
NASA Technical Memorandum 104176

//v -<_z/
/

(NASA-TM-IO41Tb) EXPANDED S6RIAL

C_MMUNICATION CAPABILITY FOR TH_ TRANSPORT

SYSTEMS RES_APCH VEHICL_ LAPT_P COMPUTERS

(NASA) 34 p CSCL IlG
G3/04

N92-15063

EXPANDED SERIAL COMMUNICATION CAPABILITY

FOR THE TRANSPORT SYSTEMS RESEARCH

VEHICLE LAPTOP COMPUTERS

Wesley C. Easley

December 1991

NASA
NationalAeronautics and
Space Administration

LangleyResearchCenter
Hampton, Virginia 23665-5225

TABLE OF CONTENTS

Summary ...

List of Figures

Credits ..

1.0 Introduction

2.0 List of Abbreviations

3.0 General Serial Expansion Task Description

3.1 TSRV Grid Hardware Configuation

3.2 Software Development Tools

4.0 Grid Serial Expansion Hardware Configuration

5.0 Initial Setup of the Grid Expansion Port

5 1 Register Addressing for the 8274

5 2 Main Setup Function

5 3 Interrupt Request Enabling

5 4 Word Length and General Register Setup

5 5 Baud Rate Setup

5 6 Parity and Stop-Bit Setup

6.0 Serial Communication Interrupt Handling

6.1 Interrupt Versus Polling Methods

6.2 Interrupt Vectors

7.0 Software Buffering Technique

7.1 General Comments

7.2 Buffer Pointers

7.3 Buffer Byte Count

8.0 Identification of 8274 Interrupts

9.0 Hardware Transmit Buffer Empty Interrupt

iil

v

vl

i

2

4

4

5

5

5

5

6

7

7

7

8

8

8

8

9

9

9

i0

I0

Ii

9.1 Verification of Interupt Type

9.2 Empty Buffer With XOFF Active

9.3 Writing to the Software Transmit Buffer

]0.0 Received Character Available Interrupt

i0 1 Verification of Interrupt Type

I0 2 XOFF Received

I0 3 XON Received

i0 4 Buffer Storage of Received Byte

i0 5 XOFF Transmission Check

i0 6 Data Retrieval From the Software
Receive Buffer

10.7 XON Transmission Check

Ii.0 Library Function Description and
Application Example

ii.i General Comments

11.2 Algorithm of Application Example

11.3 Comments Regarding Extended Applications ...

11.4 Building Turbo C Executable Files

12.0 Concluding Remarks

Appendix A: Description of all Library Functions

Appendix B: Application Example

Table 1 Port Address Information for Grid 34010

Serial Expansion Module

Table 2 Definition of Index Values Needed for Baud

Rate and Communication Parameter Selection ...

References ...

Ii

ii

Ii

12

12

12

13

13

14

14

14

15

15

15

15

16

16

17

19

2O

20

21

SUMMARY

This document describes the results of an effort to extend the
basic RS-232 communication capability of the Transport Systems
Research Vehicle (TSRV) Grid computers. The effort was needed
because these units (as delivered) contained only one externally
accessible RS-232 serial port, IBM PC normal communication port 2
(COM2). Significant limitation results since, in most cases,
this port is needed to configure the Grid as a terminal for one of
the TSRV VAX computers.

An additional serial communication link was adapted using the Grid
internal bus expansion capability. Bus expansion hardware was

purchased from the Grid Corporation and compatible low-level,

communication handling software was written. The resulting

software performs port setup and implements interrupt-driven, two-

way data communication with selectable software flow control

(XON/XOFF). Due to hardware design, the expansion port does not

conform to any normal PC serial ports, COM 1 through COM 4, but is

equally usable with user-written application software. Turbo C

and Turbo Assembler were used for the software development effort.

The resulting low-level, communication-handling software takes the
form of several functions written to be called from Turbo C

application programs developed using the small memory model.

Source code has been compiled, assembled, and placed in a library

module for use just like any other library functions in Turbo C

development, either the command line or integrated development

environment. Details of setup and use of the expansion port for

interrupt-driven communication with software flow control become

transparent to the application programmer who is only required to

make high-level calls to a few functions.

Descriptions of the algorithms used to develop the library

functions and examples of their application are contained in this
document.

iii

LIST OF FIGURES

NO.

1

2

3

5

Title Page

Functions of Prominent 8274 Hardware Registers .. 22

Circular FIFO Buffer Technique Used for Both

Transmit and Receive 23

Flowchart of Interrupt Service Routine for

Hardware Transmit Buffer Empty Interrupt 24

Flowchart of Function Which Transmits a Byte

to the Serial Port ,_. .25 -_"^:"°_'_'_

Flowchart of Interrupt Service Routine for

Received Character Interrupt 26

Flowchart of Function Which Fetches a Byte

from the Software Receive Buffer 27

j

?R_r_C_Dh,C, PAG_ BI. fi.iiW NOT r!i r_[_J

v

CREDITS

Technical information regarding Grid Input/Output design and

hardware interrupt configuration was provided by Jim Kuhfeld of
the Grid staff.

Turbo C and Turbo Assembler are copyrighted products of Borland

International. Development of software contained in this document

used Turbo C version 2.0, Serial Number D2C0307241, Turbo C++

version 1.0, Serial Number TAI41BI0758682, and Turbo

Debugger/Assembler version 2.0, Serial Number TAI52BI0258774.

MS-DOS is a copyrighted product of Microsoft Corporation. The

copy of DOS used for this effort was purchased by NASA as part of

a Grid procurement package.

Microsoft C and Quick C are also copyrighted products of Microsoft

Corporation. Reference to these products is contained in this

document, but they were not used for any development.

Z

v!

1.0 INTRODUCTION

The Transport Systems Research Vehicle (TSRV) is a research flight
system operated by the Advanced Transport Operating Systems
Program Office (ATOPSPO)at the NASA Langley Research Center. A
recent upgrade of the TSRV experimental systems included
installation of a number of Grid 1500 series laptop computers for
use primarily as small, lightweight terminals for the Microvax
minicomputers which perform flight control, navigation, and
display computations. However, each Grid laptop is a 80386-based,
MS-DOS compatible IBM PC clone with computational capability
permitting extended applications in the flight system.

