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I. Introduction

A safety property of a program asserts that some proscribed "bad firing" does not occur during

execution. To prove that a program satisfies a safety property, one typically employs an invariant, a

characterization of current (and possibly past) program states that is not invalidated by execution. If

an invariantIholdsintheinitialstateoftheprogram and I=_ Q isvalidforsome Q, then_ Q cannot

occur during execution. Thus, to establish that a program satisfies the safety property asserting that

---,Q does not occur, it suffices to find such an invariant L

Timing propern'es are safety properties where the "bad thing" involves the time and program

state at the instants that various specified control points in a program become active. 1 Timing proper-

ties can restrict externally visible events, like inputs and outputs, as well as things that are internal to

a program, like the value of a variable or the time that a particular statement starts or finishes. For

example, in a process control system, the elapsed time between a stimulus and response must be

bounded. This is a timing property where the "bad thing" is defined in terms of the time that passes

after one control point becomes active until some other control point does. Timing properties con-

ceming internal events are useful in reasoning about ordinary concurrent programs that exploit

knowledge of statement execution times to coordinate processes. One such protocol--for mutual

exclusion---is given in section 4.

Because timing properties are safety properties, the invariant-based method outlined above for

reasoning about safety properties can be used to reason about timing properties. This means that a

programming logic L to verify (ordinary) safety properties can form the basis for a logic L" to verify

timing properties. It suffices that in L" we are able to

(1) specify in I and Q information about the times at which events of interest occur and

(2) establish that program execution does not invalidate such an L

Point (1) means that in defining L', the language of L might have to be extended so that it becomes

more expressive. Point (2) means that the inferencing apparatus of L might have to be refined so that

I can be proved an invariant for a program whose semantics includes information about execution

timings.

This paper describes extensions to a logic of proof outlines [Schneider 92] to enable verification

of timing properties for concurrent programs. The approach taken is the one just outlined: we start

with a logic for proving ordinary safety properties, augment the language according to (1) and refine

the inference rules according to (2). The presentation is organized as follows. In section 2, we

describe a logic of proofoudines. Section 3 introduces _d axiomatizes a new type of atomic action,

called a real-time action. The correctness proof for a mutual exclusion protocol in section 4 illus-
trates the use of our logic. Related work and some unresolved technical issues are discussed in sec-

tion 5.

2. Proof Outlines

In order to reason about a program, we must be able to define sets of program states and reason

about them. First-order predicate logic is an obvious choice for this task, and we employ the usual

IInformally,the activeconlrolpointsat any instantare determined by the valuesof the program counters at thatin-

stant.See §2 for a more formaldefinition.
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correspondencebetweentheformulasof thelogic andtheprogramminglanguageof interest---each
variableandexpressionof theprogramminglanguageis madeatermof thelogic andeachBoolean
expressionof theprogramminglanguageis madea predicateof thelogic. It will beconvenientto
assumethatpredicatesandtermsarealwaysdefined,althoughthevalueof atermmaybeunspecified
in somestates.For example, we will assume that the term x/y has a value whatever value y has, but

that y*(x/y) need not equal x wheny is 0 because the value ofxly is unspecified in such states.

Predicates and function symbols for the programming language's data types provide a way to

express facts about program variables and expressions. The state of a program, however, also

includes information that tells what atomic actions might be executed next. For representing this

control information, we will find it convenient to fix some predicate symbols, called control predi-

cates, and give axioms to ensure that, as execution proceeds, changes in the values of these

correspond to changes to program counters. (An alternative representation would have been to define

a "program counter" variable and a data type for the values it can assume.)

2.1. Control Predicates

A program consists of a set of atomic actions, each of which executes as a single indivisible

state transformation. The control points of the program are defined by these atomic actions. Each

atomic action has distinct entry control points and exit control points. For example, the atomic action

that implements skip has a single entry control point and a single exit control point; the test for an if

has one entry control point and one exit control point for each alternative. Execution of an atomic

action a can occur only when an entry control point for a is active. Among other things, execution

causes that active entry control point to become inactiveand an exit control point of a to become

active.

For each statement or atomic action S, we define the following control predicates:

at(S): an entry control point for S is active.

after(S): an exit control point from S is active.

The various statements in a programming language give rise to axioms relating these control predi-

cates. The axioms formalize how the control predicates for a statement or atomic action S relate to

the control predicates for constructs comprising S and constructs containing S, based on the control

flow defined by S. For a guarded-command programming language [Dijkstra 75], these axioms are

given in Figure 2.1. We use GEvaI_(S) there to denote the guard evaluation action for an if and

GEvalao(S) to denote the guard evaluation action for a do. And, we write P1 (B P2 _B ... _BPn to

denote that exactly one of P 1 through P,, holds.

2.2. Syntax and Meaning of Proof Outlines

A proofSatline PO(S) for a program S is a text in which every atomic action of S is preceded

and followed by an assertion enclosed in braces (" {" and "}"). Each assertion is a Predicate Logic
formula in which

• the free variables are program variables (typeset in italics) or rigid variables, (typeset in upper-

case roman), and

• the predicate symbols are control predicates or the predicates of the programming language's

expressions.
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Atomic action: For S a skip, guard evaluation action, or assignment:

--,(at(S) ^ after(S))

Sequential composition: For S the sequential composition $1 $2:

(a) at(S) = at(St)

Co) er(S) = after(S2)
(c) after(S t) = at(S2)

if Control Ax/oms: For an if statement:

S: if B1 -.-_Sl fl B2--_$2 Il "" Il Bn--_Sn fi

(a) at(S) = at(GEval g(S))

(b) after(S) - (after(Sl) • after(S2) _ ... • after(S,))

(c) after(GEval#,(S)) = (at(S1) • at(S2) • ... • at(Sn))

do Control Ax/oms: For a do statement:

S: do Bl ---_St 0 B2---_$2 [! ... fl B,_--_S,_ od

(a) at(GEvalaa(S)) = (at(S) _ aj_er(S l) • after(S2) • ... • after(S,))

Co) after(GEvalao(S)) - (at(S l) • at(S2) • ... • at(Sn) • after(S))

cobegin Control Ax/oms: For a cobegin statement:

S: cobegin St // $2 // "'" // S,, eoend

(a) at(S) = (at(St) ^ ... ^ at(Sn))

(b) after(S) = (after(St) ^ ... ^ after(S_))

Figure 2.1. Control Predicate Axioms

Assertions in which all terms are constructed from program variables, rigid variables, and predicates

involving those variables am called primitive assertions. An example of a proof outline appears in

Figure 2.2. In it, x is a program variable and X is a rigid variable. All assertions except the first and

last am primitive.

