

N O T I C E

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT

CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH

INFORMATION AS POSSIBLE

r ;r.	

77

	 re4	 'yzsq

E2AUG

 INPUT

Preliminary basic performance analysis

of the cedar multiprocessor
memory system

K. Gallivan, W. alby, S. Turner, A. Veidenhaum

H. Wijshoff

RUU-CS-91-15
June 1991

fl

^OS. Soc

Q ^

Utrecht University
Department of Computer Science

Padualsan 14, P.O. Box 80.089,
3508 TB Utrecht, The Netherlands,
Tel, t ... + 31 - 30 - 531454

,. A

Preliminary basic performance analysis

of the cedar multiprocessor
memory system

K. Gallivan, W. Jalby, S. Turner, A. Veidenbaum

H. Wijshoff

Technical Report RUU-CS-91-15
June 1991

Department of Computer Science
Utrecht University

RO.Box 80.089
3508 TB Utrecht
The Netherlands

Preliminary Basic Performance Analysis of the Cedar
Multiprocessor Memory System*

K. Gallivant	 W. Jalbytt	 S. Turnert	 A. Veidenbaumt
H. Wijshoff$

t Center for Supercomputing Research and Development,
University of Illinois at Urbana-Champaign, USA

tt IRISA, University of Rennes, France
Department of Computer Science, Utrecht University,

the Netherlands

Abstract

In this paper we present some preliminary basic results on the performance of the
Cedar multiprocessor memory system. Empiricai results are presented and used to
calibrate a memory system simulator which is then used to discuss the scalability of
the system.

1 Introduction

The Cedar system is a multivector processor comprising 4 clusters of 8 vector computa-
tional elements (CE's) and a global memory system. Each cluster is a modified Alliant
FX/8 in which the 8 CE's share a data cache and a cluster memory system. The 32 CE's
are connected to 32 global memory banks by a two-stage Q-network whose basic compo-
nent is an 8-by-8 crossbar and whose interconnection topology is shown in Figure 2. Note
the 32-to-16 fan-in followed by a 16-to-32 fan-out connection scheme. The details of the
system are given in a companion paper [4], but we recapitulate some of the aspects of
interest in this paper.

One of the most striking aspects of the architecture is the memory system. Each cluster
has a private hierarchy consisting of vector registers private to each CE, a shared data
cache and a shared cluster memory. Intercluster communication is accomplished via the
large shared global memory accessible by all of the CE's. Each CE communicates with the
global network via a private global interface board (GIB) which contains a vector prefetch
unit that can be used to access elements independently of CE processing and thereby
mitigate the cost of global memory latency. The prefetch unit is capable of issuing a block
of addresses given a base address, a stride and a length. The prefetch block size can be
up to 512 64-bit words. When elements of the prefetch block return to the GIB they are

'This work was supported by the Department of Energy under Grant No. DE-FG02-85ER25001, the
National Science Foundation under Grant No. NSF 89-208!c1, the NASA Ames Research Center under
Grant No. NASA NCC 2-559, Cray Research Inc. and Alliant Computer Systems.

placed in the prefetch buffer which is essentially a direct map cache with some restrictions.
As is seen below, the exploitation of the cache nature of the prefetch buffer can improve
global memory performance significantly.

Clearly, exploiting this memory system efficiently is crucial if a reasonable fraction of
the peak performance of Cedar is to be achieved in practice. This paper presents some of
the results of a global memory periormance characterization effort presently underway. It
includes the use of a simulator, which has been calibrated based on empirical observations
of Cedar memory performance, to investigate the scalability of the approach.

2 Memory system experiments

2.1 Description of experiments

2.1.1 The LOAD/STORE kernels

The memory system has been explored by a generalization to the Cedar architecture of
earlier work done within a cluster for 'the purposes of characterization and performance
prediction, (1, 2j. This approach makes use of a set of parameterized memory access kernels
informally referred to as the LOAD/STORE kernels. In order to predict performance on
Cedar these memory system kernels must be augmented with a similar set of kernels which
isolate the effect of the control constructs available on Cedar. In this paper, however, we
will only give a brief summary of some of the h,asic results for the LOAD/STORE kernels.
A more complete description of the LOAD/STORE characterization of Cedar and the
associated performance prediction will be discussed in a forthcoming paper.

The kernels were built in order to investigate the behavior of the memory system
stressed by various memory request streams. They were parameterized in a manner which
respects the following constraints:

• It must be possible to adjust the set of parameters in such a way to emulate memory
requests sequences arising from real codes.

The parameters have to be chosen so they can be varied independently in c.rder to
analyze precisely the behavior of the memory system and its interaction with the
memory request stream.

Our study is restricted to a steady state analysis, i.e., each CE loops around the
same piece of code (which by construction will have exactly the same pattern of memory
requests) a large number of times. The main reasons for concentrating on steady state
analysis were to limit the number of possible parameters affecting the behavior and to
reduce the number of cases which are pathologically difficult to analyze. There are ways
to approximate the effect of transient behavior on Cedar for performance prediction but
they are beyond the scope of thispaper.

The main parameters that were varied during the experiments are:

1. Number of CE's and Clusters

2. Mode of request on each CE: scalar, vector without prefetch, vector block prefetch
(implicit and explicit)

2

3. Type and pattern of requests: various LOAD, STORE combinations such as, LOAD,
STORE, LOAD-STORE, LOAD-LOAD-STORE, etc.

4. Temporal distribution of requests

5. Spatial distribution cif requests: stride and offset

6. Scheduling

Let us examine in turn each of these parameters and their potential effect on the memory
system behavior.

The number of CE's and Clusters issuing requests is the most obvious parameter to
vary the workload imposed on the memory. However, it should be noted, that a priori for
a same number of CE's requesting, the partitioning of the active CE's across the clusters
may have a nonnegligible impact. For example given 8 CE's active, the behavior maybe
different if the 8 CE's belong to the same cluster or if they are evenly distributed across
the cluCers.