RS-232 serial data communication was important for the Data Link
and Global Positioning Satellite (GPS) research conducted with the
TSRV during 1990. In both of these highly successful flight
research programs, RS-232 data busses served as vital, real-time
data links both on the ground and aboard the TSRV. In addition,
RS-232 will serve as vital data busses for at least two TSRV
windshear experiments, the Infrared Sensor and Terminal Doppler
Weather Radar (TDWR).

Due to their small size, low power requirements, powerful
processor, and versatility resulting from IBM and MS-DOS

compatibility, the Grid laptop computers are very effective tools

for support of these types of applications. User-developed

software is, in almost all cases, the major task required for each

specific application and a number of quality MS-DOS compatible

compilers and assemblers are available to aid in these development

tasks.

For improved support of applications such as those mentioned

above, additional serial communication capability is needed for

the TSRV flight Grid computers. The task described herein has

resulted in addition of a serial port to each Grid by adaptation

of internal bus expansion features. Turbo C and Turbo Assembler

were used for generation of low-level, communication-handling

software for use with expansion hardware purchased from Grid. All

resulting low-level, communication-handling software has been

placed in a Turbo C library file which allows application program

interfacing by means of calls to the library functions. Details

of hardware programming, interrupt vector redirection, two-way

data passage through the port, and software flow control become

transparent to the programmer The additional serial channel does

not conform to nor disable any normal PC serial port, but it does

require user-written applications--a task almost always necessary

for any TSRV research effort.

2.0 LIST OF ABBREVIATIONS

ATOPSPO

AX

AL

BIT

BYTE

C

COM

CPU

CR

DOS

DX

FIFO

GPS

Hex

IBM

Advanced Transport Operating Systems Program Office

General Purpose 8086 Family 16-Bit CPU Register

Lower Eight Bits of AX

Binary Digit, One or Zero

Eight Bit Data Unit

Name of a Computer Programming Language

Communications Port of PC

Central Processor Unit

Command Register

Disk Operating System

General Purpose 8086 Family 16-Bit CPU Register

First-ln, First-Out

Global Positioning Satellite

Hexadecimal Number

International Business Machines

IEEE-488 Institute of Electrical and Electronic Engineers

Standard Number 488

INT NO

I/O

IRQ

ISR

LSB

MPSC

MSB

MS-DOS

NASA

Interrupt Number

Input/Output

Interrupt Request

Interrupt Service Routine

Least Significant Bit

Multiprotocol Serial Controller

Most Significant Bit

Microsoft Disk Operating System

National Aeronautics and Space Administration

PC

PIC

PIT

RS-232

RS-422

SR

TDWR

TSRV

VAX

XON

XOFF

Personal Computer

Programmable Interrupt Controller

Programmable Interval Timer

Serial Communication Standard

Serial Communication Standard

Status Register

Terminal Doppler Weather Radar

Transport Systems Research Vehicle

Brand Name of a Minicomputer Line

Clear-to-Send Software Handshake Signal for
Serial Communication Link

Negative of XON. Clear-to-Send not Granted

3.0 GENERALSERIAL EXPANSIONTASK DESCRIPTION

3.1 TSRV Grid Hardware Configuation

Grid 1500 series laptop computers contain a multipurpose

internal bus expansion slot which generally functions somewhat

like expansion card slots on the main board of a normal IBM PC

or clone. Hardware modules are available from Grid to use this

expansion feature for various interfaces such as RS-232, RS-422,

and IEEE-488. For this RS-232 expansion application a serial

expansion module, Grid item number 34010 which uses a 8274

multipurpose serial chip, was required.

A standard hardware configuration consisting of a Grid 1500

laptop computer with the 34010 serial module connected to the

bus expansion port was used. The goal of this effort was a

communication software utility package containing embedded code

which allows an application written in C to call a few high-

level functions and become free of all details involved in the

following operations:

, Initial setup of the port for RS-232 communication

including enabling interrupts and setting data

transfer parameters--baud rate, parity, data

word length, and stop bits.

o Configuration of the Grid system to acknowledge

the various interrupts generated by the serial

expansion module. Also, performance of system

interrupt vector redirection and generation of new

Interrupt Service Routines (ISR's).

o Creation of software First In, First-Out (FIFO)

buffers in memory to collect incoming and outgoing

data bytes whose activity caused the

serial interrupts.

4. Generation of low-level Input/Output (I/O)

code to read from and write to the FIFO buffers to

make the transferred data bytes available to

applications programs.

5. Monitoring of FIFO buffer count and managing

transmission of XON/XOFF flow control bytes as

required to prevent data loss due to buffer

overflow.

. Upon termination resetting interrupt vectors and

port interrupt enable status to that found at

startup.

4

3.2 Software Development Tools

Turbo C and Turbo Assembler were used to configure software

modules for accomplishing these objectives. After compiling and

assembling the source files of each module, the resulting object

files have been incorporated into a library file for use with the

Turbo C compiler and linker, either in the integrated development

environment or with the command-line compiler. Use of these Turbo

C environment configurations is described in manuals supplied with

the compiler as well as references 1 and 7. The library file

resulting from this effort can be added to the DOS directory

containing other Turbo C libraries or placed in the directory wSth

the user's application source files. When this is done, none of

the original source code used to produce the library file is

needed for application development.

4.0 GRID SERIAL EXPANSION HARDWARE CONFIGURATION

The Grid 34010 Serial Expansion Module uses a 8274 Multiprotocol

Serial Controller (MPSC) which handles most data transfer func-

tions. It also contains a 8254 Programmable Interval Timer (PIT)

which provides counter/timer operations and is used to control

baud rate. Upon installation the 8274 becomes hardware connected

to a 8259 Programmable Interrupt Controller (PIC) in the main Grid

chassis, which accepts interrupt requests from several peripheral

devices and issues interrupts to the Central Processor Unit (CPU)

based on preprogrammed priority. Technical descriptions of these

three devices are contained in reference 2. Digital information

is transferred to and from registers in these devices via

Input/Output (I/O) ports established by Grid hardware design.

These applicable I/O port addresses are listed in table i.

