ICASE

PROGRESS WITH MULTIGRID SCHEMES FOR HYPersonic FLOW PROBLEMS

R. Radespiel
R. C. Swanson

Contract No. NAS1-18605
December 1991

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, Virginia 23665-5225

Operated by the Universities Space Research Association

NASA
National Aeronautics and Space Administration
Langley Research Center
Hampton, Virginia 23665-5225
Progress with Multigrid Schemes for Hypersonic Flow Problems

R. Radespiel *
DLR, Braunschweig
Germany

R. C. Swanson
NASA Langley Research Center
Hampton, VA 23665

Abstract

Several multigrid schemes are considered for the numerical computation of viscous hypersonic flows. For each scheme, the basic solution algorithm employs upwind spatial discretization with explicit multistage time stepping. Two-level versions of the various multigrid algorithms are applied to the two-dimensional advection equation, and Fourier analysis is used to determine their damping properties. The capabilities of the multigrid methods are assessed by solving three different hypersonic flow problems. Some new multigrid schemes based on semicoarsening strategies are shown to be quite effective in relieving the stiffness caused by the high-aspect-ratio cells required to resolve high Reynolds number flows. These schemes exhibit good convergence rates for Reynolds numbers up to $200 \times 10^6$ and Mach numbers up to 25.

*This research was partially supported by the National Aeronautics and Space Administration under NASA Contract No. NAS1-18605 while the first author was in residence at the Institute for Computer Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.
1 Introduction

Over the past few years the need for efficient numerical methods to solve the equations governing hypersonic viscous flows has become very obvious. Mostly, flow solvers used in current aerospace programs, such as X-30 or SAENGER, exhibit slow convergence towards the desired steady-state solutions, which leads to high computer costs, long turn-around times, and a slowdown in the efforts to design these vehicles. The reason for this is the appearance of flow phenomena with very different scales and with highly nonlinear behavior. We mention here the laminar and turbulent boundary layers at very high Reynolds numbers and their interactions with shocks and slip lines, and furthermore, shock/shock interactions which generate complex flow fields. Many numerical techniques which were developed to assist convergence of subsonic or transonic flow calculations are found to be inappropriate for hypersonic flow applications. For example, the time step of many explicit and implicit schemes, which allows the transient behavior of strongly nonlinear hypersonic flow phenomena to be captured, is highly limited. Consequently, thousands of time steps are needed to converge the thin boundary layers.

A particular method which was successfully developed to accelerate convergence for a broad range of flow problems at both subsonic and transonic speeds is the multigrid approach. This method, which uses a sequence of successively coarser meshes in order to propagate disturbances throughout the flow field, combines nicely with explicit multistage time-stepping schemes [1]. Good convergence rates were obtained for inviscid flow and, later on, for viscous flows also [2-4]. Initial attempts to apply this promising method to hypersonic flows failed for several reasons. Primarily, the shock capturing capabilities of the central-difference scheme used in [1-4] were found insufficient to resolve strong shocks. Subsequently, the shock detection mechanism built into the central-difference scheme was improved in [5,6]. In order to have strong shocks and slip lines resolved with fewer computational points, the central-difference scheme was replaced with an upwind-type scheme in [7-9]. Since the high-frequency damping properties of upwind schemes are generally less controllable compared with central-difference schemes, a variant of the standard multigrid approach was also used in [8,9]. With this variant, additional coarse meshes are generated by semicoarsening in the different coordinate directions. This strategy was felt necessary to alleviate convergence problems associated with the high-aspect-ratio cells of the computational mesh. An additional problem encountered is that very high temperatures can occur in the stagnation region and near the surface at high Mach numbers; and hence, the time step of explicit schemes may be severely restricted by the viscous stability limit. It was found [6,8,9] that the viscous time-step limit can be removed by implicit residual averaging.

It is worthwhile to notice additional published work on multigrid schemes for hypersonic flows. Decker and Turkel [10] analyzed the effect of boundary conditions and Runge-Kutta coefficients on multigrid convergence for hypersonic inviscid flows. Leclercq [11] analyzed two-level multigrid cycles with multistage schemes and upwind differencing in one dimension, and she presented two-dimensional computations of hypersonic flows on unstructured meshes. As a means to remove stiffness associated with high-aspect-ratio cells, Blazek et al. [12] introduced an upwind-biased form of the residual smoothing by which higher Courant numbers could be obtained. Thomas [13] used multigrid in combina-
tion with third-order upwind differencing and implicit approximate factorization schemes. Koren and Hemker [14] solved the steady Euler equations with multigrid and point relaxation applied as the smoother. Using damped restriction and upwind prolongation, they reported impressive convergence rates for high-speed flows around blunt bodies.

The present paper describes recent efforts to understand and to improve the use of multigrid schemes for the computation of hypersonic flows. First, various two-level multigrid schemes with and without semicoarsening are introduced. Then we use Fourier analysis of the schemes, when applied to the two-dimensional convection equation, in order to study the behavior of their components. For each multigrid approach, the solver uses upwind discretization combined with an explicit multistage scheme. We next consider the numerical solution of the Navier-Stokes equations for hypersonic flows. In Section 5, the basic elements of the flow solver for these equations are described. Some details concerning the application of the time-stepping scheme to fine and coarse grid problems are presented in the first part of Section 6. The extension of the two-level schemes to multilevel ones is then discussed. Elements of multigrid that are of particular importance for high-speed flow computations are given. In the results section, we consider three different hypersonic flow problems to assess the capabilities of the multigrid schemes. The effect of stiffness, arising from coordinate grids with high-aspect-ratio cells and from flow alignment, on the performance of the multigrid methods is examined. The benefits of semicoarsening are clearly demonstrated. Moreover, with the semicoarsening strategies being considered, good convergence rates are obtained for Reynolds numbers up to $200 \times 10^6$ and Mach numbers up to 25.
2 Multigrid Strategies

To set the stage for the discussion relating to multigrid in subsequent sections of this paper, we first briefly describe the multigrid method and different execution strategies that will be considered. The multigrid approach is based on the Full Approximation Scheme of Brandt [15]. The grid transfer operators are those considered by Jameson [1]. Coarser meshes are obtained by eliminating alternate mesh points in each coordinate direction. Both the solution and the residuals are restricted from fine to coarse meshes. A forcing function is constructed so that the solution on a coarse mesh is driven by the residuals collected on the next finer mesh. The corrections obtained on the coarse mesh are interpolated back to the fine mesh. The multigrid schemes investigated within the present work are displayed in Figure 1. Figure 1 a) shows a two-level scheme with full coarsening. Restriction of the solution from the fine mesh, \((m,n)\), to the coarse mesh, \((m/2,n/2)\), is done by injection, whereas full weighting is used for the restriction of the residuals. Prolongation of the corrections is done by bilinear interpolation. Figure 1 b) shows a scheme with semicoarsening in the different coordinate directions. Again, injection and full weighting are used in the restriction process. The corrections obtained on the coarse meshes are averaged before adding them to the fine mesh. This is indicated by the numbers at the “up” arrows. Due to this averaging, half of the individual corrections on the coarse meshes is lost. It is, therefore, anticipated that the scheme in Figure 1 a) should be computationally more efficient, provided there is enough high-frequency damping obtained with the smoothing scheme of the fine mesh. In order to overcome this deficiency of the semicoarsening scheme, two more variants are considered. For the scheme of Figure 1 c), the solutions on the coarse meshes are computed sequentially. Hence, the corrections obtained on the \((m/2,n)\) mesh can be used to update the \((m,n/2)\) mesh before time stepping (as indicated by the horizontal arrow). The sequential update of the second coarse mesh allows the full amount of corrections to be passed up to the fine mesh. Note that this multigrid variant is not compatible with the idea of parallel computations. An interesting compromise between schemes of Figures 1 b) and 1 c) was suggested by Van Rosendale [16] (Figure 1 d)). Here, only the corrections common to both of the coarse meshes, \((m/2,n)\) and \((m,n/2)\), are averaged, whereas the corrections to the modes living either on \((m/2,n)\) or on \((m,n/2)\) are passed to the fine mesh in full. This scheme does allow parallel computations for the coarse meshes.