The mode of request obviously affects the issue rate of the requests but it also alters the
way they are handled. In scalar mode and vector mode without prefetch, the processor can
have at most 2 outstanding requests to global memory pending at any time. Since vector
mode implies that a series of independent fetches are required 2 outstanding requests
are maintained for the duration of the vector instruction. In scalar mode, however, the
number of outstanding requests maintained over a series of instructions depends upon
resource dependences. Each request may have to pay the full cost of latency.

When prefetch is used the prefetch unit can issue and handle several outstanding
requests to global mem,jry. The number of outstanding requests allowed by the prefetch
unit is controlled by length of the prefetch block, bpl, which can range from 1 byte to 512
64-bit words. The prefetch unit can be used in two modes: implicit and explicit. In both,
modes, a burst of bpl requests is emitted by the prefetch unit at a rate of one request per
cycle. In implicit mode for a LOAD, the CE then attempts to transfer elements, in order,
from the prefetch buffer into vector registers. If the next data element in order has not
arrived in the prefetch buffer the CE stalls until the data is available. (Data returning
from global memory, however, is loaded into the prefetch buffer any order by the prefetch
unit.) The implicit mode, therefore, is effectively an accelerated global memory vector
load instruction.

In explicit mode, the CE is allowed to continue executing any instructions following the
prefetch start which does not involve the prefetch unit, e.g., operations involving registers
or cluster memory. At some point, however, the CE will attempt to access the data that
was prefetched and it will then behave in a manner identical to the implicit prefetch.

The type of request, LOAD or STORE, affects the significance of the mode of request.
In the case of loads, the discussion above applies. On the other hand, requests for writes
are emitted as fast as the processing of the particular instruction allows, e.g., every cycle
for a vector write. The CE does not wait for an acknowledgment of a write completion.
The GIB/CE pair has an explicit instruction, that is used for synchronization purposes,
which stalls the CE until all outstanding write requests for the CE have completed. In
this paper, we will will concentrate LOAD requests.

The pattern of memory request is intended to study the effect of interleaving vector
LOADS and STORES. The reason for studying the mixing the types of requests is that

3

they result in different traffic patterns on the forward and reverse networks. In the case
of a LOAD (STORE) request, a packet of one word (two words) traverses the forward
network and a packet of two words (one word) travels back from memory across the
reverse network. This asymmetry may generate a difference in performance between a
long sequence of LOADS followed by a sequence of STORES and a sequence interleaving
LOADS and STORES. The first sequence heavily loads the reverse network initially, during
the LOAD sequence, then the forward network, during the STORE sequence. The second
sequence achieves a better tempwal balance on broth networks.

The temporal distribution mainly refers to the variation in issue request rate. This
is achieved in two ways. Inside a block prefetch request (implicit or explicit), the use
of different vector mask values allows us to emulate various distributions. For example,
a mask set to the value 010101 will in be in fact equivalent to issuing a request every
other cycle. More complex patterns allow the generation small bursts of requests.such
as 11110000 The insertion of a variable number of null operations, Nors, between the
pi pfetch blocks allows us to vary the distribution at a higher level. (This level is more
useful from a performance prediction point of view).

The spatial distribution essentially covers the way the banks are addressed. The sim-
plest parameter is the stride. It affects the order in which the memory banks are accessed
as well as the number of distinct memory banks accessed. For example, assuming that
every processor starts in the same bank (0), striding by 2 will concentrate all the requests
to the even numbered banks. Another parameter used to affect the spatial distribution is
the offset. This parameter selects the bank in which each processor starts its requests and
is typically a function of the processor number, i.e., it depends upon which cluster a CE
is ii. and its local CE number 0 < p < 7. As is seen below, the careful selection of these
parameters can significantly affect the bandwi&h from global memory.

Since our experimental templates use loops as the basic control construct, the iteration
scheduling also plays a key role. Two types of scheduling have been studied: self scheduling
in which the iterations o: the loop are dynamically allocated to each processor, and static
scheduling where the iterations assigned to a given processor are determined a priori. In
this last scheme, the number of iterations is equally distributed among the processors.
Therefore any load imbalance with that scheme will allow to detect asymmetries in the
behavior of each processor. This is particularly significant in networks where conflict
arbitration is based on processor numbers. The results below are all from tests which used
self-scheduling.

2.1.2 Description of a basic LOAD/STORE kernel

The code which implements the vector-concurrent prefetch version of the LOAD kernel is
typical. The other forms are simple modifications. (The crucial portions of the kernels
are implemented in assembler but are given below in a high-level language.)

The code comprises several nested loops. The outermost loop distribute _*Ae work
among the clusters: each cluster will run exactly the same code. (This loop has been
implemented to minimize as much as possible the associated overhead.) Inside each cluster,
a loop over Ni iterations is executed where each iteration consists of a CE performing Si
memory accesses as a series of prefetches with block size Sbf . The temporal distribution
of access is controlled by the insertion of Noes at key points in the iteration. The values
of the parameters used in the experiments is given in Table 1.

4

Table 1: Parameters for experiments.

Ni 512
Si 512_
Sb 32, 64, 128, 256, 5 12
I„W 0, 128, 256, 384, 512, 640, 768, 896, 1024

1536, 2048, 2560, 3072, 3584, 4096

Loop over clusters
DO i = 1, Ni Parallel loop over iterations
(self-scheduled within a cluster)

Pla:	 Prologue (executed only once on each CE)
Plb:	 Preparation of the iteration
P2: Execution of I„oP NOPs

DO j = 1, (S; f Sb f I Loop over block fetches (sequential on a CE)
P3: Enabling a block fetch of Sb f words

DO k = 1, [Sb f /32 j

P4: Vector LOAD of 32 elements
ENDDO

ENDDO
ENDDO

End loop

Figure 1: Basic LOAD template cede.