5.0 INTITIAL SETUP OF THE GRID EXPANSION PORT

5.1 Register Addressing for the 8274

Each register contained in the hardware devices mentioned in

section 4.0 is one byte wide. The instruction set for the 8086

family of microprocessors (of which the 80386 is a member)

contains "IN" and "OUT" instructions to transfer a byte to or from

an I/O port to which a peripheral device may be connected. For

example, to send a byte with value A6 Hex to the port with I/O

address 778 Hex the following assembly instructions can be used:

MOV DX, 778h

MOV AL,A6h

OUT DX, AL

;Port address in CPU DX register

;Byte to send in CPU AL register

;Perform the transmission

The "OUT" instruction sends the value in CPU register AL out the

port address in CPU register DX. Details and examples of 8086

assembly language can be found in references 3 and 4.

Most C compilers written for the IBM PC and clones, including
Turbo C, contain higher level functions that perform the same
task. In Turbo C the operation performed by the above three

assembly instructions could be accomplished with a call to the

following function:

outportb (0x778, 0xA6) ;

Additional Information on this and other functions supplied with

Turbo C is contained in references 1 and 7.

Most of the setup and operational activity involved in this serial

communication task involves the 8274. It is a dual-channel chip

with eight write-only and three read-only registers per channel;

but, not all of these registers are used for every application.

Figure 1 is a functional diagram of the primary registers

necessary for this task. In order to access any 8274 register for

read or write, the register must be selected with an output

instruction to write register zero with the number of the selected

register being contained in the three least significant bits of

the output byte. (See CR 0 in figure I.) An I/O instruction

immediately following will read from or write to the 8274 register

selected. For example, to send the byte B5 Hex to write register

i, the following C code is needed:

outportb (0X77E, I) ;

outportb (0x77E, 0xB5) ;

Select register 1

Send B5 Hex to write register 1

The following example code will read from read register I:

outportb(0x77E, l);

char in = inportb(0x77E);

Select register I.

Read value in read register 1

into variable char in.

Port address 77E Hex, as seen in table i, is used to access the

channel A command (write) and status (read) registers of the 8274

in the Grid Serial Expansion Module.

5.2 Main Setup F_LLQ/I

For this task all necessary initial setup I/O instructions have

been placed the library functions "grid_setup()" and several

additional functions that it, in turn, calls. Appendix A contains

reference documentation for all these library functions. Complete

Grid Serial Expansion setup can be accomplished from an

application program written in Turbo C with a single call to the

function "grid_setup()." The call must pass three integer

parameters, a baud rate selection index between 0 and 6, a

communication parameter selection between 0 and 5, and a 1 or 0 to

turn XON/XOFF flow control ON or OFF, respectively. Table 2

provides the application programmer with the index values required

for the allowed baud rates and other communication parameters.

Range validity checks for all passed arguments are made by the

"grid_setup()" function, and default values are set if invalid
parameters are detected.

Interrupt vector redirection is done by "grid_setup()" using calls
to vendor-supplied Turbo C functions which are discussed in more
detail in a later section.

5.3 Interrupt Request Enabling

Enabling of interrupt requests from the 8274 is accomplished by

the function "int install()" which writes an eight-bit mask to a

control register in the 8259 PIC. Table 1 shows the Grid port

used to access the PIC register and reference 2 provides detailed

mask bit definitions. Each bit in this register controls an

interrupt request from a peripheral device with a zero in the bit

enabling its corresponding interrupt. Before setting the desired

interrupt configuration, the entry value of this PIC register is

fetched and stored for reset upon program exit. Grid technical

documentation describes several hardware interrupt request

configurations for the Grid Serial Expansion Module. For this

effort, interrupt request 9 (IRQ 9) was used and is controlled by

bit I in the above-mentioned PIC register. Use of IRQ 9 prevents

interference with other lower value interrupt requests including

normal PC serial ports, COM 1 through COM 4, and assures that the

expansion results in an additional communication port rather than

replacement of an existing one.

5.4 _ and General Register Setup

Setup operations specific to the 8274 are accomplished by the

library function "G34 init()" which is also called by

"grid_setup()." (See Appendix A.) Two bytes are passed to

"G34 init()" which it writes to proper 8274 registers for setting

both transmit and receive word length communication parameters to

either seven or eight bits. Specific binary values for these word

length bytes are obtained from reference 2 based on the second

index integer passed to "grid_setup()" by the application program.

In addition, binary byte values written to various other 8274

registers by the "G34 init()" function for complete setup vary

with desired configuration and are covered in detail in reference

2.

5.5 Baud Rate S@tup

Another function "Gset baud rate()" is called for setting the baud

rate to the value s_lected by the first integer passed by the

application program to the "grid_setup()" function. This integer

is a baud index value which is used to extract a 16-bit binary

value from a table whose elements are configured based on Grid

technical documentation. The selected binary value is passed to

the "Gset baud rate()" function which in turn writes it into baud

rate contr--ol registers in the 8254 PIT contained in the Grid

Expansion Module.

7

5.6 Parity and Stop Bit Setup

The final setup procedure involves setting parity and stop bits by

calling the function "Gset_par_stop()" to which one binary byte is

passed. This byte is selected from technical information in

reference 2 based on the second integer index passed by the

application program to "grid_setup()." The function

"Gset_par_stop()" then combines this byte with two clock rate

bits, and writes the result to 8274 write register 4 (CR 4 in

figure i).

The three functions "G34 init()", "Gset baud rate()", and

"Gset_par_stop()" are not visible to the application and are

reachable only through the prime interface function

"grid_setup()."

6.0 SERIAL COMMUNICATION INTERRUPT HANDLING

6.1 Interrupt Versus Polling Methods

PC serial communication accomplished by simply polling the data

register of the communication port is inadequate except possibly

for very low transfer rates. Incoming bytes will almost certainly

be overwritten while the program is processing a previously-

received byte. Effective operation requires use of interrupts

generated by the serial hardware device, in this case the 8274.

As part of the initial setup described above, the 8274 is

configured to generate an interrupt request both when a received

byte is ready in its data register and when its hardware transmit

buffer is empty. These are asynchronous hardware interrupts which

occur totally independently of any software task in progress. The

8259 PIC arranges them according to priority and passes them to

the CPU. Thus, software must be configured to permit immediate

service of these interrupts to prevent data loss.

