AUTOMATION GOALS

- SIGNIFICANT IMPROVEMENT IN PRODUCTIVITY AND RELIABILITY
- APPLICATION OF ARTIFICIAL INTELLIGENCE METHODS TO GROUND-BASED MONITORING
- ADVANCEMENT OF ARTIFICIAL INTELLIGENCE TECHNOLOGY
AUTOMATION STRATEGY

- ACTIVE INVOLVEMENT OF THE END USER

- INCREMENTAL DEVELOPMENT WITH REGULAR DELIVERIES TO THE END USER

- EMPHASIS ON USABLE, REAL-WORLD PRODUCTS RATHER THAN PROTOTYPE DEMONSTRATIONS
RESEARCH & DEVELOPMENT ACTIVITIES

- AUTOMATED MISSION MONITORING AND ANALYSIS
- INTELLIGENT INPUT DATA MANAGEMENT
- SYSTEM-LEVEL ANALYSIS USING COOPERATING EXPERT SYSTEMS
AUTOMATED MISSION MONITORING AND ANALYSIS

- REAL-TIME MONITORING OF SPACECRAFT AND TELEMETRY
- KNOWLEDGE-BASED ANOMALY ANALYSIS
- COMBINATION OF CONVENTIONAL AUTOMATION AND ARTIFICIAL INTELLIGENCE
- MULTI-MISSION APPLICABILITY
- TWO-YEAR HISTORY OF CONTINUOUS ON-LINE OPERATION
MONITOR/
ANALYZER OF
REAL-TIME
VOYAGER
ENGINEERING
LINK
MARVEL

- FUNCTIONS
 - REAL-TIME MONITORING
 - REAL-TIME KNOWLEDGE-BASED ANALYSIS
 - GENERAL PRODUCTIVITY ENHANCEMENT

- FEATURES
 - DATA DISPLAY AND ARCHIVING
 - AUTOMATED ALARM MESSAGES
 - HIERARCHICAL ORGANIZATION
 - WINDOW ENVIRONMENT
 - MOUSE- AND MENU-DRIVEN OPERATION
 - ON-LINE USER DOCUMENTATION
MARVEL

IMPLEMENTATION

• DISTRIBUTED MULTI-WORKSTATION ENVIRONMENT
 • MESSAGE PASSING FOR INTERPROCESS COMMUNICATION
 • VARIABLE NUMBER OF NODES

• MULTIPLE C PROCESSES PROVIDE STANDARD AUTOMATION
 • PROCEDURAL AND ALGORITHMIC FUNCTIONS
 • USER-INTERFACE FUNCTIONS
 • REAL-TIME SPEED AND PORTABILITY

• EMBEDDED KNOWLEDGE BASES PROVIDE EXPERT REASONING
 • ANOMALY ANALYSIS
 • CORRECTIVE ACTION RECOMMENDATIONS
 • COMPATIBILITY WITH C

• GOAL- AND DATA-DRIVEN REASONING ARE COMBINED IN
 KNOWLEDGE-BASED ANALYSIS MODULES

• LOWER-LEVEL C ALGORITHMS PROVIDE CALCULATIONS NEEDED
 BY THE KNOWLEDGE BASES
MARVEL

ACHIEVEMENTS

• SIMULTANEOUS AUTOMATED MONITORING OF THREE VOYAGER SUBSYSTEMS
 • COMPUTER COMMAND SUBSYSTEM
 • FLIGHT DATA SUBSYSTEM
 • ATTITUDE AND ARTICULATION CONTROL SUBSYSTEM

• KNOWLEDGE-BASED ANOMALY ANALYSIS AND CORRECTIVE RECOMMENDATIONS FOR TWO VOYAGER SUBSYSTEMS
 • COMPUTER COMMAND SUBSYSTEM
 • ATTITUDE AND ARTICULATION CONTROL SUBSYSTEM

