i

1rpm|

l o9y 1

| 1

VA
Doiiasiii.

T

JRC 90-06

A NATURAL LANGUAGE INTERFACE
TO DATABASES

Prepared by:

D.R. Ford
Johnson Research Center
The University of Alabama in Huntsville
Huntsville, AL 35899

Prepared for:

Tim Crumbley
System Software Branch
Information and Electronic Systems Lab
George C. Marshall Space Flight Center
Natinal Aeronautics and Space Administration
Marshall Space Flight Center, AL 35812

February 1990

s TABLE OF CONTENTS

1.0 Natural Language Interface to Databases......cniinnne. 2
1.1 Task Statement........cccoouervverereriecierr et s e s 3

Task Conditionseeveeeeeeeeecnee. .. 3

i
[y
[\

1.3 Task APProach......oociriiioinimiiicernete e saese s e e 4

o
i Al

T
[
N

TASK RESUIS.c...eeeeiiicvtee e crieeiesereece s rees e eessaneesessen st e vesamennesenenesesennenss 17

L]
ik

ADPPENAIX A .o e e e 19
ADPPENAIX B et 25

b

(N

Ll

Ir

I wow e
b

B

17T

it

o

TN a

I

ABSTRACT
This paper presents the development of a Natural Language Interface
(NLI) which is semantic-based and uses Conceptual Dependency
representation. The system was developed using Lisp and currently runs on a

Symbolics Lisp machine.

(

il

{!

1.0 Natural Language Interface to Databases

Natural languages are the languages used by people in the course of
their daily affairs, for example, English, French, Japanese, etc. Natural
languages are used to express a broad range of ideas to others. Given enough
attention, nearly any concept that comes to mind can be conveyed to another
person through a common natural language. Some concepts are easy to
express, such as, "l am hungry,"” whereas others may require lengthy
explanations. The prime characteristic of natural languages is that they can be
used to express nearly all the concepts that occur to the people who speak and
understand them.

The word natural emphasizes a contrast with artificial languages.
Artificial languages are those that have been designed to be highly expressive
over a limited range of ideas. Musical notation is an artificial language.
Another set of artificial languages is programming languages. These are |
interesting because, like natural languages, they can be used to express a
broad range of concepts. LISP, for instance, is an extendable language, that is,
if an idea is difficult to express in its current form, it can be improved at will. But
programming languages have been designed with their application to
computers in mind, and this has affected their form. Programming languages
have been written so as to be analyzed easily by computers.

Research in natural language understanding is concerned with making
computers capable of using natural languages. There are two reasons for this.
First, computers that can use natural languages would undeniably be a useful
tool. It would mean that a person in need of information retrieval or information
processing on a computer could obtain it without having to learn a computer
language or go through an intermediary. They would not have to worry about

becoming fluent in a "foreign" language and maintaining that fluency just to

I

‘ K

i

L

accomplish their jobs. A computer that could use natural languages could read
normal text, providing users with access to computer-generated summaries or
reports synthesized from reading several text sources.

The second motivation for natural language research is that it will
increase our understanding of how human languages and minds work. To
develop the technology for a computer to use language, we must first be able to
say specifically what language is. We must be able to say precisely how the
concepts we wish to express can be represented in the computer. Building
computer programs requires this precision and attention to detail. A
programming implementation of a theory of language can be used to identify

flaws, inconsistencies, and areas of incompleteness that may go unnoticed.

1.1 Task Statement

The purpose of this task was to develop an interface to a database in
order to determine the feasibility of such an interface. Also, the desirability of
the interface was to be addressed. In addition, a secondary task was to gain a
better understanding of what the capabilities of such an interface should be,

and to determine some of the limits of this type of interface.

1.2 Task Conditions

The natural language interface was to be developed on a Symbolics
3600 series Lisp machine using Symbolics Lisp. The interface should
understand a limited subset of English in order to allow a user to query a
database. The database should be located on another computer other than the
Symbolic's machine that contained the interface. In addition, it should be on a

completely different computer from the Symbolic's. There were no assumptions

"

i

or conditions placed on the means of communication between the Symbolic's
machine and the computer with the database.
1.3 Task Approach

A NL Query generator prototype is being developed at the Johnson
Research Center at the University of Alabama in Huntsville wherein queries, in
natural language are generated for dbaselll+. The main program resides on a
symbolics 3620 machine while the database resides on an IBM personal
computer. The database is manipulated through commands from the
Symbolics. The communication protocol is established via RS 232. The

process of database query and results are shown by the following figure:

A Graphic representation of the Natural Language Query

Generator

CONCEPTUAL
NATURAL PARSER DEPENDENCY
LANGUAGE %

4

USER GENERATOR

RESULTS DBASE
QUERY

I

!

|

{l

|

The user types in a query in natural language on the symbolics. The
parser translates it into Conceptual Dependency representation and generates
a dbase query which is communicated to the PC via the RS 232. The RS 232
was chosen over others as the main idea was to set up communications
between the Symbolics and the P.C. The manipulation is performed on the
database and the results are communicated back to the user on the symbolics.
The significant point of the exercise is that the user is not restricted to using
specific dbase commands for manipulating the database. He can do so in the
manner and language he prefers (provided it is in English).

The database is a simple one designed to represent the student records.
It has been designed more to test the execution of the program and the

generated queries. The following is a section of the database:

RECORD #| NAME ST. NUM S.S. NUM | SEX AGE
1 Ash 12345 m 26
2 Dion 67897 m 28
3 John 70601 m 27
4 Mike 46893 m 26
5 Lisa 25789 f 24
6 Eddie 71214 m 24
7 Linda 45109 f 35
8 Cynthia 28633 f 25
9 Ben 65432 m 23
10 Gedro 64646 m 33
11 Paige 29099 f 24
12 Bernie 10001 m 38
13 Donnie 53200 m 37
14 Darlene 66677 f 25
15 Rica 99999 f 20

[

(AN

i

LI

Execution of Database Manager Program on the P.C

The DB_MGR.PRG program first runs the basic program
GETQUERY.BAS which receives the query from the Symbolics and writes a
Dbase Il program called QUERY.PRG. DB_MGR.PRG then executes
QUERY.PRG storing the results in RESULTS.TXT. DB_MGR.PRG then runs
the basic program SENDRES.BAS which sends the contents of RESULTS. TXT
back to the Symbolics. Finally, DB_MGR.PRG loops back to GETQUERY.BAS,
waiting for the next query from the Symbolics.

The words and the expressions are all defined in the dictionary. The
database can handle all display and retrieve DBase commands from the
Natural Language Query generator.

