The NASA Langley Research Center
0.3-Meter Transonic Cryogenic Tunnel
Microcomputer Controller Source Code

W. Allen Kilgore and S. Balakrishna

ViGYAN Inc.
Hampton, Virginia 23666-1325

Contract NAS1-18585
December 1991
Contents

Introduction 1

Controller Changes 2

 Set Tunnel Operation Limits 2
 Display of Input Limits 3
 Improve Screen Layout 3
 Aerodynamic Chord Input 4
 Tunnel Operating Envelope Safety Catches 4
 Identify Causes of an "Emergency Stop" 4
 Improve Organization of Source Code 4
 Improve Cooldown Efficiency 4
 Improve "On" Set Point Flags 5
 Rewrite Source Code 6

References 9

Appendices 10

 A. Controller Source Code Listing. 10
 B. Controller Simulator Source Code Listing. 30
 C. Source Code Variables. 49
 Limits Input Keyboard Commands. 49
 Controller Input Keyboard Commands. 49
 Program Variables. 50

List of Figures

 1. Maximum - Minimum Limits Display. 7
 2. Typical Controller Display. 8
Introduction

The NASA Langley Research Center 0.3-m Transonic Cryogenic Tunnel (TCT) has been operational since 1973. It is a closed circuit fan driven pressure tunnel in which the heat generated by the fan operation is cancelled by injection of liquid nitrogen (LN$_2$) into the tunnel. The injected LN$_2$ evaporates into the tunnel and cools the tunnel resident nitrogen gas (GN$_2$) mass. The gaseous mass buildup and pressure variation caused by LN$_2$ injection is corrected by controlled discharge of warmer GN$_2$ tunnel gases. The gas temperature, pressure, and flow Mach number of the tunnel can be controlled by adjusting the LN$_2$ injection and the GN$_2$ discharge for a given fan speed.

In 1988 a microcomputer was installed at the 0.3-m TCT to control the temperature, pressure, LN$_2$ back pressure, fan speed, Mach number and Reynolds number. This system replaced the existing microprocessor control system. This new controller system consists of a PC AT clone with a 12 MHz CPU, an EGA video, a hard disk, a floppy disk, and an 8 channel digital to analog converter. This Controller was designed specifically for ease in modification and operational use. This system has now been operating for several thousand hours providing a safe and efficient control of the tunnel. (Ref. 1 and 2)

Since the Controller has been in use, the staff has gained an extensive knowledge of the Controller and its features. Through the operational use of the Controller several recommendations for improvements have been suggested. Many of these suggestions have been incorporated into the Controller and are described later in this document. The control laws and operations of the Controller have not changed from the original Controller.

The purpose of this document is to provide the source code listing of the 0.3-m TCT Controller which is in Appendix A. Also included is the source code listing for the tunnel simulator (Appendix B) and a complete listing of the variables used in each source code (Appendix C).
Controller Changes

Described below are the changes made to the original Controller. A reason and a description of the change are given for a better understanding of the improvements made to the Controller. Changes to the Controller software should be performed by a person who fully understands the BASIC language. This should be performed only with the knowledge and approval of the Facility Safety Head of the 0.3-m TCT.

Set Tunnel Operation Limits

A requested change was to have the ability for the user to set the tunnel operating limits. An example of this is to have the user set a maximum pressure limit of 50 psia. This limit is below the tunnel maximum operating pressure of 88 psia and is therefore an acceptable limit. With the user set 50 psia limit, the user would not be allowed to input pressures above 50 psia while operating the Controller. This ability to have the user set the tunnel operating limits required an addition to the beginning of the original Controller.

The Controller is now designed so that when the Controller is first executed a Maximum - Minimum Limits program is run which allows the user to set the operating limits of the tunnel. The user set limits must be within the operating envelope of the tunnel. This Maximum - Minimum Limits monitor display is shown in figure 1. This display is self-explanatory and operates using similar keystrokes as the Controller. (Ref. 2) The Maximum - Minimum Limits program allows the user to set a minimum temperature, maximum pressure, maximum fan speed, maximum Mach number, and maximum Reynolds number. The user can either start the Controller with the tunnel limits or the user set limits.

To set the pressure limit the user would strike the "P" key on the keyboard. This would cause a ",psia" to appear on the screen in the Set Maximum column. The user keys in the desired pressure limit and strikes the "Enter" key. If the desired limit is unusable, the program will warn the user of the problem and will not allow the Controller to be started. The other limits may be set by striking the appropriate T, N, M, or R keys on the keyboard. The Maximum - Minimum Limits program has several safety features which prevent the user from setting unacceptable or unsafe limits.

