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ABSTRACT

Effective analysis tools have been developed for predicting the nonlinear

rotordynamic behavior of the SSME turbopumps under steady and transient operating

conditions. Using these methods, preliminary parametric studies have been conducted on

both generic and actual HPOTP (high pressure oxygen turbopumps) models. In particular,

a novel modified harmonic balance/alternating Fourier transform (HB/AFT) method was

developed and used to conduct a preliminary study of the effects of fluid, bearing and seal

forces on the unbalanced response of a Multi-disk rotor in presence of bearing clearances.

A cornputer program was developed and made available to NASA, Marshall. The method

makes it possible to determine periodic, sub-, super- synchronous and chaotic responses of

a rotor system. The method also yields information about the stability of the obtained

response, thus allowing bifurcation analyses. This provides a more effective capability for

predicting the response under transient conditions by searching in proximity of resonance

peaks. Preliminary results were also obtained for the nonlinear transient response of an

actual HPOTP model using an efficient, newly developed numerical method based on

convolution integration. A computer program was developed and made available to NASA

Marshal Flight Center. Currently, the HB/AFT is being extended for determining the

aperiodic response of nonlinear systems. Initial results shows the method to be promising.
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I. INTRODUCTION

Background:

Modern mechanical systems are being recently designed for higher performance,

reliability and smooth operation within compact configuration. These requirements often

cause significant nonlinear effects which could not be predicted with linear models.

Therefore, a more complete picture of their nonlinear dynamic characteristics is required

to enhance their efficient design, refinement, monitoring or maintenance.

Modern complex rotating machinery, such as the turbopumps of the space shuttle

main engines (SSME), contain various sources of strong nonlinearities. These include

clearances and nonlinearity of rolling elements, rubbing in splines and in built-up rotor

segments, rubbing at seals and rotor blades, viscous damping and various fluid effects.

Observed nonlinear behavior of actual rotor systems include jump discontinuities [I], large

subsynchronous motion, [2] - [4], quasi-periodic and possible chaotic motion [5]. As stated

by Nataraj and Nelson [6], the future developments in modern machines heavily depends

on the ability to identify, understand mathematically and analyze systems involving nonlinear

components. This is particularly the case for the proper development, monitoring and

analysis of the SSME turbopumps.

Quite often, it is essential to determine the steady state periodic response of rotor

systems in the form of self excited limit cycles or forced motion due to rotating imbalance.

Accurate prediction of the nonlinear periodic responses and their stability plays a central

role in developing a complete picture of the dynamic behavior of nonlinear rotor systems

as function of their parameters.



Severalmethodshaverecently beenadvancedfor determining the periodic response

of low order nonlinear rotor systems,[7] - [10]. For application to large, multi-disk rotor

systems,Nataraj and Nelson [6] developed a periodic solution method based on a

collocation approach for the responseof the rotor. They utilized a subsystemapproach to

reducethe sizeof the resulting systemof algebraicequations. Ehrich [11] recently analyzed

high order subharmonicresponseand chaos [12] using numerical integration for Jeffcott

rotor with a bearing clearance.

Few analystshave addressedthe stability of periodic or subharmonicresponsesof

nonlinear rotor systemsdespite its considerablesignificancein predicting the responseof

modern, high performance systems. Most of the stability or bifurcation analyseswere

concentratedon one dimensional (rectilinear) problemswhere solution forms are assumed

a priori (Shaw and Holmes [13], and Natsiavaas[14]). Theseapproachesare very difficult

or not feasible to extend to the two dimensional nonlinear rotor problems.

Complete characterization of the dynamic behavior must include determining the

steady state responsesand their bifurcation as function of the system parameters. In

addition, the transient responseof the nonlinear systemhasto bedetermined aspart of any

complete dynamic analysisof the system.

Objectives and Outline of Study

The main objective of this study was to develop reliable and efficient analytical-

computational methods of the nonlinear dynamic analysis of large, rotor-housing systems

such as the turbopumps of the space shuttle main engines (SSME), and some aspects were

then examined to be of the nonlinear behavior of a general multi-disk rotor-housing system.
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In the present study, HB (Harmonic Balance)/AFT (Alternating Frequency-Time)

method has been developed. Using the method, a study is made of the dynamics and

stability of simplified models of the HPOTP (High Pressure Oxygen Turbo Pump) of the

SSME (Space Shuttle Main Engine) including clearances between the bearings' outer races

and their supports. The method employs an explicit Jacobian form in an iterative procedure

which ensures convergence at all parameter values. A dynamic reduction technique [15] is

used with the HBM to reduce the system nonlinear differential equations to linear algebraic

equations involving only the nonlinear coordinates.

A recently developed convolution approach by the present author for the non-linear

transient analysis was carefully tested against direct integration techniques and proved more

robust and efficient. Using the HB/AFT method, the response resonances of a multiple-

disk rotor as function of the rotor spinning speed (critical speeds) can be located. The

convolution approach can then be used effectively to determine the transient response in

passing through these critical speeds.



II. ANALYSIS METHODS AND RESULTS

STEADY STATE RESPONSE AND STABILITY

(i) One and Two Dimcnsi0nal Systems:

The dynamic behavior of strongly nonlinear mechanical systems with piecewise-linear

or piecewise-smooth nonlinearities is studied using a newly developed HB (Harmonic

Balance) with an AFT (Alternating Frequency Time) robust and efficient algorithm.

employing the harmonic balance approach,

transformed to nonlinear algebraic equations.

By

arethe nonlinear differential equations

Two iterative techniques are available for

solving the nonlinear algebraic equations. These are the Newton-Raphson method and a

certain version of the Quasi-Newton Algorithm. The Newton-Raphson algorithm requires

a laborious and complex calculation of a Jacobian matrix and has a narrow range of initial

guesses for achieving convergence. However, the algorithm has superior convergence speed

as compared to the corresponding Quasi-Newton method.

The development of the method and its application to an oscillator interacting

through a gap with a flexible stop (see Figure 1) can be found in a paper [16], accepted for

publication in the Journal of Applied Mechanics of the American Society of Mechanical

Engineers (ASME). The method was also applied to a modified Jeffcott rotor model (see

Figure 2) supported on bearings, with clearances (see appendix [A] which was also published

as a paper in "Nonlinear Dynamics", [17]).

A bifurcation analysis method, based on Flouqet's theory, was also developed for

determining the stability of the obtained periodic solutions. For the stability analysis,

Poincare mapping is utilized to obtain the fixed points corresponding to the periodic

4



Figure l-a Oscillator with a gap

v

Figure l-b Piecewise-linear restoring force of

oscillator



y2

Figure 2. Jeffcott rotor model with a bearing

clearance,



solutions (or limit cycles). Small perturbation around the periodic solutions (fixed points)

is performed in order to analyze their stability. A first order Jacobian around a fixed point

is calculated using numerical integration to obtain the associated monodromy matrix. The

eigenvalues of the monodromy matrix are analyzed to determine the bifurcation type (cyclic

fold, secondary Hopf or period multiplying).

The bifurcation analysis allows determining ranges of parameters at which the

response of a given rotor system would become subsynchronous or chaotic.

(ii) Multi-Disk Rotor Systems

The HB/AFT method was also applied to a two-disk rotor system (see Figure 3)

containing a bearing clearance [18,19]. The method generalizes the author's early work

[20,21]. Results were obtained for the synchronous, sub-synchronous and chaotic response

of the system. The bifurcation analysis developed for this case was also used for predicting

the onset of qualitative changes in the dynamic behavior of the system. The extended

HB/AFT and bifurcation analysis extended for application to the two-disk rotor system

considered, as well as the sample results obtained, are included in Appendix B. The work

in this appendix was also accepted for publication in "Nonlinear Dynamics" Journal [18].

A computer program for this case was developed and made available to NASA, Marshall

which, if needed, can be readily modified for modeling the turbopumps of the SSME.

NONLINEAR TRANSIENT ANALYSIS

A convolution approach first reported by Noah [22] and Noah, el. al. [23] was further

refined and applied to the transient analysis of the generic model shown in Figure 4. A

general purpose computer program is written based on this approach, along with a user
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Figure 3. Multi-disk rotor model with a bearing clearance.



ROTOR
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z F2 ,., F, Fs
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(

Ksz, Ksz,

ROTOR: Shaft diameter: OD = 3.0 inches,

Material: Steel, E = 3.0 x l0 t psi

Joint length = 3.0 inches

Rotor length = 27.0 inches

HOUSING: Housing/rotor weight ratio = 6/1

(EI)R = 1.1928 × l0 s lb in s

(EI)H = 2.4 × 108 Ib in _

F, (0 = '_ e¢__os¢t

F,(t) = m, e¢' sinet
t

F_(t) = m_e¢2_oset
Y,(t) = 'm ed_si.¢t

F,(t) = m_e¢'_oset

Ksz, = 4.0 x 10 4 Ib/in

Ksyt = 5.0 x 104 Ib/in

Ksz, = 5.0 × 10 4 Ib/in

KsY2 = 1.5 × l0 s lb/in

KG = 5.0 × l0 s Ib/in

C_ = 0.0

ID = 0.0 inch

Figure 4. The generic model of the SSME turbopump



manual and was provided to NASA, Marshall.

The convolution approach can be applied to a locally nonlinear general rotor housing

system with rotor imbalance during start-up or shut-down.

coordinates are used to represent both housing and rotor.

In the present work, eigen-

The local nonlinearities were

taken as bearing deadband clearances at the rolling element bearings which support the

rotor in its housing. The integral formulation of the rotor motion is represented by its

transition matrix and that of the housing by a convolution integral (based on the housing's

impulse response).

The convoluted impulse response can only be applied to a system of uncoupled

equations while the transition matrix formulation, in addition, can be applied to coupled

equations. The transition matrix can therefore be applied to coupled dynamical systems

represented by their physical coordinates or, in case of rotors, coupled by the gyroscopic

terms in otherwise decoupled modal representation.

Sample of the various tests conducted on the convolution method, to test its accuracy

and efficiency, is presented in Figures 5 and 6 for the generic model of Figure 4 under

transient loading. It can be seen that the method is more robust and efficient than direct

numerical integration.

More complete presentation of the method and the transient response is included in

Appendix C. A paper [24] was also published based on this appendix in the ASME Journal

of Applied Mechanics.
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III. CONCLUSIONS AND RECOMMENDATIONS

SUMMARY AND CONCLUSIONS

(i) Steady State Analysis:

A robust iterative numerical procedure based on the HBM/AFT method has been

developed for obtaining the periodic response of a large rotor/housing system containing

bearing clearances. Modern bifurcation theory is utilized to characterize the dynamic

behavior of the system. A bifurcation analysis method is developed which provides

boundaries of parameter regions at which rotor whirling pattern changes its shape rapidly,

resulting in the occurrence of subharmonic, aperiodic or possible chaotic motion.

Results on the effects of parameters on a SDOF (Single Degree of Freedom) system

with piecewise-linear response show that, for some combinations of these parameters, the

system response exhibits both period doubling and saddle-node bifurcations. Chaotic motion

was also observed for finite stiffness ratios. The stability analysis, along with the harmonic

balance-based method provide a very powerful tool for better understanding of the behavior

of systems with clearances.

The main results obtained using the HBM/AFT approach with a nonlinear Jeffcott

rotor 1 with a bearing clearance can be summarized as follows [17]:

1. Increasing the dimensionless support stiffness ratio, *,, causes flip bifurcation

to occur which produces period doubled whirling motion (subsynchronous

motion).

1A Computer program based on this work was submitted to NASA, Marshall.
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2. For the same a and a nondimensional frequency_ ratio, t_, an increase in the

damping ratio, ¢, leads to elimination of the subharmonic motion.

3. With higher values of a, chaotic whirling motion is feasible.

4. Limited results obtained concerning the effect of Coulomb friction indicate

that the coefficient of friction, g, has little effect on the subharmonic

response. However, higher g could eliminate the subharmonics near flip

(period doubling) bifurcation boundaries.

5. Increasing the nondimensional cross coupling stiffness ratio _, leads to a Hopf

bifurcation which could result in a.periodic whirling.

A further developed HBM, using a DFT (Discrete Fourier Transform)/IDFT

(Inverse Discrete Fourier Transform), is employed to obtain the steady-state periodic

response for MDOF (multi-degree of freedom) rotor systems with bearing clearances

(piecewise-linear type nonlinearity). 2 A dynamic reduction (impedance) technique [15] is

utilized to reduce the system to only those of the nonlinear coordinates. The stability

analysis is performed via perturbation of the obtained periodic solutions. The reduced and

approximated system parameters (mass, damping, and stiffness) are calculated from the

determined harmonic coefficients.

A simple MDOF rotor system with a bearing clearance is used for illustration of the

method. The results obtained show that: i) the HB/AFT method, as developed here, is

robust and efficient; ii) the method leads to accurate bifurcation boundaries for nonlinear

MDOF rotor systems and, furthermore; iii) the method can in general be applied to MDOF

rotor systems with piecewise-smooth or polynomial type nonlinearities at the bearing

2A computer program based on this work was submitted to NASA, Marshall.

13



supports.

In summary, the major advantages of the HB/AFT approach are:

a) it can provide steady-state periodic solution as well as steady-state quasi-

period solutions using modified DFT/IDFT algorithms.

b) its formulation is neither problem nor response pattern dependent, except for

selecting the least appropriate numbers of harmonics for the Fourier

expansions.

c) it can drastically reduce the computational time while providing high

computational accuracy. Especially for nonlinear MDOF systems with lower

damping, this approach is much more powerful in delineating the steady-state

solutions efficiently.

d) it enables perturbation of the determined periodic solution so that the

resulting linear ordinary differential equation with periodic coefficient would

yield information about the stability employing Floquet theory. Approximate,

but accurate, stability information can then be obtained.

e) using modern dynamical theory, detailed bifurcation boundaries and their type

(such as flip, Hopf and fold) can be easily calculated from the perturbed

periodic solution as function of the system parameters.

f) by observing the unstable solutions, bifurcation boundaries can be easily

obtained as function of system parameters.

