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ABSTRACT 

Droplet-turbuLence interactions directLy affect the vaporization and dispersion of dropLets in Liquid 

sprays and therefore pLay a major roLe in fueL-oxidizer mixing in Liquid fueLed codoustion systems. Proper 

characterization of dropLet-turbuLence interactions in vaporizing sprays requires measurement of dropLet size-

veLocity and size-teilperature correLations. This paper describes a pLanar, fLuorescence imaging technique 

which is being developed for sinuLtaneously measuring the size, veLocity and tenperature of individuaL dropLets 

in vaporizing sprays. PreLiminary dropLet size-velocity correlation measurements made with this technique are 

presented. These measurements are also coopared to and show very good agreement with measurements made in the 
same spray using a phase-doppLer particle analyzer. 

INTRODUCTION 

The performance of Liquid fueLed contustion systems is significantly affected by the characteristics of 

the Liquid fueL (and/or oxidizer) spray. In order to understand the underLying fundamental processes which 

determine the characteristics of Liquid sprays, typicaL of those used in liquid rocket, DieseL and gas turbine 

contustors, it is useful to divide such sprays into three different regimes: an atomization regime, a dense 

spray regime and a dilute spray regime. The atomization regime refers to the region of the spray where 

droplets are formed due to unstabLe wave growth on the surface of the injected Liquid. The size of the 

droplets produced by the atomization process depends on the reLative velocity of the injected Liquid, the 
Liquid surface tension and the gas density1'2. 

The dense spray regime refers to regions of the spray where droplets strongLy interact and extends from 

the surface of the injected Liquid to regions of the spray where the dropLet spacing to diameter ratio is 

anywhere from -3 to -10, depending on the criterion used to define the dense spray regime. One coimon 

criterion reLates to the optical density of the spray, where regions of the spray which are so dense as to be 

optically opaque, and therefore inaccessible to optical measurement techniques, are considered to be in the 

dense spray regime. Because dense regions of the spray are opticaLLy inaccessibLe, very LittLe is actuaLLy 

known from direct observation about the atomization process and dropLet interactions. ValuabLe insights have 

been obtained, however, from detailed spray models"° which have been successfuL at predicting many of the 

measurable properties of sprays such as drop velocity and size in the downstream dilute regions of the spray. 

For exanpLe, caLculations have shown that dropLet collisions and coaLescence are inportant processes in the 

dense regions of the spray, causing the droplet size to actuaLLy increase. 

The di Lute spray regime generaLLy refers to regions of the spray where dropLet coLlisions are negligibLe 

and extends from the dense regions of the spray to the outermost boundaries of the spray. Since di Lute sprays 

are optically accessible, there have been a nuiter of experimentaL studies characterizing dropLet velocity and 
size in the di Lute regions of Liquid spr8ys 12 . It is in the di Lute regions of the spray where there is 

considerabLe interaction between the droplets and the surrounding turbulent gas which is entrained into the 

spray. This interaction is responsible for the heating, vaporization and deceLeration or acceleration of the 

dropLets, i.e. the transport of energy, mass, and momentun between the dropLets and the surrounding turbuLent 

gas, and therefore to a great extent determines the fuel-oxidizer mixing characteristics of the spray. It is 

aLso inportant to note that even though the dropLets do not coLLide, they do interact, in that individuaL 

droplets tie within the wakes of nearby droplets which can affect dropLet drag and vaporization13. 
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In order to property account for the effects of turbulence in vaporizing sprays, the intensity, scale g 

energy spectrun of the turbulence must all be considered. This is necessary, because different turbulence 

scales affect the spray in different ways and therefore the energy distribution over the range of turbulence 

scales nust be known. For exanple, small scale turbulence, i.e. of the order of the droplet spacing and 

diameter, enhances the small scale mixing necessary to achieve local premixed conditions, as welt as, the drag 

and vaporization of the droplets. Whereas Large scale turbulence, i.e. of the order of the overall spray 

diameter, is most effective at dispersing the droplets and producing Large scale entraiment of gas, liquid 

vapor and liquid droplets. In general, the regions of the spray where one would expect droplet-turbulence 

interactions to be most inportant are the outer edges and downstream regions of the spray as shown in Figure 1. 

