
5o] 7C /II-
 i/I D @

SOldE METHODS OF ENCODING SIMPLE VISUAL IMAGES FOR USE WITH A SPARSE

DISTRIBUTED MEMORY, WITH APPLICATIONS TO CHARACTER RECOGNITION

Louis A. Jaeckel

July 1989

Research Institute for Advanced Computer Science
NASA Ames Research Center

RIACS Technical Report 89.29

NASA Cooperative Agreement Number NCC 2-408 and NCC 2-387

(NASA-CR-ldR84_) SnME METilODS 3F ENCOOING N72-12@36

SIMPLE VISUAL IMAGES FOR USF WITH A SPARS_

OISTRIGUTED MEMORY, WITH APPLICATIONS TO
CHARACTER RECOGNITInN (Research Inst. for Unclas

Advanced Computer Science) 57 p CSCL 09B G5/60 0043034

Research Institute for Advanced Computer Science
An Institute of the Un[versities Space Research Association

SOME METHODS OF ENCODING SIMPLE VISUAL IMAGES

FOR USE WITH A SPARSE DISTRIBUTED MEMORY,

WITH APPLICATIONS TO CHARACTER RECOGNITION

Louis A. Jaeckel

Research Institute for Advanced Computer Science
NASA Ames Research Center

RIACS Technical Report 89.29

July 1989

Abstract. To study the problems of encoding visual images for use with a Sparse Distributed

Memory (SDM), I consider a specific class of images: those that consist of several pieces, each of

which is a line segment or an arc of a circle. This class includes line drawings of characters such

as letters of the alphabet. I give a method of representing a segment or an arc by five numbers in a

continuous way; that is, similar arcs have similar representations. I also give methods for

encoding these numbers as bit strings in an approximately continuous way. The set of possible

segments and arcs may be viewed as a five-dimensional manifold M, whose structure is like a
Mobious strip. An image, considered to be an unordered set of segments and arcs, is therefore

represented by a set of points in M, one for each piece. I then discuss the problem of constructing
a preprocessor to find the segments and arcs in these images, although a preprocessor has not been

developed. I also describe a possible extension of the representation. A later report will describe

some implementations of an SDM based on these encoding methods.

Work reported herein was supported in part by Cooperative Agreements NCC 2-408 and NCC 2-

387 between the National Aeronautics and Space Administration (NASA) and the Universities

Space Research Association (USRA).

SOME METHODS OF ENCODING SIMPLE VISUAL IMAGES

FOR USE WITH A SPARSE DISTRIBUTED MEMORY,

WITH APPLICATIONS TO CHARACTER RECOGNITION

I. INTRODUCTION

A Sparse Distributed Memory (SDM), as described by Kanerva

(1988), is a new design for a computer memory system that can

respond to stimuli that are only approximately like those with

which it has been trained. Thus it can be applied to tasks such

as visual pattern recognition. It is assumed in this report that

the reader is familiar with the concept of an SDM.

This report describes some methods of representing and

encoding a class of visual images for use as input to an SDM

system. A later report will describe some ways to implement an

SDM system based on these encoding methods, and will give the

results of a small-scale simulation.

The task that I have set for the SDM system is to recognize

visual images of simple two-dimensional objects such as letters

of the alphabet. I will work with a specific class of possible

images: I assume that each image is made of several pieces, each

of which is a line segment or an arc of a circle. This class is

broad enough to include a variety of shapes for line drawings of

the familiar characters. I will assume that a visual image is

sent first to a preprocessor, which finds the segments and arcs

in the image and encodes a description of each segment and arc in

a suitable way. This encoded information representing the pieces

found in the image can be used in various ways to generate a

description or a representation of the entire image. When

applied to an SDM, these representations may be used either as an

address to the memory or as the data to be stored in the memory.

Since we want to consider other classes of images and other

possible ways of representing them, we have not constructed a

preprocessor to find the segments and arcs in an image, as

envisioned in this report. However, I believe that such a

preprocessor could be built, and in Section 11 I will discuss

some of the issues involved in designing a preprocessor. It is

assumed that the preprocessor would not have any information

built into it concerning the particular set of objects that the

SDM will be trained to recognize; that information would be

stored in the SDM. The task of the preprocessor would simply be

to find the segments and arcs in a fairly mechanical way.

However, if we use such a preprocessor, we would be implicitly

assuming not only that these features are present in the images,

but also that they are important and useful for the task to be

performed.

In order to make the discussion more focussed, I will

usually assume that the set of objects to be recognized is a set

of alphabetic characters, and I will use them as examples, with

the understanding that the ideas herein would apply more

generally to other sets of simple objects that can be represented

by segments and arcs. Thus I will use the term character to

refer to any of the objects that the SDM might be trained to

recognize.

The SDM system will attempt to recognize and distinguish

between a given set of characters, based on the encoded

information it receives from the preprocessor. First the system

is "trained" on a set of characters by writing representations of

one or several images of each character to the memory, using an

encoded description of each image of a character as an address to

the memory. In other words, the SDM learns the characters "by

example". Then, when it is presented with an image which it must

try to recognize --that is, identify it or classify it as an

instance of one of the characters stored in the memory -- the

system reads from the memory using an encoded description of the

image as the read address. If the image presented is similar to

one of the stored characters, the SDM should be able to recognize

it. The ability to recognize, or respond to, a stimulus that is

only approximately like the stimuli with which the memory was

trained is one of the fundamental properties of the SDM.

The question of how to represent the images is crucial. If

the SDM is to accomplish its task, the method of encoding must be

such that similar images are given similar encodings, and

dissimilar images are given encodings that are far apart. Since

the nature of the problem will determine which images should be

considered as similar and which as dissimilar, the choice of a

representation depends on the task to be performed.

The purpose of this work is twofold. The first goal is to

explore the problems of representing and encoding the elements of

4

a visual image so that the encoded information may be used as

input to an SDM, or to some other form of associative memory. As

stated above, I have chosen to work with a relatively well-

defined class of images: those that contain a small number of

line segments and circular arcs, which would be identified in the

image by a preprocessor. By studying this class of images, we

can gain some insight into the problems of representing visual

images more generally.

The second goal of this work is to provide a more or less

"real-life" example of sensory data encoded for use as input to

an SDM. The data that can be generated by the methods below can

be used to explore and experiment with various aspects of the

performance of an SDM system, and to compare the performance of

alternative SDMdesigns. In a later report I will give some ways

of designing and implementing an SDM system based on the encoding

methods described in this report, and I will describe some

small-scale simulation experiments. This work will help us to

understand how the SD_ concept may be adapted to fit particular

applications.

Since this work is exploratory in nature, I will often

discuss various alternative ways to accomplish a particular task,

and at times I will indicate which method is used in the present

version of the system. However, my choosing a certain design

option or parameter value does not mean that I think it is the

best one. Sometimes I choose a method because it is simple or

because I can evaluate it mathematically, and sometimes my

choices are arbitrary. The reason for these design choices is so

that we can have something concrete to experiment vith.

I begin in Section 2 by defining the class of images under

consideration and stating my assumptions more specifically. I

then outline some design considerations in Section 3.

Since we have not developed a preprocessor for finding the

segments and arcs in an image, I enter images into the system by

drawing them on graph paper, finding the segments and arcs by

hand, and entering their approximate coordinates through the

keyboard. The procedure is described in Section 4.

In Section 5 I give the method of representing segments and

arcs. Line segments are treated as special cases of circulgr

arcs in a continuous way; that is, if a segment is similar to an

arc, its representation is close to that for the arc. A segment

or arc is described by five parameters: two for its relative

location, one for its relative size, and two which jointly

represent its orientation and shape, as defined below. The set

of possible segments and arcs thus forms a five-dimensional

manifold M whose structure is determined by the nature of the

similarities between the segments and arcs. We will see in

Section 6 that in the two dimensions corresponding to orientation

and shape, the manifold is topologically like a MSbius strip.

Since I consider an image to be an unordered set of pieces, an

image is represented by an unordered set of points in M, one

point for each piece.

In Section 7 I consider some measures of distance in M, and

in Section 8 I apply these measures to the question of comparing

two images, each represented by a set of points in M.

6

In Section 9 I give someways of converting the numbers

representing a segment or arc to bit strings. This is done in a

way that approximately preserves the relative distances between

the numbers. For the linear parameters this is straightforward.