(ii) Transient Analysis:

The hybrid convolution approach, further developed in this study, is shown to provide

an efficient and accurate closed form integral formulation for determining the transient

14



response of linear systems coupled through local nonlinearities associated with friction and

clearances. A typical application in which the present method proved quite effective is the

determination of the transient response of a generic model of the high pressure oxygen

turbopump (HPOTP) of a space shuttle main engine (SSME) in presence of bearing

clearances (see Appendix C). 3

The use of the transition matrix is successful in allowing the representation of rotor-

system involving skew-symmetric matrices of gyroscopic loads or other nonconservative

systems with general velocity dependent matrices. A convolution integral would represent

quite effectively other systems with normal modes, such as the housing of the HPOTP or

other non-rotating, proportionally damped structures. An application is also made to a

generic model of the high pressure oxygen turbopump (HPOTP) of a space shuttle main

engine (SSME) in the presence of bearing clearances, constituting the local nonlinearities.

Two iterative techniques, the Jacobi method and the Gauss-Seidel method, were

studied. Both were able to correct the predicted coupling forces and converge to the correct

force magnitudes with a desired accuracy. The Gau_s-Seid¢l method is more efficient in

CPU time especially for a system with large time step and large external forces. For a

system with very small external forces, the advantage will not be significant. However, the

solution has to be formulated differently so as to accommodate a given type of nonlinear

component. If the convolution method is applied to a system with a specific nonlinear

component only, Gauss-Seidel scheme could be a better choice. On the other hand, the

Jac0bi scheme is more flexible in its application. Once the equations of a rotor and its

housing are derived, they are ready for use with almost all other types of coupling

3A computer program based on this work was submitted to NASA, Marshall.

lq



components.

A generic model of the HPOTP of the SSME was used to test the transient method

and conduct parametric studies, typical of nonlinear rotor/housing systems with bearing

clearances.

As typical of the effectiveness of the convolution method, firstly, the accuracy and

CPU time are studied using both the hybrid convolution approach and Runge Kutta 4th

order method. The results show for the given triangular load used in [24] and included in

Appendix C that:

1. For a fixed tolerance (1 x 10-s), the hybrid convolution method is faster and

more accurate.

hybrid method.

The CPU time for the Runge Kutta is 1.42 times of the

For more meaningful comparison, the accuracies of the

Runge Kutta and convolution methods are made closer by reducing the

allowable tolerance for the Runge Kutta to 1 x 10 14. The CPU time for the

Runge Kutta increases quickly from 1.42 times of the hybrid method's CPU

to 4.23 times.

2. The hybrid convolution method is also more robust than the Runge Kutta

method. The Runge Kutta algorithm failed to converge for time increments

greater than 2 x 10 -5 seconds. However, the hybrid method will diverge when

the time step size is larger than 3.3 x 10 -5 seconds.

Secondly, the convolution method is shown to have the potential as a useful tool for

determining transient response. For the generic model of the HPOTP, three nonstationary

cases have been studied [25]. One is a linear model with no gap. In this case, a closed form

solution can be used directly. The other two are nonlinear cases with small and large gaps

16



(gap size 5 x 10 .4 and 1 x 10.3 inches respectively). The gaps are considered as the small and

large bearing clearances. The study shows:

1. The reaction force in the deceleration period is much higher than that in the

acceleration period. One of the reasons is that the response in the

deceleration period has more time to build up since the absolute value of the

deceleration is smaller than that of the acceleration.

2. The small gap reduces the approximate first linear critical speed by 9%.

However, the large gap reduces the speed by 18%.

3. The small gap reduces the amplitude of the peak bearing forces at the first

critical speed of the linear case by 45.2% in bearing 1 and 30.6% in bearing

2. The large gap reduces the amplitude of the peak bearing forces at the first

critical speed of the linear case by 49.8% in bearing and 34.9% in bearing 2.

The larger gap causes more reduction in peak forces.

4. In contrast to the first critical speed, the second critical speed and its

corresponding peak forces in the two bearings in the deceleration period of

these three cases are not significantly influenced by the existence or the size

of the gap. The average reductions are 0.9% for critical speeds and 2.4% for

the corresponding forces.

5. The peak force at the second critical speed is higher than that at the first

critical speed. The ratio is 1.78 and 3.94 times in bearings 1 and 2,

respectively, for the linear case. For the nonlinear case, the ratios are much

higher. For the small gap, the ratios are 3.4 and 5.8 in bearing 1 and 2,

17



respectively. For the large gap, the ratios are 3.7 and 6.2 in bearing 1 and 2,

respectively.

The convolution formulation allows accommodating with ease changes in the

nonlinear or linear coupling parameters among the various linear subsystems involved.

Besides bearing clearances, other cases of local nonlinearities involving dry friction and

impacts were also studied in [25].

18



RECOMMENDATIONS

The newly devisedHB/AFT method proved to be effective in obtaining the steady

state solutions for multi-disk rotor systems. Although the impedance (dynamic

condensation) method [22,15] is utilized to reduce the systems' equations, the reduction was

only possible in physical coordinate systems. In order to adopt the method to generalized

coordinate systems, modal representation utilizing a drastically truncated set of modes will

be necessary. Further development of the HB/AFT method should be made in order to

allow for better reduction techniques in modal coordinates. In addition, the so called

internal resonances (in which nonrational relation between the various modes exists) need

to be investigated as related to the turbopumps of the SSME.

Further study is needed to complete the development of a preliminary method

obtained in this study concerning quasi-periodic response, and to generalize the HB/AFT

method to conduct parametric studies on the SSME turbopumps under various operating

conditions.

Modern studies have revealed the significance of predicting what is labeled "crisis".

This is a generalization of the jump behavior in nonlinear systems. A preliminary study was

made and limited results were obtained during the course of the present study. It is

recommended that further study be pursued in which the "crisis behavior" in piecewise-

smooth systems (specially in applications to rotordynamics) is peculiar. In this connection,

the HB/AFT method could prove to be very effective.

For the transient analysis, further work should be made on the analysis and behavior

of rotor systems with bearing clearances and rubs. This could include the following:

a. Use approximate methods to replace local nonlinearities with linear

19



components and then use closed form convolution representation for the

solutions.

b. Use other possible iterative techniques, possibly incorporating the Gauss-

Seidel technique.

c. Develop other means of increasing the efficiency of the method, including the

use of predictor-corrector and other algorithms.

d. Adapt the HB/AFT method to determine domains of attractions of the

nonlinear rotor system.

e. Extend the method for application to other local nonlinearities, e.g. Coulomb

friction rubs at seals, turbine blades, rotor shrink fits and to impacts due to

intermittent contacts.

f. Conduct parametric studies of the turbopumps of the SSME using the current

and modified versions of the computer programs provided to NASA, Marshall,

developed in this study to examine the significance of the various nonlinear

phenomena.

g. Explore the HB/AFT method role in experimental verification, identification,

and monitoring of the SSME systems.

Finally, direct comparison should be made of the techniques reported here to those

currently used throughout industry. It is anticipated that the techniques described here will

yield more information about the dynamic behavior of nonlinear rotor systems in an efficient

and systematic manner.
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Bifurcation Analysis for a Modified Jeffcott Rotor with Bearing
Clearances

Y. B. KIM and S. T. NOAH

Mechanical Engineering Department, Texas A&M University, College Station, TX 77843-3123, U.S.A.

Abstract. A HB (Harmonic Balance)/AFT (Alternating Frequency/Time) technique is developed to obtain synchronous

and subsynchronous whirling motions of a horizontal Jeffcott rotor with bearing clearances. The method utilizes an explicit

Jacobian form for the iterative process which guarantees convergence at all parameter values. The method is shown to

constitute a robust and accurate numerical scheme for the analysis of two dimensional nonlinear rotor problems. The

stability analysis of the steady-state motions is obtained using perturbed equations about the periodic motions. The Floquet

multipliers of the associated Monodromy matrix are determined using a new discrete HB/AFT method. Flip bifurcation

boundaries were obtained which facilitated detection of possible rotor chaotic (irregular) motion as parameters of the

system are changed. Quasi-periodic motion is also shown to occur as a result of a secondary Hopf bifurcation due to

increase of the destabilizing cross-coupling stiffness coefficienls in the rotor model.

Key words: Nonlinear. rotor, clearance, chaos.

1. Introduction

Many rotor dynamic systems exhibit nonlinear behavior due to bearing clearances, squeeze film

dampers, seals and fluid dynamics effects. Nonlinear rotor systems involving bearing clearances

were studied by several investigators. Bently [1] used a simple horizontal rotor model with a

bearing clearance to explain the occurrence of subharmonics in his experimental results. Childs [2]

used a perturbation technique to study the occurrence of subharmonics, assuming small non-

linearity for the bearing clearance. Saito [3] utilized a harmonic balance method (HBM) along

with a fast Fourier transform (FFT) procedure, which was originally used by Yamauchi [4]. to

explain some nonlinear characteristics in a Jeffcott rotor on nonlinear supports. Choi and Noah [5]

also used the HBM with FFT to show the occurrence of super and subharmonics in a rotor in

presence of a bearing clearance. In [3] and [5], numerical differentiation was used within each

iterative cycle. This did frequently lead to difficulties in getting consistent convergence in all

parameter ranges. A numerical approach based on a collocation technique was adopted by

Nataraj and Nelson [6] and used to obtain periodic whirling motions in nonlinear rotor systems. In

their approach, the calculation of eigenvalues and eigenvectors is required to obtain steady-state

rotor whirling motions. This could have the disadvantage of making the numerical process more

elaborate and lengthy. Nevertheless, the method appears to be versatile and effective. Ehrich [7]

used numerical integration to show the occurrence of higher subharmonics (up to 9th order) in a

high speed rotor system with a bearing clearance,

Simulations revealing aperiodic whirling motion were reported by Childs [8]. Day [9]

proposed an interpretation involving a 'nonlinear natural frequency' to explain the occurrence of

aperiodic motion obtained using the multiple scales method.

Nonlinear Dynamics 1: 221-241, 1990

(_) 1990 Kluwer Academic Publishers. Printed in the Netherlands.
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222 Y. B. KIM AND S. T. NOAH

Few analysts have addressed the stability of periodic or subharmonic responses of nonlinear

rotor systems despite its considerable significance in the development and analysis of modern high

performance rotor systems. Most of the stability or bifurcation analyses were concentrated on one

dimensional problems where motion patterns are assumed apriori (Shaw and Holmes [10] and

Natsiavas [11]). These approaches could be proved unfeasible to extend to two dimensional

nonlinear rotor problems in which, say, whirling motion involving intermittent contact with a

bearing clearance would occur.

This paper addresses the response and stability of a modified Jeffcott rotor system with a

discontinuous nonlinearity (bearing clearances). The paper consists of two parts. First, a modified

HBM is developed which combines an exact Jacobian matrix and a Galerkin procedure to

formulate a robust iterative procedure for determining the periodic solutions. Second, a new

approach for the stability analysis of the periodic whirling is developed and applied to conduct

bifurcation analysis of the rotor system and search for possible chaotic responses.

Equations of Motion

The equations of motion for a horizontal Jeffcott rotor with bearing clearances (refer to Figure 1)
can be written as

mX"+cX'+ksX+Q,Y+d_kbX 1 _/X 2+ y2 -i't_kb Y 1 _/X 2+ y2

2
= meco cos _ot, (la)

GAP w

y2

Fig. 1. Jeffcon rotor model with bearing clearances (refer to [7]).
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mY"+cY'+k_Y-Q,X+_khY 1 _/Xz+ Y: V_X"+ Y z

= mew" sin tot -mg, (lb)

where k, is the shaft stiffness, Q, is the cross coupling stiffness, c is the system damping, _t is the

friction coefficient, 6 is the radial clearance of the bearing. A prime represents a derivative with

respect to time t and

y21, "k/X"+ y2>a ,

To study the effect of the parameters on the behavior of the system, the following

nondimensional groups are introduced: w, = KV'-K_, K = 4k, kb/(V/-_ + V/-_) 2, x = X/e, y = Y/e,

v7l) = to/w,, (= c/2m%, y = QJK, a = kb/k _, _5" = ,5/e, & = g/w',e, r* = +)2 and v0 = wt.

Here v represents the subharmonic ratios. (v = 1 for harmonic and superharmonic cases, and

v = n for an nth subharmonic case.) Equation (1) can now be written as

2_'v v 2 (1 + 2
£ + _ ./+ l) z 4a

2_'v v 2 (1 + v'-8)"

9 + --if- Y + _2 4a

2

II 1) 2
x + r -_ Y + T(O) - t.tF(O) = cos u0,

2 2
1; 2 • V

y - y -_ x + F( O) + tz T( O) = v smv0-&-_,

(2a)

(2b)

where a dot represents a derivative with respect to the nondimensional time 0 and • is unity if r*

is greater than 6*, otherwise it is zero. T(O) and F(O) are given by the following expressions.

T(O)=_ vnz x 1
_L V x *y

2 (1+X/'-_)2 ( t_* )
F(0)=* _2 4 y 1 _ ,

where

_={1, Vx--_+y2>6 *,
0, Vex5+ ),,:_<t_* .

After reaching the steady-state, and assuming periodic whirl, the solution forms of x and y can be

represented as

N

x(O) = axo + _, (a_. cos nO - b_. sin nO). (3a)
n=l

N

y(O) = %0 + _ (ay, cos nO - by, sin nO). (3b)
tl=l

The nonlinear restoring forces of T(O) and F(O) are also expressed as
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T(O) = c., + _ (G. cos nO - d_,, sin nO), (4a)
n=l

N

F(O) = c, o + _'_ (cy. cos nO - d_,, sin nO) . (4b)
n=l

In equations (3) and (4), N represents the maximum number of harmonic terms considered.

Inserting equations (3) and (4) into (2), and equating the coefficients of sin(n0) and cos(n0) on

both sides of the equations, one arrives at the following implicitly nonlinear algebraic equations

for the constant series terms

2 )2 2v (1 + v'-ff v
g(1) = ft., 4a ax° + T _ ayo + Cxo - M.Cyo = 0 (5)

g(2) = _2 (1 + v'-ff) 2 v v4a aY° -- _/ -_ axO + CyO + I'LCxo + _ _ = 0, (6)

for the trigonometric series terms

g(4n - 1)= -n2a.. - --
2(vn v 2 (1 + v-if):

lq b_. + lq2 4a

2
v

a_,,, + "y -_ ay,, + cx. - la,Cy n - xlS(n)v 2 =0

(7)

. 2_vn v 2 (1 + x/-ff) 2

g(4n) = n'b_. lq a_. _2 4a

l.t

b.. - 3' -_ byn - d_. + M, dyn = 0 (8)

g(4n + 1) = --n2ay. --
2_vn v 2 (1 + x/-'d) 2 v'-

by., + It: 4a ay. - 7 -_ a,,. + Cy. +/zcx. = 0 (9)

2_vn v 2 (1 + v'_) 2 v 2
g(4n + 2) = n2by. l-I ay. + _2 4a by. + y --_ b_. - dyn - ixd_. - xlY(n) v 2 = 0.

