
JPL Publication 90-37

.,J

r

Planning and Reasoning in the
JPL Telerobot Testbed

Stephen Peters
David Mittman

Carol Collins

Jacquie O'Meara

Mark Rokey

September 15, 1990

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

T_41-_ JPL T:L r'_',q_" "r r'-= r_-_, (jrL) 7_, D

C3CL 13[

N3L-L 2Z7_i





JPL Publication 90-37

Planning and Reasoning in the
JPL Telerobot Testbed

Stephen Peters
David Mittman
Carol Collins
Jacquie O'Meara
Mark Rokey

September 15, 1990

National Aeronautics and

Space Administration

Jet Propulsion Laboratory

California Institute of Technology
Pasadena, California



The research described in this publication was carried out by the Jet Propulsion

Laboratory, California Institute of Technology, under a contract with the National
Aeronautics and Space Administration.

Reference herein to any specific commercial product, process, or service by trade

name, trademark, manufacturer, or otherwise, does not constitute or imply its

endorsement by the United States Government or the Jet Propulsion Laboratory,
California Institute of Technology



Plannin_ and Reasonin_ in the JPL Telerobot Testbed

ABSTRACT

The Telerobot Interactive Planning System is being developed at the Jet Propulsion Laboratory

to serve as the highest autonomous-control level of the Telerobot Testbed. This publication

describes a recent prototype which integrates an operator interface for supervisory control, a

task planner supporting disassembly and re-assembly operations, and a spatial planner for

collision-free manipulator motion through the workspace. Each of these components is

described in detail. Descriptions of the technical problem, approach, and lessons learned are
included.

I

iii





Plannin_andReasonin_in the JPL Telerobot Testbed

TABLE OF CONTENTS

1

1.1

1.2

1.3

1.3.1

1.3.2

1.3.3

1.3.4

1.4

1.4.1

1.4.2

1.4.3

1.5

2
2.1

2.2

2.3

3
3.1

3.1.1

3.1.2

3.2

3.2.1

3.2.2

3.2.3

3.2.4

3.3

4
4.1

4.1.1

4.1.2

4.1.3

4.2

4.2.1

4.2.2

4.2.3

4.2.4

4.2.5

4.2.6

4.3

4.3.1

4.3.2

4.3.3

INTRODUCTION ...................................................................................................... 1

PURPOSE AND SCOPE .......................................................................................... 1

ORG ANIZATION .................................................................................................. 1

REFERENCES ......................................................................................................... 1

Project Documents ................................................................................................. 1

Project Technical Papers ....................................................................................... 2
General Literature ............................................................................................... 2

People ................................................................................................................. 3
GLOSSARY, ACRONYMS, AND OTHER TERMS .................................................... 3

Glossary .............................................................................................................. 3

Acronyms ............................................................................................................. 3
Other Terms ......................................................................................................... 4

LATE DEVELOPMENTS ......................................................................................... 4

THE PROBLEM sTATENIENrF ......... _. ............ -............................................................ 5

SPACE TELEROBOTICS ......................................................................................... 5

THE JPL TELEROBOT TESTBED .............................................................................. 5
PLANNING AND REASONING ............................................................................ 7

APPROACH .............................................................................................................. 9

TECHNOLOGY OUTLOOK .................................................................................... 9

State of the Art .................................................................................................... 9

State of the Testbed ............................................................................................. 9

STRATEGY ........................................................................................................... 10

Applications Research ....................................................................................... 10

Rapid Prototyping ............................................................................................. 11

Target Functional Design .................................................................................... 11

Applicable Concepts and Suggestions .................................................................. 11
PRIORITIES ......................................................................................................... 12

THE TELEROBOT INTERACTIVE PLANNING SYSTEM .......................................... 13
INTERFACES AND ROLE WITHIN THE SYSTEM ................................................ 13

External Interfaces ............................................................................................. 13

TIPS Internal Organization ................................................................................ 14
Demonstration Task Scenario .............................................................................. 15

THE TASK PLANNER .......................................................................................... 15

Planner Architecture .......................................................................................... 15

Knowledge Base Description .............................................................................. 17

Stage One Description ........................................................................................ 20

Stage Two Description ........................................................................................ 21

Example Execution ............................................................................................. 26

Specifications .................................................................................................... 28
THE GROSS-MOTION SPATIAL PLANNER ......................................................... 29

Introduction ....................................................................................................... 29

CENTER Overview ............................................................................................ 32

The Graph Generator ......................................................................................... 33

V

PRECEDING PAGE BLA;';._; I'_O"|" F_LMED



4.3.4

4.3.5

4.3.6

4.3.7

4.3.8

4.4

4.4.1

4.4.2

4.4.3

4.4.4

4.4.5

4.4.6

4.5

4.5.1

4.5.2

4.5.3

4.5.4

4.5.5

5
5.1

5.1.1

5.1.2

5.1.3

5.1.4

5.1.5

5.2

5.2.1
5.2.2

5.2.3

5.2.4

6

6.1

6.2

6.2.1

6.2.2

6.2.3

6.2.4

6.2.5

6.2.6

Plannin_ and Reasonin_ in the JPL Telerobot Testbed

The Path Finder ................................................................................................. 37

Work Space Assumptions .................................................................................... 39

Usage ................................................................................................................ 40

Specifications .................................................................................................... 40
Status ................................................................................................................ 46

THE USER-INTERFACE AND KINEMATIC SIMULATOR .................................... 49

Introduction ....................................................................................................... 49

Windows ........................................................................................................... 50

Software Structure ............................................................................................. 52

Modeling ........................................................................................................... 53
Communication Links ......................................................................................... 54

Telerobot Testbed Interface ................................................................................. 56

LESSONS LEARNED ............................................................................................ 56

Abstraction for Real Time Processing ................................................................... 56

Limited-Domain Reasoning ................................................................................ 56

Errors as Normal, Expected Behavior ................................................................. 56

Separation of "What" and "How". ..................................................................... 57

Steady Target .................................................................................................... 57

RESEARCH CONTEXT ............................................................................................ 58
CONTINUING RESEARCH .................................................................................. 58

Architecture: Reasoning Engines, External Devices, and Tasking .......................... 58
Compliant-Manipulation Planning ..................................................................... 58

Operator Plan-Editing Interface ......................................................................... 59

Spatial Constraints for Redundant Control .......................................................... 59

Space Operations Planning and Telerobotic Task Planning ................................... 59
FIELD TRIPS ........................................................................................................ 59

JPL Teleoperation Laboratory ............................................................................. 60
The National Bureau of Standards ..................................................................... 60

Computer Technology Associates ........................................................................ 60

Oak Ridge National Laboratory ......................................................................... 61

TIPS AND NASREM ................................................................................................ 62

MAPPING OF TIPS ARCHITECTURE INTO NASREM .......................................... 62

DISCUSSION, DIFFERENCES, AND ISSUES ....................................................... 62

High-Level Planning ......................................................................................... 62

Partitioning of Planners and Executors ................................................................. 63

Feed-Forward Hierarchy and Feedback Loops .................................................... 63

Partitioning of Space and Time ........................................................................... 63
Simulation ......................................................................................................... 63

Global Data Base ............................................................................................... 64

vi



Plannin_ and Reasonin_ in the JPL Telerobot Testbed

TABLE OF FIGURES

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.

The JPL Telerobot Testbed Control Hierarchy, FY89 .............................................. 6
The IPL Telerobot Testbed Control Hierarchy, FY88 .............................................. 7
Issues and when they are addressed .................................................................... 10
Allocation of spatial planning responsibilities ................................................... 13
TIPS major modules ............................................................................................ 14
The TIPS planning and control message loop ........................................................ 15
CENTER Overview ............................................................................................ 32

Graph generator node checking ........................................................................... 34
Graph generator edge checking ........................................................................... 35
(a) Initial graph and (b) graph sparsification step one ........................................ 37
Graph sparsification step two ............................................................................ 38
The Audrey screen .............................................................................................. 50
Current T/PS modules and the extended TIPS architecture ................................... 58

Mapping of TIPS modules into NASREM ............................................................. 62

vii





Plannin_ and Reasonin_ in the JPL Telerobot Testbed

1 INTRODUCTION

1.1 PURPOSE AND SCOPE

The Jet Propulsion Laboratory (JPL) is the National Aeronautics and Space Administration's

(NASA) lead center for research in space telerobotics; the Goddard Space Flight Center (GSFC)

is building the Flight Telerobotic Servicer (FTS), NASA's first operational flight telerobot.

The Sequence Automation Research Group (SARG) at JPL is doing research in planning and

reasoning for telerobotics and has developed a prototype subsystem and integrated it into the

JPL Telerobot Testbed.

The purpose of this publication is to transfer JPL planning and reasoning technology to GSFC,

together with insights on how the technology might best be applied. Note that the work is

ongoing, and that this publication represents a snapshot of the current state of the research

rather than a final report on the technology.

This publication provides a description of Telerobot Interactive Planning System (TIPS) as of

the end of FY88, an indication of what to expect in the short term from ongoing research, and

observations on parallels with other systems and domains.

Funding for preparation of this publication was provided by the FTS project through GSFC.

1.2 ORGANIZATION

This section describes this publication and refers to external sources of information. Section 2

describes the technical problems targeted by the research. Section 3 describes the technical

approach. Section 4 describes the prototype system implemented and demonstrated in FY88.

Section 5 describes research in progress as JPL enters FY89, and collects some information about

activities going on outside JPL. Section 6 compares the NASA-NBS Standard Reference Model

for Telerobot Control System Architecture (NASREM), adopted by GSFC for the FTS, with the

architecture of the prototype system described in section 4.

Readers interested in planning the development and evolution of space telerobot systems will

find sections 2, 3, and 5 of interest, and may skip the technical details elsewhere. Sections 4 and

6 will be of interest primarily to researchers and those concerned with detailed design and

implementation issues.

1.3 REFERENCES

1.3.1 Project Documents

[P1] Telerobotic

[P2]

[I"3]

[P4]

Technology Program Plan, National Aeronautics and Space

Administration, Office of Aeronautics and Space Technology, Revision A, May

1988.

Telerobotics Project Plan, National Aeronautics and Space Administration,

Office of Aeronautics and Space Technology, Information Sciences and Human

Factors Division, JPL internal document D-5692, August 30, 1988.

Functional Requirements for the 1988 Telerobotic Testbed, Jet Propulsion

Laboratory, Office of Technology and Applications Programs, Space

Automation and Robotics Program, JPL internal document D-3693, Revision 2,

May 1988.

Thread Language Description, Jet Propulsion Laboratory, September 1988.



1.3.2

1.3.3

Plannin[andReasonin[in theJPLTelerobotTestbed

[PS] NASA-NBSStandard ReferenceModel for Telerobot Control System
Architecture,NationalBureauof Standards,RobotSystemsDivision,Albus,J.
S.,McCain,H. G., & Lumia, R. Document No. ICG-#001, December 4, 1986.

Project Technical Papers

[T1] C. Collins and M. Rokey, "Planning for the Jet Propulsion Laboratory Tele-

robotics Project," Proceedings of the Fourth Annual Artificial Intelligence and

Advanced Computer Technology Conference, Long Beach, California, May 1988.

[T2] D. Mittman, "Audrey: An Interactive Simulation and Spatial Planning

Environment for the NASA Telerobot System," Proceedings of the Fourth

Annual Artificial Intelligence and Advanced Computer Technology Conference,

Long Beach, California, May 1988.

[T3] M. Montemerlo and A. deYoung, "The Space Perspective: Man-Machine

Redundancy in Remote Manipulator Systems," keynote address to the NATO

Advanced Research Workshop on Robots with Redundancy: Design, Sensing and

Control, Salo, Lago di Garda, Italy, June 1988.

[T4] S. Peters, "Autonomy Through Interaction: The JPL Telerobot Interactive

Planning System," Proceedings of the SPIE Conference on Space Station

Automation, Cambridge, Massachusetts, November 1988.

[TS] S. Peters, "AI Planner Development," in Intelligent Robotic Systems: Analysis,

Design, and Programming (S. Tzafestas, Ed.), Marcel Dekker, New York, in

press.

[T6] M. Rokey, "Remote Mission Specialist: A Study in Real-time, Adaptive

Planning," IEEE Transactions on Robotics and Automation, August 1990.

IT7] M. Rokey and S. Grenander, "Planning for Space Telerobotics: The Remote

Mission Specialist," IEEE Expert, June 1990.

[T8] P. Schenker, R. French, A. Sirota, and J. Matijevic, "The NASA Telerobot

Technology Demonstrator," Proceedings of the SPIE Conference on Space Station

Automation, Cambridge, Massachusetts, December 1986.

General Literature

[G1] E. Cheung and V. Lumelsky, "Motion Planning for Robot Arm Manipulators

with Proximity Sensing," Proceedings of the 1988 IEEE International Conference

on Robotics and Automation, Philadelphia, Pennsylvania, April 24-29, 1988,

pages 740-745.

[G2] W. Eggemeyer and A. Bowling, "Deep Space Network Resource Scheduling

Approach and Application," Proceedings of the GSFC Conference on Space

Applications of AI and Robotics, Greenbelt, Maryland, May 1987.

[G3] T. Lozano-Perez, "A Simple Motion-Planning Algorithm for General Robot

Manipulators," IEEE Journal of Robotics and Automation, Vol. RA-3, No. 3, June

1987, pages 224-238.

[G4] N. Nilsson, Principles of Artificial Intelligence, Morgan Kaufmann Publishers,

Inc., Los Altos, California, 1980.

[G5] E. Sacerdoti, A Structure for Plans and Behavior, Elsevier Science Publishers,

New York, 1977.



Plannil_andReasonin_in theJPLTelerobotTestbed

[G6] S.Vere,"Planning in Time: Windows and Durations for Activities and Goals,"

IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-5,

No. 3, May 1983.

An extensive list of additional references is provided in section 5.5 of [P2].

1.3.4 People

Sven Grenander

Stephen Peters
Carol Collins

David Mittman

Jacquie O'Meara

Mark Rokey

SARG Supervisor

SARG Member, TPR Cognizant Engineer

SARG Member, CENTER, Spatial Planning

SARG Member, Audrey, Graphics, Modeling, Interfaces

SARG Member, CENTER, Spatial Planning

SARG Member, RMS, Task Planning

1.4.2

GLOSSARY, ACRONYMS, AND OTHER TERMS

Glossary

Redundant manipulators have more degrees of freedom in their joints than the number

of degrees of freedom necessary to specify the position and orientation of the

end-effector. Such manipulators have an infinite number of inverse kinematic
solutions.

The Sequence Automation Research Group is the group at JPL which developed the

TIPS system described in this publication.

With shared control, the operator, through teleoperation, controls some degrees of

freedom of motion while the robot simultaneously controls others.

Thread is the Run-Time Controller (RTC) subsystem development environment and

command language. It has a reverse Polish syntax and is similar to the FORTH

programming language.

Traded control is the switching between pure teleoperation and pure autonomous

operation.

Acronyms
AI

ART

CAD

CENTER

CTA

DMS

DOF

Eos

EVA

FRHC

FTS

GSFC

IPT
KSC

MCM

MEB

Artificial Intelligence

Automated Reasoning Tool

Computer-Aided Design

Cluttered Environment Navigator for the Telerobot

Computer Technology Associates

Data Management System

Degree(s) of Freedom

Earth Observing System

Extravehicular Activity

Force-Reflecting Hand Controller

Flight Telerobotic Servicer

Goddard Space Flight Center

Jet Propulsion Laboratory

Kennedy Space Center

Manipulator and Control Mechanization
Main Electronics Box

3



NASA
NASREM

NBS
NIP
NIST
NOAH
OAST
OCS
ORNL
RMS
RTC
S&P
SARG
TDRS
TIPS
TPR

1.4.3 OtherTerms
Audrey
SRI

Plannin_andReasonin_in theJPLTelerobotTestbed

NationalAeronauticsandSpaceAdministration
NASA-NBSStandardReferenceModelfor TelerobotControlSystem
Architecture
NationalBureauof Standards
NetworkInterfacePackage

National Institute of Standards and Technology
Networks Of Action Hierarchies

Office of Aeronautics and Space Technology

Operator Control Station

Oak Ridge National Laboratory

Remote Mission Specialist
Run-Time Controller

Sensing and Perception

Sequence Automation Research Group

Tracking and Data Relay Satellite

Telerobot Interactive Planning System

Task Planning and Reasoning

Graphics and Kinematics Simulator

Developer of the Network Interface Package

1.5 LATE DEVELOPMENTS

This publication is being released several months after the bulk of it was written. Some of the

information in this publication is already dated.

Funding of SARG core research was not continued in FY89. Currently, of the activities mentioned

in Section 5, only the upgrading of the TIPS internal architecture is funded.

JPL and the Kennedy Space Center (KSC) began a joint project applying TIPS technology to the

automation of Space Shuttle Payload Changeout Room operations in FY89.

The National Bureau of Standards (NBS) has been renamed The National Institute of

Standards and Technology (NIST). All of the references in this publication refer to the then-
current former name.



Plannin_andReasonin_in theJPLTelerobotTestbed

2 THE PROBLEM STATEMENT

2.1 SPACE TELEROBOTICS

NASA is seeking to augment its space operations capabilities through the introduction of space

telerobots, which have both robotic and teleoperator capabilities [T3]. Currently no such tele-

robot exists. Research is needed to integrate the two capabilities. Research is also needed to

enhance robotic capabilities to be useful for one-time-only operations such as satellite

servicing.

The first such telerobot to be built will be the FTS. It will have a base site on the Space Shuttle

or Space Station, and a remote site at the work-site. For communications, it is to use the Space

Station Data Management System (DMS) which introduces a 0.5 second time delay into the

base-remote round-trip. Should the base be located on the ground, the time delay through the

Tracking and Data Relay Satellite (TDRS) would be up to two seconds. From the point of view

of teleoperation, the two delays fall within the same functional range, with equivalent

implications for requirements for predictive displays, force feedback, and local automation.