These user set limits are only enforced when the tunnel is in the automatic control
mode of the variable. For example, if the user set limit for pressure is 50 psia and is operating in automatic pressure control, the tunnel Controller will not allow pressure inputs above 50 psia. If the user is operating in automatic Reynolds number control, the user again will not be able to exceed the set Reynolds number limit. If the user is operating in manual GN₂ exhaust valve control, the pressure can exceed the 50 psia limit but not the tunnel pressure limit of 88 psia.

Because the Reynolds number control is obtained through pressure control, the Reynolds number will be restricted by the pressure limit of 50 psia and, therefore limits the Reynolds number even though a user set limit for Reynolds number is not set. This Reynolds number limitation can be easily overcome by lowering the tunnel gas temperature.

Display of Input Limits

With the ability of the user to set the tunnel operating limits the user needs to know these limits. These limits are now displayed in the bottom two rows of the Controller display screen in the section titled LIMITS as shown in figure 2. The limit ranges for each variable are displayed within their corresponding control loop columns.

Improve Screen Layout

The Controller display layout shown in figure 2 is nearly identical to the original Controller except for LIMITS displayed at the bottom two rows of the screen. Improvements have been made in color and spacing for the visual warnings for an "Emergency Stop". Also, displays are now centered in their perspective control loop columns.

The Reynolds number display has been changed to allow Reynolds numbers of over 99 million. Before, when the Reynolds number reached 100 million, the display showed a % symbol indicating a display overflow.

The RPM/MACH LOOP now clears the old set point when changing from manual to automatic control. The Pt/Re LOOP also clears the old set point when changing from automatic pressure control to automatic Reynolds number control.
Aerodynamic Chord Input

In the original Controller chord length input was in meters. This has been changed so that the chord input is now in inches. This change has been made to improve ease of use for the Controller.

Tunnel Operating Envelope Safety Catches

Included in the Controller are safety catches which will safely stop the tunnel by an "Emergency Stop" if the tunnel limits for pressure or normal fan speed are exceeded. In the original Controller it was possible to over pressurize the tunnel when operating with manual GN, exhaust valve control. These safety catches are additional safety features which are duplicated in several other tunnel safety devices separate from the Controller.

Identify Causes of an Emergency Stop

The Controller "Emergency Stop" procedure brings the tunnel to a safe condition. The original Controller displayed only "Emergency Stop" and if the problem was a sensor failure, "Sensor Failure" was also displayed. This was frustrating for the user not knowing what had caused the "Emergency Stop". This "Emergency Stop" condition now displays the cause of the "Emergency Stop" and identifies the failed sensor during a "Sensor Failure". Causes of an "Emergency Stop" are displayed as "Pressure Limit", "Fan RPM Limit", or "Sensor Failure". During a "Sensor Failure" the failed sensors are identified as "Gas Temperature", "Wall Temperature", "Total Pressure", "Static Pressure", and "Screen Pressure". These displays will allow the 0.3-m TCT staff to correct tunnel problems quickly.

Improved Organization of Source Code

The source code has now been divided into logical sections which pertain to certain functions of the Controller. These divisions are designed to allow for an easier understanding of the source code. Some sections have been rearranged to reduce the number of lines and improve the Controller execution times.
Improved Cooldown Efficiency

The automatic cooldown of the Controller is one of its best features. It allows for a safe, automatic, and efficient cooldown of the tunnel to any desired temperature set point. The temperature control loop achieves this cooldown by using a "use" temperature set point which is based on an acceptable temperature difference between the tunnel wall and gas.

During tunnel operations the temperature set point is changed frequently by the user and the Controller always uses the previous cycle "use" temperature set point as a starting point to reach the desired temperature set point. This works well until the tunnel is already cool and a user chooses a warmer temperature set point and then changes back to a cold temperature set point. Because the Controller uses the previous cycle "use" temperature set point to start cooling, it can take several cycles before the "use" temperature set point reaches the actual tunnel gas temperature. This provides a period during a cooldown in which the tunnel is actually warming up waiting for the "use" temperature set point to reach the actual tunnel gas temperature.

This problem has been corrected by setting the "use" temperature set point previous cycle value, STP, to the tunnel gas temperature, TT. This occurs only during a new temperature input to cooldown the tunnel.

Improved "On" Set Point Flags

The "On" set point flags are black bands which are shown when the tunnel is within a given tolerance of a desired set point. These "On" set point flags work well to indicate quickly and easily when the tunnel had reached a desired condition. However, there was confusion about the temperature and Reynolds number "On" set point flags.

