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SUMMARY

The assumed natural strain (ANS) formulation of finite elements has undergone rapid de-

velopment over the past five years. The key formulation step is the replacement, in the po-

tential energy principle, of selected displacement-related strains by independently assumed

strain fields in element natural coordinates. These strains axe not generally derivable from

displacements. This procedure was conceived as one of several competing methods to solve

the element locking problem. Its most noteworthy feature is that, unlike many forms of

reduced integration, it produces no rank deficiency; furthermore, it is easily extendible to

geometrically nonlineax problems. Many original formulations were not based on a varia-

tional principle. The objective of Paxt I is to study the ANS formulation from a variational

standpoint. This study is based on two hybrid extensions of the Reissner-type functional

that uses strains and displacements as independent fields. One of the forms is a genuine

variational principle that contains an independent boundary traction field, whereas the

other one represents a restricted variational principle. Two procedures for element-level

elimination of the strain field axe discussed, and one of them shown to be equivalent to the

inclusion of incompatible displacement modes. In Part II, the 4-node C o plate bending

quadrilateral element is used to illustrate applications of this theory.
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1. INTRODUCTION

The assumed natural strain (ANS) formulation of finite elements is a relatively new de-

velopment. A restricted form of the method was introduced in 1969 by Willam [14], who

constructed a 4-node pla_ue-stress element by assuming a constant shear strain indepen-

dently of the direct strains and using a strain-displacement mixed variational principle.

A different approach advocated by Ashwell [1] and coworkers regarded "strain elements"

as a way to obtain appropriate displacement fields by integration of assumed compatible

strain fields. These and other forms of assumed-strain techniques were overshadowed in

the 1970s by developments in reduced and selective integration methods, but have recently

begun to attract attention [2,6,8,10,13]. The primary motivation behind recent work has

been the construction of simple and efficient finite elements for plates and shells that are

locking-free, rank suf_cient and distortion insensitive, yield accurate answers for coarse

meshes, fit naturally into displacement-based programs, and can be easily extended to

nonlinear and dynamic problems. Elements that attain these attributes are collectively

known as high performance elements.

Over the past 20 years investigators have resorted to many ingenious devices to construct

high-performance elements. Among the most successful ones we can mention patch-test-

verified incompatible displacement models, reduced and selective integration, mixed and

hybrid formulations, stress projectors, the free formulation, and assumed natural strains.

The underlying theme is that although the final product may look like a standard displace-

ment model so as to fit naturally into existing finite element programs, the conventionaI

displacement formulation i8 abandoned. (By _conventional" we mean the use of conforming

displacement assumptions into the total potential energy principle.)

Another common historic trend is that certain deviations from the conventional formulation

were initiallymade without variational justificationand in fact labelled as "variational

crimes" by applied mathematicians. In some cases such as reduced numerical integration,

reconciliation was achieved later after surprisingly good results prompted explanation.

In other cases, notably non-conforming elements and the patch test, a comprehensive

mathematical theory isstillin the making.

The present paper seeks to interpret the assumed natural strain (ANS) formulation from

a variational standpoint. The justificationis based on hybrid extensions of the P_e_ssner-

type functional that uses the strains and displacements as independent fields.We restrict

our considerations to linearelasticityalthough the straightforward extension to geometric

nonlinearities is one of the strengths of the ANS formulation. In Part If,the 4-node C o

plate-bending quadrilateral isused as a specificexample to illustratethe application of the

present variational interpretation.
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2. PROBLEM DESCRIPTION

_.I Governing Equations

Consider a linearly elastic body under static loading that occupies the volume V. The body

is bounded by the surface S, which is decomposed into S : $_ U Sto Displacements are

prescribed on Su whereas surface tractions are prescribed on St. The outward unit normal

on S is denoted by n - n_.

The three unknown volume fields are displacements u - u_, infinitesimal strains _ - eq,

and stresses a - aq. The problem data include: the body force field f - f_ in V, prescribed

displacements fi = t2_ on Su, and prescribed surface tractions t, = ti on St.

The relations between the volume fields are the strain-displacement equations

, = tCVu + Vru) = Du or ,q = }(u,, i + ui.,) in V, (1)

(where superscript T denotes transposition), the constitutive equations

o=E_ or

and the equilibrium (balance) equations

-div a = D*o = f

aij= Eq_le_, in V, (2)

or oO.,i + f_ = 0 in V, (3)

in which D* = -div (divergence) denotes the adjoint operator of the symmetric gradient

D = _(V + VT).

