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J

The viscous airfoil design/analysis code XFOIL was extended to allow optimization using con-

formal mapping coefficients as design variables. The optimization technique employed was the

Steepest Descent method applied to a Penalty Function. The gradients of the aerodynamic vari-

ables with respect to the design variables were cheaply calculated as by-products of XFOIL's

integral boundary layer Newton solver. The speed of the optimization process was further in-

creased by updating the Newton system boundary layer variables after each optimization step

using the available gradient information. Two examples are presented.

L

2 INTRODUCTION

Airfoil design can be broken into two schools of thought. The more recent of the two involves

the use of inverse design methods whereby the airfoil geometry is generated to match a specified

pressure distribution. The drawback is in determining what makes a good pressure distribution.

Many examples of inverse design techniques exist in the literature [1, 2, 3]. The older design

practice uses trial and error geometry guessing. Each new geometry is evaluated using an airfoil

analysis method and is compared to previous designs. This is continued until an acceptable

design is iteratively converged upon. This is a time consuming process, but, it does lend itself to

numerical optimization techniques. Many methods have been tried for inviscid airfoils, several

examples of which are given by Vanderplaats [4, 5]. Optimization can be computationally

intensive, so to be a viable design tool the optimization method employed must be efficient.

Optimization efficiency can be increased by the use of gradient in_formation but calculation

of this information adds to the computational burden. One method of obtaining the gradient

information is to perform finite difference calculations, however, this can be extremely expensive.

The object of the present research was to modify an existing 2D airfoil design/analysis code

to calculate gradient information during the analysis procedure, with a minimum of excess

work, such that this information can be used in an optimization process. The optimizer written

for the design code was simple and robust, but not necessarily the most efficient since the

emphasis was on developing the ingredients for the optimization: design variables and gradient

information. The code used was Drela's XFOIL code [6]. XFOIL has several design routines,

and includes both viscous and inviscid analysis routines. Principles from both the design and

viscous analysis routines were combined to allow viscous optimizations.

The outline for the remainder of this paper is to first present the governing equations,

the choice of design variables, and how these variables allow efficient gradient calculations.

These same gradients can also be used to further speed the optimization process which will be

presented next. Two design examples will be given at the end. J
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F
3 ANALYSIS

3.1 Governing Equations

The optimization scheme utilized in XFOIL was an iterative 'Steepest Descent'-type. In order to

use this technique the Objective Function and constraints were combined into a Penalty Func-

tion such that the constrained airfoil optimization problem is converted into an unconstrained

problem. A constrained airfoil optimization problem can be stated in Penalty Function form as

Minimize : P(x)= F(x) + _ Kj (gj(x) ,
j=l

(1)

where.

L

gj(x)_> 0 for j= 1, m

are the constraints that the airfoil is subject to, and

(2)

/ 0 gj(x) > 0Kj ,_ g_(x) < 0 ' (3)
k

are the switches that turn the constraints on and off. The cost parameter, _, is a large positive

quantity used to control the influence of the constraint on the optimization process [5J. The

Objective Function, F(x), is the function that the optimizer will drive to the lowest possible

value, subject to the stated constraints, using the design variables x. For airfoil optimization

the Objective Function could be simply the drag coefficient or a combination of several airfoil

characteristics such as the negative of the range parameter, -MCI/Cd.

3.2 Design Variables

The unit circle in the (,'-plane can be mapped to an airfoil in the z-plane by the transformation

[31

0: 1/i }0"-_ = (1- _)' - )exp Z(An+iBn)( -n , n = 0,1,2,..- (4)
n=0

where, _'et_ is the trailing edge angle. The design variables employed in XFOIL's optimizer are

a finite number of the real and imaginary parts of the complex coefficients of Eq. 4:

x--{As, A3,... ANA, B2, B3,... BNs} T. (5)