6.2 interruph Vectors

Proper handling of interrupts requires the programmer to write a

specific routine which is activated upon interrupt occurrence.

This is called an Interrupt Service Routine (ISR). Direction of

processing to an ISR is accomplished by interrupt vectors which,

for MS-DOS computers, are addresses contained in a table

comprising the lowest 1024 memory locations. Each interrupt

vector consists of a four-byte block with each block having an

associated interrupt number starting at zero and continuing

through 255. Interrupt numbers can be configured by hardware, as

in the case of the 8259, or by DOS software. Since each vector

consists of four bytes, the location of an interrupt vector in the

low memory table is four times the interrupt number. Upon boot-up

MS-DOS loads default interrupt vectors and ISR'S, some of which

merely return with no action taken.

Application programs can intercept an interrupt by changing the
contents of its vector, thus directing processing to a different
memory location when the interrupt occurs. This new location must
contain the programmer's specific ISR which will then be executed.
Internal DOS software services accessible via assembly
instructions are provided for this vector redirection. However,
most C compilers for MS-DOSsystems now contain a higher-level
function to accomplish this. In Turbo C the interrupt vector
redirection functions are "getvect()" and "setvect()" and are used
as follows:

entry__handler = getvect(INT NO);
Fetch the address of the handler for interrupt INT NO

and place it into the variable "entry_handler" so it

can be reset upon program exit.

setvect(INT_NO, prog_handler);

Replace the interrupt vector for INT_NO with the

address of the function "prog_handler" which is the

user written ISR.

The variable INT NO represents the number associated with the

hardware or software interrupt being redirected. For the

configuration of the Grid Expansion Module used in this effort,

the interrupt number obtained from Grid documentation is 71 Hex.

A number of limitations exist regarding instructions and C

function calls that can be used inside an ISR. An important goal

for this effort is embedding these details in the resulting

library functions and rendering them transparent to any

application.

More extensive technical treatment of MS-DOS interrupt handling is

contained in references 3, 4, 5, and 6.

7.0 SOFTWARE BUFFERING TECHNIQUE

7.1 General Comments

First-In, First-Out (FIFO) circular buffers created in memory by

software are commonly used for interrupt-driven communication

tasks. Reference 6 contains a description of this technique which

is used for the subject effort. The specific algorithm is

illustrated in figure 2 and described below.

7.2 Buffer Pointers

Two software buffers, each two kilobytes in size and identical in

operation, are created when the function "grid_setup()" is called.

One is for received data and the other is for transmitted data.

Each buffer functions in conjunction with two independent

operations, one to deposit data and another to retrieve it. As

shown in figure 2, separate input and output pointer variables are

associated with each buffer. Both pointers are set to zero at
program startup and thus initially point to the buffer bottom. An
operation depositing a data byte will write it into the cell
pointed to by the input pointer. Then it must increment the
pointer variable to select the next cell available for writing.
In similar fashion, a routine fetching a byte will read it from
the cell pointed to by the output pointer and then increment that
pointer variable to select the next cell from which reading must
occur. Both pointers will eventually reach the buffer's top at
which time they are reset to zero to once again point to the

bottom. Thus, the buffer is circular in nature. Read and write

operations may occur totally independently, but both begin at the

bottom and separately increment pointers specific to each

operation. Therefore cells will be read from in the same order as

they were written into, yielding a FIFO buffer.

7.3 Buffer Byte Count

Another variable associated with each buffer is the byte count

indicating the number of bytes written but not yet retrieved. A

write operation adds a byte and must increment this counter while

a read operation removes a byte and must decrement it. The buffer

byte count, which is actually the difference between the locations

pointed to by the input and output pointers, thus maintains a

running total of the data bytes waiting to be fetched. If this

count is zero then both pointers are selecting the same location,

and the buffer is empty. If it reaches the maximum buffer size

then the buffer iS full, and no cells are available for writing.

Since a write must occur before a read, every read operation must

determine whether this count is zero before actual data capture to

prevent reading past the last location which was written into.

The byte count, as will be illustrated in later sections, is used

when flow control is active to trigger transmission of XON/XOFF

flow control characters to prevent buffer overflow and data loss.

An upper threshold of 80 percent of buffer capacity is used to

trigger XOFF transmission and request the remote system to stop

sending. Then, when the count is reduced to 20 percent of buffer

capacity, an XON transmission is triggered signaling the remote

terminal that sending is once again permitted.

8.0 IDENTIFICATION OF 8274 INTERRUPTS

When a hardware interrupt is generated by the 8274, the CPU saves

its status and immediately jumps to the corresponding ISR, which

was installed by the "grid_setup()" function using the "getvect()"

and "setvect()" functions discussed above. Each ISR used herein

is a short C function which calls an assembly function to handle

details of servicing the interrupt. The first task of the ISR is

identification of the interrupt type which is done by checking the

three least significant bits of 8274 read register 2 in channel B

(SR 2 in figure i). The following assembly instructions will

isolate these bits in the CPU AL register:

I0

MOV DX,77Fh
MOV AL, 2
OUT DX,AL
IN AL, DX
AND AL, 07h

;Port Address, Read Register 2, Channel B
;8274 Register to select placed in AL of CPU

;Select Read Register 2, 8274 Channel B

;Fetch Register Contents into AL Register

;Mask to Isolate Lowest Three Bits

9.0 HARDWARE TRANSMIT BUFFER EMPTY INTERRUPT

9.1 Verification Df Interupt Type

If the interrupt identification procedure of Section 8.0 results

in a value of 04 Hex in the AL register of the CPU (see figure 1

and reference 2), a hardware transmit buffer empty interrupt has

occurred signaling that the 8274 is available for transmission of

a data byte. The resulting actions taken by the ISR are shown in

flowchart form in figure 3 and are described in this section.

This ISR is the output operation associated with the software

transmit buffer which functions as illustrated in figure 2. Bytes

fetched by the ISR from the buffer are written into the 8274

hardware transmit register for sending out the port.