On S the surface stress vector is defined as

On -- a.n, or _Yni "-- ¢Yi_n_ •

With this definition the traction boundary conditions may be stated as

am = t or alin¢ = _i on &,

and the displacement boundary conditions as

u = fi or ul = t21 on Su.

(4)

(5)

(e)

_.2 Notational Conventions

An independently varied field will be identified by a letter without superscript, for example

u, e, a. A dependent field is identified by writing the independent field symbol as super-

script. For example, if the displacements are independently varied, the derived strain and

stress fields are denoted by

_'_ = ½(V + VT)u = Du, a _ = E_ _ = EDu. (7)

Given a finite element subdivision of V, quantities pertaining to the e th element will be

identified by superscript (e), for example u {e), wherever appropriate. At an interface

between two elements e and f, superscripts (e f) and (fe) will identify interface quantities

considered as part of e and f, respectively.
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3. THE HU-_;VASHIZU AND REISSNER FUNCTIONALS

In the conventional Hu-_'ashizu functional the displacements u, stresses o and strains c

are independently varied. Arranging the strain and stress components as vectors, and the

elastic moduli in E as a matrix, the functional may be expressed ast

From L one obtains the conventional stress-displacement Hellinger-Reissner functional by

eliminating _ through the inverse of (2), namely _ - _a _ E-la. Another Reissner-

type, strain-displacement functional isobtained by eliminating _ through the constitutive

relation (2), namely o = _ -- E_, which yields

(9)

Setting e =- c_ reduces R to the potential energy functional

(10)

generalized with a fi'_term over its usual expression.

4. HYBRID FUNCTIONALS

4.I Independent Boundary Traetior_

If the functional (9) is used to construct finite elements, the displacement field u should

be continuous in V because of the presence of _", whereas the assumed strain field may

be discontinuous. To ace<rant rigorously for displacement discontinuities it is necessary to

add the interelement surface tractions t as new independent field which plays the role of

Lagrange multiplier. Let Si denote the union of interelement boundaries traversed twice

(one for each adjacent e]Lement); on ,91 neither displacements nor tractions are prescribed.

Then R expands to the hybrid functional

H(u,,,t) = R(u,,)- fs trudS"
(11)

I'There are severalequivalent statements of this functional,differingfrom one another in

transformations based on the divergence theorem. For example in Gurtin [5,p. 122] the

stressdivergence apl_ears. Some authors attributethisspecificfunctional to B. Fraeijsde

Veubeke, who indeed published a versionof itin 1951, four years before Hu and Washizu.



(,. Su U St

(I)
(2) (3)

Figure 1. Sample an]te element mesh to illustrate

computation of intel_Lk in R"

For later reference we note the specialization _ -- 4= of (11) to the generalized potential

energy functional of Jones [12]

P(u, t) = P(u) -/s tru dS, (i2)

where P(u) is given by (10).

The meaning of the integrals an H may be illustrated on the two-dimensional mesh of

Figure I:

4

(13)

where element identification conventions stated in Section 2.2 have been followed. It is

seen that in the integrals over V, Su and St each element appears once, whereas in S_

adjacent elements appear twice.
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_.2 First Variation

The first variation of H:

6H = $uH + 6.H + 6tH, (14)
t

yields the Euler equations and interelement linking conditions, which are underlined in the

expressions below. The three components of 6H are

s,H roe-,)" ds,

6R= Is ur 6tdS" (17)

Note that there are two .contributions to the element interface integrals, one from 6,,H

and another from 6tH. Putting the parts together and decomposing into element-pair

contributions we get

e,/ (*t)

_t(tt)rgu (*) - t(J't)T6u (J') + u(')T6t (`/) + u(l)r6t ('')] dS.

(18)

In the absence of applied internal tractions, interelement equilibrium requires t(el) =

-t (l'),which substituted into (16) reduces the right-hand side to

"! (19)

Ifwe assume a compatible displacement field,u (')-- u (/),the above equation reduces to

E/S¢,,,,,r) (a_(e) --O_{/))T6U{') d,.q, (20)
e,J'

which means that the int,erelement equilibrium condition appears as the Euler equation

corresponding to the variation of the interface displacements.