3 Fourier Analysis of the Scalar Advection Equation

A crucial factor in constructing an effective multigrid method is the selection of a smoothing or driving scheme. Local mode (Fourier) analysis is generally applied to evaluate possible smoothers on the basis of stability and high-frequency damping properties. The screening of schemes is often performed with a single-grid analysis. Since a stable single-grid scheme may not be stable for the multigrid process, the behavior of a smoother with a particular multigrid strategy is needed. In addition, the multigrid process can have a substantial impact on the performance of the multigrid method. In fact, as we will demonstrate in this paper, semicoarsening can provide significant improvement, relative to full coarsening, in the damping of the multigrid, especially when there is a strong mesh.
anisotropy due to high-aspect-ratio cells.

A two-grid or two-level multigrid analysis has been applied by Jameson [1], Mulder [17], and Leclercq [11] using various schemes (i.e., multistage time stepping, different types of relaxation) for solving the Euler and Navier-Stokes equations of fluid dynamics. In [1] Jameson introduces a multilevel uniform analysis and considers the linear advection equation in one space dimension. This approach represents a departure from the standard two-grid analysis given by Stüben and Trottenberg [18], which forms the basis for the analysis used in [17] and [11]. With the multilevel uniform analysis, fine-grid and coarse-grid corrections are computed at all points of the fine grid. Then a nonlinear filter is applied to remove the coarse-grid corrections at fine-grid points not contained in the coarse grid. The filtering produces additional errors in the form of a carrier wave with a frequency depending on the fine-mesh spacing. This analysis does not allow for the coupling (aliasing) effects due to the restriction operator (fine to coarse grid transfer operator) in the multigrid method. However, it does offer the advantages of simplicity and application to more than two-level schemes. Thus, it allows the rapid comparison of multigrid algorithms. If a multigrid method is unstable or inefficient according to this analysis, then it is probably not a reasonable scheme.

In this section, we consider the scalar two-dimensional advection equation. The multilevel uniform analysis of [1] is extended to two space dimensions and applied to full coarsening and semicoarsening strategies.

Consider an initial value problem governed by the scalar advection equation

$$\frac{\partial}{\partial t} w(x, y, t) + \mathcal{L} w(x, y, t) = 0, \quad (x, y) \in \Omega,$$

where the linear operator is

$$\mathcal{L} = a \frac{\partial}{\partial x} + b \frac{\partial}{\partial y}, \quad a > 0, \ b > 0,$$

the domain $\Omega \subset \mathbb{R}^2$, and $t \in \mathbb{R}^+$. Assume a periodic boundary condition for the scalar function $w(x, y, t)$. Let $\Omega = \{(x, y) : 0 \leq x \leq 1, \ 0 \leq y \leq 1\}$. Define a fine grid $G_f$ and coarse grids $G_{c,l} (l = 1, 2)$ that cover the domain $\Omega$ such that $G_{c,l} \subset G_f$. We generate grids $G_{c,l}$ by eliminating every other mesh line of $G_f$ in one or both coordinate directions. First we describe the fine-grid discrete problem. Let the grid $G_f$ contain $m_f \times n_f$ cells and have uniform spacings $\Delta x_f$ and $\Delta y_f$. Let the discrete function $(w_f)_{i,j}$ reside at the $G_f$ mesh point $(i \Delta x_f, j \Delta y_f)$. At each point $(i, j)$, we consider a corresponding cell $(C_f)_{i,j}$ with corners at $(i-1/2, j-1/2)$, $(i+1/2, j-1/2)$, $(i+1/2, j+1/2)$, and $(i-1/2, j+1/2)$. Suppose we approximate the spatial derivatives of (3.1) with first-order upwind differencing. Then, we obtain

$$\Delta t_f \frac{d}{dt} (w_f)_{i,j} = -N_\xi \left[ (w_f)_{i,j}^n - (w_f)_{i-1,j}^n \right] - N_\eta \left[ (w_f)_{i,j}^n - (w_f)_{i,j-1}^n \right],$$

where the Courant numbers are

$$N_\xi = \lambda_\xi \sigma_f, \quad N_\eta = \lambda_\eta \sigma_f$$

4
and
\[ \lambda_\xi = a \Delta y_f, \quad \lambda_\eta = b \Delta x_f, \quad \sigma_f = \frac{\Delta t_f}{\Delta \Omega_f}. \]

The superscript \( n \) denotes the time level \( n \Delta t \). If we estimate the time step \( \Delta t_f \) by
\[ \Delta t_f = \frac{N \Delta \Omega_f}{a \Delta y_f + b \Delta x_f}, \tag{3.3} \]
it follows that
\[ N_\xi = \frac{a N}{a + b \Lambda_f}, \quad N_\eta = \frac{b N \Lambda_f}{a + b \Lambda_f}, \tag{3.4} \]
where \( N \) is the Courant-Friedrichs-Lewy (CFL) number for an explicit time-stepping scheme, and \( \Lambda_f \) is the cell aspect ratio \( \Delta x_f/\Delta y_f \). Taking a Fourier transform of (3.2), we obtain
\[ \Delta t_f \frac{d\hat{w}_f}{dt} = -[N_\xi f(\theta_\xi) + N_\eta f(\theta_\eta)](\hat{w}_f)^n, \tag{3.5} \]
where
\[ f(\theta) = (1 - \cos \theta) + i \sin \theta, \]
and \( i = \sqrt{-1} \). The transformed discrete function is
\[ (\hat{w}_f)^n_{k_1, k_2} = \Delta x_f \Delta y_f \sum_{i_1=0}^{m_f-1} \sum_{j_1=0}^{n_f-1} (w_f)^n_{i_1, j_1} \exp[-i(i_1 \theta_\xi + j_1 \theta_\eta)], \tag{3.6} \]
where the phase angles \( \theta_\xi \) and \( \theta_\eta \) are given by
\[ \theta_\xi = 2\pi \frac{k_1}{m_f}, \quad \theta_\eta = 2\pi \frac{k_2}{n_f}, \]
with wave numbers
\[ k_1 = -\left(\frac{1}{2}m_f - 1\right), \cdots, \frac{1}{2}m_f, \quad k_2 = -\left(\frac{1}{2}n_f - 1\right), \cdots, \frac{1}{2}n_f. \]

