this command, the most recently
connected node is answering to this address. This newly added node is then disconnected
from the active tree by disabling its inboard port. Furthermore, its status in Node Status is
marked failed, since the address decoding function of a node is faulty. It is also possible
that a previously connected node could respond with errors. This means that either this
node has failed or the most recently added node is talking out of turn. This last added node
is then removed from the layer as described above. The node or nodes which had errors on
the previous test are again queried for status. If the error indicators are gone, it confirms
the talker out of turn hypothesis, and the Status of the removed node is set to failed. If not,
it indicates that a failure has occurred during the growth process. In the former case, the
growth process is continued. In the latter case, the growth process must begin again from
the start.

5.4.6
Process Name:	 Adding Remote FTPs

Inputs:	 Layer Identifier
Layer Topology
FTP Subscriber List
Layer Status
Layer Configuration

Outputs:	 Layer Status
Layer Configuration

Requirements	 IC Network FDIR Functional Requirements,
Reference:	 Section 5.2.3.3

Notes:	 None

Description:

The ports adjacent to the FTP subscribers are enabled one at a time. Since an FTP which is
facing a disabled port will not detect any layer activity, it may be attempting to use the layer

5-52

at the time the port is enabled. This could result in errors being detected in the node's reply
to its configuration command. Therefore, errors in the node status, which is returned after
enabling the root node port of a FTP, are ignored. To verify that the FTP is not babbling,
however, the manager must ask for a status read of that node. If the FTP is babbling, that
port is returned to a disconnected configuration. This phase of layer growth is complete
when all the ports on the subscriber list have been enabled and verified for proper
functioning. The Node Configuration and Node Status databases are updated after each
reconfiguration transaction is executed and confirmed.

5.4.7
Process Name:	 Layer Maintenance

Inputs:	 Layer Identifier
Layer Topology
Layer Status
Layer Configuration
Error Report

Outputs:	 Layer Status
Layer Configuration

Requirements	 IC Network FDIR Functional Requirements,
Reference:	 Sections 5.2.3

Notes:	 None

Description:

The various services provided by this process are invoked by the IC Layer Manager. The
services provided are: status collection from the nodes in the, layer, fault analysis, and layer
reconfiguration. If errors are detected during the IC Communications, the IC Network
Manager takes that layer out of service and allows the Layer Manager to have sole access to
the layer until it has restored full service to all non-failed layer nodes and subscribers.

5.4.7.1
Process Name:

Inputs:

Outputs:

Requirements

Layer Status Collection

Layer Identifier
Layer Topology

Status Collection Report

IC Network FDIR Functional Requirements,

5-53

Reference:	 Section 5.2.3

Notes:	 None.

Description:

The Layer Status Collection process is the fault detection mechanism of the Layer Manager.
When this subprogram is called, it is assumed that the Layer Manager is in control of the
interface to the layer, i.e. that the IC Network Manager has taken the layer out of service.
In addition to collecting status from each non-failed node in the. layer, this subprogram
performs some preliminary analysis of error information. This information is obtained by
the ICIS when it executes the status collection chain.

The Status Collection Report provides the Layer Manager with a summary of the error
information obtained from a preliminary analysis of the response data from the status
collection chain. When the ICIS transmits messages on the layer to a node, it observes
aspects of the communication and records those observations in registers and buffers for
later processing. This constitutes a first stage of fault detection, and it includes detection
of: the failure of a node to respond to a command in a reasonable length of time, the
presence of transmission errors on the layer, an incorrect number of bytes in a response,
and other violations of the communication protocol. In addition to detecting errors on
transactions to individual nodes, the overall performance of the layer is monitored for
failtires which impede the proper functioning of the contention sequence. These failures
include a babbler which is flooding the bus with meaningless signals and a data line which
is holding the layer in a "stuck on one" condition.

The Status Collection Report presents a summary of the information provided by the ICIS
with conclusions drawn about the following error conditions: an interface failure, a
babbler, and individual errors detected for each node. If the summary reports that an
interface failure has occurred, it also states whether the cause is a failed ICIS or a failed
channel connected to the active ICIS. If the summary reports that a babbler is present on
the layer, it also specifies whether the babbler was detected during contention for the layer
or during data transmission. When either of these errors are present, no further data is
provided since the integrity of this data is in question. Furthermore, the Layer Manager's
strategies for reconfiguring the layer to eliminate these problems do not require information
about individual nodes. Finally, if neither an interface failure or a babbler is detected, an
error indicator is provided for each active node in the layer. This error indicator simply
notes that an error has occurred. The error could be due to a variety of causes, including a
no response error, an H.DLC protocol violation, or a check sum error. The type of error is
logged in the IC Layer Error Log, however, it is not passed back to the Layer Manager,
since its logic does not require this level of granularity to correctly reconfigure the layer.

5-54

5.4.7.2
Process Name:	 Layer Fault Analysis

Inputs:	 Layer Identifier
Layer Topology
Layer Configuration
Status Collection Report

Outputs:	 Error Analysis Report

Requirements	 IC Network FDIR Functional Requirements,
Reference:	 Section 5.2.3.1

Notes:	 None.

Description:

The purpose of this process is to analyze the data provided by the Status Collection Report
in order to identify both the type of fault responsible for the errors and, if possible, the
layer element itself. Two types of analysis are performed: data analysis and error analysis.
Each is described in this section.

The data is screened for errors first by the data analysis procedure and then by the error
analysis procedure. In some cases, the analysis of the fault is not completed by these
procedures, and additional information is necessary before a final conclusion can be drawn.
In such cases, the analysis is continued by the Layer Reconfiguration function. This
process is discussed in detail in Section 5.4.7.3. That section also describes the actions
taken by the Layer Reconfiguration algorithm in response to the various conclusions
arrived at in the layer fault analysis process that is discussed here.

Data analysis is the process whereby the status information returned by the nodes is
reviewed for the purpose of extracting information about faults in the layer. This process
examines the information in the Status Collection Report to determine if a node is
transmitting on a port that should be disabled. The transmission may be simple, random
noise or a valid message retransmitted by a disabled port due to some fault in the node
hardware. This is detected when a node records any activity on the layer (i.e., a change in
voltage from low to high or vice versa) or the reception of a valid transmission by a non-
failed port which the Layer Configuration shows to be disabled or idle. (Adjacent ports are
always in the same configuration, either both enabled or both disabled. They also have the
same status, either both active, both idle or both failed.) Initially, this algorithm decides if
a babbler is present, because a babbler causes the network nodes to return invalid data. If
such a fault is not detected, then this process analyzes the data from the error-free node
responses, determines the nodes that have received port activity, and examines the origin of

these messages. If a non-failed, disabled port reports the reception of•a message, the node
adjacent to that port is transmitting on a disabled port. If a node is located with such a fault
signature, then the fault is attributed to the node transmitting on the disabled port and the
error report indicates this fact along with the ID of the faulty node. In contrast, if more
than one node is found to have this fault, a report indicating an unsuccessful analysis is
returned by this procedure. Finally, if such a fault is not present in the layer, the report that
is returned by the analysis indicates no data errors were found.

Error Analysis is the second procedure in layer fault analysis. As its name implies, error
analysis is the process of deducing which layer element produced the set of errors recorded
in the Status Collection Report. Of course not all sets of errors are amenable to analysis.
The input space of this subprogram has many combinations which do not pinpoint a
specific layer component as being faulty. In these cases, the subprogram returns a value of
undiagnosable errors. Furthermore, the assumption underlying all the deductive reasoning
in the error analysis is that only one component has failed, and this failure gives rise to all
the error symptoms.

If the Status Collection Report indicates that an interface failure has occurred, the error
analysis report attributes the errors to a root link failure, indicating the root link which
failed and the cause of the failure, either failed ICIS or failed FTP channel. In a similar
manner, if a babbler is reported, the error analysis report attributes the errors to a babbler.
If neither of these errors is present, the analysis proceeds with an examination of the errors
attributed to non-failed nodes in the layer. 	 -

If all the nodes in the layer have errors, the error analysis report attributes the errors to a
root link failure, indicating the cause as a failed ICIS. If some nodes have errors and some
do not, two possible failure modes are considered: (1) a failed link (or node) through which
no transmission takes place or (2) a single node failure. The single node failure symptom
could be indicative of a node which does not respond to commands but which continues to
retransmit messages as it did before the failure. It could also be a node which itself is not
failed but to whose address another node in the layer responds. The single node failure is
easy to diagnose since exactly one node in the Status Collection Report shows an error.
The reconfiguration strategy used in this case is described in Section 5.4.7.3.

If two or more but fewer than all nodes have errors, the remaining problem is to determine
if the cause of those errors is a link or node whose transmission/retransmission function is
no longer operational. The basic idea is that when a link or a node fails in this way, then
all nodes downline of this fault also have errors. The signature of such a failure is these
nodes form a treelike pattern in the layer. It should be noted that another failure mode
which would produce a similar pattern of errors is a node which babbles on all its outboard
ports. To determine if the observed errors fit this case is a three step process. The first
step is to identify a node which qualifies as the root of the failed tree. Such a node is a
node which had errors itself but which has an inboard port (the port which receives

5-56

commands sent by the ICIS) adjacent to a non-failed node. To verify this fault hypothesis,
exactly one such node should have this characteristic. If more than one such node exists,
the fault is considered undiagnosable. However, if a root is found, the second step is to
determine whether or not all nodes downline of the root have errors attributed to them.
This is accomplished by a recursive subprogram. The subprogram accepts a node as a
parameter; the node is referred to as the current node. The first call to the subprogram
uses the root of the failed tree as the input parameter. The subprogram examines the nodes
adjacent to the outboard ports of the current node. If any of these nodes does not have
errors attributed to it, the subprogram returns a value of false and the fault is considered
undiagnosable. However, if a treelike pattern is established, the -third step of the pattern
checking process can proceed. This step verifies that all nodes which had errors appeared
in the failed tree, i.e. no nodes with errors lie outside the tree. If nodes with errors are
found outside the tree, the fault is considered undiagnosable. If all three steps in the
process support the failed link/failed node hypothesis, an error analysis report is returned
stating the fault is a failed link or a failed node. Additional information contained in the
report is: the node number of the failed root of the tree, the port number of the inboard port
of this node, and a list of nodes in the tree. The final determination of whether or not the
fault is due to a failed link or a failed node is made during layer reconfiguration.

5.4.7.3
Process Name:	 Layer Reconfiguration

Inputs:	 Layer Identifier
Layer Topology
Layer Configuration
Layer Status
Error Analysis Report

Outputs:	 Layer Status
Layer Configuration

Requirements	 IC Network FDIR Functional Requirements,
Reference:	 Section 5.2.3.2

Notes:	 None.

Description:

The purpose of this process is to reconfigure the layer so as to restore error free
communication to all reachable, non-failed nodes in the layer. The action taken by this
process will depend upon the type of failure reported in the Error Analysis Report. The
fault identified in this report is actually a speculation about what is causing the errors on the
layer. This process in effect tests this hypothesis and then verifies that the layer is again

5-57

fully operational. Thus the layer may go through several intermediate configurations before
the reconfiguration process is complete.

There are five classes of faults identified by the Layer Fault Analysis process described in
Section 5.4.7.2. They are a babbler, a link or node failure, a node which transmits on a
disabled port, a single node failure, and an undiagnosable failure. The Error Analysis
Report indicates which one of these failure modes is presently causing disruptions on the
layer. Depending on the type of fault, it may also contain some additional information
about the the source of the problem. A separate strategy exists to deal with each of these
fault classes.

The reconfiguration process is considered complete when the node status chain is executed
on the reconfigured layer and does not detect any errors. Further, the backup stratagem for
dealing with error phenomena which occur during a reconfiguration attempt but which are
not anticipated is layer regrowth.

The reconfiguration strategies are designed to deal with both active and passive faults.
Passive faults are characterized by the non-retransmission of data, sort of a barrier or
obstacle to data flow in the layer. A disconnected cable is an example of such a fault; data
cannot be retransmitted over this cable but transmission between other connections in the
layer is not affected. Active faults are characterized by the disruption of data flow in the
layer beyond the boundaries of the failed component itself. An ICIS with a transmitter
stuck on high is an example of this type of fault; the stuck on condition is retransmitted
throughout the layer, possibly disrupting transmissions between all layer connections.
Since the same error conditions generated by a broken root link could also be generated by
an ICIS stuck on high, the reconfiguration algorithm must identify the specific cause of the
problem so as to effect a repair.

When a babbler is detected in the layer, the layer is regrown without the diagnostic option
since the detection and isolation of a babbler does not require any diagnostic testing.

A subprogram called Repair Link or Node Failure is called to handle layer reconfiguration
when the Error Analysis Report indicates the presence of a failed link or node. Since a
failed node generates the same error pattern as a failed link, this subprogram must
determine which fault has actually occurred and reconfigure the layer accordingly. The
Error Analysis Report contains the node number of the node suspected to be failed, its
inboard port, and a list of nodes which are unreachable as a result of this failure. It is first
assumed that a link has failed. The failed link is disconnected, and an attempt to reach the
failed node, i.e. the node immediately downline from the link, is made by using any spare
ports on that node which are adjacent to non-failed nodes. The chain used to reconnect this
node to the rest of the layer contains three transactions. The first two transactions enable
the ports on either side of the new inboard link; the third transaction disables the former
inboard port of this node in case the node adjacent to that inboard port is a babbler. If this
strategy fails to restore communication with the failed node (possibly because no spare

5-58

ports are available), data is assembled which will allow each branch of the failed tree to be
reconnected to the active layer. This data consists of a list of nodes for each branch
stemming from the failed node (i.e. a separate list for each set of nodes which lie downline
of each of its outboard ports). Only one successful connection to any spare port on a
branch is necessary to restore communication to the entire branch (and possibly to the failed
node and all other nodes in the failed tree). Again a three transaction chain is used, this
time for a different purpose. The first two transactions enable the ports on either side of the
new link while the third transaction attempts to obtain status from the failed node. If the
failed node correctly returns its status, the repair is complete and the absence of errors is
verified by collecting status from every node in the layer. If the failed node is still not
reachable, the port connecting this node to the present branch is disconnected and the
proper functioning of the newly enabled link is verified. Then all nodes on this branch are
removed from the failed node set. The net effect of this process is to restore
communication with all reachable nodes in the layer while isolating the failed node. As
communication to each branch is restored, the possible pool of spare links increases. Thus
if any branch was not connected because of a lack of spare links, this branch is retried
whenever a connection to another branch is successful. Any nodes which are still
unreachable at the end of this exhaustive process are assigned a status of failed.

If a node retransmits valid data on a port which should be disabled, the node must be
removed from the layer. This failure mode is distinguished from a babbler which is always
transmitting a random bit stream or is stuck on one. When a babbling port is identified, the
adjacent port of the neighboring node is disabled. This neighboring node will not
retransmit on its other enabled ports anything received by the disabled port. Furthermore,
the node will ignore any random bit patterns it receives. However, if the neighboring node
receives a request for its status on a disabled port (as might occur if a failed node is
transmitting on a disabled port), it will transmit its status on all of its enabled ports. If this
failed node is not removed, each time the Layer Manager asks for status from the node
adjacent to this port, it would receive two valid commands to report its status, which will
result in two status responses. However, only one response is expected. Once the first
response is received by the Layer Manager, another node will be commanded to report its
status. The second response of the node may interfere with the reply of a node whose
transaction is later in the chain, making it appear that this next node has failed to respond
correctly to a command. Once the failed node has been removed from the layer, status is
collected from the remaining nodes to verify that in fact the fault has been identified and
isolated. If errors are still detected in the layer, a full regrowth, with a complete set of
diagnostic tests, is performed.

The subprogram which removes a node from the layer is called Remove Failed Node and
Reconnect to Trees. As the name implies, removal of a node is a simple matter if the node
is a leaf; only the link connecting it. to the layer needs to be disconnected. This is
accomplished with one chain. However, if the node is the root of a subtree in the layer, the

5-59

nodes downline from the failed node need to be reconnected to the layer through alternate
links.

Prior to beginning the reconfiguration of the layer, the nodes downline of each outboard
port of the failed node (i.e. the nodes on each branch of the tree emanating from the failed
node) are added to a reconnection queue. Each of these nodes is also added to a set of
unreachable nodes. The link connecting the inboard port of the failed node to the rest of the
layer is then disabled. Next, a loop is entered in which an attempt is made to reestablish a
connection to each isolated branch via a spare link from a node which is still reachable, i.e.
is not a member of the unreachable node set. Only one such connection needs to be made
to restore communication to all the nodes in the branch. After the new connection is
enabled, the link connecting the failed node to this branch is disconnected. As each branch
is reconnected, the nodes in that branch are removed from the failed node Set. If any
branch is successfully reconnected, the branches which were not connected during earlier
attempts are tried again since more spare links become available. Thus this algorithm,
while isolating the failed node, restores communication to every reachable node in the
layer. Nodes which cannot be reached because earlier failures are marked failed.

If a single node in the layer has errors, the reconfiguration is handled by a subprogram
called Reconnect, Remove, or Regrow. This failure can occur: (1) if the failed node is a
leaf node, (2) if its retransmission function still works correctly but its status reporting
capability is impaired, or (3) if another node is responding to this node's address making it
appear that this node is failed. The failed node is isolated from the layer, as described
above in the discussion of Remove Node and Reconnect to Trees. However, care is taken
not to address this node directly. When the node is isolated, this node is again queried for
its status. If a valid response is received, indicating the presence of a node which responds
to the addresses of other nodes, the layer is regrown with a full set of diagnostic tests to
isolate this faulty node. Otherwise, an attempt is made to find an alternate root to this node
using any port except its previously failed inboard port. The configuration command sent
to this node as part of the link enabling procedure will disable this failed inboard port.

If the attempts to reconfigure the layer have not succeeded in eliminating errors, then a layer
regrowth is performed. This is the back up reconfiguration strategy, used when all else
fails.

Following the reconfiguration of a layer, the Layer Status is updated to reflect the current
state of the layer hardware. If any nodes have been isolated from the layer as a result of the
reconfiguration, the transaction for that node is removed from the status collection chain.
Additionally, the Layer State is given the value Repaired.