Working Examples of the Interface

1. The first example demonstrates the use of the verb "List" The word " List" is a
dbase Ill command which performs, as the name suggests, the function of
Listing the field names, required by the user. In this case, the user wants the
Natural Language Query Generator (NLQG) to generate a query for listing all
the males in the database. The user presses the Select Il key and the
Natural Language Query Generator is displayed on the screen, with the prompt-
Query. The user then types in the command: " List all males™. The NLQG
generates the query in Conceptual Dependency, the communication protocol is
established with the P.C. and the command chain is established in the manner
described above. The command is then executed in dbase lll and the results
flash for a second on the P.C. before they are communicated to the Symbolics
and displayed there. The user types in his/her query in the the top half of the

screen and the results are displayed on the bottom half of the screen.

{

{l

The response to the query " List all males” is the Record number and the Names of all

the males in the database. A printout of the screen is displayed below:

Natural Language Query Generaltor

Help Issue Obase Commands

Ouery:
Cuery:
Query:
Query: list all rales
Query:

B S A N TVWEN I T e ARV Y AR SRR A 2 2R VRITNARR RS TR TN 1 AR AU IR AN 1 R R

House=R: Menu.

To sce other commands, press Shift, Control, Mcta-Shift, or Super.
User Input THELIR-LOU's console idle 16 nintes

Figure 1

i

m1

I

[

{

2. In the manner stated above, if the user wants to retrieve the names of all the
females in the data base, he/she types in the command " List all females " The names
of all the females in the data base will be displayed in the bottom half of the screen.
The text above the output, i.e.

(DISPLAY DB-FIELD-VALUE (DB-FIELD-VALUE VALUE ("f") OPERATOR ("=")

FIELD (SEX)))

is the Conceptual Dependency representation of the typed in text. It tells the
computer to look in the data base records which have a value of " f " (meaning female)
in the field "Sex" and display the contents of all the fields in the records matching the

search. The query and the output are shown in the following figure:

Natural 15};ua ge Query Generator
T i “Set Up Hlp T s

Initialize Oictionary

OQuery:

Query:

Guery:

Query: list all males
Query: list sl females
Query: list sl1 females
Query:

Dialog
o T e T T R T R AR
_

8 Cynthia[Abort]
(DISPLAY DB-FIELD-VALUE (DB-FIELD-VALUE VALUE (*f°) OPERATOR (*=") FIELD (SEX)))

Record#t NAME
S Lisa
7 Linde
8 Cynthia
11 Paige
14 Darlene
15 Rica

L TR

TTENN DN RS SRS T L Y TR LY

MHouwse-H: Menu.
To s¢e other commands, press Shift, Control, Meta-Shift, or Super.

Keyboard CL USER: User Input

Figure 2

Fri 23 Feb 9:11:43

w

I

i IR |

e

3. In this example, the user wants to retrieve the name of women, who are more than
30 years of age. However, he is not restricted to the "List" or "Display” commands,
which are DBase commands. He/she can just type in "show" and whatever records
he/she wants to get and the Query Generator will retrieve it for him/her. Only one

record matches the query and the same is displayed at the bottom of the screen. The

Natural L iiﬁguég;;bue:ry Generator
" lssue Ubase Commands

output is shown in the following figure:

Initialize Dictionary Set Up Help

Query:

Query:

Query:

Query: list all males

Query: list all fenales

Query: Tist all females

OQuery: shou all uomen over 3@ years of age
Query:

I

Dialog
» T T T T R T R A R Y ||

15 Rica
(DISPLAY DB-FIELD-VALUE
(DB-FIELD-VALUE VALUE ("f") OPERATOR (°=") FIELD (SEX))

D8-FIELD-VALUE
(DB-FIELD-VALUE FIELD (AGE) OPERATOR (°>") VALUE (NUMBER VALUE (3@)))

DB-FIELD
{DB-FIELD NAME (AGE)))

Record® NRHE RAGE
7 Linda 35

A T R R o TR R e

TS SRR

Frti 23 Feb 9:12:45] Xeyboard CL USER: User Input

Figure 3

4. To demonstrate the capability of the NLQG, we can use the following example. The

user can use any word synonomous with "List " or "Display” in the manner and the

€

i

(N

NLQG will retrieve the records required. The output and the query are shown in the

following figure:

Tssue Dbase Commands
——

" Natural l:angl}ggé Query Generiator
T Set Up Help))

Initialize Dictionary

Query:
Query:

Query:

Query: list all males

Query: Tist all females

Query: Tist all fermales

show all women over 30 years of age

Query:

Guery: show al) men less than 25

[09:14:22 From ANDY: Your request of 224,90 94:11:45 ("Screen Hardcopy®) has finished printing on The Mayberry Garette.],
Query: enumerate atl

Query:

R R T R R R R R R R

4 Mike
S Lisa
6 Eddie
7?7 Linda
8 Cynthia
9 Ben
18 Gedro
11 Paige
12 B8ernie
13 Donnie
14 Darlene
1S Rica
16
B T

O O O O O D
Fri 23 Feb 9:15:06) ash CL USER: User Input

Figure 4

10

r

l

5. In this example, the user wants to retrieve the name and Social Security Number of
all the males in the data base. In stead of using the word "Retrieve," he/she uses the

word "Get." The query and the resuit are shown in the folllowing figure:

Natural L angdage 5(7&?)1_ Generator

[ssue Cbase Commands

Initialize Dictionary Set Up Help

Query:

Query:

Query:

Query: Tist all nales

Query: list all females

Query: list all females

Query: show all! uomen over 38 years of age

Query: shou all men less than 23

[@9:14:22 From ANDY: Your request of 2/24-9Q Q4:11:45 ("Screen Hardco . has finished printing on The Mayberry Gazette.])
Query: enuymerate all

[@9:19:12 From ANDY: Your request of 224,90 @4:16:49 ("Screen Hardcopy') has finished printing on The Mayberry Garette.]
(09:23:%9 From ANDY: Your request of 2/24-9Q @4:17:53 ("Screen Hardcopy®) has finished printing on The Hayberry GCazette.)
[09:28:45 From ANDY: Your request of 2/24,93 G4:20:14 ('Screen Hardcopy®) has finished printing on fhe Mayberry Gazette.)
Query: get the name and soctal security numper of all nales

Query:

R R T T TR T R IR SRR

Record# NAME
1 fsh

2 Dion

3 Johnm

4 Mike

6 Eddie

9 Ben

10 Gedro

12 Bernie

13 Donnie

R AR R R R A I R RS R R R 8 e

RN T

0 0 o o
Fri 23 Feb 9:56:29] Keyboerd CL USER: User Input

Figure 5

11

l I

6. In this example, the user uses the word "Retrieve" to ddisplay the name and student

number of all the males in the data base. The query and the output are shown below:

Natural Lzﬁ@zﬁif]ﬁe”ﬁaéry Generator

Initialize Oictionary Set Up Help
——— ——— ——
Query:
Query:
Query:

Query: list al) nales

Query: list al)l females

Query: list all females

Query: show all uomen over 3@ years of age

Query: show all men less than 25

{09:14:22 From ANDY: Your request of 2/24,90 B4:11:45 ("Screen Hardcopy') has finished printing on The Mayberry Gazette.]
Query: enumerate all

[89:19:12 Fron ANDY: Your request of 2/24-90 84:16:49 ("Screen Hardcopy®) has finished printing on The Mayberry Gazette.]
[09:23:59 From ANDY: Your request of 2,24/90 Q4:17:53 ("Screen Hardcopy®) has finished printing on The Mayberry Gazette.]
(09:28:4%5 From ANDY: Your request of 2/24/98 ©4:20:14 ("Screen Hardcopy') has finished printing on The Mayberry Garette.]
Query: get the name and social security number of all males

Query: Retrisve the name and student number of all males

Query:

R R T R R R TR A

SRR S

R R T TR AR ey

Recordf NRAME STNUNM
1 Ash 12343
2 Dion 67897
3 John 70601
4 Mike 46693
6 Eddie 71214
3 Ben 65432 .

18 Gedro 64646
12 Bernie 180081
13 Donnie 53200
T RN EITE - S AT I i T S ?;11}\\\\\3%‘:\&\‘*:":\\‘}3\\‘:\‘}‘\\%&\.\\\\'&2 &

O O O o
B -~

Fri 23 Feb 9:58:49] Keyboard CL USER: User Input

Figure 6

12

[

7. To demonstrate the capability of the NLQG to handle different words of the English

Language, the following example is used.

Instead of "Females" the user uses the

word "Women™The NLQG recognizes that women and females mean the same thing

and retrieves the name and student number of all women. It is displayed in the

following figure:

Natur_éﬁ:;hgunge Query Generator

Initialize Dictionary

~ Set Up He

" Issue Obase Commands

Query:

Query:

Query:

Query: list all males
Query: list all fermales

Query: list all females
Query: shou all women over 30 years of age
Query: show all men less than 23

Query: enunerate all

Query:

[@9:14:22 From ANDY: Your request of 224,90 @4:11:45 ("Screen Hardcopy")

[@9:19:12 From ANDY: Your request of 272490 04:16:49 ("Screen Hardcopy®)
[@9:23:59 From ANDY: Your request of 224,98 @4:17:53 ("Screen Hardcopy®)
[09:20:45 From ANDY: Your request of 2/24-909 04:20:14 ("Screen Hardcopy®)
Query: get the name and social se&curity number of all males

Query: Retrieve the name and student number of al)l males

Query: get the name and student number of all ucmen

nas finished printing on The Mayberry Gazette.

has finished printing on The Mayberry Garette.
has finished printing on The Mayberry Garette.
has finished printing on The Mayberry Gazette.

et tad

DB-FIELD-VALLE

Record# NRME STNUM
S Lisa 25789
7 Linds 45109
8 Cynthia 28633
11 Paige 29099
14 Darlene 66677
15 Rica 99999

(DB-FIELD-VALUE VALUE ("f") OPERATOR ("=") FIELD (SEX)))

AN A T A N R AR

User Input

Figure 7

13

8. In the following example the user uses the word find instead of retrieve or getto
display the name and sex of all members of the database. Instead of saying male or

female, he/she just types in all and the NLQG retrieves the name and sex of all the

members. The following figure illustrates the query and the output.

Natural 1 angu:'zgv' Query Generator

Initialize Dictionary Set Up Help Issue Obase Commands
PEEEE—— S—
Query
Query
Query

Query: Tist all males

Query: list all females

Query: list all fenales

Query: show all uomen over 30 years of age

Query: shou all men less than 2%

(09:14:22 Fron ANDY: Your request of 2/24-90 Q4:11:45 (°Screen Hardcopy®) has finished printing on The Mayberry Gazette.
Query: enumerate all

(89:19:12 From ANDY: Your request of 2/24/90 Q4:16:43 {‘Screen Hardcopy') has finished printing on The Mayberry Gazette.
(09:23:59 From ANDY: Your request of 224,90 Q4:17:53 ("Screen Hardcopy') has finished printing on The Mayberry Gazette.
[@9:28:4% From ANDY: Your reguest of 2/24/90 04:20:14 (*Screen Hardcopy®') has finitshed printing on The Mayberry Garette.
Query: get the name and soctal Security number of all nales

OQuery; Retrieve the name and student number of all nales

Ouery: get the name and student number of all uomen

Query: Find the name and sex of all

o

R T A R TR R R AR I T T T s a g)

4 Mike

S Lisa

6 Eddie

7 Linda

8 Cynthia
9 Ben

18 Gedro
11 Paige
12 Bernie
13 Donnie
14 Darlene
15 Ricae

™M ™MII™MII A3]

A TR TRRINRR SR AN NN IR R G A MR R TR)

e-R: Henu. e
other comman ., preass Shift, Control, Meta-Ghift, or Super.,

Fri 23 Feb 10:98:50] Keyboard CL USER: User Input

Figure 8

14

s—“

L
Al

¢

1

9. This example the user uses the word find to retrieve the name and sex of all males,

but uses the word men instead. In addition to this, he also types in the word "please.”

The NLQG ignores the "please” in that it adds no pertainent new information to the

query. The query and output are shown in the following figure.

Naturad | .Jhgua ge

Initialize Dictionary Set Up Help

(Jur}

Generator

Tssue Dbase Commands

Query:
Guery:
Query:
Query:
Query:
Query:
Query:
Query:
(@9:14:
Query:
(09:19:
(09:23:
(99:28:
Query:
Query:
Query:
Query:
(10:01:
Guery:
Query:

list all nales

list all females

list all females

show all women over 3@ years of age

shou all men less than 23

22 From ANDY: Your request of 2/24,98 84:11:45 (*Screen
enunerate all

12 From ANDY: Your request of 2/24,92 04:16:49 (“Screen
59 From ANDY: Your request of 2/24,90 @4:17:53 ("Screen
45 From ANDY: Your request of 2/24,50 04:20:14 ("Screen
get the name and soctal security number of all nales
Retrieve the name and student nunber of all nales

get the nane and student number of all uomen

Find the nane and sex of all

46 From ANDY: Your reguest of 2/24,99 85:01:38 ("Screen
Find the name and age of all men please

Hardcapy ")
Hardcopy®)

Hardcopy”)
Hardcopy®)

Hardcaopy ")

has
has
has

has

finished printing
fintshed printing

fFinished printing
fFinished printing

finished printing

R R R R R R R

on The Mayberry
on The Mayberry

on The Mayberry
on The HMayberry

on The Mayberry

Gazette

Gazette.