The assertion that immediately precedes a statement or atomic action T in a proof outline PO(S)

is called the precondition of T and is denoted pre(T); the assertion that directly follows T is called the

postcondition of T and is denoted by post(T). For the proof outline in Figure 2.2, this correspondence

is summarized in Figure 2.3. Finally, for a proof outline PO(S), we write pre(PO(S)) to denote

pre(S), post(PO(S)) to denote post(S), and use a triple

(2.1) {P} co(s) {Q}

to specify the proof outline in which pre(S) is P, post(S) is Q, and all other pre- and postconditions

are the same as in PO(S).

A proof outline PO(S) can be regarded as associating an assertion pre(T) with control predicate

at(T) and an assertion post(T) with after(T) for each statement T in a program fragment S.
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{x=X ^ at(S)}

S: ifx>_.O --# {x=X ^ x>O}
St: skip
{x=x ^ x O}

I] x<O _ {x=X ^ x<O}
82: x :---x

{-x=X ^ -x<0}
fi

{x=abs(x) ^  er(S)}

Figure 2.2. Computing abs(x)

Assertion

pre(S)
post(S)

pre(Sl)
post(S t)
pre(S2)
post(S2)

Figure 2.3.

Assertion Text

x=x ^ at(S)
x=abs(X) ^ after(S)
x=X ^ x>O
x=X ^ x >O
x=X ^ x<0

-x=X ^ -x<O

Assertions in a Proof Outline

Consequently, a proof outline defines a mapping from each control point X of a program to a set of

assertions---those assertions associated with control predicates that are true whenever X is active. In

most cases, a control point is mapped to a single assertion. For example, the proof outline

(2.2) {P} St {Q} S2 {R}

maps the entry control point for program St $2 to the single assertion P. This is because at(S1) and

at(S t $2) arc the only control predicates that arc true if and only if the entry comrol point for St $2 is

active, and (2.2) associates P with both of these control predicates. However, a proof outline can map

a given control point to multiple assertions. An example of this appears in Figure 2.2. There, the exit

control point for S 1 is mapped to two assertions--post(S t) and post(S)--because whenever the exit

control point of S t is active both after(S t) and after(S) are true.

The assertions in a proof outline are intended to document what can be expected to hold of the

program state as execution proceeds. The proof outline of Figure 2.2, for example, implies that if

execution is started at the beginning of Si with x=23 (a state that satisfies pre(Sl)), then if Sl com-

pletes, post(Sl) will be satisfied by the resulting program state, as will post(S). And if execution is

started at the beginning of S with x=X, then whatever assertion is next reached--be it pre(St)

because X>0 orpre(S2) because X<0--that assertion will hold when reached, and the next assertion

will hold when it is reached, and so on.

With this in mind, we define a proof outline PO(S) to be valid if it describes a relationship

among the program variables and control predicates of S that is invariant and, therefore, not falsified

4-



by execution of S. The invariant defined by a proof outline PO(S) is "if a control point Z. is active,

then all assertions that _, is mapped to by PO(S) are satisfied" and is formalized as the proof outline

invariant for PO(S):

(2.3) leo(s): Ar ((at(T) =_ pre(T)) ^ (after(T) =_ post(T)))

For example, the proof outline invariant defined by PO(S) of Figure 2.2 is

at(S) _ (x=X ^ at(S)) ^ after(S) _ (x=abs(X) ^ after(S))

^ at(Sl)=_(x=X^x>O) ^ after(St)_(x=X^x"O)
^ at(S2)_(x=X^x_O) ^ after(S2)_(-x=X^-x_O).

(2.5)

(2.6)

where

Equatingproofoutlinevaliditywithinvarianceof leo(s)can have disturbingconsequencesfor

proofoutlinesthatmap a singlecontrolpointtomultipleassertions.The followingvalidproofout-

lineillustratesthis.

(2.4) {false}

S" iftrue---_ {false} S': x :=3 {x=l} fi
{x=2}

This proof outline maps the exit control point for S" to two assertions, post(S') and post(S). The

proof outline is valid because leo(s)

at(S) _ false ^ after(S) _ x=2
^ at(S') _false ^ after(S') =_ x= 1

is equivalent to false (since after(S')=after(S) is valid) and therefore leo(s ) cannot be falsified by exe-

cation of any statemenL The problem with (2.4) is that post(S), the assertion associated with the exit

control point of S, is not implied by post(S'), the assertion associated with the exit control point for

the last atomic action in S (i.e S'). As a result, what (2.4) really associates with the exit control point

for S' (viz. post(S_)X post(S)) is not ace_iy characterized bypost(S). Given a valid proof outline

PO(S), it seems reasonable to expect post(S) to hold whenever an exit control point of S is active,

Similarly, pre(S) should be constrained so that if it holds and an entry control point of S is active,

then assertions that PO(S) associate.s with that entry control point also hold. To formalize these con-

straints, we define a proof outline PO(S) to be segconsistent if and only if

at(S) ^ pre(S) =_ lleo(s)

after(S) ^ lleo(s) =_ post(S)

lleo(s): rA ((at(T) _ pre(T)) ^ (after(T) _ post(T)))

lleo(s) is just leo(s) with the two conjuncts conce_g pre(S) and post(S) O.e. "at(S) =_ pre(S)" and