9.2 Empty Buffer With XOFF Active

However, examination of figure 3 shows several checks made by the

ISR prior to data fetch. First, if the software transmit buffer

is empty (buffer byte count is zero), nothing is awaiting

transmission and the ISR terminates. If the buffer is not empty

and XON/XOFF flow control is active, a check for XOFF received is

made. This check uses a global flow control status flag which is

toggled between one and zero (on and off) by receipt of XON (ii

Hex) and XOFF (13 Hex), respectively. If this flag indicates that

XOFF has been received then transmission is forbidden and the ISR

terminates. Notice that both these ISR terminations result in

disabling the hardware transmit buffer interrupts that activated

the ISR. Reasons for this and methods to re-enable the interrupts
are discussed in section 10.0 which deals with received character

interrupts.

If these flow control tests all fail then, as seen from figure 3,

data fetch, pointer increment, and count decrement operations

occur. Finally, the buffer output pointer is wrapped to zero if

it has reached the buffer top.

9.3 W_i_ the SQft_%tare Transmit Buffer

Data bytes generated by the application program for serial

transmission are deposited into the software transmit buffer by

the function "grid_out_byte()" which is described in Appendix A.

It is a library function written as part of this effort which must

be called by the programmer. A flowchart of this function, which

is written in assembly but callable from C, is shown in figure 4.

It is not an ISR, requires an unsigned character argument, and

11

returns an unsigned integer with the MSB reset to zero, if the
write attempt was successful, or with the MSB set to one,
otherwise. Its prototype and use are:

Prototype: unsigned int grid_out_byte(unsigned char);

Use: grid_out_byte(out_char);

Returns: unsigned integer

The variable "out char" is the byte which the application wishes

to transmit. Checking the MSB of the returned integer can be used

in the calling function to determine whether the output attempt

was successful.

As seen from figure 4, the function "grid_out_byte()" first checks

for a full software output buffer and, if this is the case, loops

for a short time repeatedly checking for an available slot before

returning unsuccessful and discarding the byte. If the buffer is

not full a check is made to determine if it is empty, in which

case, no collected bytes are awaiting transmission. An empty

buffer results in a check of the global flow control status flag

described above to see if an XOFF control character has been

received; and, if not, the byte in question is written directly to

the transmit register of the 8274, I/O address 77C Hex, and

immediately transmitted. If the output buffer contains data but

is not full; or, if an XOFF has been received, then the byte in

question is added to the buffer for later transmission. It is

written into the location selected by the buffer input pointer

(see figure 2) with this pointer then being incremented to select

the next location available for writing. Also, the buffer byte

count is incremented to indicate that a byte has been added. The

last procedure for the ISR is resetting the pointer to zero, if it

has reached the buffer top.

I0.0 RECEIVED CHARACTER AVAILABLE INTERRUPT

10.1 Verification of Interrupt Type

If the interrupt identification procedure of Section 8.0 results

in a value of 06 Hex in the AL register of the CPU (see figure 1

and reference 2), a received character is available in the 8274

data register. The resulting actions taken by the ISR are shown

in flowchart form in figure 4 and are described in this section.

This ISR is the source of input data for the software-receive

buffer which functions as illustrated in figure 2. Each byte it

deposits is fetched from the 8274 data register in response to the

received character available interrupt. The bytes are written

into the software-receive buffer cell selected by the current

buffer input pointer.

10.2 XOFF Received

As can be seen from figure 5, a number of checks are made on the

received byte before buffer storage. If flow control is active,

12

the received byte is checked to determine if it is the XOFF

control character, 13 Hex, or the XON control character, II Hex.

The global flow control status flag, which was checked in the

transmit operation of the previous section, is actually set in

this ISR by receipt of one of the flow control characters. When

an XOFF is received the status flag is reset to zero, a task

represented by the "SET XOFF RECEIVE FLAG" step in figure 5. Then

the interrupt is cleared and the ISR exits. The XOFF control
character is not stored in the buffer when flow control is active.

10.3 _ON Received

However, receiving XON means that the system might have been

forbidden to transmit for a time and data bytes from the

application program destined for transmission may have collected

in the software output buffer described previously in section 9.0.

Such collected data can originate, for example, from the local

keyboard or a disk file. While clear-to-send status resulting

from receiving an XON allows these buffered bytes to be

transmitted, that will not automatically occur without 8274

hardware transmit buffer empty interrupts. These interrupts will
have been disabled the last time one of them occurred and found an

empty software transmit buffer--a scenario which was discussed in

section 9.0 and is illustrated in the flowchart of figure 3. Due

to 8274 design (see reference 2) one transmission needs to occur

to re-enable these interrupts. As is shown in the upper right of

figure 5, this is accomplished by fetching the first waiting byte,

if any, from the software transmit buffer and writing it to the

8274 transmit register (I/O address 77C Hex) for immediate

transmission. After transmit buffer empty interrupts are re-

enabled, they will repeatedly activate the ISR illustrated in

figure 3 and send collected bytes until the software transmit

buffer is once again empty. Finally, interrupt reset and ISR exit

will occur just as in the case of XOFF receipt. The XON control

character will not be stored if flow control is active.

10.4 Buffer Storage of Received Byte

Referring again to figure 5, if flow control is not active or if a

flow control character was not received, an attempt at buffer

storage is made. First, the buffer byte count is checked to

determine if the software receive buffer is full, in which case

there is no place to write. Thus, the ISR discards the received

byte and exits. Existing vacant buffer cells result in writing

the received byte into the location selected by the current buffer

input pointer. (See figure 2.) Then the buffer's byte count and

input pointer are both incremented to respectively reflect the

added entry and select the next free cell. If the pointer has

reached the buffer top it is wrapped to zero.

13

10.5 XOFF Transmission Check

The ISR illustrated in figure 5 performs one last flow-control

related operation. After writing a received byte into the

software receive buffer and, if flow control is active, the

subject ISR checks the byte count to determine if the XOFF

threshold (80 percent of buffer capacity) has been exceeded. If

so, it writes an XOFF control character to the 8274 transmit

register for immediate transmission. Then,a global flag is

configured to indicate that XOFF has been sent. This global flag

is functionally identical to the flow control status flag

described in Section 9.0 for the case of XON and XOFF reception.

It is turned on (set to one) or off (set to zero) by transmission

of XON or XOFF, respectively.