Gazette

Gazette.

Gazette.

B
1
|
]

Recordit

[
00 bW

12
13

NAME AGE
Ash 26
Dion 28
John 27
Mike 26
Eddie 24
Ben 23
Gedro 33
Bernie 38

Donnie 7

2 NN N RN A

Fri 23 Feb

House-R: Heau.
To see other commant. |

10:02:54] Keybosrd

press Shift, Control, Meta-Shift, or Super.
CL USER: User Input

Figure 9

15

=

(=]

- 10. In this example the user asks the query in the form of a question. The NLQG
retrieves and displays the names of all females. The query and its output are shown
in Figure 10. -

—

-

é ey

Natural [anguage Query Generialor

= Initialize Dictionary Set Up Help Issue Dbase Commands ;

= | i

— ——

Query:

Query:

Query:

Query: list all males

OQuery: list all fenales

Query: list all females

Query: show all uwomen over 3@ years of age

Query: show all men Tess than 25

(09:14:22 From ANDY: Your request of 2/24,9Q @4:11:45 ("Screen Hardcopy") has finished printing on The Mayberry Garzette.]
Query: enumerate all

(@9:19:12 From ANDY: Your request of 2/24/98 94:16:49 ("Screen Hardcopy®) has finished printing on The Mayberry Gazette.]
(@9:23:59 From ANDY: Your request of 2,24-90 @4:17:53 ("Screen Hardcopy') has finished printing on The Mayberry Garzette.)
(@9:20:45 Fron ANDY: Your request of 2-24,9@ 94:208:14 ("Screen Hardcopy') has finished printing on The Mayberry Garette.]
Query: get the name and social security number of all males

o QJuery: Retrieve the name and student number of all rales
Query: get the name and student number of all wonren

-_— Query: Find the name and sex of all .

(10:01:46 From ANDY: Your request of 2-24,9@ 05:01:38 ("Screen Hardcopy®) has finished printing on The Mayberry Gazette.]

OQuery: Find the narme and age of all men please
Ouery:
Guery:

What is the name of s1) uoren

I TR & = = TN N s W

13 Donnie 37
(DISPLAY DB-FIELD (DB-FIELD MRME (NAME)) DB-FIELD-VALUE (DB-FIELD-VALUE VALUE ("f") OPERATOR ("=") FIELD (SEX)))

Recordit NAME

- S Lisa
— 7 Linds
8 Cynthia
11 Paige
14 Derlens
1S Rica

o O o P

Fri 23 Fab 10:04:10] Keyboerd CL USER: User Inmput

1

i

Figure 10

16

t

Il

I

n
b

P

g

1.4 Task Results

The specifics stated in the Task Statement were successfully completed.
The interface was developed and operates on the Symbolic's Lisp machine.
The database can be queried from the Symbolic's and the data is returned to
the Symbolic's. The interface allows users to query the database in their
natural language, if it's English. The interface understands a limited subset of
English.

However, novice users can use the interface to query the database, but
they still must know some things about the database. For example, they must
know the field names used in the construction of the database. Using the above
example, the user would have to know that the database contained information
about males and females. They would not have to know the exact field name.
This is provided for in the dictionary; i.e., other words used to describe the same
concept are identified and linked to the appropriate definition. An example of
this is using men for male or women for female.

The solution to this type of problem is to develop a generic interface
system. However, it is difficult to develop a such a system; i.e., one that will
allow the user to simply ask what databases the system knows about and to use
any terms to query the system. In order to develop a system like this more time
and money needs to be allocated. Ar)other problem associated with the generic
system is that the interface has to know about each database and the terms it
uses to describe the data. These terms have to be defined in the dictionary.
This makes the interface database dependent. In order to make the interface
work with another database, these termshave to be redone. Also, if the
database changes a similar process must be accomplished.

This approach holds much promise of making database use by novice

users simpler. The generic system is not an absurdity. If it is approached

17

T

I

correctly, parts of this concept could prove beneficial to users. The ability to
explain what databases it knows about is feasible at present, as well as, being
able to develop an interface that will allow a user to teach it about knew
databases so that its capabilities can increase. These extensions to the present

research would simply require time for development.

18

{ I

Ll

1

i

Appendix A
Listing of Words Used by the NLI in Lisp Format

]

ANDY:>ash>nl>words.lisp.73 2/20/90 11:31:26 Page 1

;33 -%- Syntax: Common-Lisp; Package: COMMON-LISP-USER; Base: 18; Mode: LISP ~x-

{learn-uords

'({john

(pick

(up
(the

(ball

(and def {comjunction conjunctl *

def (human name (jobn)
gender (nale))
demons (save-character))

demons ({pick-up?)(decide?)(determnine-voice})
nl {grasp actor h <=={exp-urt-voice 'human 'before)
object x <==(exp-wrt-voice ’'phys-obj 'after)
instr (move actor h
object (fingers)
to x})
n2 (mbuild actor * <(=={exp-urt-voice ’human 'before)
mobj (poss actor * <=={exp-urt-voice 'human 'before)
object 3 <==z{exp-urt-voice '(hunan phys-obj) 'after}}))

demons (ignor))

demons (ignor})

def {phys-obj class (game-aobj)
name {ball})

denons (save-aobject))

<=={exp-urt-voice ’'(db-field phys-obj human) 'before)
conjunct? ¥ <== (axp-urt-voice ’(db-field phys-obj human) 'after))

demons (determine-voice))

(dropped def (ptrans actor «x ¢<z=(exp-wrt-voice 'human ’'before)

object thg (==(exp-wrt-voice ’phys-obj after)
to x ==(prep '{in into on) '(human phys-obj) 'after)
instr (propel actor (gravity)

object thg)))