J.3 A Restricted Variat_nal Principle

If the displacement field _ incompatible we should in principle retain t as an independent

boundary-traction field satisfying t (e/) = -t (/e) over interelement boundaries. One way

to achieve this is to assume a continuous stress field o ° over element boundaries, so that

tCe/) = o*.n{-) = o_('), t(l') = o'.n {1) = o'.(-n (')) = -o_ (') (21)
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The presence of an independent boundary traction field is computationally disadvantageous

because additional degrees of freedom must be retained on elements sides. This contradicts

one of the tenets of high-performance element construction noted in the Introduction. It

would be more convenient if o* could be identified with the strain-derived 8tress field, that

is, o* - o _ = Ec on $_, because we would have only two independent fields, u and 4, as in

(9). The strain freedoms can be eliminated at the element level as explained in Section 6,

and we are left with standard displacement connectors. The corresponding functional is

H(U,_) -----R-/_ (o_)rudS. (22)
JS i

But in genera] _ isnot continuous between elements. One can argue, however, that con-

tinuity is achieved in the limit of a converged solution. A variational statement such as

6H = 0 is called a restriete.d variational principle [3, Ch. II] because the governing field

equations of §2.1 are satisfied only at the exact solution. Away from it, 6H = 0 gener-

ally violates interelement-equilibrium field equations although it may provide satisfactory

numerical approximations°

Stress-displax:ement (rather than strain-displacement) functionais of this form have been

used by Pian and coworkers [11,12],who transform the interface integral into an element

volume integral and in doing so introduce a stress divergence term.

_.,l Finite Element Classification

Finite element models derivable from R, H and /at may be classified into several types

according to the number of independent fields and the continuity conditions on those

fields. Following are some general comments on the most interesting combinations, which

are summarized in Table 1.

1. Continuous displacements. The independent boundary field t is not needed, and

we can work with the mixed functional R. If the strain field is discontinuous, strain

freedoms may be eliminated at the element level as explained in Section 6. Continuous

strains are in principle possible but impractical in general structural applications

where material interfaces, plasticity, and sudden thickness or area changes may occur.

2. Discontinuous displacements. The displacement field contains conforming and non-

conforming portions. Assumed strains are discontinuous and may be eliminated at the

element level. Displacement degrees of freedom associated with non-conforming modes

may be also eliminated if separable. The governing functionals are H or H. With the

latter an independent traction field t is required; degrees of freedom associated with

t must be retained at the assembly level.

In practice elements are often constructed as a combination of these types with conven-

tional displacement models. Thus part of the strain fieldmay be considered as completely

derivable from displacements and part as independently assumed, as discussed in Section

8. This was in fact the scheme originally used by Willam [14]. The C O plate bending

quadrilaterals studied in Part IIprovide another important example.



Table 1. Assumed-Strain Finite Element Models Derivable From R, H and

Element Governing Independent Irderdement Element Element

Type Junctional J_eld8 cordinuit v on" connected =onder_able
u ( t fid_ fieida

(I) R u,E c d u (

(m) _ u,,E d d ut

(IV) H u,(,t d d c ut,t

* c=continuous, d=discontinuous, t conforming part only if separable as per (33)

5. DISCRETIZATION

5.I Assumptiona

In this section the finite element discretization of the hybrid functionals H and H is

studied. That is, we focus attention on element types labelled (IT[) and (IV) in Table 1.

In the sequel it will be assumed that the diaplaeement boundary eondition_ are identically

aatisfied by u, whence the strain-displacement hybrid functionals reduce to

(23)

The framework used here accomodates both continuous and discontinuous displacements.

The FE assumption may be written

u=Nv inV', (=Aa inV, t=Ts onS¢. (25)

Here matrices N, A and T collect displacement shape functions, assumed natural strain

functions and interface traction functions, respectively, whereas column vectors v, a and s

collect nodal displacements, strain amplitudes, and interface tractions amplitudes, respec-

tively. The derived fields in V are

(_=DNv=Bv, ¢_=EBv, ¢'=E_=EAa. (26)
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5._ D(serete Equations

On inserting the assumptions (23-24) into (21-22) we obtain the bilinear algebraic forms

H(v, a, s) - -_aTCa + arPv - vrLs --vTp, (27)

H(v,a)=--_aTCa+aT(p--R)v--vTp=--_arCa+aTPv--vTp. (28)

where

C=/vArEAdV=Cr, P=/vATEBdV, L=/s NTTdS,

R-/s(EA)r.NdS, P-P-R, p-/vNrfdV+/s NrtdS.

(29)

Observe that (28) results on substituting Ls by Rra in (27). Making these forms station-

ary yields the linearsystems

0 -- V = ,

-L r 0 s

(3o)

for (27) and (28), respectively. In both cases the first matrix equation is the discrete

analog of (16), and expresses internal compatibility. The second matrix equation is the

analog of (15) and expresses internal and boundary equilibrium, and, in the case of (31),

approximate boundary compatibility. The third matrix equation in (30) is the anaIog of

(17) and expresses boundary compatibility.