5-60

6.0 THE PHYSICAL AND DATA LINK LAYERS

The Physical Layer of the ISO Model is concerned with the electrical, functional, and
procedural characteristics necessary to establish, maintain, and disconnect a physical
circuit. The Data Link Layer is concerned with the low-level requirements (i.e.,
communication protocol, fault detection, and fault recovery) necessary to send valid blocks
of data over a physical link [4]. In this section, the Physical and Data Link Layers of the
AlPS Distributed Engineering Model are described.

6.1 Functional Requirements

A communications interface is required to permit a physical link between two or more FTPs
in the distributed ALPS system. This interface provides a communication protocol to allow
data to be reliably transmitted between a set of subscribing network sites. Furthermore,
this physical and data link interface is designed to be a modular redundant architecture in
order to enable fault tolerance and to facilitate reconfiguration. The hardware
implementation also provides the necessary status information permitting fault detection and
isolation operations on the communication process.

6.2 Hardware Specifications

A hardware interface was developed specifically for the ALPS project to provide the
required Physical and Data Link layer functions. This interface between the FTP and the
Inter-Computer network is referred to as the Inter-Computer Interface Sequencer (ICIS).
The ICIS is responsible for managing the low-level bus protocol and data formatting details
in an autonomous manner, thus relieving the processors of the FTP of the task of managing
the IC network at microsecond time frames. Each channel of an FTP has one ICIS which
is accessible to both processors of the channel. The physical connection between the
ICISes of two separate FTPs is the Inter-Computer Network as illustrated in Figure 5-1.
As described in Section 5.0, the Inter-Computer Network is comprised of three layers. As
shown in Figure 5-1, each channel's ICIS has an individual interface to each of the three
layers. When the IC Communication Services on a triplex FTP transmits a message, three
copies are transmitted (at essentially the same time); one copy on each IC layer. The ICIS
in any one channel of an FTP listens to all three network layers but can only transmit on
one. The transmission function of the ICIS is responsible for serializing data, resolving
network contention, and transmitting data on the network. In the other direction, this
network interface listens to three bit streams, deskews them, and stores all redundant data
streams, along with certain status information, in a dual-ported memory accessible by the
channel's processors.

The ICIS hardware specifications are presented in the following sub-sections. First, a
description of the Physical and Data Link implementations is given. These implementations
are completely independent of the redundancy aspects of this communications interface.

6-1

Second, the method of arbitrating for network possession is described. Finally, the
interface between the ICIS and the core FTP is discussed.

6.2.1 Physical and Data Link Layers

The IC network Physical Layer uses 2 Mbit/Second NRZI (Non Return to Zero Inverted)
bit serial protocol. In this protocol, a logical '0' is represented by a transition, either from a
high to a low or from a low to a high, and a logical '1' is represented by a lack of a
transition. A constant high level or a constant low level represents a string of 'l's on the
network.	 -	 -

The Data Link Layer protocol used in the Distributed AlPS Engineering Model hardware is
a 2 MHz HDLC protocol. In this protocol, no more than five 'l's can be transmitted in a
row. A '0' is inserted after five 'l's by the HDLC transmitter chip, and it is subsequently
deleted at the receiving end by its counterpart. Six 'l's in a row constitute an HDLC flag
which is used to mark the beginning and the end of an HDLC frame. Seven 'l's constitute
an HDLC abort signal and more than 7 'l's represent an HDLC idle state. The last two
HDLC signals are not used in the AlPS Model. At 2 MHz, each bit width is 0.5 .Lsec,
which makes the maximum time the network would stay high or low while transmitting
HDLC data 3 .tsec.

The H1)LC protocol provides automatic address detection, embedded control information,
and cyclic redundancy checking to detect transmission errors. An HDLC frame contains an
opening flag, address byte, control byte, data bytes (in AlPS up to 119), two FCS (Frame
Check) bytes, and a closing flag. The opening and closing flags are identical and consist of
a '0', followed by six 'l's and a V. It is not possible for a flag to look like data since the
HDLC protocol specifies that within the data field after five continuous 'l's a '0' is added.
Additionally, the HDLC address detection mechanism can be configured to allow the
receiving sites to accept only those data packets which are addressed to the FTP or which
are "broadcast" messages (data which is sent to all subscribers on the network).

6.2.2 Inter-Computer Network Contention

This section describes the design and implementation of the bus contention protocol that is
used to arbitrate access to the inter-computer network. The issue of reliably resolving bus
contention is critical in a mixed redundancy distributed system such as AlPS.

The inter-computer circuit switched nodal network is triplicated in the AlPS Distributed
Engineering Model. The three layers of the network are used to provide redundancy rather
than maximize bandwidth. In normal operation, the three layers carry identical
information. By making redundancy management and network contention transparent to
application software, a-very simple and friendly virtual architecture, that of a highly reliable

6-2

simplex bus, is presented to the applications programmer. In fact, most aspects of the
network contention are hidden from the system-software as well.

For access arbitration purposes, the triplex network is treated as a single entity. FFPs,
regardless of their redundancy level, compete for all three layers of the network. At the end
of the contention sequence one, and only one, FTP may have access to all three layers of
the network. Thus, if a duplex FTP wins contention, it is given exclusive use of all three
network layers even though it can transmit on only two of the three layers. No effort is
made to maximize the network bandwidth by providing simultaneous access to a duplex
FTP on two layers and a simplex FTP on the third layer, for example.

The bus arbitration scheme must meet certain requirements for the type of applications for
which the AlPS architecture is intended. Communication between critical functions which
are resident in triplex FTPs must not be interrupted or corrupted by lower criticality
functions resident in duplex and simplex FTPs. Triplex FTPs should be given access
priority over all others. Similarly, duplex FTPs should have priority over simplex FTPs.

In a distributed system such as AlPS, the contention resolution must be fair and equitable
to all sites of like redundancy. Over a period of time, for example, all triplex FTPs should
have an equal chance of getting network access. Similarly, all duplexes should be served
equally well by the network as should all simplexes. However, the arbitration scheme
should also be flexible enough so that a low criticality function that may be assigned to run
on a triplex FTP should not hog the network. A triplex FTP should contend as a duplex or
simplex,if the function requesting the communication is of appropriate low priority.

No single point failure should result in a communication disruption between two triplex
computers. The arbitration logic must be able to resolve bus contention in a reliably robust
manner even in the presence of an arbitrary fault. In other words, a malicious failure in a
simplex FTP or in one channel of a redundant FTP should not be able to disrupt traffic on
more than one layer. Furthermore, in keeping with the spirit of the distributed nature of
the AlPS architecture, the arbitration authority must not be centralized. It should be
distributed throughout the system, and all processing sites wishing to access the network at
any given time should arrive at a consensus about the sole winner cooperatively but
independently and in a fashion which preserves network integrity in the face of failures or
damage.

In addition, redundant channels within an FTP must come to a consensus as to whether or
not they are contending for the bus and at the end of the contention sequence, whether or
not they have won access to the bus. The bus contention protocol does not occur in the
FTP processors themselves but rather in the dedicated Inter-Computer Interface Sequencer.

6-3

6.2.2.1 The Laning Poll

The IC bus arbitration protocol is an evolution of the Laning Poll, a protocol used
previously to resolve bus contention internally in the Fault Tolerant Multi-Processor
(FTMP).

The Laning Poll is a bit serial algorithm for prioritized contention of serial buses. The
Laning Poll assumes that multiple sites can transmit on the same bus or serial line
simultaneously, each site then receiving the 'OR' of all bus transmissions. That is, if any
site transmits a'l' all sites will hear a'l'. Each site contending-for the bus has its own
unique binary priority vector P(vl,v2, ..., vn). A higher number signifies a higher
priority. The Laning Poll algorithm guarantees that the site with the highest priority will
win the bus. The poll consists of sequentially transmitting each priority bit (from most
significant to least significant) on the bus. Each site behaves according to the following
algorithm during the polling period.

For all i while still contending do:

Transmit Pi on the serial bus
If Pi = 1 and Received value = 1 then continue
If Pi = 1 and Received value =0 then win bus
If Pi =0 and Received value = 1 then quit
If P1 =0 and Received value =0 then continue

This algorithm requires that all sites on the bus be synchronized in some manner prior to
the start of the poll so that all sites are transmitting their ith priority bit simultaneously.
There is no global clocking mechanism to synchronize all sites on the bus and, in fact, there
is no need to synchronize the processing sites except for the bus arbitration poll.
Therefore, the processing sites operate asynchronously until a site needs access to the bus.
A start bit precedes the polling sequence to ensure synchronization of the polling sequence
across all sites, as further explained in Section 6.2.2.2.1.

6.2.2.2 The AlPS Contention Protocol

The AlPS contention protocol uses a modified form of the Laning Poll. It consists of two
parts, the redundancy contention sequence and the priority contention sequence. The
redundancy code sequence consists of 3 bits: 5, T, and D (denoting Start, Triplex and
Duplex, respectively), and the priority code sequence consists of three FTP priority bits
followed by six FTP ID bits. The objective of the redundancy contention sequence is to
resolve contention between the different levels of redundant elements contending for the
bus (i.e., triplex, duplex, simplex). At the end of this sequence, all non-failed FTPs still
contending should be of the same redundancy level. The priority contention sequence
resolves contention among non-failed FTPs of the same redundancy level according to the
priority and the ID bits.

6-4

6.2.2.2.1 The S Bit of the Redundancy Code Sequence

The bus contention begins with the 'S' (Start) bit. A FTP may initiate a contention
sequence if the network has been idle for greater than 512 Lsec. To initiate a contention
poll, a FTP transmits a '1' on all layers to which it is connected. Other FTPs may join in
the poll sequence by transmitting their own S bits while the initiating FTP is still sending its
S bit. All channels OR the S bits on all three network layers. The S bit serves to
synchronize all contending sites at the beginning of the poll sequence.

6.2.2.2.2 The T Bit of the Redundancy Code Sequence..

All triplex FTPs contending for the network transmit 'l's on all three network layers during
the 'T' (Triplex) bit. All FTPs contending for the network vote the T bit on the three
layers. if the voted result is a '1', indicating the presence of a triplex in the contention
sequence, all F1'Ps not configured as a triplex drop out of the contention sequence. All
contending FTPs configured as triplexes skip the next redundancy code sequence bit and
proceed directly to the priority contention sequence. If there is only one triplex in the
contention, it should obtain a voted result of '0' and declare itself the winner, and it does
not go through the rest of the contention sequence. A triplex not contending as a triplex for
low functional priority reasons does not transmit during this bit. If duplexes or simplexes
obtain a voted result of '0' during the T bit, they conclude that no triplexes are contending
and they go on to the D bit.

6.2.2.2.3 The D Bit of the Redundancy Code Sequence

The 'D' (Duplex) bit is used to resolve contention between duplex and simplex FTPs.
During the D bit poll, a FIT configured as a duplex transmits a '1' on the two layers to
which it is connected. All contending duplex and simplex channels OR the three network
layers. If the result is a 1', indicating the presence of one or more duplexes, all FTPs not
configured as duplexes drop out of contention. All FTPs configured as duplexes proceed
to the priority contention sequence. If there is only one duplex in the contention, it
obtains a voted result of '0' and declares itself the winner. Further, it does not go through
the rest of the contention sequence. If simplexes obtain a result of '0', they proceed to the
priority contention sequence.

6.2.2.2.4 The Priority Sequence Bits

The priority sequence consists of 3 priority bits and 6 FTP ID bits. The voted or ORed
result of each of these poll bits, as described below, is treated in the traditional Laning Poll
manner.

Triplex Contention - Eachchannel of triplex FIT votes the three network layers.
Duplex Contention. - Each channel of duplex FTP ORs the three network layers.
Simplex Contention - Each simplex FTP channel ORs the three network layers.

6.2.2.3 Implementation of Network Contention Hardware

The ICIS is responsible for contending for the network, formatting data, transmitting data
from the channels Onto the network, receiving data from the network, and storing data in its
memory in an appropriate format for use by the channel's processors. Multiplexing
between these tasks is the responsibility of the ICIS master microsequencer which obtains
its control inputs from the processors (through a control register) and a sequence of
microinstructions. Only those parts of the ICIS design that pertain directly to the
implementation of the contention scheme will be discussed here. -.

Central to the operation of the ICIS contention circuit is a network activity monitor. Each
ICIS in each FTP channel contains three identical monitor circuits, each dedicated to a
single network layer. The individual states of the three network layers, as determined by
the network activity monitors, are combined within each ICIS to determine the overall state
of the IC network. A microsequencer in the ICIS uses the network state in combination
with control inputs from the processors to determine its next action.

The three ICISes in the three channels of a triplex FTP operate in tight synchronism with
each other in order to assure identical operations in the three channels and on the three
network layers. However, due to the lack of a system-wide synchronization clock, the
initiation of a poll sequence by a FTP is totally asynchronous to all other FTPs in the
system. Therefore, it is necessary for the ICISes in an FTP to follow the source
congruency principles and make the network state congruent across the ICISes before
using that information to determine their next action. This is accomplished by exchanging
the internal ICIS states across the three channels using dedicated exchange hardware. The
design of this exchange hardware follows the principles that are outlined in the following
sections.

6.2.2.3.1 Poll Bit Timing

As stated earlier, the IC network Physical Layer uses the NRZI protocol. Further, the Data
Link Layer protocol used in the AlPS Distributed Engineering Model hardware is a 2 MHz
HDLC protocol. At 2 MHz, each bit width is 0.5 tsec, which makes the maximum time
the network would stay high or low while transmitting FIDLC data 3 .Lsec.

The Laning Poll contention scheme is superimposed on the HDLC protocol by making the
poll signals wider than 4 J.lsec so that they are not interpreted as }{DLC signals. Figure 6-1
shows the timing for the poll bits. Suppose that the site labeled 'A' initiates the contention
sequence by putting the start bit S on a network layer and is joined in the poll by a second
site labeled 'B' which is located the maximum number of nodes away from A. Figure 6-1
shows that the start bit width should be. 48 Lsec and that all subsequent poll bits should be
24 p.sec wide.

PS

A Starts Poll

*— 12 s-04s$4— 121is-1 8is

NETWORK -
DELAY DATA

B Receives	 (MQ LEVEL
EK-

DESKEW
CHANGE

POLL BIT
DEThCF

rm I TIME
4

B Responds

—I2s_Pj4 	 24iis

NETWORK

DELAY

A Receives
	 A)Q

Figure 6-1. Poll Bit Timing

The additional 24 p.sec at the beginning of the start bit for the site initiating the contention is
used by the receiving sites to identify the poll bit, compensate for skew between network
layers, and allow the ICISes time to exchange the poll detection event. A poll detect time of
4 p.sec is used to distinguish it from the longest HDLC string of 'l's. The network layer
deskew time of 12 .tsec is required since, in the worst case, the poll bit may have passed
through a maximum number of nodes in one layer and a minimum number of nodes in
another layer. Because passing through each node produces a delay of about a third of a
microsecond in the Engineering Model nodes, a deskew time of 12 .Lsec would allow more
than 32 nodes in each IC network layer. At this point each ICIS determines, by an
examination of the network layer activity monitor outputs, if a contention has begun. This
information is then exchanged across redundant ICISes and made congruent. This takes
two cycles of the fault- tolerant clock or 8 J.tsec.

6.2.2.3.2 Network Activity Monitors

The function of a network activity monitor circuit is to determine the state of the network
layer it is monitoring. Each channel's ICIS has three network monitor circuits. A network
layer can be in one of four different states depending on how long it has been High or
Low, as defined in the following:

Data: it is carrying HDLC data including flags (it is High or Low for less than 4
p.sec).

Idle: it has been quiet (Low) for 512 .tsec or more.
Stuck: it has been High for 512 .tsec or more.
Poll: it has been High for 4 p.sec or more but less than 512 .tsec.

6-7

Figure 6-2 shows the state transition diagram for the network activity monitor circuit. The
monitor circuit has a total of eight states, four of which correspond directly to the four
network states. In addition, there are four other states which are necessary for the monitor
to handle indeterminate situations and time skews in the network layers. These latter four
states are as follows:

Wait:	 network state is unknown.
Poll Deskew: network transitioned into high state between 4 and 16 J.tsecs ago.
Poll Detect:	 network transitioned into high state 16 p.secs ago. Specifies the point at

which the ICIS could join a poll if so instructed-
Released:	 a high-to-low transition detected while the monitor was in the first part

of a polling sequence.

The network activity monitor circuit is driven by the HDLC clock ticks which occur every
0.5 .tsec. It times the intervals between transitions on the network and provides an
indication of the most recent activity on the network layer. In Figure 6-2, 'CT' represents
the value of the clock tick counter. The 'H' and 'L' that appear on state transitions refer to
the network layer states High and Low, respectively, and 'T' is used to indicate a transition
of the network layer from a High to a Low or vice versa. The asterisks (*) in the diagram
represent the logical 'AND' of two events. The counter CT is reset to zero whenever an T
occurs, and rolls over to zero after a Count of 1023.

The states Wait and Poll Deskew are necessary to allow for timing skews on the network
layers and are used to determine when a transition to Idle or Poll is about to occur.
Additionally, the Release state is used to identify the network release function. This
happens when the FTP that is controlling the network finishes transmitting data and wishes
to release the network for use by other FTPs. The controlling FTP relinquishes the
network by initiating a poll and then dropping out of the poll after 16 .xsecs. This process
initiates a polling sequence among any sites waiting to contend for the network. If one site
is waiting to contend, it will win the poll at the first bit. If two or more sites are waiting,
the poll proceeds normally. If no sites are waiting to contend, the monitor circuit indicates
an idle. The network release function has been included to allow a FTP to give up the
network without the requirement that 512 .Lsec elapse before another FTP can gain control.

Three different circuits in each ICIS combine the states of the individual network layers (as
determined by the three monitor circuits) to produce a consistent view of the network
status. The three network states of interest to the contention logic are: Data, Poll, and Idle.
In addition, certain abnormal conditions can result in an Abort signal. These signals are
provided as inputs to the ICIS microsequencer or the ICIS state machine. Figure 6-3
provides a overview of the logic blocks involved in the polling mechanism.