Because a true telerobot is a research product, the FTS is planned to function initially as a tele-

operator, and then to evolve, incrementally incorporating enhanced robotic capabilities. The

hooks and scars to enable this evolution are to be provided at the outset.

The telerobot is targeted for Space Station assembly and maintenance, and for satellite

servicing tasks. All of these involve working with man-made objects in Earth orbit. Models of

spacecraft are available, but have proved to contain inaccuracies. For example, a special tool

was designed to grapple the Solar Max satellite, but did not fit because of an obstruction not in

the satellite plans. Model-based autonomous manipulations can be expected to frequently fail.

Actual telerobot operations in space must be coordinated with and are part of an overall space

operations plan. Such plans involve spacecraft resources, crew activities, communication links

to the ground, and ground support personnel and equipment. Spacecraft components are often
sensitive and have constraints on the thermal, contaminant, and radiation environment to

which they may be exposed. These considerations must also be factored into operations plans.

The space environment also places constraints on computing hardware. Specially flight-

qualified equipment must be used. This equipment has much slower processing speed and much

more limited mass storage capacity than are readily available on ground equipment.

2.2 THE JPL TELEROBOT TESTBED

JPL telerobotics research [P1,P2] is divided into two separately funded categories: core research,

and the building of an integrated testbed. Core research is actually a collection of activities

addressing the various component technologies needed for telerobotics.

The JPL Telerobot Testbed is a facility for researching and integrating telerobotic technology,

demonstrating its feasibility, and developing data to support engineering requirements for

flight telerobotic systems [T8].

The research focus of the testbed is on issues which pervade or influence the entire system.

Currently these are the implementation of traded and shared control and the handling of time

delays from one half to two seconds. Shared control refers to the operator controlling, through

teleoperation, some of the degrees-of-freedom (DOF) while the robot simultaneously controls

5



Plannin_ and Reasonin_ in the JPL Telerobot Testbed

others. Traded control refers to switching between pure teleoperation, with the operator at the

hand controllers participating in the servo control loop, and pure autonomous operation, where

the robot performs manipulations autonomously as commanded by a supervising operator or
machine.

Physically, the testbed hosts three six-DOF arms and five video cameras. Two arms are

equipped with force-torque sensors and are used for manipulation under position, force, and

hybrid control. The third arm supports a stereo pair of cameras. Three additional fixed

cameras view the workspace. All five cameras are used both for machine vision and display of

the workspace to the operator. Two force-reflecting hand controllers (FRHC) allow the

operator to feel forces during teleoperation. A variety of displays is provided.

The JPL Telerobot Testbed system design [P3] consists of six subsystems: five, hierarchically

arranged, implement telerobotic technology (figures 1 and 2); a sixth serves as a system health

and performance monitor and will not be discussed further here.

The Operator

O ratorControlStatio I
I

Run-Time Controller

I Manipulator and ControlMechanization I Sensing and Perception ]

Figure 1. The JPL Telerobot Testbed Control Hierarchy, FY89. Line thickness
indicates relative data rates.

The operator sits at the Operator Control Station (OCS), which houses the FRHCs, several

monitors including a stereo display and video overlay, and voice input and output devices.

Implementation of the OCS was contracted out and is scheduled for delivery to the testbed in
FY89.

TIPS is the current implementation of the Task Planning and Reasoning (TPR) subsystem of the

testbed. In FY88, TIPS provided automated task planning, gross motion spatial planning, error

recovery, and an operator interface to planner knowledge bases. In later years, the TPR

subsystem will be expanded to include additional machine reasoning capabilities such as

diagnosis. The operator communicates directly with the TPR subsystem terminal located
within the OCS.

6



Plannin_andReasoning;in theJPLTelerobotTestbed

TheRun-TimeController(RTC) subsystem performs fine motion and grasp planning, plans

compliant motions and the application of force, and maintains a geometric database of objects in

the workspace.

The Manipulator and Control Mechanization (MCM) subsystem implements control laws.

Trajectories may be in either task or robot configuration space. Force and hybrid force-position

control are also supported. MCM also provides built-in macros capable of autonomously

performing local tasks such as tightening a bolt or part mating.

The Sensing and Perception (S&P) subsystem implements machine vision. Customized pipeline

processors are used. The capabilities are tracking the motion of a rotating known object and

verification of the position of a non-moving known object. Both functions determine the position

and orientation of the objects.

The Operator

I
TIPSI

I

Run-Time Controller

I
I I

Manipulator and ControlMechanization i I Sensing and Percepti°n I

_. The JPL Telerobot Testbed Control Hierarchy, FY88.

2.3 PLANNING AND REASONING

Intelligence in the testbed is distributed across the testbed subsystems. Vision processing takes

place wholly within S&P. Robot dynamics issues are handled by MCM. Precise geometric

modeling and monitoring of manipulability are done by RTC. Reasoning on the over-all task is

done by TPR. TPR knowledge and reasoning capability is not a super-set of the capabilities in

other subsystems, but instead complements them.

The goal for the TPR autonomous capability is to accept one or more high-level servicing

instructions from the operator, such as replacement of a module, and to command the RTC to

execute primitive operations which will result in accomplishing the over-all task. The

primitives include both manipulation and sensing commands. Feedback is returned by RTC upon

completion and, in the case of failure, TPR must modify its course of action to overcome the

difficulty.

Just as the operator can, through teleoperation, assist where autonomous MCM and RTC

capabilities fail, the operator must also fill in for shortcomings in S&P and TPR capabilities.

An operator interface to high-level machine reasoning must be provided.

Satellite servicing involves disassembly and re-assembly necessary to access parts. Fasteners

must be detached and reattached. Tools must be employed. Plans must include teleoperation of

7



Plannin_andReasonin_in theJPLTelerobotTestbed

difficult manipulations such as the handling of flexible thermal blankets.Telerobot
capabilitiesto beemployedarealsoa part of servicing plans.

Spatial paths must be found for moving objects and manipulators through the workspace. The

telerobot itself must be located where it can achieve the necessary manipulations.

In general, the management of each specific manipulation or sensing operation is handled by

the subsystem involved. The greatest knowledge of detailed manipulation and sensing

strategies is local to the appropriate subsystem. Success of such subsystem autonomous

capabilities depends upon their being applied in the appropriate task context. Such context

management, and related diagnostic reasoning, must also be done by a higher-level planning
subsystem.

Telerobot activities, as they are a part of space operations, must fit into overall spacecraft
operations plans. Such plans include diverse activities and allocation of limited resources such

as power and communications links.

8



Plannin_andReasonin_in theJPLTelerobotTestbed

3 APPROACH

3.1 TECHNOLOGYOUTLOOK

3.1.1 Stateof theArt
Teleroboticsresearch treads new ground. The JPL Telerobot Testbed is currently the main

facility pushing some of the technologies required for telerobotics and may be expected to
continue in this role.

Robotics still focuses on the automation of repeated processes. The telerobotics objective of

supporting one-time-only robotic activity in one-time-only worlds will continue to be extremely

challenging.

The greatest successes in automation are in controlled worlds -- either the idealized worlds of

machine processes or in controlled real-world environments. Telerobotics objectives place

research goals outside of these more comfortable bounds. Goal-driven systems where desired

predicates are states in the real and messy external world will be forced to rely on sources of

knowledge external to themselves.

Artificial intelligence (AI) theory and application are quite far apart. Practical solutions

involve utilizing assumptions allowed by the specific problem space; performance of general

purpose reasoning paradigms is generally slow. As many problems are NP-complete, hardware

and parallel architectures cannot be expected to have a major impact on basic technology.

Current interest may, however, spark useful parallel formulations.

3.1.2 State of the Testbed

Limitations in sensing will force use of a model-driven approach to autonomy and dependence

upon the operator for observation. Currently, only force-torque sensors, joint encoders, and

machine vision cameras are present. These are used for determination of the position of known

modeled objects, one at a time. Visual servoing has been demonstrated stand-alone, and may be

integrated into the system in the near future. Addition of tactile sensing, laser scanning,

structured light, and proximity sensing have been suggested. These could support building

three-dimensional maps of unknown environments and active collision avoidance.

The testbed computing architecture is beginning to evolve and is expected to come to support a

greater number of concurrent activities directed in a less constrained control structure. Currently,

the testbed subsystems perform much like subroutines in that they are called by other

subsystems higher in the strict tree hierarchy. An architecture evolution will be necessary to

provide greater concurrency and overall system robustness, and can be expected to take place

over the course of several years. Already, early system designs are being revised: there has
been a move from microVAX's to Sun Workstations and a move of Ethernet Network Interface

Package (NIP) interfaces to VME busses.

Development will always be bottom-up: MCM capabilities will become mature before RTC

capabilities, which will in turn mature before TPR capabilities.

As the testbed is a large facility requiring significant resources, high-risk research will not be

performed on it. The level of robotics technology incorporated in the testbed will always be



Plannil_ and Reasonin_ in the JPL Telerobot Testbed

behind the state of the art -- except in the area of specifically telerobotic technologies. These

include traded and shared control, and one-time-only robotics.

The integrated telerobot capabilities will evolve (figure 3) to address more and more of an

overall problem, beginning earlier and earlier in the life-cycle of the problem. At first, only

the required manipulations will be performed; later, machine reasoning will be able to figure

out what is wrong from symptoms of off-nominal behavior.

SOMETHING

IS WRONG

WHAT IS
WRONG?

WHAT NEEDS

TO BE DONE?

HOW TO

DO IT •

m

O

-M

..o
O

V

Unknown Environments

Uncertainty

Known Environments

7 Precise Knowledge

/X
Z _. FUTURE

NOW

Figure 3. Issues and when they are addressed.

3.2 STRATEGY

3.2.1 Applications Research

As an applications research group, SARG tries to attack real research issues, focussing on

practical results in real-world domains.

Our primary technology goals for the planner were:

• Speed
• Error Recovery

• Spatial Planning

• Operator Interface

All of these are open research issues. Previous planners like SARG's own DEVISER [G6] which

use logical chaining and search to find a solution become unusably slow when applied to

realistically complex problems. Robotic interaction with an external environment requires the

ability to recover from errors if any degree of usefulness is to be achieved. Spatial planning is

an open NP-complete problem for real-world robotic manipulators applied to non-repetitive

tasks. Access to and utiliza_on of external knowledge from an operator is necessary to overcome

the shortcomings in planning & reasoning and sensing & perception technology in the near term.

In order to be practical, whole systems or subsystems must be developed. One can neither wait

for technology nor assume one's yet undemonstrated research product, currently in development,

will work. Therefore, interim stop-gap components must be added to complete the necessary

functionality. Enhancements are made whenever technology is ripe.

10



Plannin_andReasonin_in theJPLTelerobotTestbed

3.2.2 RapidPrototyping

In order to be sure to always work on the right problems, properly posed, we try to build a

system and run it on a real problem as soon as possible. The importance of this approach cannot

be stressed enough.

One example of a benefit from this approach is the identification of the importance of the role

of the operator as a knowledge source for automated operations. Another was the allocation of

gross motion and fine motion spatial planning responsibilities between RTC and TPR (see section

4.1), which was determined during the process of developing and driving a graphics simulation

of the satellite servicing scenario.

3.2.3 Target Functional Design

In the fall of 1987, a very rough functional design document was written. It included task

domain description, world modeling suggestions, description of operator interface capabilities,

and it defined target task planner robustness. Many of the capabilities described became part of

the system described in this publication, some did not, and some features and capabilities

beyond those mentioned were implemented.

The overall strategy for the operator interface was to first provide for examining and updating

any portion of the knowledge within the planner through primitive transactions -- a kind of

knowledge debugging capability. Later, cognitive interfaces would be developed from these

primitives.

The task planner was to handle satellite disassembly-assembly operations and accept multiple

goals along the same or unrelated assembly paths. It was to handle multiple tools, loss of tools,

and manipulation failures. One concept, retained from experience with a prior prototype

planner, was to plan task-space activity and robot activity independently.

It is important that this was an internal document. Internal activity allowed the freedom to do

creative work, while providing direction as needed.

3.2.4 Applicable Concepts and Suggestions

Since teleoperation is a world state wild-card, develop an interface to the world model which

would allow the operator to teleoperate the model into agreement with the task-space.

A simulation is an ideal world. One can therefore always develop a planner which will drive a

simulator as desired. On the other hand, the real world is messy and unpredictable. In order to

test systems which will eventually interact with the real world, the testing loop must also

pass through the external world. This can be accomplished by putting an operator in the

feedback loop during testing.

Machine representations and reasoning algorithms should be compatible with the way the

operator naturally thinks. If not, the operator will be unable to assist the machine, even when

the machine has almost found the solution to a problem. Machine reasoning should accept

constraints from the operator without having to understand them.

To make it easier to engage autonomous operations, perform teleoperation as part of a plan

known to the machine. This provides context which makes it much easier for the operator to

11



Plannin_andReasonin_in theJPLTelerobotTestbed

tell the machinewhat happenedduring teleoperation.Step completion plus off-nominal
results would suffice.

Expect reasoning engines to fail, to make mistakes and wrong choices from time to time. Such

errors, as they are inevitable, cannot be allowed to force the remainder of the mission to be

completed via teleoperation.

The best knowledge of robotics will be in the MCM and RTC subsystems. These subsystems will

locally attempt recovery before they return with a manipulation failure. The assistance TPR

will provide will be to adjust the context in which MCM and RTC make their attempts.

Use least-commitment planning strategies and try to minimize backtracking. Otherwise
planning speed will be slow and error recovery will be difficult.

To the extent possible, technology developed should not be tied to specific telerobot hardware.

It should, however, be proven on current testbed configurations.

3.3 PRIORITIES

For differing reasons, the following parts of the overall problem were left for later years:

• Positioning of the Robot Relative to the Workspace

• Handling of Time-Related Constraints

• Integration into the Overall Space Operations Plans

• Reasoning About Force

• Subdivision of Single Operations

• Reasoning From First Principles

• Intentional Sensing

• Diagnosis

Top priority for research was development of a task planner capable of planning and executing

servicing tasks involving disassembly and re-assembly, and incorporating error recovery.

Execution primitives consisted of a set of commands concurrently defined and developed by RTC.

Useable gross motion spatial planning algorithms did not exist. And they are needed for all

robotic manipulation. As this is a necessary and missing technology, and as this is an open

research issue, it was given high priority for core research work.

Recognition of limitations in sensing available in the testbed, the likelihood of failures in

execution due to unmodeled complexity in the task-space, and the need to support traded control

placed development of an operator interface as a necessary component of the initial system.

As RTC development was concurrent with development of other subsystems, a simulator was

needed to test the task planner. Note that unlike traditional knowledge-based system
development, the knowledge to be modeled did not exist beforehand.

In keeping with the strategy of building a complete system as soon as possible, considerable

effort was placed on subsystem design and integration. As the gross motion spatial planner was

a high-risk development, a simple simulator of it was developed. Aside from the gross motion

spatial planner, all of the components mentioned were considered necessary to a minimal

functional capability. Funding constraints would limit the robustness and sophistication of the

operator interface and the task planner; augmented funding would allow some of the postponed
issues to be addressed.

12



Plannin_ and Reasonin_ in the JPL Telerobot Testbed

4

4.1

THE TELEROBOT INTERACTIVE PLANNING SYSTEM

INTERFACES AND ROLE WITHIN THE SYSTEM

4.1.1 External Interfaces

The TPR subsystem has external interfaces with the operator, the OCS subsystem and the RTC

subsystem.

The FY88 TIPS implementation included a subset of the operator interfaces planned for the

system. Outputs to the operator include: a wire-frame perspective graphics display of all

objects in the workspace; a display of the object-position-inheritance tree; graphics displays of

the joint angles, joint stops, and singularities of all three manipulators; and a trace of the

messages passed between the task planner and the spatial planner. Controls provided include:

a means for updating the position and orientation of objects, updating manipulator joint angles,

and adjusting the point of view of real and virtual cameras; the ability to make objects visible

and invisible; commands to initiate the satellite servicing scenario; and commands to select

RTC simulation or execution.

OCS interfaces will not be implemented until FY89 and are not part of the current version of

TIPS.

The RTC interface consists of commands in RTC's Thread language [P4]. The only Thread

commands issued by TIPS at execution time were simple manipulator move commands. Thread

was also used for the off-line portion of spatial planner processing. (Note that Thread

definition and development were proceeding concurrently.)

Gross-Motion
Spatial Planning

Fine-Motion

Spatial Planning

Figure 4. Allocation of spatial planning responsibilities.

A major portion of the RTC-TPR functional interface is the division of spatial planning

responsibilities (figure 4). Gross motion spatial planning is performed by TPR and fine motion

spatial planning is performed by RTC. The gross motion spatial planner must find a path for

the manipulator and carried object through the workspace without contacting any other object.

Great precision is not necessary as long as the manipulator is far enough away from obstacles.

On the other hand, the fine motion spatial planner is concerned with precise interactions

between objects: controlled collisions, part mating and de-mating, and compliant manipulations.

13



Plannin_andReasonin_intheJPLTelerobotTestbed

Onequalitativedistinctionbetweenthespatialplanningdomainsis thatfinemotionplanning
isconcernedwith planningend-effectormotionwhilegrossmotionplanningisconcernedwith
whole-armmotion.

4.1.2 TIPSInternalOrganization
TIPS[T5,T4]consistsof threemajor software modules (figure 5)" the Remote Mission Specialist

(RMS) task-planner [T1,T7,T6], the Cluttered Environment Navigator for the Telerobot

(CENTER) gross-motion spatial planner IT1], and the Audrey simulator IT2].