5.$ Displacement Field Decomposition

With view to further developments the assumed displacement fieldisdecomposed as

U=Uo+U . (32)

where u_ is continuous (compatible, conforming) in V and ua discontinuous (incompatible,

non-conforming) on Si. It will be further assumed that this decomposition can be effected

in terms of the shape functions, i.e.,

U = NoV° + NdVd, (33)

where the va freedoms axe defined element-by-element and may in principle be condensed

out. This assumption holds for elements in which non-conforming shape functions axe
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=injected" over a compatible set. For the H functional, as shown in Section 4.2 the Si

integral exactly vanishes for the _onforming displacements:

stTuo = 0. (34)

On the other hand, for H the corresponding St integral also vanishes at the converged

solution. Taking this into account, equations (30-31) expand to

[cPP0]{a}{o}P_ 0 O 0 vo _ P=

P_ 0 O -La v_ pd ,
0 -L_ 0 s

(35)

[cPo / (o/P 0_,;j vo=po
Pd 0 vd Pd

(36)

in which Pa = Pa - Ra, and where e- and d-subscripted matrices and vectors are given

by integrals similar to (29) in which N is replaced by Nc and Na, respectively.

6. STRAIN ELIMINATION

The strain degrees of freedom may be eliminated at the element level by static condensation

or by enforcing kinematic constraints. These two techniques are studied below.

6.1 Static Condensation

This is a well known variationally consistent procedure which will be illustrated for the

system (30). From the first matrix equation get a at the element level:

a = C-IPv = Q.v. (37)

Substitution into the second equation gives

-o(:/:
where K = P_"c-tp = pTQ.

to

(38)

= Q,TCQ° is a stiffness matrix. Similarly, (31) condenses

Kv =p, (39)

where K = P C- l_ = Q° CQ, and Q, = c- i_. The separable non-conforming degrees

of freedom va, if present, may be condensed out following a similar procedure.
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6.2 Kinematic Constraints

A second elimination procedure has been used recently in the construction of ANS C O

plate and shell elements. It will be described by considering the system (35) that displays

separable conforming and non-conforming displacement shape functions. A kinematic

constraint that links strain to displacement degrees of freedom is established:

a = Q,v.+ Qav_. (4o)

This relation may be constructed by collocation, least-square fitting or some other means.

Often Q_ = 0. For example, in the Bathe-Dvorkin element [2] studied in Part II collocation

of natural shear strains is done at the quadrilateral midpoints.

If the following conditions hold:

(a) the dimension of vd and a are the same so that Pd is square;

(b) matrix Pd - CQd is nonsingular;

then the relation (40) may be interpreted as a variationally.consistent constraint on non-

con/orming displacements. In effect, the first equation of (35) becomes

(P, - CQo) v° + (Pa - CQa)v_ = o, (41)

whence

vd = -(Pa - CQ_)-t(P. - CQ_)v. = Wv.,

a = (Q. + QaW)v_ = Qv..
(42)

If (as often happens) Qa = 0, Q - Qc. Replacing the constraints (42) into the discrete

form H(a,vc, vd, t) and setting its firstvariation to zero yields_

,.]{.o}(L') r o s = o '

where

K" = QrCQ, L* = WTL_I, p" = p_ + WTpa. (44)

Similarly, for (34) we get the stiffness equations

K _o = _', (4s)

where R* = QrCQ, in which Qj results on replacing Pa by Pa in (41-42).

Note that condition (a) above may be relaxed ifthe dimension of va exceeds that of a by

selecting a subset of v., that satisfies(b), and staticallycondensing out the remainder.

t One obtainsK" = Qr(2P,+2PaW-CQ) which simplifiesto (44)because PaW = CQ-P,.
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6.3 Relation to the Strain Projection Approach

If the dimension of a exceeds that of vd (in particular, if the assumed displacement field

is conforming) the constraint (40) is in general inconsistent with a strain-displacement

variational principle. In such a case a connection with other techniques for improving ele-

ment performance can m_netimes be established. For example, suppose that the assumed

strains ( are constant and equal to Z over each element, and that the displacements are

continuous. We can choose a - _, and A - I so that (40) may be written

z= B--v. (4e)
m n

This is the strain-projecltionapproach, also called averaged-B or the B approach. If B

is determined by collocation at the element center, (46) is equivalent to one-point re-

duced/selective integration on the potential energy functional, see e.g.Hughes's textbook

[7, Ch. 4].