"after(S) _post(S)") omitted. 2 Thus, (2.5) ensures that whenever any entry control point _. for S is

active, ifpre(S) holds then so does the assertion that PO(S) associates with _ And (2.6) ensures that

whenever any exit control point _ of S is active, if the assertion associated with that control point

holds then post(S) will hold as well. Together, (2.5) and (2.6) mean that pre(S) and post(S) consti-

tute a reasonably complete interface to S: provided pre(S) holds when execution of S is started, the

assertions of PO(S) will characterize any states that arise as execution proceeds and post(S) will hold

211is an acronym for internal invariant.
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if anexitcontrolpointfor S is ever reached. It should come as no surprise that the proof outline of

(2.4) is not serf consistent--(2.6) is violated.

The requirements for validity of a proof outline_invariance of leo(s) and self-consistency--_an
be formalized in terms of th_s -validity of Temporal Logic formulas, where _s is the set of infinite

state sequences that model execution of S started from any program state [Owicki-Lamport 82]. In

this formalization, we are able to write _s )=P in order to denote that a Predicate Logic formula P is

valid because every program state is the first state of some interpretation in _/_'s•

(2.7) Valid Proof Outline. A proof outline PO(S) is vah'd if and only if:

Self Consistency: _r_sl=(at(S) ^ pre(S) _ lleo(s))

_f_s _=(after(S) ^ lleo(s) =_ post(S))

lnvariance: _kr's_=(Ieots) _ []leo(s)) []

Notice that according to Valid Proof Outline (2.7), rigid variables in proof outlines can be used

relate the values of program variables from one state to the next. This is because free rigid variables

in a temporal logic formula are implicitly universally quantified. Thus, leo(s) :=) []leo(s) is _s -valid

if and only if for any assignment of values to the proof outline's rigid variables, execution of S starts

in a state that does not satisfy leo(s) or results in a sequence of states that each satisfy leots).

For example, the proof outline of Figure 2.2 is valid and contains a rigid variable X to record the ini-

tial value of x. Starting execution in a state where at(S2) and x=-23 holds will satisfy

leo(s) _ Uleo<s) even if -23 is not assigned to X because then leo(s) is not satisfied (causing

leo(s) _ []leo(s) to be trivially satisfied).

2.3. Axiomatization for a Proof Outline Logic

Proof Outline Logic is an extension of Predicate Logic. The language of Predicate Logic is

extended with proof outlines for all atomic actions, statements, and programs. The axioms and infer-

ence rules of Predicate Logic are extended with axioms and inference rules that allow only valid

proof outlines to be proved theorems. In particular, there are some statement-independent inference

rules as well as an axiom or inference rule for each type of statement and atomic action.

The statement-independent inference rules for Proof Outline Logic are given in Figure 2.4.

Rule of Consequence allows the precondition of a proof outline to be strengthened and the postcondi-

tion to be weakened, based on deductions possible in Predicate Logic. Rule of Equivalence allows

assertions anywhere in a proof outline to be modified, provided a self consistent proof outline having

an equivalent proof outline invariant results. A rigid variable can be renamed or instantiated by using

the Rigid Variable Rule; PO(S)_xp in the conclusion of that rule denotes a proof outline in which

rigid variable X in every assertion is replaced by Exp, an expression involving constants and rigid

variables (only). Finally, the Conjunction and Disjunction Rules allow two proof outlines for the

same program to be combined. POA(S)®POo(S) is used to denote the proof outline that associates

assertion Act, ^Bet, with each control predicate cp, where Xo, is the assertion that POx(S) associates

with control predicate cp; POa(S)_}POa(S) denotes the proof outline that associates Act, v Bet, with

each control predicate cp

We now turn to the axiomatization for a concurrent programming language. The skip statement

is a single atomic action whose execution has no effect on any program variable.
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p#

Rule of Consequence: _ P' {P } PO(S) {Q }, Q _ Q"
{p'} PO(S) {Q'}

PO(S), leo(s) = leo'(s), PO'(S) self consistent

Rule of Equivalence: PO'(S)

Rigid Variable Rule: For Exp an expression involving only constants

and rigid varibles:

{P)POfS) (q I

{P_p } PO(S)L, {Q_ }

POA(S), POB(S)
Conjunction Rule" POa($)® POe (S)

Disjunction Rule:
POA(S), POt(S)
POA(S)OPOa(S)

Figure 2.4. Proof Outline Logic: Statement-independent Rules

skipAx/om: For a primitive assertion P: {P} skip {P}

The assignment statement x := E is also a single atomic action. Its execution involves evaluat-

ing E and then storing that value in x. 3

Assignment Axiom: For a primitive assertion P: {P[} _:=_ {P}

Sequential composition of statements is denoted by juxtaposition (without the traditional semi-

colon separator).

Statement Composition Rule:
{P} PO(St) {(2}, {Q}/'o(s=) {R}
{P}vo(st) {Q}Po(s2) {R}

An if statement consists of an atomic guard evaluation action that selects for execution an alter-

native whose guard is true; if no guard is true, then the guard evaluation action blocks. We use the

following rule for reasoning about a guard evaluation action.

3For simplicity, we restrict consideration to the case where x is a simple identifier and not an array. See [Gries-Levin
80] for the more general rule.
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GEval¢(S) Axiom: For an if statement

S: ifBt--->St [] B2---)$2 1] .." I1 Bn'-')Sn fi

and a primitive assertion P:

{P} GEval¢(S) {P A ((at(S1)=_Bl) ^ ... A (at(Sn)_B,))}

A proof outline for an if is then constructed by combining a proof outline for its guard evaluation

action with a proof outline for each alternative.

ifRu/e: (a) {P} GEval¢(S) {R},
(b) (R A at(S 1)) = P 1..... (R A at(S,,)) =_ pn,

(c) {P_} Po(so {Q}..... {P_} eo(s_) {Q},
{P}
S: if Bt --->{P1} PO(St) {Q}

1 " °"

I] n,. _ {e.} PO(S.) {Q}
fi

{Q}

Since the guard evaluation action for an if blocks when no guard is true, we can use an if to

implement conditional waiting. For example,

if B --_ skip fi

blocks until the program state satisfies B.