(10)

In the above equations, qr(n) is unity if n = v, otherwise W(n) has zero value, and n = 1, 2 ..... N.

Let the unknown vector P of the displacement coefficients be defined as

p = [ax0, a,.0, axl, bxl, ayl, bvl. ..... a_N, b_u] r (lla)

and the unknown restoring vector Q of the force coefficients be expressed as

Q = [cx0, cyo, c_1, d_,, cy 1, dr1. ..... CvN,. d,.N] r,. (llb)

where T stands for the transpose. The Newton-Raphson method can be used for this two-

dimensional rotor problem to solve for the unknown vectors P and Q. Alternatively, using

equations (5)-(10) another iterative scheme such as the Broyden method [12] can be used to

obtain the steady-state solutions in which calculation of the Jacobian matrix would be avoided.

Broyden method converges more slowly (usually it requires more iteration steps) but possesses
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larger radii of convergence for initial guesses. In this study, Newton-Raphson method is used,

since an explicit form of the Jacobian was made available.

Newton-Raphson Approach

Equations (5)-(10) are nonlinear algebraic equations whose solutions yield P. A system of linear

equations for the correction increments AP of the unknown coefficients can be written as

[J]AP + G = O, (12)

where [J] = [0G/0P] is the associated Jacobian (matrix of first order derivatives) whose elements

are listed in Appendix A, and G is a (4N + 2) column vector whose element g(1),..., g(4n + 2)

are given by equations (5)-(10).

Using an AFT method [13], the nonlinear force vector Q can readily be obtained from the

unknown vector P. An IDFT is first employed to obtain discrete displacements of x and y from P

which in turn are used to calculate corresponding discrete values of the nonlinear forces. A DFT

procedure is then used to calculate the Q vector from these discrete nonlinear forces. As Q is a

function of P, the Jacobian matrix, [J], has the components of 0Q/dP which are expressed as

M-t 2_rlr 2_'nr
0c_, _ 1 _'_ A, cos '-M-- cos --M--
oa,, t M ,-=o

M-1 2wlr 2¢rnr
oct. _ 1 B, cos --if- cos--if-
bay t M ,=0

M-I

Ob .t M ,=o

M-I

Oby I M ,=o

M-t 27rlr 2trnr Od., 1 m_
Od.. _ 1 _, A cos--_sin---M--, Ob_t - M _,=oOaxt m ,=o "

M- 1 27rlr 27mr
Od .... 1 _ B, cos_.____sin_M
Oa_.t M ,=o

u-I 27rlr 2_'nr
Oc,., _ 1 _'_ C, cos _ cos ---M--
cga_t M ,=o

M-I

Oby t M ,=o

B, sin

A, sin

B r sin

27mr
COS

M

M-I

1 _ C, sm
M r=O

2 wlr 2 Tcnr

--if- cos

M-I

M- I 2 _rlr 2wnr OC,,. _ 1 _,
Ocv,, _ 1 _ D, cos --M-- cos---M-- ' obvt M ,=0
Oa,.t M ,=o

M-I

u-t 27rlr 2trnr Od_. _ I _,
Od,,, _ 1 _'. C, cos --M--- sin ---M-- ' Ob_l M ,=o
Oaxt M ,=o

2 _lr 27mr

sin

M-I

M-t 27fir 27mr Ody._ 1 _,
Od.,..a M1 _, D, cos ---M---sin M Ob,.t M ,=o
-a_.t ,=o

2 "lr n r

COS _ ,
M

D r sin

2rrlr 2¢rnr

--if- cos----if-

C, sin

D r sin (13)

n, 1 = 1 "_ N, where

Iv: (1+ v-if) 2 (1+ V-if) 2

A, = Ufl: 4a 4a ,'
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i b' 2- _--5 (1 +v'-_)'4aB,= (5*(x 2 + y2)(-s'")xy], ,

v'- (1 + x/-'K)2 6,(x z + y2)(_32)XV ]C, = I1" 4a " r '

v-(I + v'-ff)" v" (I +w"-ff)-
D,=

4a 1] 2 4a a*(X 2 + y2)(-3/2)X2]r

and M is the total number of discrete data points in the time domain. More details about the

calculation procedure can be found in Appendix B.

The procedure of using the Newton-Raphson method to determine a periodic solution can be

summed up as follows:

(1) Assume an initial value, p(0), of the coefficient vector P.

(2) At a given iteration step, evaluate Q(kl from P(_) by using the AFT method.

(3) Calculate [J] and G.

(4) Solve equation (12) to determine the correction vector Ap.

(5) End iteration if (AP (kl- AP _k-_) is within a specified error bound, otherwise set p(_-+l) =

p(k)+ Apckl and return to step (2). For obtaining possible multiple solutions, different

initial guesses could be selected at step (1).

Stability Analysis

One of the advantages of the HBM with an AFT procedure is that it readily provides stability

criteria as well as information concerning bifurcation behavior. In rotor systems, stability and

bifurcation analysis of a given periodic solution can offer valuable design inputs to avoid sudden

change of behavior, irregular (chaotic) motion, and dangerous subsynchronous or supersynchron-

ous vibrations. To investigate the stability behavior of a 2¢r-periodic solution, eigenvalues of the

associated monodromy matrix are utilized [14].

For the stability analysis, the second order nonlinear ordinary differential equations of the

present two dimensional problem are perturbed about the determined periodic solution under

consideration. This leads to the following perturbed equations

2_'v v: (1 + x,'-ff) 2 v:

A.f + _ A.f + 112 4a Ax + "y -'_ Ay + AAx - BAy + l,tCAx -#DAy = 0, (14a)

2_'v v z (1 + v-d): v"
Ay + _ A9 + 112 4a Ay- y _ Ax - CAx + DAy + _AAx- l.tBAy = 0, (14b)

where A, B, C, and D have the same expressions as given previously. Equations (14) are ordinary

differential equations with periodic coefficients, since A, B, C, and D are 27r-periodic. Equations

(14a) and (14b) are cast in first order form, or

0 = [u(O)]p, (15)

where p = fax, Ay, A_/, A f] T, and [u(0)] is the matrix defined as
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0 1 0

0 0 ,
0 1

- 20
[u(O)]= -q,(O) -q2(O) - _ 0

o - 2_v

\-q._(O) -q_(O)

(16)

and

v: (1 + v"ff) 2

qt(O) = 0--Z- 4a + A + I.tC

2
1;

q2(0) = 3, --_ - B- I.tD

2
i;

q3(0) = -3' _-_ - C +/zA

v 2 (1 + x,"ff) 2

q4(O) = I12 4a + D - I.tB .

Let the monodromy matrix be denoted by [R], and satisfy the following ordinary differential

matrix equation

in] = [u(0)l[n] ; In(0)] = [fl, (17)

where [I] is the identity matrix. Without loss of generality, the initial conditions are assumed as

the identity matrix. The monodromy matrix can be calculated by integrating equation (17)

numerically from time 0 to one period, 2rr. The eigenvalues of the monodromy matrix are the

Fioquet multipliers which are used to determine the stability of the 27r-periodic solutions as

follows, [15],

1. If all the multipliers are located within the unit circle, the system is stable.

2. If one of the multipliers leave the unit circle through -1, this indicates period multiplying

bifurcations.

3. If one of the multipliers leaves the unit circle through +1, this could indicate bifurcations,

possibly including a saddle node.

4. If a pair of complex conjugate multipliers is leaving the unit circle, a Hopf, or a secondary

Hopf bifurcation could occur.

Numerical Results and Discussion

Among the seven nondimensional parameters (_, _', 7, a, 6*, _b, _t), the magnitudes of 6*= 30

and _b = 30 × stiffness (=(1 + x/-d)2/4a) were selected so as to satisfy the condition that the rotor

center offset equals to the clearance (normal tightening condition [2]). The other five parameters

were varied. The normal tightening condition not only reduces the number of parameter variation

effects to be studied, but also fulfills the same whirling motions which were reported experimental-

ly. This condition is necessary for intermittent rotor/bearing contacts to occur, constituting the
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main nonlinearity of the system in the v direction. Figures 2, 3, and 4 display the same whirling

shapes as obtained by Ehrich [7] within the same parameter ranges, as will be discussed below.

Periodic Response

The accuracy of the HBM/AFT utilizing a Newton-Raphson algorithm (hereafter the HBM/AFT

is used to indicate the HBM/AFT with Newton-Raphson for convenience) is compared with

numerical integration (4th order Runge-Kutta) as shown in Figures 2, 3 and 4. Figure 2 shows a

period-1 whirling orbit at 1) = 1.1. The figure shows very good accuracy of the HBM/AFT. Figures

3, 4 show a period-2 (2nd subharmonic) and a period-3 (3rd subharmonic) whirling response at

= 2.2 and f_ = 3.2, respectively. Again, these figures show the HBM/AFT method to be very

accurate. Note that small discrepancies in higher subharmonic orbits are due to truncation of

higher harmonic terms in the assumed steady state solutions. For the results presented herein, up

to 4 harmonic terms were considered which combined good accuracy with high computational

efficiency. The other iterative scheme of Broyden also converges to the same orbits as shown in

Figures 2, 3, and 4 with comparable accuracy. The major difference between these two methods is

that the HBM/AFT converges much faster than the Broyden but requires more narrow domain of

-141,11.

-ILl--

-ll_a m

-.I, II-

_u

\
\

¢

./
.J

! I
-1 o 1

X

Fig. 2. Orbit-1 whirling motion (a = 25, _"= 0.02, ll = 1.1, y = 0, # = 0) --HBM;... Runge-Kutta.
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-,Ill _

37

Fig. 3. Orbit-2 whirling motion (a = 25, _ = 0.02, fl = 2.2, 3' = 0, pt = 0) -- HBM;... Runge-Kutta.

initial guesses and more complicated formulations involving Jacobian calculation. However, with

the HBM/AF"F previously calculated results can be used to guess next initial starts for consecutive

calculation. It was therefore concluded that the HBM/AFT method constitutes more effective

means of obtaining bifurcation boundaries.

Bifurcation Behavior

One of the major advantages of implementing the HBM/AFT method is that it can readily lead to

a procedure which yields stability and bifurcation boundaries at which qualitative changes in rotor

whirling occur.

First, effects of the magnitudes of the stiffness ratio a and critical damping _" were

investigated. The results show that an increase in a causes period doubling through flip

bifurcation. Boundaries between stable period-1 whirling motion and stable period-2 orbits are

shown in Figure 5. In this figure, a stable period-1 orbit exists outside of each curve and period-2

orbits exist inside of each curve. This figure also reveals that higher _ may eliminate dangerous

period-2 orbits with the same frequency. This result well agree with previous results [16].

Figure 6 shows the same a and sr influence on flip bifurcation with tl = 1.6-3.0. The figure
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-f

X

0._ 1410

Fig. 4. Orbit-3 whirling motion (a = 25, _"= 0.02, fl = 3.2. 3, = 0, _z = 0) --HBM:... Runge-Kutta.
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Fig. 5. First flip bifurcation boundaries in _r- 11 plane ('), = 0, _, = 0).
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8-

Q-

4-

2-

'\ (=0.03

, // ..------_ (=0.05 .....

,, , // // ///_ _ U U ' ,l y

, %

3.02.2

fZ

Fig. 6(a). First flip bifurcation boundaries in a - I/ plane (f) = 1.6-3,0, y = 0, # = 0).

fl

Fig. 6(b). First flip bifurcation boundaries in a-fl plane (0=2.55-3.0. 3,=0, # =0); P_ =period-1 whirling;

P= = period-2 whirling.

reveals that there are two types of period-2 orbits possible in the range of lq = 2.5-3.0, since there

are two flip boundary branches with fixed l/. Next, the maximum magnitudes of Floquet

multipliers are calculated for 1_ = 2.7 for different values of a and _"as shown in Figure 7. In this

figure, there are two types of period-2 orbits (denoted as type A and type B) which are possible

with _"less than 0.1. These two types of period-2 whirling motions are confirmed by numerical

integration as shown in Figure 8. Type A response could be considered to be more dangerous

since it has larger amplitude. Further increase of a leads to another flip bifurcation (2nd flip

bifurcation) as shown in Figure 9. This figure shows a similar _"effect as that observed in Figure 5.

In this figure period-4 orbit exists outside of each curve and period-2 orbit is located inside of each

curve. It is interesting to note that at the range of f'/= 1.8-2.2, higher subharmonics are difficult
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Fig. 7. Maximum magnitude of Floquet mutipliers near 1st flip bifurcation boundaries (fl = 2.7, 3' = 0, I1 = 0).
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Fig. 8. Two type orbit-2 whiring motion (It = 2.7, _"= 0.03, 3"= 0, /a = 0).
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Fig. 9. 2nd flip bifurcation boundaries (3' = 0, /_ = 0).
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tO obtain unless a has very high value, which approaches an impact condition. From Figure 9 it is

predicted that by increasing t_, further sequences of period doubling occur leading to irregular (or

chaotic) whirling motion of the nonlinear rotor svstem studied herein. Figures 10 (a)-(c) show this

period doubling process at D, = 1.6. Figure 10 (d) shows chaotic whirling with a high o_value. This

chaotic motion is quite different from aperiodic whirling motion (which is discussed later). The

occurrence of both types of motion is confirmed by stroboscopic snap plots at every forcing

period, which is similar to the Poincar6 maps in one dimensional problems.

The important characteristics of chaotic motion in the present rotor system are associated

with its violent vibration which might cause severe rotor-stator interaction. Chaotic motion is also

characterized by a wide-band, continuous frequency content which might lead to adverse

conditions of fatigue or excitation of other coupled structures to the rotor. A remedy of this

-27 -

-28-

-_10-

\
\

\

l
/

X

Fig. 10(a). Orbit-1 whirling motion (fl = 1.6, a = 10, _"= 0.1, 3' = 0, _ = 0).

