New Addition Curing Polyimides

Aryeh A. Frimer
Lewis Research Center
Cleveland, Ohio

and

Paul Cavano
Case Western Reserve University
Cleveland, Ohio

Prepared for the
Fourth International Conference on Polyimides
sponsored by the Society of Plastic Engineers
Ellenville, New York, October 30–November 1, 1991
NEW ADDITION CURING POLYIMIDES

Aryeh A. Frimer*
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

and

Paul Cavano**
Case Western Reserve University
Cleveland, Ohio 44106

Introduction

Polymers are gaining wide acceptance as matrix materials for composite structural applications. The best polymers to date for these applications, combining thermal-oxidative stability (TOS), processibility and good mechanical properties, are the PMR polyimides. The specific focus of our interest is on understanding and ultimately improving the TOS of the PMR-15 polyimide system. This resin, first developed at NASA LeRC, is formed through a two step polymerization scheme. The first step involves the formation of a polyimide prepolymer via the condensation at 120-230 °C of three monomer reactants: 2-carboxymethoxy-3-carboxy-5-norbornene (the monomethyl ester of nadic acid, NE), 4,4'-methylenedianiline (MDA) and 3,3'-dicarbomethoxy-4,4'-dicarboxybenzophenone (BTDE). The resulting low molecular weight polyimide oligomer undergoes cross-linking at 275-325 °C to produce a void free network structure. There is also a final post-cure which raises the glass transition temperature (Tg) of the resin.

The literature suggests that the most thermally labile bond in the polyimide system should be the >N-C=O peptide bond, whose dissociation energy is a mere 504 or 655 kcal/mol. We reasoned (by analogy to sterically hindered dioxetanes6 that steric blocking should help stabilize this linkage, forcing it to reclose rapidly and, thereby, improve its TOS. It was for this reason that we explored the properties of polyimides containing the new dianhydride 1,4-phenylene bis(phenylmaleic anhydride)7 [PPMA, see Figure 1].

*National Research Council - NASA Research Associate at Lewis Research Center.

**NASA Resident Research Associate at Lewis Research Center.
Results and Discussion

Two series of addition curing polyimides have been prepared using PPMA. The first (dubbed AAFI, see Figure 1) is a modification of PMR resins in which the PPMA replaces BTDA, used in PMR-15. This substitution resulted in improved prepolymer solubility (chloroform, methylene chloride, dioxane, 1,2-dichloroethane, DMF and NMP) and increased resin flow upon curing at 315 °C [600 °F]. Various formulations of polyimide prepolymer were prepared via chemical imidization (AcOAc in refluxing AcOH), theoretically ranging from n=1.7 to n=20. GPC studies (see Table 1) indicated, however, that there was a limiting average molecular weight \(M_n \) at around 3250, corresponding to n=4.8. As expected (Table 2), \(T_g \) values for the cured polymers were highest at low molecular weights, but ca. 10 °C lower than PMR-15. On the other hand, onset of decomposition and 10% decomposition were highest at the higher MW formulations but generally lower than PMR-15. The latter data predict a poorer TOS for the AAFI series, and this is, indeed, confirmed by long term weight-loss studies. As seen from Figure 2 and Table 2, weight loss after 600 hours at 315 °C for the various AAFI formulations was around 2.5 times that of PMR-15 under the same conditions. We speculate that the poor TOS results from the thermolysis and loss of the pendant phenyl groups.

Figure 1

\[
\text{NEDA} + (n+1) \text{H}_2\text{N}-\text{CH}_2-\text{NH}_2 + (n) \xrightarrow{1.\text{HOAc}} \text{MDA} \xrightarrow{2.\text{AcOAc}} \text{PPMA} \]

\[
\text{AAFI}
\]
Table 1: Molecular Weight Data on AAFI Formulations

<table>
<thead>
<tr>
<th>N (# of Repeating Units)</th>
<th>Molecular Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formulated</td>
<td>Calculated<sup>a</sup></td>
</tr>
<tr>
<td>1.70</td>
<td>1.77</td>
</tr>
<tr>
<td>2.087</td>
<td>2.14</td>
</tr>
<tr>
<td>4.00</td>
<td>3.30</td>
</tr>
<tr>
<td>9.00</td>
<td>3.62</td>
</tr>
<tr>
<td>15.00</td>
<td>4.81</td>
</tr>
<tr>
<td>20.00</td>
<td>4.31</td>
</tr>
</tbody>
</table>

^a Calculated by interpolation from M_n values.