• CONTINUOUS ON-LINE OPERATION FOR BOTH VOYAGER SPACECRAFT SINCE AUGUST 1989

• SUCCESSFUL DETECTION OF ALL ANOMALIES
 • IMPROVED ACCURACY
 • IMPROVED TIMELINESS

• SMOOTH TRANSITION FOR POST-ENCOUNTER WORKFORCE REDUCTIONS AND CROSS-TRAINING OF PERSONNEL

• TRANSITION TO TOPEX, GALILEO, AND Craf/Cassini
INTELLIGENT INPUT DATA MANAGEMENT

- MANAGEMENT OF INPUT DATA VOLUMES THAT EXCEED PROCESSING CAPACITY

- COMBINATION OF DECISION THEORY AND KNOWLEDGE-BASED METHODS

- AUTOMATION OF AN IMPORTANT REAL-TIME TRADE-OFF BETWEEN

 AMOUNT OF INPUT PROCESSED

 VS

 TIMELINESS OF OUTPUT
DECISION THEORY FOR MAKING TRADE-OFFS

- UTILITY THEORY AND PROBABILITY ARE USED TO SELECT THE MAXIMUM-VALUE ACTION FROM A SET OF POSSIBLE ACTIONS.

- THE VALUE (V) OF AN ACTION (X) IS DETERMINED WITH A SET OF EVALUATION CRITERIA (i = 1 TO n) AND WEIGHTING FACTORS (W)

\[V = \sum_{i=1}^{n} w_i v_i(X_i) \]

- DECISION THEORY HAS A HISTORY OF SUCCESSFUL APPLICATION TO MAKING TRADE-OFF DECISIONS IN STATIC ENVIRONMENTS.
DYNAMIC TRADE-OFF EVALUATION

- EXTENDS STATIC TECHNIQUES FOR USE IN REAL-TIME ENVIRONMENTS

- USES DOMAIN KNOWLEDGE TO

 - DYNAMICALLY RE-WEIGHT THE EVALUATION CRITERIA TO REFLECT THE DYNAMICS OF THE EXTERNAL ENVIRONMENT.

 - REDEFINE COURSES OF ACTION AS DICTATED BY THE EXTERNAL ENVIRONMENT.

- HAS BEEN APPLIED TO EVALUATING THE TRADE-OFF BETWEEN THE AMOUNT OF INPUT DATA AND THE TIMELINESS OF THE OUTPUT.
EVALUATION OF ANOMALY DETECTION RESULTS

3% ANOMALY DENSITY

% OF ANOMALIES DETECTED

RANDOM DATA ELIMINATION
INCREMENTAL FILTERING
INTELLIGENT DATA MANAGEMENT

COMPUTATIONAL LOAD
EVALUATION OF DATA MANAGEMENT METHODS
3% ANOMALY DENSITY

% OF ANOMALY-RELEVANT DATA PROCESSED

COMPUTATIONAL LOAD

RANDOM DATA ELIMINATION
INCREMENTAL FILTERING
INTELLIGENT DATA MANAGEMENT
SYSTEM-LEVEL ANALYSIS WITH COOPERATING EXPERT SYSTEMS

- CO-ORDINATION OF HIERARCHICAL EXPERT SYSTEMS

- COMBINATION OF DISTRIBUTED COMPUTING AND MULTIPLE USER-INTERFACES
COOPERATING EXPERT SYSTEMS

- EVENT-DRIVEN INFORMATION EXCHANGE
- DEMONS AT SUBSYSTEM LEVEL RESPOND TO SUBSYSTEM ANOMALIES
- DOMAIN KNOWLEDGE AT SUBSYSTEM LEVEL IS USED TO DETERMINE WHICH
 SUBSYSTEM ANOMALIES HAVE POTENTIAL SYSTEM-LEVEL IMPACT
- SUBSYSTEM DEMONS SEND MESSAGES TO SYSTEM-LEVEL KNOWLEDGE BASE
- SYSTEM-LEVEL DEMONS COORDINATE SYSTEM-LEVEL ANALYSIS
MULTIPLE EXPERT SYSTEMS
DISTRIBUTED ARCHITECTURE

DATA MANAGEMENT PROCESS

CCS SUBSYSTEM PROCESS
- REAL-TIME MONITORING
- NONREAL-TIME PRODUCTIVITY ENHANCEMENT FUNCTIONS
- KNOWLEDGE-BASED ANOMALY ANALYSIS
- USER INTERFACE AND DISPLAY PROCESS