10.6 Data Retrieval From the Software Receive Buffer

Data bytes are fetched from the software receive buffer and made

available to the application program by another library function

"grid in byte()" which must be called by the application. A

flowchart of this function, which is written in assembly but

callable from C, is shown in figure 6. It is not an ISR, takes no

arguments, and returns an unsigned integer. Its prototype and use

are :

Prototype: unsigned int grid in byte(void);

Use: in char = grid in byte();

Returns: MSB (bit 15) set if no byte read; otherwise

fetched byte in lower eight bits of in char.

The variable "in char" is an unsigned integer (16 bits) with the

byte fetched from the software receive buffer filling the lower

eight bits. This byte was read from the buffer location selected

by the receive buffer's output pointer. (See figure 2.) Then the

buffer byte count is decremented to indicate that a byte has been

removed, and the output pointer is incremented to select the next

buffer location from which reading can occur. Again, as in

previously-described cases, the pointer is wrapped to zero if it

has reached the buffer top.

]0.7 XON Transmission Check

Like several operations discussed in earlier sections, the

function "grid in byte()" has flow control maintenance duties.

Upon entry it _he_ks for active XON/XOFF flow control. If this is

the case and if the buffer count is below 20 percent of capacity

(see section 7.0), then a check is made to see if the remote

terminal's transmission has been halted by a previously sent XOFF.

If so, an XON (II Hex) is written to the 8274 transmit register

for immediate transmission and the flow control status flag

concerned with XON/XOFF transmission is set to one. Clear to send

has thus been signaled to the remote terminal.

14

ii.0 LIBRARY FUNCTION DESCRIPTION AND APPLICATION EXAMPLE

Ii.I General Comments

Appendix A is a reference guide describing all the functions

contained in the library resulting from this effort. Appendix B

is a program written in Turbo C illustrating their application.

11.2 Algorithm of Application Example

Only the algorithm involved in the example of Appendix A is

described. No attempt is made to explain the C language

programming techniques used. References i, 6, and 7 are examples

of many widely available publications dealing with the subject of

C programming. Initial setup is done via a call to "grid_setup()"

with parameters passed to select a baud rate of 9600,

communication parameters of N81 (no parity, 8 bits per character,

and one stop bit), and to select software flow control (XON/XOFF).

Interrupt enabling, interrupt vector redirection, and FIFO buffer

creation are all transparently accomplished by this function.

The example program enters a loop which continues until the escape

key is pressed. Inside the loop repeated checks are made for

keyboard inputs and for data bytes received from the Grid serial

expansion port. Keyboard inputs are fetched using the function

"kb fetch()," a function supplied in this library which checks the

DOS keyboard buffer for any waiting entry and returns it in the

lower byte of an unsigned integer. If no key has been pressed,

the function returns an unsigned integer with its MSB set to zero.

Keyboard inputs for applications using this library do not require

use of "kb fetch()." Other vendor-supplied, console-related C

" and "getche()"functions such as "kbhit()," "getch(), are

satisfactory. Input bytes from the serial expansion module are

obtained by calling "grid in byte()." As already described, this

function reads from the software receive buffer whose locations

are filled by received character interrupts from the 8274 in the

Grid expansion module. These input bytes are printed to the

screen and saved in the file "INBYTES.DAT." Keyboard inputs, in

addition to being printed to the screen, are transmitted to the

serial port using the library function "grid_out_byte()." Upon

command to exit, the program closes the file and calls the library

function "grid_reset()" which returns all interrupt vectors and

interrupt enable settings to their entry values. These entry

values were fetched and saved when "grid_setup()" was called to

start the program. Any application should terminate with a call

to "grid reset()."

11.3 __o_garding Extended Applications

In the application example described above, all communication

parameters are locked in at compile time. More sophisticated uses

might include capability to change these on line, perhaps through

pop-up menus. This can be accomplished by getting console input

15

values for parameter index and flow control flags from such menus
and making a new call to "grid_setup()." Complete port
reinitialization will result. However, a call must always be made
to "grid reset()" before any additional use of "grid_setup()."
Otherwise ill-behaved interrupt operations may result.

11.4 Building Turbo C Executable Files

Various methods of building an executable file from source modules

exist in Turbo C compiler packages. Library files such as that

produced by this effort need visibility to the linker only as they

have already been compiled or assembled. References 1 and 7 are

examples of the wide choice of available literature concerned with

the various versions of Turbo C that Borland has released. In

addition, manuals supplied with the Turbo C compiler packages

contain large amounts of reference documentation.

12.0 CONCLUDING REMARKS

Enhanced RS-232 serial communication capability for the Grid 1500

series laptop computers used in the TSRV experimental flight

system has been accomplished by adaptation of an internal bus

expansion port. Attempts were made to accomplish two goals. One,

fundamental development of an effective RS-232 port, using the

Grid bus expansion, to support two-way, interrupt-driven serial

data transfer with software flow control. Two, development of a

software interface to the port which permits a programmer to

develop communication applications using the Turbo C small memory

model without being concerned With any low-level, hardwar e -

specific details. Modifications to the functions to support

larger memory models of the C compiler system can be done.

A technical description of the algorithms used in attempting to

accomplish the above-stated goals is contained in this document.

Most software development was done using Turbo C version 2.0, but

testing with Turbo C++ version 1.0 and the newly released Borland

C++ indicate no compatibility problems. Minor source-code changes

would be required for use with other C compiler systems.

Utilization in the TSRV of RS-232 data links is continuously

increasing. Accomplishment of the desired results of this effort,

combined with a small number of inexpensive hardware modules, adds

at least five of these serial busses to the flight system. The

results described herein apply specifically to the Grid expansion

port, but similar algorithms have been used to develop

corresponding utilities for normal PC serial communication ports 1

through 4.

16

Appendix A: Description of all library functions

I , Function Name: grid_setup()

Prototype: void grid setup(int baud_index, int param__index,

int x_flag)

Tasks:

I. Check passed parameters for valid range.

2. Fetch and store entry interrupt vector for Grid

Expansion Module.

3. Enable 8274 interrupts from Grid Expansion Module.

4. Set new interrupt vector to address of new handler.

5. Call function G34 init() for complete initial setup of

8274 chip in Grid Expansion Module. Two word length

parameters selected from the argument param__index are

passed to G34 init().

6. Obtain the proper baud rate word from a binary table

using the argument baud index as an index into this

table.