(it def (pronoun)
dermons {ignor))
(in def (prep is (in))
dermons {ins-aft ’(phys-obj setting) ’'prepobj))
(box def (phys-obj class {(container)
name (box)))
(pch def (process-object name (printed-circuit-board))
demons {(save-object){hou-many ’quantity 'suffix@ ’s)))
(enter def (ptrans actor nil
object * ¢==(exp-urt-voice ’'{process-object pronoun) 'before)
to t <==(exp-urt-voice '(complex process-actor pronoun) ’after))
demons ((get-sentence-number){detarmina-voice)))
(exit def (ptrans actor nil
object ¥ <==(exp-urt-voice ’{process-object pronoun) 'before)
from ¥ ¢==(exp-urt-voice ’{complex process-actor pronoun) ’after))
demons ((get-sentence-number){deternina-yoice))}
(process def (do actor ¢ <(==(exp-urt-voice '{process-actor complex pronoun} ’before)
object 3 <=z=(exp-urt-voice '{process-objact pronoun) 'after))
demons ((get-sentence-number)(determnina-voice)))
{proceed def {(ptrans actor nil
object ¥ <==(exp-urt-voice '(process-object pronoun) ’'before)
to t <z==(prep '{to) ’(coMplex process-actor pronoun) 'after))
demons ({gat-sentence-number)(determine-voice)))
{go def (ptrans actor nil
object 3 (=zz{exp-urt-voice '(process-object pronoun) ‘before)
to t <==(prep '(to) ’'(complex process-actor pronoun) ‘'after))

dermons {(get-sentence-nurber)(deternine-voice)))

19

) ANDY:>ash>nl>words.lisp.73 2/20/90 11:31:26 Page 2

(arrive def (ptrans actor nil
—_ object t <==(exp-urt-voice '(process-object pronoun) 'before)
- to t <zz(prep '(at) '(compiex process-actor prongun} 'after))

demons ((get-sentence-nunber)(deternine-voice)))

(to def {prep is {(to))
—_— demons (ins-aft '{process-actor pronoun) 'prepobj))
{at def {prep 1s (at})

demons (ins-aft '(complex process-actor pronoun) ’prepobj))

(second def {time name (second)
base~units (1))
demons ((attach-time '({dist-type} 'before)(hou-many 'quantity 'suffix@ 's)))

. {minute def (time name {minute)
i base-units (68))
demons ({attach-time ’'(dist-type) 'before)(how-many 'quantity 'suffix@ 's)))

(hour def (time name (hour)
base-units (3600))
ey demons {{attach-time *{dist-type) ’before)(how-many 'quantity 'suffix@ 's)))

(for def (prep is (for))
demons {ignor))

i: (a demons (ignor))
{me demons {(ignor))
. {(then demons (ignor))
L}
{(uhere demons (ignor))
(next denons (ignor))
- (is def (be-verb name (is})
——
demons (ignor))
(are def (be-verb nane (are))
= demons (ignor))
= {by def (prep is (by))
demons (ignor))}
- - {of def (prep is (of))
_ demons (ignor))
(arcund def (prep is (around})
. demons {ignor))
(near def {prep is (near))
demons (ignor))
(with def (prep is (with))
- demons (ignor})
- {aic def (complex name (automatic-insertion))
demons (sava-complex))
- (ni def {(complex name {(manual-insertion))
demons (save-complex))
(mic def {complex name {manual-insertiaon))
demons (save-complex))
{(testing def (complex name (test-and-assembly))
- denons (save-complex))
{dip def (process-actor class {station)
name {dip-machine))
. denons ((save-actor)(how-many 'quantity ’suffixB ’s)))
e

20

{

e

ANDY :>ash>nl>words.lisp.73 2/20/90 11:31:26

(ved

(tdk

(rii

(bpi

(swedge

(ate

(qc

(assembly

(shipping

(storage

(nean

(sd

(swedge

(poisson

(nornal

{unifornm

(nin

(ninimun

(nax

def

denons

def

demons

def

demons

def

denons

def

demons

def

demons

def

demons

def

dermons

def

dermons

def

denons

def

def

def

dermons

def

denons

def

demons

def

denons

def

def

def

(process-actor class (station)

nane (vcd-machine))
{{save-actor)(hou-many ’'quantity 'suffixB 's)))
(process-actor class (station)

name (tdk-machine))
((save~actor)(hou-many ’quantity ’suffixB 's)))

(process-actor class (station)
name (tdk-machine))
{(save-actor) (hou-many ’quantity ’'suffix@ 's)))

(process—actor class (station)
name (berg-pin-nachine})
{(save-actor){hou-nany ‘quantity ’*suffix@ ’s)))

{process-actor class (station)
name (suedge-nut-machine))
((save-actor){(hou-nany ’quantity ’'suffix@ *s)))

(process-actor class (station)
name (automatic-test))
(save-actor))

{process-actor class (station)
name {quality-control))
(save-actor))

(process-actor class (station)
nanme (mechanical-assembly))
(save-actor))

(process-actor class (station}
name (shipping))
(save-actor))

(process-actor class (station)
nane (shipping))
(save-actor))

(statistic name {mean)
measure ¥ <==(find-stat-value)))

(statistic name {standard-deviation)
measure ¥ <z=(find-stat-value)))

(process-actor class (station)
name {suedge-nut-machine))
{{save-actor) (how-many ’'quantity ’*suffix1B ’s)))

(dist-type name {(poisson)
mit ¢ <==(exp-statistic '(mean-interarrival-time) ’after))}
(ins-bef ’(ptrans do) 'dist})

(dist-type name {normal) i

nean t <(==(exp-statistic '(mean) 'after)

sd * (==(exp-statistic '{standard-deviation) ’after))
(ins-bef '(ptrans do) °'dist))

(dist-type name {uniforn)
nin ¥ <==(exp-statistic '(min) 'after)
max t <=={exp-statistic '(max) 'after))
(ins-bef ’(ptrans do)} 'dist))

(statistic name (min)
measure t <==(find-stat-value}))

(statistic name (min)
measure ¥ <=={find-stat-value}))

(statistic name (max)
reasure ¥ (==(find-stat-value}))

