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Abstract

A tropical Pacific Ocean General Circulation Model (OGCM) to be used in satellite data

assimilation studies is described. The transfer of the OGCM from a CYBER-205 at NOAA's

Geophysical Fluid Dynamics Laboratory to a CRAY-2 at NASA's Ames Research Center is

documented. Two 3-year model integrations from identical initial conditions but performed on

those two computers are compared. The model simulations are very similar to each other, as

expected, but the simulation performed with the higher-precision CRAY-2 is smoother than

that with the lower-precision CYBER-205. The CYBER-205 and CRAY-2 use 32 and 64-bit

mantissa arithmetic, respectively.

The major features of the oceanic circulation in the tropical Pacific, namely the North

Equatorial Current, the North Equatorial Countercurrent, the South Equatorial Current, and the

Equatorial Undercurrent, are realistically produced and their seasonal cycles are described. The

OGCM provides a powerful tool for study of tropical oceans and for assimilation of satellite

altimetry data.
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1 Introduction

Over the next decade, many initiatives in remote sensing of the ocean are planned. The

European Space Agency ERS-1 satellite will be launched in May 1991. The

TOPEX/POSEIDON altimeter mission is scheduled for launch in the middle of 1992, and more

altimeter missions are planned in the NASA Earth Observing System (EOS) program. These

altimeter missions will provide precise and accurate measurements of sea surface height for

many years.

Satellite altimeter data, however, only measure information on the ocean surface.

Techniques have to be developed to extrapolate surface information throughout the ocean

interior. This is achieved by assimilating satellite measurements into Ocean General Circulation

Models (OGCMs). The objective of the data assimilation is to obtain dynamically consistent,

three-dimensional distributions of oceanographic variables throughout the ocean. The resulting

synoptic description of the ocean is essential for the understanding of ocean circulation and the

assessment of global climate change.

Oceanic data assimilation is still in its developing stage and there are few analyses of

OGCM simulations combined with assimilation of data (Ghil and Malanotte-Rizzoli, 199 I).

Techniques for oceanic data assimilation are mostly confined to simple oceanographic models

(e.g., shallow-water model or quasi-geostrophic model), which do not adequately describe the

flow and thermal fields in tropical oceans. Preliminary assimilation experiments of oceanic in

situ measurements with OGCMs have been started in the Pacific (Derber and Rosati, 1989;

Leetmaa and Ji, 1989) and in the Atlantic (Morli_re et al., 1989; Carton and Hackert, 1989).

Satellite data assimilation is currently under way in a joint project at the Jet Propulsion

Laboratory and University of California, Los Angeles. The project addresses a major question:

to what extent can the assimilation of satellite sea surface height measurements improve the

simulation of oceanic circulation by OGCMs?

The purpose of this report is twofold: (1) to give a brief description of the OGCM, and

(2) to document the transfer of the OGCM from a CYBER-205 at NOAA's Geophysical Fluid

Dynamics Laboratory (GFDL) to a CRAY-2 at NASA's Ames Research Center.

2 Description of the Ocean General Circulation Model

The GFDL OGCM was selected for satellite data assimilation because it can produce

realistic simulations of current and temperature distributions in the tropical oceans. Over the

past twenty years, the GFDL OGCM has undergone continuous improvement and is currently

widely used in the U.S., Europe and Japan. A modified version of the GFDL OGCM

(Philander et al., 1987) played a very important role in recent developments of dynamic

oceanography in tropical oceans. This OGCM was first to produce a successful simulation of

the E1 Nifio Southern Oscillation phenomenon (Philander and Seigel, 1985; Philander et al.,



1990). A version of this model is operationally run at NOAA's National Meteorological Center

(NMC); the model output is published each month in the Climate Diagnostic Bulletin, which

provides a continuing description of monthly oceanographic conditions in the tropical Pacific.

The GFDL OGCM, in one form or another, is expected to play a central role in the Tropical

Ocean and Global Atmosphere (TOGA), World Ocean Circulation Experiment (WOCE), and

EOS programs.