7. Call C function Gset baud rate() to set desired baud
-- m

rate. Baud word from step 6 is passed to this function.

8. Use the argument param_index to select binary bytes for

parity and stop bits. Call function Gset_par_stop() to

set these parameters.

9. Set an internal XON/XOFF flow control flag to the value

of argument x_flag. XON/XOFF flow control is ON if

this is one, OFF if zero.

If. Function Name: kb fetch()

Prototype: unsigned int kb fetch(void)

Tasks:

Retrieves a keyboard entry waiting in the keyboard

buffer, if any. Returns the pressed key in lower byte

or returns integer MSB set to zero, if no key waiting.

III. Function Name: grid in byte()

Prototype: unsigned int grid in byte(void)

Tasks:

Fetches a byte from the serial receive FIFO buffer.

Returns the byte, if any, in lower eight bits or

returns MSB set to one if nothing waiting.

27

Appendix A Continued

IV. Function Name: gridout_byte()
Prototype: unsigned int grid_out_byte(unsigned char)

Tasks:
Write a byte into the transmit FIFO buffer. Returns
with MSB reset to zero if successful or returns MSB

set to one if not.

V, Function Name: grid_reset()

Prototype: void grid_reset(void)

Tasks:

Resets the interrupt vector and interrupt enable to the

states found and stored at startup.

18

Appendix B. Application Example.

is required.

Use of Turbo C small memory model

#include "stdio.h"

#include "grxdef.h"

type def unsigned char BYTE;

FILE *fl; /* fl will contain the name of a file */

/* Prototypes of functions Called by this module */

void grid_setup(int bdr, int parm, int flow);

unsigned int grid_out_byte(BYTE);

unsigned int grid in byte(void);

unsigned int kb_fetch(void);

void main() /* Main function */

{
int twelfth of never = i, today = 0; /* Loop controls */

unsigned int gky, gci;

/* Initialize to 9600 baud, N81, flow control ON */

grid_setup(4,0,1); /* Initialize Grid 34010 module */

/* Open file for storing input bytes */
" "w")) == NULL)if ((fl = fopen("inbytes.dat ,

{ printf("\nCan't Open Required File for Writing.");

exit(0); }

/* Enter infinite while loop */

while(twelfth of never) /* Main task - Infinite loop */

{

if((gky = (kb_fetch() & 0x8000)) == 0); /* No Key */

else /* Key was pressed so process it */

{ putchar((BYTE)gky); /* Write to screen */

grid_out_byte((BYTE)gky); /* Send to port */

if((BYTE)gky == 0xlB) /* Escape Key Hit? */

twelfth of never = today; }

/* Is serial input byte waiting? */

if((gci = grid in byte()) & 0x8000); /* No */

else /* Yes, process it */

{ putchar((BYTE)gci) ; /* Write to screen */

putc((BYTE)gci, fl) ; /* Write to file */

}

} /* end of while */

fclose(fl); /* Close File */

/* Reset interrupt vector and mask */

grid reset();

printf("knPress Any Key to Exit ... ");

if(getch() == 0x00) getch();

exit(0); /* Return to Dos */

) /* End of main */

19

Port Address (Hex) Function

778

779

77C

77D

77E

77F

F7A

F7C

F7D

F7E

021

Device Identification

System Interrupt Enable

8274 Channel A Data Register

8274 Channel B Data Register

8274 Channel A Command/Status Register

8274 Channel B Command/Status Register

8254 Baud Rate Generator Counter Control

Serial Port Clock Configuration Bit 0

Serial Port Clock Configuration Bit 1

Serial Port Clock Configuration Bit 2

8259 PIC Mask Register Port

Table I. Port Address Information for the Grid 34010 Serial

Expansion Module

Baud Rate Required Index

300 0

1200 1

2400 2

4800 3

9600 4

19.2 K 5

38.4 K 6

Communication

Parameters

Required Index

N81 0

N82 1

E71 2

E72 3

O71 4

072 5

Table 2. Definition of index values needed for call to

"grid_setup()" function for baud rate and

communication parameter selection.

20

REFERENCES

I. Lafore, Robert: Turbo C Programming for the PC, Howard W.

Sams and Company, 1989.

2. Microsystem Components Handbook, Volumes I and II, Intel

Corporation, Order No. 230843-001, 1984.

3. Young, Michael J.: Inside DOS: A Programmer's Guide,

Sybex, Inc., 1990.

4. Duncan, Ray: Advanced MS-DOS, Microsoft Press, 1986.

5. Dettmann, Terry: Dos Programmer's Reference, Que

Corporation, 1989.

6. Barkakati, Nabajyoti: MS-DOS Developer's Guide, Second

Edition, Chapter 8, Howard W. Sams and Company, 1988.

7. Barkakati, Nabajyoti: The Waite Group's Turbo C Bible,

Howard W. Sams and Company, 1989.

21

CRO

!_ I 6 I _ 14131 2 I' !oINTERRUPT AND IPOINTER TO SELECT
ERROR RESET IREAD/WRITE REGISTER

CRI 171+i+14131+1,1°
I INTERRUPTENABLECONTROL

CR 4 [+l+l+141+l+l,io
SELECT CONTROL

CR 5 E i

I WORD LENGTH

.IDDATATERMINAL READY (DTR)

_TO SEND (RTS)

TRANSMITTER ENABLE

SR 0

"BUFFEREHPTY J 1

RECEI VED CHARACTER

AVAILABLE IN 8274
DATA REGISTER

INTERRUPT PENDING

SR 2
(tlANNEt. B

171i+Ii+141ii3121,I°
IINTERRUPT TYPE:

I00 - TRANSMIT BUFFER EMPTY

I01 - EXTERNAL STATUS CHANGE

IIO - RECEIVED CHARACTER ABAILABLE

liI - NO INTERRUPT PENDING

Figure 1. Functions of Prominent 8274 Hardware Registers. CR Represents
Command Registers for Writing, SR Status Registers for Reading.

22

r_

t

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

t

m

ml

m

.mmm

m

m

m

m

m

m

m

m

m

i

m

mi

im

m

-" BUFFER TOP

..,ell

I

I

I

I

I

I

I
BUFFER IN POINTER. m

INCREMENT ON
WRITE.

BUFFER OUT POINTER.