^b Based on gel permeation chromatography data.

Table 2: Thermal Data on Various Polymers

(Cure and Aging Temperature: 315 °C [600 °F])

<table>
<thead>
<tr>
<th>Polymer</th>
<th>T<sub>g</sub>(TMA)</th>
<th>TGA</th>
<th>Wt. Loss (600h)</th>
<th>Density</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NPC</td>
<td>PC</td>
<td>Onset</td>
<td>10%</td>
</tr>
<tr>
<td>AAFI</td>
<td>N (Form.)</td>
<td>T<sub>g</sub></td>
<td>NPC</td>
<td>PC</td>
</tr>
<tr>
<td>1.7</td>
<td>289</td>
<td>333</td>
<td>464</td>
<td>486</td>
</tr>
<tr>
<td>2.087</td>
<td>272</td>
<td>323</td>
<td>467</td>
<td>488</td>
</tr>
<tr>
<td>4</td>
<td>265</td>
<td>306</td>
<td>474</td>
<td>497</td>
</tr>
<tr>
<td>9</td>
<td>237</td>
<td>297</td>
<td>479</td>
<td>503</td>
</tr>
<tr>
<td>15</td>
<td>242</td>
<td>296</td>
<td>480</td>
<td>506</td>
</tr>
<tr>
<td>20</td>
<td>244</td>
<td>295</td>
<td>484</td>
<td>509</td>
</tr>
<tr>
<td>AAFII</td>
<td>2.087</td>
<td>390</td>
<td>408</td>
<td>463</td>
</tr>
<tr>
<td>PMR-15</td>
<td>2.087</td>
<td>319</td>
<td>340</td>
<td>480</td>
</tr>
</tbody>
</table>
A second series of nadic endcapped prepolymer (named AAFII) was prepared from PPMA and p-phenylenediamine (PPDA) with a theoretical formulation of n=2.087 (MW 1432). The prepolymer had only a very limited solubility. Compression molded neat resin samples had a T_g of 408 °C after air post-cure, close to 70 °C higher than PMR-15. Much to our chagrin, however, here too the onset and 10% decomposition values were significantly lower and weight loss significantly higher than PMR-15 and even the AAFI series (see Table 2).

Nitrogen post-curing ($399^\circ\text{C} [750^\circ\text{F}]$ for 24 h)8 of AAFI and AAFII substantially raised the T_g, as well as the onset and 10% decomposition values. Nevertheless, it had a seriously detrimental effect on the TOS as determined by long-term aging studies. Thus, after 600 hr at 315 °C the observed weight loss for AAFI and AAFII was 33 mg/cm2 (ca 62%) and 50 mg/cm2 (ca 80%), respectively.

Model compounds of AAFI and AAFII ($n=1$) were prepared by chemical imidization of PPMA with mononadic MDA or PPDA.
Acknowledgement

AAF would like to acknowledge the kind and generous support of the National Research Council and NASA - Lewis Research Center and in particular the warm hospitality of the Polymers Branch.

References and Footnotes
1. NRC Senior Research Associate, 1990-1991. On sabbatical leave from The Ethel and David Resnick Chair in Active Oxygen Chemistry, Department of Chemistry, Bar-Ilan University, Ramat Gan 52900, ISRAEL.
5. Ref. 3, pp. 75 and 77.
New Addition Curing Polyimides

Aryeh A. Frimer and Paul Cavano

National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135-3191

National Aeronautics and Space Administration
Washington, D.C. 20546-0001

In an attempt to improve the thermal-oxidative stability (TOS) of PMR-type polymers, the use of 1,4-phenylenebis (phenylmaleic anhydride), PPMA, has been evaluated. Two series of nadic end-capped addition curing polyimides have been prepared by imidizing PPMA with either 4,4'-methylenedianiline or p-phenylenediamine. The first resulted in improved solubility and increased resin flow while the latter yielded a compression molded neat resin sample with a Tg of 408 °C, close to 70 °C higher than PMR-15. The performance of these materials in long term weight loss studies was below that of PMR-15, independent of post-cure conditions. These results can be rationalized in terms of the thermal lability of the pendant phenyl groups and the incomplete imidization of the sterically congested PPMA. The preparation of model compounds as well as future research directions are discussed.

Polyimides; Thermal-oxidative stability; PMR-15

Unclassified

Unclassified

Unclassified

Unclassified

Unclassified

NSN 7540-01-280-5500

Form Approved
OMB No. 0704-0188

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102