The code for the basic LOAD kernel is shown in Figure 2.1.2 The loop is decomposed
itself into 5 major segments:

1. Pla: This code corresponds to the setup of the loop :n a cluster. It is executed
once by each CE at the beginning of the loop.

2. Plb: This phase -overs the loading of all the parameters necessary , to the execution
of an iteration on one CE. It is executed on each iteration.

3. P2: this section of code cons ; sts of a sequence of I„,)p NOP instructions to control
the temporal distribution.

4. P3: The block prefetch mode is enabled here, allowing the CE/GIB to perform
memory requests in blocks of Sb f words.

5. P4: This section of code loads Nb f (Sb f /321 blocks into the vector register from the
prefetch buffer. It is needed because of the vector register length of 32.

5

2.2 Rasic performance limits

Key considerations in interpreting the results below are the underlying performance limits
implied by the components of the memory system and the experimental set up. In this
section we summarize these limits.

The CE's within each cluster ar p. vector processors which can, in principle, execute
two floating point operations per cycle. (A cycle is 170 no.) This implies a peak execution
rate of 11.76 Mflops per CE, if one takes into account the startup of the chained vector
instructions wldch perform the computations the effective peak rate drops to 8.56 Mflops
per CE. In practice, a reasonable rule of thumb is that 55 to 65 Mflops per cluster is the
most one can expect. Since each CE has one port to the cluster memory system, a cluster
cache is designed to have a hardware limiting access care of 8 64 -bit words per cycle or 47
MW/s. The cluster memory is bandwidth limited in the sense that it cannot match these
data demands of the 8 CE's. It has a hardware limiting access rate of 4 words per cycle or
23.5 MW/s. As a re:.,ult, computations with limited data locality that cannot exploit the

__. cluster memory hierarchy will be bandwidth limited and their performance as a function
of the number of processors used will tend to level off after 4 or 5 CE's.

The components of the g,obal memory system are, at least in terms of hardware limits,
fairly well balanced with the cluster memory hierarchy. 10'ach memory bank can deliver 1
word every two cycles for a rate of 2.94 MW/s per bank, A network link can transfer two
words per cycle. However, since on a read (write) an address/data two-word pair must
be transferred in the reverse (forward) network, a link can be thought, of as effectively
transferring 1 word per cycle or 5.94 MW/s per link. The 16 interstage network links in
each direction therefore balance with the 32 memory banks. The GIB/CE pair operating
in prefetch mode can issue a request to the network and absorb a returning data word from
the network in one cycle for a potential demand of 5.88 MW/s per CE. When prefetch is
not used the performance is limited by the number of outstanding requests to memory a
CE allows (presently 2). A cost of roundtrip latency of about 13 cycles is paid per pair of
words yielding approximately 1 MW/s per CE.

Table 2 summarizes the hardware limits for each of the components of the memory
system and the aggregate limit for a 32 CE/memory bank Cedar configuration. Clearly,
when all CE's are accessing data only the cluster cache level can satisfy the data demands
of the vector functional units. Of course, if a very small number of CE's are accessing
data then global memory with prefetch could satisfy the data demand since the GIB is
designed to issue requests at the CE peak rate.

Table 3 shows the relative performance degradation of each level of the memory hier-
archy with the cluster cache level taken as 1. Tbe hardware rates indicate that the most
remote level of the hierarchy is 6 times farther than the cache. They also predict that the
potential improvement by using the prefetch unit to offset latency may bring the global
memory access rate in line with the cluster memory access rate. Of course, global memory
is still viewed as being farther away since there are restrictions on the addressing; modes
for which prefetch is possible and it must deal with 32 processor contention as opposed to
the 8 processor contention within any cluster memory.

Another source of performance limitation is the control overhead within the CE due to
the experimental setup. As a result of this overhead the peak effective CE data demand is
reduced and the speedups that we observe can exceed the 16 given by comparing 1 GIB/CE
demand rate of 5.88 MW/s to the 94 MW/s aggregate bandwidth of the 32 memory banks.

Component Brat rate Aggregate rate
Cluster cache 7 138

Cluster memory 23.5 94
Network link 519 94
Memory bank 2,94 94

GIB/CE
w/o prefetch ^ 1 32
w/ prefetch 5,88 188

Table 2: Hardware limiting access rates in MW/s.

Component Slowdown
Cluster cache x

Cluster memory 2
Global memory

w/ prefetch 2
w/o prefetch ;^- G

Table 3: Relative performance degradation of memory hierarchy based on hardware rates.

In our experiments the multicluster control overhead has been reduced to negligible levels
due to our steady state assumptions. However, the control overhead due to the dynamic
scheduling of the iterations within cluster and the looping within a CE represent overhead
that is real in the sense that it is unavoidable any time the memory system is used in
practice. We have kept this as small as possible so that any further overhead incurred in
a particular practica situation may be modeled by the Note parameter.

This overhead has been estimated in two ways. The first - a static cycle count of
the code generated for the experiments - results in a prediction of 3.4 MW/s per CE for
a prefetch block of size 32 and 4.7 MW/s per CE for a prefetch block of size 512 when
using prefetch in global memory. (The prediction assumes a very simple assignment of
iteration blocks to processors.) This yields aggregate CE-induced limits of 108 MW/s
and 150 MW/s respectively. These are still over the limiting bandwidths of the global
hardware but are more reasonable peaks to compare agzinst when discussing the balance
of the system. (The cycle counts above apply to the code which can use multiple CE's per
cluster. When only 1 CE per cluster is used the overhead is slightly lower.)

These limits can also be tested empirically with a simple modification of the template
of Figure 2.1.2. The innermost loop iteration, P4, is altered to operate on register data
rather than global memory. This simulates a global memory that does not suffer any
bandwidth degradation due to multiple processor accesses. Latency is modeled by issuing
• single scalar read from global memory at the beginning of the loop which processes
• prefetch block, i.e., after P2. Table 4 shows the empirically determined CE overhead
limits to achievable bandwidths. It is these bandwidths that should be used to determine
how well the global memory is doing when it is not saturated,. The values show that, as

expected, the cyc":^ o5 arit predictions are somewhat optimistic. Note .hat for a prefetch
block of size 32 the bandwidth for 32 CE's is very close to the hardware limit of global.
memory.