The Operator

TIPS

RMS

Task Planner

Audrey

Graphics Interface
Kinematic Simulator

Knowledge Coordinator

CENTER

Gross-Motion

Spatial Planner

RTC

Fi_F_F__re5. TIPS major modules.

RMS works with semantic knowledge of the robot and workspace. CENTER works with

geometric knowledge of the robot and workspace. Audrey maintains a geometric model of the

workspace and kinematic models of the manipulators, and it coordinates messages passing

between the operator, RMS, CENTER, and RTC. When RMS issues a command for free motion of

an arm, it is expressed as something like: "move the left arm end-effector to the approach point

for the screwdriver." Audrey determines the set of manipulator configurations currently

implied by the position of the screwdriver in the RMS request, then passes these alternative

goals to CENTER as a path-find request. Audrey receives the path returned from CENTER and

formats it into RTC command syntax, or simulates the motion itself (figure 6).

TIPS modules differ not only in problems addressed and knowledge domain, but also in general

software construction: RMS is a rule-based expert system written in the Automated Reasoning

Tool (ART) language; CENTER is a collection of functions written in Ada and Common LISP; and

Audrey makes heavy use of object-oriented Symbolics Flavors in addition to functions in

Common LISP. This is the reason for the difference in the structure of the descriptions presented

below. It is intended that these descriptions provide enough detail to serve as a guide to one

reading the software source code.

14



Plannin_andReason/n_in theJPLTelerobotTestbed

4.1.3 DemonstrationTaskScenario
TheTelerobotTestbedprojecthadoriginallydevelopeda targetservicingtaskscenariobased
upontheSolarMaximumRepairMission.Thisscenariowasaugmentedwithadditionalparts
anddisassemblypathstoprovidearicherproblemspacefor the TIPS task planner.

The satellite model contains a Main Electronics Box (MEB), attached with four screws to the

satellite chassis. Two electrical connectors also connect the MEB to the satellite. A bracket,

held in by two screws, inhibits removal of the MEB. All this is behind a cover which is also

attached by four screws to the satellite. Additional parts and replaceable units were also

defined to ensure robustness of successful task planning algorithms, but were not present in the

final system as demonstrated.

RMS

Plan

Next

Future Action
Process Audrey

Resu] Coordinate

and Diagnose Geometry

Perform Find

Action with Gross-Motion

RTC Robot P a t h CENTER

Simulate

Action

Audrey

Fi__ure 6. The TIPS planning and control message loop. Opportunities for

operator interaction exist between each process in the message loop.

4.2 THE TASK PLANNER

4.2.1 Planner Architecture

RMS is made up of two stages of plan generation. Stage One is responsible for converting high-

level directives into a series of commands which tell what specifically needs to be done in the

task-space. This series of commands is then used as input to the second major stage of the

planner, where the commands are converted into primitives which are executable by the Run-

Time Controller subsystem. While Stage One tells what to do in the task-space, Stage Two

decides how to do the operations by examining each step in the plan and adding knowledge of

15



Plannin_andReasonin_in theJPLTelerobotTestbed
the robot, its resources, and the current state of the world onto the structure to derive the final

plan output.

The reasoning behind this organization is that a high-level controller should provide some

type of intelligent or resilient approach to error recovery while operating remotely in the task

environment. For a space based robotic operation, we know the general set of things which need

to be done to accomplish a given task. However, since the task-space cannot be tweaked to

factory tolerances (a few millimeters make a great deal of difference in robotic terms), the

actual state of the task-space is unknown until the robotic vehicle begins its operations. This

design generates an overall blueprint, and then as the robot craft is in the process of servicing,

expands the low level details as it goes, dynamically.

This first working version of RMS makes several simplifying assumptions. First, we assumed

that RTC commands were atomic in nature. That means that, for instance, an open the door

command would be one command provided by RTC, not a collection of moves, grasps, and pivots.

We assumed that all servicing operations can be done by a single arm, and so support no dual

arm manipulations currently. Finally, we assumed that there are no conditional plan elements

in the output of Stage One. This means the partially ordered graph created by Stage One is

made up only of AND branches, and every node in the graph must be achieved in order for the

servicing operation to be complete.

4.2.1.1 Stage One

The planning paradigm used for Stage One is a derivative of the Networks Of Action

Hierarchies (NOAH) system [G5]. A goal is defined to be an action which defines some state.

Goals are given to Stage One in the form of action-units, frames containing an action and

associated parameters, such as the object to which the action is applied. The output of Stage

one is a network of action-units, where each action is at a low enough level of abstraction to be

understood by Stage Two.

The plan generation process starts with an initial goal (or net of goals) which describe the

entire operation to be performed. Each net node whose action is not yet understandable by Stage

Two is macro-expanded into a lower level net of actions, defined in the planner's knowledge

base. As the number of levels increases, the overall level of abstraction of the plan decreases,

until finally all the nodes in the network are understandable by Stage Two. This structure can

be generated very quickly, and allows input goals to be specified at varying levels of
abstraction.

Consistency of plans, as expanded from one level to the next, is maintained by specialized

pieces of code called critics. Critics examine a newly generated level, looking for

inconsistencies. When one is found, a critic dealing with that type of inconsistency takes action

by reordering the plan network, eliminating repeated nodes, or removing nodes whose action

has already been taken in the plan space.

Though we have made some customizations, Stage One generally follows the NOAH

paradigm. This paradigm was selected because of the speed of generation of plans it provides

and the flexibility in the types of plans it can build. It is important to note that any number of

paradigms could have been chosen, without impact to the overall planner, speaking from an

architectural standpoint. Stage one is not restricted to using NOAH, but NOAH is an excellent

tool for the types of problem spaces on which this research is focused.

16



Plannin_andReasoningin theJPLTelerobotTestbed

StageOne dealsonly with the task-space. No robotic information is included. The level of

command it outputs is roughly equivalent to a set of assembly instructions, and so its output

could also be used to guide a teleoperator with a remote robot vehicle, or to guide a manned

Extravehicular Activity (EVA) operation. Stage One was designed to be a static, non-

interactive process for producing overall work plans for review by a teleoperator. It may be

noted, however, that NOAH provides convenient break-points in the planning process, where a

user could guide Stage One, should such guidance be needed.

4.2.1.2 Stage Two

The input to Stage Two is the bottom-level network built by Stage One, or a similar net

supplied by the user. The output of Stage Two is in the form of commands which can be executed

by the RTC subsystem. While Stage One can be thought of as macro-expanding one level of a

plan to another, less abstract level, Stage Two is actually a net-walker, starting at the net

beginning and moving through it, commanding the robot as it goes.

The method by which this command generation is done is essentially a nested looping structure,

where the data items flowing through this structure are individual action-units, described

above. Net nodes that have not been acted out are marked. From those marked, one is chosen to

be worked on by a set of scheduling heuristics which make the best choice of next node and

designate the robot resources to be assigned to act on it.

Once an action-unit is chosen for expansion and the necessary robot resources have been selected

for it, the action-unit flows through a set of rules which determine what commands need to be

sent to carry out the specified action. This set of rules is made up of two types, expanders and

completers. Expander rules look at the state of the world and select the appropriate command

to be sent. Once selected, the command is dispatched to be executed. On execution, a status

message, which is caught by a completer rule, is returned to the planner. A completer is a

specialized piece of code which accepts an incoming message and makes appropriate updates to

the knowledge base. Notice that no knowledge base updating is done by the expanders. Updates

are made strictly through the completers, based on feedback information. Expanders and

completers work in tandem until the intent of the action-unit has been achieved. The entire

process then repeats for the remainder of the unachieved action-units.

The expander-completer mechanism allows for on-the-fly plan adaptation. The same structure

that accepts a positive response and updates for the next command can accept failure messages

and update so the recovery from these failures is done as a part of the normal planning process.

Stage Two, using the expander-completer mechanism, provides dynamic, reactive generation of

commands, as opposed to the static generation of Stage One. Stage Two does not generate the

entire sequence before it begins execution. Rather it uses the assembly instructions provided by

Stage One and does a run-time expansion of those instructions, a step at a time, based on the

feedback of the world in which it works. Stage Two deals with robot resources and figures out

how to do the what to do Stage One has directed. Stage Two is also extremely fast, and is able

to generate commands in real-time, actually faster than the robot can execute them.

4.2.2 Knowledge Base Description

The knowledge base used for RMS provides semantic descriptions of the objects in the world.

These objects are derived from a set of high-level types, which cover generic descriptions for

17



l'lannin_ and Reasoning in the JPL Telerobot Testbed

the parts of the task-space, the robot arms and any tools used. A list of these high-level types

is provided below.

Type:

Feature-of:

Contains:

Status:

slot

<parent-object>

<corresponding replaceable-unit objects>,

nothing

filled, empty

Type:

Feature-of:

Status:

grasping-appendage

<parent-object>

gripped, ungripped

Type:

Permanently-attached-to:

Semantic-location:

Status:

moveable-fixed-unit

<parent-object>

closed-position, opened-position

open, closed

Type:

Seated-in:

Fastened-by:

Stowed-in:

Carried-by:

Status:

replaceable-unit

<corresponding SLOT object>

<fasteners>

toolbox

one-arm, two-arms

seated-and-fastened,

seated-and-unfastened, stowed, carried

Type:

Permanently-attached-to:

Status:

fastener

<parent-object>

engaged, disengaged

Type:

Stowed-in:

Carried-by:

Status:

tool

toolbox

<one-arm, two-arms>

stowed, held

Type:

Semantic-location:

Holds:

Status:

arm

<arm-position>

<some object>, nothing

engaged, unengaged

Type:

Seated-in:

Fastened-by:

Stowed-in:

Carried-by:

Status:

From these types, subtypes are defined,

A partial list is given below.

moveable-replaceable-unit

<corresponding SLOT object>

<fasteners>

toolbox

one-arm, two-arms

seated-and-engaged, seated-and-disengaged,

stowed, carried

which cover specific kinds of objects in the task-space.

18



Planni_ andReasonin_in theJPLTelerobotTestbed

Subtype:

Type:

Permanently-attached-to:

Semantic-location:

Status:

Door

moveable-fixed-unit

satellite-chassis

closed-position, opened-position

open, closed

Subtype:

Type:

Seated-in:

Fastened-by:

Stowed-in:

Carried-by:

Status:

MEB

replaceable-unit

MEB-slot

<MEB-screws>

toolbox

one-arm

seated-and-fastened,

seated-and-unfastened, stowed, carried

Subtype: wrench

Type: tool

Stowed-in: toolbox

Carried-by: one-arm

Status: stowed, held

Subtype: arm

Type: arm

Semantic-location: <arm-position>

Holds: <some object>, nothing

Status: engaged, unengaged

Subtype: MEB-screw

Type: fastener

Permanently-attached-to: MEB

Status: engaged, disengaged

Finally, &om these subtypes, instances are created, which are the specific data elements

manipulated by RMS. In the example below, MEB-1 is an instance of MEB, which is a subtype of

replaceable-unit.

(defschema MEB-I

(type replaceable-unit)

(instance-of MEB)

(Seated-in MEB-slot-l)

(Fastened-by MEB-screw-I MEB-screw-2 MEB-screw-3 MEB-screw-4)

(Stowed-in MEB-tool-box-slot)

(Carried-by one-arm)

(status seated-and-fastened))

The reason _r representing objects in this manner is that high-level operators can be defined

which are capa_e of handling not only multiple instances of objects, but entire collections of

related objects. These _pe definitions provided the basis _r defining the actions des_ibed in

the action-unit data structure and are re_renced in both Stage One and Stage Two of RMS.

19



Plannin_ and Reasoning; in the yl'L Telerobot Testbed

4.2.3 Stage One Description

The job of Stage One is to take a task described as an action-unit and re-describe it in terms of a

collection of less abstract action-units. In the example below, an action-unit to swap units of

type replaceable-unit is expanded into four equivalent action-units which describe the task at

a less abstract level. Notice that in these less abstract descriptions, the associated action is one

which is still defined to operate on the replaceable-unit type.

(defrule expand-swap-replaceable-units

(active-rule-set level-l)

(current-expansion-level ?i)

(schema ?action-unit

(expansion-level ?i)

(action swap-replaceable-units)

(object ?object)

(toolbox-replacement ?replacement))

=>

bind ?new-i (incf ?i))

bind ?name-i (getname))

bind ?name-2 (getname))

bind ?name-3 (getname))

bind ?name-4 (getname))

assert

(schema ?name-I

(action extricate-replaceable-unit)

(object ?object)

(expansion-of ?action-unit)

(expansion-level ?new-l))

(schema ?name-2

(action store-in-toolbox)

(object ?object)

(expansion-of ?action-unit)

(expansion-level ?new-l)

(comes-after ?name-l))

(schema ?name-3

(action get-from-toolbox)

(object ?replacement)

(expansion-of ?action-unit)

(expansion-level ?new-l)

(comes-after ?name-2))

(schema ?name-4

(action captivate-replaceable-unit)

(object ?replacement)

(expansion-of ?action-unit)

(expansion-level ?new-l)

(comes-after ?name-3))))

2O



Planning; and Reasoning; in the JPL Telerobot Testbed

This example is typical of the primary set of rules which operate in Stage One. To aid this

process of redefining high-level actions into lower level ones, Stage One also has a set of

supporting rules which describe constraints, to insure correct expansion of high-level action-

units. For example, the high-level action to get obstructions out of the way of a particular

component is supported by a rule which tells it that in this task-space, under certain conditions,

a certain door is an obstruction for the fasteners of the component. It is through this set of

constraint rules that interaction of task-space objects is modeled.

(defrule door-obst ruct s-MEB-sc rews

(goal (obstructs ?door ?MEB-screw ?level))

(active-rule-set level-i )

(current-expansion-level ?level )

(schema ?MEB-screw

(instance-of MEB-sc rew)

(permanently-attached-to ?MEB) )

(schema ?MEB

(instance-of MEB)

(seated-in MEB-slot-l)

(status seated))

(schema ?door

(instance-of door)

(status closed))

=>

(assert (obstructs ?door ?MEB-screw ?level)))

The reason we use complicated-looking rules to describe what objects obstruct others (rather

than a look-up table, etc.) is that often whether or not one part obstructs another depends on

certain state parameters in the world. In the example above, the door only obstructs the

fasteners if it is closed. Should the door be open already, it is not an obstruction and does not

need to be gotten out of the way.

Finally, to maintain plan consistency there are certain rules which are called critics, which

look for flaws in the plan and repair them. For the task-space described in this publication, we

only needed to implement one critic, which looked for duplicate action-units being generated

and simply eliminated any extras. This duplication occurs when objects are being marked as

obstructions. Often one object is an obstruction to multiple items of interest, resulting in the same

operation being commanded more than once. When this situation occurs, the eliminate-

redundant-action-units critic examines the plan and cuts out any duplications.

4.2.4 Stage Two Description

Stage Two takes as input the partially ordered set of action-units generated by Stage One (or

input by an operator) and produces commands which can be executed by the RTC. It generates

the command dynamically, in an opportunistic fashion, in an effort to provide some kind of

localized error recovery. The flow of control in Stage Two conceptually follows the pseudo-code

given below, with action-units as the data items flowing through this control path. (This

control path is given only to aid in visualizing the control flow. The actual code is written in a

rule based language, and does not resemble this.)

21



Plannin_ and Reasonin_ in the JPL Telerobot Testbed

while there is an unfinished action-unit do

mark current expansion candidates;

select one with scheduling heuristics;

repeat

select and fire expander;

dispatch command;

receive feedback message;

select and fire completer;

until action-unit is accomplished or in need of re-scheduling

en dwhi I e

Because we are using a least-commitment strategy to order the tasks at Stage One, at execution

time there is need to choose which of a number of logically parallel tasks to work on. To do this,

we incorporated a set of scheduling heuristics, which look at all available action-units to be

worked on and choose one, based on programmer-defined criteria. An example scheduling

heuristic follows, together with a list of those incorporated in the demo version of RMS.

(defrule use-tool-being-held-heuristic

(declare (salience -iii))

(active-rule-set level-2)

(schema ?action-unit

(exec-status ELIGIBLE)

(action ?action)

(object ?object))

(schema ?object

(instance-of ?object-class))

(schema ?arm

(type arm)

(holds ?tool))

(schema ?tool

(instance-of ?tool-class))

(?action ?skill ?object-class ?tool-class)

(approach-point ?skill ?object ?arm-position ?other-position)

(NOT (schema ?action-unit

(forbidden-arm ?arm) ))

=>

(modi fy

(schema ?action-unit

(exec-status READYED)

(arm ?arm)

(approach ?arm-position)

(de-approach ?other-position)

(tool ?tool)

(skill ?skill))))

complete-object-in-transit-operation-heuristic

use-stowed-tool-if-forbidden-arm-holds-duplicate-heuristic

pick-uncluttered-arm-when-no-tool-required-heuristic

22



Plannin_ and Reasonin_ in the JPL Telerobot Testbed

pick-unclut tered-arm-when-tool-required-heuristic

pick-at-random-when-tool-required-heuristic

pick-at-random-when-no-tool-required-heuristic

To get a better idea of what an expander and a completer are, think of commands represented in

terms of preconditions and post-conditions, as is done in means-end analysis. An expander (see

example below) is made up of the corresponding preconditions part, which describes the

physical world semantically. It also has an intent portion which is described by the action-unit

with which it is associated. The action-unit provides direction, so the expander will know

when to come active. This eliminates the need for search and backtracking, as an expander only

becomes active when the class of action-units to which it applies is currently active, and when

the conditions of the world are correct.

(defrule ATTACH-THREADED-FASTENER-expander

(active-rule-set level-2)

(schema ?action-unit

(exec-status READYED)

(action ATTACH-THREADED-FASTENER)

(object ?object)

(tool ?tool)

(arm ?arm)

(skill ?skill)

(approach ?approach))

(schema ?tool

(status held))

(schema ?arm

(holds ?tool)

-_>

;Intention Part

;Fire only when you are

;expanding an attach-

;threaded-fastener on a

;given object...

