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In today's rotordynamic calculations, the input parameters for  a Finite Element Analysis 

(FEA) determine very much the  reliability of Eigenvalue and Eigenmode predictions. While 

modelling of an elastic s t ructure  by means of beam elements etc. is relatively straightfor- 

ward t o  perform and the  input data  fo r  journal bearings a re  usually known exactly enough, 

the  determination of s t i f fness  and damping for  labyrinth seals i s  st i l l l the,subject ofmany 

investigations. Therefore, the rotordynamic influence of labyrinths is of ten no t  included 

in FEA for  rotating machinery because of a lack of computer programs t o  calculate these 

parameters. This circumstance can give rise t o  severe vibration problems especially fo r  

high performance turbines o r  compressors, resulting in remarkable economic losses. 

The forces generated in labyrinths can be  described fo r  small  motions around the  seal 

center with the  linearized force-motion relationship of eq. 1: 

where K, k are t he  direct and cross-coupled s t i f fness  and D, d a re  the  direct and cross- 

coupled damping. These elements are  t he  so-called dynamic labyrinth coefficients. 

Several years ago, we s tar ted with t he  development of computer codes fo r  t he  determina- 

tion of rotordynamic seal coefficients. The following sections will introduce o u r  

different approaches to evaluate the  dynamic fluid forces generated by turbulent,  com- 

pressible labyrinth seal flow. 



Indices 

Direct and cross-coupled s t i f fness  

Direct and cross-coupled damping 

Rotor displacements 

Rotor velocities 
Labyrinth fluid forces 

General variable 

Diffusion coefficient 

Source term 

Cylinder coordinates 

Transformation coordinate 

Perturbation parameter 

Rotor eccentricity 

Rotor precession frequency 

Shaft  rotational frequency 

Local seal clearance 

Nominal clearance 

Zeroth order 

First order  

Labyrinth leakage 

Radius from seal center 

t o  s t a to r  

Radius from seal center 

to end of seal fin 

cart .  coordinates 

rot.  coordinate system 

preswirl 

shear stress 

axial, radial and circum- 

ferential velocities 

a before labyrinth 

b behind labyrinth 

COMPUTATIONAL FUND DYNAMICS METHODS (CFD) 

The compressible, turbulent,  time dependent and threedimensional flow in a labyrinth seal 

can be  described by the  Navier-Stokes equations in conjunction with a turbulence model. 

Additionally, equations for  mass  and energy conservation and an equation of s t a t e  a re  

required. These equations can be  solved with the aid of a finite difference procedure. To 

determine the  desired coefficients, two  methods have been developed: 

- 2-dimensional procedure based on a perturbation analysis 

- 3-dimensional theory using a moving frame of reference rotating with t he  shaf t .  



PERTURBATION ANALYSIS 

To describe t he  labyrinth seal flow, we  use the  time-averaged conservation equations fo r  

momentum, mass  and energy and the  equation of s t a t e  for  a perfect gas. The correlation 

terms of the  turbulent  fluctuation quantities are  modeled via the  k-E turbulence model 

of LAUNDER and SPALDING /I/. All these equations can be  arranged in t he  following 

generalized form: 

where s tands  fo r  any of t he  dependent variables(e.g. velocities, pressure, temperature,  

density), To is t h e  diffusion coefficient and So the  source t e rm.  To calculate the dynamic 

coefficients, several assumptions a re  introduced: 

1. small ro tor  motions around the  seal center on a circular orbit  

2. coordinate transformation 

3. perturbation series expansion fo r  the  dependent variables 

4. solutions fo r  the  dependent variables corresponding t o  t he  temporal and circum- 

ferential variation of t he  seal clearance function 

Assumption I assures  t ha t  we  can use eq. 1 t o  calculate the dynamic coefficients. 

When supposing tha t  t he  shaf t  ro ta tes  on a circular orbit ,  one  can imagine t h a t  the  local 

seal clearance h varies in t ime for  every location cpzconst. To avoid t he  use of time 

dependent calculation grids, we  transform the  governing equations t o  another coordinate 

system by introducing a new radial coordinate r ]  whereby the  eccentrically moving shaf t  

is  converted to a shaf t  rotating in the  center of the  seal (see Fig. 1). 

The third assumption, together with assumption 1, implies t ha t  the  perturbation series 

for  the  dependent variables can be  truncated af ter  the linear term. 