The guard evaluation action for do selects a statement Si for which corresponding guard B i

holds and if no guard is true, then the control point following the do becomes active.

GErald(S) Axiom: For a do statement

S: do Bl --#St [1 B2---_$2 [I "" I1 B,,---_S,, od

and a primitive assertion P:

{P} GErald(S) {P ^ ((at(Sl)=_B1) A ... A (at(S,_)_B,_)
A (after(S)_(--,Bl A ... A --,B,)))}

The inference rule for do is based on a loop invariant, an assertion I that holds before and after every

iteration of a loop and, therefore, is guaranteed to hold when do terminates---no matter how many
iterations occur.

do Rule: (a) {I} GEvalao(S) {R },

(b) (R Aat(S l)) _ P 1..... (R ^ at(S_)) =_ P,,
(c) {el} PO(SI) {/} ..... {en} eO(S.) {t}
(d) (R ^after(S)) =_ (I A--,BI ^ ... A--,Bn)

{t}
S: do Bl _ {Pl} PO(S1) {I}

I] B_ --, {e_} PO(S_) {t}
od

{I A "",B1 A ... A --,B,,}

-8-



The inference rule for a cobegin is based on combining proof outlines for its component

processes. An interference-freedom test [Owicld-Gdes 76] ensures that execution of an atomic action

in one process does not invalidate the proof outline invariant for another. This interference-freedom

test is formulated in terms of triples,

NI(a,A): {pre(a)AA} a {A},

thatarevalidifand only ifa does notinvalidateassertionA. Ifno assertioninPO(Si) isinvalidated

by an atomicactiona them by definition,Ipo(s,)alsocannotbe invalidatedby a. Therefore,we can

provethata collectionofproofoutlinesPO(Sl) .....PO (SD areinterferencefreeby establishing:

For alli,j, I<i_n, I<;j<n,i$j:

For allatomicactionsa inSi :

For allassertionsA inPO(Si): NI(_ A) isvalid.

The followinginferenceruledetermineswhen a validproofoutlinefor a cobegin willresultfrom

combining validproofoutlinesforitscomponent processes:

cobegin Rule: (a) PO(S I).....PO(S,)

Co) P =_ pre(PO(S1)) A ...A pre(PO(Sn)),

(c)post(PO(S l))̂ ...A post(PO(S,))=_ Q,

(d) PO(S t) ..... PO(S,) are interference free.

{P} cobegln PO(SI) // "'" // PO(S.) coend {Q}

Since execution of an atomic action a in one process never interferes with a control predicate cp

in another, certain interference-freedom triples follow axiomatically.

Process Independence Axiom:
action a in another:

For a control predicate cp

{cp=C} a {cp=C}

in one process and an atomic

Notice that NI(_ cp) follows directly from this axiom when a and cp are from different processes.

2.4. From Proof Outlines to Safety Properties

Theorems of Proof Outline Logic can be used to verify safety properties because of the way

proof outline validity is defined. If a proof outline PO(S) is valid then leo<s) must be an invariant.

And, if leo<s) is an invariant, then according to the method of § 1 for proving safety properties we can

prove that executions of S starting with pre(PO(S)) true will satisfy the safety property proscribing

--, Q. we simply prove

(2.8) (cp AAct,)=_Q

for every assertion Act, in PO(S), where Ace is the assertion that PO(S) associates with control predi-

cate cp. For example, we prove as follows that for the absolute value program in Figure 2.2,

after(S) =_xfabs (X) holds during executions started in a state satisfying at(S) A xfX: First, because

post(S) _x=abs(X) is valid, for the case where cp is a_er(S), (2.8), which is

after(S) Apost(S) _ (after(S) =_x=abs(X)),

is valid. Second, for the case where cp is not implied by after(S), (2.8) is trivially valid.
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3. Real-time Actions

We must know something about the execution times of atomic actions in order to reason about

timingpropertiesof programs. Therefore,foreach unconditionalatomic action4 a inour program-

ming language,we definecorrespondingreal-timeactions_s,elwhere 8 and _ arereal-valued,non-

negativeconstants.Executionof a real-timeactiono_s,0 causesthesame indivisiblestatetransfor-

mation as c_ does, but constrains it to occur at some instant between ¢ and _+8 time units after the

entry control point for o.ts ' _1becomes active.

We have elected to characterize the execution time for a real-time action in terms of two param-

eters (8 and e) in order to have flexibility in modeling various execution environments. Parameter e
describes the fixed execution time of the atomic action on a bare machine; 8 models execution delays

attributable to multiprogramming and other resource contention. A system where each process is

assigned its own processor is modeled by choosing 0 for 8; a system where processors are shared is

modeled by choosing a value for 8 based on the length of time that a runnable process might have to

wait for a processor to become available.

3.1. Reasoning About Real.time Actions

Execution of a real-time action ate ,el affects the program variables and control predicates in the

same ways as the atomic action a from which it was derived. Therefore, we have the following infer-

ence rule:

Real-time Action Transformation:

assertions, and 0<8 and 0<e:

For a an unconditional atomic action, P and Q primitive

{e}a {Q}
{P}acs, l{Q}

To reason about timing properties, additional terms must be added the assertion language. This

is because the method of §2.4 for reasoning about safety properties can only be used to prove safety

properties for which the negation of the proscribed --, Q is implied by each of a proof outline's asser-

tions. Timing properties concern the instants at which control predicates become active and so we

define a term for each control predicate cp:

fthe time that cp last became true or

Top l_o. if cp has never been true

We also define a new real-valued term T to be equal to the current time.