21

Page 3

{1

H

In,“

ANDY:>ash>nl>words.lisp.73 2/20/90 11:31:26

(maximun

{mit

(mike

(ate

(an

(apple

(a

(wears

(shirt

(retrieve

(get

(shot

(from

(insert

def (statistic name (max)
neasure ¥ (z={find-stat-value}))

def “(statistic name (mean-interarrival-tine)
measure t (=x(find-stat-value)))

def (human name (mike)
gender (male))
demons {save-character))

def (ptrans actor nil
object t <=z(exp-urt-voice ’'{process-object noun) 'before)
to 3 <==(prep '(a an the) °’(complex process-actor noun) ’after))

demons {{get-sentence-nunber)(deternine-voice)))

def (prep is {an))
demons (ignor))

def (food type {(apple)})

def (prep is (a))
demons (ignor))

def {ptrans actor ¥ <== (exp-urt-voice ’human 'befora)
object thg <=={exp-urt-voice ’'garmant after)
to t <==(prep '{as the) '{garment) 'after)

demons ((get-sentence-number)(determine-voice})))

def (garment type (shirt)))

def (ptrans actor nil
object ¥ <==(exp-wrt-voice '(process-object pronoun) ’before)
to s <==(prep ’{from) ’'(process actor class) 'after))
demons ((get-sentence-nunber)(determine-voice}))

def (ptrans actor nil

object t <==(emxp-urt-voice '(process-object pronoun) 'before)

to * <==(prep *(from) ’(complex process-actor pronoun) 'after))
demons ((get-sentence-nunber){determina-voice)))

nl (propel object (bullets))

def {ptrans actor nil
object ¥ <(=z=(exp-urt-voice '{process-object pronoun) 'before)
to t ¢<==(prep '(the) ’{complex process-actor noun) ’after})

demons ((get-sentence-number){determine-voice))
m2 (& take-picture))

demons (ignor))

def (ptrans actor nil

object % <==(exp-urt-vaice '{process-object pronoun) ’before)
to 3 ¢=={prep ’(in) '(process actor class) 'after))

demons {(get-sentence-number){determine-voice}})

(delete def (ptrans actor nit

object ¥ <=={exp-wrt-voice ’(process-object pronoun) 'before)
to t <==(prep '(from) ’(complex process-actor pronoun) ’after))

demons ((get-sentence-number)(determine-voice)))

(modify def (ptrans actor nil

object ¥ <==(exp-wrt-voice '(process-object pronoun) ’before)

22

Page 4

ANDY:>ash>nl>words.lisp.73 2/20/90 11:31:26 Page S

—
(setq 'actor (+ 1 actor)
_ to 2 <==(prep '(fron) '(complex process-actor pronoun) 'after))))
(print def (ptrans actor {display)
object * <==(exp~urt-voice '(db-field) ’after)
objects * <(==(exp-urt-voice '(conjunction) 'after))
- denons ((get-sentence-number) (determine-voice)))
(fetch def {ptrans actor (display)
object ¥ <==(exp-urt-voice '(db~field) ’after)
objects * <==z(exp-urt-voice '(conjunction) ’after))
dermons ((get-sentence-number) (determine-voice))?}
(retrieve def (ptrans actor (display)
object ¥ <==(exp-wrt-voice '{db-field) ’after)
objects ¥ <(==(exp-urt-voice ’(conjunction) 'after))
- dernons {{get-sentence-number) {determine-voice}})
(get def (ptrans actor (display)
object t <==(exp-urt-voice "(db-field) ‘after)}
= - objects x ¢(==(exp-urt-voice '{conjunction) 'after))
_ dermons ({get-sentence-nunber) (determine-voice))}
(shou def {ptrans actor {display)
object * ¢==(exp-urt-voice '(db-field) 'after)
objects t <(=={exp-wrt-voice '{conjunction) ’after))
denons ((get-sentence-number) (determine-voice)))
(select def {ptrans actor (display)
object ¥ <==(exp-urt-voice '{db-field) ‘after)
—- objects * ¢z=(axp-wurt-voice '(conjunction) ’after))
- demons ({get-sentence-number) (determine-voice)))
e o
(list def {(ptrans actor {(display)
object * <¢==(exp-wrt-voice ’'(db-field) 'after)
- objects ¥ (==(exp-urt-voice '{conjunction) 'after))
denons {{get-sentence-nunber) {determine-voice)))

(enunerate def (ptrans actor (display)
object * ¢==(exp-urt-voice '(db-field) 'after)
objects t <==({exp-urt-voice '(comjunction) ’'after))
denons ({get-sentence-number) (determine-voice)))

(display def (ptrans actor (display)

_ object t <==(exp~urt-voice ’'(db-field) ’after)
objects * ¢(==(exp-urt-voice ’'{conjunction) ’'after))
demons {(get-sentence~number) (determine-voice)))
(give def (ptrans actor {display)
object * <==(exp-urt-voice ’'(db-field) ’after)

= objects * <==(exp-urt-voice '{conjunction) 'after))
) demons {{get-sentence-number) (determine-voice)))

(all demons (*ignorx))
f (age def (db-field name {(age))
T demons (save-object))
ol (sex def {db-field name (sex))

demons (save-object))

(name def (db-field name (name))
- denons (save-object))

(people def (db-Field name (name))
- demons (save-object))

(person def (db-Field name (name))

demons (save-object))

(nale def (db-field-value value ("m")
P field (sex))
denons (ins-bef ’{ptrans) ’'db-field-value})

(fenale def (db-field-value value {"f")
field (sex))
— demons (ins-bef ’(ptrans) 'db-field-value))

l

23

ANDY:>ash>nl>words.lisp.73

{nan def (db-field-value value {"m")
field (sex))
demons (ins-hef ’'(ptrans) ’db-field-value))
{wonan def {(db-field-value value ("f")
field (sex))
demons (ins-bef '(ptrans) 'db-field-value))

{table def (process-object name (row)))))

24

2/20/90 11:31:26 Page 6

I\!
.

(S

e

Appendix B

Listing of Expressions Used by the NLI in Lisp Format

L

ANDY:>ash>nl>expressions.lisp.22

533 -%- Mode: LISP; Syntax: Common-lisp; Package: COMMON-LISP-USER; Base:

(Tearn-expressions

'{({avtomatic insertion center)
def (complex name (automatic-insertion))
demons (save-conplex))

((ai work center)
def {complex name (automatic-insertion))
demons (save-conplex))

((automatic insertion)
def (complex name (automatic-insertion))
demons (save-conplex))

{{avtomatic insertion work center)
def {complex name {automatic-insertion))
demons {save-complex))

{(ai center)
def (complex name (sutomatic-insertion))
demons (save-conplex))

{(manual insertion center)
def (complex name {(manual-insertion))
demons (save-complex))

({manual insertion)
def (complex name (manual-insertion)}
demons (save-complex))

((manual insertion work center)
def (complex name {manual-insertion)}
demons (save-complex})

({manual load)
def (complex name {manual-insertion))
demons (save-complex))

({manusl load center)
def (complex name {manval-insertion))
demons (save-complex))

({manval load work center)
def (complex name {manval-insertion))
dernons (save-complex))