The two numbers that together represent orientation and shape

constitute an unordered pair of angles, or points on a circle; I

give a method for converting this pair to a bit string that

preserves the topological structure and avoids some of the

problems inherent in using numbers to represent these quantities.

I then discuss, in Section 10, the idea of representing an

image as a bit string composed of blocks of bits, one block for

each piece of the image. To do this we would have to impose an

ordering on the pieces. I will argue, however, that there is no

natural, continuous way to do this, and therefore I will treat

the image as an s,ordcred set of pieces. The SDM implementations

to be described in a later report are based on this premise.

In Section 111 return to the issue of how a preprocessor

for finding the arcs in an image might be constructed. I point

out some of the difficulties and suggest some possible

algorithms.

Finally, in Section 12, I describe a possible extension of

the method of representing an image to include critical points

such as intersections of pieces, corners, and endpoints. It

would be useful to include such features in the representation,

because they provide explicit information on how the individual

pieces are related to one another.

2. ASSUMPTIONS ABOUT THE IMAGE RECOGNITION PROBLEM

I will now try to formulate the problem more specifically.

The goal is to construct a system to recognize a set of simple

two-dimensional objects. First we must decide on a class of

possible images that the system can accept as input. The class

of images must be such that the objects to be recognized can be

depicted by images in the class. Each image in the class I will

use is made of several pieces, say between two and eight, each of

which is a line segment or a circular arc. A preprocessor might

be used to find these segments and arcs in the images. (The

images must be such that the segments and arcs in them can be

identified.) I will assume that each arc is less than or equal

to 180 o of a circle. (Larger arcs that are less than 360 ° could

be included, but for now I will not go above 180°.) Since a line

segment will be treated below as a special case of an arc, I will

sometimes use the term arc to include line segments. In the

representation I will use, each arc in an image will be described

by five numerical parameters, which give its location relative to

the other pieces, its relative size, its shape, and its

orientation. In Section 5 these terms will be defined, and the

way in which the parameters are computed will be described.

Next, I assume that there is a set of simple objects, which

I will call characters, that the memory will be taught to

recognize. For each character, there are many possible images

that should be considered as instances of that character; in

fact, there may not be a unique "correct" version of the

character. In other words, each character corresponds to a

8

subclass of the class of images. (Many of the possible images

will not lie in any of these subclasses.) The outer limits of

these subclasses may not be clearly defined. However, we must

have some idea of whatthese subclasses are, so that we can

evaluate the memory's performance. Moreover, the structure of

these subclasses should bear some relationship to our notion of

whether two images are "similar", since we expect that two

similar images will usually (except for borderline cases) belong

to the same subclass.

I will use the term character in two ways. In the preceding

paragraph I used it to refer to the totality of all of the

possible images of a character. I will also use the term to

refer to a particular image of a character, that is, to refer to

a member of a subclass of possible images. This double usage

seems to be common, and does not seem to cause any confusion.

To make the discussion more focussed, I will assume from now

on that the characters to be recognized are line drawings of some

of the letters of the alphabet, although the ideas and methods

below would apply more generally to other sets of simple objects

that can be represented by segments and arcs. Because of our

experience with alphabetic characters, we have some intuitive

notions of when such images are similar. The encoding methods

described in this report attempt to embody some aspects of our

intuition about these images.

Note, however, that I am not beginning with a specific sei

of characters to be recognized. I want to construct a system

that will be able to learn any set of simple characters that can

9

be drawn with a small numberof segments and arcs, without

specifying in advance mhat the set of characters mill be. I

assume that there will not be too many characters in the set, and

that they will not be too similar to one another. The SDM will

be trained on these characters by writing examples of them to the

memory; that is, the training set will include one or several

images of eachcharacter, and a representation of each image (or

some response to give for that character) will be written to the

memory, using an encoded description of the image as an address

to the memory. After the memory is trained, we will use it to

recognize characters as follows: We present it with a new image

-- that is, we read from the memory using an encoded description

of the image as a read address -- and the memory is supposed to

respond by classifying the image as one of the characters on

which it was trained.

The reasons for considering segments and arcs to be the

basic elements in the visual images are as follows: First of

all, I do not want to use pixels as the features or elements

making up the representation of the image. This is because a

small change in the image of a character can make a big

difference in which pixels are black (part of the figure) or

mhite (part of the background). For example, if we consider an

"h" made of three line segments, then a tall and thin "h" and a

slightly shorter and wider "h" will have very few black pixels in

common. The same is true if we compare an "h" to one that is

slightly rotated or leaning to one side. In other words, if we

represent the image as a vector of pixel values, the

10

representation is not continuous, in the sense defined below. On

the other hand, the line segments making up these "AIs" are very

close to the corresponding segments of the other, similar, "AVs",

in terms of their locations relative to the other pieces, their

relative lengths, and their orientations. Since a small change

in the image, of the kinds described above, corresponds to only a

small change in the descriptions of the three segments comprising

the "A", it would be better to have a representation of a

character that is based on descriptions of the pieces. $o

provide useful input to an SDM, an encoding method must represent

similar images similarly.

We could choose line segments to be the fundamental elements

of an image, or line segments and circular arcs, or some richer

set of image elements. Of course, with a richer set of visual

elements, a system could do more interesting and flexible

recognition tasks, but it would also be more complex. I decided

to use segments and arcs for this study because line segments

alone are not sufficient for the usual forms of the familiar

characters, and circular arcs, the next step up in complexity,

allow us to draw good approximations of a great variety of

shapes, including the familiar characters.

Since the relative thickness of the arcs is not very useful

for recognizing the familiar characters, I will assume that the

arcs in the images are much longer than they are wide, so that

they resemble the "strokes" in hand-printed characters. For this

reason I will not include the thickness of an arc in the

representation. Kahan et al. (1987) have developed a system for

11 "

recognizing characters of various fonts and sizes. They observe

(at p. 275) that we think of characters as made of strokes, and

they therefore use a "thinning" process to reduce the image to a

kind of skeleton.

_en we choose a representation based on certain image

elements, we are building into the system some assumptions as to

which image features are important or useful. Thus, by working

with the class of images defined above, I am implicitly assuming

that the character recognition task depends mainly on the

structure of the relatively large-scale components of the image,

of which there are only a small number. The fine structure or

detail in the image is mostly irrelevant to this task, and should

therefore be filtered out by the preprocessor. In other

recognition problems, other aspects of the image might be more

important.

Whatever set of image elements is chosen, a preprocessor

would have to be constructed to find those elements in an image

and encode them in some suitable way. Finding these image

elements could be difficult, depending on the nature of the

images to be presented to the system. Some of these problems are

discussed in Section 11. The encoded information would then be

used as the input to an SDM, or to some other associative memory

system. The preprocessor would be programmed to find the image

elements in a fairly mechanical way, without having any built-in

information concerning the particular set of characters that will

be written to the SDM as the training set. As stated above, the

role of the SDM in the system is to learn the characters in the

12

training set "by example", and to recognize a given character if

it is similar to one of the characters in the training set.

I assume that the system is given images of characters one

at a time, in isolation, so that there is no information on the

context in which the character is situated. For example, an

elliptical shape might be an "0", an "o", or a numeral "0"

depending on thecontext. Such information, if it were

available, could help a system in a variety of ways; for example,

if a character appears in a line of text, its position and size

relative to the other characters gives us useful information.

The semantic content of the text can also be used; for example,

Kahan et al. (1987), p. 283, have used a spelling checker with

their system to correct errors. However, to simplify the problem

here, I will assume that the context of the characters is not

given.

Some English letters, such as a lower case "g", have two or

more distinct forms, and the system would naturally see them as

different characters. If we want to consider these forms as

different forms of the same character, we would have to train the

system to give the same response to these different forms.

There are some inherent limitations in reducing images of

characters to segments and arcs. Some variations in the form of

a character, which may appear small to our eyes, will make a big

difference in how the character appears to the system. For

example, a letter may or may not have serifs; an "A" may be made

of three line segments or it may have a horizontal line across

the top; an "0" may look like a circle, like an ellipse, or like

13

a rectangle with rounded corners. If a character contains

curves , for example a "C" or an "S", how to break it up into

circular arcs will often be unclear. A small change in the shape

of these letters could cause a big difference in how the

preprocessor breaks up the curves into arcs, and could even

change the number of pieces comprising the character. These

problems can be dealt with to some extent by including several

instances of each character in the training set, to cover the

various possibilities. At this stage I will just assume that the

images used can be broken up into arcs fairly unambiguously; this

restriction on the set of possible images is the price we must

pay for using a relatively simple set of image elements.