Fig. 1: Coordinate transformation 

Inserting these equations f o r  every dependent variable into the basic conservation relations 

yields two sets of equations. The zeroth order set describes the  flow in the centric laby- 

rinth while t he  f i rs t  order equations are  governing the  flow field for  small eccentric sha f t  

motions. The las t  assumption allowsl the  eliminatiion of the1 temporal1 and circumferential~deriva- 

tives in t he  f i rs t  order  equations analytically. 

The seal clearance function for  a circular shaf t  precession orbit  around the  seal center  

can be  s t a t ed  a s  

h = ho + e hl = Cr - X i t )  coscp - Y(t )  sincp (4) 

Corresponding t o  this  function, we assume tha t  t he  dependent variables vary in t he  same 

way concerning the  circumferential direction. 

Thereby, t h e  circumferential derivatives can be calculated analytically. After separating 

the equations into sine and cosine terms and rearranging them by introducing complex 

variables, solutions fo r  t he  f i r s t  order variables corresponding t o  t he  temporal change 

of seal clearance due  to a circularshaft  o rb i t a r e  prescribed,iallowing t h e  elirninat'ioniof t he  

derivatives with respect to time. Finally, we  obtain two s e t s  of differential equations which 

have to be  solved subquently in order to determine the  desired coefficients. 

THREEDIMENSIONAL METHOD 

In contrast  to the  perturbation analysis, where we  have made many assumptions t o  reduce 

the  computational effor t ,  t h e  threedimensional procedure shows much greater generality 

in avoiding these restrictions. Again, the  time-averaged conservation equations are  solved 



in conjunction with the  already mentioned k-E model. 

To determine t h e  dynamic coefficients we  assume tha t  the  sha f t  moves on a circular orbit  

with precession frequency 0 around the  seal center. Since this would normally resu l t  in 

a time dependent problem we introduce a rotating coordinate system which is  fixed a t  

the  shaf t  center (Fig. 2). In this moving frame of reference, the  flow is  stationary. Due 

t o  the  rotating coordinate system, centrifugal and coriolis forces  occur in t he  equations 

for  radial and circumferential momentum. 

Fig. 2: Rotating coordinate system 

SOLUTION PROCEDURE FOR THE CPD-METHODS 

Because of the  complexity of the  derived equations, no  analytic solution can be  obtained. 

Therefore, there  i s  a need fo r  a numerical algorithm t o  solve the  equations with t he  aid 

of a computer. We made our  decision fo r  the Finite Difference Method (FDM), which is 

well established in fluid dynamics. 

The FDM procedure s t a r t s  with t he  discretization of t he  calculation domain, which mus t  

be performed in a different manner for  the  two methods: While we can use a twodimen- 

sional Finite Difference grid fo r  the  perturbation analysis (Fig. 3), t he  threedimensional 

approach requires additional grids in the  circumferential direction (Fig. 4). 



Fig. 3: Grid f o r  perturbation method , A 

Fig. 4: 3D Finite Difference grid 

In the next  s tep,  the  

every node point with 

solved for  the  zeroth 

generalized equation (2) i s  integrated over a control volume linking 

his neighbours in space. The resulting algebraic equations ark then 

and f i rs t  order equations (perturbation analysis) o r  the  3D equations 

respectively. 

Finally, the  dynamic forces a re  calculated from the  pressure distribution on the ro tor  sur- 

face fo r  two  precession frequencies 0=0 and 0=o, resulting in two s e t s  of forces. Then 

the dynamic coefficients are  determined from eq. I, where the prescribed circular shaf t  

orbit is  introduced: 



For more detailed information concerning the perturbation analysis o r  the  3D algorithm, 

readers are  referred t o  WEISER and NORDMANN /2,3/. 

SIMPLEIED METHODS 

While the CFD algorithms require a l o t  of computer storage and cpu time, the  simpli- 

fied methods described in this chapter show a reduced effort  t o  determine the  rotordyna- 

mic labyrinth coefficients. 

THREE VOLUME BULK FLOW MODEL 

Following the conventional approach (see for  example IWATSUBO /4/ o r  CHILDS /S/), 

a three volume bulk flow model has been developed based on the  conservation equations 

for  mass, momentum and energy working with velocities, pressure, density and tempe- 

rature, which are  averaged over the control volume height. 

Flow visualization experiments show, tha t  for  look-through labyrinths, the flow field can 

be divided in two  characteristic regions: a vortex flow in the seal chamber and a jet flow 

region beneath the  seal s t r ip  and the groove. Therefore we use three control volumes (CV) 

t o  describe the  flow situation in the labyrinth (Fig. 5).  