INCREMENT ON
READ.

-I.A BUFFER BOTTOME _

Figure 2. Circular FIFO Buffer Technique Used for Both Transmit and Receive.

23

TRANSMIT YES
i=,.._

r

BUFFER
EMPTY?

IS
XON/XOFF

SET?

YES
BEEN

YES
n==,=.=
v

NO

GET BYTE FROM
SOFTWARE

TRANSMIT BUFFER

WRITE BYTE I
TO 8274 TRANSMIT

REGISTER

DECREMENT I ,...=!

SOFTWARE TRANSMIT

BUFFER COUNTER I I

INCREMENT I

SOFTWARE TRANSMIT I"---"1
BUFFER POI

I_YES

SET POINTER TO

ZERO (WRAP)

P

C END)

RESET AND DISABLE
HARDWARE TRANSMIT

BUFFER EMPTY
INTERRUPTS

Figure 3. Flow Chart of Interrupt Service Routine For Hardware

Transmit Buffer Empty Interrupt.

24

OUTPUT BYTE
IN AL

REGISTER

IS
SOFTWARE
TRANSMIT

BUFFER

IS XON/XOFF
SET?

PERFORM
SHORT
LOOP

WAS
XOFF

RECEIVED?

YES

YES

/

SET MSB OF INTEGER /
TO RETURN

INDICATION OF
UNSUCCESSFUL
READ ATTEMPT

IS

TRANSMIT
BUFFER
EMPTY?

YES

WRITE BYTE TO I

I8274 TRANSMIT
REGISTER

INCREMENT t"--

NO SOFTWARE TRANSMIT
BUFFER POINTER

ADDBYTETOI I INCREMENT I l
SOFTWARE !--II,t SOFTWARE TRANSMIT_---_

TRANSMITBuFFERI I CO NTER I _
. , BUFFER U

I SET POINTER TO I YES f ,?_n_..,_=,__,_n_ \

Figure 4. Flow Chart of Function Which Transmits a Byte to the Serial Port

25

FETCH
RECEIVED

BYTE

IS YES RECEIVED
XON/XOFF BYTE =

SET? XON?

ADD RECEIVED
BYTE TO

SOFTWARE

RECEIVE BUFFER

INCREMENT I

SOFTWARE L.

RECEIVE II

BUFFER COUNTER I I

BYTE =

XOFF?

SET XOFF
RECEIVED

FLAG

SET XON
RECEIVED

FLAG

SEND BYTE FROM I

SOFTWARE TRANSMITL=_.
BUFFER TO 8274

TRANSMIT REGISTER |

v

INCREMENT
SOFTWARE

RECEIVE
BUFFER POINTER

hi,...=

V

SET POINTER TO

ZERO(WRAP) _ "-

' S
REGISTER I

C END)

Figure 5. Flow Chart of Interrupt Service Routine For Received Character Interrupt.

26

A I I I I w.,_×o_ I
/ I_ _ 4 SETXON SENT _ TO 8274 TRANSMIT

BUFFER EMPTY? J , , I

YES I

SET POINTER TO INCREMENT

ZERO (WRAP) SOFTWARE RECEIVE
BUFFER POINTER

SET MSB OF INTEGER
TO RETURN

INDICATION OF
UNSUCCESSFUL

READ ATTEMPT

NO

y

v

1

Figure 6. Flow Chart of Function Which Fetches a Byte From
the Software Receive Buffer.

, =

27

Form Approved

REPORT DOCUMENTATION PAGE OMeNo.o;,o4-o,ee

Pub¢IC reporting burden for this collection of _nformation Is estimated tO average 1 hour De? res_:mse, including the time for reviewing instructions, seatcning elistlng data sources,

gathering and maintaining the data needed, and completing and revlewmg the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to _/ash_ngton Headquarters Services, Direc-Corate for Information OperatiOns and Reio<_rts,)2 _ 5 Jeffe¢,son

Oav=s Highway, Suite 1204. ArlingtOn. VA 22202_1302, and to the Office of Management and Budget, Paperwork Reduction Pro ect (0704-01B8), Washington, DC 2050].

4. TITLE AND SUBTITLE

-xpanded Serial Communication Capability for the
l-ransport Systems Research Vehicle Laptop Computers

AGENCY USE ONLY (Leave blank) I2. REFORTDATE 13. REP(_RTTYPE AND DATES COVEREDDecember 1991 Technical Memorandum
i=

5. FUNDING NUMBERS

505-64-13-11
6. AUTHOR(S)

Wesley C. Easley

7. PERFI_RMING ORGANIZATION NAME(S) AND A'I_DRESS(ES)

NASA Langley Research Center
Hampton, VA 23665-5225

9. SPONSORING/MONITORING AGENCY NAME(S) AND AODRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546-0001

lB. PERFORMING ORGANIZATION

REPORT NUMBER

IU. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA TM-I04176

;11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Unclassified-Unlimited

Subject Category o4

13. ABSTRACT (Maximum 200 words)

12b. DISTRIBUTION CODE

A recent upgrade of the Transport Systems Research Vehicle (TSRV) operated by the Advanced Transport
Operating Systems Program Office at the NASA Langley Research Center included installation of a number o! Grid
1500 series laptop computers. Each unit is a 80386-based IBM PC clone.

RS-232 data busses are needed for TSRV flight research programs, and it has been advantageous to extend the
application of the Grids in this area. Use was made of the expansion features of the Grid internal bus to add a
user programmable serial communication channel.

Software to allow use of the Grid bus expansion has been written and placed in a Turbo C library for incorporation
into applications programs in a transparent manner via function calls. Port setup; interrupt-driven, two-way data
transfer; and software flow control are buill into the library functions.

14. SUBJECTTERMS

Flight Operational Improvements
Experimental Flight Displays

17.' SECURITY'CLASSIFICATIONlB. SECURITYCLASSIFICATION
OFREPORT OFTHISPAGE
UNCLASSI F I ED UNCLASSI FI ED

NSN 7540-01-280-5500

19. SECURITY CLASSIFI(_,O, TION
OF ABSTRACT

15. NUMBER OF PAGES

34
16. PRICE CODE

A03
20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev 2-89)
Preset,bed by ANSI Std Z39-1B
298-102