Equation (3.5) can be rewritten as
\[ \delta \hat{w}_f = (\hat{w}_f)^{n+1} - (\hat{w}_f)^n = -Z(\theta_\xi, \theta_\eta)(\hat{w}_f)^n, \tag{3.7} \]
with \( Z \) being the Fourier symbol for the difference operator. Consider the explicit p-stage scheme
\[ (w_f)^{(0)} = (w_f)^n \]
\[ (w_f)^{(l)} = (w_f)^0 - \alpha_l \sigma_f (R_f)^{(l-1)}, \quad l = 1, 2, \cdots, p \tag{3.8} \]
\[ (w_f)^{(n+1)} = (w_f)^{(p)}, \]
where $R_f$ is a residual function defined as
\begin{equation}
R_f = \Delta \Omega_f \mathcal{L}_f w_f.
\end{equation}

Using this scheme and (3.7), one can always represent the change in $\hat{w}_f$ by
\begin{equation}
\delta \hat{w}_f = -\dot{F}(\theta_\xi, \theta_\eta)Z(\theta_\xi, \theta_\eta)(\hat{w}_f)^n,
\end{equation}
and the symbol of the time-stepping operator $F$ is given by
\begin{equation}
\dot{F}(\theta_\xi, \theta_\eta) = \alpha_p - \alpha_p \alpha_{p-1} Z + \alpha_p \alpha_{p-1} \alpha_{p-2} Z^2 - \cdots
- (-1)^p(\alpha_p \alpha_{p-1} \alpha_{p-2} \cdots \alpha_1) Z^{p-1}.
\end{equation}

In (3.11) we have assumed that both the convective and dissipative parts of the symbol $Z$ are evaluated on each stage of the time-stepping scheme. This scheme is a member of a general class of $(p, q)$ schemes. The $p$ refers to the number of stages, and $q$ designates the number of evaluations of the dissipative contribution. Suppose we have a $(p, 2)$ scheme. Let
\begin{equation}
Z_R = Re(Z), \quad Z_I = i \cdot Im(Z).
\end{equation}

Then, if $p \geq 3$, the $\dot{F}$ of (3.11) is replaced by
\begin{equation}
\dot{F} = \alpha_p - \alpha_p (\alpha_1 Z_R + \alpha_{p-1} Z_I) Z_I^0 + \alpha_p \alpha_{p-1} (\alpha_1 Z_R + \alpha_{p-2} Z_I) Z_I^1 - \cdots
- (-1)^p(\alpha_p \alpha_{p-1} \cdots \alpha_3)(\alpha_1 Z_R + \alpha_2 Z_I) Z_I^{p-3}
+ (-1)^p(\alpha_p \alpha_{p-1} \cdots \alpha_1) Z Z_I^{p-2}.
\end{equation}

In this paper, we consider a $(5, 3)$ scheme where the dissipative evaluations are weighted. For this scheme, the symbol of the residual function corresponding to the $(k + 1)$th stage is written as
\begin{equation}
\hat{R}^{(k+1)} = \sigma^{-1} \left[ Z_I \hat{w}_I^{(k)} + Z_R \sum_{l=0}^{k} \gamma_{kl} \hat{w}_I^{(l)} \right], \quad \sum_{l=0}^{k} \gamma_{kl} = 1.
\end{equation}

The weighting factors are as follows:
\begin{align*}
\gamma_{00} &= 1, \\
\gamma_{10} &= 1, \quad \gamma_{11} = 0, \\
\gamma_{20} &= \Gamma_3, \quad \gamma_{21} = 0, \quad \gamma_{22} = \overline{\Gamma}_3, \\
\gamma_{30} &= \Gamma_3, \quad \gamma_{31} = 0, \quad \gamma_{32} = \overline{\Gamma}_3, \quad \gamma_{33} = 0, \\
\gamma_{40} &= \Gamma_3 \Gamma_5, \quad \gamma_{41} = 0, \quad \gamma_{42} = \overline{\gamma}_3 \Gamma_5, \quad \gamma_{43} = 0, \quad \gamma_{44} = \overline{\gamma}_5,
\end{align*}

where $\Gamma_3 = (1 - \overline{\gamma}_3)$, $\Gamma_5 = (1 - \overline{\gamma}_5)$, $\overline{\gamma}_3 = 0.56$, and $\overline{\gamma}_5 = 0.44$. The symbol of the time-stepping operator is given by
\begin{equation}
\hat{F} = \alpha_5 [1 - \alpha_4 Z_I (1 - \alpha_3 Z_I) - \alpha_4 Z_3 Z_I (\alpha_3 Z_2 Z_I - \overline{\gamma}_3 Z_R) - \Gamma_5 \overline{\gamma}_3 Z_5 Z_R],
\end{equation}
where
\[ Z_1 = Z_I + \bar{\gamma}_\xi Z_R, \]
\[ Z_2 = Z_I + \bar{\gamma}_\eta Z_R, \]
\[ Z_3 = \alpha_2(1 - \alpha_1 Z_I). \]

One can extend the stability range of the explicit scheme of (3.8) with implicit residual smoothing. For two dimensions, the residual smoothing can be applied in the form
\[ (1 - \beta_\xi \nabla_\xi \Delta_\xi)(1 - \beta_\eta \nabla_\eta \Delta_\eta)\bar{R}_f^{(l)} = R_f^{(l)}, \]  

where the residual \((R_f)^{(l)}\) is defined using (3.9) as
\[(R_f)^{(l)} = \sigma_f(R_f)^{(l)}, \]

\(\Delta\) and \(\nabla\) are the usual forward and backward difference operators, and \(l = 1, \cdots, p\), with \(p\) being the number of stages in the scheme. The variable coefficients \(\beta_\xi\) and \(\beta_\eta\) are defined as follows:
\[ \beta_\xi = \max \left\{ \frac{1}{4} \left[ \left( \frac{N}{N^*} \frac{1}{1 + \psi r_\eta \xi} \right)^2 - 1 \right], 0 \right\}, \]
\[ \beta_\eta = \max \left\{ \frac{1}{4} \left[ \left( \frac{N}{N^*} \frac{1}{1 + \psi r_\eta^{-1} \xi} \right)^2 - 1 \right], 0 \right\}, \]

with \(N/N^*\) the ratio of the Courant number for the smoothed scheme to that of the unsmoothed scheme, and \(r_\xi = \lambda_\eta/\lambda_\xi\). A reasonable value for the parameter \(\psi\) is 0.125. In practice, this implicit procedure allows the explicit stability limit to be increased by a factor of 2 to 3. For additional details concerning implicit residual smoothing, see [3,5].

If residual smoothing is applied on each stage of the time-stepping scheme, then the symbol \(Z(\theta_\xi, \theta_\eta)\) appearing in (3.10) and (3.11) is replaced with
\[ \tilde{Z}(\theta_\xi, \theta_\eta) = \tilde{S}(\theta_\xi, \theta_\eta)Z(\theta_\xi, \theta_\eta), \quad \tilde{S}(\theta_\xi, \theta_\eta) = \Gamma_\xi^{-1}\Gamma_\eta^{-1}, \]

where
\[ \Gamma_\xi = 1 + 2\beta_\xi(1 - \cos \theta_\xi), \quad \Gamma_\eta = 1 + 2\beta_\eta(1 - \cos \theta_\eta). \]

Before considering the discrete problem on some coarse grid \(G_{c,1}\), we define the restriction operators and their corresponding Fourier symbols. Assume that \(G_{c,1}\) contains \((m_f/2) \times (n_f/2)\) cells (full coarsening). Let \(T_f^c\) and \(Q_f^c\) denote the operators that transfer the fine-grid solution and residual to the coarse grid. Since any coarse-grid point belongs also to the fine grid, we have simple injection for the solution transfer operator. Thus,
\[ T_f^{c,1}w_f = w_f, \quad \hat{T}_f^{c,1} = 1. \]