Some additional axioms and inference rule allow us to reason about formulas of our more

expressive assertion language. First, the various non-atomic statements of our programming

language give rise to axioms based on the way they equate their components' control points. For our

programming language, these axioms are given in Figure 3.1. Second, there are some language-

independent axioms. In these, cp and cp" can denote any control predicates, including those not asso-

ciated with entry or exit control points for real-time actions.

4An atomic action is unconditional if it is executable whenever its entry control point becomes active. In the program-
ruing notation of §2.3, slOp, assignment, and the guard evaluation action for do are unconditional. The guard evaluation for
if is not unconditional.
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Sequential Composition AMoms: For S the sequential composition S l $2:

(a) rat(S) = rat(S t)

Co)r er(S) = raBer(S2)
(c) rafter(S l) = rat(S2)

ifAMoms: For an if statement:

S: ifBI---¢SI I] B2.-cS2 fl "'" 0 Ba-cSp, fi

(a) vat(S) = rat(GEval_S))

(b) rafter(S) - max(rafter(S t), rafter(S2) ..... rafter(S,))

(c) rafter(GErald(S)) = max(r at(S l ), rat(S 2) .... rat(Sn))

do Axioms: For a do statement:

S" do Bt _St l] B2--*$2 I] "'" I] B,,---_S,, od

(a) rat(GEval a,,(S)) = max(taNS), rafter(S l), rafter(S2) ..... rafter(S,))

(b) rafter(GEval._,(S)) = max(rat(S 1), rat(S2) ..... vat(S,,), rafter(S))

eobegin Ax/oms: For a eobegin statement:

S: eobegtn $1 // $2 // "'" // Sn

(a) rat(S) = tat(S l) = "'" = rat(Sn))

(b) rafter(S) = max(tafter(S 1)..... rafter(Sn))

coend

Figure 3.1. Tcp Axioms

(3.1)

(3.2)

(3.3)

rcp < T

(rcp =-oo) =_ --, cp

For a real time action cq_s._iwith label S: (a) at(S) =_ rat(S)<T<rat(S)+8+e

(b) rat(S)_-** =_ tafter(S)< tat(S)+8+e

Axioms (3.1) and (3.2) follow directly from the definition of Tcp. Axiom (3.3) captures that essence

of a real-time action--that its entry control point cannot stay active too long. This, in turn, allows us

to infer that a control point is not active by using

(3.4) T>rat(S)+8+e _ --,at(S)

because from (3.3a) we have:

at(S) :=_ rat(S)< T_ rat(S)+8+e

= . Predicate Logic.
at(S) =_ ((rat(S)_T) ^ (T<tat(S)+8+e)

= . Predicate Logic,,
((tat(S)>T) v (T>tat(S)+8+e)) _ -.at(S)

= .Axiom (3.1).
T> rat(S)+8+e =_ --,at(S)
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The effect on these new terms of executing atomic actions is captured by the following axioms

of Proof Outline Logic. First, for any ordinary or real-time atomic action, we have:

rcp Invariance: {cp=C ^ tcp=V} S: ot {(cp =_C) :=_ (Tcp=V)}

The antecedent in the postcondition is necessary for the case where cp is after(S), since executing S

does change the value of citer(S).

Next, for any ordinary atomic action:

Action-timeAm'oms: (a) {K<rat(S)} S: ¢t {K<tafter(S)}

Co) {K<'T} S: ot {K<?after(S)}

Action-timeAxiom (a)assertsthattheexitcontrolpointforS becomes activeafterany ofitsentry

controlpointslastbecame active.Action-timeAxiom (b) assertsthatthe exitcontrolpointof S

becomes activelaterthanany timethattheentrycontrolpointforS was lastactive.

For a real-timeactioncz{S,el,the followingaxiom characterizeshow executionchanges "/'and

theTcp-terms.

Real-timeActionAxiom {K<rat(S)} S: if-IS,el {K+E<tafter(S)}

This axiom is analogous to Action-timeAxiom (a),except now the postcondidon has been

strengthenedtogivea tighterlowerbound on when theexitcontrolpointforS firstbecomes active.

Two thingsthattheReal-timeActionAxiom doesnot say areworthyofnote.First,thisaxiom

does not bound the intervalduringwhich theentrycontrolpointforS isactive.Thisisbecausethat

bound alreadycan be derivedusingaxiom (3.3a),sinceat(S)holds whenever theentrycontrolpoint

forS does. Second,one might expecttobe abletoprove thefollowingtriple--itspreconditionbeing

similartothatofAction-timeAxiom Co).

(3.5) {K<T} S" o_s,el {K+e<'T}

Unfortunately,(3.5)isnot sound. Executionof S startedin a statesuch thattat(o0<K<'Twould

satisfythe preconditionbut might terminatebeforeK+e. For example, consideran executionof

Cqo.21thatis startedattime 0. Thus, at time '/'=Ithe statewould satisfyK<'/'forK-I, and so

preconditionK<'Twould be satisfiedby thatstate.When executionof _o,21terminates--2unitsafter

itisstartedDattime'/'=2,thepostconditionK+e<"/" isI+2<2, which isfalse.

Finally,thefollowingruleallowsrigidvariablestobe instantiatedwith expressionsinvolving

tcp-terms.(RigidVariableRule onlyallowsrigidvariablestobe instantiatedby constants,rigidvari-

ables,orexpressionsconstructedfrom these.)

tcp-lnstantiation {rcp=V} o_{Tcp=V}, {P} ct {Q}
(exp] a

This rule is typically used along with one of the Action-time Axioms or the Real-time Action Axiom.

For the case where real-time action cc and control predicate cp are in different processes, the first

hypothesis of Tcp-Instantiation is automatically satisfied, as the following proof of

{rcp=V} ct {rcp=V} demonstrates.