In the original Controller the temperature "On" set point flag was displayed when the absolute difference between the gas temperature, TT, and the "use" temperature set point, ST, was less then or equal to 0.3. This condition for displaying the "On" set point flag allowed the flag to be displayed when the tunnel was not near the desired temperature set point, ST1. This caused some confusion in determining if the tunnel was actually "On" temperature set point. To remove this confusion the "On" set point flag for temperature is now displayed when the absolute difference between the tunnel temperature, TT, and the desired temperature set point, ST1, is less than or equal to 0.3.
When operating in the Reynolds number control loop the user chooses a desired Reynolds number and a pressure is calculated to give this desired Reynolds number. The confusion occurs because Reynolds number control is still through the pressure control loop. The "On" set point flag in the original Controller is for pressure only. This can cause the "On" set point flag to be "On" when in the Reynolds number control loop while there is still a large difference between the desired Reynolds number set point, \textit{SRE}, and the tunnel Reynolds number, \textit{RE}. The solution to eliminate this confusion was to make a separate condition for the "On" set point flag for use when in the Reynolds number control loop. This has been accomplished by the addition of the logic flag \textit{FL7}. The Reynolds number "On" set point flag is now displayed when the difference between the desired Reynolds number set point, \textit{SRE}, and the tunnel Reynolds number, \textit{RE}, is less than or equal to 0.05.

The controller now has "On" set point flags which display when the conditions of the tunnel are those of the desired user set points.

\textbf{Rewrite Source Code}

The original source code was written in the BASIC language which requires a line number for every line of code used in the program. This line numbering causes some difficulty when trying to add to the program. The source code has been rewritten and compiled using MicroSoft QuickBASIC (Ref. 3). The advantages of using QuickBASIC are that it does not require line numbers for each line of code and all statements are identical to the original source code. Line numbers in QuickBASIC are only required on lines which are called by other lines. This lack of line numbers makes additions or changes much simpler. QuickBASIC also has a BASIC compiler that provides a faster compiled Controller program. The source code listings in Appendix A and B are in QuickBASIC.
0.3-m TUNNEL T-P/R-M CONTROLLER

<table>
<thead>
<tr>
<th></th>
<th>LN PUMP AUTO</th>
<th>TEMP LOOP AUTO</th>
<th>Pt/Re LOOP AUTO</th>
<th>RPM/MACH LOOP AUTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>SET POINT</td>
<td>132.3, psia</td>
<td>200.0, K(Final)</td>
<td>45.00, Psia</td>
<td>0.765, Mach</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200.0, K(Use)</td>
<td></td>
<td>RPM</td>
</tr>
<tr>
<td>PROCESS</td>
<td>132.3, psia</td>
<td>200.0, K-GN2</td>
<td>45.00, Psia</td>
<td>0.765, Mach</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200.5, K-WALL</td>
<td>12.79, Min</td>
<td>4165, RPM</td>
</tr>
<tr>
<td>COMMAND</td>
<td>69.6, %opn</td>
<td>20.1, %opn</td>
<td>36.0, %opn V1</td>
<td>55.5, % Rhst</td>
</tr>
<tr>
<td>INPUTS</td>
<td></td>
<td></td>
<td></td>
<td>Mach=</td>
</tr>
<tr>
<td>Delete</td>
<td></td>
<td></td>
<td></td>
<td>Nrpm=</td>
</tr>
<tr>
<td>STATUS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRAD=</td>
<td>0.0, K/mt</td>
<td>CHORD= 7.09, in</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAT=</td>
<td>93.8, K</td>
<td>P st= 30.54, psia</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Del P= 0.000, psi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIMITS</td>
<td>77 < T < 340</td>
<td>14.7 < P < 88.0</td>
<td>0 < N < 5600</td>
<td>0.15 < M < 0.995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.0 < R < 50.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2. Typical Controller Display.
<table>
<thead>
<tr>
<th></th>
<th>Tunnel Maximum</th>
<th>Set Maximum</th>
<th>Set Minimum</th>
<th>Tunnel Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature (kelvin)</td>
<td>340.0</td>
<td>340.0</td>
<td>< T <</td>
<td></td>
</tr>
<tr>
<td>Pressure (psia)</td>
<td>88.00</td>
<td>< P <</td>
<td>14.70</td>
<td>Ambient Pressure</td>
</tr>
<tr>
<td>Normal Fan Speed (rpm)</td>
<td>5600.</td>
<td>< N <</td>
<td>0.</td>
<td>0.</td>
</tr>
<tr>
<td>Mach Number</td>
<td>0.995</td>
<td>< M <</td>
<td>0.150</td>
<td>0.150</td>
</tr>
<tr>
<td>Reynolds Number (Miln)</td>
<td>50.00</td>
<td>< R <</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Accept Tunnel Max./Min. Limits and Start 0.3-m TCT Controller.
Accept Set Max./Min. Limits and Start 0.3-m TCT Controller.