To ensure the conservation property for the residual transfer, we define
\[ Q_f^{c,1}(R_f)_{i,j} = 4\mu_\xi^2\mu_\eta^2(R_f)_{i,j}, \]
where \( \mu_x \) and \( \mu_y \) are the standard averaging operators for the \( x \) and \( y \) directions. The symbol of this operator is given by

\[
\hat{Q}_f^{c,1} = (1 + \cos \theta_x)(1 + \cos \theta_y).
\]  

(3.22)

If we now apply the \( p \)-stage scheme, we obtain at the corresponding point of the \( G_{c,1} \) problem

\[
\begin{aligned}
(w_{c,1})^{(0)} &= (w_f)^+ = (w_f)^{n+1} \\
(w_{c,1})^{(l)} &= (w_{c,1})^0 - \alpha_l \sigma_{c,1} [(R_{c,1})^{(l-1)} + P_{c,1}], \quad l = 1, 2, \cdots, p \\
(w_{c,1})^{(n+1)} &= (w_{c,1})^{(p)},
\end{aligned}
\]

(3.23)

where the forcing function

\[
P_{c,1} = Q_f^c (R_f)^+ - (R_{c,1})^{(0)},
\]

(3.24)

and

\[
\begin{aligned}
(R_f)^+ &= \Delta \Omega_f L_f (w_f)^+ \\
(R_{c,1})^{(0)} &= \Delta \Omega_{c,1} L_{c,1} (w_{c,1})^{(0)}.
\end{aligned}
\]

By successive substitution in (3.23), one can easily show that

\[
\delta \hat{w}_{c,1} = -\hat{F}_{c,1} \hat{S}_{c,1} \sigma_{c,1} \hat{Q}_f^{c,1} (\hat{R}_f)^+
\]

(3.25)

or

\[
\delta \hat{w}_{c,1} = -\hat{F}_{c,1} \hat{S}_{c,1} \sigma_{c,1} \hat{Q}_f^{c,1} \sigma_f^{-1} Z_f \hat{w}_f^+
\]

(3.26)

with

\[
(\hat{w}_f)^+ = (\hat{w}_f)^n + \delta \hat{w}_f.
\]

(3.27)

Since

\[
\delta \hat{w}_f = -\hat{F}_f \hat{Z} (\hat{w}_f)^n,
\]

(3.28)

then

\[
(\hat{w}_f)^+ = g_f (\hat{w}_f)^n,
\]

(3.29)

where the fine-grid amplification factor is

\[
g_f = 1 - \hat{F}_f \hat{Z}_f.
\]

(3.30)

Moreover, in this case, where we are considering full coarsening, the fine-grid approximation is

\[
(\hat{w}_f)^{n+1} = (\hat{w}_f)^n + \delta \hat{w}_f + \delta \hat{w}_{c,1},
\]

and thus,

\[
(\hat{w}_f)^{n+1} = \left[ 1 - \hat{F}_{c,1} \hat{S}_{c,1} \sigma_{c,1} \hat{Q}_f^{c,1} \sigma_f^{-1} Z_f \right] g_f (\hat{w}_f)^n
\]

\[
= g_c g_f (\hat{w}_f)^n,
\]

(3.31)
with $g_c$ denoting the coarse-grid amplification factor.

We now apply the multilevel uniform analysis to two semicoarsening multigrid strategies (see Figure 1). Let $G_{c,1}$ and $G_{c,2}$ be two coarse grids containing $(m_f/2) \times n_f$ and $m_f \times (n_f/2)$ cells, respectively. In the case of semicoarsening with simple averaging, we express the Fourier transform of the update for the fine-grid solution as

$$ (\hat{w}_f)^{n+1} = (\hat{w}_f)^n + \delta \hat{w}_f + \omega_1 \delta \hat{w}_{c,1} + \omega_2 \delta \hat{w}_{c,2}, \quad (3.32) $$

where $\omega_1 = \omega_2 = 1/2$. Then the amplification factor associated with the coarse grids is given by

$$ g_c = 1 - \frac{1}{2} \left[ \hat{F}_{c,1} \hat{S}_{c,1} \sigma_{c,1} \hat{Q}_f^{-1} \sigma_f^{-1} Z_f + \hat{F}_{c,2} \hat{S}_{c,2} \sigma_{c,2} \hat{Q}_f^{-1} \sigma_f^{-1} Z_f \right]. \quad (3.33) $$

With sequential semicoarsening, we can use weightings of 1.0 for the coarse-grid corrections by improving the estimate of the initial solution on either grid $G_{c,2}$, as indicated in Figure 1, or $G_{c,1}$. The coarse-grid correction $\delta \hat{w}_{c,1}$ is given by (3.26), and the other one $\delta \hat{w}_{c,2}$ is given by

$$ \delta \hat{w}_{c,2} = -\hat{F}_{c,2} \left[ \hat{S}_{c,2} \sigma_{c,2} \hat{Q}_f^{-1} - \hat{Z}_{c,2} \hat{F}_{c,1} \hat{S}_{c,1} \sigma_{c,1} \hat{Q}_f^{-1} \right] \sigma_f^{-1} Z_f g_f(\hat{w}_f)^n. \quad (3.34) $$

By substituting (3.26) and (3.34) into (3.32), one can compute the amplification factor $g(\theta_\xi, \theta_\eta)$.

Before we applied the two-dimensional multigrid analysis just discussed, we examined the stability properties for a large number of multistage time-stepping schemes, including the schemes published in [19,20]. We performed this preliminary study with the one-dimensional advection equation for a single grid. Figures 2 and 3 show two examples from this study. The dash line represents the locus of the symbol of the difference operator, and it must lie inside the absolute stability curve. The dissipative term for first-order upwind differencing is evaluated three times for both the three- and five-stage schemes. In the case of the (5,3) scheme, the dissipation is computed on the first, third, and fifth stages, and the weights are those given in (3.14). While the (3,3) scheme exhibits fairly good high-frequency damping, there is a substantial improvement in damping with the (5,3) scheme, at the expense of a little extra work. The coefficients for the (5,3) scheme are those determined by Tai [21].

In Figures 4 and 5, we present contours of the amplification factor $g(\theta_\xi, \theta_\eta)$ for the following cases: 1) single grid, 2) full coarsening, 3) semicoarsening with simple averaging, 4) sequential semicoarsening. For each case, cell aspect ratios of one and ten are shown. The improvement in damping with the two-level schemes is evident. There is greater compression of $g(\theta_\xi, \theta_\eta)$ to the origin with the semicoarsening strategies. The aspect ratio ($\Lambda$) of ten contours indicate that the one-dimensional behavior of the driving scheme in the $\eta$ direction is recovered for large $\Lambda$. They also show that modes associated with the $\xi$ direction are damped much better with the semicoarsening schemes.