In order to study droplet-turbulence interactions in vaporizing sprays, one would like to isolate those 

regions of the spray where the mass, momentun and energy exchange between droplets and gas is greatest and- then 

systematically and independently vary the relevant parameters such as the dropLet size, density, velocity and 

tenperature, as weLl as, the gas velocity, teeperature and turbulence. It is also necessary to measure the 

changes in these parameters as the droplets and gas interact. Such a systematic study is difficult to do in an 

actual spray because of the interdependent nature of the spray properties. Therefore, rather than use an 

actual spray, the effects of turbulence on vaporizing sprays can be studied in a spray configuration designed 

to simulate one particular portion of an actual liquid spray having a given droplet nurber density and droplet 

size, velocity and tenperature distribution, as well as, given gas teeperature, pressure and turbulence 

properties. 

Such experiments are being conducted in a turbulent flow system14, illustrated in Figure 2, which is 

capable of simuLating the range of turbulent flow conditions encountered in the peripheral and downstream 

regions of a liquid spray. Turbulence is generated using a turbulence generator which is capable of producing 

turbulent flows which are uniform over the cross-section of the test section to within ± 10%, with relative 

turbulence intensities up to 70%, and mean veLocities up to 30 rn/sec. With this turbulent flow system it is 

possible to independently vary the mean velocity and the turbulence properties in order to distinguish between 

and characterize their effects on droplet heating, vaporization and dispersion, and in turn on fuel-oxidizer 

mixing. 
The spray is produced with a pressure atomizer (Delavan B 6.00-30°), where a lOom diameter skinmer is 

used to isolate the central core of the spray before it is transversely injected into the turbulent flow, as 

illustrated in Figure 3. Only the central core of the spray is used in order to achieve relativeLy uniform 

spray properties, i.e. size and velocity distributions and nuiter density, across the spray diameter at the 

point where it enters the turbulent flow. By changing the spray nozzle, the injection pressure, and the nozzle 

to skimer distance, it is possible to vary the droplet size distribution, velocity distribution and ntaiter 

density over a range of values representative of those encountered in the peripheral and downstream regions of 

a liquid spray where fuel-oxidizer mixing occurs. An optically accessible, one atmosphere, 300K version of 

this fLow system and spray skitriner assetitly has been used for the developnent and testing of the planar-

fluorescence droplet imaging technique described below. 
In order to property characterize droplet-turbulence interactions and their effect on fuel-oxidizer mixing 

in vaporizing sprays, it is necessary to measure various droplet, liquid vapor and gas properties. 

Specifically, this includes droplet size, nurber density, velocity and tenperature; liquid vapor concentration; 

and gas velocity, turbulence intensity, scale and energy spectrun. To date there have been a nuiter of studies 

in dilute vaporizing sprays where droplet velocity 8'9 ' 11 ' 2 , gas velocity9 and droplet size have been 

measurec?' 10' 12 . It is inportant to note, however, that since droplet-turbulence interactions, e.g. droplet 

drag and vaporization, are dependent on droplet size, it is necessary to simultaneously measure the velocity 

and size and the tenperature and size of individual droplets in order to understand and property account for 

these interactions. 
There are a nuiter of techniques which have been developed and used for droplet velocity, size and 

teffperature measures. However, in order to obtain velocity-size or tenperature-size correlations, only those 

techniques which make measurements on individual droplets can be used. Techniques which have been successfully 

used to measure individual droplet velocities in sprays include Laser doppler velocimetry and droplet imaging 

velocimetry. Techniques which have been successfuLly used to measure the size of individual droplets in sprays 

include phase-doppler and pulse-height techniques, as well as, droplet imaging. Both phase-doppler and puLse-

height droplet sizing techniques have been codoined with laser doppler velocimetry in order to make 

simultaneous droplet velocity and size measurements in sprays. The so-called phase-doppler particle analyzer 
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is the most wideLy used approach, having been used to measure droplet size and velocity in a nurter of spray 

studies. Results obtained with the phase-doppler system for dropLet velocity and dropLet size distributions 

have been shown to be reasonabLy accurate and reliable, however, measurements of voLune flux and therefore the 

velocity-size correlation are Less certain 12' 15' 16 . With respect to studying droplet-turbulence interactions in 
vaporizing sprays, a current Limitation of these techniques, is the fact that they can not be used to obtain 

individual droplet teoperature measurements. (It may be possible to use the teeperature dependence of the 

index of refraction of the Liquid dropLet to measure its teaperature in contination with the phase-doppLer 
technique17). There are few techniques which have been developed for measuring individual dropLet tefiperatures 

in vaporizing sprays. One technique which has been proposed for droplet tefiperature measurements is based on 

the use of exciplex fLuorescence18 . This technique expLoits the photophysics of organic exciplexes. The 