Using the above notation, there are a total of (NA - 2) + (Ns - 2) design variables. Each design

variable corresponds to a single design mode such that the optimal airfoil is constructed by a

sum of these design modes. A particular convenience of these design variables is that the A,_'s

control the thickness distribution of the airfoil and the B,_'s the camber distribution. Due to

this distinction the An's and B,_'s will be referred to, respectively, as the symmetric modes and

the anti-symmetric modes. The first 3 symmetric and anti-symmetric design modes are shown
in Fig. 1. The solid lines for the symmetric modes indicate the airfoil surface for one value of

A,_. The dashed lines show how the surface (i.e. the thickness) changes as another value of

A,, is used. For the anti-symmetric modes, the lines are not the airfoil surface, but the camber

lines. The first usable design modes are As and B_ since A0, A1, B0, and B1 are constrained by

Lighthill's constraints [2] and therefore are not available as design variables. J
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F The A,_ and B,_ coefficients completely control the airfoil geometry with the exception of

the trailing edge angle and gap. For a typical airfoil only the first twenty or so C,,'s are required

to define the airfoil. The value of the design variables for a DAEll airfoil are plotted in Fig. 2

as an indication of their magnitudes for a typical airfoil. The higher frequency modes quickly

become unimportant. In both cases, only approximately the first 15 modes are important.

The DAEll geometry is shown in Fig. 3 for reference. The higher modes, however, become

important for airfoils with small leading edge radii.

3.3 Aerodynamic Quantities

For optimization efficiency it is imperative that gradient information be calculated and cal-

culated cheaply. The gradient information will also prove useful in making XFOIL's viscous

analysis procedure run faster as will be shown shortly.

In its unmodified configuration XFOIL solves a viscous flow around an airfoil by constructing

3 linearized boundary layer (BL) equations at each airfoil and wake node (N airfoil nodes, Nw

wake nodes) and solving the resulting system using a Newton solver. For a viscous airfoil

analysis all aerodynamic quantities of interest are functions of the five BL variables: C_, 0,

rn =_ u_6", u,, and _'. In this text C, will represent two quantities: in laminar regions it will be

the amplitude of the most-amplified Tollmien-Schi.ichting wave, and in turbulent regions it will

be the maximum shear coefficient. The Newton system only solves for three of these variables,

C_, 0, and m, since u, and _" are related to the first three variables. For more details of XFOIL,

see Drela {6].

To calculate the required BL variable gradients, consider the Newton System used in XFOIL

[j] = - {R}. (6)

This equation is a block matrix equation where the ith-row, jta-column block of the Jacobian

Matrix is

O Ol

The corresponding ith-row block of the vectors are

= ,
6rn i

Oh ¸

(7)

{,}{Ri} = •
hi

(s)

Many of the terms in the Jacobian Matl'ixare zero, but the detailed structure isnot important

here.

Equation (6) isconstructed using 3 BL equations at each node allwith the functional form

Ri = Ri{C.ri_t, C,,, 0i-1, Oi, ml, rnl,'", mN+Nw), (9)

where, Ri can be f_, 9i, or hi and the subscripts indicate which node is being considered. The

edge velocity, u., is composed of an inviscid and a viscous source contribution,

L
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r
u,, = q_ + Z dl, srnj, (10)

J

where, the inviscid part q_ depends on the airfoil geometry and hence A,_ and B,_. The mass

defect, m, therefore also depends on A,, and B,,, and so does the viscous residual Ri in Eq. (9).