Tetal CE's Clusters pf=32 pf=.512
1 1 3.3 1116
2 2 6,5 9.2
3 3 9.8 13.7
4
8
16

4
1
2

13,0
26.0
51.0

18,2
35.0
70.0

24 3 75,4 105,0
32 4 90.1 140,0

Table 4; Basic global memory vector read overhead bandwidths in MW/s.

2.3 Results

In this section, we present so,,ne of the results of the basic performance of the memory
system, We concentrate on the LOAD kernel from the various locations in the memory
system,

2,3.1 Basic memory perforrance

The performance of the cluster memory hierarchy has been characterized in detail and
an attendant performance prediction strategy developed elsewhere, (1, 2), and will not be
repeated in detail here. As expected, the performance varies considerably for each of the
parameters listed above. For comparison purposes, Table 5 contains the basic performance
of a single cluster memory system for a stride 1 access using an iteration block of 512 (as
is used for the global memory experiments) and 0 Noes. The cache bandwidths are much
more sensitive to the variation of the experimental paramct.^rs than the cluster memory
bandwidths and therefore the value of 34 MW/s is somewhat optimistic in practice. Rates
in the high 20's are more typical. Note that, not surprisingly, the observed performance is
significantly lower than the cluster hardware limits in Table 2; a factor of 2 for the memory
and between IA and 2 for the cache. The relative degradation of observed performance
for cluster cache to that of cluster memory, roughly 2 - 3, is about the same as the factor
of dictated by the hardware limits (see Table 3). The bandwidth limitation of the cluster
memory as the number of CE's increases is also apparent from the observed performance.

The most basic way to access global memory on Cedar is in vector mode without
prefetch. Since the memory system is designed to handle requests issued at a much.
higher rate there is no real difficulty with degradation due to network and memory bank
contention. Table 6 contains the performance for various cases of the basic experimental
configuration, i.e., iteration block size of 512 and 0 Noes, The speedup relative to a single
processor accessing global memory without prefetch is included. Clearly, contention does

8

Type Processors

Cache

1 4 8
4,5 18 34

Memory 2.3 9.3 12

Table 5; Basic cluster read bandwidths in MW/s,

not occur intensely enough to cause any significant deviation from linear speedup as the
number of CE's increases.

Tile performance slowdown relative to the observed performance of the same number
of processors in the same number of clusters accessing their local caches is also given iil.
the table. Note: that it is less than the degradation factor of approximately 6 implied by
the hardware limits (see Table 3). This is due tcl the fact that without prefetch the global
memory system degrades less from its hardware limit than the cluster memory system.
The cluster memory system degradation factor, however, can vary significantly clue to the
sensitivity of the cache access to the experimental parameters and a filightly Iower figure
of 3.5 to 4 is probably more reasonable in practice.

Total CE's Clusters Bandwidth Slowdown
1 1 '98(1.0) 4.6
2 2 1,9 (1.9) 4.7

3 3 2.9 (2.9) 4.7

4 4 3,8 (3.'y) 4.7
^8 1 7.7 (7.8) 4.4

16 2 15.4 (1 5.7) 4.4
24 3 22,6 (23,1) 4.5

32 4 29.4 (30.0) 4.6

Table 6 , Global memory vector read w/o prefetch bandwidths (speedups) and degradations
relative to observed cache bandwidths.

As is indicated by the hardware limits, the best way to access global memory is to make
use of the prefetch capabilities of the GIB/CE. The simplest moue of this type of access
is when all of the CE's access locations starting in memory bank 0 and proceed using
a stride of 1. Table 7 contains the bandwidths and speedups for the basic experimental
configuration for the two extreme prefetch block sizes and an implicit prefetch.

For 1 CE there is virtually no contention and the bandwidths agree with the cycle
count predictions given above. There are several important results indicated in the table,
Note that for a small number of CE's the speedup is essentially linear, as one would expect,
and increasing the size of the prefetch block used can improve performance significantly.
As the number of processors involved increases, contention increases degradation and
the influence of the size of the prefetch block diminishes rapidly. Notice also that the
distribution of the CE's is important when considering the prefetch block size. When 1
CE per cluster is used the influence of the prefetch block size reduces very quickly — at 4

9

Total CE's Clusters pf-32 pf;:=512
1 1 3,2 (1.0) 4.4 (1.4)
2 2 6,3 (1,9) 8.8 (2.8)
3 3 9.4 (2,9) 11.0 (3,4)
4 4 12.0 (3.8) 13.0 (4,1)
8 1 21.5 (6,7) 30.9 (9,7)
16 2 37.2 (11.6) 46,2 (14A)
24 3 48,3 (15.0) 52.1 (16.3)
32 4 54.7 (17,1) 54,4 (17.0)

Table 7: Basic global memory vector rear] bandwidths in MW/s (speedups),

CE's the difference between 32 and 512 is negligible. But, when 8 CE's are used within a
single cluster, the difference in performance between 32 and 51.2 is still significant. This
is due to the initial shuffle which is present in the network between the CE's and the first
stage crossbars, As a result, if we assume that CE 0 is used in each cluster for the 4 CE
4 cluster data point all 4 CE's are competing for the 4 output ports of the same crossbar.
Therefore, contention dominates over the effect of the prefetch block size. When 8 CE's in
1 cluster are used, the CE's are distributed in pairs across all 4 first stage crossbars. Each
pair then has 4 output ports available for use resulting in significantly less contention in
the first stage of the network. It is also clear that contention levels off the performance of
the memory system once the number of CE's exceeds 16,

Table 8 shows the slowdown of observed global memory bandwidth relative to the
observed cache bandwidth with the same CE/cluster configuration. It is clear that for a
small number of CE's when the network is not a problem the global memory can approach
the rate of the cluster cache, Data in the prefetch buffer on each GIB can be accessed
in essentially the same amount of time as a cluster cache, So after paying the round
trip latency cost for the first element of the prefetch block the rest are accessed at cache
rates. (For a. small number of CE's stalls due to elements returning to the prefetch buffer
out of order are few.) As the number of CE's contention begins to play a role and the
performance falls between that of cluster cache and cluster memory, For some points it
is still significantly better than cluster memory, e.g., 8, 16 and 24 CE's have slowdowns
relative to cache of 1.1, 1.5, and 1.9 respectively. As the number of CE's approach 32 the
performance is only slightly better than cluster memory.