6-8

•CT< 8L.CT= 103\

T.L.CT>=32
CT< 102

HCT>= 8	 T.L.CT>=$.

IDLE
L. <1023

L.
 7

=10

WAIT

 CT

+ CT< 8

L. CT>= 8

DATA H • CT>:

(POLL
DETECT
(PDT)

CT=

• CT< 40

= RELEASE

• CT>= 8

<32

POLL
DESKEW

T= 32

(PDS)

POLL
	

STUCK

T = Layer input "Toggle" or "Transition"
NT = No Layer input "Toggle"
L = Layer input Low
H =Layer input High
CT = counter value with counter incremented

every 0.5 microsecond (wraps around
to zero after 1024 counts)

* = Logical AND
+ = Logical OR

Figure 6-2. Network Monitor State Diagram

POLL DATA

POLLER

NETWORK
STATUS

FROM I LEFT £J ABORT	 POLLING
L LAYER Monitor STATE	 STATE - .1	 -1 - . MACH EN

C)

FROM
RIGHT

Network
-

IDLE	 _J

M LAYER orMonit

CHAIN

L
STATU

N LAYER Monitor DETECT

Figure 6-3. Polling Logic Blocks

The Abort/Data Detect circuit produces the Abort signal which is used to terminate a
contention. For simplex or duplex sites, data on any layer constitutes an abort. For triplex
sites, data received on two layers separated by less than 12 Lsec is required for an abort.
The Data Detect signal is presented to the circuit which identifies an idle network. This
signal, like the triplex FTP abort, requires two layers to indicate data with less than 12 tsec
of separation.

The Poll Detect circuit produces a pulse if any network monitor enters the Poll Detect state
for the first time and any of the other monitors is in either the Poll Detect, Poll Deskew,
Idle, or Released states. This means that 12 p.sec after a poll is detected at least one other
layer must be either polling or be idle. A majority of layers polling or a single layer polling
with the other two layers idle are poll conditions.

6-10

The Idle Detect circuit is a set-reset latch which presents the Idle Detect signal to the ICIS
state machine. The latch is set to indicate the network is available whenever a layer
transitions to the Idle state and at least one other layer is at either Idle or Released. The Idle
Detect indication remains until either a Poll Detect or Data Detect signal occurs, as described
above.

The three circuits Abort/Data, Poll Detect, and Idle Detect are synchronous with the fault-
tolerant clock, and therefore they are synchronized with the ICIS state machine and data
exchange as well.

6.2.2.3.3 ICIS State Machine

Figure 6-4 shows the state transition diagram for the ICIS state machine. Its function is to
conduct the poll and produce the signals 'Win' or 'Lose' depending on the outcome of the
poll. The ICIS state machine gets network state information from the three network activity
monitors in the form of the four signals described previously. Additionally, it gets control
inputs from the CP or the lOP. The control inputs, in the form of bits in a control register,
that are relevant to the contention function of the ICIS are as follows:

Get - When Set, the ICIS is instructed to contend for the network until network
possession is achieved and to retain possession until the bit is cleared.

Cstop - When set, the ICIS is instructed to return to the not-contending state unless a
poll sequence is in progress or the ICIS is in possession of the network.
This bit has precedence over Get.

Stop - When set, the ICIS is instructed to return to the not-contending state and to
stop the ICIS niicrosequencer. This bit has precedence over Cstop, Get, and
Start.

Start - When a 1 is written to this bit of the control register, the ICIS is instructed to
start a contention sequence unless a contention is already in progress. This
bit has precedence over Get and Cstop.

The normal control input to get access to the network is Get. Cstop, or conditional stop, is
used to implement 'polite preemption'. This allows the processor to request the ICIS to
preempt a poll unless one has already begun. The Stop control forces the ICIS to cease all
of its activities. The Start control is used by the processor to force a poll regardless of the
network state. This is useful when a babbling failure of a FTP may deny network access to
other FTPs. Finally, the signal 'Initialize' in Figure 6-4 represents a manual or power-up
reset of the ICIS state machine.

The horizontal levels on which the states are shown in Figure 6-4 represent general
groupings. The first level is the states for which the ICIS has not been instructed to
contend for the network. The next level represents those states for which the ICIS is
waiting for conditions to allow a poll. The third level contains states for which the poll is
in progress, and the fourth contains those states for which the poll was won. Only in the
state 'network possession' is the ICIS assumed to have control of the IC network.

6-il

INITIALIZE

GLT7 STOP + CSTOP

STOP ____________________________________ Not STOP
Contending 4 STOP

+	 START

STOP+ GET POLL
CSTOP	 IDLE*

P= STOP
L at GET'I't!.'VtL Waiting

Polling GT	 STOP +	 STOP I	 From Begin
Sequence Poll Ott'IDLE +

STOP START
LOSE	 PM-IDLE ____________________

POL'	 START

Start	 Start

IS.quence

JjP0LL

Poll	 Poll	 Join
______________	 Poll Sequenc.	 Sequence

____ 	 ABORT P ttlDLE,START	 FIrst	 12	 Lest	 ____
12 uS

)twor
aessh

Network)

12s , STOP Release

Figure 6-4. ICIS State Machine

The state machine which performs the poll is active during the states labeled 'start poll
sequence' and 'join poll sequence'. This state machine continues to poll until the poll is
either won or lost, If polling machine exhausts all bits of the priority and ID without
reaching a decision, the poll continues with zeroes sent to the driver so that the ICIS will
appear to all other sites as to have dropped out of contention. The poll may be stopped
before a decision if an Abort is detected on the network or if the ICIS state machine
transitions to another state as a result of a control register signal.

The state vector of the ICIS state machine shown in Figure 6-4 is available for the lOP or
the CP to read as a memory mapped register. The processor may then monitor the process
of contention and decide to intervene if necessary. The 'bus busy' state can be detected by
the processor as a failure of the ICIS to transition from the state 'waiting to begin poll'. If
a poll has been aborted, the ICIS records this condition in a register separate from the state
vector so that the indication is not be lost at the start of the next poll. The processor is
responsible for clearing this bit.

The network release pulse described above is generated by the ICIS as a result of a
transition from the state 'network possession' due to the signal GET being set to zero. The
other transitions from this state are not the result of normal operation and do not produce
the pulse. Should a very long message be transmitted such that a single network
possession is insufficient, the ICIS will be instructed by the processor to end data

6-12

transmission and start a poll. Under a condition where data is followed by a poll, the ICIS
must insert 12 tsec of zeros on the network before driving it with the first poll bit. This
insertion of zeros is included so that, at all receiving sites, the skew between network
layers cannot cause the first poll bit to be received on one layer while data is being received
on the others. Such a condition, a p011 bit detected on a single layer and data detected on
either of the other layers, is not considered as the start of a poll. This is so that two sites
simultaneously transmitting data on the same network layer (e.g., a triplex and a failed
simplex) do not cause a third site to detect a poll bit (via its received OR of the two data
streams) and thus begin to poll.

6.2.2.3.4 Cross-Strapping of ICIS Channels

One issue important in the design of the contention hardware is the necessity of cross-
strapping redundant channels of the contention hardware (ICIS) to each other. This is
necessitated by the absence of a means to synchronize the activities of the FTPs. An FTP
may begin a poll at any time, provided that the network is in a certain state as described
previously. The poll start event is an asynchronous input to all other FTPs. Therefore, it
must be treated with the same care that is accorded to any input to the FTP. Specifically,
there is asynchronism between the command to contend for the network (from a processor
to an ICIS) and the detection of the proper conditions for a poll to begin. Without
exchange of information between ICIS channels, it is possible that one ICIS of an FTP
would not poll until a subsequent polling sequence, even when no failures are present.
This is illustrated in the scenario in which the control bit indicating that an ICIS channel is
to contend -is set by each TOP of a triplex site just as a poll sequence is detected on the
network. Each lOP will set this bit with its local phase of the fault tolerant clock. There
may be sufficient skew between clock phases such that two ICISes will have the bit set just
before the poll is detected with the third having its bit set just after. The ICISes which are
set prior to the beginning of the poll will be able to join in contention, while the ICIS which
was set afterward will have decided that it is too late to join that poll and will wait to join
the next. Information exchange between ICIS will allow all channels to act in concert.

Figure 6-5 shows the state machines of a triplex ICIS which are associated with the control
of network contention. The next state as determined by each ICIS is passed to the other
channels of the FTP by a data exchange and then voted to determine a congruent next state.
The data exchange guarantees that each ICIS will be voting the same set of next states.
Figure 6-6 shows the state exchange for one channel. Sixteen connections in each ICIS for
each bit are required to ensure a congruent set of local next states; these local states are
voted to produce the next state in each ICIS. If the local next states in each ICIS produce a
three-way disagreement (for a triplex FTP), the voted result could be the code for a non-
existent state or a state for which the transition is incorrect. The voter detects a three-way
disagreement and does not allow the next state latch to be updated. Similarly, disagreement
in a duplex ICIS does not allow the change to the next state. The ICIS state exchange
hardware is designed to conform to the same principles of fault tolerance that guided the
implementation of the data exchange network used in the AlPS core FTP.

6-13

Figure 6-5. Next State Logic For Triplex ICIS

6-14

LOCAL NEXT STATE

FROM RIGHT

TO RIGHT
FROM RIGHT

AND LEFF
AND RIGHT
VOTE

NEXT STATE

Figure 6-6. Congruent State Exchange Logic For One ICIS

6-15

6.2.3 ICIS Interface to the FTP

An important aspect of the ALPS FTP architecture is its ability to operate efficiently in a
distributed computational environment. The architecture of the FTP interface to the inter-
computer network has been designed from the very start to facilitate a congruent flow of
data to/from other FTPs efficiently and with minimum software overheads and
intervention. Figure 6-7 shows a schematic of the IC network interface hardware for one
FTP channel. Each FTP channel, regardless of the host FTP redundancy level, listens to
all three layers of the IC network. The ICIS interface electronics for a channel is divided
into three logic modules, each of which interfaces with one IC node. as illustrated in Figure
6-7. The ICIS modules interface with the intra-channel voter/selector logic, which is also
called the LMN Voter/Selector and is resident on the shared bus controller card, via three 8-
bit parallel backplane buses. The 24-bit address format for devices in the LMN region of
the FTP address space is also shown in this figure. The two most significant bits in the
CPU address space, when set to '1 0', select the LMN region. The next three bits select
one of the devices on the LMN buses. Thus, up to eight devices can be accommodated per
channel. Apart from ICIS, examples of other devices are I/O Sequencers (lOS) and Mass
Memory Interface Sequencers (MMIS). The ICIS, lOS, and MMIS interface electronics
appear as dual ported memory locations to the processor and the specific locations within a
selected device are addressed by bits 0 to 11 and bit 15. (Note that no MMISes have been
designed or implemented for the AlPS Distributed Engineering Model.)

This interface is very powerful, and it is tied directly into the inter-channel data exchange
mechanism. Data can be routed from the interfaces through the intra-channel voter/selector
logic and across the inter-channel voter/selector into the processor memory with a single
processor move instruction. The documentation for the ICIS redundancy management
software discusses the use of the intra-channel and inter-channel hardware for processing
data received from other FTPs on the IC network in detail. Some of the possible data
flows are discussed here.

Figure 6-8 shows the data flow from an ICIS to the CP through the LMN voter/selector.
The LMN bits (16-18) in the address space specify the operation performed on the data by
the voter/selector logic. Bits ABC (12-14) are set to '0' indicating that data is not routed
through the cross-channel exchange hardware. If the LMN bits are '111', the LMN voter
reads three locations specified by the 13 address bits marked 'a', performs a bit-for-bit
majority vote on them and deposits the result in the CP memory address specified in the
move instruction. Any disagreements are recorded in the LMN error register. Other
combinations of LMN bits can be used to compare data on any two network layers such as
L and M, M and N, or N and L. Data can also be selected from only one layer and passed
through the voter/selector logic unchanged. Thus, it is possible to route data received from
simplex, duplex, and triplex FTPs through the interface electronics and into the FTP very
efficiently, while at the same time satisfying all the requirements for data congruency.

I

MR

C,

C,

Address
LMN Region Address	 within

123 22 21 20 1 19 18 17 16115 14 13 121 11 10 9 81 7 6 5 43 2 1 0 IPer1Ph1a1

1	 Os s Sal

In

01	 N

trachannel Operation:	 = 0 => No Cross-Channel Op.
LMN	 el Er Result

Region
0 Perihera1

Select	 010	 M
011	 WN
100	 L
101	 L•N
110L•M	 sV
111 V(LM.N	 *V

Figure 6-7. IC Network Interface for One FTP Channel

As stated previously, Figure 6-8 shows the data flow from an ICIS, through the LMN
voter/selector, through the cross-channel data exchange and then into the CP. In this case,
the ABC bits specify the operations to be performed by the cross-channel hardware.
When the source of data is in the LMN region, any errors detected by the cross-channel
hardware are recorded in an error register which is separate from the error register that is
maintained for accesses in the non-LMN region. This separation of error information
keeps the FDI related to the core VFP separate from the FDI associated with the IC
hardware.

Figure 6-9 shows the data flow from a CP to the ICIS in one FTP channel. Each FTP
channel is enabled to write on only one network layer. By choosing the correct bits in
LMN and ABC fields, a triplex FTP can coordinate the channel activity so that it writes
synchronously to all three network layers.

For more details concerning the design and implementation of the Inter-Computer Interface
Sequencer, refer to Appendix C.

6-17

Address
LMN Region Address 	 within

Peripheral

1 23 22 21 20119 18 17 16 15 14 13 12 1 11 10 9 8 7 6 5 4 1 3 2 1 0

1	 Os s s p-al

LMN Y	
Operation

Intrachannel Region

Peripheral
Select

Figure 6-8. Data Flow through LMN and Cross-Channel Hardware

Address

	

LMN Region Address	 within
Peripheral

123222120119181716115141312111109 8 I 7 6 5 4 1 3 2 1 0

1 0 $ $ $ (;D
LMN	

Channel Write

Region	 Enable
Layer Write	 Enable

Peripheral
Select

Figure 6-9. Data Flow from CP to ICIS

6-18

7.0 CONCLUSIONS AND RECOMMENDATIONS

Inter-Computer Communication Services for the distributed configuration of the AlPS
engineering model have been designed, implemented and tested. This software provides
the redundancy management and operating system support for the distributed
communication between GPCs. The IC Network Manager, IC Layer Managers, and ICIS
Redundancy Manager provide reliable communication over a triple layered Byzantine
Resilient network which dynamically masks single faults. These functions are responsible
for the initial growth of the IC network, the FDIR of the IC network and ICIS, and the
source congruency of incoming messages. The Synchronous Communication Manager,
User Services and the Message Send Receive functions provide local and distributed inter-
function communication as a transparent service to the user. These functions support both
synchronous and asynchronous communication in point to point mode and asynchronous
communication in broadcast mode.

The Synchronous Communication Manager and the IC Network Growth with Contention
functions of Inter-Computer Communication Services have been designed but have not
been implemented and tested. With the exception of these two functions, all functions of
the Inter-Computer Communication Services have been demonstrated.

The AlPS distributed engineering model software, composed of the Inter-Computer
Communication Services, the Local System Services, and the Input/Output System
Services, contains 98,681 lines of Ada source code, which includes 40,100 Ada statements
and comments. When compiled and linked into two executable modules, the CP code
(which includes instructions and global variables) requires 250,107 bytes of FTP memory
and the lOP code requires 847,243 bytes.

7.1 Demonstration and Testing of Inter-Computer Communication
Software

7.1.1 Demonstration Hardware and Software

In order to test the distributed AlPS engineering model under both fault and no fault
conditions, additional hardware and software functions were designed and added to the
system.

In order to test and demonstrate the ICIS redundancy manager, three fault injector boxes
were built and attached to the ICIS cards of FTP 2. The fault injector boxes are able to
inject a fault into an individual layer of the ICIS or the entire channel's ICIS. They are also
able to inject ICIS link faults.

Interstage faults were injected using a switch that grounded the interstage's power supply.
The fault injector previously used to test the FTMP was modified and used to inject pin
level faults into the voting circuitry of FTP 3.

7-1

In order to demonstrate and test the ICCS in both broadcast and point to point
communication between sites, a status broadcast task and pseudo Advanced Launch
System (ALS) application tasks were implemented on the system.

7.1.2 Preliminary Testing of Inter-Computer Communication Services

The demonstration of the AlPS engineering model was first done under no fault conditions.
The pseudo ALS application tasks execute on each site. Since each site has a Macintosh
Apple as a front end display, the Macintosh monitor displays the changing variables that are
involved in the point to point communication between sites. A display of the status of the
entire AlPS system (four sites) is also displayed at each site. In oMer to test the broadcast
mode, faults were injected at each site by turning off the power or disabling a channel's
interstage. All faults were identified at all sites correctly. The pin level fault injector was
also used to inject faults into site 3. Again the correct channel was identified at all sites.

The ICIS fault injector boxes were used to test the ICIS Redundancy Manager. Multiple
faults were injected into the ICIS on site 2. All faults were correctly identified and inter site
communication continued even with multiple faults in the ICIS.

The IC Network Manager was tested by injecting faults manually to various nodes and
links of the IC Network by pulling links and resetting nodes. All faults were correctly
identified and inter site communication continued even with multiple faults in the IC
network.

Extensive systematic testing of the AlPS distributed engineering model for performance
and reliability under fault-free and degraded conditions remains to be done. The hardware
fault injector will be used for much of this testing.