7. LIIVIITATION PRINCIPLE

The famous limitation principle of Fraeljs de Veubeke [4]was originallystated for stress-

displacement mixed fm_e elements, but holds for many strain-displacement elements as

well. The principle isapplicable when the displacement-derived strain fieldU' iscontained

in the assumed strain field(:

( _ (u = Du = By. (47)

This inclusion can be expressed in matrix form as

e=Aa=Ba,+A=af=[B A=]{a'} "a.,. (48)

Here a_ contains the same number of entries as v whereas A=, which may be empty,

contains "excess" strain modes. Consider elements of type (III)based on the functional

_fir.Inserting (48) into (30) we get

co-C{°I0
-L T s 0

(49)

where

C_o =/v BTEB dV, C..., =/V BTEA= dV, C== =/v AIEA dV. (s0)

The firsttwo matrix equations give a_ = v and a= = 0. Hence the system isequivalent to

(38) in which K = C_ is simply the potential energy stiffnessmatrix. Consequently the

stiffnessequations may he directly constructed from the generalized potential energy func-

tional (12) and the indei_endent strain assumption has no effect.Of course the conclusion

12



only applies if the strain degrees of freedom are solved for in a manner conMster_ with

the variational equations (49); for example by static condensation.- If the derived field e t'

varies over V, assuming a constant strain field _ for c is a safe way to guard against the

limitation principle.

A similar analysis of type (IV) elements on the H-derived system (31) shows that the

limitation principle does not generally hold unless Rv -- 0. For arbitrary v this implies

that the interface integral vanishes, in which case/_ reduces to the mixed functional R.

8. PARTIAL STRAIN ASSUMPTIONS

It is common practice to assume only part of the strains as independent fields. For example,

in the C o plate bending element studied in Part H independent assumptions are only

made for the transverse shear strains whereas the bending strains are entirely derived

from displacements. The partial strain assumption may be expressed as

(51)iEb

where independent strain assumptions are made only for _ = Aa. For _b one has eb = e_.

The R and H functionals require obvious modification in the volume term; for example,

Eab EQ

while for H an additional adjustment in the Si integral is required, The resulting principles

take a particularly simple form if the constitutive coupling term E_b and Eb,, vanish, in

which case

R = P_(u, e,_) + Pb(u) (53)

where Ra is a mixed strain-displacement principle involving e,,, and Pb is a potential-energy

principle involving the _ strain energy.

The

1.

Q

9. CONCLUSIONS

key results of the present study may be summarized as follows.

The mixed strain-displaceme.nt functional of Reissner type, R, can be expanded to two

hybrid functionals, H and H, to account for incompatible displacements. Whereas

/_R - 0 and 6H = 0 are genuine variational principles,/_H = 0 represents a restricted

variational principle.

Several types of assumed-strain finiteelements may be constructed using R, H or

_'. The most practical elements for inclusion into existing displacement codes are

those in which (1) strain and non-conforming-displacement degrees of freedom can be

eliminated at the element level and (2)avoid surface traction connectors.

13



3. Strain degrees of freedom may be eliminated by static condensation or through kine-

matic constraints. The latter technique can be presented in a variationally consistent

form if the conditions stated in Section 6.2 hold, in which case it can be interpreted

as a constraint on non-conforming displacements. Special versions of this technique

are closely related to the strain-projection approach.

4. DeVeubeke's limitation principle applies to finite element models derivable from func-

tionals R and H if the strain elimination procedure is variationally consistent.

5. The present variational formulations may be readily modified to account for partial

assumptions on the strain field.
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NATURAL STRAIN FORMULATION OF FINITE ELEMENTS.
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SIYM2VIARY

In Part IT we use the four-node C O plate bending element to explore some of the possibilities

opened by the theory presented in Part I. This element is chosen because the version

presented by Bathe and Dvorkin [2], MITC4, can be considered the simplest assumed

natural s_rain element tha: allows several possibilities to be studied in a straightforward

manner. We focus our attention on the governing functionals R and fir presented in Part

I, assuming independent s_rain fields only for the transverse shear strains. Besides MITC.I

we consider three formula'.ions (two mixed and one hybrid) that collectively represent a

variational justification for the assumed strain technique. In addition, we examine reduced

and selective-integration elements to compare their behavior with that of the present strain-

assumed elements.
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I. LNTRODUCTION

1.1 ,l-Node C O Bending Plate Element Formulation

We" start with the formulation of the four-node Reissner-Mindlin plate element whose

degrees of freedom (d.o.f) are the transverse displacement w and the two rotations O= and