X

Fig. 10(b). Orbit-2 whirling motion (fl --- 1.6, a = 40, _ = 0.1, 3' = 0, ,u = 0).
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-24-

-26-

-28-

X

Fig. 10(c). Orbit-4 whirling motion (11 = 1.6, a = 50, _" = 0.1, _ = 0, # = 0).

situation could be to increase the critical damping or to decrease the shaft-to-support stiffness

ratio.

The effect of the friction coefficient, /_, between rotor and stator, is investigated and the

results are shown in Figure 11 for fl = 1.5. The figure shows that higher Iz tends to stabilize

whirling near the flip bifurcation boundary. However, it is apparent that/z has little effect on the

whirling magnitude or stability within stable orbit regions. Figure 12 shows a critical example

revealing how/z affects the whirling motion near the first flip bifurcation boundary region. The

figure shows that by increasing /z the period-2 orbit becomes period-1 orbit but the whirling

amplitude does not change. Therefore, in critical situations, subharmonic vibration could be

eliminated by increasing the magnitude of/1.
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Fig. 10(e). A stroboscopic snap shot of chaotic whirling motion (fl-- 1.6, a = 100, _[= 0.1, 3, = 0, p. = 0).
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Fig. 13. Hopf bifurcation boundaries (a = 1, # = 0).

Finally the effect of the cross coupling stiffness, 7, is investigated and the results are shown in

Figure 13. It is seen that the change in 3' results in a different type of bifurcation. A Hopf

bifurcation can exist in this case (two complex conjugate multipliers leave the unit circle while the

other two remain inside of the unit circle). In Figure 13, the period-1 orbit exists below each line

and a Hopf bifurcation occurs above that line. A Hopf bifurcation produces aperiodic (or

quasi-periodic) motion as shown in Figure 14. The figure shows that the aperiodic motion has two

different frequency components (which are incommensurate) and much larger whirling amplitude

than the period-1 orbit.
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Fig. 14(a). Aperiodic whirling motion due to Hopf bifurcation (a = 1, # = 0) --- 3, = 0.39; --'y = 0.40.
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Fig. 14(b). Power spectrum of aperiodic whirling motion (a = 1, /1 = 0, 3' = 0.40).

Conclusion

A robust iterative numerical procedure based on the HBM/AFT method has been presented for

obtaining the periodic responses of a rotor system on nonlinear supports. Modern bifurcation

theory is utilized to characterize the dynamic behavior of the system. A bifurcation analysis

method is developed which provides boundaries of parameter regions at which rotor whirling

change its shape rapidly, resulting in the occurrence of subharmonic, aperiodic or possible chaotic

motion.

The results of this study lead to the following observations concerning the dynamic behavior

of the nonlinear, modified Jeffcott rotor model considered herein as function of its dimensionless

parameters:
1. Increasing the bearing to shaft stiffness ratio, a, increases the degree of nonlinearity which

makes it possible for a flip bifurcation to occur, possibly producing a sequence of period

doubling motions.
2. For the same a and I1, an increase in _"leads to elimination of the subharmonic motion.

3. With high values of a, occurrence of chaotic whirling motion is possible. This follows from

(1)•

4. For the parameters considered herein, the coefficient of friction, p., has little effect on the

subharmonic response• However, higher # could eliminate the subharmonics near existing

flip bifurcation boundaries.

5. Increasing the cross coupling coefficient, T, could cause a Hopf bifurcation to occur which

may lead to aperiodic whirling• A more systematic investigation of the quasi-periodic

response of nonlinear rotor systems is needed. A nonzero value of 3, is necessary for the

occurrence of aperiodic solution. This is since in this case a limit cycle can exist in absence of

imbalance forces. A quasi-periodic response then occurs in presence of an imbalance force

involving a frequency related to that of the limit cycle and the forcing frequency, or

rotational speed of the shaft.
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Appendix

Elements of the Jacobian matrix, [J]

Og4n- 1 2 dCxn OCYn

J4n-l.4n-I - Oax, - -n + t_ + Oax---_ - At Oa_,

Og4n - I C3Cxn OCy,

J4n-l.4n - Obx. - -nt2 + Ob.---_- At Obx.

c)gan_ 1 CgCxn OCyn

J4n-i.4n+l - Oay, - t3 + Oay-----_- tz Oar n

Og4.-I Ocx. Ocy.

J4.-1,4.+:- Oby. - Oby. -At "Oby.

Og4n Odx. Odw

J4n 4. Og4n 2 Od_. Ody.
, = Obx.-n -t_- Ob_---_+ At Obj.

Og4n Odx. Od_.

J4.,4.+1- Oay. Oay. + At 0_

J4n 4.+2 dg4n Odx. Ody.
' - Oby_ - t3 Oby n + _ Oby.

c)g4n + 1

J4n + 1,4.- 1 -- C)ax"

OCyn OCxn

-- --t3 + cga_'_'_ + At aax_

Og4. +_ Ocy. Oct.

J,-+,.,°-

J4n + l ,4n + l

ag4n + 1

Oayn

2 OCyn OCxn

-- n + t_ + Oay----_+ At Oar,

Og4n+ l OCyn OCxn

J4n+l,4n+2 - Oby n - -nt2 + _ + At Oby.

Og4n+2 bdy. Od_

_ Og4n+2 Ody. Od_.

J4n.,-2,4n Obj. -- t3 Obj. At Obx.

42



_ g4n -. 2

J4n.,- 2,4.* ! - C]ay n

ag4. + 2

J4.+2.4.*: - 3by.

where

v: (1 + v'a) 2

ll- _-_2 4a

-- -nl 2

-n

3dy. ad_.

3ayn Oayn

3dr. 3d_.

-- II Oby n I'_ -Ob_.,

6

t3=Y _-_-
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Appendix B

Calculation of elements of [J]

Using

(
T(x,Y) =iff_ _-_2 (1 + X/-ff)24 xl _6"

2 (1 + V,-ff)2 (F(x, y)=_ fl2 4 y 1

the incremental form is expressed as

OT OT )AT(x, y)= -_x Ax +-_y Ay = AAx- BAy

ON ON )aF(x, y)= _x Ax + _y 5y =-CAx + DAy

where

v-' { (1 + v'-ff) 2 (l+v'-ff)26.(x2+y:)-3,:y: }A = _ _--j 4 4

}V 8*(X 2 + y2)-3/2xy
B=-_ _-_ 4

v: { (l + xf-d)" 8.(x2 + y2)-3/2xy }C=-O-_ 4

v" { (1 + v'-if): (1 + v'-ff) 2D=_-_ 4 4 a*(X 2 + y2)-3'2X2} •

Also, the Ax and Ay are

C)X

Ax-
3a_o

___Aaxo+_ ( 3x 3x Abx. )
.=t _ Aa,, Obx.

N

= AGo + _'_ (AG. cos nO - Abe.
n=l

(B1)

(B2)

(B3)

(B4)

sin nO),

(B5)
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by Aa,o+ L (by Aa,.. 0y ) x
Ay= Oa_o .=1 Oa._,. - Ob,,----_Aby" =Aa_°+ _ (Aa,.cosnO-Aby. sinnO).

"=_ (B6)

Similarly, from equation (4). AT and AF can be expressed as

N

AT = AGo + _ (AG. cos nO - Ad_° sin nO), (B7)
n=l

/V

AF = ACyo + _ (Acy. cos nO - Ady. sin nO), (B8)
tl=]

From equations (B3), (B4), (B7) and (B8), and using Galerkin's method, one can get the

following expressions for determining the elements of [J]. (The utilization of Galerkin's method

rather than DFT and IDFT makes it much easier to obtain the OQ/OP for the present two

dimensional system.)

A Aa_o + _ (Aa_. cos nO - Abe. sin nO cos 0..... sin 0} r dO
n=l

- B Aay o + _ (Aay. cos nO - Aby n sin nO) {cos 0,...
n=l

,sin nO } r dO =

A AGo + _ (AG. cos nO - Ad_. sin nO) {cos 0,... , sin nO} r dO, (B9)
n=l

- C Aa_o+ _ (Aa.. cos nO - Ab_. sin nO) {cos0 ..... sinnO}rdO
n=l

+ D Aay o+ _ (Aay. COSnO-Ab_.. sin nO) {cos0 ....
n=l

, sin nO} r dO =

A Acy o + _'_ (Acy. cos nO - Ad,. sin nO) {cos 0..... sin nO} r dO, (B10)
n=l

where the upper limit of integration, T, is 2zr. Using equations (B9), (B10), the first derivatives,

OQ/OP, for the Jacobian matrix are obtained as listed in equations (13) in text.
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ABSTRACT

A new HB (harmonic Balance)/AFT (Alternating Frequency Time) method

is further developed to obtain synchronous and subsynchronous whirling response

of nonlinear MDOF rotor systems. Using the HBM, the nonlinear differential

equations of a rotor system can be transformed to algebraic equations with unknown

harmonic coefficients. A technique is applied to reduce the algebraic equations to

only those of the nonlinear coordinates. Stability analysis of the periodic solutions

is performed via perturbation of the solutions. To further reduce the computational

time for the stability analysis, the reduced system parameters (mass, damping, and

stiffness) are calculated in terms of the already known harmonic coefficients. For

illustration, a simple MDOF rotor system with a piecewise-linear bearing clearance

is used to demonstrate the accuracy of the calculated steady-state solutions and

their bifurcation boundaries. Employing ideas from modern dynamics theory, the

example MDOF nonlinear rotor system is shown to exhibit subsynchronous, quasi-

periodic and chaotic whirling motions.

INTRODUCTION

There has recently been a tendency to increase the power and efficiency of

rotating machinery. Smooth running of such machinery is often of great importance

both for mechanical reliability and for user satisfaction. Consequently various

rotordynamic effects, which in some cases may be due to existing nonlinearities,

become increasingly important in the design and operation of such machinery.

A nonlinearity such as due to bearing clearances or rotor/stator rubs may sig-
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nificantly alter the vibrational response. In the past, some aspects of the associated

phenomena have been considered for simple rotor systems [I,2,3], experimentally

[4] or analytically [5,6,7]. Day [2] and Neilson and Barr [3] showed possible occur-

rence of quasi-periodic whirling of rotors in presence of bearing clearances. Other

investigators [1,4,5,6,7] also showed subsynchronous whirling motion occurring with

nonlinear rotors. Very few studies were performed however for multi.degree of free-

dom (MDOF) nonlinear rotor systems.

Nataraj and Nelson [8] adopted a collocation approach and the Guyan reduction

technique to obtain the steady-state whirling motion of a MDOF rotor system

with squeeze film dampers. Despite of the complex calculation involved and

lack of any stability analysis, their method is one of few existing approaches for

determining the steady-state motion of MDOF nonlinear rotor systems. Ehrich

[9] demonstrated experimentally that "chaotic" motion does occur in a high speed

MDOF turbomachinery.

The present study consists of two main parts : i) First, the new har-

monic balance method (HBM), with alternating DFT(Discrete Fourier Trans-

form)/IDFT(Inverse Discrete Fourier Transform), is adapted for obtaining the pe-

riodic steady-state whirling motion of a MDOF rotor with bearing clearances. This

approach has the advantage of offering robust convergent solution algorithms during

the iteration process. Stability analysis using the present ttBM can yield parame-

ter ranges for which quasi-periodic whirling motion would occur, ii) Secondly, the

stability analysis for nonlinear MDOF rotor systems is performed based on per-

turbation involving the harmonic coefficients of the periodic solutions. Through

application of modern dynamic theory, all possible parameter ranges for the sud-
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den change of whirling motion (i.e. bifurcation) can be obtained. This stability

approach can be extended for any MDOF rotor systems with piecewise-smooth

or polynomiai-type nonlinearities. Another advantage of this approach is that it

enables predicting parameter ranges in which chaotic rotor whirling would occur.

SYSTEM REDUCTION

A typical multi-disk rotor system with nonlinear bearings is considered. For

a finite element (FE) formulation of the nonlinear rotor system, the rotor shaft

segments are modeled as Euler beam elements taking shaft rotation effects into

account [10]. An assumed axisymmetric geometry of the rotor shaft elements leads

to the same mass and stiffness matrices in the X-Y and X-Z planes. If internal

damping is neglected, the system equations of motion can be expressed in terms of

the assembled mass, damping and stiffness matrices [M], [C] and [K] as

[M] i + fC]q + [K]q = fu + f. (1)

where q - [y,z] T and y, z denote the 2Lx1 assembled state vectors in the X-Y

and X-Z planes, where L is the total number of nodes. [C] has nonzero off-diagonal

elements including damping opposing the motion of the disks and gyroscopic terms

which couple the motion in the two planes. [K] has also nonzero off-diagonal

elements due to rubbing and other coupling forces between rotor and stator. The

vector fu represents the vector of the disks' mass imbalances and side forces on

the disks, while the vector fn denotes the force vector at the nonlinear bearing. In

particular, the nonlinear restoring forces in the y, z-directions on the bearing with
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clearances,at the node j, are expressed as

`5

fu, = kbyj(1 - .,j/yj2 -4- zj 2 ) (2 - a)

,5

= kb j(1 JUJ + ) (2- b)

where kb is the bearing stiffness and/5 is the clearance between bearing outer race

and stator. The bearing forces f_, or fz, will vanish if `5 is larger than the radial

displacement, otherwise the bearing forces will be as given by equation (2).

In equation (1), the matrix size becomes 4Lx4L, where L is the total number

of nodes. This may require a very large core size and much computation time

to calculate the dynamics of the nonlinear rotor-bearing systeml In linear rotor

dynamics, system matrix reduction techniques, such as the component mode

method [11] or the Guyan reduction technique, could give a reduced form of the

dynamic equation of motion. As an another approach, the impedance method [12]

can reduce the number of equations of motion to obtain forced responses at specific

locations of the system from those of "master", (kept) degrees of freedom. This

reduction is exact and does not involve any approximation. In a similar fashion,

large nonlinear rotor dynamical equations can be reduced to obtain steady-state

response at bearing location using the ]:iBM. This is achieved by using a version of

an impedance formulation in which the system is reduced to its displacements at the

bearing clearances. (see [12] and [20]). In the present study, the impedance method

is applied to each of the harmonic components of the assumed periodic solution.

