Future Applications of Artificial Intelligence to Mission Control Centers

Peter Friedland
Chief, AI Research Branch (FIA)

Control Center Technology Conference
June 20, 1991
Basic Objectives of the NASA-Wide AI Program

• To Conduct Artificial Intelligence Research, Tool Development, and Application Construction in the Context of Short, Medium, and Long-Term Agency Needs

• To Build Internationally Recognized Artificial Intelligence Laboratories at Ames Research Center and the Jet Propulsion Laboratory

• To Promote Technology Transfer at All of the NASA Research, Manned Space Flight, and Space Science Centers

• To Develop an Academic/Industrial/Governmental Team of Collaborative Scientists and Engineers to Further Both NASA and the Nation's Goals in Artificial Intelligence Research and Development
Inhouse Research Program

- Major Thrusts in:
 - Planning
 - Combinatoric, Constraint-Based Scheduling
 - "Anytime" Re-Scheduling
 - Multi-Agent Planning
 - Reactive Planning (Intelligent Agents)
 - Learning
 - Data Analysis and Classification
 - Theory Formation
 - Learning Architectures
 - Automatic Improvement in Problem-Solving
 - Design of and Reasoning about Large-Scale Physical Systems
 - Knowledge Acquisition during Design
 - Model-Building and Simulation
 - Knowledge Maintenance and Retrieval
 - Symbolic Control
Constraint-Based Scheduling

Goals: Applying AI methods to the solution of complex scheduling and resource allocation problems. Particular focus on "satisficing solutions" and anytime re-scheduling.

Project Leader: Monte Zweben

Major Collaborators: Lockheed AI Center (Bob Gargan), Lockheed Space Operations Company, KSC Systems and Technologies Office (Astrid Heard)

Inhouse Effort: 3.5 FTE

Characterization: Basic and Applied Research, Tool Development, Applications

Current Domains: STS Orbiter Processing at KSC, Wind Tunnel Operations

Start Date: 10/87

Projected Length: Indefinite

Fund Source: OAET AI Program, OSF Code MD
Learning and Performance Improvement for Scheduling

Goals: The integration of machine learning methods with scheduling systems to develop schedulers which improve their performance over time.

Project Leader: Steve Minton

Major Collaborators: STSCI (Mark Johnston)

Inhouse Effort: 2 FTE

Characterization: Basic Research, Applied Research, Tool Development

Domain Applicability: HST Science Scheduling

Start Date: 10/88

Projected Length: 5 Years

Funding Source: OAET AI Program
GEMPLAN Multi-Agent Planner

Goals: Develop methods for generating multi-agent plans for domains with complex coordination requirements.

Project Leader: Amy Lansky

Inhouse Effort: 2 FTE

Characterization: Basic Research, Tool Development

Domain Applicability: EOS Operations Planning (u. i.)

Start Date: 12/89

Projected Length: 5 Years

Fund Source: OAET AI Program, NSF
Planning, Scheduling, and Control

Goals: Research on planning systems capable of monitoring plan execution, noting and correcting plan failures, and re-planning when appropriate. This involves the integration of AI-based systems with classical scheduling and discrete event control theories.

Project Leader: Mark Drummond

Major Collaborators: Teleos Research (Stan Rosenschein), DARPA/ISTO

Inhouse Effort: 5 FTE

Characterization: Basic Research, Applied Research

Domain Applicability: Planetary Rover

Start Date: 10/88

Projected Length: 10 Years

Fund Source: OAET AI Program, AFOSR, DARPA/ISTO
Bayesian Learning

Goals: Development and application of Bayesian data analysis techniques to classification of large-scale, potentially noisy NASA databases.

Project Leader: Peter Cheeseman

Inhouse Effort: 5.5 FTE

Characterization: Basic and Applied Research, Tool Development

Domain Applicability: IRAS Data, CalSpace Cloud Data, LandSAT Data

Start Date: 10/86

Projected Length: Indefinite

Fund Source: OAET AI Program
Efficient Learning Algorithms

Goals: Develop efficient methods to predict normal and abnormal operations of complex devices from telemetry data analysis. Allow such systems to adapt to changing conditions.

Project Leader: Phil Laird

Inhouse Effort: 2 FTE

Characterization: Basic Research

Domain Applicability: Future Life Support and Vehicle Monitoring Systems

Start Date: 2/88

Projected Length: Indefinite

Fund Source: OAET AI Program
ICARUS: An Integrated Architecture for Learning

Goals: Develop a software architecture that can recognize and classify complex physical objects, generate actions plans, and control the execution of motor skills. Utilize the cognitive model of expanding and improving a long-term memory by use of machine learning techniques.