3. SOME DESIGN CONSIDERATIONS

There are a few design considerations that I will try to

follow.

Location and scale invariance: The system is designed to be

location and scale invariant in the following sense: It is

assumed that the preprocessor will find the character within the

visual field, find a central point for it, and compute a scale

factor, in effect drawing a square around the character. The

parameters for the pieces of the character will be computed

relative to the central point and scale factor of the character

as a whole. Thus, since the character is automatically centered

and scaled, the system is location and scale invariant. Rowever,

the system is not designed to be rotation invariant; a sideways

or upside-down "A" is different from a right-side-up "A", and the

14

system is not intended to see them as the same character.

Conti,uity: I will use this term loosely, to mean that a

small variation in an image will cause only a small change in the

representation or encoding of the image, without trying to give

it a precise definition. Note that this is not the mathematical

definition of continuity; the concept above can apply to discrete

objects such as bit strings. Kahan et al. (1987), p. 276, call

this property a "shape-similarity smoothness" property. Since

the SDM is intended to recognize and deal with objects that are

approximate but not exact, we must have a notion of similarity or

distance between possible objects, whether it is defined

explicitly or is imposed on us implicitly by the nature of the

system. _nen representing or encoding visual images (or any

other data) for use as input to an SD_, we want the

representation to be as continuous as possible, in the sense that

objects we consider similar should have similar representations,

and the reverse for dissimilar objects. The problem with

representing an image directly by pixels, discussed above, is

that the representation is not continuous in this sense. Using

segments and arcs will give us a large degree of continuity, but,

as mentioned earlier, the method does have limitations; some

images that we would call similar uould not be seen as similar by

this system because they would be broken up into arcs in very

different ways.

Representing an ,,ordered set: h problem that will come up

in a number of ways is how to represent or describe an unordered

set in a unique and continuous way. To describe a set containing

15

several elements, we would ordinarily give one element first and

then another, and so on, with the understanding that the set is

an unordered set. But if we do this, each possible ordering of

the elements of the set constitutes a different representation of

the same set. For example, a line segment can be described by

specifying its two endpoints, as an unordered pair of points in

the plane. If we represent this set by giving one point first

and then the other, then, unless we have a rule like the one in

the next paragraph, there are two possible representations.

Without such a rule, in order to compare two such pairs of points

to see whether they represent the same segment, we would have to

try all of the possible permutations. In this case there are

only two possibilities to try, but with larger unordered sets

there would be many permutations, making the problem more

difficult.

To make the representation unique, we could have a rule such

as this: Give the endpoint of the segment with larger Y

coordinate first, and if both endpoints have the same Y

coordinate give the endpoint with smaller X coordinate first.

(In other words, scan the image from the top down, and within

horizontal lines from left to right.) But if we do this, we lose

continuity. If a horizontal line segment is rotated

counterclockwise slightly, its endpoints suddenly switch

positions in the representation, and two very similar segments

will have very different representations; that is, we have a

discontinuity. We can get around this problem for line segments

by representing them in a different way, as explained in Section

16

5. We will encounter a similar problem later, when we need to

represent an unordered pair of points on a circle in a way that

is unique and continuous.

A more serious problem involving ordering occurs if we try

to list the pieces of a character in some order. A general

property of most classes of visual images is that there is no

natural one-dimensional ordering for the elements in the image.

A simple "A", for example, consists of three line segments, but

there seems to be no way to give the pieces a natural ordering

without creating discontinuities in the representation. For this

reason, I will consider the set of arcs comprising a character to

be an unordered set. We will return to this issue later in

Section I0.

4. ENTERING AN IMAGE 8F A CHARACTER INTO THE SYSTEM

Since we have not developed a preprocessor, it might be

helpful at this point to explain how an image of a character is

entered into the present version of the system. The system now

consists of a program that performs a rough simulation of one

possible implementation of an SD_ for this problem; it will be

described in a later report. First the character is drawn on

graph paper, and its pieces are identified by hand, each piece

being a segment or an arc of not more than 180°. The maximum

number of pieces is arbitrarily set at eight. Since the program

will center and scale the character itself, the location and

scale on the graph pape r do not matter; any convenient pair of

orthogonal coordinate axes will do, as long as the character is

17

not rotated. Each piece, whether a segment or an arc, is

specified by finding the X and Y coordinates, on the graph paper,

of its two e_dpoints and its midpoint (the point on the arc

equidistant from the endpoints). Since these coordinates will be

treated in a continuous way, they do not have to be exact.

Figure 1 gives an example of a "P". Note that since the curved

part of the "P" is wider than a semicircle, that part is broken

up into an arc and two short horizontal line segments. Hence the

"P" consists of four pieces. The figure shows the coordinates of

the endpoints and midpoints, and also gives the encoded values

for the pieces.

When this information is to be entered through the keyboard,

the program requests, first, a name or identifier for the

character, then the number of pieces, and then, for each piece,

the X and Y coordinates of one endpoint, then the midpoint, and

then the other endpoint. It does not matter in what order the

pieces are entered. Also, for each piece, either endpoint may be

entered first. (This description of the image may also be stored

on a disk file, from which it may later be read into the

computer.)

The program then centers and scales the character as a

whole, and then converts the input information into five

parameters for each piece of the character. The centering and

scaling are done as follows: First the program finds the minimum

and maximum X coordinates of all of the entered endpoints and

midpoints of all of the pieces, and computes the difference.

Then it does the same with the Y coordinates. The larger of

18

these two differences is used as an overall scale factor. A

central point for the character is defined by averaging the

minimum and maximum X coordinates above, and by doing the same

with the Y coordinates. This information is then used to

transform the image so that the entered endpoints and midpoints

all lie in the unit square. The effect is essentially like

drawing a square around the character. (Since for simplicity the

square is drawn around the entered endpoints and midpoints, it is

possible for part of an arc to lie slightly outside of the

square. But that should not matter, since all images are treated

in the same way.) The information is then encoded as described

below.

An alternative method of centering and scaling a character

would be to compute the average and the standard deviation of the

X coordinates of all of the endpoints and midpoints of the

pieces, and then do the same with the Y coordinates. These

quantities could be used to determine a central point and a scale

factor for the character. This method would be less dependent on

the locations of the most extreme points in the image.

If there were a preprocessor, it would be given a visual

image, from which it would find the pieces of the character,

center and scale the character, and then express each piece in

terms of five parameters, as explained in the next section.

5. REPRESENTINGLINE SEGMENTSAND ARCS OF CIRCLES

Each piece of a character is a line segment or a circular

arc. I will represent each piece by five parameters, two for the

19

coordinates of a center point, one for the size, and two

parameters that together will represent orientation and shape.

(As mentioned earlier, the thickness of the arc is not included

in the representation.) The representation is designed to treat

a line segment as a special case of an arc of a circle in a

continuous way; that is, if a segment is bent slightly into an

arc, the arc will be encoded in a way that is close to the

encoding for the segment. Since a nearly straight arc might look

like a line segment, or vice versa, these similarly shaped pieces

should be encoded in a way that preserves their closeness to one

another.

Consider first the simpler problem of encoding only line

segments. A segment may be described by four numbers, for

example the X and Y coordinates of its endpoints. But, as we saw

above, if we use this representation, we have the problem of

which endpoint is which; either the representation is not unique,

or it is not continuous. Another way to represent a segment by

four numbers (since there must be that many) is to give the X and

Y coordinates of its midpoint, the length of the segment, and a

number for its orientation. This representation is unique; there

is no problem of which endpoint is which. For the orientation of

the segment, we could use the angle from the positive X-axis to

the direction of the segment; this angle would be between 0° and

180 ° . We would not want to use the slope of the segment as a

measure of orientation, because it is inhomogeneous: It does not

change uniformly as we rotate the segment, and for a vertical

segment it is undefined. If we express the angle as a number, we

20

have a discontinuity at 0° and 180°. Except for this problem,

the above representation of a line segment is continuous. We

will return later to the issue of representing angles in a

continuous way. (Kahan et al., 1987, p. 276, give a somewhat

different representation for a segment, which is also unique and

continuous.) I will not use this four-number representation

because I want to consider a segment to be a special case of an

arc.