Figure 1. Maximum - Minimum Limits Display.
References

Appendix A

Controller Source Code Listing

'0.3-m Transonic Cryogenic Tunnel Controller.
CLS
CLEAR

'Set up of the Digital to Analog Converter.
DEFINT I, Z
DIM E(8), DAC(8)
ZASE.ADDRESS = &H2EC
ZOMMAND.REGISTER = ZASE.ADDRESS + 1
ZTSTATUS.REGISTER = ZASE.ADDRESS + 1
ZATA.REGISTER = ZASE.ADDRESS
ZOMMAND.WAIT = &H14
WRITE.WAIT = &H12
READ.WAIT = &H15
ZERROR = &H12
ZCLEAR = &HL1
ZADIN = &H1C
ZSTOP = &HIP

'Digital to Analog Conversion Board Test.
OUT &H225, 0
FOR JJ = 1 TO 300
BSD = SQR(7)
NEXT JJ
AEMP = INP(&H225)
IF AEMP = 4 THEN 2
PRINT "Digital to Analog Conversion Problem!": PRINT
GOTO 10000
2 OUT &H224, &HI6

'Program Constants.
DELi = .1
CGV = 8
CHI = .18
CHIN = .18 *.0245
CLOV = 4
IW = 39
K = 1
KDL = 0!
KDP = 0!
KDT = 0!
KL = .02
KIM = 0!
KIN = .4
KIP = .05
KII = .1
KMM = .3
KP = .3
KPL = .2
KPM = 4.5
KPN = .6
KPP = 1!
KPT = 1!
KT = .04
MXT = 40
SLQSC = 17
STP = 300
XD1P = 1
XRPM = 12811
XPLQ = 5.103429
XPP = 1.366
XPS = 1.366

'Maximum - Minimum Limits Screen Layout.
COLOR 14, 9
CLS
LOCATE 3, 16: PRINT " Maximum - Minimum Limits for 0.3-m TCT Controller "

COLOR 12, 9
LOCATE 5, 25: PRINT "Tunnel"
LOCATE 6, 24: PRINT "Maximum"
LOCATE 5, 38: PRINT "Set"
LOCATE 6, 36: PRINT "Maximum"
LOCATE 5, 60: PRINT "Set"
LOCATE 6, 58: PRINT "Minimum"
LOCATE 5, 72: PRINT "Tunnel"
LOCATE 6, 71: PRINT "Minimum"

COLOR 7, 9
LOCATE 7, 3: PRINT "Temperature"
LOCATE 8, 4: PRINT "(kelvin)"
LOCATE 10, 3: PRINT "Pressure"
LOCATE 11, 4: PRINT "(psi)"
LOCATE 13, 3: PRINT "Normal Fan Speed"
LOCATE 14, 4: PRINT "(rpm)"
LOCATE 16, 3: PRINT "Mach Number"
LOCATE 19, 3: PRINT "Reynolds Number"
LOCATE 20, 4: PRINT "(Mln)"
LOCATE 22, 3: PRINT "Accept Tunnel Max./Min. Limits and Start 0.3-m TCT Controller." LOCATE 23, 3: PRINT "Accept Set Max./Min. Limits and Start 0.3-m TCT Controller."

COLOR 15, 9
LOCATE 7, 51: PRINT "I"
LOCATE 7, 49: PRINT CHR$(243)
LOCATE 7, 53: PRINT CHR$(243)
LOCATE 10, 51: PRINT "P"
LOCATE 10, 49: PRINT CHR$(243)
LOCATE 10, 53: PRINT CHR$(243)
LOCATE 13, 51: PRINT "N"
LOCATE 13, 49: PRINT CHR$(243)
LOCATE 13, 53: PRINT CHR$(243)
LOCATE 16, 51: PRINT "M"
LOCATE 16, 49: PRINT CHR$(243)
LOCATE 16, 53: PRINT CHR$(243)
LOCATE 19, 51: PRINT "R"
LOCATE 19, 49: PRINT CHR$(243)
LOCATE 19, 53: PRINT CHR$(243)

COLOR 14, 9
LOCATE 7, 3: PRINT "I"
LOCATE 10, 3: PRINT "P"
LOCATE 13, 3: PRINT "N"
LOCATE 16, 3: PRINT "M"
LOCATE 19, 3: PRINT "R"
LOCATE 22, 3: PRINT "A"
LOCATE 23, 10: PRINT "$"

'Tunnel Maximum - Minimum Limits.
MAXT1 = 340!
MINT1 = 77!
MAXP1 = 88!
MINP1 = 14.696
MAXN1 = 5600!
MINN1 = 0!
MAXM1 = .995
MINM1 = .15
MAXRE1 = .50!
MINRE1 = 1!
MAXCIIH = 15.75
MINCII = .394
MAXCII = .4
MINCII = .01
MAXLQSC = 150!
MAXSPR = MAXP1 / 14.696
MINSPR = MINP1 / 14.696

MAXT = MAXT1
MINT = MINT1
MAXP = MAXP1
MINP = MINP1
MAXN = MAXN1
MINN = MINN1
MAXM = MAXM1
MINM = MINM1
MAXRE = MAXRE1
MINRE = MINRE1