;World State Part

;..AND when the world

;state parameters are correct

;for its execution.

(semantic-location ?approach))

(assert (command-ready ATTACH-THREADED-FASTENER

?skill ?object with ?tool with ?arm)))

The left-hand side of a completer is composed of a message pattern which is returned by the

robot, indicating either success or _ilure, and the reason _r the _ilure. The right-hand side is

the set of updates made to the knowledge base, and corresponds to the post_onditions part of a

means_nds analysis rule. Upda_s are also made to the action-units at this time.

(defrule ATTACH-THREADED-FASTENER-success-completer

"Command was executed successfully."

(active-rule-set level-2)

(schema ?action-unit

(exec-status READYED)

(de-approach ?de-approach))

?r <- (command-executed ATTACH-THREADED-FASTENER ;message portion

?skill ?object with ?tool with ?arm)

=>

(retract ?r)

(modify

23



?rl <-

?r2 <-

?r3 <-

?r4 <-

?r5 <-

?r6 <-

=>

Plannin_ and Reasonin_ in _e JPL Te_robot Tested

(schema ?arm

(semantic-location ?de-approach)) ;update portion

(schema ?action-unit

(exec-status COMPLETED))))

In this example, the completer looks for a command-executed message and makes the

appropriate updates. In the example which _llows, the completer looks _r a command-

_iled_as_l message which means the arm was _nematically unable to per_rm the desired

operation, so mark that action-umt as unable to be solved with the spedfic arm, and try again.

(defrule ATTACH-THREADED-FASTENER-failure-I-completer

"Failure due to case I, a fatal arm kinematic violation."

(active-rule-set level-2)

?r <- (command-failed-case-i ATTACH-THREADED-FASTENER ?skill ?object

with ?tool with ?arm)

(schema ?action-unit

(action ATTACH-THREADED-FASTENER)

(object ?object)

(exec-status READYED)

(arm ?arm)

(skill ?skill)

(approach ?approach)

(de-approach ?de-approach)

(tool ?tool))

(retract ?r ?rl ?r2 ?r3 ?r4 ?r5 ?r6)

(modify

(schema ?action-unit

(forbidden-arm ?arm))))

In the event of a failure, a corresponding failure completer makes a different update, which in

effect means that the planner is able to plan as it goes, checking neither unnecessary

hypotheses for which option to perform at a given time nor varied resultant states of execution.

It makes its decisions as it goes, opportunistically, following the road-map produced by Stage

One and correcting for localized failures along the way. A list of expanders and completers

implemented in the demonstration version of RMS is given below.

DETACH-THREADE D-FASTENER-expander

DETACH-THREADED-FASTENER-completer

OPEN-MOVEABLE-FIXED-UNIT-expander

OPEN-MOVEABLE-FIXED-UNIT-completer

CLOSE-MOVEABLE-FIXED-UNIT-expander

CLOSE-MOVEABLE-FIXED-UNIT-completer

INSTALL-REPLACEABLE-UNIT-expander

INSTALL-REPLACEABLE-UNIT-completer

REMOVE-REPLACEABLE-UNIT-expander

REMOVE-REPLACEABLE-UNIT-completer

GET-FROM-TOOLBOX-expander

24



Plannin_ and Reasonin_ in the JPL Telerobot Testbed

GET-FROM-TOOLBOX-completer

STORE-IN-TOOLBOX-expander

STORE-IN-TOOLBOX-completer

MOVE-MANIPULATOR-to-position-for-skill-when-tool-required-expander

MOVE-MANIPULATOR-completer

MOVE-MANIPULATOR-to-position-for-skill-when-tool-not-required-expander

MOVE-MANIPULATOR-to-position-for-tool-acquisition-expander

GET-TOOL-expander

GET-TOOL-completer

MOVE-MANIPULATOR-to-position-for-tool-deacquisition-expander

REPLACE-TOOL-expander

MOVE-MANIPULATOR-for-tool-deacquisition-for-opposite-arm-expander

REPLACE-TOOL-for-u se-by-opposite-arm-expander

REPLACE-TOOL-completer

MOVE-MANIPULATOR-to-unobstruct-the-workspace-expander

MOVE-MANlPULATOR-without-tool-failed-completer

MOVE-MANIPULATOR-with-tool-failed-completer

OPEN-MOVEABLE-FIXED-UNIT-failure-completer

CLOSE-MOVEABLE-FIXED-UNIT-failure-completer

DETACH-THREADED-FASTENER-failure-completer

INSTALL-REPLACEABLE-UNIT-failure-completer

REMOVE -REPLACE ABLE-UNIT-fail ure-completer

Notice that there is more than one expander for the MOVE command. The reason for this is

that there are different intents as to why the arm is moved somewhere, and by making these

intents specific, there is not a need to go through some kind of a backtracking mechanism as the

plans are developed. You know what you want to do, and that intelligence is represented in the

various expanders.

Stage Two uses two tables to help it form the details of the commands it sends. The first is the

action information table, the format of which is laid out below.

(deffacts action-relevant-information-table

; (<ACTION>, <RTC-SKILL>, <OBJECT-SUBTYPE>, <TOOL-CLASS>)

(attach-threaded-fastener, SCREW, bracket-screw, screwdriver-A)

(attach-threaded-fastener, BOLT-l, MEB-screw, wrench-B)

(attach-threaded-fastener, BOLT-l, door-latch-screw, wrench-A)

(attach-threaded-fastener, BOLT-2, bracket-screw, wrench-C))

The table is composed of entries, each having a parent class (action) and the object subtype to

which it is applied. Also included are a corresponding command name for an RTC command

which can be used for this purpose and the class of tool to be used in doing the operation. Notice

different skill-tool combinations can be used on the same object subtype. This entry information

is selected when the scheduling heuristics choose an action-unit, and the choice is added to the

action-unit at that time.

The second table used by Stage Two holds semantic descriptions of points in space and is used to

direct the arms to specific locations. A portion of the table is included below.

25



Plannin_ and Reasonin_ in the JPL Telerobot Testbed

(deffacts spatial-lookup-table

(approach-point BOLT-I MEB-screw-I

upper-le ft-MEB-screw-approach upper-le ft-MEB-screw-approach)

(approach-point BOLT-I MEB-screw-2

upper-right-MEB-screw-approach upper-right-MEB-sc rew-approach)

(approach-point BOLT-I MEB-screw-3

lower-le ft-MEB-screw-approach 1 ower-le ft-MEB-screw-approach)

(approach-point BOLT-I MEB-screw-4

lower-right-MEB-screw-approach lower-right-MEB-sc rew-approach)

(approach-point BOLT-I MEB-screw-ll

upper-le ft-MEB-screw-approach upper-le ft-MEB-sc rew-approach)

°.° )

For each skill and each object to which it can be applied, there is an entry in this table holding

the associated semantic-location of where to move the arm in order to begin the operation, and

where the arm will be left when it is completed. When commands are passed to the other

components of TIPS (CENTER and Audrey), the semantic information is translated into

physical positions and joint-angle information. The task planner is not concerned with numeric

values, only the semantic meaning associated with those values.

4.2.5 Example Execution

The example that follows is based on elements of the recent Solar Max satellite repair

operation, undertaken by the crew of Shuttle Flight STS-11. In this scenario, an electrical

component called the MEB has been diagnosed as being faulty. The MEB is fastened by four

screws and further supported with a mounting bracket, which is fastened with two screws. Two

cable connectors plug into the MEB, and the entire assembly is behind a door.

A high-level directive is given to RMS to replace the faulty component. Stage One expanded

this directive into a plan of approximately 26 steps, involving disassembly of the satellite, the

repair operation, and re-assembly. The repair plan is represented as a semantic network of

action-units and is input to Stage Two from Stage One for execution. The following commands

are an excerpt from the overall satellite repair sequence.

The action-unit below has been selected for expansion by the USE-TOOL-BEING-HELD

heuristic, and has had appropriate robot information instantiated.

(defschema action-unit-87

(exec-status readyed)

(action attach-threaded-fastener)

(object BRACKET-SCREW-2 )

(skill BOLT-2 )

(tool WRENCH-C-l)

(arm RIGHT-ARM)

(approach RI GHT-BRACKET-SCREW-APPROACH)

(expansion-level 5)

(comes-before action-unit-91 )

(comes-before action-unit-92)

(comes-after action-unit-85))

26



Plannin_ and Reasonin_ in the JPL Telerobot Testbed

The intent of this action-unit is to tighten a screw with the arm and tool specified. The robot

has two arms, and one wrench of the type needed for this operation. The right arm holds the

specified tool and the left arm holds a wrench of a different size. The following dialog is from

a run of the planner with the kinematic simulator.

182 I From RMS

Move RIGHT-ARM along path:

(MEB-BASEBOARD-APPROACH RIGHT-BRACKET-SCREW-APPROACH)

Here a MOVE-MANIPULATOR expander commands the right arm to move to the approach

point for the screw. The semantic names of the path elements are represented as a position and

an orientation in task-space.

183 I From SIMULATOR

Failure Completer Issued to RMS

On simulating the command, the arm is discovered to be unable to reach the desired end-

effector position. This information is received by a failure-completer, and the following actions

take place. The action-unit which was made active, action-unit-87, is now stripped of the

robot-specific information with which it was instantiated, making it the equivalent of all

remaining action-units which have not been achieved. A slot which prohibits the use of the

right arm is added to the action-unit, to prevent its being tried in this manner again. Since no

action-unit is being executed, another is chosen from those available. Action-unit-87 is again

selected, this time by the PICK-LFNCLUTTERED-ARM-WHEN-TOOL-REQUIRED heuristic,

and instantiated as follows. Though the same action-unit was chosen twice in a row, the

planner treats it as a new object, and issues the following commands.

184 [ From RMS

Move RIGHT-ARM along path :

(MEB-BASEBOARD-APPROACH HOME-RIGHT-ARM TOOLBOX-INTERPOSITION

WRENCH- C- 1-TOOLBOX-APPROACH)

A MOVE-MANIPULATOR expander commands the right arm to move to the toolbox. A success

message was issued, and a success-completer made the proper updates to the knowledge base,

specifically that the arm is in a different location (success completers are not printed in this

listing). As the overall task of the action-unit has not been achieved, the expanders examine

the state of the world again to prescribe the next command. This process is repeated for each

command in the remainder of this sequence.

185 I From RMS

Put WRENCH-C-I with RIGHT-ARM

186 [ From RMS

Move RIGHT-ARM along path:

(TOOLBOX-INTERPOSITION HOME-RIGHT-ARM)

The right arm, which holds the only available tool for this action, stores the tool and moves to

a position which does not obstruct the workspace.

27



Plannin_andReasonin_in the_ Tel_obot Testbed

187 / From RMS

Move LEFT-ARM along path:

(TOOLBOX-INTERPOSITION WRENCH-B-2-TOOLBOX-APPROACH)

188 / From RMS

Put WRENCH-B-2 with LEFT-ARM

189 / From RMS

Move LEFT-ARM along path:

(TOOLBOX-INTERPOSITIONWRENCH-C-I-TOOLBOX-APPROACH)

190 / From RiMS

Get WRENCH-C-I with LEFT-ARM

The left arm, which was holding another tool, is commanded to move to the toolbox, store the

tool, move to another area in the toolbox region, and acquire the correct tool. Remember that

each command is issued by an expander and that a completer accepts the status of the commands

and makes the appropriate updates to the knowledge base.

191 / From RMS

Move LEFT-ARM along path:

(TOOLBOX-INTERPOSITION HOME-LEFT-ARMMEB-BASEBOARD-APPROACH

RIGHT-BRACKET-SCREW-APPROACH)

192 / From RMS

Bolt BRACKET-SCREW-2 with LEFT-ARM

Finally, as the left arm has been readied, it is commanded to move to the approach point for

the bracket screw and tighten the bolt. Notice that the number of commands issued is based on

the state of the world and what has to be done to ready it for the prescribed action to take

place. Messages 185 through 192 all deal with the later instantiation of action-unit-87. The

action-units provide a scope over which the planner considers what commands are executable at

a given time.

This example run results in a repair plan of 120 steps, which RMS was able to generate in under
one minute.

4.2.6 Specifications

4.2.6.1 Implementation

RMS is a system of about 120 rules written in the ART expert system environment. The current

version of RMS, configured for the satellite repair scenario described in this publication, is

about 15% control and inter-program communications rules, 35% expanders and completers, 10%

heuristics, 25% NOAH data-expansion rules, and 15% Stage One support rules (constraint rules

and NOAH critics). RMS is fully integrated with Audrey and CENTER, through communication

rules mentioned above and about 100 lines of supporting LISP code.

4.2.6.2 Characteristics

There are three primary advantages of the RMS task planner architecture described in this

publication, each with regard to the domain of space-based robotic servicing.

28



Plannin_andReasonin_in theJI'LTelerobotTestbed

4.2.6.2.1 Adaptability.

Unlike factory settings, exact knowledge of the target environment is not available until the

service procedure begins. The expander-completer mechanism was developed in the course of

this work and has been demonstrated as a method to cope with localized failures in a task-

space without the need for a full-scale re-plan. The commands are generated in such a fashion

that recovery is done as a part of the normal planning process.

4.2.6.2.2 Speed.

The architecture supports rapid plan generation. The hierarchical separation defined in the

two stages of planning leaves decisions on specific details until the end of the process, thereby

cutting down on the size of the planning space. The method for generation of Stage One plans

was chosen because of the speed it exhibits in such domains. Further, the expander-completer

mechanism in Stage Two works very rapidly, reactively generating commands faster than the

robot can execute them. RMS does the overall satellite scenario described above in under a

minute, producing a final sequence of some 120 commands.

4.2.6.2.3 Operator Guidance.

Finally, the architecture provides hooks in the planning process by which a user can guide the

planning. Since Stage One deals with what overall operations are to be performed in the task-

space, the operator can examine and edit the output should it be necessary. The hierarchical

separation provides for a convenient place for an operator to add knowledge to a plan which is

incorrect because of an inaccurate knowledge base. The operator also can guide the dynamic

planning of Stage Two in situations where an operator's opinion is desirable, using the interface

features of the Audrey simulator. An example is that of needing to do a pose change during a

move operation. Prior to CENTER integration, the system was configured to query the user for

pose flip information to prevent risking a pose change where it might interfere with the task-

space. Run-time modifications due to user suggestions are a desirable feature for such a space-

based system where the human is acting primarily in a supervisory role.

RMS can be used as a command dispatcher for a robot repair operation. It also can be used as a

tool for simulating a repair operation a priori, or as an advisor to a teleoperator or an astronaut.

The architecture supports input and output at different levels, such as high-level directives,

mid-level task steps, and low-level subsystem primitives, so that only applicable portions of a

particular problem need be addressed. The architecture makes a conceptual separation of

figuring out what to do from the specifics of how to do it, an approach not unlike that of a

human.

4.3 THE GROSS-MOTION SPATIAL PLANNER

4.3.1 Introduction

The CENTER spatial planning system provides automatic gross motion paths for manipulator

arms in the JPL Telerobot Testbed. This spatial planner can be used by the teleoperator for

moving the arm to specified configurations or for making safe pose changes automatically. Also,

CENTER is fully integrated with the TIPS task planning system to provide automated task and

spatial planning capabilities.

29



Plannin_andReasonin_in theJPLTelerobotTestbed

4.3.1.1 Definitions

Before describing CENTER, we will present some terminology used in spatial planning.

Spatial planning for a robot arm is the design of paths between given starting and ending robot

configurations which avoid collisions with the objects in the workspace. Gross motions are

those which affect the entire arm, whereas fine motions concentrate mainly on manipulating

the end-effector. The CENTER spatial planner finds collision-free gross motion paths for the

manipulators. Using a description of the workspace, it generates and uses a mathematical

graph of the object-free areas.

CENTER is a geometric spatial planner rather than a trajectory planner or tracker. Trajectory

planning means determining the desired position, velocity, and acceleration of the arm.

Trajectory tracking means considering the actual versus the desired path. Geometric path

planning, or geometric spatial planning, means finding the intermediate collision-free positions
for the arm.

There are two ways to view the space in which the robot moves. One is task-space; the three-

dimensional space about us. The other view of the space is as configuration space in which each

point gives an angular position for each joint. Since the PUMA is a six-DOF manipulator, its

configuration space has six dimensions.

The CENTER spatial planner reasons in configuration space. The advantages of using

configuration space over task-space for spatial planning are:

• In configuration space, a path is found which is collision-free for the entire arm.

Paths generated in task-space are collision-free only for the tip of the end-effector.

• Working in configuration space allows the pose information to be expressed

naturally. In task-space, pose information must be considered explicitly and safe

pose changes are a constant concern.

• In configuration space, the orientation of the end-effector at each point along a

path is a natural part of the configuration information. However, in task-space

this orientation must be _onsidered separately.

A configuration of the arm is said to collide with an obstacle if that configuration is prohibited

by the obstacle. The set of configurations which cause no collisions is called free-space.

In CENTER, we build a database which is a representation of the collision-free part of the

configuration space of the arm. To explain why we took this approach, we shall review the

current state of the art in spatial planning.

4.3.1.2 State of the Art

Spatial planning is surprisingly more difficult for a robot than for a human due to the size of

the search space.

4.3.1.2.1 Current research.

In order to concentrate on a problem of reasonable size, most research in spatial planning centers

on robots which can be modeled as points in a two- or three-dimensional space. That is, most

research papers concern either a mobile robot, typically modeled as a point in two-dimensional

space, or a two- or three-DOF arm, typically modeled as a point in two- or three-dimensional

3O



Plannin_andReasonin_in theJPLTelerobotTestbed

configurationspace.Theworkbeingdonewithsucharmsusuallyinvolvestheuseof sensorsand
allowsmoving obstacles in the workspace.