Process Independence Axiom:
I. {at(_)=C}c_{at(_)=C}
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,cp Invariance:
2. {at(1)-C ^ rat(t)=v} a [(at([3)_C) _ Oat(l)-v)}

Conjunction Rule with 1 and 2:
3. {at(t)--C A rat(l)--V) a {at(t)=c A ((at(l)_C) =_ (rat(l)--V))}

. at(l_)=C ^ ((at(l) =_ C) =_ (rat(l_)-V))
_Predicate Logic))

rat(1)=v

Rule of Consequence with 3 and 4:
5. {at(t)=C A rat(t)=V } a {rat(l)=V}

Rigid Variable Rule with 5, replacing C by true and then by false:
6. {at(l) A rat(l)ffiV} ct {rat(13)fV}
7. {_at(t) ^ rat(t)--V} a {rat(13)=V}

Disjunction Rule with 6 and 7:
8. {(at(l) v --,at(l) ) A rat(t)=v} a {rat(13)--V}

Equivalence Rule with 8:
9. {rat(1)--V}a {at(1)=V}

Thus, we obtaina derived rule of inference:

Derived rcp-lnstantiation:

processes:

If atomic action a and control predicate cp are in different

le} {O}
 eL}

3.2. Interference Freedom Revisited

When the execution times of atomic actions arc bounded, certain forms of interference cannot

occur. This is illustrated by the proof outline

{x=O}
cobegln

{x=0} a: (x :=x+l)[o,21 {x=l}
//

{x=0} l: (Y :=x+l)[o, ll {y=l}
coend

{x-I Ay=1}

which isvalidbut cannot be derivedusing the cobeg|n Rule because PO(a) and PO(_) are not

interferencefree.Inparticular,NI(_ pre(13))isnotvalid.

Nl (a, pre ([3))

= {pre(ct) Apre(t)} (x :=x+l)to,21 {pre(l)}

= {x=0} (x :=x+l)to,21 {x=0}

Using operational reasoning, however, it is not difficult to argue that execution of a cannot invalidate

pre(_3) and so PO(oO and PO([3) should be considered interference free. This is because according to

cobegin Axiom (b) in Figure 3.1 both at(a) and at(_3) become active at the same instant, say time 0.

By definition, a completes at time 2, and so x remains 0 until this time. Real-time action 13completes
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attime 1and,therefore,mustfindx to be 0. It is simply not possible for ct to change the value of x

while at(13) is active.

Our eobegln Rule is based on a form of interference freedom that does not take into account

execution-time bounds of real-time actions. In particular, Nl(a, Acp) does not account for the fact

that although Acp might be associated with an active control point cp when a is started, if A is the

precondition of a real-time action then we may be able to prove that cp cannot be active when a com-

pletes. The remedy is to refine Nl(o_ Acp) taking into account the time bounds for how long an entry

control point for a real-time action can remain active. The following triple accomplishes this.

NI, t(_ A_): {at(a) ^ pre(oO ^ cp ^Act,} ot {cp _ Act, }

Returning to the example above, we have:

NIn (_ pre (l]))

= {at(a) ^pre(a) ^ at(l]) ^pre(l])} (x :=x+l)[o,21 {at(I]) _pre(l])}

= {at(a)^ at(i])̂x=0} (x :---x+I)lo.2l{at(i])=ox=0}

And, thisobligationcan be dischargedasfollows.

Real-time Action Axiom:

I. {K<tat(ct)}oc (x :=x+I)[o.21{K+2<tafi'er(ct)}

Derived tcp-Instantiation with 1:
2. {tat(l])<tat((x)} or: (x :=x+l)io,21 {tat(l])+2<tafter(oO}

Axiom (3.1):

3. tafter(a)<T

Rule of Consequence with 2 and 3:

4. {l'at(l])<tat(o0} _: (x := x+ l)[o, 21 {tat(l_)+2<'T}

Axiom (3.3a):
5. at(l]) :=_ tat(l])<'T<tat(l])+l

Predicate Logic:
6. ((tat(_)+2<'2") ^ (at(l]) _ tat(l])<'T<tat(l])+l)) _ --,at(l])

Rule of Consequence with 4, 5, and 6:

7. {tat(l])<tat(a)} o_: Oc :=x+l)[0,21 {_at(13)}

Predicate Logic and tat(a)=rat(b) from cobegin tcp Axiom (a):
8. pre(Nln(ct, pre(l])) =0 tat(_)<tat(oO

9. _ at(l]) =0 post(Nln(_ pre(l])))

Rule of Consequence with 7, 8, and 9:
10. Nln(_ pre(l]))

4. Example: A Mutual Exclusion Protocol

Knowledge of execution times can be exploited to synchronize processes. A mutual exclusion

protocol attributed in [Lamport 87] to Mike Fischer illustrates this point. The core of this protocol

appears in Figure 4.1. There, c, d, c' and d' are real-time actions. Provided the parameters of these

real-time actions satisfy
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X :-0

cobegln

a: ifx=0 _ b:skipfi

c: _ := 1)[_c),_(c)l

d: (skiP)iS(d). ¢(d)]

e: ifx=l -_ f:skipfl
Critical Section 1

//

a': ifxffi0 --_ b':skip fi

c': (x :=2)[s(c,).e(d)l

d': (skiP)iS(d'). ¢(d31

e': ifx=2 ---) f': skip fi
Critical Section 2

coend

Figure 4.1. Mutual Exclusion Protocol

(4.1) 8(c3+e(c')<e(d)

(4.2) 8(c)+e(c)<e(d _)

this protocol implements mutual exclusion of the marked critical sections.

Mutual exclusion of alter(e) and after(e') is a safety property. It can be proved by constructing

a valid proof outline in which post(e)=--,after(e') and post(e')_--, after(e). A standard approach

for this is to construct a valid proof outline in which --, (post(e) ^ post(e')) is valid. It is thus impos-

sible for after(e) a after(e3 to hold because that would imply post(e) A post(e').