7.1.3 Performance Metrics

Some performance metrics were gathered using both logic analyzers and the real-time clock
to make time measurements. These metrics recorded for a sample IC communication are
presented in Figure 7-1. Twenty samples were taken each time and the numbers were very
consistent. The performance was measured from the time the source application task called
the SEND—OUTPUT routine until the time the sink application task had a message
available. The total time was 28.4 milliseconds. The following components of the AlPS
distributed engineering model were used:
1) two triplex sites (FTP 2 and FTP 3) with 68010 processors with 7.9 MHz. clocks
2) custom IC Interface Sequencers (ICIS) with 7.9 MHz. clocks
3) (three) 2 MBit/second IC buses
4)15 custom network nodes each with a 68701 processor and a 2MHz. clock
5) Verdix 5.5 compiler/RTS
6) Message length of 64 bytes

7-2

0

Location	 Function	 Overhead(Verdix 5.5-1

Source FTP	 SEND-OUTPUT
(Add message to output queue, set event) 	 3.7 ms

Source FTP	 Time between event and MSR	 1.4 ms

Source FTP	 Message Send Receive (MSR)	 5.7 ms

IC Net	 Time for ICIS and IC Network transmission	 .4 ms

Sink FTP	 Ave time between polling for msg	 2.5 ms

Sink FT?	 ICIS RM
(make msg congruent, check for errors)	 9.7 ms

Sink FTP	 Time to do context switch 	 .9 ms

Sink FTP	 MSR
(Time between task start and when msg is available for user) 3.2 ms

Sink FTP	 GET-INPUT
(Remove message from buffer and pass to user)	 .8 ms

Total Time	 28.4 ms.

Figure 7-1. IC Communication Latency

As indicated by Figure 7-1, the message latency on the network is about 28 milliseconds.
The performance penalties are caused by the processor, compiler and data exchange
hardware. These penalties are likely to be reduced significantly with advances in
processor, compiler and hardware technologies. As discussed in the next section, the
message latency for a state-of-the-art implementation will be reduced by a factor of 60 to
less than 2 milliseconds. Thus, the system will easily meet the timing constraints of real-
time flight control applications. For example, it will be practical for 100 Hz tasks executing
on distributed processing sites to exchange data over the network at 100 Hz or even higher
frequencies.

7.2 Future Work

The functions of the AlPS System Manager have not been designed or implemented. This
work needs to be done in order to complete the distributed AlPS engineering model. There
are also several areas of AlPS Inter-Computer Communications Services that remain to be
addressed in the AlPS program. These include implementation of the Synchronous
Communication Manager, the implementation of the IC Network Growth with Contention,
and modifications that should be made to the ICCS Transport Layer for functional or
performance improvement. Appendix D contains a list of the proposed modifications to the
ICCS Transport Layer.

7-3

As discussed in the previous section, the processor used for the AlPS distributed
engineering model was a Motorola 68010 operating at 7.9 MHz clock. The distributed
inter-function communication time measured on this hardware and reported in the preceding
section was 28.4 msec. Other benchmarks were measured on both the AlPS 68010 FTP
and a 68020 FTP with a 14.7 MHz clock. The 68020 FTP outperformed the 68010 AlPS
FTP by a factor of six [5]. It is projected that a state-of-the-art processor will outperform
the 14.7 MHz 68020 by a factor of 10 [6]. Combining these numbers, a state-of-the-art
processor with a mature Ada compiler should outperform the AlPS 68010 processor by a
factor of 60. Therefore, it is predicted that distributed communication executing on state-
of-the-art processors will easily meet the timing constraints of -real time flight control
applications. Empirical measurements of AlPS software executing on state-of-the-art
hardware should be carried out to verify these performance predictions.

7-4

8.0 REFERENCES

1. L. Burkhardt, L. Alger, R. Whittredge, and P. Stasiowski, "Advanced Information
Processing System: Local System Services", NASA Contractor Report 181767, April,
1989.

2. T. Masotto and L. Alger, "Advanced Information Processing System: Input/Output
System Services", NASA Contractor Report 181874, August, 1989.

3. G. Nagle, L. Alger and A. Kemp, "Advanced Information Processing System:
Input/Output Network Management Software", NASA Contractor Report 181678,
May, 1988.

4. J. Martin, Distributed Processing Software and Network Strategy, Savant Research
Studies, Lancashire, England, October 1979.

5. R. E. Harper, L. S. Alger, and J. H. Lala, "Advanced Information Processing System
Design and Validation Knowledgebase", NASA Contractor Report 187544, September
1991.

6. R. Cole, "Advanced Information Processing System for Advanced Launch System:
Hardware Technology Survey and Projections", NASA Contractor Report 187555,
September 1991.

8-1

APPENDIX A: NODE SPECIFICATION

The input/output network is comprised of simplex nodes. These nodes are interconnected
by links. A node is a communication switching point with five input/output ports. Figure
A-i is a basic representation of a node. The internal construction of each port of a node is
shown in Figure A-2. Since a node does not have knowledge of the configuration of the
network it must always have its receivers enabled. Reconfiguration commands can be
accepted from any port whether enabled or not. Configuration commands enable selected
ports. Ports are reconfigured whenever necessary and can be temporarily modified for
single response frames. As a message is received on an enabled port it regenerates and
retransmits the received data. At the same time, the message is decoded within the node. If
the message is addressed to the node it responds to the command embedded within the
data. If the message is addressed elsewhere it checks for a valid transmission, latches
observed error conditions and resets the receiver for the next transmission.

Figure A-i. AlPS NODE

Some components are unique to a port and some are shared by all the ports. Figure A-2
shows the basic construction of a node. The components within the dotted lines are unique
to each port and are repeated five times. The components outside of the dotted lines form
the node control section and are not repeated. The following is a description of the basic
components of the node.

A-i	 PRECEDING PAGE BLANK NOT FILMED

Port Components (uniaue to each Dort)

1. Receiver

The receiver accepts the signal level on a link and converts it to the internal logic
level of the port. The receiver also isolates the node from electrical failures of the
link.

2. Protocol Decoder

The protocol decoder accepts the serial data stream from the receiver and checks for
protocol compliance and transmission induced errors. It then assembles the
message into parallel words utilizing its clock extraction section. These parallel
words are stored in a receive FIFO for the control sequencer to examine.

3. Clock Extractor

Since the data transmission rate is 2 MHz, and all elements (FTPs, nodes, etc.) are
operating on independent oscillators, it is necessary to generate a clock for the
decoder. This clock is synchronized to the first edge of data that it sees, and it
remains usable for the maximum message length.

4. Signal Regeneration Logic

The signal regeneration logic is used to reconstruct the fidelity of the transmission.
The passage of the signal through circuit elements in the node and the variability of
the frequency of individual oscillators would degrade the signal if it were not
reconstructed in each node. After several transitions through circuit elements the
transmission could appear to be modified. The input to the regeneration logic is the
OR of all the enabled port receivers and the protocol encoder output. The output of
the regeneration logic is enabled or disabled by the port enable register and is
applied to the input of the port transmitter.

5. Transmitter

The transmitter converts the output of the regeneration logic into the signaling levels
used on the links.

A-2

From
other
ports

REGENERATION	 Port
LOGIC
-	 cilutlic

Port
--

 :
To Other

I	

Ports r
— [*H M IFT> RCUR

PROTOCOL
DECODER

RECEIVE
FIFO

CLOCK
EHTR ACT IC N

Port logic
L

PROTOCOL
ENCODER

TRANSMIT
FIFO

PORT MESSAGE PORT
SEQUENCER ACTIVITY BUFFER ENABLE

REGISTER REGISTER

Figure A-2 NODE PORT

To port
regeneration

logic

A-3

Control Components (shared b y all the ports)

1. Node Sequencer and Control

The node sequencer and control orchestrates the total operation of the node. It
scans the port receive FIFOs for messages received from the links. If a message is
found, it checks the address byte to determine if the message is addressed to this
node. If the message is destined for this node, the sequencer then checks the bytes
that follow the address byte to see if the rest of the message conforms to a proper
node message. The message is acted upon only if it passes all tests. The
sequencer is capable of reading the input FIFOs and writing to the transmitter
FIFO, port enable register, and message buffer.

2. Port Enable Register

The port enable register accepts the decoded commands from the sequencer and
enables/disables the individual port reconstruction logic. The last command is
stored until rewritten by the next command. The contents of this register are
contained within the status message from the node.

3. Message Buffer

The message buffer is a 64 byte long RAM which can be written into by an
appropriate node command. The contents of this RAM can be returned by the node
in place of a status message.

4. Port Activity Register

The port activity register is set whenever a transition is detected on the port receiver.

5. Transmit FIFO

The transmit FIFO holds the node response message for application to the protocol
encoder.

6. Protocol Encoder

The protocol encoder receives the node responses and encodes them into the link
protocol. The output of the encoder is sent to the reconstruction logic of all ports.

A-4

Input Frame Message Format

The following is the format of an input frame sent to a node

1. Opening Flag

2. Node Address

3. Encoded Node Address

4. Operation Code

5. Port Enables and Control

6. Message Sum Check

7. Residue Bits

8. FCS

9. FCS

10. Closing Flag

A-S

Bit assignments within the transaction are as follows.

bit	 7	 6	 5	 4	 3	 2	 1	 0

0I111I1I1I10

Node Address Bits

Encoded Node Address Bits

Mode Mode Mode MSgB Err Res Res Res

Chg
Port

Enb
Once

Cir
Stat

E D C B A

Sum Check Bits

Residue Bits

FCS High Byte

FCS Low Byte

Opening Flag

Node Address

Encoded Address

Op Code

Port Enable

Sum Check

Residue Bits

FCS

FCS

Closing Flag

1. OPENING FLAG: As defined in the HDLC specification, this flag is used to
synchronize and separate transmissions.

2. NODE ADDRESS: The address of the node to which this message is directed.

3. ENCODED NODE ADDRESS: The encoded address of the node to which this
transaction is directed. It has been placed in the byte that HDLC has defined as control.
Since control code definition is defined by the user, in AlPS it is used as the encoded
address to help shorten the response time and is the one's complement of the node
address.

A-6

4. OPERATION CODE: Contains the code for the function to be performed by the
addressed node. The following is the definition of those functions.

Bit	 7	 6	 5	 4	 3

1 1 1 R E

1 1 0 R E

1 0 1 R E-

1 0 0 R E

o i 1 R E

o 1 0 R E

o 0 1 R E

o o 0 R E

Modify Port Enable Register as
specified in next byte.

Reserved

Next byte to Count register

Next byte to Address Reg H

Next byte to Address Reg L

Next byte to address
specified by Address Register

Next byte to address
specified by Address Register
then +1 to Address Register

No modification to Port Enable
Register (next byte ignored). -

All valid input frames result in a response frame from the node. The content of the
response frame is determined by the state of bit 4 as defined below.

Bit 4 R=1 Respond from Status Register
R=O Respond from Message Buffer

The node can be commanded to send a response frame that contains a transmission
error for testing purposes. This faulty frame can occur in conjunction with any of the
above defined modes. A faulty frame is one in which the transmission is truncated, i.e.
aborted. The choice of valid or faulty frames is determined by the state of bit 3 as
defined below.

Bit 3 E=1 Respond with faulty Message
E=O Respond with valid message

Modes 1, 2, 3, 4 and 5 are for specifying the parameters used to generate responses
from the message buffer. If a response is specified from the message buffer, the node
will respond with the number of bytes specified by the counter starting at the address
contained in the Address Register. The contents of the counter and Address Register

A-7

are not changed by a response request. The counter and Address Register are modified
as specified above using modes 3, 4 and 5. Modes 1 and 2 are used to load specified
memory locations within the node. Mode 1 automatically increments the address
register after each byte is stored at the present location specified by the address register.
The Address register can only specify locations from OOCO (Hexadecimal) to 00FF
(Hex), a total of 64 bytes. Mode 2 is used to specify memory locations in a random
access mode. Bits 2, 1, and 0 specify, in binary, the number of residue bits to be
generated in a response frame.

5. PORT ENABLES AND CONTROL: If mode 7 is specified in the opcode byte, this
byte is loaded into the port enable register. If bit 7 of this byte is set (=l), then the
port enable register is changed permanently. However, if bit 7 is not set and bit 6 is
set, the contents of the port enable register are modified for this transmission only. At
the completion of this transmission the previous contents are reloaded into the port
enable register. If both bits 7 and 6 are set at the same time, the node will respond as
if only bit 7 were set, i.e. the port enable register will be permanently modified. Bit 5,
if set, specifies that all status registers are to be cleared after this response is
completed.

6. MESSAGE SUM CHECK: The contents of this byte are calculated such that a
modulo 256 add of the Address byte, Encoded Address byte, OpCode byte, Port
Enable .byte, and this byte yield a result of zero. It is computed at the source and
verified in the node to check for errors outside the transmission medium.

7. RESIDUE BITS: Used to differentiate node messages from all other transactions.
There are three residue bits in a node message and the content of these bits is not
specified.

8. FCS: This byte contains the high byte of the FCS as calculated in the transmitter.

9. FCS: This byte contains the low byte of the FCS as calculated in the transmitter.

10. CLOSING FLAG: This byte is defined by HDLC as the transmission terminator or
separator.

A-8

Output Frame Message Format

The node always responds after a valid input frame. The output frame can be generated
from: (A) the status register or (B) the message buffer.

A. Output Frame From the Status Register

When an output frame is requested from the status register it will take the following form.

1. Opening Flag

2. Node Address

3. Port Activity Seen

4. Transmission Errors Seen

5. Valid Frame Seen

6. Error in Node Messages Seen

7. NodValidFrame Seen

8. Node Port Configuration

9. Sum Check

10. Residue Bits

11. FCS

12. FCS

13. Closing Flag

A-9

Bit assignments within the Output Frame from the status register are as follows.

bit	 7	 6	 5	 4	 3	 2	 1	 0

ollIlIlIlIlIllo
Node Address Bits

X X X E D C B A

X X X E D C B A

X X X E D C B A

X X X E D C B A

X X X E D C B A

X X X E D C B A

Sum Check Bits

Residue Bits

FCS High Byte

FCS Low Byte

oIii Iii IiIiIo

Opening Flag

Node Address

Activity Seen

Transmission Errs

Valid Frame Seen

Node Error Seen

Node Valid Frame

Node Port Config

Sum Check

Residue

FCS

FCS

Closing Flag

X=Reserved

1. OPENING FLAG: As defined in the HDLC specification, this flag is used to
synchronize and separate transmissions.

2. NODE ADDRESS: The address of this node.

3. ACTIVITY SEEN: Whenever a transition on a link is detected at a port, whether
enabled or not, the corresponding bit in the byte is set to a 1. These bits remain set until
a clear status command is received in a valid input frame.

4. TRANSMISSION ERRORS: Whenever a node detects a transmission error, a bit is set
for the corresponding port. These bits remain set until a clear status command is
received in a valid input frame.

A-b

5. VALID FRAME SEEN: Whenever a frame is seen without transmission errors, the
corresponding port bit is set. These bits remain set until a clear status command is
received in a valid input frame.

6. NODE ERRORS SEEN: Whenever a frame is received addressed to this node and
without transmission errors but not honored by this node, the bit corresponding to the
port on which it was received is set. These bits remain set until a clear status command
is received in a valid input frame.

7. NODE VALID FRAME: Whenever a node responds to an input frame the
corresponding port bit in this byte is set. This bit is set before a response transmission
and cleared after the response transmission if a clear status command is received.

8. NODE PORT CONFIGURATION: This byte is normally set to the present state of the
port enable register. However, if the input transmission had requested a change of port
configuration for this transmission only (ENB ONCE bit set), then the byte is set to the
state to which the node will revert after this transmission.

9. MESSAGE SUM CHECK: The contents of this byte are calculated such that a modulo
256 add of the Address byte, Activity Seen byte, Transmission Errors byte, Valid
Frame Seen byte, Node Errors Seen byte, Node Valid Frame byte, Node Port
Configuration byte and this byte yield a result of zero. It is computed by the node to
enable user detection.

10. FCS: The FCS bytes are a cyclic redundancy calculation performed by the HDLC
transmitter and appended to the end of the frame.

11. CLOSING FLAG: The closing flag is the frame terminator.

B. Output Frame From the Message Buffer

An output frame from the message buffer is intended to be used as a test tool. The output
frame information field contains the number of bytes specified in the counter starting at the
address in the Address Register. The counter and Address Register must have been
initialized prior to a request. The values in these registers remain unchanged until they are
rewritten. A byte count of zero will result in 256 bytes being transmitted. The output
frame will take the following form.

1. Opening Flag

2. Contents of Address specified by the Address Register

A-li

3. Contents of Address specified by the Address Register + 1

4.

5.

6. Contents of Address Specified by the Address Register + Counter

7. Residue bits

8. FCS

9. FCS

10. Closing Flag

A-12

APPENDIX B: TRANSPORT LAYER USER'S GUIDE

This appendix describes the interfaces to the Transport Layer available to a user who wants
to send and receive messages. As described in Section 4.1.1, such a user expects to
transmit and accept messages but without having any Session Layer functions performed
for it (perhaps it is the Session Layer).

B. 1. User Identification

All users of the Transport Layer must identify themselves, both to other users and to the
Transport Layer. This can be done by updating one of two packages:
ICCS_SYSTEM_USER_IDS (for system users) or ICCS_APPLIC_USER_IDS (for
application uers). Listings of these packages are shown in Figures B-i and B-2. These
packages have defined a fixed number of user IDs, some with names such as "UNUSED"
or "RESERVED" to indicate IDs planned for but not yet actually used. To enter a new user
ID, a descriptive name must be substituted for one of the unused names. This name must
be entered in two places: in the type ic_ user _id is . . . statement and in the for
ic_user_id use. . . statement. Note that only one of the two packages (system user
IDs or application user IDs) should be updated for any given user.

For example, to add a DATA_STORAGE application as a new user, DATA—STORAGE
would replace APPL_UNUSED_7 in both the type ic_user—id is... statement and in
the for ic_ user _id use . . . statement in the ICCS_APPLIC_USER_IDS package.
Then the ICCS_APPLIC_USER_IDS package and the ICCS_USER_SERVICES_APP
package must be recompiled, as well as any other application tasks which reference these
two packages.

Similarly, to add a RESOURCE_ALLOCATOR task as a new system user, RESOURCE_
ALLOCATOR would replace RESERVED -13 in the type ic_user_id is .
statement and the for ic_user_id use ... statement in the ICCS_SYSTEM_USER_IDS
package.	 Then the ICCS_SYSTEM_USER_IDS package and the
ICCS_USER_SERVTCES_SYS package must be recompiled, as well as any other system
tasks which use the IC communication services and therefore reference these two packages.