2.1 Governing equations

Developments of GFDL OGCM started more than two decades ago. Since then, the

model has been used to study some of the most basic aspects of large scale, baroclinic oceanic

circulation. A description of the model physics and numerical methods was published by

Bryan (1969), and the model code was described by Cox (1984). The model is based on the

primitive equations with the Boussinessq and hydrostatic approximations. The model's

prognostic variables are the zonal velocity component (u), meridional velocity component (v),

temperature (T), and salinity (S). The model's diagnostic variables are vertical velocity

component (w), pressure (P) and density (p). The governing equations of the model are

_- + r(u)- +2fin v = -ma-lp-t _- + _z (---_u') + Fx, (la)

_gv (utan¢ ) _a_,p_,DP D_-+ F(v)+ -a + 2Daa u = _-_ + _zz (---wT_v') + F,, (lb)

_-t + r(w) = _ + F_, (lc)

_-t + F(S) = _ + Fs, (ld)

r(1) = 0, (le)

_P
- pg, (If)

_z

p = p(T, S, z), (lg)

where X is longitude, _ is latitude, z is depth, a is radius of the earth, g is gravitational

acceleration, t'l is angular velocity of the earth, m=sec_, and n=sin_. The coordinate

directions X, _ and z are towards east, north and upward, respectively. The three-dimensional

advection operator is defined as

a-1 _ _zr(.) = ma-' _(ug) + _(vg) + (wg),
(2)
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whereI.trepresentsu, v, T or S. The horizontal friction terms are

= AM.V'u+a-2(1-ta 2*)u-2m na-  ,

F. =Au. V2v+a-2(a-t, an2¢)v-2m2na-2_ - ,

(3a)

(3b)

F T = ATHV2T, (3c)

F s = ATrlV2S, (3d)

where AMH and A.rH are the coefficients of horizontal eddy viscosity and diffusivity, and

V2_ = m2a_2 _21.t _(m_l _kt)_- + ma -2 _)# _, _ . (4)

The equation of state is expressed by an empirical polynomial fit to the Knudsen formula

described in Bryan and Cox (1972).

2.2 Subgrid-scale parameterizations

In the governing equations (la) - (lg), the u, v, w, T, and S represent ensemble mean

variables, which are resolved on the model grid, the primes represent subgrid-scale turbulence

fields, and overbars represent ensemble means of subgrid-scale turbulence fluxes. In order to

solve the governing equations, turbulent fluxes, i.e., w' u', w'v', w'T', and w' S', have to

be parameterized. The first-order turbulence closure scheme assumes that

w' A' = -K z bA (5)

where A represents u, v, T or S, and K z is the vertical eddy exchange coefficient. In the early

version of the GFDL OGCM (Bryan 1969; Cox 1984), K z was assumed to be a constant. This

scheme of constant vertical mixing has problems when it is applied to tropical oceans, because

the model-simulated ocean is highly sensitive to the K z value (Philander and Pacanowski,

1980; Semtner and Holland, 1980). For example, although the vertical resolutions in these

two models are comparable (16 levels in Philander and Pacanowski model and 14 levels in

Semtner and Holland model), the Equatorial Undercurrent core speed simulated by the constant

vertical mixing model varies from 0.5 m sl in an OGCM with Kz=l.0x 10 -3 m 2 s 1 (Philander

and Pacanowski, 1980) to 1.0 m s -1 in an OGCM with Kz=l.5x 10 -4 m 2 s -1 (Semtner and

Holland, 1980). The observed core speed of the Equatorial Undercurrent is about 1.0 cm s -1

according to Halpern (1987). The main reason for the Equatorial Undercurrent simulated in