To represent an arc (including line segments as a special

case), we need five numbers. The first two will be the X and Y

coordinates of a center poist for the arc, to locate the arc

relative to the character as a whole. This point is different

from the midpoint, defined earlier, which is a point on the arc.

A simple way to define a center point for an arc is to average

the three sets of entered coordinates for the piece (for the two

endpoints and the midpoint), after they have been centered and

scaled based on the coordinates of all of the pieces. The

present program computes the average giving the midpoint double

weight, so that the center point is nearer to the midpoint than

it would be if each entered point were given equal weight. It is

not clear how best to define a center point. It could be argued

that the three entered points should be given equal weight, or

that the endpoints should receive greater weight than the

midpoint. We could compute the true center of gravity of the

arc, but it would not be worth the trouble. The real issue in

creating an encoding scheme is how we want the encoding to be

affected by a change in the arc; that is, which arcs are

21

relatively similar to each other and which are not. Note that

since the present program centers and scales the image so that

the endpoints and midpoints (and therefore the center points) of

the pieces lie in the unit square, the X and Y coordinates of the

center points will lie in the interval [0,1].

Next I define a number to represent the size of the arc.

This quantity is distinct from the shape of the arc, as defined

below. The size is a measure of the overall extent of the arc,

relative to the character as a whole. _e could compute the arc

length, but this is more complicated than necessary. A simple

quantity to use is the distance d between the two scaled

endpoints. The program computes this distance and transforms it

somewhat, so that if d is large, a small change in d is not

as important as the same change would be if

all of the endpoints lie in a unit square,

and ¢2. I replace d with d - 0.2071xd 2.

d is small. Since

d must be between 0

Since for d in the

above interval, this function is an increasing function with

decreasing slope, the transformation reduces the effect of a

small change in d when d is large, somewhat like taking the

logarithm. The transformation results in a number in the

interval [0,1]. This measure of size gives us a number that is

intended to represent similar arcs similarly. The function above

was chosen somewhat arbitrarily; many other functions would have

a similar effect.

To represent the orientation and shape of an arc, I will

need a way to represent directions in the plane. A ray is a line

segment with a direction, like a vector. Consider the set of all

22

rays emanating from a point P. If ve draw a circle about P, the

direction of a ray can be represented by the point on the circle

where the ray (extended if necessary) intersects it. In other

words, the set of possible directions is topologically like a

circle. To have a number to represent the direction of a ray

emanating from P, I draw a ray from P whose direction is the same

as the positive X axis, and I measure the angle, in degrees,

counterclockwise from that ray to the given ray. This gives us a

number between 0° and 360 °. Using a number to represent a

direction introduces a discontinuity at 360 °, but if we think of

a direction as equivalent to a point on a circle, we see that

there is no real discontinuity here. In Section 9 I will

represent directions in a way that does not involve a

discontinuity of this kind. Since I will express directions in

terms of angles, I will usually refer to them simply as angles,

but they should really be thought of as points on a circle.

To measure the (unsigned) difference, or angular distance,

between two directions, or angles, I will treat them as two

points on a circle, and I will always measure the distance by the

smaller of the two parts of the circle joining the two points, so

that the distance is at most 180 °. To compute this distance

numerically, I take the absolute value of the difference between

the two angles, and if the result is greater than 180 °, I

subtract it from 3600 .

I need to define two numbers to represent the orientation

and shape of an arc in a unique and continuous way, with line

segments included in the representation. By shape I mean the

23

number of degrees of a circle comprising the arc (or zero for a

line segment). Note that shape is not the same as curvature; two

arcs could have the same shape but be of different size, in which

case they would have different curvature. The orientation of an

arc (excluding line segments for a moment) may be thought of as

the position of the arc on the circle of which it is a part. A

way to represent the orientation would be to give the direction

from the midpoint of the arc to the center of the circle. But

this representation cannot be extended to line segments in a

continuous way; if we deform a nearly straight arc into a

segment, and then into an arc curving the opposite way, the

direction to the center makes a sudden jump of 180 °. We will see

in the next section that the set of all allowable segments and

arcs is topologically like a MSbius strip, which is a

non-orientable surface. For this reason, we cannot assign to an

arc a number for shape and a number for orientation in a way that

is continuous for the entire set of segments and arcs.

Instead of giving a number for shape and another number for

orientation, I will define two numbers which together will

represent the orientation and shape of an arc or a segment in a

unique and continuous way. Given an arc or a segment, I draw a

ray from the midpoint of the arc (which is a point on the arc) to

each endpoint, and I find the angle that represents the direction

of each ray. These two angles, as an _nordered pair, jointly

represent the orientation and shape of the arc, uniquely and

continuously. Note that neither endpoint is treated as being

"first" or "second". The representation is unique in the sense

24

that (1) only one unordered pair of angles can represent an arc's

orientation and shape, and (2) given the two angles for an arc,

we can recover its orientation and shape. It is continuous

because if we bend or rotate the arc slightly, there is only a

small change in the two angles (except for the discontinuity at

360 °, due to representing an angle as a number). This is true

even if we deform an arc continuously, without rotating it, from

an arc curving one way to a segment to an arc curving the other

way. Some examples will be given in the next section.

Figure 1 gives the five parameter values for each of the

pieces of a "P". Note that the two angles for each piece are to

be considered an unordered pair. The endpoints of each piece

were entered into the computer in an arbitrary order, and the

corresponding angles are listed in the same order.

If the arc is a line segment, as are three of the pieces in

Figure 1, the two angles are 1800 apart. If the arc curves 180 °,

the maximum allowable, the two angles would be 90 ° apart (using

the measure of the difference between angles given above). For

example, if an arc goes from "12 o'clock" through "3 o'clock"

(the midpoint) to "6 o'clock", the two angles would be 135 ° and

225 °. The curved piece in Figure 1 comes very close to this.

For lesser arcs the two angles are more than 900 apart. In

general, if an arc comprises 0 degrees of a circle (0 = 0 for a

segment), the difference between the two angles (measured as

above) is 180- 8/2 degrees. This difference represents the

shape of the arc. If we think of the orientation of an arc

(excluding line segments) as the direction to the center of the

25

circle on which it lies, this direction would be represented

either by the average of the two angles, or by the average plus

or minus 180 °. For a segment, this average would be one of the

directions perpendicular to it.

We can recover an arc from the values of the five

parameters, as follows: Suppose the midpoint of the arc is at

the origin. Draw two unit vectors from the origin, using the

directions indicated by the two given angles. The endpoints of

these vectors, together with the origin, give us three points,

from which we can determine a circle or a line. The arc or

segment connecting these three points has the same shape and

orientation as the arc to be recovered. The size and location of

the arc can then be determined from the other three parameters.

We now have five numbers that represent a piece of a

character. The set of all possible arcs, that is, possible

pieces of a character, may be viewed as a five-dimensional

manifold M, perhaps embedded in some higher-dimensional space.

(To be precise, the interior of M is a manifold.) An image of a

character, then, is represented as an unordered set of several

points in M, one for each of its pieces. We will see in the next

section that for the two parameters representing orientation and

shape, the topological structure of this manifold resembles a

MSbius strip. The other three parameters, representing location

and size, are each like points on a line segment, since they are

all limited to [0,1] by the scaling I applied to the character.

If we consider the Cartesian product of these three line segments

and a MSbius strip, that is, the set of all combinations of

26

values for the five parameters, we see that H is a proper subset

of this Cartesian product; that is, not all of the points in the

product can represent possible pieces of a character. For

example, a point in the product might correspond to a large arc

centered near a corner of the square drawn around the character;

such an arc might have an endpoint outside of the square, which

is not possiblewith the method of centering and scaling

described above. Thus the five-dimensional manifold M is a

subset of the Cartesian product of three line segments and a

MSbius strip.

6. A MOBIUS STRIP

Consider the pair of angles representing orientation and

shape, each represented by numbers between 0° and 360 °. For

example, for the vertical line segment " I ", the angles are

{90,270} -- as an unordered pair; for the arc " (", they are

roughly {80,280}; and for the arc ") ", they are roughly

{100,260}. The set of all allowable unordered pairs of angles is

equivalent to the set of all unordered pairs of points on a

circle such that the two points are at least 90 ° apart (measured

as explained above). Suppose that the arcs above all have the

same location and size parameters, so that we can ignore those

parameters for now. If the " I " is rotated 180 ° , it comes

back to itself. If the " (" is rotated 1800 , it becomes a

") " The effect of this rotation on the pair of angles for the

" (" is to take the 80° angle to 2600 and the 280 ° angle to

100°; that is, the unordered pair of angles for " (" becomes

27

the unordered pair of angles for ") " On the other hand, we

can move directly from " (" to " I " to ") " by gradually

bending the arc without rotating it. This operation entails

making small, continuous changes in the two angles, changing 800

to 100 ° and 2800 to 260 °. Similarly, rotating any arc other than

a segment 1800 changes it to its opposite, a result that can also

be obtained by bending the arc without rotating it, while

rotating any segment 180 ° brings it back to itself.