According to the current analysis, where the nodal point of interest is assumed to be common to all meshes being considered, the semicoarsening scheme with selective averaging has the same damping behavior as the one with simple averaging. In practice, however, we observe the expected improvement in damping when using selective rather than simple averaging. This will be demonstrated later.
4 Governing Flow Equations

Let \( \rho, u, v, p, T, E, \) and \( H \) denote, respectively, the nondimensional values of density, velocity components in the \( x \) and \( y \) Cartesian directions, pressure, temperature, specific total internal energy, and specific total enthalpy. In addition, let \( e_x \) and \( e_y \) be unit vectors of the Cartesian coordinate system \( (x, y) \), and let \( n \) be a unit vector normal to the surface \( S \) enclosing a volume \( V \). Then the two-dimensional, unsteady Navier-Stokes equations, neglecting body forces and heat sources, can be written in conservative form in a Cartesian coordinate system as

\[
\frac{\partial}{\partial t} \int_V \mathbf{W} dV + \int_S (\mathbf{F}_c + \mathbf{F}_v) \cdot \mathbf{n} dS = 0, \tag{4.1}
\]

where the solution vector \( \mathbf{W} \) and the tensors \( \mathbf{F}_c, \mathbf{F}_v \) are defined as

\[
\mathbf{W} = \begin{bmatrix}
\rho \\
u \\
v \\
\rho E
\end{bmatrix}, \quad \mathbf{F}_c = \begin{bmatrix}
\rho u e_x + \rho v e_y \\
(\rho u^2 + p)e_x + \rho u v e_y \\
\rho u v e_x + (\rho v^2 + p)e_y \\
\rho u H e_x + \rho v H e_y
\end{bmatrix}, \quad \mathbf{F}_v = \hat{Re}^{-1}
\begin{bmatrix}
0 \\
\sigma_x e_x + \tau_{xy} e_y \\
\tau_{xy} e_x + \sigma_y e_y \\
(u \sigma_x + v \tau_{xy} - q_x)e_x + (u \tau_{xy} + v \sigma_y - q_y)e_y
\end{bmatrix},
\]

with

\[
\sigma_x = -\lambda \left( \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) - 2\mu \frac{\partial u}{\partial x},
\]

\[
\sigma_y = -\lambda \left( \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) - 2\mu \frac{\partial v}{\partial y},
\]

\[
\tau_{xy} = \tau_{yx} = -\lambda \left( \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right),
\]

\[
q_x = k \left( \frac{\partial T}{\partial x} \right),
\]

\[
q_y = k \left( \frac{\partial T}{\partial y} \right),
\]

\[
H = E + \frac{p}{\rho}.
\]

The scaling factor \( \hat{Re}^{-1} = \sqrt{\gamma MRe^{-1}} \), with \( M \) and \( Re \) representing the Mach and Reynolds numbers, respectively. In this paper, the working fluid is air, and it is assumed to be thermally and calorically perfect. That is, the equation of state is

\[
p = (\gamma - 1)\rho (E - (u^2 + v^2)/2), \quad T = p/\rho \tag{4.2}
\]
The quantities \( \mu \) and \( \lambda \) are the first and second coefficients of viscosity, respectively, and \( \lambda \) is taken to be \(-\frac{2}{3} \mu \) (Stokes hypothesis). Sutherland’s law is used to determine the molecular viscosity coefficient \( \mu \). The coefficient of thermal conductivity \( k \) is evaluated using the constant Prandtl number assumption. The effect of turbulence is taken into account by using the eddy-viscosity hypothesis. In the present work, the turbulence model of Baldwin and Lomax [22] is used.

5 Spatial Discretization

The numerical approximation of (4.1) follows the method of lines, which decouples the discretization in space and time. The physical domain around the aerodynamic body is divided into quadrilateral cells by the generation of a body-fitted grid. The discrete values of the flow quantities are located at the vertices of the mesh cells. For the flux calculation, an auxiliary grid is used, which is defined by connecting the cell centers of the original cells (see Figure 6). The integral equation (4.1) is approximated by the spatial discretization, yielding

\[
\frac{d}{dt} W_{i,j} = -\frac{1}{V_{i,j}} \left( (Q_c)_{i,j} + (Q_v)_{i,j} \right), \tag{5.1}
\]

where \( V_{i,j} \) denotes the area of the control volume surrounding the grid node \((i,j)\). \((Q_c)_{i,j}\) and \((Q_v)_{i,j}\) represent approximations of the convective flux and viscous flux, respectively. The viscous fluxes are approximated by central differences using a local transformation from Cartesian coordinates to the curvilinear coordinates [4]. In the following some details of the upwind discretization of the convective terms are discussed. The inviscid flux through the interface, \((i + 1/2, j)\), is evaluated as

\[
(Q_c)_{i+1/2, j} = \frac{1}{2} \left[ (F_c)_{i,j} + (F_c)_{i+1,j} \right] \cdot S_{i+1/2, j} + \frac{1}{2} R_{i+1/2, j} \Phi_{i+1/2, j}. \tag{5.2}
\]

Here, \( S_{i+1/2, j} \) is the surface vector of face \((i + 1/2, j)\), and \( R \) is the right eigenvector matrix of the flux Jacobian in transformed space. Equation (5.2) separates the inviscid numerical flux into the sum of an averaged term corresponding to central differencing and a dissipative term, which adapts the discretization stencil in accordance with local wave propagation. The flux function \( \Phi \) is based on the second-order accurate upwind TVD scheme of Yee and Harten [23]. Here, we do not repeat the formulation for \( \Phi \), but simply indicate some important details in the present numerical evaluation of \( \Phi \). Second-order accuracy is obtained with the limiter

\[
g_{i,j} = \frac{\alpha_{i-1/2,j} \left( \alpha_{i+1/2,j}^2 + \epsilon \right) + \alpha_{i+1/2,j} \left( \alpha_{i-1/2,j}^2 + \epsilon \right)}{\alpha_{i-1/2,j}^2 + \alpha_{i+1/2,j}^2 + 2\epsilon}, \tag{5.3}
\]

where \( \alpha \) is the first difference of the characteristic variable, \( R^{-1} \Delta W \), and \( \epsilon \) is a small constant to prevent division by zero. The flow quantities at the face \((i + 1/2, j)\) are evaluated by Roe’s averaging procedure [24]. Note that the scheme is identical to Roe’s first-order flux difference splitting for \( g = 0 \). Since Roe’s scheme may violate the entropy condition when the eigenvalues of the flux Jacobians vanish, the eigenvalues are modified
using an entropy function $\Psi$. This entropy correction has to be carefully designed for viscous flow calculations. The shear layers along solid walls are numerically smeared, if an entropy correction is applied to the eigenvalues associated with the convective waves. On the other hand, if cells with high aspect ratios are present, additional support for damping in the direction of the long side of a cell is needed in regions of low velocities, such as stagnation points. Therefore, the correction of the eigenvalues $\Psi$ is constructed as a function of the cell aspect ratio. For the convective waves, the function

$$\Psi(\lambda_\xi^l) = \begin{cases} |\lambda_\xi^l|, & \text{if } |\lambda_\xi^l| \geq \delta; \\ \beta \frac{1}{2\delta} |\lambda_\xi^l|^2 + \delta^2, & \text{if } |\lambda_\xi^l| < \delta; \end{cases}$$

and for the acoustic waves

$$\Psi(\lambda_\xi^l) = \begin{cases} |\lambda_\xi^l|, & \text{if } |\lambda_\xi^l| \geq \delta; \\ \frac{1}{2\delta} |\lambda_\xi^l|^2 + \delta^2, & \text{otherwise}. \end{cases}$$