Consequently, a new Newton system is obtained in the form

The ith-row block of the Jacobian addition, [A], is

[A,I=

01, 0 0

.. Oh

(11)

(12)

The added vector term contains the changes in the design variables

={A} { AA2, AA3, ... AANa, AB2, AB3, ... ABN, , (13)

where, A( ) implies a change in the design variables between the current optimization step

and the next optimization step. The modified Jacobian matrix, [Jl A], is no longer square,

but during normal viscous calculationsthe geometry isfixed and thus the AA,_ and AB,_'s are

known (i.e.they are zero). Therefore, rewriting Eq. (11) with all knowns on the right hand

side and then pre-multiplying both sidesby [j]-1 the system reduces to

where,

{z}= - 71-I(R} + [DI{a}, (14)

[D] = -[J}-I [a]. (15)

The viscous solution is obtained when the residual, {R}, is zero. Thus, at convergence

Eq. (14) will have the same form as a first order Taylor series expansion of the 3 BL equations

in terms of the design variables. For example, the Taylor expansion for C,-, 0, and rn at the i th

node is

{ 6C,._ }

_rni

I OC,,.

TZ:
Na

--ZAA.
rL----2

Om'

OC,. }

Na

+ZAB- •
n=2

_trt

(16)

The Taylor coefficientsare the BL variable derivativesbeing sought and aftercloseexamination

itcan be seen that they are the columns of [D]. For example, the ith-row block of [D] is

L J
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F

[Dil =

8C, 8C,. 8C,. 8C,

Om

OCt,.

0@,
°'" _

(17)

The elements of this matrix are found not by carrying out the matrix multiplication as

indicated in Eq. (15) but by solving the originalNewton system with the columns of [A] added

as extra right hand sides. Since a directmatrix solverisused, very littleextra work isneeded

to calculate the required sensitivities.In addition, the extra right hand sides only have to be

included afterconvergence of the system, not every time the system issolved.

The above derivationpresents a scheme to compute the BL variablegradients ifthe gradients

of the BL equations, Eqs. (9),are known (i.e.ifthe terms of [A] are known). The terms in [AI

are found by use of the chain rule and are included here without derivation

where,

ORi ( ORi "_ ( Oqi-1 ] ( ORi ) ( Oqi "]
= \Oq,_l} \ aA,, } + \Oq, } \OA,,]' (18)

ORi ORi ORi rni_l

Oqi-t Oue, , 06_ t u2 ' (19)
-- -- @I-I

is found using Eq. (10) and the definition of the mass defect, rn = u,6 °. Similarly for the B,

derivatives. In the above four equations Ri can be fi, 9i, or hi. At node i the derivatives depend

only on the information at that node and the upstream node i - 1. All the terms in Eq. (19)

are already available once XFOIL constructs the Newton system. Further details of the above

equations can be found in the author's Master's Thesis [7].

The only remaining unknown sensitivities in Eq. (18) are the derivatives of q. These can be

calculated analytically from the expression for q obtained after the complex potential is mapped

from the circle-plane to the airfoil-plane. At any point, (, in the circle-plane, the physical speed
is

{[ << ) ]}1 _"" (e-i: ei='¢"-t ) E(A.+ (20)q=exp _ In 1- ?/ + - iB,)(-" .

The derivatives of this equation are remarkably easy and cheap to compute:

0,OA, - -q_ ' (21)

= +q_ (22)

1

3.4 Geometry Gradient

Now, all aerodynamic variables that depend on the flow solution have been differentiated, and

only one further piece of gradient information is necessary; the geometry sensitivity. This

can be found analytically using the integrated form of Eq. (4), however, in practice there is a

complication. The difficulty arises due to the need for the geometry gradient for the unit chord[
_J
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airfoil. Equation (4), when integrated, does not produce a unit chord airfoil and therefore its

gradient will not be for a unit chord. The geometry is subsequently normalized, however this is

not completely satisfactory for the gradient due to movement of the leading edge. This is not a

concern for symmetric airfoils and is a relatively small effect for cambered airfoils. Therefore,

the movement of the leading edge point was ignored in calculations for the gradient of z.