Semtner and Holland model to attain the core speed of 1.0 m s1 is the small vertical eddy

viscosity.
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Measurementssuggestedthat the vertical eddy viscosity varies considerablyin the
tropicaloceans(Halpern,1980). Given theseconsiderations,a morerealistic formulationof
thefirst-order turbulence closure scheme should assume that K z depends upon the Richardson

number, Ri, which takes into account the vertical gradient of temperature and vertical shears of

currents. The Richardson number is defined as

Ri = (6)

where 13is the coefficient of the thermal expansion of water and is given as

13= 8.75 x 10 -s (T + 9), (7)

and T is the temperature in degrees Celsius (°C). Pacanowski and Philander (1981)

formulated the vertical mixing coefficient as an empirical function of Richardson number, given

as

Kz = Ko + Yo , (8)

(1+ aRi )n

where Ko=1.34× 10 .6 m 2 s 1, _,o=5.0× 10 .3 m 2 s -1, a=5, and n =2. Given this formulation,

Philander et al. (1987) showed that tropical oceans can be simulated with a realistic Equatorial

Undercurrent of 1.0 m s-1 core speed.

Parameterizations of the constant vertical mixing and Richardson number dependent

mixing both belong to the first-order turbulence closure scheme. Whatever the empirical

formula of Richardson number is chosen, the turbulence fluxes are always assumed to be

locally related to the mean gradient described on the model grid. The subgrid-scale turbulence

fields, such as the diffusion of turbulence kinetic energy, are neglected.

Rosati and Miyakoda (1988) have adapted a second-order turbulence closure scheme for

the GFDL OGCM. This scheme, which corresponds to the level 2.5 turbulence closure

scheme developed by Mellor and Yamada (1973, 1982), includes the turbulence kinetic energy

as a prognostic variable. Model results with this second-order turbulence closure scheme

showed a better simulation of the mixed layer in tropical oceans. However, the model

simulation showed an Equatorial Undercurrent about 50% weaker than that observed. This

deficiency could be partly due to the vertical resolution in the Rosati and Miyakoda (1988)

model, where there are only 9 levels in the upper 317 m compared to 18 levels in the Philander
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et al. (1987) model. Comparison studies of the second-order turbulence closure scheme and

Richardson number dependent mixing are currently under way (C.-C. Ma, personal

communication, 1990).

2.3 Boundary conditions

At lateral walls, a no-slip condition is applied. No flux of heat and salt is allowed on the

east and west boundaries. Poleward of 20.15°S and 32.26°N, the temperature and salinity are

relaxed to the climatological seasonal values (Levitus, 1982). In these regions, the temperature

and salinity equations, (lc) and (ld), include an extra term of e(I.t-l.t*), where p.* is the

climatological value and e is a Newtonian damping coefficient. The values of e depend upon

latitude and are given in Table 1. This treatment mitigates the effect of artificial zonal walls

along the southern and northern boundaries.

At the surface, a rigid lid approximation is made where vertical velocity is zero. The rigid

lid assumption filters out high speed external gravity waves. The wind stress acts as a body

force to the first layer of the model. The heat flux (HF) across the air-sea interface is given as

HF = SW - LW - QS - QL, (9)

where SW is short wave radiative heat flux, LW is long wave radiative heat flux, QS is

sensible heat flux, and QL is latent heat flux. The short wave incoming insolation SW is taken

to be 242 W m d equatorward of 20 ° latitude, and to decrease linearly to 145 W m -1 between

20 ° and 45 ° latitude. The outgoing long wave radiation LW has a constant value of 56 W m -1.

The sensible and latent heat fluxes are calculated using the model-simulated sea surface

temperature and the prescribed surface air temperature.

QS = P,CDCpIV](To-T.) (10)

and

QL = pCDLI I[Eo - ](0. 622 / 1013.25), (11)

where Pa is density of air, CD is the drag coefficient and equal to 0.0012, I_1 is surface wind

speed, Cp is heat capacity, T o is sea surface temperature (°C), T a is surface air temperature

(°C), L is the latent heat of evaporation and equal to 2.5× 10 6 J kg 1, and the mixing ratio _ is

fixed as 0.8. The saturation vapor pressure, E, is

E o = 109.4-2353/'I"o, (12)



Ea = 10 9"4-2353/Ta . (13)

