SHARP:
SPACECRAFT HEALTH
AUTOMATED REASONING PROTOTYPE

Presented by
David J. Atkinson

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, CA

https://ntrs.nasa.gov/search.jsp?R=19920002802
https://ntrs.nasa.gov/search.jsp?R=19920002802
2019-06-18T12:47:37+00:00Z
337
OUTLINE

- BACKGROUND
- SHARP DESCRIPTION
- APPLICATIONS
- FUTURE DIRECTIONS
- BENEFITS, LESSONS LEARNED, CONCLUSIONS
PLANETARY SPACECRAFT MISSION OPS

• AGGRESSIVE PLANETARY EXPLORATION IN 1990's
 - MAGELLAN, GALILEO, ULYSSES, MARS OBSERVER, VOYAGER, CRAFT, CASSINI
 - POSSIBLE LUNAR AND MARS SPACECRAFT
 - ALL WILL BE FLYING AT THE SAME TIME
 - VOYAGER ALONE REQUIRED ABOUT 40 REAL-TIME OPERATORS AT ALL TIMES

• LARGE GROWTH IN MISSION OPERATIONS WORKFORCE, OPERATIONS COMPLEXITY... COSTS FORESEEN

• PROGRAM TO UPGRADE OPERATIONS INFORMATION SYSTEMS UNDERTAKEN: SPACE FLIGHT OPERATIONS CENTER, ONE MULTI-MISSION SPACE FLIGHT OPS TEAM

• GOALS: SUBSTANTIAL AUTOMATION, REDUCE WORKFORCE AND COST TO OPERATE, IMPROVE SAFETY, RELIABILITY, AND PRODUCTIVITY
SHARP TASK BACKGROUND

• "PROOF OF CAPABILITY" DEMONSTRATION TO EVALUATE BENEFITS OF AUTOMATION
 - PRODUCTIVITY OF MISSION OPERATIONS REAL-TIME ANALYSIS
 - SAFETY OF SPACECRAFT
 - RELIABILITY OF GROUND DATA SYSTEMS

• METHODOLOGY: ITERATIVE PROTOTYPING AND SPIRAL MODEL SOFTWARE DEVELOPMENT

• FIRST APPLICATION: VOYAGER TELECOMMUNICATIONS
SHARP PROGRESS

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1987</td>
<td>Project Start</td>
</tr>
<tr>
<td>1989</td>
<td>SHARP for Voyager Telecom At Neptune</td>
</tr>
<tr>
<td>1990</td>
<td>SHARP Compatible with SFQC</td>
</tr>
<tr>
<td>1991</td>
<td>SHARP for Magellan Telecom</td>
</tr>
<tr>
<td></td>
<td>SHARP for Galileo Power and Pyro</td>
</tr>
<tr>
<td></td>
<td>SHARP for DSN Link Monitor & Control Pre-Cal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1989</th>
<th>Evaluation Prototype</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reusable Kernel</td>
</tr>
<tr>
<td></td>
<td>Pilot Installation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1990</th>
<th>Shallow Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Constraint Based Diagnosis</td>
</tr>
<tr>
<td></td>
<td>Deeper Telecom Diagnosis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1991</th>
<th>30 Sec. to Diagnose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.5 Sec. to Diagnose</td>
</tr>
<tr>
<td></td>
<td>"Anytime" Diagnosis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1991</th>
<th>Max ~ 100 RT Channels</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Max ~ 10K RT Channels</td>
</tr>
<tr>
<td></td>
<td>Capacity to Spare</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LISP Machine</th>
<th>1991</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun and SFQC Compatible</td>
<td>Installed in Magellan Ops</td>
</tr>
</tbody>
</table>

Underway
TELECOMMUNICATIONS OPERATIONS

• TELECOMMUNICATIONS LINK ANALYSIS:
 - MONITORING THE HEALTH AND STATUS OF THE TELECOMMUNICATIONS LINK BETWEEN THE SPACECRAFT, DEEP SPACE NETWORK, AND GROUND DATA SYSTEM COMPUTERS AT JPL

• MAJOR FUNCTIONS:
 - NUMERICAL ESTIMATION OF SYSTEM PERFORMANCE
 - MONITORING OF REAL-TIME ACTIVITY AND DETECTION OF FAILURES
 - DIAGNOSIS, ISOLATION, AND RECOVERY FROM FAILURES
TELECOMMUNICATIONS OPERATIONS