AACS SUBSYSTEM PROCESS
- REAL-TIME MONITORING
- NONREAL-TIME PRODUCTIVITY ENHANCEMENT FUNCTIONS
- KNOWLEDGE-BASED ANOMALY ANALYSIS
- USER INTERFACE AND DISPLAY PROCESS

FDS SUBSYSTEM PROCESS
- REAL-TIME MONITORING
- NONREAL-TIME PRODUCTIVITY ENHANCEMENT FUNCTIONS
- KNOWLEDGE-BASED ANOMALY ANALYSIS
- USER INTERFACE AND DISPLAY PROCESS

SYSTEM-LEVEL KNOWLEDGE-BASED ANALYSIS PROCESS
EVENT-DRIVEN RESPONSE

- DEMONS IN THE KNOWLEDGE BASE CONTROL REASONING
 - EVENT-DRIVEN RESPONSE TO ANOMALY CONDITIONS
 - INSTANTIATION OF APPROPRIATE RESPONSE PLANS

- DEMONS ARE ACTIVATED BY THE APPEARANCE OF ANOMALOUS DATA
 - TELEMETRY
 - INFERRED KNOWLEDGE FROM BACKWARD CHAINING
 - OTHER DEMONS

- BACKWARD-CHAINED PRODUCTION RULES PERFORM DIAGNOSIS
 - ANOMALY ANALYSIS
 - RECOMMENDATIONS FOR CORRECTIVE ACTION

- RULES ARE ACTIVATED BY DEMONS
EVENT-DRIVEN RESPONSE

Current channel = E-201
E-201 bit 8 has changed

Current channel = E-202
E-202 bit 6 has changed
E-202 bit 5 has changed

Current channel is a status word.
Apparent anomaly = true.

Perform data corruption check
Subsystem Monitor

Anomaly = HYBIC swap
E-203 bit 6 = 0
Sun intensity level <
sun disacquire gate

Diagnosis = sun sensor degradation.

Anomaly = HYBIC swap
E-203 bit 6 = 0
(Sun intensity level = 0 OR
Sun intensity level = 255)

Diagnosis = sun sensor failure.

Anomaly = HYBIC swap
E-201 bit 3 = 0

Diagnosis = Canopus star tracker problem.

E-201 bit 8 = 0
E-202 bit 6 = 1
E-202 bit 5 = 0

HYBIC pattern is consistent

Event: Prime HYBIC changed at time \(t_1 \)
Event: HYBIC 1 power changed at time \(t_2 \)
Event: HYBIC 2 power changed at time \(t_3 \)

Event: E-200 bit 6 changed at time \(t_4 \)
Event: E-200 bit 3 changed at time \(t_5 \)
E-200 bit 6 \(\leftrightarrow \) E-200 bit 3

Anomaly = HYBIC swap
ISO-valve pattern has changed
\(t_4 < t_1, t_2, t_3 \)
\(t_5 < t_1, t_2, t_3 \)

Diagnosis = second TCAPUF failure.

Event: E-200 bit 7 changed at time \(t_4 \)
Event: E-200 bit 4 changed at time \(t_5 \)
E-200 bit 7 \(\leftrightarrow \) E-200 bit 4

ANTEC \(\rightarrow \) Rule antecedent

CONS \(\rightarrow \) Forward chained consequent

GOAL \(\rightarrow \) Backward-chained goal

Interprocess communication
SUMMARY

- REAL-TIME, REAL-WORLD DEMONSTRATION OF SIGNIFICANT ARTIFICIAL INTELLIGENCE CAPABILITIES
 - INTELLIGENT DATA MANAGEMENT
 - EVENT-DRIVEN COORDINATION OF KNOWLEDGE-BASED DIAGNOSTICS
 - APPROPRIATE RESPONSE TO UNCERTAIN DATA
 - MULTIPLE EXPERT SYSTEMS

- SUCCESSFUL INTEGRATION OF ARTIFICIAL INTELLIGENCE AND CONVENTIONAL AUTOMATION HAS ACHIEVED
 - FULLY-AUTOMATED, REAL-TIME MONITORING AND DIAGNOSIS
 - RECOMMENDATIONS FOR CORRECTIVE ACTION
 - PRODUCTIVITY ENHANCEMENT TOOLS

- DEMONSTRATION OF WORKFORCE REDUCTIONS AND IMPROVED PERFORMANCE