COLOR 10, 9
LOCATE 7, 25: PRINT USING "###.#"; MAXT1
LOCATE 7, 37: PRINT USING "###.#"; MAXT1
LOCATE 10, 25: PRINT USING "#####"; MAXP1
LOCATE 10, 59: PRINT USING "#####"; MINP1
LOCATE 13, 25: PRINT USING "#####"; MAXN1
LOCATE 13, 60: PRINT USING "#####"; MINN1
LOCATE 16, 25: PRINT USING "#####"; MAXM1
LOCATE 16, 60: PRINT USING "#####"; MINM1
LOCATE 19, 25: PRINT USING "#####"; MAXRE1
LOCATE 19, 60: PRINT USING "#####"; MINRE1
LOCATE 7, 69: PRINT "Saturation"
LOCATE 8, 69: PRINT "Temperature"
LOCATE 10, 71: PRINT "Ambient"
LOCATE 11, 71: PRINT "Pressure"
LOCATE 13, 73: PRINT USING "#####"; MINN1
LOCATE 16, 73: PRINT USING "#####"; MINM1
LOCATE 19, 73: PRINT USING "#####"; MINRE1
'Maximum - Minimum Limits Inputs.
5 AS$ = INKEY$
 IF AS$ = "T" OR AS$ = "t" THEN GOSUB 10
 IF AS$ = "P" OR AS$ = "p" THEN GOSUB 100
 IF AS$ = "N" OR AS$ = "n" THEN GOSUB 200
 IF AS$ = "M" OR AS$ = "m" THEN GOSUB 300
 IF AS$ = "R" OR AS$ = "r" THEN GOSUB 400
 IF AS$ = "A" OR AS$ = "a" THEN 500
 IF AS$ = "S" OR AS$ = "s" THEN 600
GOTO 5

'Temperature Minimum Limit Subroutine.
10 COLOR 15, 9
 BEEP
 LR = 7
 LC = 58
 LOCATE LR, LC + 1: PRINT "K"
 XX = 0
20 BS$ = INKEY$
 IF BS$ = "D" OR BS$ = "d" THEN 30 ELSE 40
 RETURN
30 LOCATE LR, LC + 1: PRINT "K"
 RETURN
40 XX = XX + 1
 IF XX = 1 THEN H1$ = VAL(BS$): LOCATE LR, LC + 1: PRINT USING "#"; H1$
 IF XX = 2 THEN H2$ = VAL(BS$): LOCATE LR, LC + 2: PRINT USING "#"; H2$
 IF XX = 3 THEN H3$ = VAL(BS$): LOCATE LR, LC + 3: PRINT USING "#"; H3$
 IF XX = 4 THEN LOCATE LR, LC + 4: PRINT CHR$(46)
 IF XX = 5 THEN H5$ = VAL(BS$): LOCATE LR, LC + 5: PRINT USING "#"; H5$
 IF XX = 5 THEN 60 ELSE 20
50 AA = H1$ * 100 + H2$ * 10 + H3$ + H5$ / 10
 MINT = AA
 IF MINT >= MAXT1 THEN MINT = MAXT1
 IF MINT <= MINT - MINT1 THEN MINT = MINT1
60 CS$ = INKEY$
 IF CS$ = CHR$(13) THEN 80 ELSE 70
80 BEEP
 COLOR 14, 9
 LOCATE LR, LC + 1: PRINT USING "###.# "; MINT
 RETURN

'Pressure Maximum Limit Subroutine.
100 COLOR 15, 9
 BEEP
 LC = 36
 LR = 10
 LOCATE LR, LC + 1: PRINT "psia"
 XX = 0
110 BS$ = INKEY$
 IF BS$ = "D" OR BS$ = "d" THEN 120 ELSE 130
120 LOCATE LR, LC + 1: PRINT "psia"
 RETURN
130 IF BS$ = "0" OR BS$ = "1" OR BS$ = "2" OR BS$ = "3" OR BS$ = "4" OR BS$ = "5" OR BS$ = "6" OR BS$ = "7" OR BS$ = "8" OR BS$ = "9" OR BS$ = "." THEN 140 ELSE 110
140 XX = XX + 1

13
IF XX = 1 THEN H1 = VAL(B$): LOCATE LR, LC + 1: PRINT USING "#"; H1
IF XX = 2 THEN H2 = VAL(B$): LOCATE LR, LC + 2: PRINT USING "#"; H2
IF XX = 4 THEN H3 = VAL(B$): LOCATE LR, LC + 4: PRINT USING "#"; H3
IF XX = 3 THEN LOCATE LR, LC + 3: PRINT CHR$(46)
IF XX = 5 THEN H5 = VAL(B$): LOCATE LR, LC + 5: PRINT USING "#"; H5
IF XX = 5 THEN 150 ELSE 110