liquid is doped with a moLecuLe, referred to as the monomer, which is capable of forming an excited state 

complex or exciplex. When the soLution is exposed to uLtravioLet radiation, the monomer and exciplex emit 

visible fluorescence at two different wavelengths. Since the reLative concentration of the monomer and the 

exciplex is temperature dependent, the resuLtant ratio of the monomer to excipLex fLuorescence is a measure of 

the liquid temperature. There are a number of concerns regarding the use of this technique for measuring 

individual dropLet temperatures in vaporizing sprays including the effect of oxygen quenching and the question 

of whether the surface or internal droplet temperature is measured. Work is in progress at a number of 

laboratories to resolve these issues. One method of measuring the relative intensity of the monomer and 

excipLex fluorescence is to record simultaneous droplet images at both the monomer and excipLex fluorescence 
wavelengths. Such a measurement can easily be contined with droplet imaging vetocimetry and sizing to make 

simultaneous droplet size, velocity and temperature measurements. This is the objective of the current 

program. In this paper the status of the simultaneous dropLet size and velocity measurement technique is 
presented.

EXPERIPEIITAL TECHNI.E 

Imaging based methods have been used by other researchers to obtain droplet size and dropLet velocity 
measurements 19'20 . These systems have typically employed backLighting to form the image. Using this approach 

the sample volune is controlled by the depth of field of the imaging optics, and therefore droplets which are 

adjacent to the sample volume are out of focus and have antiguous diameters. These droplets must either be 
eliminated from the distribution or the diameters must be corrected using some criteria. Other limitations 

when using backlighting pertain to the type of light source used. With a white light source it can be 

difficult to achieve the high intensity, short duration (e.g. nanosecond) light pulses necessary to accurately 

image smaLl (e.g. 10 micron diameter), high velocity (e.g. 100 m/sec) droplets. This can be accomplished with 

a pulsed laser, however it then becomes difficult to accurately size small droplets due to the appearance of 

diffraction rings surrounding the droplet image. A method of illuninating and imaging droplets which does not 

have these problems involves doping the liquid with a fluorescing dye and illuminating a "two-dimensional 

slice" of the spray with a thin sheet of laser light which excites the dye and causes the droplets which lie 

within the laser sheet to fluoresce. The fluorescing droplets are then imaged at ninety degrees, where the 

spatial resolution is determined by the thickness of the laser sheet and the resolution of the recording 

medium. The droplet size is determined directLy from the droplet image. To obtain the droplet velocity, the 

laser can be double-pulsed, where the resultant displacement of the droplet image is then used to determine two 

components of the droplet velocity. As the droplet number density increases, however, it becomes difficult to 

identify the correct droplet-pairs. One way to partially solve this problem is to use Light pulses of 

different intensity or duration This also allows the sense of the droplets motion to be determined. A 
similar approach can be used with. the planar fluorescence imaging technique, which involves doping the Liquid 

with two dyes that absorb at different and fluoresce at different wavelengths. The two color method reduces the 

ambiguity in the selection of the correct droplet pairs and allows the image processing to be automated. 

Automation permits greatly increased sample sizes which are crucial for accurate determinations of the droplet 

distribution functions. A schematic drawing of the planar fluorescence droplet imaging system is shown in 
Figure 4. 

For the measurements reported in this paper, the injected liquid (methanol) was doped with two fluorescent 

dyes. The dyes employed were Rhodamine-610 and N,M,Pl',N'-TetramethyL-1,4-phenylenediamine (TI4PD). The
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absorption and emission bands of these dyes are spectraLLy separated for each dye as weLl as one dye from the 

other, and they can both be readiLy excited with a Nd:YAG Laser, i.e. Rhodamine 610 absorbs at the second 

harmonic of the Nd:YAG (532rin) and fLuoresces at -610m, whiLe TNPO absorbs at the third harmonic of the Nd:YAG 

(355 nfl) and fluoresces at -400rin. (As noted above, THPD can aLso form an exciplex which wilt fluoresce at 