The surprisingly good performance of the global network compared to cluster memory
can be attributed to two facts. First, the global network is more robust in the face of
contention since it is an O-network as opposed to the bandwidth limited bus used to
communicate between cluster memory and cluster cache. Second, transactions between
the CE and the cluster memory are processed with only 2 outstanding memory requests,.
per CE possible. The number of outstanding requests per CE in the global network is
determined by the prefetch block size and can be as large as 512, The transfer between
the prefetch buffer and the CE is done with 2 outstanding requests, but as noted above,
the cost of a prefetch buffer access is about the same as a cluster cache access, So until
contention slows down the rate at which the prefetch buffer is loaded from global memory

10

the 0113/CE combination has clear advantages over the CE/cluster memory combination.
This clearly demonstrates that in practice the prefetch capabilities of the architecture

can be used effectively to offset global memory latency. One must keep in mind however,
that the speed of access to global memory is not without its constraints. The prefetch
unit must have a simple linear address function to work with in vector mode, i.e., vector
gathers and scalar accesses can not use the prefetch buffer address generation capabilities.
In this respect the cluster memory is more flexible. Also note that the cluster memory
bandwidth must scale in a perfectly linear ,fashion with the dumber of clusters whereas
the global memory bandwidth increase is clearly degrading as the number of processors
increases.

Total CE's Clusters pf=32 pf=512
1 1 1.4 110
2 2 1.4 1.0
3 3 1.4 1.2
4 4 1.5 1.4
8 1: 1 1 1:.1
16

2
is 15

24 3 2.1 1.9
32 4 2,5 2,5

Table 8: Basic global memory vector read bandwidth degradation relative to observed
cache bandwidths.

2.3.2 Degradation mitigation

One of the issues that the experimental configuration attempts to address is the effect of
the density of requests on the performance of the global meriory system. We might, for
example, want to answer the question: What ratio of global and cluster accesses is needed
in order to see near linear speedup in global memory bandwidth as the number of C .'s
increase? or For a fixed density of requests how many pnx;essor can the global memory
system support before contention causes significant performance degradation? These situ-
ations are modeled by the NODS parameters in the templates. As the number of NOPS per
iteration block increases the density of requests on the network decreases. These NoPS

can be used to represent a CE performing work involving data from cluster memory or
from registers.

There are several ways to look at bandwidth and speedup as the sparsity of requests
and the configuration of Cedar change, each of which yield a particular piece of the puzzle.
Of course, as the number of NAPS increases the bandwidth achieved must be nonincreasing
since more work is performed for the same amount of data transferred frost global memory.
The rate at which the bandwidth decreases, however, provides insight into the balance
between cluster and global memory activity required for the global memory bandwidth to
scale in a reasonable fashion. Figure 3 plots the observed bandwidth against the sparsity
of the access for different total number of CE's using a prefetch block size of 512. The
sparsity, p, is Noes/512 and measures the number of extra cycles added per data element

11

fetch .in the block of 612 elements that a CE fetches on a single iteration using various
prefetch block sizes. If p = 0 th(,,J^ there are no added dead cycles, i.e., the access is
as dense as possible, As p increases the sparsity of the access increases and the amount
of contention is decreased. (Of course, the value of p only reflects the sparsity within
an iteration block. The other cycles due to loop control arid other CE overhead also
contribute dead cycles to increase sparsity but those are fixed for all of the experiments.)

If contention is not a significant factor the observed bandwidth should be a hyper-
bolically decreasing function of p as is seen for p = 1 to p = 8. When contention is a
problem, however, increasing the sparsity may reduce contention and the general shape of
the! bandwidth curve is decreasing but concave. This is due to the fact that the reduction
in contention improves the effective bandwidth more than the additional cluster work,
represented by NoPS, decreases the effective bandwidth. The more intense the contention
for the configurr.,tion the longer the concave region persists along the sparsity axis. The
variation in concavity is clearly seen by comparing the p = 16, 24, and 32 curves. The
increasing number of CE's entailQ an increased amount of contention and a larger concave
region.

Figure 4 presents another view of the effect of sparsity. It plots bandwidth against
CE,'s for various sparsity values p. To answer the first question above one would look for
the value of p beyond which the bandwidth increased nearly linearly. The more linear the
curve the less degradation due to contention. Clearly, as p approaches 2 the curves have
an essentially linear profile against the number of CE's. The second question is answered
by noting the number of processors on each curve, P ij, where the bandwidth begins to
level off thereby degrading the desired near linear behavior. The expected trend of P,,.;r
increasing as p increases is evident in the figure.

As the sparsity of requests increases, the importance of the behavior of global memory
in determining speedup over 1 CE decreases. This is clear, for example, when the NoPS
are used to represent the amount of work performed by the CE's that involves only cluster
memory and registers. In the limit, for very large values of NoPS the speedup observed
for these templates rhould be equal to the number of CE's in use, p. Figures 5 and 6 plot
speedup over 1 CE as a function of p for a given number of CE's for prefetch block sizes
of 32 and 512 respectively, If contention is not significant the curve should be horizontal
at the value of p. Deviation from horizontal indicates the magnitude of the degradation
due to contention. The near horizontal behavior of the curves for small p shows that there
is not enough activity to cause serious contention even with very dense global memory
traffic. As p increases, the degradation from horizontal becomes more extreme. Also note
the difference in trends caused by the change in the preft'6ch block size. Prefetching 512
elements places more of a strain on the network since there is relatively less sparsity caused
by CE overhead. As a result, degradation of performance occurs with fewer CE's than
when prefetching 32 elements. Also, the rate at which the curve moves to horj7,ontal for a
giver, increase in p is greater when prefetching 512 elements.