It follows that this set of pairs of points on a circle is

topologically like a M6bius strip; that is, each of these pairs

corresponds to one point on the strip. Figure 2 shows the M6bius

strip, cut along the vertical line AB and laid flat. Some of the

arcs and their corresponding pairs of angles are shown on the

strip. The pairs representing line segments form a circle

running along the middle of the strip like an equator. A 180 °

rotation of a line segment corresponds to travelling once around

the middle of the strip, back to the starting point. _oving away

from the "equator" toward the edge of the strip in either

direction corresponds to bending the segment into an arc. For

example, if we start with "]" and move perpendicularly to the

equator in one direction, we come to " ("; if we move the other

way, we come to ") "

The outer edge of the strip corresponds to the 180 ° arcs.

The strip has one continuous edge; if we follow the edge until we

return to our starting point, we go around the strip twice,

corresponding to a rotation of 360 °. Going only once around the

strip, following the edge, brings us to an arc with the same

28

shape but with the opposite orientation -- a 180 ° rotation. The

same is true of any arc that is not a line segment; for example,

starting at " (" and going around the strip once, parallel to

the equator, we come to ") ". If the line segments form the

equator of the strip, then the shape of an arc (represented by

the difference between the two angles) corresponds roughly to

latitude, or distance from the equator, and the orientation of an

arc (the average of the two angles, or the average plus or minus

180 o) corresponds roughly to longitude. In other words, moving

on the strip parallel to the equator represents a rotation, or

change in orientation, of an arc, without changing its shape, and

corresponds to increasing or decreasing both of the angles

representing the arc by the same amount. Moving perpendicularly

to the equator represents changing the shape of the arc _ithout

changing its orientation, and corresponds to increasing one of

the angles and decreasing the other by the same amount, fin the

other hand, if we change one of the angles representing an arc

but hold the other angle fixed, the point on the strip

representing the arc moves in a diagonal direction. These ideas

are illustrated in Figure 2.

If we wanted, we could reparameterize the strip by replacing

the pair of angles with a number for shape (latitude) and a

number for orientation (longitude). I will not do that because

the twist in the strip would introduce a discontinuity somewhere

in the representation, although algorithms could be devised to

work around the discontinuity.

29

7. MEASURES OF DISTANCE IN M

For any given set of visual image elements, the nature of

the similarities and dissimilarities between them imposes a

topological structure of some sort on the set of elements, such

as the _Sbius strip above. For the set _, it will be useful to

have a measure of distance between any two points, so that we can

do some computations. Choosing a metric is an attempt to

quantify our beliefs about the relative similarity or

dissimilarity of different arcs, although it may be that a metric

cannot fully capture the concept of similarity of arcs. There

are many different distance measures that could be used, such as

L1 (taxicab) distance, L2 (Euclidean) distance, or the uniform

metric. The difference between these measures is in the relative

importance they attach to the following two situations:

- Changing one parameter by e, with the others held fixed;

- Changing all five parameters by e.

All three of the metrics above treat the first case the same,

while for the second case, the L1 distance would be large, the L2

distance not so large, and the uniform distance even smaller.

_Paich one we should use depends on what we consider to be more

important, a larger change in one parameter or a smaller change

in several.

These measures of distance make sense when two points are

near each other, since any small portion of the manifold M is

like Euclidean space. For two points far from each other,

however, it may not be clear how to measure distance, since M

curves around on itself. That is, for any two points, there are

3O

two paths connecting them, depending on which way we go around

the MSbius strip. I will define the distance between the two

points to be the length of the shorter path. But in any case, if

two arcs are very different from each other, it does not matter

how different they are, as long as they are called "far apart".

When dealing with image features, it may in general be more

useful to think in terms of similarity rather than distance.

_ith any of these distance measures, we can define a

weighted distance, with different weights given to each of the

five parameters to reflect the relative importance of a change in

one of them, with the others held fixed, compared to a change in

one of the others. For example, we can ask how a change in the

location of the center point of an arc compares to a change in

size, or to a change in shape or orientation, in terms of how

much the image of the character is affected by such a change.

Note that if we replaced the two angles, which together represent

the shape and orientation of an arc, by a number for shape

(latitude on the _Sbius strip) and another number for orientation

(longitude), it would be easy to adjust the relative importance

of changing the shape of an arc compared to rotating it, by

changing the weights assigned to those parameters. However, the

same thing can be done by redefining the distance

between two pairs of angles.

The present system uses L2 distance, with relative weights

for the parameters that seem reasonable. One reason for using L2

distance is that it is relatively insensitive to a

reparameterization of _ (which would be like a rotation of a

31

coordinate system, at least locally), whereas other metrics are

more dependent on how M is parameterized. For example, suppose

we replaced the pair of angles by a parameter for orientation and

a parameter for shape, as mentioned above; this would correspond

to defining a new set of local coordinate axes at each point on

the MSbius strip, at an angle of 450 from the local axes

corresponding to the pair of angles. Assuming the new parameters

are scaled properly, this change would have no effect on the L2

distance between nearby points, whereas if a different metric

were used, the change in axes would cause a change in the

distance between points.

The method of finding the distance between two unordered

pairs of angles (or pairs of points on a circle) is as follows:

Since these are unordered pairs, there are two possible ways to

match the members of one pair with the members of the other pair.

For each way of matching the angles, the program finds the

difference between each angle in the first pair and the angle in

the second pair with which it is matched, using the measure of

the difference between angles given above, and it computes the

sum of the squares of the differences between the matched angles.

It then chooses the matching that gives the smaller sum of

squares. For example, to find the distance between {90,270}

and {80,280), the 90 should be matched with the 80, and the 270

with the 280. (The other way of matching the angles would

correspond to going around the MSbius strip the long way.) To

find the L2 distance between two points in M, the sum of the

squares of the differences between the matched angles is combined

32

with the sumof the squares of the differences for the other

three parameters.

8. COMPARINGTWO IMAGES

If we have a measure of distance between points in M, we can

try to define an overall measure of distance (or similarity)

between two images, each represented as a finite, unordered set

of points in M. For two similar images, we might try to match

the pieces in one image with the pieces in the other, and then

measure the distance between the images by combining the

distances between these corresponding pieces. Since we do not

know in advance which piece of one image corresponds to each

piece of another, possibly similar, image, we would need a

procedure for matching the pieces in one image with the pieces in

the other. However, if the images are not similar, there may be

no piece-by-piece correspondence at all.

One way to compare two images is to compute the distance

between each piece of the first and each piece of the second, and

arrange the results in a rectangular matrix. Then, if the two

images are similar to each other, and have the same number n of

pieces, the nxn matrix will contain n relatively small

entries, arranged so that exactly one small entry lies in each

row and in each column. The positions of these small entries

indicate how the pieces of the two images correspond to one

another. Even if the images have different numbers of pieces,

there may be some correspondences between their pieces. For

example, if we compare the "P" in Figure 1 with an "R" consisting

33

of five pieces, four of which are similar to the pieces of the

"P", we have the following 4x5 matrix of distances:

.2 5.5 3.6 5.1 3.1

5.4 .3 5.1 2.6 4.9

3.5 5.1 .2 5.1 3.5

4.9 2.5 5.1 .3 3.5

In each row there is a small entry in a different column, showing

that each piece of the "P" is similar to a piece of the "R". The

fifth column, with no small entries, shows that the diagonal line

in the "R" is not like any of the pieces of the "P". (Note that

the pieces of either image could have been entered in a different

order, in which case the entries in the matrix would be the same,

but the rows or the columns of the matrix would be rearranged.)