- CHARACTERISTICS:
 - MANUAL CALCULATIONS TO UPDATE & REVISE NUMERICAL PREDICTS
 - FREQUENTLY CHANGING HARDCOPY SEQUENCE OF EVENTS INFORMATION
 - MANUAL, LABORIOUS DETERMINATION OF ALARM LIMITS
 - VERY LIMITED COMPUTER DISPLAYS OF STATUS INFORMATION
 - ALL ALARM SITUATIONS ARE REFERRED TO EXPERT
 - TELECOM IS SUBJECT TO NUMEROUS ALARMS DAILY
SHARP DESCRIPTION

- FUNCTIONAL CAPABILITIES
 - MONITORING
 - DIAGNOSIS AND RECOVERY
 - DISPLAY AND USER INTERFACE
 - OTHER

- TECHNOLOGY
 - ROLE OF ARTIFICIAL INTELLIGENCE
 - EXAMPLE: ANOMALY DETECTION AND DIAGNOSIS

- APPLICATIONS PERFORMANCE
FUNCTIONAL CAPABILITIES

- FUNCTION OF THE SYSTEM: PROVIDE COMPUTER WORKSTATION SUPPORT FOR REAL-TIME SPACECRAFT SUBSYSTEM ANALYSTS

- CAPABILITIES INCLUDE:
 - REAL-TIME ANOMALY DETECTION, ANALYSIS AND DIAGNOSIS
 - DISPLAY MANAGEMENT, DATA VISUALIZATION AND SYSTEM STATUS
 - ACQUISITION AND CENTRALIZATION OF ENGINEERING DATA FOR ANALYSIS
 - INTEGRATION OF AI-BASED MONITORING AND DIAGNOSIS FUNCTIONS WITH CONVENTIONAL NUMERICAL ANALYSIS SOFTWARE
MONITORING

- CHANNELIZED DATA ON SERIAL OR NETWORK CONNECTIONS

- REAL-TIME PERFORMANCE WITH UP TO 10,000 CHANNELS EACH UPDATING 1/SEC

- AUTOMATED, CONTEXT SENSITIVE, ALARM LIMIT SELECTION

- DYNAMIC, DERIVED CHANNEL MONITORING

- EVENT SIGNATURE AND TREND MONITORING
DIAGNOSIS AND RECOVERY

- EXPLICIT CAPTURE OF EXPERT DIAGNOSTIC AND RECOVERY RULES AND PROCEDURES

- DOMAIN INDEPENDENT DIAGNOSTIC SHELL WITH DOMAIN-SPECIFIC DIAGNOSTIC KNOWLEDGE

- "ANYTIME" DIAGNOSIS -- REAL-TIME ANALYSIS USING BEST, TIME-SYNCHRONIZED DATA AVAILABLE

- DYNAMICALLY GENERATED HEALTH AND DIAGNOSTIC SUMMARIES OF SPACECRAFT SUBSYSTEMS

- RANKING OF UNCERTAIN HYPOTHESES FOR OPERATOR
DISPLAY AND USER INTERFACE

- SYSTEM STATUS DISPLAYS FROM MULTIPLE DATA SOURCES
 - REAL-TIME STATUS
 - PERFORMANCE OVER TIME

- GRAPHICAL VISUALIZATION AND DATA PLOTTING

- MIXED-INITIATIVE -- SYSTEM AND USER BOTH CONTROL THE DISPLAY
 - DISPLAY MANAGEMENT USING CONTEXT SENSITIVE MODELING OF FORMAT, CONTENT, SOURCE, AND RATIONALE

- DYNAMICALLY GENERATED USER HELP AND INPUT ERROR TOLERANCE
OTHER CAPABILITIES

- REAL TIME DATA CACHE AND ON-LINE HISTORICAL DATABASE

- EDITABLE ALARM PARAMETER AND EVENT DATABASES

- MONITORING AND DIAGNOSTIC CAPABILITIES EASILY INTEGRATED WITH CONVENTIONAL ANALYSIS ROUTINES (E.G., FAST FOURIER TRANSFORM)

- INTEGRATED WITH SPACE FLIGHT OPERATIONS CENTER (SFCC) DATA SERVICES
ROLE OF AI

- ARTIFICIAL INTELLIGENCE USED THROUGHOUT SHARP

EXAMPLES:

ARCHITECTURE: MULTI-PROCESS BLACKBOARD WITH OPPORTUNISTIC, DATA-DRIVEN CONTROL STRUCTURE

DATA HANDLING: HEURISTIC ADAPTIVE PARSING, TEMPORAL REASONING DECLARATIVE DATA REPRESENTATIONS

MONITORING: STATE MODELLING, DISCRIMINATION NETWORKS, TRUTH MAINTENANCE

DIAGNOSIS: HIERARCHICAL COMMUNICATING EXPERTS, REASONING IN MULTIPLE CONTEXTS

USER INTERFACE: RULE-BASED EXPERT SYSTEM TO MANAGE DISPLAYS, RULE-BASED DIAGNOSIS AND RECOVERY FROM INPUT ERRORS
ANOMALY DETECTION & DIAGNOSIS