3.5 Updating BL Variables

The Newton system of XFOIL uses the BL variables of the previous solution as the starting

point of the new solution, therefore, the speed of the optimization can be increased by simply

approximating the BL variables of the new airfoil. This can be done by adding the following

perturbations to the BL variables at the old optimization step at those nodes not affected by

the transition point:

{,_}= [D] {,at. (23)

The AA,'s and AB,_'s in the {A} vector of Eq. (23) are the changes in the design variables

between the current and new optimization steps, and are calculated from Steepest Descent

Equation. The remaining two perturbations, 6ue and 5_', can be found using

N_ Oue Ns Oue

_u, = Z _-_AA,_ + Z _-_AB,_, (24)
,'L=2 n=2

and

N_ 06" Ns 06"

E b-7:aA- + E ?E aB,,. (25)
_=2 n=2

For a reasonable optimization step size this linear extrapolation will give a good approximation

to the new BL variables. Thus, the Newton system constructed during the analysis of the new

design point will converge faster than if no updating were done since it will have a better initial

condition.

Movement of the upper and lower surface transition points from one panel to another will

cause such severe changes in the BL variables that this linear extrapolation will not work near

the transition points. If not considered separately, the poor transition point approximations

would be enough to negate the gains in efficiency promised by the updating. The new location

of the transition points is approximated and then the BL variables at each panel the transition

points have passed over are 'fudged' . This 'fudging' process will only affect the rate at which

the Newton system converges, it will not affect the converged solution. For C,, 0, and u, the

approximation across the transition point shift is a linear extrapolation from the previous two

approximated points, i.e.

C,, = 2C,,_, - C,.,_,, (26)

where i is a BL node the transition point has passed over. The equations for 0 and u, are similar.

For the remaining two BL variables, rn and $', it was found to be a better approximation is

to set mi = mi_1 and 6_ = 6_-1- All that remains to be able to use these transition point

approximations is to determine how far the transition point has shifted. This is done using

Ozt,.,,,-, Oxt,.°, O_,t,_, . Ozt,.,.,, 6u _
_,,o,, = _ ,5C, + _,5o + --.b--g:-,_,_+ _ . (2r)

L J
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All the derivative terms in the above are already calculated in XFOIL to construct the Newton

system, so the derivation is complete.

The convergence histories for a simple test case with and without updating the BL variables

are shown in Fig. 4. The number of iterations for the Newton solver to convergence is plotted

versus the optimization step number. The amount of time saved is not extensive, but the low

cost of updating makes it worthwhile. As the optimization continues the savings will be smaller

since the step sizes are small.

4 RESULTS

The two examples presented in this section were run on a DecStation 5000. These examples

were chosen to show the various properties of XFOIL's optimizer, they are not designed to be

realistic design problems.

5 Example 1 - Cd minimization, M = 0, c_ = 0°

The firsttest case was designed as a simple example to build faithin the optimization code. A

NACA 0015 airfoilwas used as the seed airfoilwith Cd used as the Objective Function. The

only constraint was to keep the angle of attack constant at 0°. The Reynolds Number based

on the chord was i0s. The two design variablesused were A2 and A3. Using only two design

variables willallow a pictorialrepresentation of the optimization path to be constructed.

Figure 5 portrays the optimization space for this test case. The contours are of constant

Ca and a local minimum is located in the upper leftcorner. The seed airfoilis located out

of the picture in the lower right corner and the path taken by the optimizer is marked by

the crosses. Convergence took 24 iterationsand approximately 12 minutes. Figure 5 clearly

shows the larger step sizes in the firstfive steps, i.e. in the region of large slope. The step

directionsare perpendicular to the contours, as they should be, where the gradients are large.

As the optimum is neared the step directions start to parallelthe contours. This is due to

the approximations made in the gradient calculations.This isnot a detriment since the exact

mathematical optimum isrelativelyunimportant.

From Fig. 6 it is obvious that the largestdrag reductions are produced in the firstfew

iterations.This is a recurrent observation. Figure 7 compares the optimal airfoilto the seed

airfoil.Because only two design modes were utilized,the possible change in the airfoilissmall.