So far, the systems developed for these two- or three-DOF arms are not extensible to a six-DOF

arm. For example, consider the work currently being done by Edward Cheung and Vladimir

Lumelsky at Yale [G1]. In this work, an arm with infrared sensors can move between two points

in a unknown workspace by following a straight-line path with modifications when obstacles

are sensed. The modifications are developed by constructing a configuration space graph of the

obstacle and following tangent lines around the obstacle until the original straight-line path is

met again.

There are two problems with using the Yale approach in our work. One is that it often places

the upper arm very close to an obstacle; if there is a minor sensing error, collisions are likely.

The other problem is more substantial. The Yale robot had two-DOF, so its configuration space

is two-dimensional. Thus objects may have tangent lines. However, if we extend to only three-

DOF then there are tangent planes, and the direction to proceed must be selected intelligently.

This poses a major problem in only three dimensions. If we should attempt this approach with

even just four-DOF, the computations would become prohibitive.

At the IEEE Robotics Conference in April of 1988, there was no discussion about how to do

spatial planning for a six- or seven-DOF arm. Two speakers erroneously stated that spatial

planning for an arm in a fixed workspace had been solved; their work concerned other

workspace types and two-DOF arms. Although there were solutions for spatial planning for a

six-DOF arm in a fixed workspace, they were efficient only in spaces containing few obstacles.

For cluttered spaces and a six-DOF arm there was no existing practical solution; that is, no

solution that would find paths in real time taking all six dimensions into consideration. It is

that practical solution for fixed cluttered spaces which we have found.

4.3.1.2.2 The Lozano-Perez system.

The main system we studied was developed recently by Tomas Lozano-Perez at MIT. CENTER is

similar to the LP system in that it requires a fixed workspace and that a database describing

the collision-free portions of the workspace is preprocessed.

The reference [G3] gives the details of his approach. For two- or three-DOF arms, the Lozano-

Perez method of representing regions is efficient for searching for a path. However, as the

dimensions increase, the time required to find a path increases exponentially. The phrase curse

of dimensionality refers to the fact that the worst-case time bound in any general motion

planner is exponential in the number of DOF. Thus the Lozano-Perez system had to be modified

to be applied practically to a six-DOF arm. The modification is to use a bounding volume for

the end of the manipulator. This volume is a simple conservative containment of all of the

possible positions of the last three links. Most of the path is planned for the first three links

and the bounding volume. This strategy may fail to find a path, but Lozano-Perez found it to

work in many of his test work-spaces.

The main reason we did not use the Lozano-Perez system is that the use of a bounding region for

the last three links would not work in much of the telerobot testbed; the end-effector will be

close enough to obstacles to have the bounding volume collide with them in many arm positions.

If all six joints are processed using intervals of 20 degrees, there are almost five million possible

31



Planni_ andReasonin_in theJPLTelerobotTestbed

leaveson theintervaltree.Thisis bothcomputationallyinefficientandunnecessarilydetailed
forareasawayfromobjects.

Wehavedevelopeda systemwhichconsiderseachof thesix linksand is fastenoughto be
useful.

4.3.2 CENTER Overview

The CENTER system (figure 7) consists of two parts: the off-line portion which builds the

database model of the free-space for each arm, and the on-line path finder. This system will

work in any relatively static workspace containing one or two manipulator arms of any number
of DOF.

The graph generator uses a database of the workspace to generate the graph, and the path

finder uses the graph to generate paths as they are needed at run-time. The graph generation

code depends upon the number of DOF of the arm and the number of angles per joint being used in

the graph. However, the rest of the code is independent of these variables, and all of the code

is independent of the particular workspace under consideration.

Of f line

_ description ofworkspace

GENERATE

GRAPH

spatialgraph

Online

_eq iuest for path in_ _ ASSOCIATEguration spa_ POINTSWITH NODES

' SEARCH L if n° path in table' _NO_PTAK_ATBH_LL:i

FOR PATH

table ofknown paths

ADD _ J_ desired _PATH p a t h
TO TABLE

Fi__ure 7. CENTER Overview.

The average time required to generate a path on-line is less than four seconds. Thus for the tele-

robot testbed, the CENTER spatial planner can generate paths much more quickly than they can
be executed.

We have integrated CENTER with the rest of the TIPS system for the satellite repair scenario.

The user interface allows the operator several ways of using the spatial planner:

• to perform motions to operator-specified configurations

• to perform automatic safe pose changes

• to perform the gross motion tasks determined by the task planner -- either those

particular ones selected by the operator, or all of them

32



Plannin_ and Reasonin_ in the JPL Telerobot Testbed

4.3.3 The Graph Generator

A graph of the free-space is generated for each arm. Each graph is built using a fixed number of

selected angles for each of the joints of the robot. The configurations which are combinations of

these angles are checked for collisions, and the collision-free ones form the nodes for the graph.

Edges represent collision-free linearly interpolated arm movements between nearby

configurations.

In the satellite repair scenario, five angles were selected for each of the six joints of the PUMA

arm. Thus there were five to the power six, or 15,625, possible graph nodes, each with from six

to twelve possible neighbors.

4.3.3.1 Description

The input to the graph generator consists of the number of joints in an arm, the selected positions

for each joint, and a calibrated constructive solid geometry (CSG) model of the workspace. In a

CSG model, objects are represented by unions, intersections and differences of geometric shapes.

Their locations are given in terms of three rectangular dimensions and three orientation factors.

We begin by looking at some number b of positions for each joint (the end-points of the joint

range and b - 2 evenly spaced positions within the range). For a PUMA arm, this gives us b to

the power six initial points to consider, or 15,625 if b is five. Each point is tested for collisions.

Each of these points has between six and twelve possible neighbors, points which differ by one

step in one coordinate. For each pair of collision-free neighbors, the straight-line path between

them is checked for collisions. Notice that along such an edge, only one coordinate varies; that

is, only one joint in the robot arm changes.

The output of the graph generator is the configuration space graph of free-space formed by the

collision-free points and edges. The graphs are generated off-line due to the time required for

collision detections.

4.3.3.2 Data Structure

The graph is represented as an array of adjacency lists. Each index number for the array

corresponds directly to the arm configuration for the related node. To explain this

correspondence, let us assume that five values per joint have been used, since such a graph is

found to be sufficient for the satellite repair scenario. Since the PUMA has six joints, there are

15,625 (five to the power six) possible graph nodes. The array is indexed from 0 to 15624; the ith

array entry is an adjacency list or is nil if the corresponding node is not coUision-free.

To figure out the index which corresponds to a given arm configuration, we start by specifying

the configuration by a list of the angle values of each joint, such as (90, -90, 180, -45, 97, 90). For

each joint, there are 5 predetermined angles being considered; we can call them angles 0, 1, 2, 3,

and 4. For the first joint, 90 degrees is the value of angle number 1; for the second, -90 is the

value of angle number 2; for the third, 180 is the value of angle number 1. We can write the list

as a list of angle numbers: (1 2 1 3 0 1). Thus each possible graph node corresponds to a unique six-

digit base 5 number which in turn corresponds to a unique base 10 number between 0 and 15,624.

For example, 121301 base 5 equals 4576 base 10. (1"1 + 0*5 + 3*25 + 1"125 + 2*625 + 1"3125 =

4576.) So the adjacency list for the configuration (90, -90, 180, -45, 97, 90) is stored in array

location 4576.

33



Planning;andReasonin_in theJPLTelerobotTestbed

4.3.3.3 Implementation

An Ada program using RTC collision detection software is used to generate a spatial graph. The

main idea of the program is: Given a definition of the graph and a database representing the

workspace, check each node (arm position) and edge (path between two adjacent nodes) for

collisions and create a file containing the resulting information. The resulting output file is a

list of each node, its collision status (true or false) and its corresponding adjacency list. Details

as to how this information is stored can be found in the description of text_file_mgr.

C graph _ C RTC _definition database
of te tbed

I I

CHECK ]
STATUS

OF NODES

!

C nodes' _status

J I
BUILD

ADJACENCY
LISTS

C LISP-formatgraph info

Symbolics

)
I

CA a'°rm't)graph info

Figure 8. Graph generator node checking.

The program is separated into two main tasks: a) check all nodes for collisions, and b) check

remaining edges for collisions. The accompanying diagrams show how these tasks are achieved

(figures 8 and 9). Due to problems with using RTC's system and software, the main tasks are

separated into sub-tasks. A great amount of memory space is required to run RTC's collision-

detection software and to hold the main data structure. The main data structure is not needed

when nodes or edges are being checked for collisions, but it is needed to find/update the

adjacency lists. Therefore the tasks of checking for collisions and maintaining adjacency lists

are performed separately to prevent a possible system crash due to memory overload.

The implementation of checking nodes is separated into two sub-tasks. RTC's database

representing the workspace and a definition of the spatial graph (i.e., number of angles, number

of joints, etc.) are given for the first sub-task. The resulting output is a text file containing a list

34



Plannin_andReasonin_in the]PL Telerobot Testhed

of nodes (the one-dimensional index number) followed by either a TRUE or FALSE, where TRUE

indicates that the corresponding arm pose is free of collisions. RTC's collision detection

software is used to check every arm position represented by the graph to see if there are any

obstructions. The second sub-task uses the graph definition and information from the file

produced by the first sub-task to find the corresponding adjacency lists for each collision-free
node. An Ada file and LISP file containing complete graph information are produced. A

detailed description of these files is described in the text_file_mgr description.

C graph ) CRTC database ) C Ada-fOrmat )definition of testbed graph info

i I
CHECK

STATUS

I

OF EDGES

I

c.ge)collisions

, I ,
UPDATE

GRAPH

I
u_pdLISP-f°rmat

ated graph in_

Symbolics

_. Graph generator edge checking.

The implementation of checking edges for collisions is also implemented as two steps. The first

step has three main inputs: a) the final Ada file of graph information created when nodes were

checked, b) the RTC database representation of the appropriate workspace, and c) the

definition of the spatial graph. RTC's collision detection software is used to check all paths

between adjacent nodes. The resulting output is a text file containing a list of node pairs (the
one-dimensional index numbers) which indicate that a collision occurred on the path between

the two nodes in each pair. This resulting file is used as an input for the second step along with

the graph definition and the resulting Ada file created by the check-nodes task. The adjacency

lists are updated in the Ada file by eliminating the appropriate nodes from the appropriate

adjacency lists. The final outputs are a LISP file and an Ada file both representing the updated

35



Planning;andReasoning;in theJPLTelerobotTestbed

information.Thesefilesareof thesameformasthoseproducedbythecheck-nodestask.Oncea
LISPfile hasbeencreated,thefile canbetransportedto a LISPenvironmentwheretheother
tasksof CENTERoperate.

4.3.3.4 Graph Sparsification

The generated spatial graph is searched to find paths through the workspace. If we have a

space in which the graph is too sparse to allow us to find a path, we may increase the number of

values per joint to generate a denser graph. However, this may create a large number of

unnecessary graph nodes representing sparse areas of the workspace. When this occurs we can

use a graph-modification procedure to strategically eliminate some of these unnecessary graph

nodes. To describe a method for eliminating nodes, we first describe a method used for a two-

dimensional graph, accompanied by diagrams (figures 10 and 11). Then we explain how the

method can be applied to an n-dimensional graph.

The two-step algorithm for a two-dimensional graph:

for every node in the graph

if the node is connected to the maximum possible adjacent nodes

mark the node

for every node in the graph

if the node is marked and the node has four adjacent marked nodes

remove the four adjacent marked nodes

create connections from the node to the removed nodes"

adjacent nodes

unmark all new adjacent nodes

The same algorithm can be applied to an n-dimensional graph. Instead of marking nodes

having the maximum possible number of adjacent nodes, mark those which have m adjacent

nodes, where m is < maximum possible adjacent nodes. Also, for modifications, search for a

marked node having m marked adjacent nodes (remove the marked adjacent nodes).

For this implementation in CENTER, the main data structure representing the spatial graph is

used as input and a modified graph is generated as output along with a text file containing the

updated graph information. The main data structure representing the spatial graph is also used

to represent a modified graph, where the possible node status values are:

nil

t

blue

green

obstructed arm position

collision-free arm position

collision-free arm position and has m collision-free adjacent nodes

collision-free arm position, which was previously blue and had m adjacent blue nodes

Modifications are made by updating the appropriate adjacency lists. After all modifications

are made, the graph information is stored in a LISP file in a similar form to that of an

unmodified spatial graph.

Modifications can be performed on a spatial graph to make the search space more sparse, thus

decreasing the time it takes to search for a path to a goal position. With this algorithm, nodes

will be mainly removed from areas where there are few or no obstacles, so that unnecessary

36



Plannin_andReasoning;in theJPLTelerobotTestbed
nodesareremoved.Modificationscanalsobemadebetweenthetwo main runs of the graph

generation program (first run checks nodes; second run checks edges). Since the number of edges

will be decreased, the time it takes RTC's software to check edges for collisions will also be

decreased.

4.3.4 The Path Finder

The other part of the spatial planner is the on-line path finder. The input to the path finder

consists of three arguments: an indication of which arm is to be moved, the current configuration

of that arm, and a set of acceptable goal configurations. The reason that the input contains a

list of goals instead of a single goal is that for a desired position and orientation of the end-

effector, there are up to eight configurations of the arm which will achieve the objective. The

subset of these configurations which are kinematically possible for the arm forms the goal list.

[r

i
I

[I'T

E
EEI
EE ET
[E[II_

(a) (b)

Figure 10. (a) Initial graph and (b) graph sparsification step one.

37



Plannin_andReasonin_in theJPLTelerobotTestbed

(a) (b)

(c) (d)

Figure 11. Graph sparsification step two.

38



Plarmin_andReasonin_in theJPLTelerobotTestbed

WhentheTIPSsystemis integratedinto thetestbed,thelist of argumentsfor thepathfinder
will includean indicationof theboundingregionfor theobjectin the end-effectorandthe
current conditionsof the variable workspaceobjects.Theseadditional argumentswill
determinewhichgraphsorgraphpartstouse.

Thepath request may come directly from the operator or from the automated task planning

system. The output path is expressed as a sequence of configurations to be connected by linearly

interpolated joint motion. This path is then passed to the other telerobot subsystems to be

implemented. If there is no path to the desired goal, then a descriptive message is sent to the

task planner or the operator.

There are three parts to each path: move to the graph; move along the graph; move off of the

graph to the goal. There is a procedure for moving between a path end-point and a graph node.

It finds the graph node closest to the point such that the interpolated motion between the two

is collision free. Since we did not have on-line collision detection in the development of this

system, this part has not been thoroughly developed.

To search the graph to find an acceptable path, we use an A* search algorithm [G4] which has

been modified to accept a set of possible goals. Two heuristics are used. One associates with

each search node the actual length of the path from the start node to that node. The other

estimates the remaining distance to the closest goal.

A path storage and look-up facility is also provided for run-time speed enhancement. Since the

path finder is so fast, path look-up is not being used in the integrated system. It is described
here in case a situation should arise in which it would be useful.

If a requested path or its reverse has already been generated it is not regenerated. This

provides time savings when arm motions are repeated often, such as the motion from the toolbox

to a work area on the satellite. Given a request for a path, first the tables are queried to see

whether or not the path has already been generated. If the path is not in the tables, it is

generated and inserted into the appropriate table. There are separate tables for paths for

different arms and for different configurations of movable workspace objects.

If the workspace is extremely cluttered, it may be necessary to preprocess the path look-up

tables. All probable needed paths may be generated and a path look-up procedure may be used

during operation if time constraints require more speed than the path finder can provide.

However, based upon our current research, it is hard to imagine a situation in which this would

be necessary.

4.3.5 Work Space Assumptions

The task-space for the initial JPL Telerobot Testbed consists primarily of a Solar Max satellite,

two manipulator arms, and a tool box. This is the scenario used for the development of the

integrated TIPS system, but the spatial planner in its present form can be used with any fixed

workspace with one or two manipulator arms. The arms move independently, and when one is

moving the other is placed in a known home location. The spatial planning code could be easily

adapted to a workspace containing additional arms by including related free-space graphs.

The robot frame is considered to be fixed relative to the workspace, and this relative position is

known in advance. A small fixed number of known variable objects, such as a door, may be

39



Plannin_andReasonin_in theJPLTelerobotTestbed

presentin theworkspaceif eachhasa smallfixednumberof knownpositionsin which it
normallyoccurs,suchasopenedor closed.Eachsuchobjectmustremain in a known position

during any planned gross motions. For example, the camera-arm motion will be restricted to a

fixed region. Before invoking the spatial planner, the operator must return the camera-arm to

this region.

A relatively static database was assumed in the design of CENTER for several reasons. All

current spatial planning systems for six-DOF arms, such as the Lozano-Perez system, make this

assumption; we decided to develop a system which adapts the state of the art to a real-life

space scenario before working on a more advanced system. Also, the graphics system and the

collision detection software that we are using require that the workspace be static. We are

hoping to purchase more up-to-date commercial graphics and collision-detection software soon.

But most importantly, there are space applications of robotics in work-spaces which are known

a priori for spatial planning purposes, such as servicing the space station or servicing a satellite

like the Solar Max or the Earth Observing System (Eos).

4.3.6 Usage

4.3.6.1 Direct Use by the Teleoverator

The teleoperator can use the spatial planner to perform motions between operator-specified

configurations of the arm. One instance in which the operator may wish to invoke the spatial

planner for a path is in changing poses for the arm. In CENTER, pose flips do not come into play

since the paths are generated in configuration space rather than task-space. However, when

working in task-space, as the teleoperator does, one sometimes needs to change the poses for the

arm. These pose flips can be dangerous since the arm may be extended toward an obstacle.