Extending the procedure developed by Kim and Noah [141, a periodic solution

for the motion of the rotor is represented by a finite Fourier series expansion. For
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the displacementof the i th node (i=1,2,...,L), one can write

N

y,= _o_+ z.,,a;_ cos-- - b_ sinp) (3-,)
v v

N

i _'_( r_w_ i rungz, = _0..+ _,aL cos-- - b_zsinp ) (a - b)
12 V

where v is the subharmonic ratio, which is unity for harmonic and superharmonic

cases, or an integer other than unity for subharmonic cases, and w is the shaft

rotational frequency. Since the motion is periodic, the nonlinear restoring force can

be written as

fuJ = C3ou+ (cJ_u cos d.u sin --
v v

n=l

where j denotes the j,h bearing node (j=l,2,...,m). The advantage of introducing

equation (4) is to avoid the difficulties which would arise if standard harmonic

balance procedure is directly applied to equation (2). The denominator term of

equation (2) would not then be easily expressed in harmonic terms resulting from

using equations (3-a) and (3-b).

Substituting equations (3) and (4) into equation (1) and equating the coeffi-

cients of similar harmonic terms lead to the following algebraic relationships :

constant terms

[K]A ° = C O (5)

where A ° and C ° represent the constant Fourier coefficients of equations (3)

and (4), respectively, and both are of size 4L×1.
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cosine terms

-(n-5-_2)[MJAn-(_'_)[C]B"+[K]A" = C"+F,o (,_= 1,2,...,at) (6)
P /J

where A n and B n represent the n th cosine and sine coefficient vectors,

respectively, both of 4×1 dimension, C" denotes the n th cosine coefficient

vector of f., while Fuc represents the cosine coefficient of the imbalance and

side force vector F,.

sine terms

(n--_-_2)[M]B'_-(nW)[C]A'_-[K]An=D"+Fu. (n = 1,2,...,N)(7)
V 1¢

where vectors A,B are the same in equation (6), D n denotes the n th sine

coefficient vector of fn, and Fus is the sine term of the imbalance and side force

vector Fu.

At this stage, one can reduce equations (5),(6) and (7) using the impedance

reduction technique, only retaining the coordinates at the bearing nodes. For the

constant terms, equation (5) can be partitioned as

([gkk] [gk l[K,_] [K,_]) (A_) =(C_)Ar0 co (8)

where the subscripts "r" and "k" denote reduced out and kept coordinates, respec-

tively. By applying the elimination procedure, the constant terms can be repre-

sented in the reduced form

t 0[K  ]Ak = (9)

where [K_] is the reduced stiffness matrix of the rotor and A_, C_ are both 2m× 1

vectors, where m is the total number of bearings. The rt th cosine and sine harmonic
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terms canbe reduced in a similar fashion to yield

! n n V[I[Skk]nA k = C k + (10)

SIwhere [ kl,],_ is the reduced matrix involving system mass, damping and stiffness

matrices, A_ is the n t_ Fourier coefficient vector of equation (3) at the bearing, C_,

is the n th Fourier coefficient vector of equation (4) and U" is the reduced vector

involving imbalance and side forces. Here A_, C_, U" are all 4×1 vectors for

each n.

Combining equations (9) and (10), the following assembled matrix is obtained

[T]Ak = Ck + Y (11)

where IT] is a 2m(2N+l)×2m(2N+l) matrix, Ak, and Ck are 2m(2N+l) vectors

which represent the trigonometric Fourier coefficients of equations (3) and (4) at

the bearing node, respectively, and V is the total sum of the reduced imbalance

force vector. It is noted here that the total dimension of the system equations is

reduced from 4L to 4mN+2m. For a multi-degree of freedom rotor, L is very large in

comparison with m (number of bearing nodes) and N (number of retained harmonic

terms), so the system is significantly reduced for obtaining the steady-state response

of the nonlinear rotor system. Another advantage of the reduction technique using

the HBM is that stability analysis of the periodic response of multi-degree of freedom

rotor systems can be made highly efficient by considering only truncated harmonic

terms. This is discussed in the section further below on stability analysis.

In equation (11), the only unknown vector is A.k. The vector Ck can be

calculated using DFT and IDFT relations since Ck is a nonlinear function of Ak.

This procedure is described next.
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Calculation of Ck from Ak

To determine Ck from Ak, it is necessary to first calculate the discrete

y and z values of y_ = [y(At), y(2At),...,y((M ÷ 1)A_)] T and z_ =

[z(At), z(2At),...,z((M + 1)At)] T, where At is any discrete time steps, M÷I

is the total number of discrete points, and superscript T denotes the transpose.

Using IDFT, the discrete displacements, yA and zA, can be obtained as

yA -[VA]Ayk (12-

zA = [Vz_]A,k (12 -- b)

where

I 1 0 ... 1 0 )

1 cos At/v - sin At/v ... cos At/v -- sin At/v
[Vz_] = .... • . (13)

1 cosMA_/v -sinMAt/v ... cosMAt/v -sinMAt/v

and in which Ayk, A.k denote the cosine and sine parts of Ak, respectively. The

discrete nonlinear restoring force fyA, fzA can be obtained using equations (2) and

(12) as

frz_ = fy(yA, zz_) (14 - a)

f,z_ = f,(yz_,z_) (14- b)

where

fyA = [yv(At),fu(2At),...,fv((M + 1)At)] T (15- a)

f,a = [f_(At),f,(2At),...,fz((M + 1)At)] T (15- b)

As Ck is the Fourier coefficients of fy_, and f.,u, DFT offers the following expression

2
Ck - [Z ]f(V Ak) 06)

M+I
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where

[Z_] =
o15 0.5 0.5 ... 0.5

_osA_/v cos2At/, ... cos(M + _)_/_,

• • •. "

-sinN_t/_, -sin2:VAt/_ ... -sin(U+l)jVA_/-

and f is the sum of fy and f,.

11

(17)

From equation (11), one can solve the nonlinear algebraic equation by a

successive iteration procedure• Newton-Raphson scheme is one of the favorable

techniques for obtaining steady-state solutions since it has rank two convergence.

The disadvantage of this method is that it requires calculation of an explicit form

of the 3acobian which is not simply obtainable in multi-degree of freedom systems.

However, since the problem only involves nonlinear bearing coordinates, the explicit

form of the 3acobian can be obtained using the DFT and IDFT procedure. One

of the techniques to avoid calculation of the Jacobian is to utilize the forward

differentiation [6] which replaces the use of the Jacobian [14]• From the authors

experience, forward differentiation poses the difficulty of requiring control of the

differentiation length for each parameter and obtaining the probable convergence

values near the resonance responses. Moreover, forward differentiation convergence

rate is much slower than when directly using the explicit 3acobian formulation.

Therefore, in this study an explicit Jacobian formulation is utilized to enhance the

computational efficiency and to guarantee convergence for all parameter ranges•

Another iterative scheme, where calculation of a Jacobian is not required, is to

use the quasi-Newton method [15]. Although this method avoids calculation of the

Jacobian, its convergence is much slower when applied to nonlinear multi-degree of

freedom rotor systems•

55



12

Newton-Raphson Method

To apply the Newton-Raphson method to determine the unknown vector Ak,

equation (11) can be put in the form

G = [T]Ak- Ck--V = 0 (18)

In using the Newton-Raphson algorithm, the following derivative is needed (using

equation (16))

0Ck 2 0f(V_,Ak)
- (19)

OAk M + 1 [ZA] OAk

It follows from equations (16) and (18) that the Jacobian column vector of G is

given explicitly by the relation

C_Ck

[J3 = [T] + 0A-----; (20)

since [J] = _ and Ak is the only unknown vector. The Newton-Raphson

algorithm for the unknown vector Ak with an initial guess A(k°) can be described

as

[J]AAk (p) + G (v) = 0 (21)

where the superscript, p, denotes the pth iteration number. The above algorithm

terminates after r iterations, so that

tG(r)I <e (22)

where e is small number, and A (r) is a final solution.

STABILITY ANALYSIS
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From the previous section, the steady-state, harmonic or subharmonic whirling

responses, are obtained utilizing the present HBM formulation. As the steady-

state whirling responses are calculated using Newton-Raphson technique, a stability

analysis is necessary to check whether the obtained responses are' stable. Mttltiple

solutions could exist for a given set of parameters. Some of these solutions could

become unstable and bifurcate to other forms of solutions.

If the nonlinear rotor system is of small number of degrees of freedom, it is

straightforward to perform a stability analysis through perturbation of the periodic

solution obtained [13]. However, if the nonlinear rotor system possesses large

number of degrees of freedom, excessive computational time would be required

to check the stability or to obtain bifurcation information. This is since for the

stability analysis, the procedure would involve integration of a large matrix in

order to calculate the monodromy matrix for the perturbed equations with periodic

coefficients. In the present paper, a more efficient stability analysis method for

MDOF nonlinear rotor systems is presented.

From equation (10), the reduced system matrix with the n th harmonic terms

is rewritten as

I 1'1 !1 U n[S'kk], Ak = Ck + (23)

where [S_k]n is the reduced system matrix, A_ is the vector which represents the

Fourier coefficients of displacement at the nonlinear bearing node, C_, is the vector

of Fourier coefficients of the nonlinear restoring forces and U" is the reduced vector

involving the imbalance and side forces. The unknown vectors A_ and C_ in

equation (23), which were already obtained by the HBM method, have the following
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elements
rn m m rn 1T

--- brty, anz, z

Lj-l- j=l j=l j=l

= dny, Cnz,
- j=l i=1 i=1

where T denotes a transpose, j represents all the jth bearing nodes, and m is

the total number of bearings. As equation (23) represents the reduced system

matrix involving only the nodes at the nonlinear bearings, all the coefficients of

A_ are in general coupled, i.e. the off-diagonal terms of [S_k],_ matrix have non-

zero elements. At jth nonlinear bearing node, the damping and restoring force are

affected by all the damping and stiffness coefficients, Cij, Kij, (i,j = 1,2, ...,m),

respectively. Therefore, coupled terms in damping and stiffness coefficients can lead

to the following equations

m Trt

M_j_j + _ Cyji_ti + _ K_jiyi = hJ + U_ (26)
i=1 i=1

M_iZ_j + __, Czjir:i + _/'i'zjizi = L-j + u_ (27)
i=1 i=1

where M, C and K represent reduced mass, damping and stiffness coefficients

matrix, respectively, ]uj, ]_j denote nonlinear restoring forces in the y, z-direction

and subscript j represents the j_h nonlinear bearing node. It is noted here that the

Fourier coefficients of f_ and fu are represented by C_, in equation (23). The next

step is to calculate each reduced mass, damping and stiffness coefficients from the

reduced system matrix [S_k],_.

From the previous section, the displacement of the jth bearing node can be

represented by only the n th harmonic component as

• wt . w_
yi = a_ cosn-- - b_ sinn-- (28 - a)
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• cot wt
_ = aL cosn -- - bL sinn -- (2s - a)

v v

where j=l,2,...,m. Inserting equations (28) into equation (26) and (27), the

following relations can be arrived at :

-(v-_)2M_I + Kyl

C nw- _l--y

0

0

-Cyl v "•"
( r_w _2 I_4"
-;-) _vJ_1- Kyl •.. 0

• • °

0 ... -(-_-)2Mzm + Kz_
... C "n.t.t2

-- z'D'l, 1./

0110

nw _2 All -- KzmV ] a.vat Z'tn

x

any

bL dL

b,,L \ d,_'L

+ U n (29)

As equation (23) and (29) are the same, all reduced mass, damping and stiffness

coefficients of equations (26) and (27) can be calculated from the matrix [S_¢k],_ in

equation (23)•

Equations (26) and (27) can now be rewritten as

hvj = _lj + Yi + yi M_,j Myj
z=l i=1

(30)

'_.__--_".Kzj__.., z_ M..if_jU'Mzj= _J+ Z _ + .._- o (31)hzj

i=1 i=1

Equations (30) and (31) are the reduced system equations to be utilized for the

stability analysis of the steady-state whirling motion• It is noted here that the

system equations are reduced from 2L to 2m where L is the total number of nodes,

including the number of bearing nodes, m. Therefore, for MDOF nonlinear rotor

systems, the reduction of system equations has the effect of rendering the stability

analysis significantly more efficient.
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Perturbation of equations (30) and (31) can be obtained using Taylor expansion

Ohyj m Ohyj . cqhyj cqfyj Ay i

i--1 i=1

i= 1 i= 1 Oyj

where j -- 1,2,...,m.

Equations (32) and (33) are transformed into a system of first order equations

with

u = [Ayj, Azj, A_j, A_j] r (j = 1,2,...,rn) (34)

The resulting variational equations can be written in the following form :

--[W(_)] u (35)

where u e R 4"_ and W(t) is a 4mx4m matrix. The stability problem of the

prescribed motion can be formulated as the local stability analysis for u = O. The

fundamental matrix [Z(t)] for the ordinary differential equation (35) with periodic

coefficients is related to [Z(t + T)], which is also a fundamental matrix by [18]

+ T)] = (36)

where IS] is referred to as the monodromy matrix for the system. The monodromy

matrix IS] can be produced by evaluating the matrix [Z] at the end of one period

for the system. The Floquet multipliers, or the eigenvaiues, #, of S determine the

stability of the system. When all the multipliers are of absolute value less than

unity except for some with absolute value of unity, then the system is located at the
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stability boundary. Three different types of loss of stability of a periodic solution

can occur [19] for the system considered when one or more # are given by

i) _t=l, saddle-node or transcritical

ii) g=-l, period multiplying

iii) # = c_ + i/3 1#81=1, secondary Hopf bifurcation

The bifurcation can be super- or subcritical.

AN EXAMPLE MDOF ROTOR SYSTEM

To demonstrate the application and computational efficiency of the new

HBM/AFT, the method is applied to a simple MDOF model shown in Figure 1.

The equations of motion of the rotor are formulated using the finite element method

(FEM), employing Euler beam elements. The rotor is supported on a linear bearing

at the left and by a nonlinear bearing with a gap at the middle. The rotor is sub-

jected to imbalance forces and a constant direction side force. The detailed rotor

configuration is shown in Table 1.