B1

--	 Package Spec ICCS_SYSTEPt_USER_IDS
-- Contains ids for all users of IC Communication Services. These are
-- kept in a separate package so that new users can be added without
-- having to recompile the IC software.

-- Name	 Date	 Description

-- L. Burkhardt 20-Oct-1988 	 Created

package ICCS_SVSTEM_USER_IDS is

-- user ids
type ic_user_id is NON_ICCS_USER,

CP_ STATUS _REPORTER,	 -- System users
lOP_ STATUS _REPORTER,
CP_RENDEZVOUS_MGR,
lOP_ RENDEZVOUS _MGR,
CP_GLOBALDATA_PIGR,
IOP_GLOBALDATA_ItGR,
CP_TEST_APPL,
IOP_ TEST _APPL,
CP_ST_BROADCAST,
lop _ST_BROADCAST,
LOCAL _ICIS_PIGR,
IC_NETP4ORK_tIGR,
RESERVED_13,
RESERVED_14,
RESERVED_15,

APPI_ UNUSED _l,.	 -- Application users
APPL_UNUSED_2,
APPL_IJNUSED_3,
APPL_UNIJSED_4,
APPL_ UNUSED _S,
APPL_ UNUSED _6,
APPL_ UNUSED _7,
APPL_UNIJSED_8,
APPL_ UNUSED _9,
APPL_ UNUSED _lO,
APP 1_UNUSED 11,
APPL_UNUSED_12,
APPL_ UNUSED _13,
APPL_ UNUSED _14,
APPL_ UNUSED _15,
APPL_ UNUSED _16,
APPL_UNUSED_17,
APPL_ UNUSED _l8,
APPL_ UNUSED _19,
APPL UNUSED _20)

for ic_user_id'size use 8,

Figure B-i. ICCS_SYSTEM_USER_IDS Package

B-2

for ic_user_id use
(NON_ICCS_USER	 => 0,

CP_STATUS_REPORTER > 1,
lOP_STATUS_REPORTER > 2,
CP_RENDEZVOUS_IIGR => 3,
IOP_RENDEZVO*JS_MGR > 4,
CP_GL.OBALDATA_MGR > 5,
IOP_GLOBALDATA_MGR > 6,
CP_TEST_APPL	 => 7,
IOP_TEST_APPL	 > 8,
CP_ST_BROADCAST	 > 9,
lOP_ST_BROADCAST	 > 10,
LOCAL_ICIS_tIGR	 => 11,
IC_NEThORK_MGR	 > 12,
RESERVED_13	 > 13,
RESERVED-14	 > 14,
RESERVED-15	 > 15,

APPL_IJNUSED_1	 > 16,
APPL_Lft4USED_2	 > 17,
APPL_UNUSED_3	 > 18,
APPL_UNUSED_4	 > 19,
APPL_UNUSED_5	 > 20,
APPL_UNUSED_6	 > 21,
APPL_IJNUSED_7	 > 22,
APPL_ UNUSED _8	 > 23,
APPI_ UNUSED _9	 > 24,
APPL_IJIRJSED_10	 > 25,
APPL_UNUSED_11	 > 26,
APPI_IJNUSED_12	 => 27,
APPL_ UNUSED _13	 > 28,
APPL_IJNUSED_14	 > 29,
APPL_UNUSED_15	 > 30,
APPI_UNUSED_16	 > 31,
APPI_UNUSED_17	 > 32,
APPL_UNUSED_18	 > 33,
APPL_UNUSED_19	 > 34,
APPL_UNUSED_20 	 => 35);

and ICCS_SYSTEPt_USER_IDS

Figure B-i. ICCS_SYSTEM_USER_IDS Package (cont.)

B-3

--	 Package Spec ICCS_APPLIC_USER_IDS
-- Contains ids for all users of IC Communication Services. These are
-- kept in a separate package so that new users can be added without
-- having to recompile the IC software.

-- Name	 Date	 Description

-- L. Burkhardt 20-Oct-1988	 Created

package ICCS_APPLIC_USER_IDS is

-- user ids
type ic_user_id is (NON_ICCS_USER,

RESERVED_i,	 -- System users
RESERVE D_2,
RESERVE D_3,
RESERVED 4,
RE SE R yE 0_S
RESERVE D_6,
RESERVE D_7,
RESERVED_a,
RESERVED_9,
RESERVED_lO,
RESERVED_il,
RESERVED_iZ,
RESERVE D_13,
RESERVED_14,
RESERVED_iS,

CCP,	 -- Application users
RANGE_SAFETY,
PROP _CONTROL,
SENSOR _PROC,
MIND _DETERMIN,
COt*tAND_AND_TELEM,
APPL_UNIJSED_7,
APPL_UNUSED_8,
APPL_UNUSED_9,
APPL_UNLJSED_lO,
APPL_UNUSED_il,
APPL_ UNUSED _12,
APPL_ UNUSED _13,
APPL_UNIJSED_14,
APPL_LJNUSED_15,
APPL_UNUSED_16,
APPL_UMJSED_17,
APPL_UNUSED_18,
APPL_UNUSED_19,
APPLIJNUSED20)

for ic_user_idsize use 8;

Figure B-2. ICCS_APPLIC_USER_IDS Package

B-4

for ic_user_id use
(NON_ICCS_USER	 > 0,

RESERVED-1	 => 1,
RESERVED-2	 => 2,
RESERVED-3	 > 3,
RESERVED-4	 > 4,
RESERVED-5	 > 5,
RESERVED-6	 > 6,
RESERVED-7	 > 7,
RESERVED-8 .	 > 8,
RESERVED-9	 > 9,
RESERVED-10	 > 10,
RESERVED 11	 > 11,
RESERVED-12	 > 12,
RESERVED 13	 > 13,
RESERVED-14	 > 14,
RESERVED-15	 => is,

CCP	 > 16,
RANGE-SAFETY	 > 17,
PROP_CONTROL	 > 18,
SENSOR_PROC	 > 19,
I4IND_DETERtIIN	 > 20,
COMMAND_AND_TELEM => 21,
APPL_LJNUSED_7	 > 22,
APPL_UNUSED_8	 > 23,
APPL_UNIJSED_9	 > 24,
APPL_LJNUSED_10	 > 25,
APPL_LR'IUSED_li	 > 26,
APPL_UNLJSED_12	 > 27,
APPL_UNIJSED_13	 => 28,
APPL_IJNUSED_14	 > 29,
APPL_IJNUSED_15	 > 30,
APPL_IJNUSED_16	 > 31,
APPL_UlUSED_17	 > 32,
APPL_UNUSED_18	 > 33,
APPL_UNUSED_19	 > 34,
APPL_UNUSED_20 	 > 35)

end ICCS_APPLIC_USER_IDS

Figure B-2. ICCS_APPLIC_USER_IDS Package (cont.)

B-5

A maximum of 35 user IDs (15 system, 20 application) have been provided. If either
subset exceeds its maximum, both ICCS_SYSTEM_USER_IDS and ICCS.APPLIC_
USER_IDS packages must be modified to reflect the new maximum. Then both of these
packages and the system tasks and application tasks which reference them must be
recompiled.

If the total number of user IDs exceeds 41, the ICCS_DATA_TYPES package must be
modified, specifically, the user_t type. Then all packages dependent directly or indirectly
on this package must be recompiled. The ICCS_DATA_TYPES package is shown in
Figure B-3. The recompilation order for all dependent programs is shown in Figure B-4.

--	 Package Spec ICCS_ DATA _TYPES
-- Contains data types and high-level variables related to IC communication

-- Name	 Date	 Description

-- L. Burkhardt 23-May-1988	 Created

with SYSTEM, LSS_ON_CARDRAM, UNCHECKED_CONVERSION)

with ICCS_USER_DATA_TYPES, LSS_MEMORY)
use ICCS_USER_DATA_TYPES, ISS MEMORY

package ICCS_DATA_TYPES is

type msec_'t is range -2**31. . 2**31 - 1) 	 -- from RTS timer—support package
for msec_+'size use

type user_t is range 0. .40) 	 -- my definition of user id
for user_tsize use 8) 	 -- should match what's in System—User—Ids

-- and Applic_User_Ids

-- Identify this GPC

THIS_GPC gpc_t)

end ICCS_DATA_TYPES)

Figure B-3. ICCS_DATA_TYPES Package

B-6

RECOMPILATION ORDER when ICCS_DATA_TYPES package has been modified

ICCS Packages

ICCS_DATATYPES
ICCS_ICIS_TYPES

ICCS_CP_IOP_COftlON
ICCS_CP_IOP_COMHON_B
ICCS_USER_SERVICES
ICCS_LISER_SERVICES_SYS
ICCS_USER_SERVICES_APP
ICCSERROR_LOG

ICCS_MESSAGE_SEND_RCV

ICCS_RM_OBJS
ICIS_LOCAL_MANAGER

ICCS_MESSAGE_SEND_RCV_B
ICCS_MESSAGE_SEND_RCV_S1
ICCS_MESSAGE_SEND_RCV_S2
ICCS_MESSAGE_SEND_RCV_S3

ICCS_USER_SERVICES_B
ICCS_USER_SERVICES_SYS_B
ICCS_USERSERVICES_APP_B

ICCS_ICIS_INIT
ICCSERROR_LOG_B

ICIS RM Packages

ICCS_RI1_UTIL
ICCS_RM_PACKET

ICCS_RM_CONG_DATA
ICCS_RM_ACTIVE_LAYER
ICCS_RH_BC_ANALYSIS
ICCS RM SDLC

ICCS_RM_UTIL_B
ICCS_RM_PACKET_B

ICCS_RM

ICCS_RH_B
ICCS_RII_CONG_OATA_B

ICIS_LOCAL_MANAGERB

Figure B-4. Recompilation Order for Packages Dependent on
ICCS_DATA_TYPES

B-7

NETWORK MGR FILES dependent on ICCS packages

ICCS_ NET _MGR _B
ICCS NET _MGR _CONFIG_B
ICCS_NETjIGR_COLLECT_B
ICCS__NETMGR_MISC_B
ICCS_NET__SE LF_TE ST_B

GPC FDIR Packages dependent on ICCS packages

LSS_CONFIG_B
ICCSFDIR_TIME_CP
ICCS__FDIR_TIME_IOP
ICCSFDIR_TIIIE_CP_B
ICCS__FDIR_TIME_IOP_B
ICCS_TFDI_IOP_B
ICCS_TFDI_CP_B
LSS_SYNC_B

DISPLAY Packages dependent on ICCS packages

ICCS_ MAC _IO. A
ICCS_ MAC _IO_B . A
ICCS_ MAC _DISP A
ICCS_ MAC _DISP_B . A
ICCS MAC _APPL_DISP
ICCS__MAC_APPL_DISP_B

ICCS MAC _DISP_ MAIN _CP
ICCS__MAC_DISP_ MAIN _CP_B
ICCS_ MAC _DISP_ MAIN _IOP
ICCS_ MAC _DISP_ MAIN _IOP_B
ICCS_DISP_tIAIN_CP
ICCS_DISP_ MAIN _CP_B
ICCS_DISP_ MAIN _IOP
ICCS_DISP_tIAIN_IOP_B

CP AND lOP MAIN PROGRAMS

ICCS_MAIN_PROG_CP
ICCS_IIAIN_PROG_IOP

Figure B-4. Recompilation Order for Packages Dependent on
ICCS_DATAJYPES (cont.)

B-8

B. 2 Interface Routines

This section describes the interface routines available to a Transport Layer user.

Figure B-5 lists the available routines. A brief description and the name of the defining
package is given for each routine.

Figure B-6 describes the parameters required for each routine. In addition, each routine is
identified as being either a function (F) or a procedure (P).

Figure B-7 lists the packages that define the required data types.

B-9

0)
2

(I)0) E. CD

cc

ccC
U)

U).
to

0,0- E
U) EC C.)

0 0 0 Cd 0-0 2
U) h .0 0 > V

.2U)u -E "2 U) U)

00)
C

bd

..
0)

0

U) (
U)

-
— U)CtO)

U)

z E
0 w Co

E
CL cE U,	 C E c - o

C

2 0	 -
o.2 .2

L) 0 C 0h. —
Cl) o

—
o0-

w

0 oco, — 2 .9 .9 >1 Cd

M r4 o2 _2	 •
U) U) U)

'°U)	 °E • c0..—
U)C1< U)

-
U)

.0

Cd (D W UJØC UJ —	 •

.OQ .
>-o_ .

ci5o
>- C

cñ.
>-O >-O >-.. CL

01 <1

•00

0<

U) U)

0< 0<

01 01

0<	 .
0101

01co1
w ww w w w w

> 5> 5> 5> >> >5

U
w w
0(I)
II

w
00

w
0(i)

w
00
ll

 w
00
II

00

cc
II

cc
lI

w
(00

w
00

ww
00

w
00

 w
00 0(i)

lI

U) U) (01 (01 0101

00 00 00 00 00

z

o U)

4 I-

W 0 U)
z . I

p
I

be CL I-

0
U)

I-
CL CL

I- LU
U)

m a. I-

>.
U-

w
U)

m

0

0
I

a. 1 C.) I
z I- m

z I-
w a. = w

2 0 0 C'

U)
I-

U)

1

0.
U)
0

U)

0

0

0

I

B- 10

CD	 Ci

U)

COO

-a

CD

.20	 E
U) C)

E
O

>U) cJ

a--c .2
- >,•—U) cCW -

C.) •U) Qocs CnO 0

z '-cc CL a >QW
ca co CD —

0 < —o - a' 2° - 0)

C CO <Q0O(D
a-2

CL
—
c

>

z

O
(I)

.-c

U)
C	 •
o

,	 ,	 , •
•_C

CO U) C) -	 2
U)

z

-
U)	 .2 a-

co

a.
;__ Q C a- w

I-
X

.a0

El z
LU

o
o
°w

t.j
a-

øE.2
—

iZ

.2's l 0 (4 C.
ca

cz
0

h0)

.2.E

Oj
a-

WWWW	 l
<

U)

0< c/)øU)ØZ< I-

Cl)

LU
0
- Z

—

Z

— Z
LU -

I

a.

LU
a.

I_I

0

>. I 0

I-.
0• I

U
U
0

.X -
0

.2
0. 10. — Q

z .0 0 Cl, C

a. -
CD CD

Cl)
C C E ...- C

IZ
be 0
Co

LU
i-C.)

0
>.—J
U-

0 -
I z

UJ —

V

U)

1

B-li

0
0 >

0 -
.U) 0	 C

E
C

E
0)

0
x

0 0 C6
o OQ) I- 0 ,. 0

(60 C6 0
Cd CD

co

:3
:3

0 0	 C
.	 0)

0 I- Cy	 CD 0 (6	 i5

Z -C 0
CO

CO (6(6 E
U

-

0cc
c60 Co 2

Z U) .0 0_ OCO CD -
0C

Co .c. (flCU)
o>

-
.0

U)-
-

.
>..
O 0.CW

ca
LU • (0(6

0 - E w
..2)-o

0
cd
0.

O (0
Eo

N . 20 2 N 0
- 00 - O)0

Co E 2
CD c rr.

:0 z2 - u.. Wo. CC A E cu

U)
10 z z z
LU - -
I- Z
LU —

I

LU

>.
I-.

tI
0) 0) 0

0 0) 0).
.2 0 — uj

— — . .

z c C
.2

0
(6

0
0
N

._
0

0
N 0 C

0 .V (0
C 0 (I) 0

C 0
0 2. 2.
LU

:
- 0

..—
- a-

0 ...
0
(0(6

0
CO

CD z2
0

z2

CL

a. LU LU
Z U)

I
I-

Ui
U)

0 a.
I-

a.—
o

V

U)

0

V

U)
1

E

L..

B-12

0 .<>.. U)
CD - - (I)

a

E E
E
o

C .2
0.

o.
0) U)

h.. a Z c0 U) C 0

0 C
0 .9 ° -E° .- C

0)Z > o U)
-DO
C

Z - < - 0 '
' 0w-C)

0
C.)

2 .
0 -o _C 0

Co
co	 CL - :3

o)Q C O C

'o. .a	 .E 0 c 0 .-C 0 CO :fl Z '• c:1 c .2'i 0 < U) .2CJ) <
—J
0.

(D	 co

E
0
ç
—

0
D
(D	 to

CO
•-C COC

X
w

. w— 00
C0

C.)	 I
0)- 0 C	 C

Cl) C l)

0) 0
-D

Li:--

•••C

.•

0U.
-o—

I...
u.--

*

O
-

0 0

U)
U) - W

O>cd

-

as

(0 W
I-	 0) 0 - Q

CD

- 0

CD

0)

0

0 .

0

CL 0 0

0
.0 -D C.)

W Cl)

- <a iE LL

I-

Cl)

0
LU •-
I— Z
w —

-
• I

>.
- 0

0. •
-

— Im

>
I.- — 0 0

-

0.
_I 0

I 0 I -. 0

I V 0. I — 0 0

E.0

z >* -C.)

o 0
0.

-
0 .

— 0 -C
(D , .2 C.)

0. Cl) C C
0 0 0

-
0 0 0

:2 (C• i.	 CI) U) —
o2 .

• 0 U) 00
LU - 0- 0

U)
0

U)
0 00 00)

I-

w 0.
z I-

0

0
• z

LU

0

U)

-•

0

U)

L

B-13

.-
-w -o ci)CD

E2

C)
°

75

w cc .	 a °

2

(D

(D
C

E
U)

CD

ca o 0

-
CU C.-. CU

c -

-
cu CU

-w
-	 0

CD C •
'.—

C
i-

U)
> cd

co -D E CU	 C.)	
-o

•	 0)
 ,	 CU 1 '

C

E ci :2 — gci) ' cW <--- Z 2
U

-
>

C)'—>
cO -- u	 E w5 oO

'.
F- U)) :3 a

.—OCCUu0
< A2 '— '- .— z

Z
2 Cl)

U)
ZU)

'E	 I CD i- 1 ao0

0	
—;Q$_

ØZ 0 .c

0.
C Q o

w
Cl) CD

>-CU

U) Z.I.