The results above address the issue of balance between global and cluster memory
activity. However, for a given code running a particular problem thin is a fixed ratio. We
next address the issue of manipulating contention in this case. We will take the worst
case sparsity from above, i.e., p = 0 and attempt to improve performance of the steady
state global memory bandwidth. Of course, we must still access the same locations, but
we do have degrees of freedom concerning what elements each CE will fetch. This can
be controlled via the offset from bank 0 of the initial element accessed by a CE and the

12

stride used to access the remaining data elements assigned to the CE. The experiments
above all assumed stride 1 and an offset of 0 for all CE's, i.e,, all CE's start their accesses
in bank 0.

We first consider the offset of the initial data element. For the given network, it is
easy to determine an offset for processor p of cluster c, where 0 < p < 7 and 0 < c < 3,
such that the initial conditions of the access have minimum contention. 'i his offset is
a = 8c + P. Contention in a ich of the first stage crossbars of the forw ,rd network is
as small as possible. The 8 input ports of each separate into pairs such that each pair
uses a different output port of the 4 available. The use of o The input/output ports of
each second stage crossbar of the forward network match up in a similar optimal fashion.
Each of the 4 input ports fanout to two a distinct pa;r of output ports. The mirror image
configuration applies on the reverse network. As a result, we have the minimum possible
contention on the initial conditions, a 2-to-1 fan-in followed by a 1-to -2 fan-out.

The stride parameter then determines how this initial condition contention evolves
over time. Given that we have 32 CE's and memory banks, a stride of 32 would maintain
this initial condition throughout the accesses and minimize contention. For a stride of 1,
each CE pair accesses the same output port of the first stage crossbar for 8 consecutive
elements and then moves to the next output port for 3 more accesses and so on cycling
through the 4 output ports of the crossbar. The use of all 4 output ports by each of
the input ports means that all 8 input ports interfere with each other causing contention
very early in the nei,work. Since each first stage output port connects to a crossbar that
services 8 memory banks, the maximum number of consecutive stride 1 accesses that can
use a particular port is 8. This implies that any first stage contention is maintained for a
relatively long period of time.

A stride of 8 implies that the CE pairs still cycle through the 4 output ports, but they
do so at a much higher frequency by changing output ports on every data element access.
As a result, the amount of continuous time any particular CE needs any particular port is
the smallest possible — one element access. This potentially allows contention to be more
smoothly balanced through the system. Finally, a stride of 16 takes the first step toward
the maintenance of the initial condition for all accesses that is achieved with a stride of 32.
Each pair of input ports only accesses 2 of the output ports — alternating between them
on each data element access. The output parts separate into 2 pairs each of which services
a set of 4 distinct input ports. As a result, the overall contention in time is reduced as
in the stride 32 case and the frequency of moving between output ports is increased as in
the stride 8 case.

On first examining this situation, it seems clear that a stride of 32 would be the best
choice since it minimizes contention over time. Unfortunately, there is a compensating
effect that occurs to degrade performance as stride increases. The prefetch buffer does
not translate virtual to physical Mdresses. This is done by the CE. When a prefetch unit,
issuing physical addresses, crosses a page boundary it must halt and wait for the CE to
provide the next physical address. After receiving this address, the unit can proceed to
generate and access physical addresses independently of the CE. The larger the stride the
more page boundary crossings that will occur in a given prefetch block. The prefetch unit,
therefore stalls more and degrades performance.

Figure 7 plots the bandwidth against prefetch block size for different strides using a
as the offset in each CE. The effect of these competing trends are clear. By manipulating
stride and offset the bandwidth can be improved to approximately 73 MW /s r,p from the

13

55 MW/s seen above for the no offset stride 1 accesses. Note the superiority of the strides
of 8 and 16 which strike a reasonable compromise between contention and page boundary
crossing. The stride 1 access does not improve performance by altering the offset from 0
to a. Similar experiments with random offsets have shown a similar lack of sensitivity —
or more precisely, they have shown that p and the prefetch block size are the important
parameters for a 0 NOP stride 1 access.

There is one more way of enhancing the performance of the global memory accesses
which improves considerably the performance of the 0 offset, stride 1, p = 32 case above.
Recall that the prefetch buffer into which elements returning from global memory are
placed on the GIB is a simple direct map cache with some additional restrictions related
to page boundaries. As a result, if we have a spatial locality in global memory references
the exploitation of this cache may aid performance. Table 9 compares the bandwidths
observed for the 0 offset, stride 1, p = 32 access of global memory with and without a
prefetch buffer hit on the data. This is accomplished by adding another vector loop within
each CE's iteration. Immediately after accessing an entire prefetch block the CE issues
again the same global memory addresses. These elements should reside in the prefetch
buffer and are, therefore, accessible at almost cluster cache rates. The results show the
expected trend of a significant reduction in the cost of the second access. As the prefetch
block size increases the benefit increases since the fraction of time spent in global memory
accesses rather than in control overhead is more significant.

prefetch size read read + hit
32 54.7 87.0
64 53.5 91.5
128 53.9 95.2
256 54.2 96.5
512 54.4 97.4

Table 9: Bandwidths for a vector read and a vector read followed by a hit in the prefetch
buffer, 0 NODS.