However, large changes were made in Ca by modifying the airfoilsuch that the transitionpoints

were moved further aft.

5.1 Example 2 - Cd minimization, M = 0, C_ = 0.5

The second example optimized the Cd of an airfoil using 7 symmetric and 5 anti-symmetric

design modes. The seed airfoil was an NACA 3412 and was constrained for a constant lift

coefficient and a minimum allowed thickness at 95% of the chord. This constraint was necessary

to prevent negative thickness airfoils. The cost parameter and the Reynolds number were
K = 100 and Re = 5 × 10 e.

This example was stopped after a viscous Newton system was unconverged at the 38 th

optimization iteration. The Penalty Function is shown in Fig. 8. The drag reduction slows

slightly after 20 iterations but is definitely still headed clown when the optimizer was stopped.

The optimizer was restarted using the last airfoil generated before the Newton system failed as

J
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F the new seed airfoil. Optimization convergence was achieved after an additional 15 iterations.

The optimization required approximately 30 minutes. The drag was further lowered from

C'_ = 0.00389 to Cd = 0.00380. The reason for the unconverged Newton system is unexplained

but it does not invalidate the results of the optimizer.

The pressure plots of the seed and optimized airfoils are shown in Figs. 9 and 10, respectively.

The dashed lines in the Cp curves are the inviscid solutions and the solid lines the viscous

solutions. The waviness apparent in the Cp curve of the optimized airfoil is due to the fact that

higher design modes were not used during the optimization.

Modification of an airfoil design code to use mapping coefficients as the design variables was

successfully implemented. Gradient information was calculated within the analysis portion of

the code with a minimum of extra effort. The gradient information was shown to be accurate

When used in the proper way, the XFOIL optimizer can become a valuable design tool.

The optimizer should not be used as a 'black box' to create perfect airfoils but as a designer's

tool that will free the designer to become more creative and productive by reducing the time

spent in iterative design modifications. The 'optimal' airfoils obtained should be used to give

the designer ideas for what characteristics the real airfoil should have.

There were also several areas in which the XFOIL optimizer did not live up to expectations.

The first is the limited number of design variables that could be utilized. It was found that the

optimizer should be restricted to NA <_ 12 and NB <_ 12 because the higher mode derivatives

became inaccurate. This does not allow the generation of completely general airfoils with the

chosen design variables. This is a disappointment, however the cheap gradient calculations

made possible by using the mapping coefficients as design variables make up for this deficiency.

Another disappointment was the temperamental nature of XFOIL's Viscous Newton solver.

This does not destroy the promise of the optimizer it only enforces that some care needs to be

exercised when using the optimizer.

Another area for future research is the development of design variables that can also control

the trailing edge angle and gap, and if possible, be completely general.
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7 NOMENCLATURE

F

X

gj

m

Art

Bn

ZVA
NB

[J]

[A]

Objective function

General design variables
Constraints

Number of constraints

XFOIL thickness design variables (symmetric)

XFOIL camber design variables (anti-symmetric)

Last symmetric design mode used in optimization

Last anti-symmetric design mode used in optimization

Newton system Jacobian matrix

Addition to Jacobian matrix

Newton system unknown vector

Addition to unknown vector

L J
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[ {R}
[D}
Ct

Cd

M

Re

N

N_

J:i, g,, h,

C,, O, rn, dkj, u,, ,5"

Xtran

_te

q

(, = re iw

A

Residual vector

Aerodynamic variables derivative matrix

Coefficient of lift

Coefficient of drag

Math number

Reynolds number based on airfoil chord

Number of airfoil nodes

Number of wake nodes

Node i boundary layer equations

Boundary layer variables

Transition point location

Trailing edge angle parameter

Angle of attack

Inviscid surface speed

Complex circle-planecoordinate

Difference operator

Newton system perturbation

Real part of the quantity in the parenthesis

Imaginary part of the quantity in the parenthesis
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