First, the whirling orbit at the nonlinear bearing is obtained for a rotor with

2000 rad/sec rotational speed, as shown in Figure 2. The solid line in this figure

represents the HBM solution which is seen to be accurate. The minor discrepancies

between the numerical integration and the HBM solutions are due to : i) truncation

errors in assuming a finite number of harmonics for the steady-state solution and for

the nonlinear restoring force. This error can be reduced by retaining larger number

of harmonic terms, ii) errors introduced by the Guyan reduction.

A more comphcated subsynchronous whirling motion at a rotor spinning speed
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of 1600rad/sec is shownin Figure 3. The solid fine representsthe responseobtained

by the HBM, while the dotted Line stands for the solution of direct numerical

integration. The results show good agreement between the ]IBM and the numerical

integration methods. In most of the simulations, only four harmonic terms were

considered in obtaining the whirling response. This results in drastic reduction in

the computational time in comparison with direct numerical integration.

Another characteristic of the behavior of the nonlinear rotor is the sudden

change of its whirling shape with small changes of certain parameters. This is due

to bifurcation whose study is very important since it can lead to a sudden change

from synchronous to subsynchronous motion (including subharmonic or quasi-

periodic motion) or vice versa. To better understand the nonlinear MDOF rotor

characteristics with bearing clearances, stability charts, or bifurcation boundary

plots, axe utilized. Figure 4-a shows the effects of the gap (clearance) and mass

eccentricity on Hopf bifurcation boundaries. The regions marked by "A" indicates

quasi-periodic whirling motion. These regions were obtained using present stability

analysis method which indicated a Hopf bifurcation at their boundaries. Region B

indicates a stable harmonic whirling motion, i.e. all the roots of the monodromy

matrix are located within the unit disk. To confirm these stability boundaries,

numerical integration was performed for a selected set of parameter values, and the

results are displayed in Figure 4-b and 4-c. These results show that the stability

analysis developed here is quite accurate. The figure shows that for the range of

parameters utilized, a complicated quasi-periodic whirling motion can be eliminated

by decreasing the bearing clearance, while changing the bearing stiffness does not

affect the motion.
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Figure 5-a shows effects of the rotational speed and side force on the flip (period

multiplying) bifurcation boundaries. Region A of this figure represents the primary

stable whirling motion (i.e. the stable whirling when the rotor does not contact

the gap), region B is the subsynchronous whirling of order 1/4 which can cause

violent whirring motion, region C is the subsynchronous whirling with order 1/3,

and region D shows the secondary stable synchronous whirling motion (i.e. the

stable whirling when the rotor stays in contact with the supports through the gap).

Numerical integrations for the orbits in each regions are also performed to confirm

the bifurcation boundaries as shown in Figures 5-b-e. Since the MDOF rotor system

displays a 550 rad/sec critical speed with the rotational speeds around 3 or 4 times

this critical speed, the subsynchronous whirling motions might, therfore, occur.

Another interesting phenomenon emerging from the results in regions B and C is

that the motions can bifurcate further by increasing the side force (i.e. by period

doubling or tripling according to the side force variation). As the HBM can handle

only finite number of low order subharmonic terms (so that chaotic whirling motion,

which possesses a large number of low order subharmonics, can not be obtained

using the HB/AFT method), numerical integration is used to study further flip

bifurcation in the region C, as shown in Figures 6-a-e. Since region B has similar

flip bifurcation pattern, the results of this region is not included here. Shown in

Figure 6-a is the primary stable whirling motion. By increasing the side force,

the shape of whirling orbits continue to change until subsynchronous motion with

order 1,/3 is achieved. This is shown in Figure 6-b. Further increase of the side force

results in bifurcation to subsynchronous motions of order 1/9 and 1/27, as shown in

Figures 6-c and d, respectively. With a small increase of the side force beyond these

subsynchronous regions, whirling can become almost non-periodic ("chaotic") as
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shown in Figure 6-e. Figure f-f, which shows the response spectra of that in Figure

6-e, clearly indicates chaotic motion. The reversed bifurcation (i.e. inverse process

of above bifurcation from primary stable whirling to chaos) begins to occur suddenly

("crisis") by changing from chaotic motion to secondary stable whirling when the

side force is increased, as shown in Figure 7.

Figure 8 shows the effects of the mass eccentricity and side force on the fllp

bifurcation boundaries. The region marked by A has a primary stable harmonic

whirring, while region B has a subsynchronous whirling shape. The figure shows

that the primary whirling shape does not change its motion very rapidly with

the eccentricity or with the amount of imbalance. However, the secondary stable

whirling becomes unstable for the same side force. All bifurcation regions were

confirmed using numerical integration. The results of the comparisons are not

included here since they display similar whirling shapes as those of Figure 5. Figure

9 shows the effects of clearance and the side force on the flip bifurcation boundaries.

The regions A,B, and C of this figure have the same whirling motions as those in

Figure 7. The figure shows that larger side force is needed to cause primary or

secondary stable harmonic whirling when the gap size is increased.

CONCLUDING REMARKS

A further developed HBM, using DFT/IDFT, is employed to obtain the steady-

state periodic response for MDOF rotor systems with bearing clearances (piecewise-

linear nonlinearity). The Guyan reduction technique is utilized to reduce the system

to the nonlinear coordinates. The stability analysis is performed via perturbation

of the obtained periodic solutions. The reduced and approximated system param-
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eters (mass, damping, and stiffness) are calculated from the determined harmonic

coefficients.

A simple MDOF rotor system with a bearing clearance is used for illustration of

the method. The results obtained show that i) the HBM method, as developed here,

is robust and efficient, ii) the method leads to accurate bifurcation boundaries for

nonlinear MDOF rotor systems. Furthermore, the method can in general be applied

to MDOF rotor systems with piecewise-smooth or polynomial type nonlinearities

at the bearing supports.

If the system possesses quasi-periodic response for a given set of parameters,

the present HB/AFT approach cannot be used to obtain the corresponding whirling

motion. However, a modified DFT, which is now under study, is believed to be able

to produce quasi-periodic whirling motions.
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Figure I. MDOF rotor model w_th a piecewiJe-linem"

bearing dearance
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Figure 2. Comparison betweenHBM and numerical integration

(speed--2000 tad/see, gap=3 ram, side force--1400 N,

eccentricity=l ram, damping=10 N-see/m, bearing stiff.--tE+06 N/m)
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Figure 3. Comparison between HBM and numerical integration

(speed=f600 rad/sec, ga.p=3 mm, side force=1400 N,

eccentricity=23 mm, damping=f0 N-sec/m, herring stiff.--IE+06 N/m)

I-IBM ;... Numerical integration
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Figure 4. Effectof gap and eccentricityon Hopf bifurc,ttionboundaries

(speed=2300 rad/sec, side force=2800 N. damping=10 N-m/sec)

(b) - Region A (gap=3 ram, ecc.=20 ram) ;

(c) - Region B (gap=3 ram, ecc.=40 ram)
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Figure 5. Effect of side force and speed on flip bifurcation bnundetries

(gap=3 ram, damping=10 N-re:see. stiff.=IE+06 N/m)

(b) - Region A (speed=2100 red�see, side f.=400 N) ;

(c) - Region B (speed=2100 red/see, side f.=500 N) ;

(d) - Region C (speed=1600 red�see, side f.-500 N) ;

(e) - Region D (speed=2100 red/see, side f.=600 N)
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Figure 6. Flip bifurcationprocess with speed of 1600 rad/sec

(a) - primary stable whirling motion (side f.=450 N) ;

(b) - subsynchronous whirling motion _vith order 1/3 (side f.=500 N) ;

(c) - subsynchronous whirling motion _-ith order 1/9 (side £=527 N) ;

(d) - subsynchronous whirling motion with order 1/27 (side f.=535 N) ;

(e) - chtLotic whirling motion (side £=550 N) ;

(f) - power spectrum of chaotic motion (side f.=550 N)
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Figure 7. Bifurcation plot due to side force

(gap=0.03 cm, damping 10 N-sec/m. stiff.=lE+06 N/m, speed=1600 rad/sec)
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Figure 8. Effect of side force and eccentricity on _p bifurcation boundaries

(speed=2100 rad/sec, gap=0.03 cm. dasuping=10 N-sec/m, stiff.=lE+06 N/m)

A pr/rna_ whirring ; B subsynchronous whirling ; C secondar7 whirring
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Figure 9. Effect of side force and gap on flip bifurcation boundaries

(speed=2100 rad/sec, eccentricity=0.001 cm, damping=f0 N-sec/m, stiff.=IE+06 N/m)
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APPENDIX C

"A Convolution Approach for the Transient Analysis of Locally Nonlinear Rotor Systems,"

ASME Journal of Applied Mechanics, Vol. 57, pp. 731-737, 1990.
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A ConvolutionApproachfor the
TransientAnalysisof Locally
NonlinearRotorSystems
A computationally efficient convolution method, based on discretized impulse re-
sponse and transition matrix integral formulations, is developed for the transient

analysis of complex linear structures interacting through strong local nonlinearities.

In the formulation, the coupling forces due to the nonlinearities are treated as external

forces acting on the coupled subsystems. Iteration is utilized to determine their

magnitudes at each time increment. The method is applied to a generic rotor-housing

model representing a turbopump of a space shuttle main engine ( SSME). In that

model, the local nonlinearity is due to clearances between the rotor bearing outer

races and the carrier attached to the housing. As compared to the fourth-order

Runge-Kutta numerical integration methods, the convolution approach proved more
efficient and robust for the same accuracy requirement. This is due to the closed-

form formulation of the convolution approach which allows for the use of relatively

larger time increments and for a reduction in the roundoff errors.

Introduction

The use of a direct numerical integration for determining
the transient response of coupled nonlinear rotor-flexible hous-

ing systems may require excessive computational time and in-
volve unacceptable computational roundoff errors. To remedy
these problems, different procedures have been developed by
analysts to determine the transient response of large order rotor
systems. The procedures can be recognized as falling under
one of two basic approaches: those using physical or modal

coordinates of the complete system and those using the co-
ordinates of the individuals components of the system. The
methods also differ in the numerical integration methods se-
lected for the analysis.

Rouch and Kao (1980) employed Guyan (static) reduction
method to arrive at a reduced size model in terms of the re-
maining physical coordinates. Accuracy of the results could

be expected to be acceptable, since the rotor is basically a train
of mass-stiffness subsystems. Nordmann (1975) attempted to
minimize the inaccuracy of static condensation by applying
the static reduction technique to an arbitrarily substructured
rotor system and then assembling the reduced substructures to
form a reduced system. The procedure is very laborious and

no guarantees of accuracy axe apparent.
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Childs (1978) utilized free-interface modes of the various
system components to represent the assembled turbopumps of
a space shuttle main engine (SSME). The method, using fourth-
order Runge-Kutta integration, does not allow for size reduc-
tion of the housing model while maintaining sufficient modal

coordinates for accurate representation of the housing. Nelson

et al. (1982), on the other hand, uses fixed-interface complex
component modes to assemble a reduced size model. For sys-
tems with a large number of coupling points among the com-
ponents, the approach suffers from an introduction of higher
frequencies resulting from an excessive number of constraints
imposed at the coupling (or boundary) points, In a transient
analysis, this will necessitate employing much smaller time
increments and consequently will lead to excessive computa-
tional time.

Only a few analysts have presented techniques for the general
transient analysis of large nonlinear rotor systems. Adams
(1980) used a normal mode representation for the rotor in
terms of its undamped, free symmetric modes and treated

gyroscopic and nonlinear terms as pseudo-external loads. The
method presented by Childs (1978) makes use of a similar
procedure to couple the rotor to its flexible housing. Nelson

et at. (1982) developed a general computer code for the tran-

sient analysis of large rotor systems. The user may utilize time-

step integration in the constrained-rotor (fixed-interface) modal

space. Again, all connection points, including those at the
nonlinearities, must be constrained, leading to the same short-

comings described previously.
Spanos et at. (1988) considered linear systems analyzed as

decoupled subsystems. The accelerations at the interface are
predicted at the beginning of each time step. The accelerations
of the interface and interior nodes are then calculated and
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corrected through iterations. The decoupling makes the mod-

eling of the assembled system more efficient. Hagedorn (1988)
proposed a method for the analysis of a large linear subsystem
coupled to one or more nonlinear subsystems. The dynamics
of the system is represented by an integral equation of the
convolution type containing the transfer matrix of the linear

subsystem, and by the functional relation describing the non-
iinearities. It appears that since no iterative technique was used,
the method would require a very small integration step.

A method which proves to be highly efficient in determining
the transient response of linear systems under specified general
excitations is to utilize the convolution integral, or the tran-

sition matrix (Meirovitch, 1980) of the system. Von Pragenau
(1981) utilized the transition matrix, stating that it offers the

simplicity of the Euler method without requiring small steps.
Von Pragenau maintained that for systems with constant coef-
ficients, the stability and accuracy of the method are acquired
through the closed-form solution of the transition matrix.

In the present study, the convolution methods (impulse re-
sponse and transition integrals) are shown to be very effective

when extended for application to linear systems with local
nonlinearities. The forces at the nonlinear locations are treated

as the external forces on the systems or subsystems and iteration
is used at each time increment to determine the magnitude of
the forces for subsequent increments.

The technique presented in this paper can also be applied
in terms of the modes of subsystems calculated separately.

However, system equations of motion will be formed as in a
component mode synthesis approach. The response of each

substructure is solved separately by treating the interface forces
of the system as external forces to the subsystems. The con-
volution approach can also be applied to the generalized sec-

ond-order system equations developed from component mode

synthesis. In contrast to the convolution approach, if local
nonlinearities occur at the interface, standard free interface,
component mode synthesis methods fail.

The convolution approach is applied to a general rotor-
housing system with rotor imbalance during startup or shut-

down. In the present work, eigencoordinates are used to rep-
resent both housing and rotor. The local nonlinearities were
taken as deadband clearances at the roiling element bearings
which support the rotor in its housing. The integral formulation
of the rotor motion is represented by its transition matrix and

that of the housing by a convolution integral (based on the
housing's impulse response).

The convoluted impulse response can only be applied to a

system of uncoupled equations while the transition matrix for-

mulation, in addition, can be applied to coupled equations.