2.4 Model design

The governing equations, along with their boundary equations, are solved numerically by

finite difference techniques with a staggered "B" grid configuration (Arakawa, 1966), as

shown in Fig. 1. The time differencing is centered. The model domain covers the Pacific

Ocean from 30os to 50°N with realistic coastal geometry, as shown in Fig. 2. The

longitudinal resolution of the model is 1° longitude. The latitudinal resolution is 1/3 ° latitude

within the equatorial band of 10°S and 10ON and increases gradually to 2.5 ° latitude at 30°S

and 50°N. The model ocean has constant depth of 4149 m. There are 27 levels in the vertical

with 18 levels in the upper 317 m (Table 2). The model time step is 1 hour. The CRAY-2 has

a peak speed of 1.8 billion floating-point operations-per-second (FLOPS). The version of the

OGCM described herein has an averaged speed of 90 million FLOPS on the 4-processor

CRAY-2 at Ames. It takes about 6 hours on a CRAY-2 to run one model year.

3 Comparison of model simulations on CRAY-2 and CYBER-205

In the numerical experiment to validate the transfer of the model code from GFDL's

CYBER-205 to Ames's CRAY-2, the Richardson number dependent parameterization is used.

The initial condition for the experiment consists of climatological-mean January distributions of

temperature and salinity (Levitus, 1982) with no currents. Climatological-mean monthly

surface wind stress and air temperature are used to force the model for 3 years. The surface

wind stress is that of Hellerman and Rosenstein (1983) and the air temperature is that of

objective analyses of the Comprehensive Ocean-Atmosphere Data Set (Oort et aI., 1987). The

model updates its surface boundary conditions at every time step, which are obtained by linear

interpolation from the two adjacent monthly means. Snapshots in the middle of each month are

used in the analyses presented in this section, and 3-day averaged values are used in the next

section.

The version of the GFDL OGCM on CYBER-205 used half precision of 64-bit, i.e., 32-

bit, mantissa arithmetic, which reduced the size of model code by nearly 50% so that it was

well suited for the 2 million word central memory of the CYBER-205. Because of the 256

million word central memory of a CRAY-2 supercomputer, the size of the OGCM code is of

secondary concern so that the full precision of 64-bit mantissa arithmetic is now used. In the

process of transferring the OGCM code from CYBER-205 to CRAY-2, we performed two 3-

year model integrations to test the effect of different precision on the simulation of the 'topical

Pacific.

The OGCM code used at Ames is identical to that used at GFDL by Philander et aI.

(1987). The two integrations start from the same initial conditions and are forced with the

same atmospheric conditions. The differences between the two integrations are compared at
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theendof month1,month 13,andmonth33alongseveralselectedlongitudes(150°E, 180°,
150°W, 110°W) and latitudes(10°S,EQ, 10°N). Becausethe samemodel is usedon the
CRAY-2 andCYBER-205, thedifferencesaredueto the accumulationof round-off errors
introducedby lowerprecisionateverytimestep.

Thecomparisonof modelsimulations on CRAY-2 (represented in the diagrams as A) and

CYBER-205 (represented as B) at the end of month 1 is shown in Fig. 3 (a), (b) and Fig. 4

(a), (b) for temperature and zonal current, respectively. Temperature distributions are identical

and a slight difference is noted in the zonal current distributions.

The differences between the two simulations are more apparent in month 13, as shown in

Fig. 5 (a), (b) and Fig. 6 (a), (b). The maximum difference in temperature is located in the

eastern equatorial Pacific. Differences between the two simulations are larger for zonal current

than for temperature, with maximum deviation of zonal current occurring at 0 ° to 5°N along

150ow.

In month 33, as shown in Fig. 7 (a) and (b), the maximum difference in temperature is

between 4°S and 4°N along 150°W. Differences for the zonal current between the two

simulations are strongest between 3°S to 2°N along 150°W and 110°W (Fig. 8 (a) and (b)).