• HIERARCHICAL SYSTEM BASED ON CLASSIFICATION PROCESS

• ALARM EXECUTIVE DETERMINES EXISTENCE OF ANOMALY BY COMPARING EXPECTED AND ACTUAL SPACECRAFT STATES
 - USE OF COMPILED DISCRIMINATION NETWORK TECHNIQUES
 - SOME FAILURES ARE UNIQUELY DETERMINED AT THIS STAGE

• FAULT CLASSIFICATION SUBSYSTEM
 - MAKES INITIAL CHARACTERIZATION OF THE PROBLEM
 - IDENTIFIES RELEVANT SOURCES OF DATA FOR USE IN DIAGNOSIS
 - APPROX. 60 RULES FOR VOYAGER TELECOM APPLICATION
 - POSTS INITIAL HYPOTHESES, DATA VALUES, SPACECRAFT STATE, OTHER INFO TO DIAGNOSTIC DATABASE
ANOMALY DETECTION & DIAGNOSIS

- SPECIALIZED "MINI-EXPERTS" FOR FAULT CLASSES
 - Triggered by fault hypotheses to reach detailed diagnosis and recovery recommendations
 - Pursue individual classes of faults (e.g., configuration errors) using specialized knowledge in the form of procedural networks
 - Operate independently in individual context trees

- Blackboard used to communicate and share results

- Hypothesis combination subsystem
 - Groups related conclusions and recommendations to operator, logs data, and signals modifications to operator's displays
APPLICATIONS PERFORMANCE

- ANOMALY DETECTION AND DIAGNOSIS
 - ABLE TO ANALYZE 39 CLASSES OF TELECOM PROBLEMS
 - 60 UNIQUE PROBLEM SOLVING DIAGNOSES
 - 20 ADDITIONAL DETECTABLE PROBLEMS
 - ABOUT 15 PROBLEMS ARE NOT COVERED
 - TOTAL FAULT COVERAGE IS ABOUT 80% AND IMPROVING AS KNOWLEDGE BASES ARE EXTENDED

- CONSCAN (ANTENNA POINTING) ERRORS DETECTED AND TRACKED BY SHARP UNTIL RESOLVED BY DSS OPERATORS

- (NON-CRITICAL) ANOMALIES DIAGNOSED BY SHARP
 - OPERATORS MANUALLY VERIFY THE DIAGNOSES
 - RCV AGC, S-BAND TWT BASE TEMP OCCURRED DURING VOYAGER ENCOUNTER
VOYAGER ENCOUNTER
SURPRISING EVENT

• RESOLVED VOYAGER SCIENCE DATA ERROR COMPLAINT PRIOR TO THE ENCOUNTER, AVOIDING A POTENTIAL CRITICAL SITUATION
 - SCIENCE PERSONNEL SAID CORRECTION COUNT WAS TOO HIGH
 - SHARP DETECTED AND REPORTED A POSSIBLE EXCESSIVE NOISE PROBLEM

• TELECOM PERSONNEL USED SHARP SCATTER PLOT OF BIT ERROR RATE VERSUS SYMBOL SIGNAL TO NOISE RATIO
 - CONFIRMED AN ANOMALOUS CONDITION WHICH WAS CORRUPTING THE SCIENCE DATA AT HIGH SSNR'S WHERE NO ERRORS ARE EXPECTED
 - DEFINED MAGNITUDE OF PROBLEM
 - PROVIDED ABILITY TO SHOW NO CORRELATION OF ERRORS WITH DSN STATIONS

• FURTHER INVESTIGATION TRACED PROBLEM TO A FAILED WIDE-BAND INTERFACE UNIT IN VGR DACS
 - SHARP USED TO CONFIRM PROBLEM RESOLUTION AFTER THE FAILED UNIT WAS REPLACED
DSN EXTENSIBLE GROUND ANALYSIS SYSTEM

- BACKGROUND
 - PLANNED FOR THE DSN'S NETWORK OPERATIONS CONTROL CENTER, WHICH MONITORS QUALITY OF NETWORK DATA AND STATUS OF ALL DSN SYSTEMS

- DSN EXTENSIBLE GROUND ANALYSIS SYSTEM (DEGAS)
 - SHARP-BASED ENHANCEMENT TO THE NOCC OPERATOR WORKSTATION

- KEY CHARACTERISTICS
 - VISUALIZATION OF CENTRAL NETWORK STATUS
 - RAPID ANOMALY DETECTION, DIAGNOSIS, AND RECOVERY.
 - EXTENSIBLE WITH EXTERNALLY DEVELOPED ANALYSIS MODULES.