3 A global memory simulator

In this section, performance estimates obtained through simulation are used to determine
the scalability of systems based on the Cedar shared-memory network. The term scalable is
used here to describe systems whose per-processor performance is roughly ^onstant across
a range of system sizes. Performance is evaluated in terms of aggregate bandwidth, latency
of a vector fetch request and pipeline rate of packets within such a burst request. In our
experiments, systems consisting of 32 to 512 processors connected to an equal number of
memories are examined.

3.1 Simulation model and calibration

Realistic models of both the target architecture and associated traffic patterns are essen-
tial. Accordingly, a register transfer level simulation model ba.,ed on the existing hard-

14

Table 10: Network configuration versus system size

Number of:
Switch Sizes for:

Forward Reverse
Procs.	 Mems. Network Network

32 Cedar 32 8x4, 4x8 8x4, 4x8
32	 32 8x8,4x4 8x8,4x4
64	 64 8x8,8x8 8x8,8x8
128	 128 8x8,8x8,2x2 8x8,8x8,2x2
256	 256 8x8,8x8,4x4 8x8,8xS,4x4
512	 512 8x8,8x8,8x8 8x8,8x8,8x8

ware was used, and it was driven with traffic patterns which reflect the behavior of the
LOAD/STORE kernels. This simulator has been described before, and results for a more
general traffic model presented, in (3].

The simulator models the data path of Cedar's global memory system in detail. This
includes the GIB's, switches in both networks, and memories modules. The CE's and
cluster memory systems are not modeled in detail, instead GIB prefetch block requests
are used to generate the traffic patterns which load the network. Due to interactions
between the CE's and GIB's which are not modeled explicitly, bandwidths observed by
experimentation deviate slightly from those seen by the simulator.

The simulation results presented are based on the vector block prefetch: all CE's
participate, LOAD requests are considered, and a block prefetch length of 32 words is
used. The tinning of the GIB prefetch block requests is determined by analysis of the
LOAD STORE kernels. The delay between the completion of one prefetch request and
the initiation of the next is determined by the loop overhead in the kernels, and the number
of sparsity Noes. The spatial distributions have no offset and a, stride of one.

Several different traffic distributions have been run through the simulator which do not
correspond directly to any generated by a load/store kernel. Ma:.iy of these alternatives
have no significant impact on overall performance, and some have very chaotic effects.
Of particular interest, though, is the dramatic improvement in performance which can be
seen by matchiaig the GIB issue rate to the memory module service rate. This effect is
difficult to duplicate in actual experiments, but yields performance improvements of up to
50% in simulations. Data for these traffic patterns will be presented in a future technical
report.

The simulator was calibrated by comparing the bandwidth measured in several of
the experiment., presented previously to that obtained by simulation of the same traffic
patterns on an identically configured system. For the cases examined the simulated results
match the measured values with less than 10% deviation. For example, with all CE's
participating in a vector block fetch at a sparsity of zero, Cedar achieves a bandwidth of
51 MW/s, while the simulated result is 47 MW/s.

The configurations of the networks used, in terms of the size of the switches at each
stage, are given in Table 10. Cedar has so far implemented only part of the full network
connectivity, but in the interests of generality, the full network is explored in detail here.
Where applicable, performance data for both configurations of the 32 processor system

15

Table 11: Performance results for sparsity= 0
System

Size
Bandwidth

(MVO'/s)
Block

Latency
Interarrival

Time
Cedar 47 25.2 5.4

32 78 15.5 2.8
64 107 18.3 4.0
128 178 24.1 4.8
256 305 32.4 5.4
512 527 31.7 6.7

are given.

3.2 Metrics

Within the simulations three metrics are used. A3 before, aggregate bandwidth and
speedups are used to evaluate overall. performance. In addition, block latency and mes-
sage interarrival time are used to describe the behavior of individual block fetches. These
latter metrics are determined for each individual message and the arithmetic mean over
all elements is then calculated.

Block latency is defined as the number of clock cycles that elapses between the time a
processor begins issuing a block fetch and the time that the first message in the block is
received by the processor. Interarrival time is the delay between the return of successive
packets in a block to the processor that issued them.

3.3 Results

The performance results for various systems performing a vector block prefetch with a
sparsity of zero are shown in Table 11. In theory, the 32 to 16 fan-in, and 16 to 32 fan-out
should not limit the performance of the network, because the memories can only service
requests at half the rate at which GIB's generate them. In practice, this can be seen to be
untrue. By doubling the number of connections in the middle of the forward and backward
networks, achieved bandwidth increases by over 50%. Only the "full" network case will
be considered further.

We now consider traffic with more sparsity. In Figure 8, curves are shown which
correspond to those shown previously for the Cedar system. Because of the large range of
values shown, the y-axis is scaled logarithmically, All the systems achieve a good fraction
of the ideal speedup for some value of sparsity, but the larger systems require larger
amounts of sparsity (which is in a sense equivalent to locality of reference within a Cedar
cluster) in order to offset their increased contention.

In Figures 9 and 10 a similar trend can be seen in the interarrival time and latency
values. Here the x-axis shows the size of the system on a logarithmic scale to emphasize
the fact that for low sparsity performance degrades as the log of system size. As sparsity
(S) increases, the system scales better: for very moderate sparsity (2-}-), per-processor
performance is almost constant across system sizes. The jump in latency seen as the size

16

increases from 64 to 128 processors is due to the extra network stage needed to construct
the larger systems (see Table 10).

It is important to remember that the number of buffers used in the Cedar network
is quite low, only 3 or 4 words of buffering per stage. In previous experiments (see [3])
moderate buffering has been shown to allow much more intense traffic to perform as well
on large systems as on the 32 processor Cedar machine. By increasing buffering to 16
words per stage performance scales well for high loads, and the limiting factor becomes
the memory access time, which is four 85ns network cycles for the Cedar system.

References

[1] K. GALLIVAN, D. GANNON, W. JALBY, A. MALONY, AND H. WIJSHOFF, Behavioral
characterization of multiprocessor memory systems, in Proc. 1989 ACM SIGMETRICS
Conf. on Measuring and Modeling Computer Systems, New York, 1989, ACM Press,
PP . 79-89.