O_ about the z and y axes, respectively, as shown in Figure 1. We expand the displacement

field in the usual way:

= lv,(,',_)w,

where

N¢Cr, s) = ¼(1 + r,r)(1 -{- a{s), i'- 1,2,3,4 (2)

are bilineaz shape functions. The strain :field derived from the displacement field is

cL = z e_.=

_, = -z e=,,,
_L = _z"(o,,,,,,,- o...) (3)

__ 8 Z

U

_== =w,=+8_

We take advantage of the decoupling between bending and shear energies by using different

assumptions for each one. We assume that the bending strains coincide with the bending

strains computed from the displacement field:

£=z -" _:=

_'=g --" _':y

The shear strains components in the Cartesian basis z, y, z derived from the displacement

field are

_L = _.=+ 8_ (2)
"7_= = w,y -- 8=

After some manipulations we can obtain the covariant components of the shear strah_ in

terms of the natural coordinates r and s as

_.".= w, + _, (6)
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Z (w) X Ox

Figure 1. Element coordinate system and notational conventions

where

_r - -0= 3/,r + 8u z,r

/_. = -0. y,. + Oy =.

(8)
(o)

I._ The Aaaurn_ Covari4nt Shear Strain

We consider two different assumptions for the covariant shear strains,

and

(1- ,) + ,,)
")',.=.----e., + 42 (1 (10)

2 2

(1- ,-) (1+ ,9 (11)
"Y,,,= 43 2 + 44_

7,'="-41 (12)

"Y..="2 (is)

The biIine_ assumption (10)-(11)isof"the same form as that proposed in [2].The constant

strain assumption (12)-(13) is studied to see whether there are connections to the selective

reduced integration (8R/) technique discussed by Hughes I3].
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2. MIXED ELEMENT BASED ON THE FUNCTIONAL R(u, e)

Up to now we are working with a compatible displacement fieldand a discontinuous strain

field. Hence we use the functional R(u, _) presented in §3 of Part I. No boundary fieldis

necessary and the constants as can be obtained at the element level.

The element displaceme_ fieldis

which can be expressed as

{w}U = 0= ,

Ou

(14)

where

u -- N_ve (15)

I 0 0 ... N4 0
N,= N, 0 ... 0 174

0 Nt ... 0 0

T
v® =(wx O=t Oz,t ... w, 0=,

The strain fieldsderived from the displacements are

a) bending strains:

eL}
2¢zu_

(18)

b) shear strains:

q_={%_}=B,_v_'%-

The independently varied strains are:

a} bending strains: the same as obtained from the displacement field,i.e.,(18).

b] shear strains:

q={%'}=B,_a'%,

(19)

(20)

Replacing (18), (19) and (20) into the functional R and carrying out the integrations at

the element levelwe obt_n

RCv,,a) = _vCXr-.cc_b v_ - ½a TC_°a + v_LC"a- vTp c (21)

where

K_'C =/vo (B_')rEbB_' dV, (22)

19



L_=L,

(B_)TE.B_ d'v', (23)

(B_)TE.B_ dV, (24)

P°=/v N rer +/s ds
• t

(25)

Here vector f collects applied distributed forces conjugate to to, 0= and 8 U. On performing

the variations we obtain the matrix equation

From the second equation we obtain the shear strain coefficients

(26)

a = (C_)-*(LC")Tv_ = Qcvo (27)

which replaced into (26) gives the statically condensed system

(K_ + + Q_C_Q_)v+ -- p_ (26)

Here K_, _ is the bending stiffness matrix, which is also obtainable from the potential energy

principle, and Q_CaaQ c stands for the new shear stiffness matrix; cf. §8 of Part I.

Equation (27) can also be obtained by minimizing the following shear energy error norm:

iT.= ½ -

where vector "I collects the independent shear strains (10)-(11) or (12)-(13), mad -I_ collects

the shear strains evaluated from the displacement field, equation (19). The minimization

of this norm using an independent stress field instead of a strain field was proposed by

Barlow [4] as a way of deriving stress-assumed hybrid elements.