For example, the arm may be in an elbow-up pose with the end-effector near the satellite. To

perform an operation, the arm may need to be in an elbow-down pose instead. The spatial

planner can generate a path from one pose to the other which will keep the arm from colliding

with workspace objects. In this manner, CENTER can be used to execute a pose flip safely for the

teleoperator.

4.3.6.2 Use with the Automatic Task Planning System

In automatic mode, given a request a path is found automatically and sent through the system

to be executed. In monitor mode the teleoperator decides whether to use automation or tele-

operation for each path. If teleoperation is chosen, then the teleoperator must inform the

system when the motion is finished. In the fully integrated testbed, the results of a tele-

operation will be gleaned from the hardware.

4.3.7 Specifications

4.3.7.1 Software Modules

4.3.7.1.1 Ada.

Aside from the driver programs, the Ada design is broken up into five parts, the following

packages:

4O



Plannin_andReasonin_in theJPLTelerobotTestbed

Graph_data
Thispackagecontainsinformationnecessaryfor themaindatastructure.This includes constants

for number of joints, number of angles per joint and number of total nodes. The n-dimensional

graph, representing configuration space, is mapped onto a one-dimensional array, where n is

the number of DOF. Here, the main data structure called coil_graph is declared as a one-

dimensional array of records, where the first slot of the record is c_free of type boolean to

indicate whether the node is collision-free or not, and the second slot is an array which holds

the node's adjacency list. The array is indexed from 1 to num_nodes. The index number of the

array corresponds to the one-dimensional node number of the graph. A 0 (zero) in the adjacency

list indicates a null or non-existent neighbor.

Index_translation

This package contains two procedures: jointspace to get the n-dimensional index number for a

given one-dimensional index number, and graph_index to get the one-dimensional index number

for a given n-dimensional number.

Adj_list_mgr

This package contains procedures for creating and updating adjacency lists. The adjacency list is

an array of length max_num_neighbors(declared in graphdata). A 0 (zero) in the array

represents a null or non-existent node. C_free_neighbors returns an adjacency list for a given

node, where each node in the adjacency list is collision-free. Eliminate_nbr eliminates a given

adjacent node (nbr) from a given node's adjacency list. This is achieved by replacing nbr with a 0

(zero) in the appropriate adjacency list.

Joint_angle_data

The actual angle values for each joint that is represented in the configuration space graph are

contained in this package. A function for accessing this table is also in this package: ja_values

returns an array consisting of six angle values for a given one-dimensional graph node. The joint-

angle table has a set of default angle values for 5 angles per joint. These values can be changed

when using RTC's Thread.

Text_file_mgr

Procedures responsible for saving information from the main data structure to text files are

found in this package. Save_lisp_graph saves the information in LISP form for use in the

Symbolics environment and Save_ada_graph saves the information in Ada form. The LISP file

is a list containing lists on each line. The line number corresponds to the one-dimensional index

number of coil_graph. The list on each line contains two elements. The first is a t or nil to

indicate whether the node is collision-free or not and the second element is an adjacency list

containing the one-dimensional adjacent node numbers. For CENTeR's data structure, the array

is indexed from 0 to (num_nodes - 1). Therefore, a node in this file corresponds to node + 1 in

coU_graph. The Ada graph has hum_nodes number of lines, where each line number corresponds

to the index number of coil_graph. The first element on each line is either a TRUE or FALSE to

indicate collision-free or not. This is followed by each number found in the corresponding

adjacency list. Get_ada_graph extracts information from a file created by save_ada graph
and uses it to initialize the main data structure.

41



Flannin_ and Reasonin_ m _e J]'L Tel_obot Testbed

4.3.7.1.2 LISP

The spatial planner LISP code consists of several modul_.

The module initialize contains the code _r loading the spatial planner. It also contains two

functions:

initialize base-number (= number of angles per joint); dimensions-

number (= number of joints; no. of degrees of freedom)

Result.- initializes the path look-up tables to nil and initializes

the global variables base, dimensions, and array-size.

init-grapha scenario ('SATELLITE is implemented now, 'EOS should be

in the near future)

Result: Initializes the graphs that will be used for the specified

workspace.

The module point-conve_er contains the _nction get-path which is invoked to find paths. The

start and goal configurations aN converted to their nearest graph nodes before look-up-a-path

or find-pa_ are called to search _r a path. Several auxiliary functions are also included:

array-index value (in degrees); joint-number (between 0 and

dimensions - I)

Result: the number (between 0 and base-l) of the angle for that joint

with that value.

nearest-graph-node angle-list (a list of actual angle values for

each joint); arm-graph

Result: a base 10 index number for the collision-free node closest to

angle-list.

translate node (1-dimensional index number or list of joint

values); arm (_left-arm" or _right-arm")

Result: If the node is indicated as a one-dimensional index number,

it is returned if collision-free. If the node is indicated as a list

of joint values, the one-dimensional index number of the nearest node

is returned. Otherwise, nil is returned. This function calls nearest-

node.

closest-goal index (one-dimensional); goal-node-list (list of lists

of joint values)

Result: the entry in goal-node-list whose nearest graph node is the

index.

node-equal nodel; node2 (lists of angle values in degrees)

Result: True if-and-only-if the differences for each joint are less

than two degrees.

42



Plannm_ and Re_onin_ m _e JPL Tel_obot TesWed

remove-nils old-list

Result: the list of the non-nil elements of oldlist.

get-path arm ("right-arm" or "left-arm"); start-node; goal-node-

list (each node can be given as a one-dimensional index number or

list of angle values in degrees)

Result: nil if no path exists; otherwise a path expressed as a list

of lists of angle values in degrees. This function calls look-up-a-

path in the lookup-tables module.

The module lookup-tables contains the code _r storing and retrieving paths as they are

generated:

initialize-path-lookup-tables no arguments

Result: sets the lookup tables to nil.

show-path-lookup-tables no arguments

Result: displays the contents of the path look-up tables; used for

debugging and for illustrating the path storage facility.

check-for-a-path start (); goal-list (); arm-number()

Result: path stored in look-up table; or nil. If the reverse of a

requested path is stored, it is returned in the correct order for

this check-for-a-path request.

look-up-a-path arm-to-use (); start-node-index (); goal-node-

index-list ()

Result: calls check-for-a-path; if no path was found in the look-up

tables, then the variable *spatial-graph* is set to the appropriate

graph, find-path is called to search the graph for a path, and the

new path is inserted into the look-up tables and then returned.

The module path-findercontainsthegraph-_a_hingcode _rgenerating paths:

in-search-graph-find-node my-index (a base i0 index number)

Result: the node in *search-graph* with the given index. *search-

graph* is stored as an array of structures.

list-diglts index

Result: a list of the digits of the base 5 number which corresponds

to the given index.

goodness index; goal-index-list

Result: the sum of the distance from the start node and an estimate

of the distance to the goal. The estimate of the distance to the goal

is the minimum of the estimates of the distances to the goals, each

43



elannin_ and Re_onin_ in _e JPL Tel_obot Tested

given by the sum of the absolute values of the differences in the

joint steps of the two arm positions. (First change each base I0

index into a base 5 number and determine the sum of the differences

in each slot.)

find-path start-index goal-index-list

Result: a path of the form (start, index, index, ...,index, goal)

where start is start-index and goal is an element of the goal-index-

list. Uses a modified A* search algorithm adapted from Nilsson.

The modulegraphics-patchescontainsthe code _rtheinter_cebetween the spatial planner

and the graph,s sys_m:

audreyii-move-manipulator PUMA-NAME; C6-POINT-PATH

Result: the Audrey function adapted to handle moves.

center-get-path PUMA-name start-joint-array end-joint-array-list

Result: the Audrey function adapted to put the arguments into the

correct form for invoking the get-path function.

The module user-interface containsthe code _rthe usertoinvokethe spatialplannerand to

find outinformationabout _ecu_entsm_ of _e workspace:

name-a-place name ('anything); degree-angle-list ('(# # # # # #))

Result: stores the name of a configuration for future reference.

Makes sure the list has 6 elements first. This named configuration

can be used in the center-move and place-arm functions.

name-points-near-satellite no arguments

Result: for the demo, this names two configurations, '14 and '16,

which put the end-effector in the same position and orientation, one

with the elbow up and one with the elbow down.

in-tablep name ('anything)

Result: If the name has been stored, return the corresponding

configuration. Otherwise, return nil.

set-center-mode mode ('monitor or 'auto)

Result: sets the global variable path-monitor-present to true if

'monitor and false if 'auto. This controls whether or not the tele-

operation option box is presented upon path requests from the task

planner or other sources.

center-move arm ('right-arm or 'left-arm); goal ('toolbox,

'satellite, 'home, or another named place)

Result: invokes the spatial planner with a legal goal list by calling

audreyii-move-manipulator.

44



Plannm_ and Re_onin_ m _e JPL Tel_obot Testbed

place-arm arm ('right-arm or 'left-arm); place (a list of joint

angles in degrees or a semantic name)

Result: displays the arm in that place. Updates Audrey database, but

not RMS database.

current-graph-node arm ('right-arm or 'left-arm)

Result: returns a statement of the base i0 index number of the

nearest graph node to the current arm position, and tells whether or

not the arm is actually at that node: sets the variable arm-graph

appropriately, finds the list of current joint angles, finds the

nearest graph node to the current configuration.

current-arm-position arm ('right-arm or 'left-arm)

Result: returns the angle values for the current configuration of the

arm.

set-goal-list c6-point-path (base 10 index or named place); PUMA-

name

Result: makes an array to hold the goal list.

c-free-point-from-list arm ('right-arm or 'left-arm); list (of

configurations - each configuration is a list of angle values for

each joint)

Result: the arm position of the graph node nearest the first list

element for which a nearby collision-free graph node can be found;

otherwise nil.

auto-move-manipulator no arguments

Result: sends the notices when the spatial planner begins and ends

its thinking; calls center-get-path for a path; causes the graphics

for the path to be displayed, and sends a completer to the RMS.

move-done no arguments

Result: puts the arm in a collision-free final position and returns a

success completer to the RMS. Used when the operator chooses tele-

operation and that operation is successful.

move-failure no arguments

Result: send failure completer to RMS.

manual-move-completion no arguments

Result: displays a menu for operator to select teleoperation result,

either Warm near goal" or _arm near start"; handles the operator's

choice by calling move-done or move-failure, respectively.

manual-move-manipulator no arguments

45



l'lannir_ and Reasonin_ in the JPL Telerobot Testbed

Result: invokes manual-move-completion.

auto-or-manual-choice no arguments

Result: displays a menu for the operator to select teleoperation or

automation for a gross motion; handles the operator's choice by

calling auto-move-manipulator or manual-move-manipulator,

respectively.

The module translations contains several functions used in translating between different

methods of referring to graph nodes:

arm-posltlon-of-lndex index (base I0)

Result: a list containing the actual angle values for a robot arm.

index-of-arm-position angle-list (list of angle values in

degrees)

Result: the one-dimensional index of the node with those joint

angles.

get-ldim-index index (expressed in base base - other than ten)

Result: base i0 index number which corresponds to that index.

get-multi-lndex index (base i0)

Result: a list containing the digits for a base base number which

corresponds to the index. This is the list of the angle indices for

the index position.

The modules file-management and sparse-spatial-graph contain the code for initializing the

graph arrays from the results of the collision detection programs and for sparsifying the

graphs, respectively.

4.3.7.2 Performance Data

In the integrated TIPS system, removing the MEB from the satellite and storing it in the toolbox

required 36 gross motion paths. The times for finding paths averaged 3.8 seconds, and ranged
from 0.4 to 11.5 seconds.

The graph was built with five positions per joint, making the number of possible nodes in the

graph 15,625. The time to check the graph nodes for collisions was about 12 hours using RTC

collision detection software, which runs at 2 to 15 seconds per node.

4.3.8 Status

4.3.8.1 Original Goals

In designing the CENTER spatial planner, we had six goals in mind. The system we have

developed achieves each of these goals.

46



PlanningandReasoningin theJPLTelerobotTestbed

4.3_.1.1 Suitability for integration into testbed.

A foremost consideration was the development of a spatial planning system which is

compatible with the needs of the JPL Telerobot Testbed. CENTER is capable of finding desired

paths in a telerobot scenario quickly.

4.3_.1.2 Speed.

The on-line path generation is very fast. In the satellite repair scenario, the average time

required to generate a path is less than four seconds. Thus the CENTER spatial planner can

generate paths much more quickly than they can be executed, which means that the system

will be useful to the teleoperator.

4.3_.1.3 Ability to accept minor perturbations in the workspace.

Currently, the collision detection we use indicates a collision when the arm is within a certain

tolerance of an object instead of only when a collision is occurring. Thus minor perturbations in

the workspace can be tolerated without invalidating the graph database of the CENTER

spatial planner. If path requests are made to the correct destination, then the CENTER system

will find a collision-free path even if the workspace has been slightly altered or the

calibrations were slightly incorrect.

4.3.8.1.4 Ability to handle carried objects.

In order to ensure that objects held by the end-effector do not collide with obstacles in the work-

space, we generate additional graphs or graph overlays for each arm, each graph assuming a

different bounding region for objects in the end-effector. Then requests to the path finder would

include an indication of which bounding region is currently appropriate so that the correct

graph will be employed. We should have, say, 4 graphs for each arm: one for an empty end-

effector, and three for various sized bounding regions for objects in the end-effector.

We do not have the additional graphs now due to time constraints on using the RTC computer

and the speed of the collision detection algorithm. We are looking forward to having fast

collision-detection software dedicated to gross-motion spatial planning research in the near
future.

4.3.8.1.5 Ability to accept variable workspace objects.

The telerobot work-spaces may contain a small number of variable objects. Such an object can

have a small number of positions which are fixed and known in advance. Then for each position

of a variable object, a graph or graph overlay for each arm can be generated. When a path is

requested, the current position for such an object is passed as an argument so that the

appropriate graph or graph part will be used.

For example, a door is a variable object with two positions: opened or closed. In performing most

gross motions, it can be safely assumed that the door is locked into either the opened position or

the closed position. If necessary, the door can also be modeled by a conservative bounding region

which contains all of the possible intermediate positions. This model can be used when the door

position is unknown. Thus at most three models for the door are required: the opened door, the

closed door, and the bounding region for unknown door positions.

47



Plannin_andReasonin_in theJPLTelerobotTestbed

This modelingfor a door is sufficient sincethe teleoperatorwill be ableto handlearm
movementsinanomalousworkspaceconfigurations.

4.3_.1.6 Adaptability.

The graph generator uses a database of the workspace to generate the graph, and the path

finder uses the graph to generate paths on-line. All of the spatial planning code is independent

of the particular workspace under consideration. In addition, all of the path finding and

storage code is independent of the number of DOF and the number of angles per joint being used in

the graph, and so can be used with any type of arm and any degree of granularity of the graph.

4.3.8.2 Features which Exceeded Exp_ation_

4.3.8.2.1 Speed.

Originally, we had expected that the on-line path finder would be too slow to be used in real

time. We had planned that for the testbed all necessary paths would be generated and stored

before the demonstration runs. Then during the demonstration, all paths could be looked up. We

are quite pleased that this will be unnecessary. Since it can be used in real time, the system will

be of use to the teleoperator.

4.3.8.2.2 Sufficiency. of the generated graph.

We had expected to have to add a number of additional points to the generated graph to enable

access to work areas. However, the generated graph has been proven to be sufficient for the

satellite repair scenario in our simulations. If a future workspace contains work areas that are

not accessible by the spatial planner, we will generate graphs with more angles per joint. These

graphs can be sparsified to eliminate unnecessary nodes from the work areas. Thus we will be

able to maintain workspace independence in our code because we have control over graph

granularity and the ability to sparsify.

4.3.8.2.3 Direct use of the spatial planner by a teleoperator.

Initially we required that the operator could use the spatial planner only through the task

planner. This restriction has been lifted. The spatial planner can be used by the operator either

independently of the task planning system or in combination with task planning and as much

teleoperation as is desired.

4.3.8.2.4 Spatial planner supports traded control.

Control between automatic spatial planning and teleoperation can be exchanged anywhere in

the workspace. Originally it was expected that trading control would have to occur at places

convenient to the spatial planner, but this restriction is not necessary since the graph nodes are

dense enough that collision-free motion to a nearby node will be easy to perform.

Initially we also required that trading control from the operator to the spatial planner would

not be allowed when the end-effector is holding an object which was grasped by the operator.

However, if a bounding region for the object with respect to the end-effector is known to the

spatial planner, then control trading may occur when operator-grasped objects are held.

48



Plannin_andReasonin_in theJPLTelerobotTestbed

4.3.8.3 Current Research Directions

4.3_.3.1 Sensor feedback.

When we get dedicated collision detection software, then we will be able to experiment with

enhancements which allow for sensor integration and moving obstacles in the workspace. We

are also planning to research areas of sensor integration for non-graph-based systems. The use of

sensors for updating the free-space graph, or in place of it, becomes necessary when the

workspace is less predictable due to object motions. However, we do intend for the results of our

research to be applied to six- or seven-DOF arms.

A graph-based system is sufficient in a fixed environment which is thoroughly known ahead of

time, such as a satellite repair scenario, although sensors are useful for verifying the

workspace model. If the environment is fixed but not known ahead of time, and if the work

activities will be performed repeatedly, sensors may be used to develop a graph. Then the

graph-based approach may be followed. Sensor feedback may be used in place of a graph in an

unknown environment which is variable or which is visited only briefly. However, if the

workspace is relatively fixed, it may be desirable to use a graph as a short-term memory of the

robot's immediate surroundings.

One sensor-graph integration approach we are considering provides a sensor-based graph-

update facility for handling a workspace in which things may move, and then freeze for our

action. Changes would not require recomputing the entire graph, only the parts of the graph

that are affected. For example if we are expecting a certain fixed workspace and the actual

space is slightly different, the graph-update facility will allow us to use the automatic

spatial planner without regenerating the entire graph.