-500nin). The interval between the two pulses was 30 microseconds. SeLection of the optinun interval requires 

an a priori estimate of the droplet velocity. The beams were focused into sheets using the contination of a 

convex cylindrical tens and a convex sphericaL lens. The Laser sheet thickness over the field of view of the 
measurement was Less than 0.4ffIn. The dropLet images were recorded on coLor sLide fiLm (ASA 400) at a 

magnification ratio of 2:1. Residual Light from the second harmonic was blocked before entering the imaging 

optics with a narrowband interference mirror. The sLide fiLm was not sensitive to residual light from the 

third harmonic so there was no need to eLiminate it. The resultant image recorded on the film consisted of a 
red image and a blue image from each droplet which passed through the pLane of the Laser sheets. There was 

aLso the possibiLity that a droplet was entering or Leaving the Laser sheet in which case onLy one droplet 

image appeared. This was the case for twenty percent of the dropLets under the conditions reported in this 

paper. Another problem which was encountered was that the red images were subject to significant spreading 

during the developing process (up to 40% larger than the bLue images). Therefore, the bLue images were used 

for sizing and the red images were onLy used for establishing the distance travelLed. 

An automated image processing system was developed to extract the droplet velocity and size from the 

sLides. The sLide was backlit with a white Light and either a red or bLue bandpass filter was interposed 

between the lanp and the sLide. OnLy the images at the wavelength of the filter were visibLe, therefore the 
red and bLue droplet images couLd be anaLyzed separately. A 2ninxl.2niu section of the sLide (referred to as the 

interrogation spot) was imaged onto a 512x480 array video camera, yieLding a theoretical measurement resolution 

of 2.9 microns in the vertical direction and 2.4 microns in the horizontaL direction. (The actual resolution is 

greater than this due to diffraction effects.) The image was scanned and the size and Location of each droplet 

was recorded. The criterion used for Locating the endpoints of a dropLet diameter was the Location of largest 

positive and Largest negative slope in the intensity profile. The procedure was repeated at the second 

wavelength, resulting in a database of size and position for each of the individuaL blue and red dropLet 

images. 

In any given interrogation spot, from 5 to 10 droplet pairs and several more single droplets were visible. 

The procedure for matching the red images to the blue images was as follows. First, all the red drops with 

diameters within +40%, -10% of a blue droplet were selected. This was repeated for each blue droplet. A given 

red droplet might appear as a possible match for more than one blue droplet. In that case the program selected 

the droplet pairs which minimized the separation distance squared. This criteria was based on the assuiption 

that droplets of the same size in close proximity in the flow could be expected to have highly correlated 

velocities. This assul4tion was supported by visually inspecting the data slides. Once the proper droplet 

pairs were identified, the droplet displacement, and therefore velocity, was determined. 

PRELININARY RE9JLTS 

The automated image processing system was based on of a 25 MHz, 386 personal conputer which also 

controLled the stepping motor system which automatically traversed through the entire slide and controLled the 

image recording and processing software which determined the droplet position, size and veLocity. With this 

system it was possible to process an entire 35m slide which incLudes up to 400 droplet pairs in approximately 

one hour. 

Preliminary droplet size and velocity measurements obtained with the planar fluorescence imaging technique 

are given in Figures 5 and 6 where the size distribution and velocity distribution, respectively, are plotted. 

These measurements were made in the flow system and spray-skininer assently described in the previous section 
under conditions of no gas flow. The measurement location was at the exit of the skimer assently and the 

field of view corresponded to a lOm xlOm section of the spray. 

The droplet size and velocity distributions are consistent with what was expected for the spray nozzle 

which was used. The distributions will become smoother as the sanpLe size, N, is increased. The droplet size-

velocity correLation shows that there is a shift toward higher veLocities as the droplet size increases, as 
would be expected due to the greater momentun of the Larger droplets. Note that the planar fluorescence 

imaging also gives the droplet nuiter density, which for this spray condition is nearly 1O4 droplets/cm3. 

578



Measurements were also made under the same conditions using an Aerometrics phase-doppler particle 

analyzer. A cooparison between the results obtained with these two techniques is given in TabLe 1. This 

conparison shows very good agreement between the two measurement techniques, however, it should be noted that 

this is only based on a coirparison of mean spray properties. It should also be noted that to property conpare 

the resuLts obtained using these two techniques, it is necessary to account for the fact that planar 

fluorescence dropLet imaging gives a spatial average and phase-doppler gives a tefiporat average. Additional 

measurements and a more detailed conparison of these two techniques are in progress. 
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Table I: Comparison Between	 Planar 
Fluorescence and Phase-Doppler 
Measurements

PLANAR PHASE 
FLUORESCENCE DOPPLER 

DlO 30 urn 24 urn 
D20 37 urn 31 urn 
D30 44 urn 38 urn 
D32 62 urn 54 urn 

Vav 4.2 rn/s 4.8 rn/s 

N 650 8007
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