- BENEFITS EXPECTED BY DSN
 - REDUCTION OF LARGE AMOUNTS OF DATA FOR PRESENTATION TO NOCT
 - ENABLE TIME-CRITICAL RESPONSE TO ANOMALIES
 - ASSIST IN OFF-LINE DIAGNOSIS, CALIBRATION, AND SYSTEM READINESS
DSN LINK MONITOR AND CONTROL OPERATOR ASSISTANT

• BACKGROUND
 - LMC OPERATORS AT DSN STATIONS CONFIGURE, CALIBRATE, AND CONTROL THE STATIONS ANTENNAS AND SUBSYSTEMS TO TRACK SPACECRAFT.
 - "PRE-CAL" OPERATIONS TAKE 45 MINUTES TO 4 HOURS TO COMPLETE

• LMC OPERATOR ASSISTANT
 - GOAL OF 30% REDUCTION IN TIME SPENT DURING PRE-CAL OPERATIONS
 - AUTOMATIC "DUAL CONTROL MODE", WHERE SINGLE OPERATOR CONFIGURES AND SYNCHRONIZES MULTIPLE ANTENNAS AND SUBSYSTEMS
 - AUTOMATIC PRE-CAL DIRECTIVE PLANNING AND PARAMETER SELECTION TO SHOW FEASIBILITY OF AUTOMATED CONTROL OF DSN STATION WITH OPERATOR ACKNOWLEDGEMENT.
 => BUT NO REAL DIRECTIVES FROM PROTOTYPE TO ACTUAL DSN SUBSYSTEMS
 - LAB DEMO IN 1991 FOLLOWED BY INSTALLATION AT GOLDSTONE DSS-13 FACILITY IN 1992
BENEFITS PROJECTED BY TELECOM USERS

• WORKFORCE SAVINGS
 Ultimate reduction in real time link analysis staff by a factor of five. Similar savings may be possible in other areas.

• SAFETY
 Real-time system can detect and analyze problems in seconds that take humans hours, e.g., antenna pointing errors.

• RELIABILITY
 System wide status monitoring helps assure correct system configuration, reduces commanding errors, and reduces loss of data.

• PRODUCTIVITY
 Reduced number of operations personnel can monitor a greater number of systems and perform required analyses more efficiently.
LESSONS LEARNED

- ENTHUSIASTIC PARTICIPATION OF END-USERS AND EXPERTS IS REQUIRED.
 - ENSURES ACCESS TO DOMAIN KNOWLEDGE AND FUTURE OPERABILITY.
 - PROVING "VALUE-ADDED" BY AUTOMATION IS DIFFICULT FOR TECHNOLOGISTS.

- PRACTICAL AUTOMATION USING AI REQUIRES EVOLUTION AND INTEGRATION WITH EXISTING SYSTEMS.
 - CONSTRAINTS OF EXISTING SYSTEMS LIMIT THE SCOPE OF THE AI APPLICATION.

- AI CANNOT BE APPLIED INDEPENDENTLY FROM OTHER TECHNOLOGIES (E.G., NETWORKING, GRAPHICS)
 - GOOD SYSTEM ENGINEERING IS WHAT MAKES A KNOWLEDGE SYSTEM.

- MAKE PRAGMATIC SELECTION OF MATURE AI TECHNIQUES
 - SUFFICIENT TOOLS ARE AVAILABLE BUT SKILLED DEVELOPERS ARE REQUIRED
CONCLUSIONS

- ARTIFICIAL INTELLIGENCE HAS A PROVEN CAPABILITY TO DELIVER USEFUL FUNCTIONS IN A REAL-TIME SPACE FLIGHT OPERATIONS ENVIRONMENT

- SHARP HAS PRECIPITATED MAJOR CHANGE IN ACCEPTANCE OF AUTOMATION AT JPL -- AI IS HERE TO STAY

- POTENTIAL PAYOFF FROM AUTOMATION USING AI IS SUBSTANTIAL

- SHARP, AND OTHER ARTIFICIAL INTELLIGENCE TECHNOLOGY IS BEING TRANSFERRED INTO SYSTEMS IN DEVELOPMENT
 - MISSION OPERATIONS AUTOMATION
 - SCIENCE DATA SYSTEMS
 - INFRASTRUCTURE APPLICATIONS