150 AA = H1 * 10 + H2 + H3 / 10 + H5 / 100
MAXP = AA
IF MAXP <= MINN THEN 160 ELSE 170

160 MAXP = MINN
COLOR 20, 8: LOCATE LR + 1, 36: PRINT " Warning! Set Max. = Tunnel Min.
FL0 = 1
GOTO 180

170 COLOR 14, 9: LOCATE LR + 1, 36: PRINT "
FL0 = 0

180 C$ = INKEY$
IF C$ = CHR$(13) THEN 195 ELSE 190

190 BEEP
COLOR 14, 9
LOCATE LR, LC + 1: PRINT USING "###.### "; MAXP
RETURN

"Normal Fan Speed Maximum Limit Subroutine.

200 COLOR 15, 9
BEEP
LC = 36
LR = 13
LOCATE LR, LC + 1: PRINT " rpm"
XX = 0

210 B$ = INKEY$
IF B$ = "D" OR B$ = "d" THEN 220 ELSE 230

220 LOCATE LR, LC + 1: PRINT "
RETURN

230 IF B$ = "0" OR B$ = "1" OR B$ = "2" OR B$ = "3" OR B$ = "4" OR B$ = "5" OR B$ =
"6" OR B$ = "7" OR B$ = "8" OR B$ = "9" OR B$ = "," THEN 240 ELSE 210

240 XX = XX + 1
IF XX = 1 THEN H1 = VAL(B$): LOCATE LR, LC + 1: PRINT USING "#"; H1
IF XX = 2 THEN H2 = VAL(B$): LOCATE LR, LC + 2: PRINT USING "#"; H2
IF XX = 3 THEN H3 = VAL(B$): LOCATE LR, LC + 3: PRINT USING "#"; H3
IF XX = 5 THEN LOCATE LR, LC + 5: PRINT CHR$(46)
IF XX = 4 THEN H5 = VAL(B$): LOCATE LR, LC + 4: PRINT USING "#"; H5
IF XX = 5 THEN 250 ELSE 210

250 AA = H1 * 1000 + H2 * 100 + H3 * 10 + H5
MAXN = AA
IF MAXN <= MINN THEN 260 ELSE 270

260 MAXN = MINN
COLOR 20, 8: LOCATE LR + 1, 36: PRINT " Warning! Set Max. = Tunnel Min.
FL0 = 1
GOTO 280

270 COLOR 14, 9: LOCATE LR + 1, 36: PRINT "
FL0 = 0

280 C$ = INKEY$
IF C$ = CHR$(13) THEN 295 ELSE 290

290 BEEP
COLOR 14, 9
LOCATE I.R, I.C + 1: PRINT USING "####.", MAXN
RETURN

'Mach Number Maximum Limit Subroutine.
300 COLOR 15, 9
 BEEP
 LC = 36
 LR = 16
 LOCATE I.R, I.C + 1: PRINT "Mach"
 XX = 0
310 BS = INKEYS
 IF BS = "D" OR BS = "d" THEN 320 ELSE 330
320 LOCATE I.R, I.C + 1: PRINT "*
RETURN
330 IF BS = "0" OR BS = "1" OR BS = "2" OR BS = "3" OR BS = "4" OR BS = "5" OR BS = "6" OR BS = "7" OR BS = "8" OR BS = "9" OR BS = "." THEN 340 ELSE 310
340 XX = XX + 1
 IF XX = 1 THEN H1 = VAL(B$): LOCATE I.R, LC + 1: PRINT USING "#"; H1
 IF XX = 3 THEN H2 = VAL(B$): LOCATE I.R, LC + 3: PRINT USING "#"; H2
 IF XX = 4 THEN H3 = VAL(B$): LOCATE I.R, LC + 4: PRINT USING "#"; H3
 IF XX = 2 THEN LOCATE I.R, LC + 2: PRINT CHR$(46)
 IF XX = 5 THEN H5 = VAL(B$): LOCATE I.R, LC + 5: PRINT USING "#"; H5
 IF XX = 5 THEN 350 ELSE 310
350 AA = H1 + H2 / 10 + H3 / 100 + H5 / 1000
 MAXM = AA
 IF MAXM <= MINM THEN 360 ELSE 370
360 MAXM = MINM
 COLOR 20, 8: LOCATE I.R + 1, 36: PRINT "Warning! Set Max. = Tunnel Min."
 FLO = 1
 GOTO 380
370 COLOR 14, 9: LOCATE I.R + 1, 36: PRINT "*
RETURN
380 IF MAXM > MAXM1 THEN MAXM = MAXM1
390 CS = INKEYS
 IF CS = CHR$(13) THEN 395 ELSE 390
395 BEEP
 COLOR 14, 9
 LOCATE I.R, LC + 1: PRINT USING ".###", MAXM
RETURN