In equations (5.4) and (5.5), $\lambda_\xi^l$ represents the $l$-th eigenvalue of the transformed flux Jacobian in the $\xi$-direction. The entropy parameter, $\delta$, is given according to Müller [25]

$$\delta = \hat{\delta} \lambda_\xi (1 + (\lambda_\eta / \lambda_\xi)^\omega),$$

where $\lambda_\xi$, $\lambda_\eta$ are the spectral radii of the flux Jacobians in the $\xi$ and $\eta$ directions, $0 < \omega < 1$, and $0.1 < \hat{\delta} < 0.5$. If $\mathbf{U} = u \mathbf{e}_x + v \mathbf{e}_y$, $\mathbf{S}_\xi$ and $\mathbf{S}_\eta$ are directed areas associated with the $\xi$ and $\eta$ directions, and $c$ is the speed of sound, then

$$\lambda_\xi = |\mathbf{U} \cdot \mathbf{S}_\xi| + c|\mathbf{S}_\xi|, \quad \lambda_\eta = |\mathbf{U} \cdot \mathbf{S}_\eta| + c|\mathbf{S}_\eta|. \quad (5.7)$$

The blending coefficient, $\beta$, accounts for the cell aspect ratio. It is given as

$$\beta = \max(1 - \lambda_\xi / \lambda_\eta, \kappa). \quad (5.8)$$

It is shown below that $\kappa$ should be zero for accurate computations of shear layers. Furthermore, we will demonstrate that a wide range of flow problems can be solved accurately with a single set of parameters, $\delta = 0.25$, $\omega = 0.3$, and $\kappa = 0$.

6 Time-Stepping Scheme for Hypersonic Flows

The basic elements of the time-stepping scheme have been outlined in Section 3, and they are not repeated here. In the following sections emphasis is placed on recent improvements to enhance robustness for hypersonic flow calculations.

6.1 Multistage Scheme for the Fine and Coarse Meshes

Consistent with the results for the advection equation in Section 3, we have observed the need to pair spatial discretization and particular time-stepping schemes for the solution
of the Navier-Stokes equation. The most robust choice of spatial discretizations found to
this point is to use the second-order upwind scheme of Section 5 on the fine meshes and to
set the limiter to zero everywhere on the coarse meshes. An alternative choice taken in [6,8]
is to use scalar second-difference dissipation terms on the coarse meshes. This turned out to
be less robust because the second differences are less diffusive with respect to the acoustic
modes; also, the central-difference scheme allows waves to travel upstream in supersonic
flow. As indicated previously, a five-stage scheme with three evaluations of dissipation and
the coefficients of Tai [21] is used for time advancement. The large viscous stability limit
of this scheme is shown in Figure 3. Disturbances are most effectively expelled out of the
computational domain by using local time stepping and implicit residual smoothing [5,6].
The smoothing of the residuals allows a Courant number ratio ($CFL/CFL^*$) as high as
2.5 when $CFL^* = 2.3$, which is roughly the stability limit of the explicit scheme. The
time step is determined by the spectral radii of the inviscid flux Jacobians in the different
coordinate directions, $\lambda_\xi$ and $\lambda_\eta$, as

$$\Delta t = CFL \frac{V}{\lambda_\xi + \lambda_\eta}. \quad (6.1)$$

In order to stabilize the schemes in regions where the viscous stability limit is more
restrictive than the inviscid limit, the coefficients of the implicit residual smoothing oper-
ator are locally increased, as outlined in [6,8]. At strong shocks, however, high Courant
numbers are not appropriate. Consequently, an adaptive time step is employed. By using
the nondimensional second difference of the pressure as a switch, the value of $CFL$ is
locally reduced to about two at the shock.

### 6.2 Multigrid Schemes

For the numerical solution of the Navier-Stokes equations, the two-level strategies
presented in Figure 1 are extended to multilevel schemes, as displayed in Figure 7. The
only differences between the two-level schemes and the multilevel schemes occur in the
restriction process. Whenever two “down” arrows meet at a coarse mesh, averaging is
used to obtain the restricted variable. The multilevel arrangement of the coarse meshes,
shown in Figure 7 b), was first given by Mulder [17], who used semicoarsening in order
to solve the flow alignment problem. Suitable coordinate meshes for thin boundary layers
exhibit mostly cells with high aspect ratios in the surface-aligned direction. Figure 8
displays further variants of semicoarsening for these situations which are computationally
cheaper than the semicoarsening schemes shown in Figure 7.

One may notice that the central restriction and prolongation operators discussed in
Section 2 allow for upstream propagation of disturbances in supersonic flow. Further-
more, the corrections given by the standard multigrid scheme near strong shocks lead
to divergence of the calculation, particularly during the initial part of the transient phase.
Therefore, the restriction operator is damped by using

$$R_{i,j} = \max(1 - \epsilon_{i,j}(n), 0)\hat{R}_{i,j}, \quad (6.2)$$

where $\hat{R}_{i,j}$ is the standard restriction operator, and $\epsilon_{i,j}(n)$ is a switch to detect strong
shocks,

$$\epsilon_{i,j}(n) = k(n) \max(\nu_i, \nu_{i+1}, \nu_{i-1}, \nu_j, \nu_{j+1}, \nu_{j-1}), \quad (6.3)$$
\[
\nu_i = \left\lfloor \frac{p_{i-1,j} - 2p_{i,j} + p_{i+1,j}}{p_{i-1,j} + 2p_{i,j} + p_{i+1,j}} \right\rfloor, \quad \nu_j = \left\lfloor \frac{p_{i,j-1} - 2p_{i,j} + p_{i,j+1}}{p_{i,j-1} + 2p_{i,j} + p_{i,j+1}} \right\rfloor.
\]

(6.4)

The damping coefficient, \(k^{(n)}\), is given a value of about one in the start-up phase of the multigrid process and is decreased to a value of about 0.4 at later cycle numbers in order to allow for good asymptotic convergence rates. This is in line with the restriction damping of Koren and Hemker [14], who based their damping coefficients on a more physical analysis.

A fixed V-type cycle with time stepping on the way down is used to execute the multigrid strategies described above. The robustness of the overall scheme is much improved by smoothing the resultant coarse-mesh corrections before they are passed to the finest mesh. The smoothing reduces high-frequency oscillations introduced by the linear interpolation of the coarse-mesh corrections. The factored scheme equation (3.16) with constant coefficients around 0.1 is used for this smoothing. Also, the application of Full Multigrid (FMG) provides a well-conditioned starting solution for the finest mesh being considered.

7 Numerical Results

Three different hypersonic flow cases are used to assess the capabilities of the multigrid schemes. These are laminar Mach 10 (\(M = 10\)) flow over a compression ramp, turbulent flow over a slender forebody at high Reynolds numbers, and laminar flow over an airfoil at high Mach number and high angle of attack. Table 1 gives a summary of the geometries and the flow parameters of the test cases. In this table, \(T_{\text{inf}}\) is the dimensional freestream temperature, and \(T_w\) is the specified wall temperature. Also, the finest grid used for each flow computation is characterized by the streamwise and normal leading-edge spacings (\(\Delta s_{le}, \Delta n_{le}\)), along with the normal spacing (\(\Delta n_{te}\)) at the end or trailing edge of a geometry.