The maximum differences of the mean temperature and zonal current along a section

computed from the two simulations was 0.2°C and 5 cm s'l (Tables 3 and 4). Major

discrepancies occurred in the eastern equatorial Pacific where there is a strong current shear

between the South Equatorial Current and North Equatorial Countercurrent. The agreement

between the two simulations was better for month 33 than month 13 along the latitudinal

sections and also along longitudinal sections of 150°E and 180 °, but the agreement was worse

for month 33 than month 13 along longitudinal sections of 150°W and 110°W (Tables 3 and

4). The average (among seven selected sections) root mean square (rms) difference between

the temperature signatures was 35% smaller for month 33 than for month 13 (Tables 3 and 4).

The average rms differences between the zonal current signatures for month 13 and month 33

were equal to within 5% (Tables 3 and 4).

The CRAY-2 simulation has less variability with small spatial scales than the CYBER-

205 result, although the same model with the same initial and boundary conditions is used.

The smoother simulated distributions of temperature (Fig. 9) and zonal current (Fig. 10)

produced by the CRAY-2 compared to the CYBER-205 are caused by the smaller amount of

computational noise associated with the higher precision of the CRAY-2. Computational noise

may influence climate predictions (Williamson and Washington, 1973).

4 Climatological seasonal cycle

Seasonally, the trade winds along the equator are intense during the northern autumn

when the Intertropical Convergence Zone (ITCZ) is farthest north, and are weak in northern

spring when the ITCZ is close to the equator. The westward flowing South Equatorial Current



alongtheequatoris strongwhenthetradewind is intense,andit is weakerwhenthestrength
of thetradewind is alsoweaker(Fig. 11). During thenorthernautumnandwinter,instability
waveswith oscillation periodof 20 to 30 daysoccurbetween0° and 10ON.Signaturesof
theseinstabilitywavesareseenin thetemperatureandcurrentfields.

Thesimulatedclimatologicalseasonalcyclecardedouton theCRAY-2 is similar to the
CYBER-205simulationmadeby Philanderet al. (1987). The seasonal cycle of the Equatorial

Undercurrent is well simulated, as shown in Fig. 12. Similar to observations (Halpern and

Weisberg, 1989), the Equatorial Undercurrent core is located at about 100 m; its speed is

strongest (1.2 m s l) in spring and weakest (0.8 m s -1) in autumn.

5 Discussion

A general circulation model of the tropical Pacific Ocean is described. Two 3-year model

integrations from identical initial conditions but performed on two computers, the CRAY-2 at

NASA Ames Research Center and the CYBER-205 at GFDL, are compared. The model

simulations are very similar to each other, as expected, but the simulation performed with the

higher-precision CRAY-2 is smoother than that with the lower-precision CYBER-205. This

difference is attributed to the different precision used on the two computing machines. The

CYBER-205 uses 32-bit mantissa arithmetic and the CRAY-2 uses 64-bit mantissa arithmetic.

Because of different precision used in the simulations, the round-off errors are accumulated at

every time step. Comparison of snapshots, on 17th of May and 15th of October during the

third year simulation, indicates that the differences appeared primarily with small spatial scales

(Figs. 8 and 9). It appears, therefore, that a significant part of variability with small spatial

scales simulated by the CYBER-205 is artificially due to truncation errors introduced by the

lower precision. This computational error may influence climate predictions as detected by

Williamson and Washington (1973).

The model described in this report provides a powerful tool for the study of tropical

oceans, such as the dynamics of the North Equatorial Countercurrent and Equatorial

Undercurrent. The satellite data assimilation using this model is currently under way.