There are various things that could be done with this matrix

of distances. If the two images have the same number of pieces,

so that we have an nxn matrix, we could try to match pieces in

the best way; that is, we could try to find n entries in the

matrix such that each row and each column are included once, and

such that the sum (or some other function) of these entries is

minimized. This minimum value could then be thought of as a

measure of the distance between the two images. When we compare

two images with different numbers of pieces, it is not clear

whether we should try to match pieces at all. But since we might

need to try to recognize a character that is missing a piece, or

has an extra piece, due to "noise", we may want to try to match

pieces, and define an overall distance function that includes a

34

term for unmatched pieces.

There may be other ways to define a measure of the distance

or similarity between two images, which do not involve trying to

match the individual pieces. We will see in a later report that

when we choose a particular design for an SDM, the design will

impose an implicit measure of similarity on the class of images,

based on the size of the access overlap, that is, the number of

memory locations activated by both of two images when used as

addresses to the memory.

9. CONVERTINGTHE PARAMETERVALUESTO BIT STRINGS

Since we usually think of the SDMas operating on bit

strings (binary vectors), I will now give a method for converting

the numbers and angles representing an arc to bit strings. This

will necessarily cause some rounding off, because I will

represent a continuous quantity by a bit string chosen from a

small set of available strings. But since we are working with

approximate information anyway, this will not be a major problem.

We will see that there are advantages to converting the pair of
: :: : :

angles to a bit string. In order to maintain continuity, the

conversion must preserve relative distances, at least

approximately. That is, numbers near each other must be

converted to bit strings near each other in Hamming distance, and

numbers far apart to bit strings far apart. In the latter case,

relative distances do not matter much, as long as the distance is

large.

First I will represent numbers lying within a limited range,

35

say the interval [0,1].

six-bit strings:

Consider the following sequence of nine

110000

111000

011000

011100

001100

001110

000110

000111

000011

Note that adjacent strings have different numbers of l's. If

they all had the same number of l's, we would not have as many

six-bit strings to work with. Yarying the number of I's permits

more efficient use of the bits, but at the cost of some added

complexity in recovering the bits when reading from the memory.

These strings are defined so that the Hamming distance

between each string and the next is 1, the distance between each

and the second from next is 2, and for strings farther apart in

the sequence, the Hamming distance is greater than 2. For very

distant strings, however, the Hamming distance is not a monotonic

function of the distance between them in the sequence, but it is

always at least 4.

I will use each of these strings to represent the points in

a different subinterval of [0,1]. The subintervals do not have

to be of equal width. For example, in the present system the

first string represents any number between 0 and 0.15, the second

36

any number between 0.15 and 0.25, and so on, continuing with

intervals of width 0.1, except for the last; the ninth bit string

represents numbers between 0.85 and 1. In Figure 1, the first

three parameters for each piece are represented by these six-bit

strings. If we used longer bit strings, we would of course have

higher resolution.

There is a kind of duality here in how we describe the

correspondence between bit strings and intervals: For each bit

string we can give the set of numbers it is used to represent, as

I did above, or, for each of the six bit positions in the string,

we can give the set of numbers for which that bit is o_ (set to

1). For example, if we use these nine strings for the nine

subintervals of [0,1] defined above, we have the following rule

for when each of the six bits is on: If x is the number to be

converted to a bit string, then the first bit is on whenever 0

x _ 0.25, the second bit is on whenever 0 _ x _ 0.45, the third

when 0.15 < x < 0.65, and so on. There is a biological analogy

here to some sensory neural systems: If we think of the six bits

as neurons, whose collective function is to report, say, the

angle of a knee joint or the frequency of a sound, each neuron is

activated by any stimulus within some interval, and these

intervals overlap, like the intervals defined by the inequalities

above. Some examples are given by Albus (1981), p. 39-40 and p.

58.

Now I will represent a point on a circle as a bit string. I

will use a set of 12-bit strings to represent the points on

different parts of the circle, just as I used strings for

37

subintervals dove. Im_ine 12 bit positions arranged

counterclockwise around a circle, 300 apart, with the first bit

15° _ove"3o'clock", andthelast bit 15°below"3o'clock ''.

(The bits are only conceptually in a circle, not physically.)

Each ofthebit strings Iwillusecontainstwo or three l's in

adjacent positions -- that is, Mjacent around the circle, so

that Bit #12 is adjacent to Bit #1. There are 24 such bit

strings:

100000000001

110000000001

110000000000

111000000000

011000000000

011100000000

and so on, up to

000000000111

000000000011

IO0000000011

If we write the bits in one of these strings around the circle,

beginning at 15° above "3 o'clock", we see that the block of l's

in the first string is centered on "3 o'clock", the block of l's

in the second string is centered on the point on the circle 15 °

above "3 o'clock", and so on, moving counterclockwise around the

circle.

Now divide the circle into 24 equal 150 arcs (not to be

confused with the arcs that are pieces of characters), beginning

with the 15° arc centered at "3 o'clock". The first bit string

38

above will represent any point on this arc, and so on around the

circle, with each arc having the same center as the l's in the

bit string that represents it. Thus any point on the circle is

represented by one of these 24 bit strings. Another way to

express it is this: To find the bit string that represents a

given point on the circle, set to 1 those bits that are within

37.5 ° of the point.

As before, the Ramming distance between each bit string and

the next in the sequence above is 1, and the distance between the

first string and the last is also 1, because they are adjacent to

each other in the sense that they represent adjacent arcs of the

circle. Note that we no longer have to worry about a

discontinuity at 360 °. We also have the same kind of duality as

before; that is, we can give a rule for when each bit is on. For

example, the first bit is on whenever the point to be represented

is within 52.5 ° above "3 o'clock", or within 22.5 ° below "3

o'clock".

Now I can represent an unordered pair of points on the

circle as a bit string in a natural ray: I just take the logical

8R of the bit strings for each point; the resulting bit string

represents the unordered pair of points. For example, the

" I ", whose angles are {90,270}, is encoded as

001100001100

(This string is used for Piece #I in Figure I.) The " (",

whose angles are {80,280}, is encoded as

011100001110

This representation is used in the present system. Since I am

39

using only pairs of points on the circle that are at least 900

apart, there will be no overlap between the l's in the strings

for the two points. Therefore, we can recover the two points, at

least approximately, from the combined bit string. Note that no

preference is given to either of the two points; that is, neither

of them is marked as "first" or "second". So we have a unique

and approximately continuous representation of an unordered pair

of points on the circle. Figure 1 gives the strings representing

the pairs of angles for the pieces of the "P".

If two pairs of points are close to each other in the sense

discussed earlier, then the Hamming distance between the bit

strings for the pairs will be small. For example, the distance

between the two strings above is 2. We no longer have to worry

about which point to match with which; that is taken care of

automatically, as is the discontinuity at 3600 . Note that the

Hamming distance between two such bit strings representing arcs

does not correspond exactly to the L2 distance between the two

points on the MSbius strip representing the same arcs, but it

does agree with the L2 distance in a qualitative way; actually,

the hamming distance here is more like L1 distance on the strip.

10. A WAYTO REPRESENT AN IMAGE AS A BIT STRING

Using the methods above, we can represent each piece of an

image by a 30-bit string: six bits each for the X and Y

coordinates of the center, six bits for the size, and 12 bits for

the pair of angles representing orientation and shape. If there

were a natural way to order the pieces of a character, we could

4O

represent an image of the character as a long bit string

consisting of one 30-bit block for each piece. The length of the

string would depend on the number of pieces. Since I will

arbitrarily limit the images to a maximum of eight pieces, the

strings would be no longer than 240 bits. A similar

representation will be used in one of the SD_ implementations to

be described in a later report. However, that representation

will be used as data to be written to the memory, rather than as

an address.

Note that we could reconstruct the image, at least

approximately, from such a bit string, since we can recover the

approximate values of the five parameters for each piece. Also,

if we wanted to increase the resolution, we could use the methods

above with longer bit strings.