A proof outline for one process is given in Figure 4.2; the proof outline for the other process is

symmetric, with 'T' everywhere replaced by "2" and the primed labels interchanged with unprimed

ones. Notice that post(e) _x=l and post(e') _x=2. Thus, the proof outlines satisfy the conditions

just outlined for ensuring that states satisfying after(e) ^ after(e3 cannot occur.

It is not difficult to derive the proof outline of Figure 4.2 using the axiomatization of real-time

actions given above. The proofs of {pre(c)} c {post(c)} and {pre(d)} d {post(d)} are the most

enlightening, as they expose the role of assumptions (4.1) and (4.2) in the correctness of the protocol.

Here is the proof of {pre(c)} c {post(c)}:

Assignment Axiom:

1. {true} c: (x :ffi l)[s(c).t(c)l{x=l}

2. xffil

<<Axiom (3.1),,

x=l A rat(c')<q"

::_ <<assumption(4.1)_,

x= 1 A Tat(c_)+8(C')+e(C ") -e(d) <'I"

<<Predicate Logic>)
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{true}
a: ifx=O --} {taKc')<_

b: skip

{rat( c") < T}

ti {rat(cq_T}
c: (x :ffi 1)[s(e).t(c)]

{x_0 A (at(c') :=_t at(c ')+8(c')+e(c')-e(d) < tat(d))}

d: (skip)[8(d), ¢(d)]

{x_0 A --,at(c')}

e: lfx--I --_ {x-l^_at(c')}

f: skip

{x=l ^--,at(d)}

fl {x=l A.at(c')}

Critical Section1

Figure 4.2. Proof Outline for Mutual Exclusion Protocol

x sO ^ taKc')+8(c')+e(c')-e(d) <T

Rule of Consequence with 1 and 2:

3. {true} c : (x := 1)[_c). _tc)l {x#0 A Tat(c')+5(c')+e(c')-e(d) <T}

Action-timeAxiom Co):

4. {K<:T} c: (x := 1)ttKc).,(e)] {K<rafter(c)}

Derived tcp-Instantiafion with 4:

5. {rat(c')<T} c: (x :-- 1)ts(,).ac)l {rat(c')<tafter(c)}

Conjunction Rule with 3 and 5:

6. {,at(cb_T}
c: Oc :- 1)[tKc).t(c)l

{x _ 0 A tat(c ")+ 8(c') +¢(c ")-e(d) < T^ rat(d) < rafter(c) }

. tat(c')+8(c')+g(c')-¢(d) <T A tat(c')< tafter(c )

• assumption (4.1) and rafter(c)--tat(d)_

tat(c')+8(c')+e(c')-e(d) < tat(d)

_Predieate Logic

at( c 3 =_ tat( c ")+ 8( c ') + ¢(c ")- ¢(d) < tat(d)

Rule of Consequence with 6 and 7:

8. {tat(c')<T} c: (x := 1)[r_c)._(c)l {x_0 A (at(c')_ tat(c')+8(c')+_(c')-e(d)<tat(d))}

And, here is _e proof of {pre(d)} d {post(d)}.
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skip Axiom:

I. {x_0} d: (skip)l_d),_(d)]{x_0}

Real-timeActionAxiom:

2. {K<Tat(ar)}d: (skip)[8(d),¢(d)] {K+g(d)<Tafter(d)}

RigidVariableRule with2,instandatingK withL+_c')+e.(c')-e(d)+w,where 0 <

3. {L+8(c')+g(c')-e(d)+_c<?at(d)}

d: (skip)IS(a3,t(d)!

{L+8(c')+e(c')-e(d)+w,+_(d)<rafter(d)}

PredicateLogic,since0< _..

4. L +8(c')+e(c')-E(d) < rat_d) =, L +8(c ')+e(c")-e.(d)+ lc< rat(d)

5. L +8(c')+e(c')-e(d)+ tc+e( d)< rafter(d) =, L +8(c')+e(c') < T_fter(d)

Rule of Consequence with 3, 4, and 5:

6. {L +8(c')+e(c')-e(d) <tat(d)}

d: (skiP)i6(d), _(d)]
{L+8(c')+e(c')<ra#er(a)}

Derivedrcp-Instantiation,replacingL by Tat(c'):

7. {,at(c')+8(c')+e.(c')-e(d) < rat(d) }

d: (skip)iS(d), t(d)]
{rat(c') + 8(c ")+ e(c ") < rafter(d) }

. Tat( c ")+ 8( c') + e( c") < Tarter(d)

=} _Axiom (3.1) applied to after(d)_}

rat(c') + 8(c ") + e(c ")< Tafter(d) < :[

=, ,,theorem (3.4) applied to at(c_),}

-,at(d)

Rule of Consequence with 7 and 8:

9. {rat(c') + 8(c') + e(c') - e.(d) < rat(d ) } d: (ski P)ts(a). t(a)l {--, at(c') }

ProcessIndependenceAxiom:

10. {--,at(c')} d: (skip)ts(d)._(d) 1 {_at(c')}

Disjunction Rule with 9 and 10:

II.{at(c_)=_ ?at(c_)+8(c")+e(c')-e(d)< tat(d)} d: (skiP)t_a),e(a31{9 at(d)}

Conjunction Rule with 1 and 11:

12.{x#0 ^ (at(c')_ Tat(c_)+8(c')+e(c')-e(d)< rat(d))}

d: (skip)t_d). t(d)]
{x#O ^ _at(c')}

Notice how timing information is used in step 7 to infer that a particular control point cannot be
active.
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5. Discussion

5.1. Other Work based on Proof Outlines

It is instructive to compare our logic with that of [Shaw 89], another Hoare-style logic [Hoare

69] for reasoning about execution of real-time programs. In [Shaw 89], the passage of time is

modeled by augmenting each atomicactionwithan assignmenttoan interval-valuedvariableRT so

thatRT containslower and upper bounds forthe program'selapsedexecutiontime. The Statement

Composition Rule and the Assignment Axiom are then used to derive rules for reasoning about these

augmented atomic actions. 5 Our logic is obtained by augmenting the assertion language (of an under-

lying logic of proof outlines) with additional terms (Tcp and T) and devising new axioms for reason-

ing about these terms. We are not able to derive rules for real-time actions by using the original logic

because we do not employ assignment statements to model the passage of time.