W•-
(1)

•U).?
 I	 ID uj co

Occ

ci cc -2<5

0 CO CD Q0C
>	 >	 >
Z

0 w w W
z z c z

U)

w

I- Z

LU
—

I.

0
0.

w

>-
I- 0.

0

z C 0
o ci)

cc
—

w
O

I-
w a.
z

o. 10 0 z w U)

0

U)

0

CJ

1.

I..

U)

E
CU
I-
CU

B-14

C)

V
!

—
D
Q
0 0 CL E

CL
E (OC

CCI) E
o	 .
0(l)

ØU)
E

I-
2 V _ C)

co
I-

Cl)

U — -	 .

0.00(— .c	 0.00)
co

00

(I)

C
.00	 o

QC) '

C%l

.5 c
CD

0 •2
0.0

• I C .2.c z
o -

Co
cc	 CL

Cl)

E2g .	 V<QV
Z

'—C
,1.

 V; 0 -u wWVo
-J
CL 0.2

°
C OZ o.oi

W cr
(D

'W 1C	 ID(.2
z
LLI Cl)

co

o
ZOCI)

•QFD0
a..	 ioc0

- C) W1IW (D	 CD
C

CC
0-C

I- 0

0
O
z

(I)

I-.

I-

Cl)

0

I-

w—
Z

w —

I-
Q

0

w

0

0
I-

2 -0
0 —

z
C

o U)

CL

V

C
2

0

0
V

C/)

W
-
0

i.Cl)
co0

0)0

O CI)

IC')

w

z

0

0 C-)
w

I

C-)	 —

0

U)

0

U)

E

C..

B-15

C
0

2 U)

0<

-
>
0 I C)
E ou- .2 C)

CD 0

E'

Z
Cd

C). .2'
O (I) C) E. CD

p >. øco
Cl)	 - (l)O

0W—Z • E
CD

E
0

CD -Do -	 c

0
x 0 2 -o=ci, w o >

U.

2
2 -U)

(U C
tD

oc -,i— E
CD

CC o

C.)
0

—J
Q

(D_J
g - 2 cd

U)

w I— Z w-
V —

V -)••
LU 0. I >- 1. $

—
I.. Q . C

$ 0 I u I I o .
Im-. 2 E 0

z 0 C) C o to f tv 73

0 0 0)0)
0. (.)

U' 0 cc >
0 C
U) w 0 0 O 0 (I) 0 —

w
z
p IL z 0

I—Ui'-

0
U)
V

0

V
V

V

V

I-

V
I-

V

U)

V
-V
V

co

V

B-16

w

C.,

0

w
0.
>-

I-

0

Ci) 0 U) U)
w

U)
w

-
w
0..

U) W
CL

W
(L CL

>- ?-

w I
I

I I
I—
<I < 0 -J I— U)

CI)

() C.) I CCI CC'
I

0. -J [fjt Z W 00. W W U)
w CI) CI)

I I I
U) 0101 cd
0 00 0 0 C/) —j

w I
>1

—

o

I

>.
I-

_I 0 0

0.
— 4_I

4 1>0 0
.

— I CL 0 W D .2
I 5 CL I

. E o a 0.

cn

rj

B-17

B. 3 Example

Figure B-8 is a partial listing of code from a Sensor Processing application that was written
for demonstration purposes. This listing shows the calls to the various Transport Layer
interface routines. Because this task needs to execute periodically, whether or not it has
received any input, it polls for incoming messages.

Figure B-9 shows how a task might schedule itself to execute only when there are input
messages waiting for it.

B-18

--	 SENSOR PROCESSING Application

-- Simulates reading various sensors.
-- Sends the sensor data to a Central Command & Processing application

with ICCS_APPLIC_USER_IDS, ICCS_USER_OATA_TYPES, ICCS_USER_SERVICES_APP;
use ICCS_APPLIC_USER_IDS, ICCS_IJSER_DATA_TYPES, ICCS_IJSER_SERVICES_APP;

with LSS_TASK_IDS;

with ICOEMO_APPLIC_DATA
use ICDEHO_APPLIC_DATA;

package ICDEtIO_SENSOR_PROC is

-- Task definition

task type SENSOR_PROC_k is
pragea priority (45);

end SENSOR_PROC_k

SENSOR-PROCESSING : SENSOR_PROC_k;

MV_ID constant ic_user_id 	 SENSOR_PROC;

function Get-Id is new LSS_Task_Ids.Id_Of (SENSOR_PROC_k);

Sensor_Proc_Id : LSS_Task_Ids . Task_Id := Get-Id (SENSOR _PROCESSING);

b : boolean : IDENTIFY-TASK-LOCATION (MV_ID,
SENSOR _PROC_SITE,
CP,
Sensor_Proc_Id);

end ICDEMO_SENSOR_PROC;

Figure B-S. Example: Sensor Processing Application

B-19

with LSS_EVENT_CNTL, UNCHECKED -CONVERSION;

with ISS SCHEDULER;
use ISS_SCHEDULER;

package body ICDEMO_SENSOR_PROC is

-- output to CCP task) i.e.,
-- valid sensor data

valid-sensor-data valid-sensor-data-t;

-- input from CCP task, i.e.,
-- validation limits or sensor niode commands

sensor-info : sensor-info-t;
validation-limits : sensor-info-t;
sensor_mode_cmds : sensor-info-t;

-- output to Flight Safety, i.e.,
-- isds signals

isds_signals isds_signals_t;

max-output : constant integer 	 70	 -- max size of output record

-- SENSOR PROCESSING task

task body SENSOR_PROC_t is

dumny_input_event : LSS_Event_Cntl . a Event;

source_gpc gpc_t;
source-task : ic...user_id;
input_to_process boolean;
in_msg_prio : msg_priority_t;
error_code : output_error_t;
execution_count : integer;

begin

-- INITIALIZATION required for ICCS users

Input_Setup (MV_ID, 	 -- allocate input buffers
6,
sensor _infos ize/8,
false,
dummy_input_event);

Output_Setup (MV_ID, 	 -- allocate output buffers
4,
max-output);

-- Other initialization

Figure B-8. Example: Sensor Processing Application (cont.)

B-20

-- MAIN TASK LOOP

loop

WAIT-FOR-SCHEDULE;

-- First see if I have any input (validation limits or
-- sensor mode commands) from the CCP task

Get_Input (NY_ID,
sensor_info address,
source_gpc,
source_task,
in_msg_prio,
input_to_process)

while input_to_process loop

if source-task = CCP then

-- get all input messages

input from Central Command & Processing

else

	

	 -- input I wasn't expecting
null;

end if;

Get-Input (MY_ID,	 -- see if there's more input
sensor_info dd
source_gpc,
source-task,
in_msg_prio,
input_to_process);

end loop, -- while input_to_process.

-- Read the various sensors here and generate valid sensor
-- data record for the Central Command/Processing task

Send-Output (My_Id, 	 -- send the data
valid _sensor_data • address,
CCP_SITE,
CCp,
valid_sensor_data • size/8,
1,	 -- msg priority
0 1	 -- user msg id
false, -- no delayed error checking
error_code);

if error-code / NO ERRORS then
null;	 -- Do necessary error handling here

end if;

-- Continue with processing

Figure B-8. Example: Sensor Processing Application (cont.)

B-21

-- RANGE—SAFETY task

task body RANGE_SAFETY_t is

my_input_event LSS_Event_Cntl . a_Event;

source_c : gpc_t;
source—task : ic_user_id;

input_to_process : boolean;
in_msg_prio msg_priority_t;

function gen_to_isds is new UNCHECKED—CONVERSION
(gen_purpose_p, isds_signals_p);

function gen_to_de is new UNCHECKED—CONVERSION
(gen_purpose_p, fi ight_des kruct_enable_p);

function addr_to_gen is new UNCHECKED—CONVERSION
(System.address, gen_purpose_p);

begin

-- INITIALIZATION required for ICCS users

Input_Setup (MY_ID,	 -- allocate input buffers
4,
gen_purpose_rec • size/8,
true,
my_input_event);

Schedule -(Range_Safety_Id, 	 -- schedule myself to run when there's
false,	 -- input
Same _Priority,
(on _Event_Set, my_input_event, true),
No—Repetition,
No—Completion);

-- MAIN TASK LOOP

loop

WAIT—FOR—SCHEDULE;

Get_Input (MY_ID,
gen_purpose_rec address,
source_gpc,
source_task,
in_msg_prio,
input_to_process);

-- Do processing

Figure B-9. Example: Task Scheduled by Arrival of Input

B-22

APPENDIX C. ICIS HARDWARE IMPLEMENTATION

A block diagram of the ICIS is shown in Figure C- 1. The ICIS is programmed by an FTP
which has access to the dual port memory and hardware registers that are associated with
the ICIS. The ICIS utilizes a time shared 8K x 8 x 3 memory for program and input/output
buffer storage. More specifically, there are three 8K x 8 memory devices in each ICIS; one
device is associated with each of the three redundant network layers. This memory can be
alternately accessed by the FTP and the ICIS microsequencers. An overview of the major
logic blocks of the ICIS is given in Figure C-i. This section describes the instructions and
registers available to ICIS users.

MD

PD

4 INPUT
LATCH

P SEj4fRfl4_.MREQ

r

C LR24IrnNrp fl1I p 4_. MCLR OUTPUT
- LATCH

- QL'7II
SOL Fr PA	 ------40[H7D

MEMORY

MUx	 8K X 8

POLL
LOGIC

&

INPUT

ADDRESS
DECODER hH

LATCH

OUTPUT
LATCH

INTERFACI
CHAIN	 STATUS
STATUS	 REGISTER

IENTERFACI
TIME	 kOMMAND I REGISTER

DATA
COUNTER

DATA
REGISTER

ADDRESS
REGISTER

ADDRESS
COUNTER

EQUENCER

Figure C .1. ICIS Logic Blocks

C-i

ICIS Logic Blocks

MEMORY CONTROLLER - The Memory Controller arbitrates between memory
accesses from the FTP and the ICIS. The memory is time shared via the processor
signal 4F16. When 4F16 is high, the CP or lOP can access the memory and when it is
low, the ICIS can access it. The memory controller generates chip select, read-write,
and output enable at the appropriate times.

ADDRESS MULTIPLEXER - The Address Multiplexer selects between the FTP and
ICIS address buses. The output of the multiplexer is the memory address bus (MA).
When 4F16 is high, the processor address bus is connected to memory and when it is
low, the ICIS memory bus is connected to the memory.

MEMORY - The ICIS memory consists of three byte-addressable memory devices each
containing 8192 bytes. There is one memory device for each of the three network
layers. The redundancy of the memory devices provides separate storage for each of
the three independent data streams (one stream generated per the network layer). Note
that the address and data buses for the memory devices are triplicated as well as all of
the latches and multiplexers used to control accesses to the memory devices. This
memory is also used to store the instruction chains and output packets. The first two
bytes of memory are used for the solicited chain pointer and the second two bytes are
reserved for the unsolicited chain pointer.	 -

FTP INPUT LATCH - The FTP input latch is a buffer driver used to transfer data from
the FFP data bus (PD) to the memory data bus (MID).

FTP OUTPUT LATCH - The FFP output latch is a buffer driver used to transfer data
from the memory bus (MD) to the FTP data bus (PD).

ICIS INPUT LATCH - The ICIS input latch is a buffer driver used to transfer data
from the internal ICIS data bus (DB) to the memory data bus (MI)).

ICIS OUTPUT LATCH - The ICIS output latch is a buffer driver used to transfer data
from the memory bus (MD) to the internal ICIS data bus (DB).

ADDRESS DECODER - The Address Decoder decodes the individual hardware
registers which are located in the memory space between 1016 and 1F16. The
addresses and details of the hardware registers are described in a following section.

INTERFACE COMMAND REGISTER - The Interface Command Register is a write
only register that contains the command mode. See the following section on the details
of the ICIS registers.

C-2

SEQUENCER - The Sequencer is the main control element of the ICIS. This logic
block can be further subdivided into a main sequencer associated with the L network
layer and two slave sequencers associated with the M and N layers. When started the
main sequencer fetches the instructions from the L layer memory, stores them
internally, and decodes and executes the microcycles by generating the appropriate
control signals. The slave sequencers are only released for independent operation
during the execution of an INPUT instruction. In this situation, they are responsible
for managing the transfer of incoming data from the HDLC device to the local layer-
specific memory devices.

CHAIN STATUS REGISTER - The Chain Status Register is a read only register that
contains the chain and contention logic status within the ICIS. See the following
section on the details of the ICIS registers.

INTERFACE STATUS REGISTER - The Interface Status Register is a read only
register that contains the status of the ICIS. See the following section on the details of
the ICIS registers.

ADDRESS COUNTER - The Address Counter stores the current memory address that
the ICIS is using. It points to the chain instructions. During an INPUT instruction, it
points to the location where the incoming data byte is to be stored. During an
OUTPUT instruction, it points to the byte to be next sent. It is loaded during
instruction fetches and incremented during the instruction microcycles. The address
counter is triplicated; one exists for each layer.

ADDRESS REGISTER - The Address Register contains the fixed addresses used in the
instructions. During an INPUT instruction, it contains the address of the HIDLC input
register. During an OUTPUT instruction, it contains the address of the HDLC
transmitter holding register.

DATA COUNTER - The Data Counter contains any data that is incremented during an
instruction. During an INPUT instruction, it accumulates the byte count of the
incoming data. During an OUTPUT instruction, it counts the number of bytes
transmitted. In the latter case, after the output data has been sent, it signals the
sequencer to terminate the instruction. The data counter is triplicated.

DATA REGISTER - The Data Register is used to temporarily store data within an
instruction. During an INPUT instruction, it holds the incoming byte from the HDLC
receiver register until a memory cycle can be performed to store it. During an
OUTPUT instruction, it holds the next byte to be outputted until the HDLC transmit
holding register requests it. The data register is triplicated.

C-3

HDLC - The HDLC device contains independent transmitter and receiver sections. The
HDLC transmitter section receives the data bytes, appends opening and closing flags,
and encodes and transmits the data. The receiver section searches the data stream for an
opening flag. When it detects one, it synchronizes itself with the data fields and
decodes the data stream into bytes for storage. In both modes, the device generates the
handshaking signals necessary to control the interface. The HDLC device is triplicated;
one device interfaces with each individual network layer.

FLAG SHUTDOWN - The flag shutdown logic guarantees that the external IC network
transmissions lines are always left in the same state. The JCIS uses the same IC
network lines to communicate and poll. In order to be able to perform both functions
on the same lines, all operations must leave the lines in a known state. The HDLC
protocol allows the signalling lines to be left in either state, and in fact the device used
to generate the HDLC protocol does leave the line in either state depending upon the
data content of the message. The ICIS contains additional logic, which upon sensing
the end of a message, utilizes the closing flags to turn off output with the line in a low
state without generating any extraneous data. When the next output message is started,
the first flags are used to turn the logic back on to the state that the HDLC device
attempted to leave the line. Again this is done without generating any extraneous bits.
The polling logic is designed so as to always end with the line low. The flag shutdown
logic is triplicated.

DRIVERS and RECEIVERS - These drivers and receivers allow the ICIS to interface
to the IC network. The drivers are enabled by an engage line from the FTP. The
receivers are always enabled but the input is controlled by the HDLC device. All
drivers and receivers are triplicated.

POLL LOGIC - The poll logic allows the ICIS to contend with other ICISes to gain
control of the IC network. When enabled, the poll logic monitors the IC network
waiting for a quiet time and then starts a poll. If it wins, it starts a solicited chain.
Alternatively, if it loses, it waits for the next poll or quiet time and tries again.

If the ICIS is to contend for the network, the bitsin the Interface Command Register
must be set to "execute, poll, and execute unsolicited" mode. The logic will start the
chain that is identified by the unsolicited pointer while it simultaneously primes the
polling logic.

Note that the instruction distinguished by the unsolicited pointer is not the "current"
instruction. For example, in the case where the current instruction is an INPUT which
is waiting for unsolicited input, this instruction will be preempted by this polling and
transition to solicited mode operation. A subsequent transition back to unsolicited
mode will cause the fetch of the instruction following the INPUT instruction. Further,

C-4

the input buffers associated with the INPUT instruction will have header values as
initialized at the start of the INPUT instruction (i.e., a byte count of zero).

The polling logic waits for either a poll to begin or the bus to go quiet for 512
microseconds. When either occurs, the logic asserts a start bit for 48 microseconds on
all enabled network layers. This gives all other ICISes time to recognize the start of a
poll and join if required. At the end of the poll bit, the logic compares the state of its
input lines from the individual layers with the state of its output line. (Note that the
state of the redundant input lines are either voted in Triplex mode or OR'd in all other
modes). If another ICIS is joining the poll, the input line will be high and the ICIS
must continue to poll. It next asserts the redundancy encoding priority bits, one at a
time for 28 microseconds, and then asserts the remaining 9 priority bits. At the end of
each 28 microsecond period, it compares its output to what it perceives on the bus. If
what it receives is the same as what it transmits, it must continue to the next bit because
no decision can be made. If it receives a zero when it is transmits a one, then the ICIS
has won because it has a higher value than all others that are contending. If it receives a
one while it is transmits a zero, then it has lost because it has a lower value than at least
one other contender. As a result, it will stop transmitting and wait for another poll to
begin. When the ICIS decides that it has won, it will abort the unsolicited chain and
perform a context switch to the solicited chain and subsequently execute it.

If the IOL bit is set in the Interface Command Register, the three variable priority bits
are incremented after each loss of a poll sequence (until they reach the maximum value
of 7). They will remain at the maximum value until altered by an FFP program or an
ICIS chain. If an ICIS detects a data bit while it is polling, it will terminate the poll and
set the error bit Poll TX Fail in the Chain Status Register.

TIME DRIVER - The time driver allows the chain to read a time byte that appears on
the shared bus.

MONITOR INTERLOCK ENGAGE - The AlPS FTPs generate a voted engage signal
which is used to enable external functions. In a faulty FTP this signal will not be
asserted. The ICIS uses this signal to enable its bUs driver, a device that connects it to
the IC network. Therefore, a faulty VFP and/or faulty ICIS can be disconnected and
prevented from bring down the IC network.