((test and assenbly)
def (complex name (tast-and-assembly})
denons (save-complex))

((test and assembly center)
def {complex name (test-and-assembly})
demons (save-complex))

((test and assembly work center)
def (complex name {(test-and-assembly})
denons (save-complex))

((testing work center)
def (complex name (test-and-assanbly})
demons (save-complex))

((testing center)
def (complex nanme (test-and-assembly))
demons {save-complex))

({testing and assembly uork center)

def (complex name (test-and-assembly})
demons (save-complex))

25

2/19/90 20:09:51

18 -x-

Page 1

ANDY:>ash>nl>expressions.lisp.22 2/19/90 20:09:51 Page 2

((testing and assenbly center)

def {(complex nanme (test-and-assembly))
demons (save-complex))

((testing and assenbly)

def {complex name {(test-and-assembly))
dermons {save-complex))

((t & a)
def {complex name (test-and-assembly))
demons (save-complex))

- ({t & a vork center)
def {(complex name (test-and-assembly))
demons (save-complex))

((t & & center)
- def (complex name (test-and-assembly))
denons (save-complex))

((finished goods)
def (complex name (finished-goods))

- demons {save-conplex))
{({dip machine)
- def (process-actor class (station)
g . nane {(dip-machine})
Ld demons ((save-actor)(hou-many 'qQuantity 'suffixl@ 's)))
({dual inline package insertion machine)
def (process-actor class (station)
name (dip-machine))
— demons ((save-actor)(hou-many ’'quantity 'suffix4@ 's)})
({dual in-line package insertion machine)
def (process-actor class (station)
name (dip-machine))
— demons ((save-actor)(hou-many ’'quantity 'suffix48 's)))
({dual inline package insertion)
- def (process-actor class (station)
name {dip-machine))
——r demons ((save-actor)(how-many 'quantity 'suffix38 ‘s)))
({dual in-Tine package insertion)
def {process-actor class {station)
name {dip-machine))
—_ demons ((save-actor)(hou-many 'quantity ’suffix308 's)))
{(dip insertion)
def (process-actor class (station)
name {dip-machine))
— demons ((save-actor)(hou-many 'quantity 'suffixl@ 's)))
{{dip insertion machine)
_. def (process-actor class (station)
- name (dip-machine))
w denons {({save-actor)(howu-many 'quantity ’suffix28 ’'s)))
({masking machine)
def {process-actor class (station)
- nane (masking-machine))
— demons {({save-actor){how-many 'quantity ’'suffix28 ’s)}))

((masking)
def (process-actor class {station)
nane {masking-machine})
denons {{save-actor)(how-nany ‘quantity ’suffix2B8 ’s)))

({(ved machine)

def (process-actor class {station)
7 nane (vcd-machine))}
— demons ((save-actor)(how-many 'quantity ’'suffixl@ ’s)))

26

ANDY:>ash>nl>expressions.lisp.22 2/19/90 20:09:51 Page 3

((ved insertion machine)
_ def {process-actor class {(station)
nane (vcd-machine))
demons ((save-actor){how-many ’'quantity 'suffix28 ’s)))

{{vcd insertion)
f def (process-actor class (station)
nane (vcd-machine))
demons ((save-actor){how-nany ’quantity ’suffixi@ 's)))

({variable center distance insertion)
def (process-actor class (station)
name {(vcd-machine))
demons ((save-actor){how-many ’'quantity "suffix38 's)))

({(variable center distance insertion machine)
def (process-actor class (station)

name (vcd-machine))
demons ({save-actor)(how-many 'quantity ’suffix4B ’s)))
((tdk machine)
- def (process-actor class (station)
name {(tdk-machine))
demons ((save-actor)(how-nany 'gquantity 'suffixld 's))})
- {(radial lead insertion machine)
- def (process-actor class (station)
name (tdk-machine))
demons ((save-actor)(how-many ’'quantity 'suffix30 's)))
B ({radial lead insertion)
def (process-actor class (station)
- name {tdk-nachine})
demons ({save-actor)(how-many 'quantity 'suffix28 's)))
({r1i machine)
: def (process-actor class (station)
- name (tdk-machine))
dermons ({save-actor){hou-many ’quantity 'suffix18 ‘s))}
((r1 insertion machine)
def (process-actor class (station)
— name (tdk-machine))
demons ((save-actor)(hou-nany 'quantity ’'suffix28 's)))
= ((radial lead machine)
= def {process~actor class {station)
L nane {(tdk-machine))
dernons ({save-actor)(how-many “quantity ’*suffix2@ ’'s)))
_ ((radial lead)
- def (process-actor class (station)
b nane (tdk-machine))
demons {({save-actor)(how-many 'quantity ’suffixl@ ’s)))}
((berg pin machine)
def {process-actor class (station)

name (berg-pin-machine))
denons {(save-actor)(how-nany "quantity ’suffix2@ ’s)))

((berg pin)
def (process-actor class (station)
nane {berg-pin-machine))
demons ((save-actor)(how-many 'quantity 'suffix1® ’s)))

= ({berg machine)
def (process-actor class (station)
name (berg-pin-machine))
demons ((save-actor)(how-many ‘'quantity "suffixl8 ’'s}})

((berg pin insertion nachine)
- def (process-actor class (station)
nane (berg-pin-machine))

27

ANDY:>ash>nl>expressions.lisp.22

demons ((save-actor)(how-many 'quantity 'suffix30

({berg pin insertion)
def (proczss-éctor class (station)

nane {(berg-pin-machine))
dermons ((save-actor)(how-many ‘quantity "suffix2@

((bpi machine)
def (process-actor class (station)

name {berg-pin-machine))
demons ((save-actor)(hou-many 'quantity 'suffix1@

((bp machine)
def (process-actor class (station)

name (berg-pin-rnachine))
demons ((save-actor)(how-many ’'quantity 'suffixl1@

({(swedge nut machine)
def (process-actor class (station)

name (swedge-nut-machine))
demons ((save-actor){how-many ’'quantity 'suffix20

({swedge nut)
def (process-actor class (station)

nane (suedge-nut-machine))
demons ((save-actor)(how-rnany ’'quantity ’suffixl@

((suedge machine}
def (process-actor class (station)
name (suedge-nut-machine))

's)}))

*s)))

's)))

's)))

's)))

s)))

dernons ({save-actor)(how-many ’quantity ’suffixl@ ’s)))}

((spanish terminal insertion machine)
def (process-actor class {station)
name {swedge-nut-machine})

denmons {{save-actor)(how-many ’'gquantity 'suffix38 ’s)))