[2] K. GALLIVAN, W. JALBY, A. MALONY, AND H. WIJSHOFF, Performance prediction
of loop constructs on multiprocessor hierarchical memory systems, in Proc. 1989 Intl.
Conf. Supercomputing, New York, 1989, ACM Press, pp. 433-442.

[3] E. D. GRANSTON, S. W. TURNER, AND A. V. VEIDENBAUM, Design and analysis
of a scalable shared-memory system with support for burst tragic, in Proceedings of
the 2nd Annual Workshop on Shared-memory Multiprocessors, ISCA -90, Kluwer and
Assocs., 1991.

[4] J. KONICEK, T. TILTON, ET AL., The organization of the cedar system, in Proc. 1991
International Conference on Parallel Processing, Penn State UNiversity Press, 1991.

17

LO

ro
3
0

IR

00Nd
0
n.

Figure 2: The Cedar interconnection network

18

MW/I

55.0

50.0

45.0

40.01

35.01

30.0(

25,0(

20.0c

15.00

10.00

5.00

0.00

P=P Y...

P -3--a _
P= 4

P = 16 --
P = 24
p _ 32

f4
1 ^

- -.- ------

sparsityv.w	 L.W	 4.00	 6.00 8.00

Figure 3: Implicit prefetch vector read bandwidth vs. sparsity, p f = 512.

19

MW/s

55,00 spar. _

50.00
spar =-0.50 =-

YWG=-.75••
'•''^

'

// + spar, = 1.00
45,00 'i:23'

spar.	 1.50 — —
40.00 I	 / / i'	 / spar'= 1.'13T

spar. = 2.00

35.00 i	 / / ' 	 i 'ipar. = 3.00•
/' / / •' / «spar. = 4.00

30.00 _t—L '' spar. =1.00
/ spar. = 8.00

25.00 : • / /'

•

20.00 / / ^/ '•

15.00

10.00

5.00

•i'
0.00

0.00	 5.00	 10.00	 15.00	 20.00	 25.00	 30.00	
procs.

Figure 4: Implicit prefetch vector read bandwidth vs. CE's, pf = 512.

20

sp-dup

JzlUU

p 2
30.00 P-

P	 4
23,00 — --

P = 8

26,00 — P --, 16

P- 24--
24.00 — 72 p

22,00 — — ------

10.00 —

Igloo

6,00 —

4,00 —

2.00 —

oloo — -

8.00

6.00 — -

4,00
— — ------ — ------ ------

2.00 —
..................

z1vu	 4.00	 6.00	 8.00	
......

Figure 5: Speedup vs. sparsity, p = 32.

21

I

i

...

...	 •------

r;

I'

w ^.. -. w.. -. ------- ._...-------- ^.-•__...

sp-dup

92.0

30.0

28,01

26.01

240

22.0(

20.0(

18.0(

16.0C

14.00

12.00

10.00

8.00

6 ?0

4.00

2.00

P= 2—

p
p= 4

p ^ 8—
p= 16
p 24

p— 32

sparsityv.w	 ;L.uu	 4.00	 6.00	 8.00

Figure 6: Speedup vs. sparsity, pJ = 512.

22

Mw/I

1,,W

72.00

,70,00

68.00

I	 /

66.00

64,00

62.00

60.00 ^.

58.00

56,09

54.00

52,00

50.00

1 e7

•suide.- ^

7	,itnde ^ 1a ^"

oUide a;-327

pf-block100.00	 200.00	 300,00	 400,00	 500.00

Figure 7: Bandwidth vs. prefetch size, 0 NOPS p = 32.

23

Sp-dup

i
----- -- --------------i

r

d!f f'	 ^^....
...............	

.....

r'
,r	 ter_,..._-,»......,_,.,^._...... 	 .. .».......,_..».._.	 ..._..^

^r
1

v.w	 2UO	 4.00	 6.00	 8100

Figure 8: Speedup vs, Sparsity

4

3,3

3

2.5

2

1.5

Ie+02

B

7

6

5

4

3.5

3

2.5

X12!
p=23b

Spaniry

24

aock Cycles

6,8O ._-_-

6.60_'
F-'

j' -
6.40
6.2U-'^--

• Is T5- -
6,0o

•'^

s _
5,80

5.60 3'" 2 b
_

5.40 "o IS	 4.0 -
5.20
5.00 i

4.80 ,•	 '	 ri^,'
4.60 ^f' .•	 ^'	 ^'	 i

4.40 / ,•• 	 r
4.20 lop'.

•
ol

4.00
3.80 !	 .'^+ r	 ^	 i
3.60
3.40

3.20 %^' + r •^ ^	 ^^^"
3.00
2.80
2.60

5	 1e402	 2	 5
P

Figure 9: Interarrival Time vs. System Size

25

-
J'	 -r:

i

i .0

r
i

s ^ ^

970—

= .T5" -
^=1s

Clock Cycla

33.00

32.00

31.00

30.00

29.00

28.00

27.00

26.00

25.00

24.00

23.00

22.00

21.00

20.00

19.00

18.00

17.00

16.00

15.00

1e+02

Figure 10: Block Latency vs. System Size

26

	1992005434.pdf
	0001A03.tif
	0001A04.tif
	0001A05.tif
	0001A06.tif
	0001A07.tif
	0001A08.tif
	0001A09.tif
	0001A10.tif
	0001A11.tif
	0001A12.tif
	0001A13.tif
	0001A14.tif
	0001B01.tif
	0001B02.tif
	0001B03.tif
	0001B04.tif
	0001B05.tif
	0001B06.tif
	0001B07.tif
	0001B08.tif
	0001B09.tif
	0001B10.tif
	0001B11.tif
	0001B12.tif
	0001B13.tif
	0001B14.tif
	0001C01.tif
	0001C02.tif