C-S

ICIS Instruction Formats

The ICIS can execute a limited number of instructions. The following paragraphs detail the
form and function of the ICIS instructions.

NOP (0000 0000) - This instruction updates the chain pointer to the address of the next
sequential instruction. At the end of the NOP, the ICIS fetches that instruction.

BRANCH (2000 dddd) - This instruction jumps to the instruction contained at location
'dddd' and executes it. The Chain Pointer will be updated to point to the next
instruction (dddd+4).

MOVE (40ss dddd) - This instruction will move a byte, located at any location 'ss'
within the first 256 bytes of ICIS memory, to the location specified by 'dddd'. MOVE
can be used to store the current value of a hardware register or store a preset value into
a register.

MOVE IMMEDIATE (60xx dddd) - This instruction allows a constant, xx, to be stored
into the destination dddd.

INPUT (801B dddd) - This instruction will store incoming HDLC bytes in the buffer
area specified by 'dddd'. At the start of execution of this instruction, the byte reserved
for the input byte count is set to zero and the current value of the contention status is
stored within the data buffer. As bytes are received, they are stored at the specified
buffer locations and an internal byte count is incremented. The incoming data streams
for the redundant network layers are buffered independently in the redundant memories
and independent byte counts are maintained for each layer.

Completion of the INPUT instruction is determined by the incoming layer activity. A
valid HDLC packet always ends with a closing flag. Logic is provided to deal with the
possibility that the incoming packets are skewed in time across the three layers. Once a
closing flag is seen on any one of the three layers, a 12 microsecond delay in the
termination of the INPUT instruction is provided if either of the other two layers
indicate data activity (i.e., they are not idle). Instruction termination causes the ICIS to
then store, the byte count, HDLC status registers, and the TIME byte within the
incoming packet buffer area. The INPUT instruction has now completed and the next
sequential instruction is fetched and executed. The maximum number of data bytes that
a single instruction can store is 122. If the INPUT contains more than 122 data bytes,
data will be lost. However, the buffer never exceeds the 128 bytes allotted to it.
Additionally, the byte count, which includes the status bytes, never exceeds 128 bytes.
Furthermore, this instruction ends if the time allotted for response is exceeded (the
value programmed into the timer is reached before a data byte being received).

C-6

However, in this situation, none of the status information (HDLC JR & SR registers,
time and byte count) is saved.

An incoming data packet always has the following format:

Byte count
HDLC JR register
HDLC SR register
TIME byte
contents of Chain Status Register
data (first byte)

data (last byte received)

OUTPUT (E01C ssss) - This instruction will transmit the bytes specified in the buffer
starting at location 'ssss + 1'. The first byte at location 'ssss' contains the value of the
expression, 8016 - NB, where NB is the number of bytes to be transmitted. This
instruction terminates when all bytes have been transmitted. The format of the output
buffer is as follows:

Byte Count (80 16- NB)
data

last data byte

ICIS Memory Map

The reserved memory locations in the dual portmemory of the ICIS are described
below. Addresses 1016 - 1F16 are hardware registers; however, they are addressed in
the same manner as RAM locations. All memory addresses, including the hardware
registers, are accessible by the CP and lOP.

ADDRESS	 FUNCTION

o R/W	 Solicited Chain Pointer - High Byte (RAM).
1 RIW	 Solicited Chain Pointer - Low Byte (RAM)
2 R/W	 Unsolic. Chain Pointer - High Byte (RAM)
3 R/W	 Unsolic. Chain Pointer - Low Byte (RAM)

C-7

10 R Chain Status Register
11 W Interface Command Register
11 R Interface Status Register
12 W Timer Limit Register
13 W Poll ID Register -6 bit polling address
13 R L&M Network States
14 W Poll Prio Register-3 bit prio & polling level
14 R Poller and N States
15 R Time
15 W "Location 15 Register"
16 Reserved
17 Reserved
18 R/W HDLC Control Register 1 (CR1)
19 R/W HDLC Control Register 2 (CR2)
1A R/W HDLC Control Register 3 (CR3)
lB R HDLC Receiver Holding Register (RHR)
lB W Address Register (AR)
1C R HDLC Interrupt Register (IR)
1C W Transmit Holding Register(THR)
U) R HDLC Status Register (SR)
1E Reserved
iF Reserved

With the exception of the addresses specified above, the rest of the ICIS's dual port
memory can be used for any desired function. However, it should be noted that the
MOVE instruction can only use the first 256 addresses for the source byte.

A description of the hardware registers and their use is presented in the following
paragraphs.

SOLICITED CHAIN POINTER (ADDR =00 & 01) - The ICIS can execute two types
of chains, solicited and unsolicited. Solicited chains are defined as command/response
chains and are meant to be executed when the FTP has control of the network.
Unsolicited chains are defined as those that are performed when the FTP does not have
control of the network but when it must accept all frames addressed to it. On the IC
network, unsolicited chains are executed whenever the FTP does not possess the
network, including while waiting for a poll to be won.

The Solicited Chain Pointer is used by the ICIS to indicate where the next instruction of
a solicited chain is located. When a new chain is to be started, this location is loaded
with the address of the first instruction to be executed. It must be loaded before an
execute chain command is issued. As each chain instruction is fetched, this location is
updated to point to the next sequential instruction. The FM can read this location at

C-8

any time. However, since the ICIS writes the locations a byte at a time and the FTP
reads them as words, the value read by the FTP may be incorrect if a chain is
executing. Therefore, the FTP should not attempt to write these bytes while a chain is
executing, since it cannot be guaranteed that the ICIS is not concurrently modifying
them.

UNSOLICITED CHAIN POINTER (ADDR =02 & 03) - The Unsolicited Chain
Pointer is used by the ICIS to indicate where the next instruction of an unsolicited chain
is located. When a new chain is to be started, this location is loaded with the address of
the first instruction of the unsolicited chain to be executed. It iriust be loaded before an
execute chain command is issued. As each chain instruction is fetched, this location is
updated to point to the next sequential instruction. The FTP can read this location at
any time. However, since the ICIS writes the locations a byte at a time and the FTP
reads them as words, the value read by the FTP may be incorrect if a chain is
executing. Consequently, the FTP should not attempt to write these bytes while a chain
is executing, since it cannot be guaranteed that the ICIS is not simultaneously
modifying them. Unsolicited chains are identical to solicited chains and can execute
any mix of instructions.

CHAIN STATUS REGISTER (ADDR = 10) - This register contains status of both the
chain and the contention logic.

7 6 5 4 3 2 1 0
Chain Contentio Contentio Possessi Poll TX Data TX Any Rcv Any Rcv

Complete n State 1 n State 2 on Fail Fail Fail Good
Default

CSR

CHAIN COMPLETE (bit 7) - This bit is set whenever the current chain has
completed. "Chain complete" is defined as an ICIS transition from solicited to
unsolicited mode without the POLL bit in the Interface Command Register set.
The Chain Complete bit is reset whenever.the POLL bit is changed to a one or
the ICIS transitions from the unsolicited to the solicited mode.

CONTENTION STATE (bits 6 and 5) - This is the current state of the poll
logic. The following are the possible states that can be indicated:

INACTIVE, BUS RELEASED (00) Both bits are zero whenever the ICIS
is not attempting to gain control of the network.

WAIT (01) This ICIS has been instructed to acquire the network; however,
no POLL has completed since the request occurred.

C-9

ATTEMPTED (10) This ICIS has entered and lost at least one POLL
sequence since being commanded to acquire the network.

POSSESSES (11) This ICIS currently has possession of the network.

POSSESSION DEFAULT (bit 4) - Indicates that the ICIS possesses the
network and detected an incoming POLL length bit on the network. This bit is
reset whenever the POLL bit in the Interface Command Register is set to zero.

POLL TX FAIL (bit 3) - Indicates that a data length bit was detected during a
Poll Sequence. This bit is reset whenever the POLL bit in the Interface
Command Register is set to zero.

DATA TX FAIL (bit 2) - Indicates that a data bit was detected at the receiver
during a command frame transmission. The chain will continue to completion.
This bit is reset whenever the POLL bit in the Interface Command Register is
set to zero. This bit can only be set during a network possession.

ANY RCV FAIL (bit 1) - Indicates that at least one response frame has been
received with a protocol error in it. It is reset whenever a new poll begins or the
ICIS transitions from the unsolicited to the solicited mode.

ANY RCV GOOD (bit 0) - Indicates that at least one response frame has been
received without a protocol error. It is reset whenever a new poll begins or the
ICIS transitions from the unsolicited to the solicited mode.

INTERFACE COMMAND REGISTER (Write Only) (ADDR = 11) - This register
contains the necessary control bits to operate the ICIS sequencer.

7 6 5 4 3 2 1 0
Execute x Stop Poll Spoil Exec. x Incr. on
Chain Immed. Unsol. Lose

Chain

EXECUTE CHAIN (bit 7) - When only the execute chain bit is set, the ICIS is
instructed to fetch and execute the instructions which start at the address stored
in the Solicited Chain Pointer. The chain will start even if a poll was neither
started nor won. If a poll is to be won before the chain is to be executed, then
bits 7,4 and 2 must all be set to a one. The hardware will then start the polling
logic, start an unsolicited chain pointed to by the Unsolicited Chain Pointer, and
when a poll is won, automatically start the chain pointed to by the solicited
chain pointer.

C-b

STOP 1MM (bit 5) - When the Stop Immediately bit is set to a one, the
hardware turns off the ICIS. Whatever function the ICIS is performing is
terminated. This allows the FTP to stop the ICIS hardware if the ICIS is caught
in a loop or otherwise malfunctioning.

POLL (bit 4) - Whenever the POLL bit is set to a one, the logic attempts to gain
control of the network by joining the next possible poll sequence. At the end of
a chain, this bit must be reset.

SPOLL (bit 3) - Whenever the S POLL bit is set to a one, the hardware will
immediately start to poll. The hardware will not wait for the start of a new poll
from another site or an idle condition on the network. At the end of a chain,
this bit must be reset.

EXECUTE UNSOL CHAIN (bit 2) - This bit is only recognized by the
hardware when set in conjunction with the execute chain bit, bit 7. If bits 7 and
2 are both set to a one, the hardware will execute the chain starting at the
location pointed to by the Unsolicited Chain Pointer. If an FTP desires to first
gain control of a network, it sets bits 7,4 and 2 to a one and all others to a zero.
The hardware will then enable the polling logic, start the unsolicited chain at the
location pointed to by the Unsolicited Chain Pointer (usually an input
instruction) and when a poll is won, automatically start the chain at the location
pointed to by the Solicited Chain Pointer.

INCREMENT ON LOSE (bit 0) - This bit controls whether or not the first 3
poll priority bits (the polling bits used for network contention) are incremented
automatically after each round of polling that is lost by the ICIS. The intention
is to allow a sites of equal redundancy to fairly arbitrate with each other such
that no one site always holds off another site during contentions for the
network. If this bit is not set, then no autoincrementing is enacted.

The following are valid commands used to control the ICIS:

START CHAIN WITH POLL =94
START CHAIN WITHOUT POLL =80
END CHAIN.= 84
STOP CHAIN= 20

The END CHAIN command transitions the ICIS from solicited to unsolicited
mode. The STOP CHAIN command turns the ICIS off.

C-li

INTERFACE STATUS REGISTER (Read Only) (ADDR = 11) - This register contains
status regarding the reception of unsolicited input and the stuck status of the individual
network layers.

7 6 5 4 3 2 1 0

X X X N
STUCK

M
STUCK

L
STUCK

STUCK UIR

ISR

UNSOLICITED INPUT RCVD--UIR(bit 0) - Set if any unsolicited input is
received. This bit is set when the end of that message is detected and reset
when this register is read.

STUCK (bit 1) - This bit is set to a one when any one of the three network
monitors detects a stuck condition on a layer. The stuck condition is defined as
a state in which the monitored layer signal has remained in a high position for
more than 512 microseconds.

L STUCK (bit 2) - This bit is set to a one when the network monitor for the L
layer detects a stuck condition.

M STUCK (bit 3) - This bit is set - to a one when the network monitor for the M
layer detects a stuck condition.

N STUCK (bit 4) - This bit is set to a one when the network monitor for the N
layer detects a stuck condition.

TIMER LIMIT REGISTER (Write only) (ADDR = 12) - The timer limit register
contains the current value to be used to time out an instruction. A non-zero value
written to the timer limit register allows the timer to function. The timer is initialized at
the beginning of each instruction and as each incoming data byte is detected. If an
instruction does not complete or an incoming data byte is not detected in the
programmed number of microseconds, the current instruction is terminated and the next
sequential instruction started. A new value stored in the timer limit register will be
accepted when the next instruction is started or the next incoming byte is accepted
during an input instruction. The timer limit is the number of periods of the clock 2F16-
2F16 has a period of approximately 2 microseconds. The timer has a range of 2 to 512
microseconds.

C-12

POLL ID REGISTER (Write only) (ADDR = 13) - The Poll ID register contains the
six (6) low order bits used in the polling procedure. These bits normally contain the
address that this ICIS uses for polling. It can be written to by the FTP or by a MOVE
instruction within the chain.

7 6 5 4 3 2 1 0
X X Bits

MSB
Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

LSB

L&M NETWORK STATES (Read only) (ADDR = 13) - This register provides a
window into the current state of layers L and M as reported by the network monitor
logic that is associated with these layers. The encoding of the states of the layers is:

7-Data
6- Poll
5-Wait
4- Released
3- Poll Detect
2-Stuck
1 - Poll Deskew
Oldle

7 6 5 4 3 2 1 0
X M State

2
M State

1
M State

0
X L State

2
L State

1
L State

0
L&M States

M LAYER STATE (bits 6..4) - indicates current output of M layer's Network
Monitor.

L LAYER STATE (bits 2..0) - indicates current output of L layer's Network
Monitor.

C-13

POLL PRIORITY REGISTER (Write only) (ADDR = 14) - The Poll Priority Register
provides the user interface into the network polling mechanism. This register has bits
to enable/disable polling, to specify the redundancy level of this polling site, and to
specify the initial 3 priority bits to be used in arbitrating for network possession.

7 6 5 4 3 2 1 0
X Enable

Poll
Triplex

Poll
Duplex

Poll
X PRIO 2 PRIO 1 PRIO 0

PPR

ENABLE POLL (bit 6) - This bit is the "start" bit in the polling sequence (i.e.,
the first bit sourced on the network to indicate the site is polling). If this bit is
not set, then the site will never start a poll and therefore should never obtain
network possession.

TRIPLEX POLL (bit 5) - This bit is to be set only by triplex sites. It is the
second poll bit sourced in a polling sequence. Setting this bit also causes the
polling logic to perform a vote of the incoming polling data across channels as
opposed to OR'ing this data.

DUPLEX POLL (bit 4) - This bit is to be set only by duplex sites. It is the third
poll bit sourced in a polling sequence.

PRIORITY BITS (bits 2..0) - The three bits labeled PRIO are the initial priority
of this ICIS and are used to arbitrate among network sites of equal redundancy
levels, if the arbitration is not resolved after using these three bits, then the
polling continues with the six lower order bits in the Poll ID Register. If the
IOL bit is set in the Interface Control Register, the three PRIO bits will
automatically increment after each poll sequence loss until they contain all ones
at which time incrementing is inhibited. This maximum priority is held until the
register is reloaded.

C-14

POLL STATE AND N MONITOR (Read only) (ADDR = 14) This register contains a
combination of information related to the current state of the Polling State Machine and
to the current layer state as reported by the N layer's network monitor. In addition,
there is a single bit of information which reports on whether the variable poll priority
values have auto-incremented to their maximum value.

7 6 5 4 3 2 1 0
Poll Poll Poll Poll Max N State N State N State
State State State State Priority 2 1 0

3 2 1 0
Poller and N States

POLL STATE (bits 7..4) - indicates the current state of the Polling State
Machine:

15 - Not Contending
14 - Network Possession
13- Waiting to begin Poll
12-. Network Release Quasi-Stable
11 - Start Poll Sequence First 12 microseconds
10 - Join Poll Sequence
9 -not used
8 - AbortedfromPoll
7 - notused
6 - Aborted from Network Possession
5 -not used
4 -not used
3 - Start Poll Sequence Second 12 microseconds
2 -not used
1 -not used
0 - Lost Last Polling Sequence

MAX PRIORITY (bit 3) - when set, the MAX PRIORITY bit indicates that the
three poll priority bits, the PRIO bits in the Poll Priority Register, have been
incremented to the maximum value of 7.

N LAYER STATE (bits 2A) - indicates current output of N layer's Network
Monitor (see encodings for the L&M States Register).

TIME (read only) (ADDR = 15) .- This byte contains a value that is slaved to the
system timer. It is incremented by a 66 microsecond clock and is capable of measuring
16.830 milliseconds. It can be read by the FTP or by a MOVE instruction in the chain.
It is automatically appended to all incoming frames that complete in a valid manner.

C-15

LOCATION 15 REGISTER (Write only) (ADDR = 15) - This register contains various
controls bits associated with the polling mechanism and the enabling of outputs onto the
network layers.

7 6 5 4 3 2 1 0
Ml MO Poll Poll Poll Output Output Output

Enable Enable Enable Enable Enable Enable
L M N L M N

LOCATION 15 REGISTER

Ml & MO (bits 7..6) - These two bits control the "masking" operations
performed by the voters associated with the exchange of ICIS polling states
among the redundant ICISes. The encoding of these bits are:

00- Simplex
01 - Duplex using neighbor on Right
10 - Duplex using neighbor on Left
11 - Triplex

POLL ENABLES (bits 5.3) - These bits determine whether the input from a
particular layer is included in the polling operation. A set bit will cause the
associated layer's input to be disabled with respect to the polling logic (i.e., the
poll bit is considered to be a 0). A reset bit will allow the actual incoming poll
data to be passed to the polling logic.

OUTPUT ENABLES (bits 2-0) - These bits determine whether any data (both
HDLC data and poll data) is to be sourced onto a particular network layer. A
set bit enables output; a reset bit disables output.