'Reynolds Number Maximum Limit Subroutine.
400 COLOR 15, 9
 BEEP
 LC = 36
 LR = 19
 LOCATE I.R, LC + 1: PRINT "Miln"
 XX = 0
410 BS = INKEYS
 IF BS = "D" OR BS = "d" THEN 420 ELSE 430
420 LOCATE I.R, LC + 1: PRINT "*
RETURN
430 IF BS = "0" OR BS = "1" OR BS = "2" OR BS = "3" OR BS = "4" OR BS = "5" OR BS = "6" OR BS = "7" OR BS = "8" OR BS = "9" OR BS = "." THEN 440 ELSE 410
440 XX = XX + 1
 IF XX = 1 THEN H1 = VAL(B$): LOCATE I.R, LC + 1: PRINT USING "#"; H1
 IF XX = 2 THEN H2 = VAL(B$): LOCATE I.R, LC + 2: PRINT USING "#"; H2
15
IF XX = 4 THEN H3 = VAL(B$): LOCATE LR, LC + 4: PRINT USING "#"; H3
IF XX = 3 THEN LOCATE LR, LC + 3: PRINT CHR$(46)
IF XX = 5 THEN H5 = VAL(B$): LOCATE LR, LC + 5: PRINT USING "#"; H5
IF XX = 5 THEN 450 ELSE 410

450 AA = H1 * 10 + H2 + H3 / 10 + H5 / 100
MAXRE = AA
IF MAXRE <= MINRE1 THEN 460 ELSE 470

460 MAXRE = MINRE1
COLOR 20, 8: LOCATE LR + 1, 36: PRINT " Warning! Set Max. = Tunnel Min. "
FL0 = 1
GOTO 480

470 COLOR 14, 9: LOCATE LR + 1, 36: PRINT "
FL0 = 0
480 CS = INKEY$
IF CS = CHR$(13) THEN 495 ELSE 490
495 HEEP
COLOR 14, 9
LOCATE LR, LC + 1: PRINT USING "######"; MAXRE
RETURN

*Starts the 0.3-m TCT Controller with Tunnel Maximum - Minimum Limits.
500 XX = 0
GOTO 800

*Starts the 0.3-m TCT Controller with Set Maximum - Minimum Limits.
600 IF FL0 = 1 THEN GOTO 5
XX = 0
MAXSPR = MAXP / 14.696
MINSPR = MINP / 14.696
GOTO 800

*0.3-m TCT T-P/Re-M Controller Program.

*Controller Screen Layout.
800 COLOR 0, 0
CLS
COLOR 15, 4
LOCATE 1, 26: PRINT " 0.3-m TUNNEL T-P/R-M CONTROLLER "