{((spanish terminal insertion)
def (process-actor class (station}
nane {suedge-nut-machine))

demons ((save-actor)(hou-many 'quantity 'suffix28 *'s)))

({spanish terminal)
def (process-actor class (station)

name {(swedge-nut-machine))
demons ((save-actor){hou-many 'quantity ’suffix19

({spanish terminal machine)
def (process-actor class (station)

nane {suedge-nut-machine))
demons ((save-actor)(how-many 'quantity 'suffix208

({component preparation)}
def (process-actor class (station)

name (component-preparation))
demons (save-actor))

({component prep)
def (process-actor class (station)

nane (component-preparation))
demons (save-actor))

({(hand locad)

def (process-actor class {station)
name (manual-load))

demons (save-actor))

({(manual load)

def (process-actor class (station)
nane (manual-load))

denmons {save-actor))

((wave solder machine)

*s)))

"s)))

28

2/19/90 20:09:51 Page 4

ANDY:>ash>nl>expressions.lisp.22

2/19/90 20:09:51

def (process-actor class (station)

name

(wave-solder-machine)}

denons {((save-actor)(how-many ’'quantity 'suffix2@ 's)))}

{(wave solder)

def {process-actor class (station)
nane {uwvave-solder-machine))
demons (save-actor))
({aqua clean machine}
def (process-actor class (station)
name {aqua-clean-machine))

demons ((save-actor){how-nany "quantity 'suffix2@ ’s)))

({aqua clean)

def {(process-actor class (station)

nane
denons (save-actor))

((aqua bath)
def {process-actor class
name

(aqua-clean-machine))

{station)
(aqua-clean-machine))

denmons ((save-actor)(hou-many 'quantity 'suffixiB 's)))

({secondary operations)

def (process-actor class
name

demons (save-actor))

({secondary ops)

def {process-actor class
name

denmons (save-actor))

((quality control station)
def (process-actor class

nane
dermons {save-actor))

{{qc station)

def (process-actor class
nane

demons (save-actor))

({gc point)

def (process-actor class
nane

demons (save-actor))

({repair station)

def (process-actor class
name

demons (save-actor))

({fault finder)
def (process-actor class
name

(station)
(secondary-operations))

(station)
(secondary-operations))

(station)
(quality-control))

(station)
(quality-control))

(station)
(quality-control))

(station)
(repair-station))

(station}
{favlt-finder))

demons ((save-actor)(hou-many 'quantity *suffix18 ’'s))}

((burn in)

def (process-actor class
name

demons (save-actor))

({(automatic test)

def (process-actor class
name

demons (save-actor))

({(first functional test)

def (process-actor class
name

demons (save-actor))

(station)
(burn-in))

(station)
(automatic-test))

(station)
{automatic-test))

29

Page §

i1

ANDY:>ash>nl>expressions.lisp.22

({nechanical assembly)

def
demons

((fFinal
def

denons

{((final
def

dermons

(process-actor class (station)
. name (mechanical-assembly))
(save-actor))

functional test)
{process-actor class {station)
name (final-functional-test))
{save-actor))

inspection)
(process-actor class (station)

name (final-inspection)})
(save-actor))

{({button up)

def

demons

{process-actor class (station)
name (button-up))
{save-actor))

((according to)

demons

(ignor))

({poisson process)

def

dermons

(dist-type name (poisson)

2/19/90 20:09:51

mit * <==(exp-statistic ’'(mean-interarrival-time) 'after))

(ins-bef ’(ptrans do) 'dist))

({poisson distribution)

def

demons

(dist-type name {(poisson)

mit * <==(exp-~statistic '(mean-interarrival-tine) ’'after))

(ins-bef '{(ptrans do) 'dist))

({(poisson model)

def
dermons
({nornal
def
denons
{(normal
def
demons
{(normnal

def

demons

(dist-type name {poisson)

mit * <==(exp-statistic ’'(mean-interarrival-tine) 'after))

(ins-bef '(ptrans do) 'dist))

process)
(dist-type name (normal)

mean ¥ (=={exp-statistic '(mean) 'after)

sd t <==(exp-statistic '(standard-deviation) ’after))
{ins-bef ’(ptrans do) 'dist})

distribution)
(dist-type name {normal)

mean 1 <==(exp-statistic '(mean) 'after)

sd * <==(exp-statistic '(standard-deviation} *after))
(ins-bef ’{ptrans do) ’dist))

model)
(dist-type name (normal)

mean ¥ <==(exp-statistic '(mean) 'after)

sd t <(==(axp-statistic '(standard-deviation) fafter))
{ins-bef '(ptrans do) 'dist))

((uniform distribution)

def

demons

{dist-type name (uniform)
min ¥ (=={exp-statistic *(min) 'after)
nax ¥ <(=={exp-statistic '(max) ’after))
{ins-bef '(ptrans do) 'dist))}

{((uniform process)

def

demons

{(dist-type name (uniform)
min ¥ <==(exp-statistic *(min) ’after)
max ¥ <=={exp-statistic '(max) ’after))
(ins-bef "(ptrams do) 'dist))

{{uniform model)

def

denons

{(dist-type name (uniform)
min 3 <==(axp-statistic '(min) 'after)
nax ¥ <==(exp-statistic ’'(max) ’after))
{(ins-bef ’{ptrans do) 'dist))

30

Page 6

i

I

ANDY:>ash>nl>expressions.lisp.22

({mininumn value)
def (statistic name {min)
measure ¢ <==(find-stat-value)))

{((maxinum value)
def {statistic name (nax)
measure t <==(find-stat-value)))

({printed circuit board)
def (process-object name (printed-circuit-board))
demons ((save-object) (how-many ’'quantity 'suffix2@ 's)))

{(standard deviation)

def (statistic name (standard-deviation)
neasure <=={find-stat-value))

demons (ignor))

((std dev)

def (statistic name {standard-deviation)
neasure ¥ <==z{find-stat-value))

demons (ignor))

({mean interarrival time)
def (statistic name (mean-interarrival-time))
neasure ¢ <==(find-stat-value))

((memory)
def (process-actor class (station)
name (memory))
demons {{save-actor)(hou-nany ’quantity ’suffixl 's))})

((Data-base)
def (process-actor class (station)
nane (data-base))
demons ((save-actor)(hou-many 'quantity 'suffixl 's)))

({student number) def (db-field name (stnunm))
denons {save-object))

({social security number) def (db-~Field name (ssnum))
demons (save-object))))

31

2/19/90 20:09:51 Page 7