The flow over the compression ramp is identical to Case 3.2 of the Workshop on Hypersonic Flows for Reentry Problems, Part II, held in Antibes, France, 1991. This allows comparisons with the performance of other computational methods published in [26]. Figure 9 displays the coordinate mesh generated for this test case. The low Reynolds number allows for a mesh with moderate aspect ratios between 5 and 50 near the wall. The \(129 \times 81\) mesh is successively coarsened down to \(9 \times 6\), which yields 9 grid levels with semicoarsening and 5 levels with full coarsening. It is expected that the semicoarsening strategy should eliminate most of the stiffness associated with aspect ratio. The converged flow solution is shown in Figure 10. The computed extent of separation in the corner is somewhat smaller for the coarse mesh than for the fine mesh. Note that the result of the fine mesh agrees very well with grid-converged computations published in [13].

In the next figures, we analyze the performance of the different multigrid schemes. For this purpose, computations are started from a solution which was converged to about plotting accuracy. Figure 11 compares the different schemes of Figure 7. The numbers indicate the final convergence rate (\(r\)) of the schemes and the rate of data processing (\(RDP\)) on a CRAY-YMP to advance one grid point by one multigrid cycle. It is seen that the sequential semicoarsening scheme (Figure 7 c)) gives by far the best convergence rate. For this scheme, the effect of the modifications shown in Figure 8 is investigated in Figure 12. One finds that the meshes obtained by full coarsening and by semicoarsening in the
direction normal to the wall are both important to achieve good convergence rates. From Figures 11-12, we conclude that semicoarsening with a selected number of coarse meshes is most effective for this flow problem; however, full coarsening does a surprisingly good job because of its low work count. Figures 13-14 show improvements which may be gained by using more than a single time step on the coarse meshes. The full coarsening scheme, Figure 13, gives only marginal gains when using more than two time steps on the coarse meshes. The sequential semicoarsening scheme, Figure 14, gives an initially improved rate, whereas the final rate is not affected by more work done on the coarse meshes. It is thought that the capabilities of the multigrid approach are put to full use for this test case. Further improvements are foreseen only if the remaining stiffness in the discrete equations, that is the differences in the characteristic speeds of acoustic and convective waves, can be overcome by some proper means. A comparison between single mesh and multigrid computations is given in Figure 15. We find that the multigrid scheme with sequential semicoarsening converges within one tenth of the computing time required for the single mesh scheme.

The grid generated for the ramp flow is well suited to study the grid-alignment problem which occurs for inviscid flow over the ramp. Figure 16 shows convergence histories of various schemes obtained by using a slip-wall boundary condition and omitting the viscous terms in the governing equations. Generally, convergence is worse for the inviscid flow because the convective eigenvalues of the flux Jacobian in the normal direction are zero for most of the grid points. The second-order solution does not converge, regardless which multigrid strategy we use. With the flux limiter, equation (5.3), set to zero everywhere on the fine mesh, the solution converges, provided we use all the coarse meshes introduced by the semicoarsening approach. Note that this result is identical to the findings of Mulder [27]. We have to conclude that the present multigrid schemes cannot cope with the grid-alignment problem in the context of high-order spatial discretizations.

The flow over a slender forebody is chosen to represent a generic configuration corresponding to a high-speed civil transport aircraft or an air-breathing space transportation system with low wave drag. The high Reynolds numbers yield thin boundary layers, which can only be resolved with highly clustered coordinate meshes and large aspect ratio cells. The mesh used for the present investigations is displayed in Figure 17. The cells near the wall have aspect ratios up to 25000. The flow computations were done with fixed transition at 2 percent chord and with the assumption of an adiabatic wall. Figures 18-20 show the solution obtained on three successively refined meshes. Both the distributions of skin friction and wall temperature are accurately computed, even with just 25 points in the normal direction. The effect of numerical dissipation introduced by the entropy correction function $\Psi$, equations (5.4)-(5.8), is shown in Figure 21. If the value of $\omega$ is increased to 2/3, which is a typical value used in central-difference codes [2,4], the wall temperature is badly reproduced on the coarse mesh. Furthermore, if we introduce numerical dissipation for the convective waves in the direction of the short side of the cells by setting $\kappa > 0$, the shear layers are numerically smeared; and hence, the wall temperature is adversely affected. We notice that a value of $\kappa = 0.1$, which again is a representative dissipation level of current central-difference codes, yields reasonable solutions. However, the convergence behavior is not changed much with this relatively low level of numerical dissipation.
Hence, all the results presented for the three test cases were obtained with a single set of parameters, \( \delta = 0.25, \omega = 0.3, \) and \( \kappa = 0. \)

Next we investigate the convergence behavior of the multigrid schemes. The fine mesh with \( 257 \times 97 \) points allows 11 grid levels to be used with semicoarsening. First we notice that it is not possible to run the full diamond-shape tree of coarse meshes. Obviously, the time-stepping scheme is not well suited to handle the extreme aspect ratios which occur on the \( 17 \times 97 \) mesh, for example. Using the proper half of the diamond, which includes the meshes with relatively low aspect ratios, the numerical solution converges. Figure 22 displays a comparison of the different multigrid strategies. The computations are started from a preconverged solution. The computer time to update a grid point by one multigrid cycle, \( RDP, \) and the final convergence rate, \( r, \) are also included. Again, the scheme with sequential semicoarsening converges best. The differences between the multigrid schemes for this case, having cells with very high aspect ratios, are larger than for the ramp flow. The final convergence rate of the scheme with sequential semicoarsening is 15 times better than the rate with full coarsening. A comparison of the performance for the complete FMG process is given in Figure 23. The sequential semicoarsening scheme takes 194 cycles and 570s CPU on a CRAY-YMP to reduce the averaged residuals to \( 10^{-2} \) on the fine mesh. The scheme with full coarsening takes 1024 cycles and 1430s, and the single mesh code takes 7762 time steps and 6190s to achieve the same convergence level. Note that residuals of \( 10^{-2} \) correspond to a solution which is converged within plotting accuracy. If we compared computer times to reach lower levels of residuals instead, the results would have been even better for the multigrid scheme with semicoarsening.

Laminar flow over an airfoil at \( M = 25 \) and \( \alpha = 30 \) degrees is chosen as a final test case in order to demonstrate that the multigrid method used here can handle very strong shock waves and highly expanded flow. Figure 24 shows the \( 257 \times 81 \) mesh. The numerical flow solution, which is represented in Figures 25-28, features a large separated flow region with two distinct vortices. The resulting shear layers are not well aligned with the coordinate mesh; and hence, considerable numerical smearing is expected in those regions. The difficulties in resolving this highly separated flow are illustrated by a comparison of the results obtained from meshes with different grid densities. Obviously, the mesh with \( 129 \times 41 \) points is still too coarse to resolve the separated flow region. The convergence history of the sequential semicoarsening scheme is shown in Figure 29. The residual drops 8 orders of magnitude within 400 multigrid cycles. Note that the largest values of \( \partial \rho / \partial t \) are located at the shock wave. The solution converges to plotting accuracy within 100 multigrid cycles.

8 Conclusions

New multigrid schemes for hypersonic flow computations have been investigated. The basic solution algorithm employs upwind discretization and explicit multistage time stepping. Various multigrid schemes with semicoarsening are introduced in order to overcome stiffness resulting from the mesh cells with high aspect ratio which are necessary to resolve viscous flows. The basic components of the algorithm are examined with Fourier stability analysis applied to the two-dimensional advection equation. Both the results of the Fourier analysis and the computations of high Reynolds number flows suggest that the semicoars-
ening approach is effective. For the first time, convergence rates for hypersonic viscous flows are shown which are similar or even better than those previously published for the transonic regime [3,4]. Further work is required to make the computational scheme less expensive. This is especially true for the coarse meshes used within the semicoarsening approach, which make up the major portion of the overall work count of the scheme. Further improvements of convergence rates seem possible if stiffness arising from the difference of characteristic speeds of acoustic and convective waves can be overcome. For this purpose, new techniques such as preconditioning of the flow equations [28,29] or characteristic residual smoothing [12] seem to hold promise.