The transition matrix can therefore be applied to coupled dy-
namical systems represented by their physical coordinates or,

in case of rotors, coupled by the gyroscopic terms in otherwise

decoupled modal representation. Kubomura (1985) used a con-
volution integration method to achieve dynamic condensation
of a substructure to its coupling points to other structures.
Convolution was also used by Tongue and Dowell (1983), and

Ciough and Wilson (1979) to reduce system coordinates to that
at the nonlinearities.

Modeling of a Rotor-Housing System

A representative complex rotor system with a flexible hous-

ing is shown in Fig. I. The particular model shown in which
the present method can be readily applied, represents the high

pressure oxygen turbopump (HPOTP) of the SSME. The in-

teraction forces between rotor and housing include various

seal, impeller, turbine tip clearance, bearing clearance, and
fluid side forces.

Ca) Rotor. The equations of small transverse motion,

(Noah, 1986), [S] of the rotor under transient external and

imbalance forces may be written as

IM]slS}- OIG-'] I._ )+ IKI_IS} = IF/)R+ IF_]_. (I)

In equation (!)0 I S I represents the translational and rotational

displacements and only includes those displacements which are

associated with masses and rotary inertias. Other displacements
are reduced out using static condensation. The spinning speed
of the rotor is denoted by _, [G] is the gyroscopic matrix

corresponding to the attached disks, IF}R represents the cou-
pling forces on the rotor due to coupling to the housing while

IFE]_ represents the external forces including the imbalance
forces. Let

I SI = [¢]RIqIR (2)

in which [_]R is the modal matrix, normalized with respect to

the mass matrix of the nonspirming rotor and [q}R are the
associated modal coordinates.

Nomenclature

[\C\] = structural damping ma-
trix

[Cb = coupling damping matrix [Q} =
S=

[CA'/] = convergent matrix

[D] = generalized damping ma-
trix of rotor model IS} =

e = imbalance of disk
t =

{F} = physical force T =
[G] = gyroscopic matrix

[H] = physical coordinates of t, =

housing I u } =

[x/x] = identity matrix

[K] = structural stiffness matrix

[K]/ = coupling stiffness matrix _., _d =

[M] = mass matrix
{P] = generalized force (modal [0] =

force) [a] =

{ q ] = generalized displacement [_A\] =

(modal displacement)

transition matrix 6 = spinning speed of rotor

physical displacement of [¢I,] = normalized modal matrix

rotor in bearing _" = damping ratio

physical coordinates of Brackets and Symbols
rotor
time [ ] = square matrix
time increment [\ \] = diagonal matrix
time at it [ ] = column matrix

, generalized coordi- [ = transpose of a matrix

nares of rotor Subscripts

natural and damped nat- R = rotor
urai frequencies H = housing

null matrix E = external

the rotor state matrix I = coupling
diagonal eigenvalue ma- X, Y, Z = X, Y, Z direction
trix i = /th time increment
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Using the modal transformation (2), equation (1) is written
in the form

[_1_- [)]rd[G]_Icl']s[ d )R + ['A\]s( q ] s

= [4']r(lF_l R+ IFtl_) (3)

where

['Ad_ = [_,o.2dR.

,o, is the natural frequency of the nonspinning of the rotor.
Adding a modal damping matrix [\C\] to equation (3) yields

{#]It+[D]RIqIR+[\A\]R[qlR=[_]T([F/}R+ IFEIR) (4)

where

[Db = ['C,l_- [_]r,_[61,d¢'lR (5)

['CJ_ = ['2/'_.d,_. (6)

(b) Housing. The equation of motion of the housing may
be expressed as

[MIMHI + [EI.IHI = [FIIH+ IF_lx C/)

where (HI represents the transverse displacement in the Yand
Z-directions. In terms of the modal coordinates of the housing
while uncoupled to the rotor, equation (7) takes the form (after
adding a modal damping matrix)

[0IH+ [DIHI (I }H+ [_Ad.lqln = [4'I_(IF:IH+ [FEIH)

where

[D]H= ['CdH = [_2/'_.dn

iS)

(9)

and

[_A\].= P_.:JH. (10)

(c) Conpling Forees. Forces due to linear coupling be-
tween rotor and housing may include the direct and cross-

turbines

• Fig. 1 Complex rotor syslem with |lexlb|s housing

coupling forces due to seals, impeller, and turbine forces. The
nonlinear coupling forces are taken as those due to the clear-
ance between the rolling element bearing outer race and the
housing. Figure 2 shows a model for the gap at each of the
loosely supported bearings.

The bearing force acting on the housing in the Y-direction
is

Sr-Hr +Co(,_r-/'Ir) R_-6
(Fc)r =KdR-(5) R

(FG) r=Ca( Sr- lClr) R <-6

where the bearing support stiffness, KG, is shown in Fig. 3 and
Co is the damping in bearing. Analogous equations hold for
the Z-direction, and

R: %/ (Sr-Hr)2 + ($z-Hz) 2

where

St, Sz are the physical displacements of rotor in the Y and
Z directions, respectively, at the bearing location.

Hr, Hz are the physical displacements of housing in the Y
and Z directions, respectively, at the bearing location.

The bearing forces can further be written as

(Fo) r= Ko( Sr- Hr) + Co( S r-121r) (!1)

(Fc)z=l_o(Sz-l'lz)+Co(Sz-l;tz) (12)

where

](G---]¢O (l - _) R_'_ (13)

/_c=0 RSS. (14)

Method of Analysis

A hybrid convolution method proposed by Noah et al.,
(1986) and (1988), is utilized here for the analysis of the coupled
rotor-housing system. The displacements of the housing are
best represented by a convolution integral due to its accuracy
advantage over the transition matrix formulation. Due to the
presence of the unsymmetric gyroscopic terms, the equations
of motion for the rotor are transformed to first order. The
displacements of the rotor are expressed in terms of transition
matrix for the motion of the rotor.

The restriction of an impulse response convolution integral
is that the equations of motion have to be decoupled. For a
coupled subsystem, such as rotor with gyroscopic moments at
the left-hand side of its equations, a transition matrix for-
mulation has to be employed. However, the convolution in-
tegral is more computationally efficient than transition matrix
formulation.

Transition Matrix for the Rotor. The equations of motion
of the rotor, equation (4), are cast in first-order form,

[ u }R= [a]R[ u ]R + [P}_ (15)

where

housing

Y

c_ _/_

Fig. 2

Z

Rotor and housing displacements el beadng location

housing

= y
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1to

= Ka

Fig. 3 Nonlinear beadng force, Fo, due to Ka

[0l [\i\)

\_ t'A,].-tD],] (16)

If the spinning speed isa function of time, the gyroscopic

term of equation (5) can be moved to the right-handsideof

equation (4)to avoid solvinga new eigenproblem at each time

step. In this case, the coefficient matrices, given by equations

06) and (17), are replaced by

{alR= - [\AdR - [\C\]R) (16')

( )( o )IPI_= [4qar({FH_+ {F_IR) + (_]T¢'{G]eI4'IR{qIs "

(17 ')

In this case, the equations of motion of the rotor becomes
decoupled, and a convolution integral becomes a better selec-
tion because it is more efficient than the transition matrix
method.

The solution of equation (15) can be written as

lu(t)}s=etI°l_{uo} + e('-')l_lRlP(r)lRdr (18)

where

k! (19)
k=0

Equation (19) is transition matrix and luol is the initial
generalized coordinates.

Equation (18) can be east in a discretized form in which the

generalized forces, I PIR. are taken as varying linearly between
time t, and t,.) so that

t -- I i

{P(t) } = [P(t,] + "-7- ( [P(ti. t) ] - [P(t,)] ) t_<__t<t_÷ :

where t,÷ : = t_ + T and T is a small increment in time. The
discretized form of equation (18) can then be shown to take
the form

I u(t,. ,) I_ = {Q( 731{u(t_) IR

+ ([Q(7)1 - ['Id)la]_'([P(t/) }R + [a]_ '
N

x {P(t,÷:)IR- {P(t_)l,_)T - 1'']'_ :( IP(ti. :) }R- IP(ti) }R)

(20)

where

[Q( 7")] = e rlabt. (21)

734 / Vol. 57, SEPTEMBER 1990

Coavolutlom Integral fo¢ Homtag. The decoupled form of
the equations of motion of the housing allows expressing the

nodal displacements of the housing by an integral. The integral
formulation has the advantage of providing a closed-form
expression as opposed to conventional numerical integration

schemes. Also this representation allows dealing directly with

diagonal modal matrices as opposed to coupled, first-order
modal equatioas used with the Runge-Kutta method of the

convolutional formulation matrices. This results in higher
computational speed and accuracy of the convolution for-
mulation.

Based on equation (8), the housing generalized coordinates

can be expressed as

{q (t)Is = [\e- r_":COS _¢.'_J {q(O) ]n

e- r_"sin _'¢_.I q(O) l t c)+['I -d,](l 0(0)}H+

+ _ ['le-"'-"sin.,(t-r),]{P(r)lsdr (22)

where (q(0)1, Iq(0)Iare initialsolutions,oJ.,¢o_areundamped

and damped naturalfrequenciesof housing, _'isdamping ratio

of housing, {Pln = [4']r ({F/In + {Faln). the generalized

forcesact on housing.

The expression(22)isnext writtenin discretizedform, with

the generalizedforcestaken as before as varying linearlywithin

each time step,or

( q(t/+ :) }H= [Xe-*'l+ :cos bti. z_] [q(0)}H

e -aq+ Isi n
+['_ bli. l,]( [ *(O) ]H+ a' q(O) }H)

I sin bti" : c°s bti+ ' 1+ b(a=+b3) F_Ai+: b(oZ+b_) EBb.: (23)

I c/(t/. :) l_/= [X -e-"i_ : (a cos bt/. : + b sin bti+:)\llq(0)} H

[' (° 1]+ • -'ti÷l -- _sinbti. t + cosbti.: (Iq(0)} H
\

+a(q(0)Jx)+ _-a sin bt/.)+ b cos bL÷= EA/.,b(a=+b_)L

a cos bt_.:+b sin bt,.: )
+ b(a_+l_) EB,.,

where

(24)

a = _'w. (25)

b = _,# (26)

EA,. == e-'rEA, + Ai+ : (27)

EB, + : = e-=rEB_ + B,+ : (28)

EA/=e -_'/- :At +e-°"-:A_+ • • • +A, (29)

EBi = e- _i- _B: + e-*_'- 2B: + . . . + B_ (30)

A,. : = Pi. :(a cos bti. : + b sin bti ÷ : )

Pi + ! -- Pl

T(a_ + b_ ) (a _ cos bt,+ : + 2ab sin bti. : - b_cos bt,.. : )

P'*:-P_ e-°r(a _ cos bt_+ 2ab sin bt,-b_cos bt,)
+ T(a_+b _)

-Pte-'r(a cos b6 + b sin bt_) (31)
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B, . t = P+ . _( a sin bt, . i - b cos bt, . : )

P,,t-Pi
Tfa2 + b2 ) (a 2 sin bt, . i - 2ab cos bt , + t -/_sin bt i. i)

P'+ _- P' e-°r ( a: sin bt,- 2ab cos bt,- b:sin bt,)
+ T(a_+b :)

-P#-'r(a sin bt,- b cos bti) (32)

P is element of vector IPI.

The Coupling Forces. The coupling forces actingon the

housing are given by

{Ftln= [K]_({SI- {HI)+ [CD({._I- {HI) (33)

and those on the rotor axe

IF, I_= - IF:IH

where [K]: and [C]t axe the coupling stiffness and damping
matrices, respectively. The coupling stiffness matrix includes

the updated bilinear bearing stiffness at each iteration.

The Computational Procedure. For the responses at time

t = t,÷ i, the coupling forces between the housing and rotor
axe unknown. An iterative technique is used to calculate these

forces. The following iterative loop is used in both the hybrid

and Runge-Kutta methods:

If the responses at t = t_ axe known and responses at t = t,.

are desired, then:
(a) Set IFt(t+÷0} = IFi(t_)}.

Co) Calculate IPIR and I Pin-

(c) Solve lu(ti+l)lRand Iq(t+÷l)ln, Iq(t,÷t)lHbythehy-

brid method (or the Runge-Kutta method). Calculate the Eu-

clidean norm of {u(ti÷l)lR and Iq(t_+t)ln.

(d) Transfer lu(h+Dl# and Iq(ti+Dl#, Iq(t,÷+)ln back

to physical coordinates, then a new connection force {F_(t+÷ t) }
can be calculated.

(e) If the Euclidean norms of two consecutive iterations

of both rotor and housing are close enough then stop the

iteration and go to step It'), otherwise go to Co).

(f) Move a time increment and go to (a) until t reaches a
specified time for terminating the run.

The Convergence of Hybrid Method. Rewrite the coupling
forces as the function of the generalized coordinates, equations
(20), (23), and (24) can be arranged as the following form:

_(k)\

/u(t,+l, _ (u(t,.l)'i-l"_

/od,2,;'*'? : tct<× /o.2;;"-"/ +l l (34)
Xq (t,÷,)'*'/ kq (t,÷,)'*-'V

where k stands for kth iteration at a given time t,. _, [CM] is

the convergent matrix (Isaacson and Keller, 1966), I cl is vector
with known values, and

([Sl} [$2}_ (35)

[C/V/q= _[S31 IS4]/
where

(0 0)[Sll = In} x - [¢>I_[RI_{¢IR- [¢ir{cb{OlR

(o o)1S21= In} x [OlrlK]t[Oln[OlrlCb[Ol

Joumal of Applied Mechanics

R7

[{r2114,l_{ghl_IR[r'2ll_lrlC]:l_lR'_

tsm:

/'-tn]t+gama+b, -tnlt+++tcja+]. 
is41=
and

( ,°,,+')[rl]= [c+l_' (IQ(7")I- 1'1,1)--_ - ['1\1

[\ sin bt,+t AC cos bt+., AS,][_1 = t,(a_ + M) _(aa+M)

\ -a sin bti+ _+b cos bt_+_[731= b(_+_) AC

acos bti+ t + b sin bt,+ _ ]+ AS,

where

AC=a cos bt,+ _+b sin bti+_

1

- T(az+l_) (a_ cos bt++_+2ab sin bt_+_- b_cos bt,+_)

e-aT

+ T(aZ+b_) (a _ cos bti+2ab sin bti-b_cos bt_)

AS = a sin bt,+ _ - b cos bt_+

1

T(a_ + _) (a_ sin bt,÷_- 2ab cos bt,÷_- b_sinbt,+_)

_-oT

(a_ sin bt_-2ab cos bt_-_sin bt_).+ T(d+b_)

Equation (34) is in the form of the Jacobi iterative method

(simultaneous iterations),see (Isaacsonand Keller,1966).The

convergent matrix, [CM] may not be fixed at a given time

t= t,._as in an ordinary linearsystem because matrix [K]zmay

change during the iteration if the switch between two slope
areas in Fig. 3 exists.[Kitwillbe updated because the nonlinear

bearing stiffness, KG, changes. In this ease, there are two con-
vergence rates during the iteration at that given time.