At the time of this writing, a new version of the GFDL OGCM (Pacanowski et al.,

1991) has been released. This new model includes essentially the same dynamics described in

section 2.1. In addition, it includes the three subgrid-scale parameterizations described in

section 2.2. These different subgrid-scale parameterizations are designed in a modular form so

that they can be easily applied to various oceanic problems over a wide range of space and time

scales. The new model code also has a multi-tasking capability which allows about 80%

parallelism on a four processor CRAY Y-MP. This new version GFDL OGCM will be

transferred to CRAY-2 at NASA Ames Research Center in the near future.
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Table1:Values of Newtonian damping coefficient, e, near the southern and northern

boundaries.

j-value latitude

1 28.84S

2 26.53S 2.3 IE-6

3 24.29S 1.98E-6

4 22.15S 1.16E-6

5 20.15S 3.39E-7

94 32.26N 1.55E-7

95 34.78N 5.79E-7

96 37.41N 1.16E-6

97 40.11N 1.74E-6

98 42.89N 2.16E-6

99 45.71N 2.31E-6

100 48.57N 2.16E-6

damping coefficient

(_eennd'l

1.98E-6

11



Table 2: Vertical levels, grid sizes (m), and corresponding depths of bottom of layer (m).

level grid size depth

1 10.0 10.0

2 10.0 20.0

3 10.0 30.0

4 10.0 40.0

5 10.0 50.0

6 10.0 60,0

7 10.0 70.0

8 10.0 80.0

9 10.0 90.0

10 10.0 100.0

11 12.5 112.5

12 15.0 127.5

13 17.5 145.0

14 20.0 165.0

15 25.0 190.0

16 30.0 220.0

17 40.0 260.0

18 57.0 317.0

19 91.0 408.0

20 151.0 559.0

21 242.0 801.0

22 357.0 1158.0

23 475.0 1633.0

24 566.0 2199.0

25 650.0 2849.0

26 650.0 3499.0

27 650.0 4149.0
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Table 3: The mean value and root mean square of the difference field between model

simulations on CRAY-2 and CYBER-205 along 10°S, EQ, and 10°N.

statistics

(UCLA-GFDL)

temperature (degree)

month 01 month 13 month 33

mean 0.00 -0.01 0.00
10N

re'is 0.01 0.1 i 0.01

mean 0.00 0.05 0.06
EQ

rms 0.02 0.37 0.25

mean 0.00 -0.01 0.01

10S
rms 0.01 0.11 0.01

mean 0.00 0.01 0.02
average

rms 0.01 0.23 0.15

statistics

(UCLA-GFDL)

zonal current (cm/sec)

month 01 month 33

mean 0.67 -0.03
I0N ....

rms 2.15 0.53

mean 0.16 -0.30
EQ

rms 3.94 13.19

mean -0.63 0.00
10S

rms 1.91 0.22

mean 0.07 -0.11
average

rms 2.82 7.62

month 13

-1.19

4.01

-3.66

14.12

-I .58

2.22

-2.14

8.57
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Table4:The meanvalue and root mean squareof the difference field betweenmodel
simulationsonCRAY-2 andCYBER-205along150°E,180°, 150°W,and110°W.

statistics
(UCLA-GFDL)

temperature(degree)

month 01 month 13 month 33

mean 0.00 -0.01 0.00
150E

mls 0.00 0.09 0.01

mean 0.00 -0.04 -0.04
180

rms 0.01 0.06 0.05

mean -0.01 -0.17 -0.03
150W

rms 0.02 0.20 0.16

mean 0.00 0.13 0.01
110W

rms 0.01 0.22 0.11

mean 0.00 -0.02 -0.02
average

rms 0.01 0.16 0.10

statistics
(UCLA-GFDL)

zonal current (cm/sec)

month 01 month 13 month 33

mean -1.08 -0.54 -0.01
150E

rms 1.22 5.86 0.66

mean -1.24 -2.01 0.06
180

rms 4.17 6.61 2.14

mean -3.76 -3.52 -4.52
150W

rms 4.06 11.41 16.82

mean -0.99 -1.38 1.87
110W

rms 2.18 5.24 7.35

mean -1.77 - 1.86 -0.65

average
rms 3.17 7.68 9.25

14



y

i+l

! T.S
I

I

I
j-1

I
j+l

I

i-1

T.S (q,V) (d,v)
.(_)_

I

I

I

I

I
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Fig. 2 The model geometry and distributions of model horizontal grids (after Philander et

al., 1987).
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