Although more complex, augmenting the axioms rather than the atomic actions has led us to a

more powerful logic. First, having the tcp-terms allows the logic to be more expressive. These terms

permit the definition of properties involving historical information--information that is not part of

the current state of the program. Timing properties that constrain the elapsed time between events

can only be formulated in terms of such historical information. The logic of [Shaw 89] has no way to

express historical information and, consequently, can be employed to reason about only certain tim-

ing properties.

Second, our axiomatization allows reasoning about programs whose timing behavior is data-

dependent. The logic of [Shaw 89] does not permit such reasoning. For example, because of the way

statement composition is handled in [Shaw 89], the logic produces overly-conservative intervals for

time bounds. This is illustrated by the following program, which takes exactly 10 time units to exe-

cute.

if 8 --, skip[o,9l D --,B _ skip[o, ll fi

if B --->skip[o, ll 0 --,B --_ skip[o,91 fi

This fact can be proved in our logic; the logic of [Shaw 89] can prove only that execution requires
between 2 and 18 time units.

A Hoare-style programming logic for reasoning about real-time is also discussed in [Hooman

91]. That work is largely incomparable to ours. First, the programming language axiomatized in

[Hooman 91] is different, having synchronous message-passing and no shared variables. This is

symptomatic of a fundamental difference in the two approaches. The emphasis in [Hooman 91] is on

the design of compositional proof systems. Shared variables cannot (at present) be handled composi-

tionally and so they are excluded from programs. In contrast, we do not require that our proof system

be compositional. 6 Relaxing this compositionality requirement means that it is not difficult to extend

our logic for reasoning (non-compositionally) about programs that employ synchronous message-

passing or any of the other communication/synchronization mechanisms for which Hoare-style

axioms have been proposed.

_The ideaof augmentingactionswith assignmentstatementsin orderto reason aboutthe passage of time is discussed
in [Haase81], where it is used to extend Dijkstra'swp [Dijks_ra75] forreasoning aboutelapsed execution time.

*l'he cobegin Rule of Proof Outline Logic is not compositional because its interference-freedomtest depends on the
internal structureof the processes beingcomposed.
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The types of properties handled in [Hooman 91] is also incomparable to what can be proved

using our logic. Timing properties make visible the times at which control points become active

through Top-terms. A compositional proof system cannot include information about control points in

its formulas because they betray the internal structure of a component. The logic of [Hooman 91],

therefore, may only be concerned with the times at which externally visible events occur: the time of

communications events and the time that program execution starts and terminates. This turns out to

allow proofs of certain liveness properties as well as certain safety properties. Our logic cannot be

used to prove any liveness properties.

5.2. Incompleteness Concerns

A soundness proof for the logic of this paper will appear elsewhere. The issue of completeness,

however, is a bit problematic. The following proof outline illustrates the difficulties. It is valid, but

is not provable with our logic.

(5.1) {T-0] a: skip[o,2] {T=2} b: skip[o,2] {T=4}

A related proof outline is provable:

(5.2) {0<Tat(a)_'T<2} a: skip[o,2l {2<tat(b)<'/'(:4} b: skip[o,2] {4<tarter(b)<"1]

Notice that the assertions of (5.2) characterize system states that would exist "during" the execution

of a and b; the assertions of (5.1) do not.

A deficiency in our logic is one explanation for this situation; a deficiency in the definition of

proof outline validity is another. Proof outline validity is defined in terms of a set (_'s) of infinite

state sequences that model execution of S started from any program state. This set contains no

sequence whose successive states differ only in their values of T, the states that assertions in (5.2)

characterize and those in (5.1) do not. Certainly such- states exist during program execution; we have

simply chosen to define _ so that states are recorded only when the value of some Tcp-term

changes. Now consider a set 9_s that does contain sequences having such temporal interpolation

states. If we replace :_s in Valid Proof Outline (2.7) by -_s, then (5.2) remains valid and (5.1)

becomes invalid. The incompleteness problem is gone.

There are also other reasons to prefer 9_s in defining proof outline validity. Invariance under

temporal interpolation seems to be the real-time analog of invariance under stuttering, something that

is critical when proving that one specification or a program implements another. Unfortunately, the

logic of this paper is unsound when -_s is used in place of -q_'_s• The existence of temporal interpo-

lation states causes a new form of interference. This interference is easily dealt with by extending the
definition of interference freedom.

Another concern when designing a logic is expressive completeness. Timing properties include

many, but not all, safety properties of concern when reasoning about the behavior of real-time pro-

grams. This is because the historical information in a timing property is limited to times that control

points become active. One might also be concerned with the elapsed time since the program vari-

ables last satisfied a given predicate or with satisfying constraints about how the program variables

change as a function of time. Both are safety properties but neither is a timing property (according to

our definition in §1). In general, safety properties can be partitioned into invariance properties and

history properties. The invariant used in proving an invariance property need only refer to the current

state; the invariant used in proving a history property may need to refer to the sequence of states up to

the current state. Timing properties are a type of history property.
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A version of Proof Outline Logic does exist for reasoning about history properties [Schneider

92]. It extends ordinary Proof Outline Logic by augmenting the assertion language with a "past state"

operator and a function-definition facility. In this logic, our rcp-terms can be constructed explicitly;

they need not be primitive. And, the more general class of safety properties involving times---be it

times that predicates hold or times that control predicates hold--can be handled.
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