We have implemented two elements based in the form (21) and the assumptions (10)-(11)

and (12)-(13), which will be identified as P4 and P1, respectively, in the sequel. The

results obtained for the simple shear and bending tests illustrated in Figures 2 and 3 are

summarized in Tables 1 and 2. We have compared these results to those obtained using

,5RI and MITC4 elements. The results indicate that PI and P$ behave poorly when

elements are distorted and that PI is not equivalent to SRL

An interesting result is that if we use one point reduced integration to compute L c', both

elements t'i and PJ yield the same results obtained using SRL

We can obtain another expression for Qc, called Q: in the sequel, from the field proposed

by Bathe and Dvorkin [2] for the covariant shear strains. This expression relates four

strain coet_cients a to the nodal degrees of freedom vc. The elements of Q: axe given

2o



L_ I0

gl // '/ /
t,,, N

Figure 2. Bending test

gx: Oy: 0

Figure 3. Shear test

in Appendix A. It is important to realize that (_0 obtained for element P_ matches the

matrix (_ only for rectangular shapes. Consequently, the variational principle based on

the functional R justifies the assumed natural strain technique for rectangular shapes.

However, what can we say about distorted shapes? We need Qc = (_ for all possible

configurations to generalize that justification.
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Table 1. BencUngTest (FE1Vl/Theory-Flgure2)

a Node MITC4 SRI PI P4

0, _ eI w 0w w 0U

O. 5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1. 6 1.00 1.00 0.90 1.00 0.88 1.00 0.44 0.44

6 1.00 1.00 1.10 1.00 1.07 1.00 0.47 0.47

2. 5 1.00 1.00 0.80 1.00 0.74 1.00 0.23 0.23

6 1.00 1.00 1.20 1.00 1.06 1.00 0.28 0.29

Table 2. Shear Test (FEM/Theory-F|gure 3)

a Node MITC4 SRI PI P4

W III W W

0. 5 1._ 1._ 1._ 1._

6 1._ I._ 1._ 1._

1. 5 1._ 1._ 1._ 1._

6 1._ 1._ 0.85 1._

2. 5 1._ 1._ 3._ 1._

6 1._ 1._ 0._ 1._

3. INCOMPATIBLE DISPLACEMENTS. THE FUNCTIONAL H(u, e, t)

Following the general procedure outlined in §6.2 of Part I, we add to the transverse dis-

placement w the four midside incompatible shape functions of an eight node element. In

this way the bending behavior is unchanged. We denote by va the nodal values associated

with these =injected _ incompatible shape functions. The new displacement field can be

written as

u=[N_ Nd]/v° Ira (29)

where

_C 1+ r)(l- s2)
Nd = 0

0

_Cl-r)(1-s 2) _C 1-I-s)(1-r 2) _C 1-s)(1-r 2)
o o o

o o o

• (30)
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The bending strains do not change, and for the displacement derived shear strains we have

= L _o_ = B'_Vo + B. vj. (31)

If"we introduce the new strains into the variational principle,we must use the functional

H(u, _,t) because the displacement fieldwillbe discontinuous. Then, we have to introduce

a traction fieldt over the boundary . This traction fieldis a (line)shear resultant, and

for simplicity we shall assume that itisconstant on each element side. On performing the

variations,the following expression at the element levelis obtained:

K_ o
0 0 PLi{.}{po1po_ L _ vd pa

-C _ 0 a = 0

0 0 t 0

(32}

where

P" =/v.(B'_)TE'B'_#V

p&i /V d T a= (B.)E.B._V

•." - £., N.'es

pa=_ N_t, dS +_ NTafdS
,. •

(33)

(34)

(33)

(36)

(sT)

Now imposing the relation

a= Qovo (38)

we obtain

++=(r+)-+(c-Q:-(POO:)+o=w:o (39)

Replacing both relations in the variational principle and taking variations with respect to

vc and t, the following expression at the element levelis obtained:

"K_C+Q*rC_'Q: Let+WcL_] {v°}(Let+V_rcLat) r 0 t = { p°+W°Tpa}0 (40)

The stifl'nessmatrix proposed in [2] for the plate element, narnely, K_ ¢ + Q:TCaaQ:,

can be clearly identifiedin the preceding expression. It is not necessary to compute the

contribution Let because itcomes from the compatible displacement and will cancel with
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6

Figure 4. Cantilever beam dkcretlzation

the contribution of the neighboring element. On the other hand, the contribution L _ from

the incompatible mode does not vanish. If t vanishes the stiffness matrix reduces to that

of [2] but the nodal force vector will generally be different. Thus it is worth emphasizing

that the variational principle gives a eonJ:'_ent treatment for the distributed loads.

The matrix pao is singular for rectangular elements, but we know that in this case Qe is

equaJ to Q: and there is no need to introduce the incompatible displacement field.