Acknowledgement

The present work evolved while the first author stayed at the Institute for Computer Applications in Science and Engineering as a Visiting Scientist. The communications with J. Blazek during the development of the Fourier analysis and many valuable discussions with N. Naik, P. Roe, J. van Rosendale, and E. Turkel are gratefully acknowledged.
References


<table>
<thead>
<tr>
<th>Flow Case</th>
<th>$M$</th>
<th>$\alpha$</th>
<th>$Re_c$</th>
<th>$T_{\text{inf}}$</th>
<th>$T_w/T_{\text{inf}}$</th>
<th>No. Pts.</th>
<th>$\Delta s_{le}/c$</th>
<th>$\Delta n_{le}/c$</th>
<th>$\Delta n_{te}/c$</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1" alt="Diagram" /></td>
<td>10</td>
<td>20°</td>
<td>18119</td>
<td>52K</td>
<td>5.57</td>
<td>129x81</td>
<td>0.004</td>
<td>0.0008</td>
<td>0.0008</td>
</tr>
<tr>
<td><img src="image2" alt="Diagram" /></td>
<td>7</td>
<td>5°</td>
<td>2.8E</td>
<td>100K</td>
<td>adiab.</td>
<td>257x97</td>
<td>4.4E-5</td>
<td>2.E-7</td>
<td>2.E-6</td>
</tr>
<tr>
<td><img src="image3" alt="Diagram" /></td>
<td>25</td>
<td>30°</td>
<td>2.5E</td>
<td>100K</td>
<td>50</td>
<td>257x81</td>
<td>1.3E-3</td>
<td>1.E-5</td>
<td>1.E-4</td>
</tr>
</tbody>
</table>

Table 1: Flow parameters and geometric parameters for the test cases
Figure 1: Two-level multigrid schemes investigated in the present work
(a) Stability curves with implicit residual smoothing (CFL = 2.6, $\beta = 0.75$)

(b) Amplification factor with implicit residual smoothing (CFL = 2.6, $\beta = 0.75$)

Figure 2 Stability plots for 3-stage Runge-Kutta scheme with first-order upwind approximation (coefficients: 0.105, 0.325, 1.0)
(a) Stability curves with implicit residual smoothing (CFL = 5.0, $\beta = 1.0$)

(b) Amplification factor with implicit residual smoothing (CFL = 5.0, $\beta = 1.0$)

Figure 3 Stability plots for 5-stage Runge-Kutta scheme with first-order upwind approximation and 3 evaluations of dissipation (coefficients : 0.2742, 0.2067, 0.5020, 0.5142, 1.0)
(a) One level, $\Lambda = 1$ (CFL = 5.0, CFL* = 2.4)

(b) Two levels, full coarsening, $\Lambda = 1$ (CFL = 5.0, CFL* = 2.4)

Figure 4 Contour plots of amplification factor for 5-stage Runge-Kutta scheme with first-order upwind approximation and 3 evaluations of dissipation (coefficients: 0.2742, 0.2067, 0.5020, 0.5142, 1.0)
(c) Two levels, semicoarsening with simple averaging, weights = 0.5, \( \Lambda = 1 \) (CFL = 5.0, CFL* = 2.4)

(d) Two levels, sequential semicoarsening, weights = 1.0, \( \Lambda = 1 \) (CFL = 5.0, CFL* = 2.4)

Figure 4 Contour plots of amplification factor for 5-stage Runge-Kutta scheme with first-order upwind approximation and 3 evaluations of dissipation (coefficients: 0.2742, 0.2067, 0.5020, 0.5142, 1.0)
(a) One level, $\Lambda = 10$ (CFL = 5.0, CFL$^*$ = 2.4)

(b) Two levels, full coarsening, $\Lambda = 10$ (CFL = 5.0, CFL$^*$ = 2.4)

Figure 5 Contour plots of amplification factor for 5-stage Runge-Kutta scheme with first-order upwind approximation and 3 evaluations of dissipation (coefficients : 0.2742, 0.2067, 0.5020, 0.5142, 1.0)
(c) Two levels, semicoarsening with simple averaging, weights = 0.5, $\Lambda = 10$ (CFL = 5.0, CFL* = 2.4)

(d) Two levels, sequential semicoarsening, weights = 1.0, $\Lambda = 10$ (CFL = 5.0, CFL* = 2.4)

Figure 5 Contour plots of amplification factor for 5-stage Runge-Kutta scheme with first-order upwind approximation and 3 evaluations of dissipation (coefficients: 0.2742, 0.2067, 0.5020, 0.5142, 1.0)
Figure 6: Control volume for nodal-point scheme

Figure 7: Multilevel schemes

a) Full coarsening
b) Semicoarsening with simple averaging

c) Sequential semicoarsening
d) Semicoarsening with selective averaging
Figure 8: Semiccoarsening with selection of coarse meshes
Figure 9: Coordinate mesh for ramp-flow problem with 128x80 cells

Figure 10: Flow solution for ramp-flow problem
Figure 11: Influence of multigrid strategies on convergence for ramp-flow problem

Figure 12: Influence of selected coarse meshes on convergence for ramp-flow problem
Figure 13: Influence of multiple time stepping on coarse meshes for multigrid with full coarsening

Figure 14: Influence of multiple time stepping on coarse meshes for multigrid with sequential semicoarsening
Figure 15: Convergence of ramp flow with single-mesh time stepping and multigrid with sequential semicoarsening

Figure 16: Convergence histories for flow-alignment problem
Figure 17: Coordinate mesh for forebody with 256x96 cells

Figure 18: Mach contours for turbulent forebody
Figure 19: Distribution of skin friction along forebody

Figure 20: Distribution of adiabatic wall temperature along forebody
Figure 21: Influence of the entropy correction coefficients on the adiabatic wall temperature along forebody
Figure 22: Influence of multigrid strategy on convergence for forebody, mesh 256x96

Figure 23: Convergence histories for single-mesh time stepping and multigrid with sequential semicoarsening
Figure 24: Coordinate mesh for NACA 0012 with 256x80 cells

Figure 25: Mach contours for NACA 0012 airfoil at $M = 25, \alpha = 30^\circ$

Figure 26: Streamlines in separated-flow region
Figure 27: Distribution of skin friction along airfoil

Figure 28: Distribution of Stanton number along airfoil
Figure 29: Convergence history for flow around NACA 0012 airfoil at $M = 25, \alpha = 30^\circ$. 
Several multigrid schemes are considered for the numerical computation of viscous hypersonic flows. For each scheme, the basic solution algorithm employs upwind spatial discretization with explicit multistage time stepping. Two-level versions of the various multigrid algorithms are applied to the two-dimensional advection equation, and Fourier analysis is used to determine their damping properties. The capabilities of the multigrid methods are assessed by solving three different hypersonic flow problems. Some new multigrid schemes based on semicoarsening strategies are shown to be quite effective in relieving the stiffness caused by the high-aspect-ratio cells required to resolve high Reynolds number flows. These schemes exhibit good convergence rates for Reynolds numbers up to $200 \times 10^6$ and Mach numbers up to 25.