If a look-up table is used, the listed paths could be time-stamped so that old paths which are

no longer collision-free would not be used. A time stamp feature can be used on paths if

workspace objects may vary in a non-predetermined manner. Then when a path is retrieved

from the look-up tables, we first check to see when it was generated. If the graph has changed

significantly since the generation of the path, the path's validity is checked. A path verifier

could use time stamps to verify the parts of the path that need to be redone and ignore those

which do not.

Our first step in the study of sensor feedback is to determine what sensor feedback would be

useful to a spatial planner, and how it would be processed. Also, the mechanisms need to be

developed for information to be passed from the sensing and perception subsystem to TIPS for use

by a spatial planner.

4.4 THE USER-INTERFACE AND KINEMATIC SIMULATOR

4.4.1 Introduction

Audrey (figure 12) is a computer program which simulates the motion of devices by means of

computer graphics. Objects are defined by size and shape; devices are defined as a linked series

of objects for which particular motions are possible. Audrey accepts commands from both a user

at the Audrey console and from external sources such as a remote terminal or another computer

program. When commanded from an external source, Audrey returns a variety of useful

information on the results of the commanded action. Audrey is able to utilize external sources of

49



Plannin_ and Reasonin_ in the JPL Telerobot Testbed

knowledge in order to create a more realistic simulation. The external knowledge can be from

either a computer program or from a human expert. Audrey coordinates requests for both

information and action, based on the available resources in TIPS. Audrey routes requests either

to the computer program or to the Audrey user if the computer program is currently unavailable.

Audrey maintains the modularity of TIPS by modeling knowledge sources as either computer or
human. This modularity allows for the replacement of any computer portion of TIPS with a
human.

A

i. 0
'N 0

,11 0

I P I T C .[ R C R .J 5 & P .J T o P +SARG- i_udreyII

uN E N 0 N E il 0 i E i Q II E _o aeJCCT_ _ ¢o_d
N I_ N 0 N E II 0 N E N 0 Pl E 4 I F_co_-_O_

,, _Port Iio Port No Port No Port 5 i,--_
l.o_+,,_ll... +_,a_l_q[l llor Icrsjm_I--41'o INI"I

N ( # o i [ g O i E N 0 N [ [] gRTURN>n
H 0 N _ g O N E N O N [ N O N [

No Port No Pot No Port No Por
i I
Oyrmmic Lifo Liatener 2

5 Feb 4:28:52 dev4d |: User Input

Figure 12. The Audrey screen.

4.4.2 Windows

Audrey is a window-based computer program which utilizes a mouse and menus for the majority

of its input. The mouse is used to indicate screen objects to which actions are applied, and is used

to move objects in the modeled world. Windows are used to separate conceptually different

information, such as graphic line drawings from textual warnings.

4A.2.1 Viewport

The viewlx)rt displays a perspective wire-frame rendering of the current world as seen through

one of several cameras. By mousing the objects in the viewport, the user can command a variety

of actions. The user can view the world from any angle and position by moving the camera that

is currently generating the image which is seen in the viewport. The user can select a view from

a variety of cameras. The viewport has the ability to perform graphic hither-clipping, a

technique in which objects which are too close to the camera to be rendered correctly are deleted

5O



Plannin_ and Reasonin_ in the JPL Telerobot Testbed

from the scene. The use of hither-clipping allows the user to place the camera as close to an

object as desired, even though that would require placing the camera within another object; the

object which is in the way of the camera is then clipped from the scene and not drawn. The use

of additional graphic techniques is limited by the speed of the Symbolics computer.

Processor limitations of the Symbolics LISP Machine preclude a complete graphic rendition of

the world. For this reason, Audrey utilizes the simplest graphic representation possible.

Audrey's graphic window, the viewport, outputs a wire-frame drawing with perspective, and

can perform graphic hither-clipping, although with an order of magnitude decrease in

performance from non-hither-clipped drawing speed. Audrey utilizes multiple bit planes for

rendering its wire-frame scene. A single bit-plane is used for drawing those objects which cannot

move, another is used for those which can move, but are not doing so at the time. The third bit-

plane is for the object, or objects, which are being animated. This third bit-plane can be drawn

on and erased from without disturbing the other objects in the world which have not changed

position. A fourth bit-plane is used for combining the first three before the image is placed upon
the screen for the user.

4.4.2.2 Tr_ Win0_)w

The user can browse through the database of objects by viewing the tree structure in the tree

window. Viewing the tree structure aids the user in understanding the physical relationships

between objects. Future implementations of the tree window will include the ability to view

additional information about the objects and their connectivity, and the ability to prune and

graft portions of the database.

4.4.2.9 Dial B_)x

The dial box window is a screen-based equivalent of a physical dial box. An actual dial box

typically consists of six to ten dial potentiometers which can be twiddled by the user. The

value of each of the potentiometers, which varies from zero to one, is read by the computer as

the current value of some scalar and then scaled to within some target range. If the dial has an

assigned relationship to the rotation of an object around its Z-axis, then value of the dial would

be scaled to be between zero and 360 degrees. Audrey allows each dial to be connected to any of a

variety of scalar values defined for the objects in the world.

Rather than use a graphic representation of a dial, Audrey implements a dial as a rectangle in

which is displayed the current value along with adjustment arrows for moving the value

higher and lower. Actual dials are not used because it is too difficult to track around a circle

with a mouse without paying undue attention to the computer screen. Through the dials, which

are called arrow gauges, the user can input exact values or adjust the current value up or down by

clicking on the adjustment arrows. Each click modifies the current value by a definable

resolution. Arrow gauges are clearly labelled with the name of the object and the scalar

characteristic which is being manipulated.

4.4.2.4 Warnings

The warnings window maintains a complete record of warnings and messages sent to the user.

This record can be reviewed at any time, except when a new warning is being presented. The

warning record scrolls to the end of the list of warnings when a new warning is being presented.

All warnings are time-stamped, and their origin is indicated by the sender.

51



Plannin_andReasonin_in theJPLTelerobotTestbed

4.4.23 |oint Gauges

Joint gauges are circular indicators which monitor all robot joints in the world. Joint gauges

display the current angle of the joint as well as its singularity and physical joint stops. The

joint gauge indicates violations of allowable values by displaying itself in reverse video.

4.4.2.6 LISP Listener

The LISP Listener allows the user a command-line access to the computer, and a complete

interpreted LISP environment. The LISP Listener is a window which is provided by the

Symbolics computer, and has run-time and interactive debugging.

4.4.2.7 Meatus

The menu windows are Audrey's choice facility. Menu selections are remembered, and the item

selected is presented as the default choice upon the next presentation of the menu. The user can

modify the family, face, and size of the font used for the menu text to suit personal taste. All

menu windows pop-up near the mouse location in response to either a user or a computer request.

4.4.3 Software Structure

Audrey's software is organized in several levels, which insures the necessary speed of

operation and the robust error trapping required for a useable computer program. Internal

routines are optimized for speed, with little error trapping; the graphics kernel and other

internal commands are part of this set. Those commands which are to be called from external

sources are designed to be more robust in error trapping while returning useful information under

a variety of error and non-error conditions. Generally for each internal command there exists an

external command. The correspondence between internal and external commands also exists for

menu commands. Menu commands are to be used only by the user at the Audrey console, and are

important for their effect, rather than for the information they return.

4.4.3.1 Graphics Kernel

A small kernel of graphics routines exists for drawing and erasing objects, and for moving objects

from bit-plane to bit-plane. Many of these routines can be applied to either a single object, or to

the object and all its descendents. An attempt has been made to make the kernel routines as fast

as possible. Since the Symbolics is a general-purpose computer, as fast as possible is not as fast
as desirable.

4.4.3.2 Internal (_gmman_i_

Internal commands do not attempt to trap for errors in the arguments which are passed to them.

Rather, internal commands are designed to be called from either a menu, which is guaranteed to

pass the correct arguments, or from an external command which performs error trapping.

4.4.3.3 External Commands

The primary purpose of external commands is to be called from another program running on the

same computer, perform error trapping, execute the requested action, and return any useful

information about the result of the command. Information queries, such as those for the position

of an object, are also handled through external commands. Should the mouse cease functioning

52



Plannin_andReasonin_in theJPLTelerobotTestbed

for any reason, the user at Audrey's console can operate the program completely from the

keyboard.

4.4.3.4 Menu Commands

Menu commands form the majority of the user interface. Two methods of menu interaction are

possible: Object-Action-Confirm and Action-Object-Confirm. In the first case, the user indicates

an object for consideration by clicking on any vertex of the object as it appears in the viewport

window. After indicating the object with which to work, the user chooses an action from a menu,
and is asked to confirm his choice. This method of interaction is not always desirable, either

because of personal preference, or because the object which we want to perform an action upon is

not visible in the viewport window. The second method of interaction requires the user to select

an action from a menu, then indicate the object to which the action is to apply. Execution of the

action is made only after user confirmation.

4.4.4 Modeling

4.4.4.1 Objects

Audrey utilizes a simple scheme for modeling three-dimensional wire-frame objects. Objects are

given case-insensitive names for external reference, as well as a pretty-name which is used for

internal reference. Conversion rules maintain the traceability between internal and external

object names. An example of a conversion rule would be the correspondence between the use of

underscores (_) and the use of hyphens (-) in object names; underscores are prohibited in the

names of objects used internally, and are converted to hyphens or spaces. An external reference

to an object may be made with hyphens, underscores, or spaces, depending on the most

convenient representation of the referencing system. External references are matched to internal

names by allowing for differences in the use of hyphens, underscores, and spaces. Integer indices

can also be used to refer to objects in place of object names.

Audrey also maintains information about the general category, the object's type, in which an

object resides. This type is used when an object must locate another object of a certain type in

order that relative data may be determined. For instance, when a robot end-effector receives a

request for motion, the end-effector determines its current position by locating the position of a

parent object which has the type "PUMA-SHOULDER-FRAME. The parent object with this

type is the object from which we determine the relative location of the end-effector.

Each object contains a reference to its parent object. The parent slot is a pointer to an object in the

database on which the first object is physically dependent. When the parent object moves, it

informs its children that they too must update their position. An object's children are simply

pointers, contained in a list, to the objects which are physically dependent upon the object. An

object can have many children, but only one parent. This is the standard tree-structured

database design.

The relative location of an object is contained in six independent scalar values. These values

represent the six-DOF of an object floating in space. Audrey models relative location along the

x-, y-, and z-axes, as well as rotation around these axes, yaw, pitch, and roll. Other

representations of the six-DOF are possible. These six values are also maintained in a

homogeneous transform, the cf-from-parent slot, for ease of computation. Several standard texts

are available for further information on homogeneous transforms.

53



Plannin_andReasonin_in theJPLTelerobotTestbed

Audreyalsomaintainsthepositionof eachobjectin referenceto theworld-base,theuniversal
coordinatesystem.Thecf-from-world-base for each object is also a homogeneous transform, and

is maintained to simplify computations. Any object's location in the world is computed by

multiplying the parent's position in the world and the location of the object relative to its

parent.

An object's appearance, the location of its vertices, is stored in a slot called va-from-cf as a

collection of points around the object's coordinate frame. The location of the vertices and the

connectivity of the vertices, called the edge-list, determine the appearance of the object. In

order to correctly draw the object in the viewport, we must obtain the location of the vertices in

world coordinates, from the object's va-from-world-base slot. This is accomplished by a simple

matrix multiplication of the object's location in world and the location of the object's vertices

with respect to the object's coordinate frame.

When an object is drawn on the graphics screen, its appearance is stored so that the user may use

it to perform activities by clicking on the object in the graphics window.

The current-visibility of an object can be modified under user control, and the default-visibility

of an object is stored so that the original visibility of the object can be reinstated.

Audrey utilizes multiple bit planes in order to speed up graphic animation. Objects which are

always stationary will never be redrawn or updated unless the camera is moved. These objects

are drawn to a separate bit plane to maintain their graphic quality. Objects which are

moveable, but aren't currently moving, are drawn to a separate bit-plane. Objects which are

currently undergoing animation are drawn to a third bit-plane since these objects are often re-
drawn.

Objects which are moveable have their motion described in parameterized functions which can

be applied to the object. For instance, if an object is to slide along its x-axis, then a function can

be applied to it which allows that motion. These parameterized functions are stored in a

structure called a port which contains other information about the function, such as how to read

and how to change the current value of the parameter. A collection of ports can be stored in an

object's port-list.

4.4.4.2 Dfvi_f_

A device is a list of object-port pairs which describes a linkage which is to move in a

coordinated manner. A Unimation PUMA 560 manipulator is a device which consists of a

variety of manipulator links and the movement methods which describe the articulation of the

manipulator. In the case of a robotic manipulator, there are several methods by which the

device can be manipulated. The manipulator may be controlled through its joints or through the

end-effector. End-effector motion can occur with respect to a variety of coordinate frames such

as world, tool, end-effector, or a defined task frame.

4.4.5 Communication Links

A large part of Audrey's role in TIPS is that of coordinator amongst the various computer

programs which make up the system. Audrey accepts commands from the task planner,

simulates actions for the user, and queries other computers and computer programs for
information.

54



Plannin_ and Reasonin_ in the JPL Telerobot Testbed

4.4.5.1 Task Planner Interface

Audrey accepts requests for simulation from the task planner (RMS), and returns an indication

of the success or failure of the requests. The most generic simulation request is for the motion of

the manipulators. The task planner stores only the names of points to which it would wish to

move; if it is necessary to move toward the vicinity of a screw, then the planner would command

a move to a point in space called 'SCREW-VICINITY. Audrey can parse this name, breaking it

down into its constituent parts, converting the semantic label to a set of numeric values which

describe the manipulator position which satisfies the requirement of being in the vicinity of

the screw. The task planner can also send sequences of semantic names which represent a path

through space which takes the manipulator to a required end-point. Each time a motion is

requested by the task planner, Audrey analyzes each position of the path to determine the

kinematic feasibility of the command. The motion is determined to be kinematically feasible if

each point in the path can be traversed without changing the pose of the arm.

A variety of other commands are also passed to Audrey for simulation which involves grasping

and moving objects. These commands are simulated by a series of procedures which emulate the

function of the RTC subsystem.

4.4.5.2 Spatial Planner Interface

CENTER is responsible for finding manipulator paths for the gross motions which are passed to

Audrey by the task planner. Gross motions are those large motions which take the manipulator

from one location to another without performing any other significant purpose. For instance, the

task planner will command a move from the manipulator's safe-home position to a location

which is in the vicinity of a tool. This gross motion is then followed by a command to grasp the

tool. Moving to grasp is not a gross motion.

Audrey converts the task planner's request for manipulator motion into a request to the spatial

planner for a path from the current location of the manipulator to those configurations which

satisfy the requested end-point of the motion. The spatial planner returns a path, if one is

found; otherwise, no path i_ returned. The returned path is then simulated in the viewport

window, and is an indication of the success of the request action. Should the spatial planner

fail to find a path, a failure of the requested action is assumed.

When the Spatial Planner is activated, motion commands from the Task Planner for a

particular arm are converted by Audrey into a request to the spatial planner for a manipulator

trajectory. The Task Planner stores only the names of Cartesian space locations for the end-

effector so that it can command motions to the appropriate location for a task. These names are

then matched to the eight possible PUMA configurations which satisfy the Cartesian location

of the end-effector. The configurations of the arm which violate joint stops and reach

limitations are pruned from the goal point set, and the remaining possibilities are sent to the

spatial planner as the possible goal positions of the arm. The current joint values are read from

the simulator and output to the spatial planner as the start position of the arm. Should the

Spatial Planner be unavailable, and should the motion request from the Task Planner

necessitate a pose flip, the user is prompted to design the path through the pose flip. The user

can replace the Spatial Planner in order to more closely supervise autonomous operation.

55



Plannin_andReason/n_;in theJPLTelerobotTestbed

4.45.3 Run-Time Controller

Since active use of the robotic hardware by TIPS has not yet been possible, Audrey has been

used as a simulator of the RTC subsystem. This allows us to simulate some of the expected

failures in a real robotics world. Commands such as Get-Tool are provided to TIPS by the RTC

subsystem as macros. The RTC subsystem is responsible for expanding a Get-Tool command into

its component steps: Compliant Move, Grasp, Compliant Move. Audrey simulates the success of

a Get-Tool command by performing a kinematic analysis on its expanded motion sequence. Other
failure tests can also be conducted.

4.4.6 Telerobot Testbed Interface

An operator is able to control many aspects of the Telerobot through Audrey's display screen. A

variety of menu picks are defined which set variables or command actions in the various

subsystems. The operator has a menu command for each of the commands which the task

planner is capable of planning; a command dictionary provided by the Run-Time Controller

provides the capabilities for both the operator and the task planner. Subsystem menus are also

provided to set modes of motion for the teleoperator and set gains on the FRHCs. All such menu

commands cannot possibly be defined on an a priori basis; Audrey provides an interface by

which any subsystem can request that the operator make a menu pick. The pick is then sent back

to the requesting subsystem.

4.5 LESSONS LEARNED

4.5.1 Abstraction for Real Time Processing

Both RMS and CENTER are fast at execution time. This is due to the fact that each utilizes a

model in its reasoning domain which is abstracted from a more complete and precise description

of the world. CENTER derives its model of free-space automatically (off-line) from geometric

models of the workspace; RMS' models of satellite structure and the robot are coded by hand.

Research is proceeding in developing task plans directly from geometric and Computer-Aided

Design (CAD) models, but current prototypes are very slow. Such systems would best be used as

off-line preprocessors, analogous to CENTeR's graph generator, to build abstracted data

structures to drive run-time execution. The use of abstractions is one effective way to improve

run-time performance.