C- 16

CONTROL REGISTER #1 (CR1) (ADDR = 18) - Control Register 1 is used to
specify the transmitter parameters and the transmitter and receiver enables. It can be
loaded by an FTP or by a MOVE instruction in the chain. The following is extracted
from the Western Digital data sheets on the HDLC chip (WD 1935). Definitions of bit
polarity and sense have been modified to reflect what is seen by the AlPS system.

NOTE: This register must always be loaded after CR2 and/or CR3. If CR2 and/or
CR3 are ever changed, CR1 must again be reloaded after the change even if there are
changes being made to CR1.

7 6 5 4 3 2 1 0

ACT ACT TC1 TCO TCL1 T(10 DTR MIS
REC ThA C

N

ACT REC (bit 7) - If the Activate Receiver bit is set to a ZERO (0), the receiver
is enabled to accept a data stream. When it is set to a ONE (1), the receiver will
ignore any frames on the network.

ACT 1'RAN (bit 6) - If the Activate Transmitter bit is set to a ZERO (0), the
encoder and transmitter are enabled to output onto the network. When it is set
to a ONE (1), the HDLC device will not transmit data.

TC1 and TCO (bits 5 and 4) - The Transmit Command bits program the device
into the requested mode. In AlPS, the OUTPUT instruction will function
properly only in the data mode. These bits and the modes that they generate are
as follows:

bit 5 bit 4	 MODE	 FUNCTION

1	 1	 data	 Outputs the contents of the
transmitter holding

•	 register
1	 0	 abort	 Generates an abort

•	 message (not used on
•	 AlPS)

0	 1	 flag	 Transmits one flag
character (not used on
AlPS)

C--17

0 0 FCS Generates the two CRC
bytes and a closing flag
(not used on AlPS)

TCL1 and TCLO (bits 3 and 2) - These bits control the number of bits per
character from the transmitter. In AlPS, this has been defined as 8 bit bytes.
The definition of these bits follows:

bit 	 bit 	 BITS PER
CHARACTER

1	 1	 8
1	 0	 7
o	 i	 6
o	 o	 5

DTR (bit 1) - Data Terminal Ready is a modem signal that is not used in this
design and should be programmed to a ONE (1).

MISC OUT (bit 0) - Miscellaneous Output is a control signal not implemented
in this design and should be programmed to a ONE (1).

CONTROL REGISTER #2 (CR2) (ADDR = 19) - Control Register #2 specifies the
receiver parameters and other control functions as defined below. It can be loaded by
an FTP or by a MOVE instruction in the chain. The following is extracted from the
Western Digital data sheets on the H1)LC chip (WD 1935). Definitions of bit polarity
and sense have been modified to reflect what is seen by the AlPS system.

7 6 5 4 3 2 1 .0
EXT

CONT
ADDR
COMP

EXT
ADDR

RCL1 RCLO LOOP SELF
TEST

AUTO
FLAG

CR2

EXT CONT (bit 7) - This bit extends the HDLC control field. It is not used on
AlPS and must be programmed to a ONE (1).

ADDR COMP (bit 6) - This bit enables the on-chip address comparator. If set
to a ZERO (0), the first byte after the opening flag will be compared to the byte

C-18

stored in the AR register. If equal, the data bytes that follow will be received.
If the address compare is enabled and the address does not compare, all
following data bytes will be ignored. If the ADDR COMP bit is set to a ONE
(1), then address comparison is not performed in the chip and all bytes between
the opening and closing flag are presented to the interface. In AlPS, the ICIS
dM use the address compare function.

EXT ADDR (bit 5) - This bit extends the FIDLC address field. It is not used on
AlPS and must be programmed to a ONE (1).

RCL1 and RCLO (bits 4 and 3) - These bits specify the receiver character
length. In ALPS this has been defined as 8 bit characters. The definition of
these bits is as follows:

bit 4 bit 3	 BITS PER
CHARACTER

1	 1	 8
1	 0	 7
o	 1	 6
o	 o•	 5

LOOP (bit 2) - Specifies HDLC loop mode, a test function, that is not
implemented in the ICIS. This bit should always be programmed to a ONE (1).

SELF TEST (bit 1) - A diagnostic mode that is not implemented in the ICIS.
This bit should always be programmed to a ONE (1).

AUTO FLAG (bit 0) - When this bit is set to a ZERO (0) and the transmitter is
enabled, the chip will issue constant flag characters between frames. The ICIS
design utilizes this function and therefore must be set to a ZERO during an
output instruction.

C-19

CONTROL REGISTER #3 (CR3) (ADDR = 1A) This register is used to control the
number of residual bits in a transmission. It can be loaded by an FTP or by a MOVE
instruction in the chain. The following is extracted from the Western Digital data sheets
on the HDLC chip (WD 1935). Definitions of bit polarity and sense have been
modified to reflect what is seen by the AlPS system. The definitions of these bits are
as follows:

7 6 5	 1 4 1	 3 2 1	 1 1	 0
X X X I	 X I	 X	 ITRES2 ITRES1 ITRESO

CR

TRES 2- 0 (bits 2, 1 and 0) - These bits define the number of residual bits to be
sent as the last character in a transmission. Messages sent to and from a NODE
must contain three (3) residual bits. The definition of these bits are as follows:

bit 2 bit 1 bit 0 RESIDUAL BITS/FRAME

1 1 1 No residual bits sent
1 1 0 1
1 0 1 2
1 0 0 3
01 1
0 10 5

0 0 1 6
0 0 0 7

RECEIVER HOLDING REGISTER (RHR) (ADDR = 1B) This read-only register
contains the received bytes as they are decoded from the frame. When executing an
INPUT instruction, the ICIS automatically reads this location and stores the received
characters into the specified location in the dual port memory.

C-20

INTERRUPT REGISTER (IR) (ADDR = 1C) This read-only register contains status
information on the state of the HDLC operation. It can be read by the FTP or with a
MOVE instruction within a chain. Bits 7 through 3 will accumulate information such
that if the IR is read after several operations, it will have the "OR" of all those frames.
The following is extracted from the Western Digital data sheets on the HDLC chip (WD
1935). Definitions of bit polarity and sense have been modified to reflect what is seen
by the AlPS system. The definition of the bits within this register is as follows:

7 6 5 4 3 2 1 0
Reom Reom Xmit No Xmit DISC. DRQI DR(S) INTRQ

NO Error with Error with
________ Error Urun

IR

REOM NO ERR (bit 7) - When equal to a ZERO, this bit indicates that the
frame was received without errors. If this bit is read before the closing flag is
detected, it will not have been updated from the last frame.

REOM WITH ERR (bit 6) - When equal to a ZERO, this bit indicates that the
frame was received with errors, if this bit is read before the closing flag is
detected, it will not have been updated from the last frame. The errors that are
reported are: CRC, overrun, invalid frame, and aborted frame.

XM1T NO ERR (bit 5) - When equal to ZERO, this bit indicates that the
transmitted frame had completed without underrun errors.

XM1T WITH URUN (bit 4) - When equal to ZERO, this bit indicates that the
transmitted frame had extra bytes inserted by the chip because the data was not
available to the transmitter in the allotted time.

DISC (bit 3) - This bit is used with modems and, in this system, it has no
meaning.

DRQI (bit 2) - When set to a ZERO, this bit indicates that there is a byte
available in the Receiver Holding Register.(RHR). Reading the RHR sets this
bit to a ONE. The hardware uses a buffered copy of this bit when storing bytes
into dual port memory during an INPUT instruction.

DRQO (bit 1) - When set to a ZERO, this bit indicates that the Transmit
Holding Register (THR) is empty and requires another character to prevent an
underrun error. Storing a byte into the THR sets this bit to a ONE. The
hardware uses a buffered copy of this bit during an OUTPUT instruction to
read a byte from the dual port memory and store it into the THR.

C-21

INTRQ (bit 0) - This bit is set to a ZERO whenever at least one of the other bits
in the JR register is set to a ZERO. This bit is set to a ONE whenever the IR is
read. A buffered copy of this bit is used to terminate a normally completing
input or output instruction.

ADDRESS REGISTER (AR) (ADDR =1B) - This write-only register contains the
address that the chip is to use for comparison if on-chip address recognition is being
used. If on-chip address detection is not used, the contents of this register will be
ignored.

TRANSMIT HOLDING REGISTER (THR) (ADDR = 1C) - This write-only register
holds the next data byte to be transmitted. The hardware loads a byte into this register
during an OUTPUT instruction whenever DRQO is set.

STATUS REGISTER (SR) (ADDR = 1D) - This read-only register contains status
information that, when used in conjunction with the contents of the Interrupt Register,
define the cause of the error.

7 6 5 4 3 2 1 0
RI CD DSR MISC.

IN
RCVR
IDLE

RRES2
/ERR

RRES1
/ERR

RRESO
/ERR

SR

RI (bit 7) - A modem signal not implemented in this interface.

CD (bit 6) - A modem signal not implemented in this interface.

DSR (bit 5) - A modem signal not implemented in this interface.

MISC IN (bit 4) - An input discrete not used in this interface.

RCVR IDLE (bit 3) - When set to a ZERO, the receiver is idle, i.e. a frame is
not in process.

RRES2 /ERR (bit 2) - This bit has a dual role. If bit 7 in the Interrupt Register
is a ZERO, then this bit is part of a binary number representing the number of
residual bits received (see encoding after RRESO/ERR description). If bit 6 in
the Interrupt Register is set to a ZERO and this bit is set to ZERO, then an
aborted or invalid frame was detected.

C-22

RRES 1 /ERR (bit 1) - This bit has a dual role. If bit 7 in the Interrupt Register
is a ZERO, then this bit is part of a binary number representing the number of
residual bits received (see encoding after RRESO/ERR description).: If bit 6 in
the Interrupt Register is set to a ZERO and this bit is set to ZERO, then an
overrun error was detected. An overrun error indicates that a received byte was
not removed from the Receiver Holding Register before the next byte was
received. In an overrun condition, that first byte is lost.

RRESO /ERR (bit 0) - This bit has a dual role. If bit 7 in the Interrupt Register
is a ZERO, then this bit is part of a binary number' (see encoding below)
representing the number of residual bits received. If bit 6 in the Interrupt
Register is set to a ZERO and this bit is set to ZERO, then a CRC error was
detected.

bit 2 bit 1 bit 0	 RESIDUAL BITS/FRAME

1	 1 1 No residual bits sent
1	 1 0 1
1	 0 1 2
1	 0. 0 3
0	 1 1 4.
0	 '1 0 5.'	 .
0 1 .6
0	 0 0

,
7

C-23

APPENDIX D: PROPOSED MODIFICATIONS TO ICCS

This appendix describes modifications that should be made to the ICCS Transport Layer.
The first eight modifications are functional improvements and the last modification is for
performance improvement.

Use One Output Queue Rather than Two

Currently output messages from CP users go into one queue while those from lOP
users go into another queue. Therefore messages are not necessarily sent by the GPC in
the same order in which they were generated (although they are sent in the order in which
they were generated by a particular task or by a particular processor). Using a common
queue for both processors would ensure that messages are sent in the correct order, in
addition to simplifying the code.

2. Specify Additional Parameter for Output Messages

An additional parameter to the Send_Output routine should be implemented. This
parameter would be a boolean "hold flag" that indicates whether or not a message should be
put on the pending list if it cannot be sent immediately (because a destination GPC is
already receiving its maximum messages). In the case of a broadcast it would, (by
extension), indicate that the message should or should not be sent if it can't be sent in
broadcast mode.

A "NO" value for this parameter (indicating messages should not be held, i.e., not
put on the pending list) would be appropriate for periodic tasks sending messages at high
rates. It would also be appropriate for broadcasts where it is important that the message
arrive at all GPCs at the same time (although it still would "arrive" at the local GPC at a
different time). A "YES" value for this parameter would be appropriate for one-time
messages that must be sent and for which some delay in transmission is tolerable.

3. Restrict Length of Broadcast Messages

Broadcast messages should not be allowed to be longer than 104 bytes (i.e., what
will fit into one packet). Messages longer than this are not sent in broadcast mode after the
first packet anyway, and such a restriction would allow some performance improvements
to be made (see item 9). A user with a message longer than .104 bytes could either divide it
into two messages and do two separate transmissions, or execute a loop to send it to each
GPC separately.

4. Check Message Size Against Buffer Size

When messages are moved into the temporary input or output buffers, a check
should be made to verify that the buffer is big enough to hold the message. Similarly when
a user calls the GET—INPUT routine, he should also pass the size of the area that the
message is to be moved into, so it can be verified that the message is not bigger than this
area.

5. Code and Test Use of New Scheduler Option for Overruns

As described in Section 4, the Message Send-Receive task is started by an event,
which can be set either by the ICIS RM task when there are input packets to process or by
User Services when a user has a message to send. Every time the task is scheduled,
however, it checks its entire list of possible things to be done and continues to check as
long as it has handled a new message during any particular iteration. It is possible,
however, that its event could be set after it made its last check but before it got to its
WAIT—FOR—SCHEDULE point. The original version of the Ada run-time Scheduler
would have marked this as an overrun and not scheduled the task when it did get to its -
WAIT_FOR.SCHEDULE.

The SCHEDULE routine has been modified to allow a new parameter which
specifies whether or not a task is to be scheduled after an overrun occurs. The Message
Send-Receive task needs to be changed to use this option; then it must be tested.

6. Schedule Message Send-Receive Task Periodically to Check for Timeouts

The Message Send-Receive task is started by an event, as described in 5 above.
Along with processing input and output messages, it checks every so often to see if any
messages have timed out, i.e., an output message has not received an ACK or a multi-
packet input message has not received a MSG —CONT. If the task were not triggered by the
event, however, i.e., no new messages were being generated, this task would not run and
therefore would not check for timeouts. The task also needs to be scheduled on a periodic
basis as well as on an event basis, yet without doing unnecessary context switching. The
solution to this problem needs to be designed as well as coded and tested.

D-2

7.	 Validate Message Destination in User Services Rather than Message Send-Receive

When the Message Send-Receive task tries to send an output message, it first
verifies that the destination task is identified in either the CP Task Location Table or the
lOP Task Location Table. If it is not, it makes an entry in the IC Error Log and ignores the
message. This verification should be done by the SEND_OUTPUT routine and an error
indication returned to the caller.

8. Validate Control Information in Incoming Messages

The control information in incoming messages (i.e., destination task, source task,
message length, etc.) should be validated before attempting to use it. Some types will
cause exceptions when they contain invalid data, but others will not, e.g., message length
which is defined as a short—integer.

9. Eliminate Message Status Block Data Structure

In order to improve performance, the information kept in this structure could
instead be kept in the temporary input and output buffers. Keeping it in these buffers
would be greatly simplified if broadcast messages were limited to 104 bytes (see item 3).
Not having to dynamically allocate the Message Status Block, maintain a linked list, and
deallocate the block would save several milliseconds and even more in the case of a
broadcast message where a separate block is allocated for each receiving GPC. This
would, of course, increase the amount of memory required for the buffers.

D-3

PJASA	 Report Documentation Page
Sce A$c'ao

1. Report No. 2. Government Accession No. 3. Recipients Catalog No.

NASA CR-187556

4. Title and Subtitle 5. Report Date

Advanced Information Processing System: 	 Inter-Computer
Communication Services September 1991

6. Performing Organization Code

7. Author(s) 8. Performing Organization Report No.

Laura	 Burkhardt, Tom Masotto, J. Terry Sims,
Roy Whittredge, and Linda Alger

10. Work Unit No.

506-46-21-56
9. Performing Organization Name and Address

The Charles Stark Draper Laboratory, Inc. 11. Contract or Grant No.

Cambridge, MA	 02139
NAS1-18565

13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration Contractor Report
Langley Research Center 14. Sponsoring Agency Code

Hampton, VA	 23665-5225

15. Supplementary Notes

Langley Technical Monitor:	 Felix L. Pitts

Final Report

16. Abstract

The purpose of this report is to document the functional requirements and detailed specifications
for the Inter-Computer Communication Services (ICCS) of the Advanced Information Processing
System (AlPS). An introductory section is provided to outline the overall architecture and
functional requirements of the AlPS system and to present an overview of the Inter-Computer
Communication Services. Section 1.1 gives an overview of the AlPS architecture as well as a
brief description of the AlPS inter-computer network architecture; Section 1.2 provides an
introduction to the AlPS system software; Section 1.3 provides the guarantees of the Inter-
Computer Communication Services; and Section 1.4 describes the Inter-Computer Communication
Services as a seven-layered International Standards Organization (ISO) model. Sections 2 through
6 describe the Inter-Computer Communication Services functional requirements, functional design
and detailed specifications. Each of these sections describes one of the "Layers" of the Inter-
Computer Communication Services. Section 7 concludes with a summary of results and
suggestions for future work in this area.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement

AlPS Inter-Computer Communication Services Unclassified - Unlimited
AlPS Inter-Computer Network
AlPS Inter-Computer Network Services
Fault-Tolerant Network Subject Category 62
Distributed Processors 1
19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of pages 22. Price

Unclassified Unclassified 278

NASA FORM 1626 OCT 86

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211
	Page 212
	Page 213
	Page 214
	Page 215
	Page 216
	Page 217
	Page 218
	Page 219
	Page 220
	Page 221
	Page 222
	Page 223
	Page 224
	Page 225
	Page 226
	Page 227
	Page 228
	Page 229
	Page 230
	Page 231
	Page 232
	Page 233
	Page 234
	Page 235
	Page 236
	Page 237
	Page 238
	Page 239
	Page 240
	Page 241
	Page 242
	Page 243
	Page 244
	Page 245
	Page 246
	Page 247
	Page 248
	Page 249
	Page 250
	Page 251
	Page 252
	Page 253
	Page 254
	Page 255
	Page 256
	Page 257
	Page 258
	Page 259
	Page 260
	Page 261
	Page 262
	Page 263
	Page 264
	Page 265
	Page 266
	Page 267
	Page 268
	Page 269
	Page 270
	Page 271
	Page 272
	Page 273
	Page 274