4. NUMERICAL EXAMPLE

To check the behavior of the functional H(u,c,t) we analyze a cantUever beam with

two distorted elements, as depicted in Figure 4. The assumed independent shear strain

corresponds to equations (I0) and (11). We are interested in two load cases: a uniform

bending moment at the tip (Figure 2); and a uniform transverse load at the tip (Figure

-3)-_ In both cases Po_sson's ratio is set to zero to compare the results to those obtained

through the Euler-BernouUi beam theory.

Uniform Bending Moment. The theoretical solution for this problem requires a linear

variation for 0y and a quadratic variation for the transverse displacement w. The results

obtained with MITCJ coincide with the theoretical results. So do those obtained with the

present formulation labeled ANSH (for Assumed Natural Shear Hybrid).

The value obtained for t is of roundoff error order (1.10-12). Then, in this case, both

formulations axe equivalent and the work of the incompatibility can be disregarded.
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Table 3. Normalized displacements (FEM/Theoryl for bending, t = 1.E- 12

Node It4ITC,_ ANSH

,o 8, ,# e,

5 1.000 1.000 1.000 1.000

6 1.000 1.000 1.000 1.000

Table 4. Normalized displacements (FEM/Theory) for shear, t = -2.227

Node MITC,_ ANSH

w 8, _ 8,

5 0.930 1.077 0.892 1.003

6 0.912 0.920 0.891 1.002

The external load vector is the same for both formulations because the external bending

moment does not interact with the transverse displacement.

Uniform Trar_verse Load. The theoretical solution requires a quadratic variation in 0_ and

a cubic one in w. In this case we must expect the computed solution to be approximate.

The results obtained are shown in Table 4. Clearly the ANSH formulation is less sensitive

to element distortion. The lack of symmetry can be observed at the third decimal position.

The convergence and symmetry for the rotation is excellent. The value obtained for t is

not negligible. Note that in this case the external load vector is not the same for the

MITCJ and ANSH formulations.

5. CONCLUSIONS

We have illustrated the theory presented in Part I [1] through the study of several 4-node

C o plate elements with independently assumed shear strains. The following conclusions

emerge from this study.

1. Elements P/and PJ based on the mixed functional R(u,e) are variationally impec-

cable. P1 behaves well in the bending test and P4 passes the shear patch test. Their

performance deteriorates markedly, however, if the element geometry departs from

the rectangular one.

2. The A'[ITC4 element imposes a shear strain- displacement relation (38) obtained by

midpoint strain collocation. This kinematic relation is not a priori derivable from a

mixed variational prlnciple such as 5 R - 0.

3. A variationally consistent modification of MITC4, named ANSH, is obtained by in-

troducing incompatible displacement modes and an independent surface traction t (in
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this case a shear line force), and using the hybrid functional H(u, _, t) for the shear

energy portion. The results are similar to those of MITU#. Although this element is

more expensive to form, it does provide a consistent treatment of applied distributed
loads.

4. The MITU# element stiffness matrix is recovered by setting the boundary traction

field t of .4NSH to zero. However, the nodal load vector for distributed applied forces

will generally be different.

The techniques illustrated here are obviously applicable to the construction of other types

of strain-assumed elements based on the various functionals presented in Part I [1]. In

particular, the use of the restricted hybrid principle H, in which the boundary tractions

are not retained as independent degrees of freedom, remain unexplored.

A key result of this investigation is that any change in the strain-displacement interpo-

lation from the variationally consistent interpolation must be associated in some way to

the addition of incompatible displacement modes. This property is closely linked to the

limitation principle stated in §7 of Part I.
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Appendix A

Bathe and Dvorkin [2] proposed the same kind of shear strain interpolation we have used in equa-

tions (10)-(11). To determine the coefficients ,_ they |mp0sed the foUowing mldpolnt-collocation

"8 "-

relations:
s4 mS sl

2 ' _Z = 2 '
.2 .8_, +_., ._:_+_::

9 ' a4 = 2 '

where superscripts 1,2,3,4 indicate the node where expressions (6) and (7) must be evaluated;

see FiEure 1. Through the application of the relations of Section 1 and after some aigebra we
obtain

where

.=Q'v.

*T=('l _ "8 ",)

Tv, =(w 8.1 8,1 ... S,,)

o ....
G

4

0 0 0 0 0 -0.5 _ z4-zs4

4 4
[o 0 0 0.5 _ z_-4zs -0.5 _4 z_-4 z_

0 0 0

0.5 _/s--_/4 z4--z_
4 4

--0.5 _/' -- y[ zt - z4
4 4

0 0 0
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