But it seems to be impossible to order the pieces in an

image in a continuous way. That is, for any ordering scheme

there will be images for which a very small change in the image

would change the ordering of the pieces. If images are encoded

as long bit strings as described above, a different ordering

would result in a very different bit string. Then, if the memory

system is attempting to recognize the character in an image,

using the bit string as a read address, whether it succeeds will

depend on which ordering of the pieces was used when an example

of the character was stored in the memory. This would be true of

any representation that depends on putting the pieces in some

order. For example, suppose we assign an ordering to the pieces

of an image, something like this: Scan the image from top to

41

bottom, with a succession of horizontal lines or strips. Within

each strip, scan from left to right. When you first encounter a

point on a piece, call that piece "number 1"; call the next piece

found "number 2" and so on. If two or more pieces are

encountered at the same point, for example the two legs of an

"h", we would have a rule for breaking ties, perhaps based on the

direction from which the piece approaches the point. The problem

with any scheme of this kind is that a small change in the image

can change the ordering. If we apply the scheme above to an

image of an "A" in which one leg extends slightly above the top

of the other leg, the pieces will be put in a different order

than they would be if the other leg were slightly higher.

h possible way to get around this problem is to use more

than one ordering of the pieces when we write an image of a

character to the memory. For example, when we store an image in

the memory, we could examine it for alternative orderings of the

pieces that could easily occur if the image is perturbed

somewhat, and then write to the memory using each of the

resulting bit strings as an address. (We would not want to write

all n! possible orderings of the pieces to the memory.) Then,

when we read from the memory in order to try to recognize a

character in an image, we hope that the ordering of the pieces in

the image matches one of the stored orderings. This seems to be

an inefficient use of space in the memory. As an alternative to

this idea, or in addition to it, when we read from the memory, we

could try several plausible orderings of the pieces in the image

being read. But this is also inefficient in that it increases

42

the time that it takes to read from the memory. Schemes such as

these are not impossible, but they are awkward and inefficient.

Therefore, in the SDM implementations to be described in a

later report, when I use an encoding of an image as a read or a

write address, I will use representations that treat the pieces

of the image as an snordered set. An important aspect of those

implementations is that they are designed so that an unordered

set of elements can be used as an address to the memory.

11. SOME PREPROCESSOR ISSUES

In this section I present some thoughts about designing a

preprocessor for finding the segments and arcs in the images

under consideration. Since we intend to consider other schemes

for encoding relatively simple visual images for use as input to

an SDM, we are not planning to build a preprocessor for the

particular method of representation described in this report. I

will, however, discuss some of the issues involved in building

such a preprocessor, and outline some possible algorithms, so

that we can see that it is indeed possible to build one.

There is a large body of literature on edge and line

detection in visual images; see for example Ballard and Brown

(1982). There has also been much research on finding and

analyzing curves and contours in an image; see for example Parent

and Zucker (i985). For an overall review of the field see

Olshansen (1988). So if we want to build a preprocessor to

embody an encoding scheme of this kind, there is much previous

work that we can draw upon.

43

As stated earlier, I assume that the preprocessor is

constructed to find certain image elements, without any built-in

information on the particular set of characters that the memory

system will have to learn. Of course, any encoding scheme is

based on some assumptions, both about the nature of the images to

be presented to the system, and also about what features in the

images are likely to be useful for the task to be performed. Any

preprocessor would necessarily embody some such set of

assumptions, either explicitly or implicitly.

Assume for now that the images have the following

properties: The images consist of a rectangular array of binary

pixels, say, black for the figure and _hite for the background.

The images contain a small number of segments and arcs, somewhat

discretized by the grid of pixels. The thickness of the segments

and arcs is fairly uniform; they are at least a few pixels wide,

and they are much longer than they are wide, so that each piece

is more or less clearly defined. Also, the images are relatively

free of noise, and it is fairly clear (at least to our eyes) how

to decompose each image into segments and arcs. Horeover, the

resolution is fine enough so that the shapes of the segments and

arcs are not distorted too much by the discreteness of the

pattern of pixels. For example, if the pixels form a 32 by 32

grid, the resolution should be adequate for this class of images.

A finer grid would be even better.

There are a variety of algorithms that could be used. An

inefficient but conceptually simple procedure would be to use

templates, one for each possible line and circle that crosses the

44

visual field. Each template, comprising a subset of the pixels,

would be comparedto the image; if a large numberof black pixels

are found in a template, those pixels are examinedto see whether

they constitute a segment or arc within the template. Since

these templates would be a certain numberof pixels wide, only a

finite numberof templates would be required, but the number of

templates needed would be so large that this method would be very

inefficient. Moreover, the method does not generalize well: If

we want to consider images made of a larger family of image

elements, the number of templates required would be hopelessly

large.

One type of algorithm is a search procedure, something like

this: First, we scan the image in horizontal rows, beginning at

the top, until a black pixel, or a cluster of them, is found.

This gives us a starting point. (Many other ways of finding a

first point could be devised.) Draw a small circle about that

point, with a radius of several pixels, and locate clusters of

black pixels on that circle. Each such cluster represents a

possible point on an arc that may go through the starting point.

Then draw small circles using each of these new points as

centers, and locate clusters of black pixels on these circles.

Now, if we are lucky, we will have three points on an arc, or

sets of three points on each of a few arcs. Since three points

(clusters of black pixels) on an arc give us a rough idea of the

curvature of the arc, we can estimate the direction in which the

arc will continue, and search for black pixels in that direction.

So we choose a possible arc to follow, and trace along it,

45

refining our estimate of the curvature as we find more points.

If we do not find more points on the arc, either we have passed

an endpoint, or we were not on an arc at all; the three points we

found might have been on different arcs, or some of them might

have been noise. If we are following an arc, we must search in

both directions from the first three points found until we find

both of its endpoints. This search can be done in jumps several

pixels long, rather than by crawling one pixel at a time. Then,

when we find the endpoints, we should check the entire arc to

confirm that we have really been following one arc rather than

hopping from one arc to another, and also to estimate the

parameters of the arc more accurately.

After we find each arc, we search for other arcs. As

starting points for these searches, we could use apparent points

of intersection with the arcs already found; these would probably

appear as large clusters of black pixels near or connected to an

arc already found. If there are no such points, we could scan

the image for a new starting point. As each arc is found, its

pixels could be marked as accounted for. We do not want to

remove these pixels from the image, however, because some pixels

will lie on more than one arc, and removing them would alter the

remaining arcs. We continue to search in the image until every

black pixel is accounted for, either as part of an arc or as

noise.

A variation of the above method would be to scan across the

image from many directions to find some of the outer boundaries

of the character. The outermost pieces could then be found and

46

stripped away, exposing the pieces in the interior. This process

would continue until all of the pieces are found.

Another possible type of algorithm is based on finding edge

elements and line elements, putting them together to form parts

of segments and arcs, then finding intersections and endpoints,

and finally integrating this information to identify the pieces.

Since an edge element or a line element is a local feature of an

image in the sense that it depends only on the pixels in a small

part of the image, a parallel processing device using standard

edge-detection methods could test for the existence, and maybe

the orientation, of such elements, simultaneously at many points

in the image. Nearby edge elements with the proper orientations

would then be grouped together to form tentative partial arcs,

which would "grow" as more elements are added to them. It is not

clear how best to do this. We would need some sort of efficient

search through the set of edge and line elements found. This

could probably be done by a partly parallel computation. One

possible method is the "Hough transform", described in Ballard

and Brown (1982). Points where arcs intersect would appear to

the first part Of the process as large or irregular black

clusters; their locations could be marked for later

interpretation as the arcs begin to be identified. After all of

the pieces are found, a final pass could be made to confirm the

results and to estimate the parameters of each piece more

accurately,:

Once the pieces are found, the preprocessor or some other

part of the system would center and scale them, and then compute

47

the five parameter values for each piece.

There are some images that will be difficult or ambiguous

for any preprocessor. Because of the limited resolution, a

segment or an arc appears as a long, thin set of black pixels

with some thickness and with inexact boundaries. An example of

the kind of problem that can occur is the following: If two line

segments have a common endpoint and are such that the angle

between them is close to 180 °, it will be hard to distinguish

them from one long arc with a slight curvature, especially if we

allow for some noise in the image. That is, the preprocessor

might consider them as two short pieces, or as one long, slightly

curved piece. A similar problem would be caused by two arcs of

similar curvature that have a common endpoint at which they are

tangent (or nearly so), as could occur in a "C"; it would be hard

to tell just where one arc ends and the next begins. Problems

would also be caused by two pieces that are partially overlapping

for part of their length, so that it is hard to separate them, or

by several pieces that intersect one another near a point, but

whose intersections are not at exactly the same point. Such

combinations would be difficult for any preprocessor.