Project Leader: Pat Langley

Inhouse Effort: 6 FTE

Characterization: Basic Research

Domain Applicability: Autonomous Assembly and Exploration Tasks, Diagnosis Tasks, DTA/GC Data Classification

Start Date: 10/89

Projected Length: 10 Years

Funding Source: OAET AI Program
Design Knowledge Acquisition and Retention

Goals: Develop an "electronic designer's notebook" capable of retaining conceptual design knowledge (including alternative designs and tradeoffs) in a form usable throughout the device life-cycle both by humans and automated systems.

Project Leader: Catherine Baudin

Major Collaborators: Stanford University Center for Design Research (Larry Leifer)

Inhouse Effort: 1.5 FTE

Characterization: Applied Research, Tool Development

Domain Applicability: SIRTF Tertiary Mirror Design, NASP Design (u. i.)

Start Date: 10/88

Projected Length: 5 Years

Fund Source: OAET AI Program, DARPA/ISTO
Computer-Integrated Documentation

Goals: Integration of AI and hypermedia technology to provide enhanced access to voluminous documentation. Use of dynamic knowledge acquisition techniques to build user models and provide context-dependent indexing.

Project Leader: Guy Boy

Major Collaborators: ARC Code FL (Irv Statler), SSF Level I Engineering (Mark Gersh), SSF Level II TMIS (Mike Freeman)

Inhouse Effort: 2.5 FTE

Characterization: Applied Research, Tool Development

Domain Applicability: STS Mission Control Center and Onboard Manuals, SSF Documentation Stored in TMIS

Start Date: 10/89

Projected Length: 3 Years

Fund Source: OAET AI Program, SSF AD Program
Some Speculation on Future Applications

- Planning and Scheduling
 - Reactive Re-Scheduling of Missions under Prevailing Time Constraints
 - Assistance in Playing "What If" Games During Missions
 - Coordination of Different Discipline Decisions

- Knowledge Acquisition and Maintenance
 - Ready Access to Life-Cycle Information
 - Electronic Documentation Integrated with Diagnostic Systems

- Physical Systems Reasoning
 - Model-Based Fault Detection and Recovery
 - Assistance in "on-the-Spot" Procedure Development

- Machine Learning
 - Automatic Induction of Fault Detection Rules
 - Learning to Diagnose in the Presence of System or Sensor Faults
 - Learning Apprentice Systems
<table>
<thead>
<tr>
<th>Author List</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Adamo, Dan</td>
<td>493</td>
</tr>
<tr>
<td>Atkinson, David</td>
<td>337</td>
</tr>
<tr>
<td>Bailey, Darrell</td>
<td>423</td>
</tr>
<tr>
<td>Bolen, David</td>
<td>83</td>
</tr>
<tr>
<td>Connerton, Robert</td>
<td>401</td>
</tr>
<tr>
<td>Duffin, Pat</td>
<td>205</td>
</tr>
<tr>
<td>Ebersole, Mike</td>
<td>33</td>
</tr>
<tr>
<td>Friedland, Peter</td>
<td>635</td>
</tr>
<tr>
<td>Fong, Roger</td>
<td>237</td>
</tr>
<tr>
<td>Hansen, Elaine</td>
<td>467</td>
</tr>
<tr>
<td>Heindel, Troy</td>
<td>443</td>
</tr>
<tr>
<td>Hill, Jerry</td>
<td>1</td>
</tr>
<tr>
<td>Hughes, Peter</td>
<td>505</td>
</tr>
<tr>
<td>Johnson, Roger</td>
<td>549</td>
</tr>
<tr>
<td>Kranz, Eugene F</td>
<td>107</td>
</tr>
<tr>
<td>Luken, Robert</td>
<td>53</td>
</tr>
<tr>
<td>Moorhead, Deborah</td>
<td>237</td>
</tr>
<tr>
<td>Muratore, John</td>
<td>303</td>
</tr>
<tr>
<td>Owen, Rich</td>
<td>589</td>
</tr>
<tr>
<td>Schmalz, Karen B</td>
<td>209</td>
</tr>
<tr>
<td>Schoen, Paul</td>
<td>281</td>
</tr>
<tr>
<td>Schwuttke, Ursula</td>
<td>381</td>
</tr>
<tr>
<td>Shilling, Larry</td>
<td>83</td>
</tr>
<tr>
<td>Sliwa, Nancy</td>
<td>615</td>
</tr>
<tr>
<td>Smith, Marcie</td>
<td>363</td>
</tr>
<tr>
<td>Whipple, Larry K</td>
<td>237</td>
</tr>
</tbody>
</table>