4.5.2 Limited-Domain Reasoning

A common problem encountered in applying AI technology is that reasoning engines which

worked on over-simplified versions of the problem bog down when realistic complexity is

attempted. Such realistically complex systems also become difficult to maintain. TIPS consists

of several reasoning engines which work in very limited domains, but which collectively get

the job done. This strategy was not explicitly chosen at the outset, but proved to work well.

4.5.3 Errors as Normal, Expected Behavior

One of the most interesting aspects of RMS is that it can recover from errors without doing deep

reasoning about what caused the error. Rather than spending a vast amount of time developing

more complex modeling, model updating, and reasoning for feed-forward planning, much less

time was spent on making the overall system tolerant of errors. The resulting performance was

well beyond expectations.

56



Planning; and Reasonin_ in the JPL Telerobot Testbed

4.5.4 Separation of "What" and "How"

An early RMS design decision, the separation of planning what should be done in the task-

space regardless of agent, from planning how a particular robot should do it, appears to be

appropriate.

4.5.5 Steady Target

During the past three years, JPL Telerobot Testbed objectives have changed and target
demonstrations have been re-defined and re-scheduled several times. Although this is

necessary adjustment for integrating a system of emerging research products, such fluctuation can

hinder research. The SARG target of planning the servicing of a Solar Maximum-like satellite

was maintained throughout the same three-year period and the consistency of vision was

rewarded by the success of TIPS.

57



Plannin_ and Reasonin_ in the JPL Telerobot Testbed

5 RESEARCH CONTEXT

5.1 CONTINUING RESEARCH

5.1.1 Architecture: Reasoning Engines, External Devices, and Tasking

The control structure for the current version of TIPS is simple but adequate. As more reasoning

engines are added, and to accommodate greater data flow from sensors, the TIPS control archi-

tecture must be updated (figure 13). Software falls into three categories: external interface sup-

port, knowledge coordination, and domain-specific reasoning engines. The knowledge

coordinator will manage tasking. Higher speed collision detection than now exists will be

performed on a special-purpose machine. New reasoning engines (listed below) resulting from
research will be added.

External

Knowledge

Interfaces

Collision

Operator Detection OCS/RTC

1 _::ii [ iliii i:i::iii:i] :.if: ii
Consoe /i_ ! Serial Line I ii! Ethernet I

11 Knowledge Coordinator

i: i :i: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

Kinematic Spatial Task [ IReasoning Simulation Planning Planning Diagnosis

Engines i!_.i,iii ! iiiii_ii!i:iiiiiii:ii :ii i i ! !i

CENTER i

Figure 13. Current TIPS modules and the extended TIPS architecture.

5.1.2 Compliant-Manipulation Planning

The RTC demonstration in FY88 included the opening of a door. Because of kinematic

constraints, the entire operation could not be performed from a single grasp. Instead, one arm

opened the door part way, and the other arm opened it the rest of the way. This hand-over-

hand method of dealing with the door-opening problem was designed by the researchers setting

up the demonstration. A robust system would be able to use one arm to open the door

automatically.

Indeed, a robust planning system should be able to do anything a human programmer could with

the same commands. To this end, a brief investigation was made into extending RMS to be able

to do this subdivision of a single operation into component pieces. The dynamic interactive

character of RMS seemed suited to this task. It is not clear whether the best approach is to

extend RMS to do this, or to develop an independent reasoning engine.

It should be noted that there is some interaction between this problem and that of overall

positioning of the telerobot relative to the work-space.

58



Plannin_andReasonin_in theJPL Telerobot Testbed

5.1.3 Operator Plan-Editing Interface

The version of TIPS that was demonstrated had the servicing goal hard-wired in. Although

the engine was tested with various goals, both single and multiple, the operator interface was

not developed.

Stage One of RMS produces a partially-ordered graph of sub-goals. An interactive graphics

display which would allow addition, deletion, re-ordering, and forced ordering of initially

parallel sub-goals needs to be developed. Some initial design work for such an editor has been
done.

An analogous interface to Stage Two of RMS is also needed. This would be an interface to tags on

the world knowledge, which would allow the operator to constrain the planner to favor a

particular arm or tool, for example.

ART provides output-only displays in its environment, but better interactive capabilities are
needed.

5.1.4 Spatial Constraints for Redundant Control

Redundant manipulators have more than 6 joints which determine the 6 parameters of position
and orientation of the end-effector. There is an infinite number of inverse kinematic solutions.

Control of such manipulators is an active area of research.

Homayoun Seraji of JPL is leading a team investigating the use of spatial constraints imposed

by nearby obstacles as additional parameters to complete the specification of manipulator

control. Investigations also include the use of inequalities in representing these spatial

constraints. Rich Colbaugh and Kristin Glass of New Mexico State University and members of

SARG are participating in this research.

This research has some interesting implications for robot control architectures because it links

high-level spatial planning directly to low-level servo control.

5.1.5 Space Operations Planning and Telerobotic Task Planning

Before telerobots will be utilized in space, their activities must be integrated into space

operations plans. Such planning is driven by resource constraints such as power, crew, and

communications links. Recent research has resulted in a planner-scheduler called Plan-IT. Plan-

IT has been put to use for Deep Space Network and Spacelab scheduling [G2], and a derivative

is under development as part of JPL's multi-mission Space Flight Operations Center.

One possibility under consideration is to replace RMS' Stage One with a planner of this type.

This NASA-specific research into integrating Space Operations and Telerobotic Task Planning

must be done to support flight telerobot operations.

5.2 FIELD TRIPS

During FY88, TIPS developers visited several facilities to learn first-hand about teleoperation

and satellite servicing. Here are observations from these tr/ps.

59



Plannin_ and Reasonin_ in the ]PL Telerobot Testbed

5.2.1 JPL Teleoperation Laboratory

The most striking impression from performing teleoperation is the lack of the perception of the

violence at the task board, even with force reflection. Although the cameras, force-torque

displays, and the force reflection show when resistance is encountered and that the task board

is being shaken, the operator does not fully sense the violence. The strongest indication was

through vibrations felt through the floor.

With force reflection, one can, with no prior experience, pick up the hand controllers and

successfully perform a high-precision insertion task -- even without becoming fully acclimated

to the live video points of view.

Changing arm poses (such as from elbow down to elbow up) is awkward. It is also not easy to

monitor the robot elbow to be sure of avoiding collisions.

5.2.2 The National Bureau of Standards

The goal of the automated factory at NBS is to be able to autonomously and cost-effectively

manufacture small batches of parts. This problem differs from NASA's space telerobotics

problem in several ways.

At NBS, the part is brought to the tool whereas for satellite servicing, the tool is brought to

the part. Much of the telerobot problem is the planning of manipulator motion, application of

force, and manipulability. All of this is pre-determined at most of the NBS stations.

The requirements for error detection and recovery are very different. The NBS line (when fully

operational) monitors the drift of precision of the machined parts and anticipates when a

cutting tool needs to be replaced.

The specifications of the work-space itself are under the control of the NBS line, while the
NASA satellite comes as-is and often differs from available CAD models.

The number of sensors integrated into the NBS factory is striking. This suggests that to succeed

with autonomous operations, even in significantly controlled environments, many sensors are

required.

The NBS vision system anticipates the two-dimensional image and looks for it. This is very

different from the JPL system. JPL currently has no path for communication of visual context,

which might be known or planned by a planner, to the vision algorithms.

One point in common is that both JPL and NBS seek to complete an overall job rather than

isolated specialized tasks. This is in contrast to most robotics research.

5.2.3 Computer Technology Associates

Computer Technology Associates (CTA) is the company that planned the EVA servicing of the
Solar Maximum satellite.

The biggest part of the job was coping with the mass of documentation and the various NASA

bureaucracies. Extremely detailed plans and procedures had to be worked out in advance. Many

teams at different locations had to be coordinated: crew, satellite control, ground EVA

simulation, and shuttle operations control.

6O



Plannin_ and Reasonin_ in the JPL Telerobot Testbed

At the time of performance of the servicing operation, the biggest problem was fitting into the

overall schedule, crew time being the tightest constraint. Other driving constraints were

thermal, contamination, and power.

Many unanticipated failures occurred during the operation, and re-planning was necessary to

recover. CTA had structured their servicing plan into blocks of activity which could be

relocated within the overall shuttle operations plan. They stress that the duration of the

planned activities must be modeled.

Notice that none of this is yet covered in telerobotics research.

5.2.4 Oak Ridge National Laboratory

Teleoperation is used in hostile environments, currently for undersea oil drilling and the

handling of nuclear materials.

The Oak Ridge National Laboratory (ORNL) teleoperator for nuclear fuel reprocessing requires

two operators: one controls the two manipulator arms; the other controls the transport, which
moves the entire robot, and a hook, which holds the weight of heavy objects. The two operators

are positioned where they can see each other; during operation there is a significant amount of

communication between them as they coordinate their activities.

The objects being manipulated are all heavy-gauge stainless steel. Nothing is fragile. The

operator often will cause the arms to bang into things. A microphone in the workspace provides

the best sense of the crashing going on. The operators like force reflection, but it is not yet

baseline. Stereo video gives the operators headaches, so they prefer separate views. It takes

only two weeks to become proficient with the system.

When asked what autonomous capability would make their work easier, the operators said an

automatic tool swap would be very helpful.

The facility is used to test the design both of the manipulators and of nuclear plant hardware.

The system is not operational. For this reason, there is no real need for a task planner. The

operator interface is simple, providing a complete, though small, set of capabilities.

One characteristic of space teleoperations is that spacecraft are extremely fragile: collisions

during teleoperation must absolutely be avoided. For undersea and nuclear applications,
collisions occur all the time and are part of normal operations; collisions actually provide

spatial feedback to the operator. Only NASA truly needs spatial planning.

61



Plannin_andReason/n_in theJPLTelerobotTestbed

6 TIPSANDNASREM
The National Bureauof Standards,together with GSFC,
architecturefor robotic system design, called NASREM [P5].

has developed a standard

6.1 MAPPING OF TIPS ARCHITECTURE INTO NASREM

TIPS is a high-level task planner with execution and operator interfaces that map into several

modules within NASREM (figure 14).

Sensor World Task

Global Processing Model Decomposition Operator

Memory Interface

I • I IW [---

_ Service Bay
I • I I r--" ............................. n

Task

E-Move

Prim

t '_ Servo

Sense Action

RMS Stage One

RMS Stage Two

| Audrey

CENTER

Figure 14. Mapping of TIPS modules into NASREM.

RMS Stage One functionality falls within the NASREM Task level Task Decomposition

module. RMS Stage Two functionality falls within NASREM E-Move level Sensor Processing,

World Model, and Task Decomposition modules. CENTER functionality falls within NASREM

E-Move level World Model and Task Decomposition modules. The Audrey operator interface

functionality falls within the NASREM Operator Interfaces to the Task Decomposition
modules at the Task level and the World Model modules at the Task and E-Move levels. The

Audrey knowledge coordinator implements the communication between modules. NASREM
global data is distributed among the TIPS modules.

6.2 DISCUSSION, DIFFERENCES, AND ISSUES

6.2.1 High-Level Planning

Both TIPS and NASREM separate planning what needs to happen to the object being serviced
from planning how the robot should do it: TIPS into the two RMS stages; NASREM into the

Task and E-Move levels. This is the clearest parallel between the systems.

62



Plannin_ and Reasoning; in the JPL Telerobot Testbed

6.2.2 Partitioning of Planners and Executors

NASREM divides each Task Decomposition level into three sub-levels: manager, planner, and

executor. TIPS is different. Consider RMS Stage Two. It is a single engine, a planner-executor. At

the NASREM E-Move level, it receives goals from the higher level and sends commands down

the JPL Telerobot Testbed hierarchy to RTC. RTC completes any necessary E-Move level

compliant motion planning.

An interesting feature of RMS is that Stage One passes Stage Two an unordered collection of

goals to be achieved. Stage Two looks at the current world state and decides which goal to

pursue. Insofar as it is choosing which goal it wants to work on, it is a planner; insofar as it

works on a goal given to it from a higher-level planner, it is an executor.

6.2.3 Feed-Forward Hierarchy and Feedback Loops

In general, NASREM describes feedback indirectly. Planners within Task Decomposition

modules are shown as feed-forward engines; plans are fed forward to executors; and commands

are passed down from higher-level modules to lower-level ones. Feedback is carried out

through the world, sensor processing, and the world model.

For high-level planners, feedback loops incorporate many modules. It is not clear how effects in

the world model are to be correlated with planned actions which caused them.

In the JPL Telerobot Testbed system hierarchy, feedback is hierarchical, like it is in software

subroutine calls. Here the mechanism of correlation is clear, but the handling of unexpected

events in the world requires bottom-up initiation, in violation of the hierarchy.

Articulation of feedback loops in the system architectural design ensures that both of these

issues are addressed.

6.2.4 Partitioning of Space and Time

NASREM provides for parallel planners within a module and describes them as planning

activities in different regions of physical space. If these planners are to work together toward

solving a single planning problem, coordinating side-effects between the planners could be
difficult.

TIPS also has multiple planners working together to build executable plans. These, however,

plan for different knowledge domains: RMS handles semantic obstruction; CENTER handles

physical path construction; Audrey handles kinematic feasibility; and RTC handles collision

detection. All participate in planning arm motion, yet there is little overlap in the actual

parameters they are concerned with.

Also note the differences in the depiction of the architecture containing these multiple

planners: NASREM shows a tree while TIPS shows a loop.

6.2.5 Simulation

The handling of simulation in the two systems is somewhat different. The closest thing to

simulation in NASREM is the prediction performed by World Model modules. Execution is

performed by levels of Task Decomposition modules. In the JPL Telerobot Testbed hierarchy,

63



Plannin_andReasonin_in theJPLTelerobotTestbed

the samecommandsand commandpathcanbeusedboth for simulationand execution.
Associatedconfigurationparametersdeterminewheresimulatorstaketheplaceof execution.

TIPSmakes extensive use of simulation. The CENTER map of free-space is constructed by

simulating arm positions and resultant collisions. Audrey allows the user to simulate, command

the actual robot, or both. Simulation allows the operator to preview a planned action or to

verify the correctness of the knowledge base.

RTC also simulates all manipulator motions before executing them.

There is no explicit mention of simulation in NASREM, although simulators will be needed by

planners and the operator.

6.2.6 Global Data Base

NASREM specifies a global data base. The passing of messages between directly communicating

modules can also be implemented through postings in the global data base. The image is of a

single, integrated knowledge base to which all modules have direct access.

TIPS implements a distributed knowledge base. Reasoning engines have direct access only to

those parameters they understand. The Audrey knowledge coordinator passes messages among

reasoning engines and activates appropriate auxiliary engines to perform needed conversion and

completion. When RMS issues a command to move an arm, there is insufficient detail to form a

command to RTC, so the Audrey kinematic simulator and CENTER are each called to fill in

missing details. This approach attaches a computing entity to the execution loop, which in turn

facilitates incorporation of facilities for monitoring and intervention by the operator or other

agent.

A similar distributed knowledge approach is used throughout the JPL Telerobot Testbed

architecture. Overall geometric characteristics of objects are shared by S&P, RTC, and TPR

subsystems, but each is interested in details which don't concern the others: S&P computes

apparent edges of slightly rounded physical edges, RTC maintains object frames in such a way

that simple moves can be represented by pure translations or rotations, and TIPS' Task Planner

(RMS) is concerned with semantic relationships among objects. It is not necessary that all

parameters be available to all reasoning engines.

There is another consideration which favors the distributed approach. Different parts of the

system need to access and update data at different rates. A distributed system allows high-

rate, low-volume data and high-volume, low-rate data to be maintained on different media.

When coordination of a distributed database is achieved, the database functions as if it were a

single global data base.

64



Plannin_andReasonin_in theJPLTelerobotTestbed

ABOUTTHEDOCUMENT

The text of this documentwas createdwith Microsoft Word version4.0 on an Apple
MacintoshII. Thefigureswerecreatedin MacDraftandMacDraw.The font used was Palatino

in the ten and twelve point sizes.

65









1. Report No. 90-37

4. Title and Subtitle

Planning and Reasoning in the

JPL Telerobot Testbed

7. Author(s) Stephen Peters, David _ittman, Carol Collins,

TECHNICAL REPORT STANDARD TITLE PAGE
III

2. Government Accession No. 3. Recipient'$ Catalog No.

5. Report Date
September 15, 1990

6. Performing Organization Code

8. Performing Organization Report NO.

Jacquie O'Meara I Mark Rokey

9. Performing Organization Nomeond Address

JET PROPULSION LABORATORY

California Institute of Technology

4800 Oak Grove Drive

Pasadena, California 91109

12. Spom_ing Agency Name and Addre_

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546

I0. Work Unit NO.

11. Contract or Grant NO.

NAS7-9i8

13. Type of Report and Period Covemd

JPL Publication

14. Sponsoring Agency Code
B-055-00-00-00-00

15. Supplementary Notes

16. Abstract

The Telerobot Interactive Planning System is being developed at the JetPropulsion

Laboratory to serve as the highest autonomous-control level of the Telerobot

Testbed. This publication describes a recent prototype which integrates an operator

interface for supervisory control, a task planner supporting disassembly and

re-assembly operations, and a spatial planner for collision-free manipulator motion

through the workspace. Each of these components is described in detail. Descriptions

of the technical problem, approach i and lessons learned are included.

17. Key Wor_ Gelec_d by/_uthor_))

Astronautics (General)

Cybernetics

18. Distribution St_ement

Unclassified_ unlimited

19. Security Clmsif. _f this repot)
Unclassified

20. Sec_ityCla.if. _f thh page)
Unclassified

21. No. of Pages
73

22. Price

JPI.. 0184 R 9/83





_..--,,--.m.,mmm_