More sophisticated preprocessors could be designed to cope

with various complications. For example, if the images are

noisy, a preprocessor could filter out some forms of noise. It

could also remove other details in the images that are not

relevant to the recognition problem. If the thickness of the

pieces can vary, the preprocessor could be made to handle such

pieces. Some systems have "thinning" algorithms for this

48

purpose; see Kahan et al. (1987). If the pixels can represent

shades of gray, the preprocessor could adjust for overall

brightness and contrast, and could be made to find pieces whose

boundaries were either sharp or fuzzy. In order to give the

specifications for an image preprocessor, it is not sufficient

merely to list the image elements that the preprocessor is to

identify; we must also describe the possible variability in the

appearance of these elements, the nature of the background or

context in which they might occur, and the possible kinds of

noise that might be present in the images.

Finally, if an image is ambiguous, the preprocessor could

give several possible decompositions of the image, or it could

receive some form of feedback from the other parts of the system,

in order to help it decide among various possible interpretations

of the image.

12. ENCODING CRITICAL POINTS IN AN IMAGE

_hen we look at characters, we attach great importance to

image features such as vertices, angles, intersections, isolated

endpoints of pieces, and changes in the curvature of a smooth

curve. Since such features are formed by the relative positions

of two or more pieces of the character, they provide explicit

information on how the individual pieces are related to one

another. Thus, a possible extension of the representation

described in this report would be to include these more complex

features in the encoding of an image, so that they could form

part of the read or write address when accessing the memory

49

system. If the system were given this information on how the

pieces are related, rather than being given only information

describing the pieces individually, it should be better able to

recognize characters. Information on these kinds of features is

of course contained implicitly in the parameters describing the

pieces, in the sense that the information can be computed from

those parameters, but the memory system is not able to make

direct use of such implicit information.

I will consider a critical point in an image of a character

to be a point where two or more pieces intersect, including a

point on a smooth curve where one arc ends and another begins. I

will also include terminations (that is, isolated endpoints of

pieces) and dots in this category. More specifically, I will

define a critical point to be either a dot, or a point with one

or more segments or arcs going through it or radiating out from

it in various directions, but not a point lying on only one

segment or arc, unless it is an endpoint. For example, an "A"

made of three line segments has five critical points. This

definition is consistent with the above decomposition of an image

into segments and arcs; thus, the representation of an image as a

set of pieces can be enhanced by including descriptions of the

critical points.

A critical point is a local feature in an image, in the

sense that its existence can be detected by examining a small

neighborhood about a point in the image. The part of the image

seen in a small circular window centered at a critical point

would appear as a line segment or a kind of "star". Most of the

5O

critical points described in the definition above can be

distinguished in this way from an ordinary point lying on only

one piece. (Some critical points may not be identifiable until

we begin to find the pieces in the image.) Thus, it should be

possible to build a preprocessor to find both the pieces and the

critical points in an image. In fact, identifying the critical

points would help in accurately determining the parameters of the

pieces.

I have not yet done any experiments with representations of

these critical points. But since this seems to be a natural next

step, I will describe a way to represent such points that is

similar to the representation of segments and arcs given above.

A critical point can be described by giving the position of

the point and the direction at which each segment or arc (if any)

radiates away from it. Note that since I want to identify a

critical point from what can be seen in a small neighborhood of

it, an arc passing through the point will appear locally as two

rays emanating from the point in approximately opposite

directions. Hence, I will include both of these directions in

the representation, as if they are parts of different arcs. The

information can be encoded as a bit string as follows: First,

the X and Y coordinates of the position of the point can be

encoded as was done earlier for the coordinates of the center

point of an arc. To encode the directions of radiation from the

point, imagine a string of, say, 24 bits, arranged conceptually

in a circle, like the circle of 12 bits in Section 9. I then

define a sequence of 48 24-bit strings, like the sequence defined

51

earlier: Each string contains a block of two or three l's, so

that the Hamming distance between adjacent strings (and between

the first and last strings) is 1. Each of these strings will

represent 7.50 of the circle of possible directions of radiation.

Then, for each arc radiating from the critical point, I choose

the bit string representing the arc's direction of radiation, and

I take the logical OR of those strings. In other words, I set to

1 the two or three bits on the circle nearest to the direction of

radiation of each arc, using a rule similar to that used for the

circle of bits in Section 9. If the critical point is a dot, all

of these bits will be O.

This representation is independent of the order in which the

radiating arcs may have been listed; that is, they are treated as

an unordered set. Therefore the representation is unique, in

that there is only one way to encode the critical point. It is

also approximately continuous, in the sense that if an arc is

moved slightly, or is added or deleted, there is only a small

change in the bit string. Noreover, the length of the bit string

is constant, no matter how many radiating arcs there are. This

method is limited in resolution, however, depending on the length

of the bit strings used. If there are several arcs radiating in

similar directions, the bit string will have a blur of l's, and

the number of arcs and their individual directions will not be

recoverable from the encoded information. (The same is true of

our own visual systems, if we are allowed only a brief glance _at

the point.) But even in this case, tuo similar critical points

will have similar encodings, in the sense that the Hamming

52

distance between the strings will be small. If higher resolution

is desired, longer bit strings could be used.

If we use 24 bits to represent the set of directions of

radiation from a critical point, we can define the set C of all

possible representations of critical points to be a subset of the

Cartesian product of a unit square (for the position of the

point) anda24-dimensional binary vector space (for the set of

directions). To measure the similarity between two critical

points, we can define a distance function for the set C; for

example, we could use a weighted sum of the L2 distance between

the positions of the two points, plus the Hamming distance

between the bit strings representing the directions of radiation.

The critical points found in an image would be represented by an

unordered set of points in C. Thus, in this enhanced

representation, an image would be represented by a set of points

in the manifold M, together with a set of points in C.

I would like to thank the members of the SDM group for their

many helpful comments during the course of this work.

53

REFERENCES

Albus, J. S. (1981). Brains, Behavior, and Robotics. Byte

Books. Peterborough, N. H.

Ballard, D. H. and C. M. Brown (1982). Computer Vision.

Prentice-Ball. Englewood Cliffs, N. J.

Kahan, S., W. Pavlidis, and H. S. Baird (1987). On the

Recognition of Printed Characters of Any Font and Size. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

P_MI-g, 274-288.

Kanerva, P. (1988). Sparse Distributed iemor_. MIT Press.

Cambridge, Mass.

01shansen, B. (1988). A Survey of Visual Preprocessing and

Shape Representation Techniques. RIACS Technical Report 88.35.

Parent, P. and S. W. Zucker (1985). Trace Inference,

Curvature Consistency, and Curve Detection. Computer Vision and

Robotics Laboratory Technical Report CIM-86-3. McGill University.

54

16,80 _*-

20,50

20,20

20,80 40,80
t /

!

_ _40,50

30,50

---53,65

Piece Description EndDoint Midpoint

1 Vertical segment 20,20 20,50
2 Upper hor. segment 16,80 28,80
3 Curve at right 40,80 53,65
4 Lower hor. segment 40,50 30,50

20,80
40,80
40,50
20,50

PARAMETER VALUES AND BIT STRINGS

Piece X Y Size An_le

1 .26 .50 .79 270 90
011000 001100 000111 001100001100

2 .39 1.00 .37 180 0
011100 000011 011100 100001100001

3 .70 .75 .45 131 229
000110 000111 011100 000111111000

4 .43 .50 .31 0 180
011100 001100 011000 100001100001

Figure 1: This character was drawn on graph paper and broken up
into four pieces. The pieces were entered into the computer in
an arbitrary order, by typing in the coordinates of the endpoints
and the midpoint of each piece. The prosram then computed the
five parameter values and the corresponding bit strings for each

piece.

55

A I ,B

135 45 / 135
180 1

225 270 '

180 0 /
225

45 90

270

BI

_ 27_00 (45 ___0
225 315 315

JA

Figure 2: The Mbbius strip of Section 6, cut along the vertical
line Ai_ and laid flat. Each point on the strip represents a
segment or an arc. Some of the segments and arcs, with their
corresponding pairs of angles, are shown above. The unordered
pair of angles for an arc is found by drawing a ray from the
midpoint of the arc to each endpoint, as described in Section 5.

The points representing line segments lie along the "equator" of
the strip. Moving horizontally on the strip corresponds to
rotating an arc, while moving vertically corresponds to bending
an arc without rotating it. If you begin at the upper left, at
A, and move along the top of the strip to B, the next step after
the arc at the upper right is the arc at the lower left;
continuing along the bottom of the strip from left to right, you
then go from the lo_er right, at A, back to the upper left.