To account fo r  t he  flow turbulence, wall shear s t resses  and a fluid shear s t ress  in the 

contact region of CV I1 and CV I11 are  introduced. Following SCHARRER / 6 / ,  a vortex 

velocity in the chamber is assumed. The constants appearing in the shear s t r e s s  formula- 
tions are  determined with the aid of the  CFD programs for centric shaft  position. 

Again, a perturbation analysis in connection with the implementation of solutions for  the 

temporal and circumferential variation of the dependent variables i s  performed, resulting 

in the  already known two se t s  of differential equations, which now depend only on the 

axial coordinate z. After their numerical solution, the forces and the  dynamic seal coeffi- 

cients are  calculated by a pressure integration over the shaft  surface. 

More information concerning the bulk flow model can be  found in NORDMANN and WEISER 

/ 7 , 8 / .  
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Fig. 5: Three  volume bulk f low model 

CORRELATION EQUATIONS FOR THE DYNAMIC COEFFICIENTS 

Already in t h e  design s t a g e  of a turbine o r  a compressor ,  t h e  est imation o f  labyrinth 

coefficients i s  important  f o r  inclusion of these  e f fec t s  in to  rotordynamic calculations.  

Therefore, w e  developed approximation fo rmulas  f o r  t h e  desired s t i f fnesses  and  dampings 

to provide a too l  f o r  t h e  design engineer, which can give s o m e  information a b o u t  t h e  

rotordynamic seal  influence to be expected.  These correlations .are based o n  extensive FD 

calculations f o r  a model labyrinth, where performance d a t a  and  geometry were  varied in 

a wide range of practical interest .  

First,  t h e  influence parameters  which will b e  included in t h e  correlation t o  perform m u s t  

be  defined (shown in Fig. 6 ) .  



Fig. 6: Influence parameters fo r  the correlation of dynamic coefficients 
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DESCRIPTION OF DIRECT STIFFNESS 

The approximation for  the  direct s t i f fness  consists of three parts: 

- st i f fness  fo r  axial f low situation ( KO ) 

- st i f fness  induced by shaf t  rotation ( Ko) 

- st i f fness  induced by preswirl velocity ( K 1 
wi 

From FD calculations, we found tha t  t he  influence of preswirl changes sign fo r  labyrinths 

with more than 5 s t r ips  and tha t  K becomes negative for  multi-chamber seals.  This is  
included in t he  following formulas: 

K = KO + K, + Kw. for  nk&S 
1 

K = KO + K, - Kw for  %> S 
i 

with 

X . Z - .!,?a (3 j 
Kwi ' '3 pb Dm.  G5 : Leakage for  5 s t r ip  

Labyrinth 

CROSS-COUPLED STIFFNESS 

The cross-coupled s t i f fness  is  directly related to the  leakage loss  of t he  labyrinth. Also, 

the influence of geometry, shaf t  rotation and preswirl are  included: 



k = G tg tw,w 

The average circumferential velocity wm is  determined using the  l/7-power law. 

DIRECT DAMPING 

To describe the direct damping D, some of the previously defined functions are  used. The 

influence of shaf t  rotation, preswirl and geometry are  found t o  be  smaller than fo r  the 

stiffnesses: 

The correlation coefficients were determined from the FD calculation resul ts  for  the  data  

variations of t he  chosen model labyrinth: 

f 4.2 i str ips  on ro tor  i 
C: = 1.50 m-I C: = 1.571 s 

C' = '3.5 i str ips  on s ta tor  ,i 

COMPARISON OF THE DlFFERIiNT APPROACHES WITH MEASUREMENTS 

1. Example: A three chamber look-through labyrinth 

To compare the two FDM, the bulk flow model and the  correlation equations t o  measure- 

ments, we have chosen a look-through labyrinth which was experimentally investigated 

by BENCKERT /9/ (seal data  given in /2/). 



80 

K N/m 

(thousands) 

I 

0 ! 9 I I 

0 100 200 

Measurement 
Benckert 

Pert. Analysis 

Bulk Flow Model 

Correlations 

preswirl m / s  

Fig. 7 : Direct Stiffness 
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Fig. 8 : Cross-coupled Stiffness 

2. Example: A multi-chamber look-through labyrinth seal 

SCHMIED /lo/ published experimental results obtained by CHILDS for a 12 strip stator 
labyrinth (seal data given in / lo/) .  The comparisons in Fig. 9 - 11 show the results of 
perturbation analysis, bulk f low model and correlation for the stiffnesses and the direct 
damping. 
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Fig. 11 : Direct damping 