Equation (34) will converge if and only if all eigenvalues of
[CA4] are less than one in absolute value. An alternative way
to check the convergence is that the iterative method will con-

verge if, for any matrix norm (Euclidean, maximum, etc.),
I[CM]l < 1. Uncommon c&ses occur where convergence cri-

teria are met within one region in Fig. 3 and not the other. In
that case, overall convergence at a given time t,. t might occur
depending on the pattern of movement from one region to the
other. In any case, the convergence rate and size of the incre-

ment T will determine the outcome for acceptable accuracy.
The rate of convergence, CR, is defined as the following:

CR - - log o([CMI)

where # ([CMI) isthe spectralradius of [CM] defined by

o([CM]) - max I hi I

where X+ are the eigenvalues of [CM].
Let the initial error be defined as the norm of the vector of

the difference between the exact solution and an initial guess

at the beginning of iteration. The number of iterations, v,
required to reduce the initial error by the factor 10 -m is in-

versely proportional to CR and is defined as

nl
v_ _.

CR
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ROTOR: Sh_t _smete¢:. OD = T.26 × 10-1m, [D = 0.0m

MLteri_: E ffi2.0_84 x 10:*N/m:

Jc4nt k.Dgtl,= 7.26 × 10-:m

Rotor lentq, h,. 6,8,58 x 10-tin

HOUSING: Hnuins./rotot weilb t rMio = 6/l

(El)x- 8.6947 × l_Nm'

(ET)H= 1.7494 x 10'iNn@

F,(t) = ,,*,e_:co,_t Kss,= 7.oOsx tO'N/m Cc =o.o
.¢'3(t) = m,e@_d_ Kill = 8.7563 x lO¢Y/m

F,(i) = rn_(@Ico,@( KS;,',* 8.7563 x ]0'Ar/m

F,(|) = m=e41nnjl Ksy,= 2.6289 x 10'N/m

¥*(0 = ms_¢ _' A'_ = S.;S63 x IO'N/_
F.(0 - mse@Ld.n#,t # _ 0.0127mm

F_.4 W,e gem,re mo_

Application and Discussion

The present convolution method is appfied to a modified
version of a rotor model proposed by Davis et al. (1984). The

model was proposed to represent a simplified generic model

of the SSME turbopumps. The parameters and coefficients of
the present generic model (shown in Fig. 4) are given in Tables
1 and 2. The imbalance forces are taken as shown on Fig. 4.

Response of the generic rotor-housing model at the bearing
location is determined for the hypothetical startup-shutdown

case shown in Fig.5. For various time increments, At, a corn.
parison ismade of the errors and computer CPU time (on a
VAX 8650) between the resultsobtained using Runge-Kutta

fourth-order method and those using the presentconvolution
method.

Comparisons of the CPU time,are made with comparable

errors of the resultsof using both methods. The errors is

measured attime t = 0.01seconds and definedas the following

Error - I V=- V!
IV==I

where V¢_ isthe exact solution of the rotor and housing dis-
placements in vector form and V representsthe displacements

of rotor and housing atthe corresponding time invector form.

The "exact" solution is calculated using the hybrid con-
volution method with a very small time increment, 2 x 10-7
seconds and tolerance = I x I0-_2. The tolerance is the

absolute value of the differenceof the displacement and ve-
locitynorms of rotor and housing describedin step(e)of the

computational procedure.

As shown in Figs.6 and 7, with the toleranceequals to l

× I0-_ seconds, the hybrid convolution method isfasterand

more accurate.For more meaningful comparison, the accur-

aciesof the Runge-Kutta and convolution methods are made

closerby reducing the allowabletolerancefor the Runge-Kutta
to I x I0- _ seconds and I x I0- ,4seconds. The CPU time

for the Runge-Kutta increasesquickly from 1.42times of the
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T_ _ paran_un o! the ¢enedc mode4

[_,k (K_) I ('')

-1 °- i9.0175 O.O_IM

Moment d inertia (Kt.m_)

Polu Di_m_tricLl

3.1635x I0-_ 1.7964x 10-s
2.1806x I0-] 1.1411x I0-_
1.1363 x I0 -_ 5.7373 x 10 -_

TaMe 2 CoMtlkllents of the genetic mockd

] Kyy, A'zz Kxy, h'_'x Cvr, Cz_

(N/,_) (N/m) (Jr ,ec/m)Disk

1 1.7513 x 10_ 2.6269 x 10'
2 -1.5566 x 10_ -7.0050 x l0 s
3 1.5236 x 10e 3.3274 × 10s

1.1033x I04
1.7513x I0_

4.0279x I0:

I)bk

I

2

3

Sideforce(N)

Y-direction Z-direction

2.2019 × 104 q_ -1.2482 × 10-4 _
2.7210 x 10-4 _ 3.2387 x 10-4 ¢_

1.0_82 x 10-4 _ 0

,_ (r_/sec)

;

4001

0.3 0.6 0.9

Fig. 6 Running speed of rolo_

Time (see)

hybrid method's CPU to 4.23 times (with a time increment of
2 x 10-s).For the closestaccuracies,the CPU time of the

Runge-Kutta is 4.23 times that of the hybrid method. The

hybrid convolutionmethod isalsomore robust than the Runge-

Kutta method. The Runge-Kutta algorithm failedto converge
for time increments greaterthan 2 × I0-_ seconds. However,

the hybrid method win diverge when the increment used is
largerthan 3.3 × I0 -s seconds.

Concluding Remarks

The convolution integral and transition matrix methods are

represented in closed form. They generate less roundoff errors
and require less numerical computation time in comparison
with the Runge-Kutta fourth-order method. Moreover, they
are more robust than the Runge-Kutta method since they will
converge for larger time-step size.

The hybrid convolution approach developed in this study is
shown to provide an efficient and accurate closed-form integral

formulation for determining the transient response of linear

systems coupled through local nonlinearities. A typical appli-
cation in which the present method proved quite effective is
the determination of the wansient response of a generic model

of the high pressure oxygen turbopump (HPOTP) of a space
shuttlemain engine (SSME) inpresence of bearing clearances,

constitutingthe local nonlinearities.Substantial savings in

computation time were achieved as compared with directnu-

merical integrationtechniques.
The use of the transitionmatrix allows the representation

of rotors involving skew-symmetric matrices of gyroscopic

loads or other nonconservative systems with general velocity

coefficientmatrices.A convolution integralwould represent

quiteeffectivelyother systems with classicalmodes, such as
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the housing of the HPOTP or other nonrotating, proportion.

ally damped structures. The convolution formulation allows

accommodating with ease changes in the nonlinear or linear

coupling parameters among the various linear subsystems in-

volved.

Possible improvement of the method could be achieved

through other alternative or optimization for the iteration pro-

cedure utilized in this study. The methods described in this

study is believed to be capable of handling any type of local

nonlinearity. For an impact case at the bearing, for example,

iteration over the contact force could be replaced by iteration

to establish contact/no-contact at each increment and then

reverse the impact velocity. Applications of the present method

to systems with various types of local nonlinearities could be

worthwhile.

Acknowledgment
This work was carried out as part of a research project

supported by NASA, Marshall Flight Center, under contract

No. NAS8-36293. The authors are grateful to Thomas Fox,

the technical monitor, for his enthusiastic support and interest.

References
Adams, M. L., 19110, "Non-linear Dynamtcs of Flexible Mudti-Beatgn8 Re-

lots," Journal of Sound and Yibralion, VOl. 7], I>P. 129-144.
Chikh, D. W., 1978, "The Space Shuttle Main F._ High Pressure Fuel

Tur_p-Rmordymunic InstabilityProbtma," A,._MEJowrnalofEnfi_

for Power, VOl. 100,pp, 48-$I.

Clough,R, W., and Wilson,E. L., 1979,"DTnamic _ of Larle $tr_c-
ruralSystemsWith Local Nonlimmritics,"Comlmtee Medmds in_ Me-

clumKa_F.ngi_, Vet. 17 18, pp. 107-129.
Davis, L. B., Wolfe, E. A., and Bentty, R. F., 1984. "Housing Flem'bility

Effects on go¢or Stability," MSFC Advanced Hilh Pressure O2/H2 Technoio_
Omfmmee Proce_lir_, G. Mantbxll Space Flight Center, H_, Ale.
Haledom, P., Sdmman, W., 1918, "On the Dynamics of Larle Slmems

With Localized_," ASME Jota_uo.or _ M_, Vol.

55,PP. 946-951,

lw_son, E., and Ig.¢_, H, B., 1966, Aawl,v'_J of Numeefeal Methods, John
Wiley tnd Sons,New York.

Kubomurt, K., 198L "Trsmi_t Loads Anaiy_s by Dynamic CondemaUion,"

ASME Jotn_u. oF _ _cs, Vol. 52, pp. 559-_4.
M¢irovitch, L., 1980, Computational Methods m Slructural Dynamics, Sijth-

off and Noordhoff.

NdJo_, H. D., Mendmm, W. L., Fleming, D. P., and KJ.scak, A. F., 1982,
"Nordinenr AnAlySiS of Ro¢or Bearing Systems Using Component Mode Syn.
thesis, ASME Paper No. 82-GT-303.

Noah, S. T., 1986, "Hybrid Methods for Ro¢ofdymunic An_ysis," Fina/
NASA Report, G. C. Marshall Space Flight Center, Ala., under Contrac'_ No.
NAS_36182, Dec. 1956.

Noah, S. T., Cbia_, !. F., and Kim, Y. B., 1988, "Dynam_ Antlym of
Nonlinear Romr/Homi_ Systems," MSFC Advanced High Pressure O._Ha
T=hnolou Confe*en= Proceedials, G. Marshall Space Flilht Center, Hunu-
vilk, Ale.

Noah, S. T., Fan, U. J., C'boL Y.-S., and Fox, T., 1986, "Efficient Transient
Amdysb Methods for the Space Shuttle Main Enl_ne Turbopumps," NASA
Conference on Advanced Earth-to-Orbits Propulsion Tcch., G. Marshall Slmc¢
Fillet C.em_r, Huntsville, Ale., May 1]--15.

Nordmxna, R., 1975. "EilK'nvalu_ and R_onan_ Frequency Forms of Tur-
Ix)rotors with Sleeve Bearings Crank Excitation, External, and Internal Damp-
ing," Ma_hln¢ Dymunics Group, Technical Ul_y_ly DiJ'mlRJIdz, F.R.G.

gouch, K. E., end Kao, J. $., 19@0, "Dynamic Reduction m Ro¢or Dynamics
by the Finite Element Method," ASME Jo_u4._u.oF MEcm_,mc_k D_ao_, Vol.
102, pp. 360-368.

Spoor, P. D., C.ao, T. T., Janoblon, C. A., Jr., and Nelson, D. A. R., Jr.,
1988, "De¢oupled D_ Al_]ysis of Combined Systems by herative Deter-
ruination of Interface Ao:_'ka'tfions," Earthquake En_u,g,enng and Structural
Dynamics, Vol. 16, pp. 491-500.

Tongue, B. H., and Do,ell,E. H., 1983, "Component Mode Analysis of
Noa/inear, Nonconse_rative Syaems," ASME lOtrtJ_L oe AeeLmo M_cm*.mcs,
Vol. 50, pp. 204--209.

Yon Prqeaan, G. L., 1951, "Larl_eStep Integration for Linear Dynamic
Systems," Conference Proc, IEEE Southen_ern '81, reprint Apr,

Journal of Applied Mechanics

89

SEPTEMBER 1990, Vol. 57/737



Report Documentation Page

1. Report No. 2. Government Accession No.

4. Title and Subtitle

Nonlinear Rotordynamics Analysis

7. Author(s)

Sherif T. Noah

9. Performing Organization Name and Address

_rshall Space Flight Center

Alabama 35812

12. Sponsoring Agency Name and Address

National Aeronautics & Space Administration

Washington, DC 20546-0001

3. Recipient's Catalog No.

5. Report Date

February, 1991

6 Performing Organization Code

8. Performing Organization Report No

10. Work Unit No.

11. Contract or Grant No,

NAS8-37465

13. Type of Report and Period Covered

Final

14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

Effective analysis tools have been developed for predicting the nonlinear rotor-

dynamic behavior of the SSM_ turbopumps under steady and transient operating condi-

tions. Using these methods, preliminary parametric studies have been conducted on

both generic and actual HPOTP (high pressure oxygen turbopumps) models. In particul_

a novel modified harmonic balance/alternating Fourier transform (HB/AFT) method was

developed and used to conduct a preliminary study of the effects of fluid, bearing

and seal forces on the unbalanced response of a Multi-disk rotor in presence of

bearing clearances. A computer program was developed and made available to NASA,

Marshall. The method makes it possible to determine periodic, sub-, super-synchro-

nous and chaotic responses of a rotor syst_n. The method also yields information

about the stability of the obtained response, thus allowing bifurcation analyses.

This provides a more effective capability for predicting the response under transienl

conditions by searching in proximity of resonance peaks. Preliminary results were

also obtained for the nonlinear transient response of an actual HPOTP model using an

efficient, newly developed numerical method.based on convolution __t_ration=. _A

computer program was developed and made avallab, le .r_.ONASA Marsr_l.£ _±lgn_ Lsen_er.
Cur_ the HB/AFT is belng extended for oeternurs_g _ne aperlcxllc response oz

17. Key Words (Suggested by Author(s))no_ sy_ 18. Oistdbution Statement

Initial results shows the method to be pra &sing.

19. Security Classif. (of this report) 20. Security Classff. (of this page)

21. No. of pages [22.

Price

.*f

NASA FORM 162:6 OCT 86