APPLICATION OF SEiAL DYNAMICS CALCULATION TO ROTORDYNAMIC DESIGN 
AND VIBRATION INVESTIGATIONS 

In 1988, SCHMIED /lo/ published rotordynamic calculations for  a high performance injec- 

tion compressor,  where he included the  mos t  important fluid interaction influences coming 

from journal bearings, oil ring seals  and labyrinths. Fig. 12 shows a sketch of the compressor 

rotor  discretization and gives the  basic data.  The labyrinth data  are given in /lo/. SCHMIED 

uses the  program MADYN to perform the eigenvalue calculations. In this chapter,  a compa- 

rison i s  made t o  SCHMIEDs resul ts  for  t h e  f i r s t  forward bending mode with s t ra ight  

through shroud and hub labyrinths, t he  comb-grooved balance piston and ideally floating 

oil ring seals. 

Balance piston 

Journal bearing1 Impeller Labyrinths Journal bearing 2 

Basic compressor data: 

Suction pressure: 198 bar  Mass flow: 47.5 kg/s  Op. speed: 13400 rpm 

Discharge pressure: 700 bar  Rotor mass: 265 kg 

Mol. weight of gas: 20.05 Bearing dist.: 1565 mm 

Fig. 12: Investigated ro tor  

COMPARISON TO SCHMIED'S RESULTS FOR THE SIXTH STAGE SHROUD LABYRINTH 

SCHMIED uses  t he  labyrinth seal model of WYSSMANN /11/ t o  determine the  rotordynamic 

coefficients. For t he  sixth s tage  shroud labyrinth, his calculations show negative direct 

s t i f fness  values. As can be  recognized in Fig. 13 t o  15, t he  resul ts  of o u r  investigations 

with the  perturbation analysis, t he  bulk f low model and the  correlation equations yield 

positive direct s t i f fness  a s  expected. The agreement of cross-coupled s t i f fness  and direct 

damping to t h e  values obtained with WYSSMANNs theory is good. Especially, t he  different 

procedures presented in this paper are in relatively good agreement with each other  fo r  

all rotordynamic parameters. This s ta tement  holds also t rue  for  all o ther  labyrinth seals  

of the  investigated compressor. 
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ROTORDYNAMIC ANALYSIS OF EIGENPROBLEM AND STABILITY 

SCHMIED investigated th ree  cases  of rotordynamic interest:  

- "ideal": r o t o r  running in journal bearings, no  labyrinth influence 

- "with swirl  brakes": labyrinth influence included f o r  low preswirl condit ions 

- "without swir l  brakes": labyrinth influence included f o r  high preswirl condit ions 

For these  cases ,  we have calculated t h e  eigenfrequencies and  modal dampings of t h e  r o t o r  

sys tem using t h e  Finite-Element program of DIEWALD /12/ . In Fig. 16 and  17, comparisons  

a r e  presented f o r  t h e  f i r s t  fo rward  bending mode. For t h e  "ideal" sys tem,  t h e  calcula t ions  

show nearly t h e  s a m e  resul ts .  Because of t h e  labyrinth coefficients obtained wi th  t h e  FD 

perturbation analysis f o r  t h e  hub  and  shroud labyrinths and  t h e  bulk  f low model  f o r  t h e  

balance piston,  t h e  f i r s t  eigenfrequency is higher than in SCHMIEDs calculations.  This 

is mainly d u e  t o  t h e  positive direct  s t i f fnesses  f o r  t h e  impeller  labyrinths. Also t h e  modal 

damping s h o w s  g r e a t  differences. 

..,.,I First Eigenfrequency 

SCHMIED 
(MADYN) 

0 FE program 

(DIEWALD) 

"ideal" "with swirl "without 
brakes" swirl brakes" 

Fig. 16: Comparison o f  f i r s t  eigenfrequency 



Modal damping 

SCHMIED 
(MADYN) 

FE program 
(DIEWALD) 

"ideal" "with "without 
swirl brakes" swirl brakes" 

Fig. 17: Modal damping of f i r s t  forward bending mode 

CONCLUSION 

Four calculation methods have been described allowing calculation of the  dynamic labyrinth 

coefficients. Comparisons t o  experiments show good agreement for  all methods and all 

investigated cases. 

The practical example of rotordynamic calculations for  a high-performance compressor 

has shown tha t  t he  determination of labyrinth coefficients must  be performed a s  exactly 

a s  possible in order  t o  predict the  eigenfrequencies and modal dampings correctly. Also, 

i t  has been praved tha t  the methods presented in this  paper are superior f o r  this task 

t o  the existing theories. 
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