FOR I = 2 TO 25
COLOR 15, I
LOCATE I, 2: PRINT STRINGS$(10, 0);
IF I = 4 THEN LOCATE 4, 2: PRINT STRINGS$(10, 205);
IF I = 14 THEN LOCATE 14, 2: PRINT STRINGS$(10, 205);
IF I = 19 THEN LOCATE 19, 2: PRINT STRINGS$(10, 205);
IF I = 23 THEN LOCATE 23, 2: PRINT STRINGS$(18, 205);
COLOR 15, 1
LOCATE I, 12: PRINT STRINGS$(12, 0);
IF I = 4 THEN LOCATE 4, 12: PRINT STRINGS$(12, 205);
IF I = 14 THEN LOCATE 14, 12: PRINT STRINGS$(12, 205);
IF I = 19 THEN LOCATE 19, 12: PRINT STRINGS$(12, 205);
IF I = 23 THEN LOCATE 23, 12: PRINT STRINGS$(18, 205);
COLOR 15, 3
LOCATE I, 24: PRINT STRINGS$(17, 0);
COLOR 15, 5
LOCATE 1, 41: PRINT STRINGS$(18, 0);
 IF I = 4 THEN LOCATE 4, 41: PRINT STRINGS$(18, 205);
 IF I = 14 THEN LOCATE 14, 41: PRINT STRINGS$(18, 205);
 IF I = 19 THEN LOCATE 19, 41: PRINT STRINGS$(18, 205);
 IF I = 23 THEN LOCATE 23, 41: PRINT STRINGS$(18, 205);
END
COLOR 15, 6
LOCATE 1, 59: PRINT STRINGS$(18, 0);
 IF I = 4 THEN LOCATE 4, 59: PRINT STRINGS$(18, 205);
 IF I = 14 THEN LOCATE 14, 59: PRINT STRINGS$(18, 205);
 IF I = 19 THEN LOCATE 19, 59: PRINT STRINGS$(18, 205);
 IF I = 23 THEN LOCATE 23, 59: PRINT STRINGS$(18, 205);
NEXT I
COLOR 15, 2
LOCATE 2, 14: PRINT " LN PUMP ": PRINT ;
LOCATE 3, 14: PRINT " AUTO ": PRINT ;
LOCATE 5, 18: PRINT ", psi": PRINT ;
LOCATE 9, 18: PRINT ", psi": PRINT ;
LOCATE 12, 18: PRINT ",% opn": PRINT ;
LOCATE 15, 12: PRINT " =": PRINT ;
LOCATE 5, 13: PRINT USING "####.#": SLQSC
COLOR 14, 2
LOCATE 15, 12: PRINT "B": PRINT ;
COLOR 15, 3
LOCATE 2, 28: PRINT "TEMP LOOP": PRINT ;
LOCATE 3, 29: PRINT " MANUAL ": PRINT ;
LOCATE 5, 31: PRINT ", K(Final)": PRINT ;
LOCATE 6, 31: PRINT ", K(Use)": PRINT ;
LOCATE 9, 31: PRINT " K-GN2": PRINT ;
LOCATE 10, 31: PRINT " K-WALL": PRINT ;
LOCATE 12, 31: PRINT "% opn": PRINT ;
LOCATE 15, 25: PRINT " cmp =": PRINT ;
LOCATE 16, 25: PRINT " A O% =": PRINT ;
LOCATE 20, 25: PRINT " GRAD = K/ml": PRINT ;
LOCATE 21, 25: PRINT " SAT = K": PRINT ;
LOCATE 24, 32: PRINT " I" ;
LOCATE 24, 30: PRINT CHR$(243);
LOCATE 24, 34: PRINT CHR$(243);
LOCATE 24, 26: PRINT USING "####": MINT ;
LOCATE 24, 36: PRINT USING "####": MAXT ;
COLOR 14, 3
LOCATE 15, 25: PRINT " T": PRINT ;
LOCATE 16, 26: PRINT " L": PRINT ;
COLOR 15, 5
LOCATE 2, 45: PRINT " P /Re LOOP": PRINT ;
LOCATE 3, 46: PRINT " MANUAL ": PRINT ;
LOCATE 5, 48: PRINT ",$psia": PRINT ;
LOCATE 6, 48: PRINT ",$Mln": PRINT ;
LOCATE 20, 42: PRINT "CIORD=7.09,in": PRINT ;
LOCATE 9, 48: PRINT ",$psia": PRINT ;
LOCATE 21, 42: PRINT "P st=": PRINT ;
LOCATE 22, 42: PRINT "Del P=": PRINT ;
LOCATE 10, 48: PRINT ",$Mln": PRINT ;
LOCATE 12, 48: PRINT ",%opn V1": PRINT ;
LOCATE 13, 48: PRINT ",%opn V2": PRINT ;
LOCATE 15, 43: PRINT "res=": PRINT ;
LOCATE 16, 43: PRINT "yno=": PRINT ;
LOCATE 17, 43: PRINT "Av%=": PRINT ;
LOCATE 18, 43: PRINT "hrd=": PRINT ;
LOCATE 24, 50: PRINT "P";
LOCATE 24, 52: PRINT CHR$(243);
LOCATE 24, 54: PRINT USING "###": MINP;
LOCATE 24, 56: PRINT "R";
LOCATE 25, 50: PRINT "R";
LOCATE 25, 52: PRINT CHR$(243);
LOCATE 25, 54: PRINT USING "###": MAXP;
COLOR 14, 5
LOCATE 15, 43: PRINT "P": PRINT ;
LOCATE 16, 43: PRINT "R": PRINT ;
LOCATE 17, 44: PRINT "G": PRINT ;
LOCATE 18, 43: PRINT "C": PRINT ;
COLOR 15, 6
LOCATE 2, 62: PRINT "RPM/MACH LOOP": PRINT
LOCATE 3, 64: PRINT " MANUAl ": PRINT ;
LOCATE 5, 67: PRINT ",Mach": PRINT ;
LOCATE 6, 67: PRINT ",RPM": PRINT ;
LOCATE 9, 67: PRINT ",Mach": PRINT ;
LOCATE 10, 67: PRINT ",RPM": PRINT ;
LOCATE 12, 67: PRINT "%RhsT": PRINT ;
LOCATE 15, 61: PRINT "ach="; PRINT ;
LOCATE 16, 61: PRINT " rpm="; PRINT ;
LOCATE 24, 68: PRINT "N";
LOCATE 24, 66: PRINT CHR$(243);
LOCATE 24, 70: PRINT CHR$(243);
LOCATE 24, 61: PRINT USING "###": MINN;
LOCATE 24, 72: PRINT USING "###": MAXN;
LOCATE 25, 68: PRINT "M";
LOCATE 25, 66: PRINT CHR$(243);
LOCATE 25, 70: PRINT CHR$(243);
LOCATE 25, 61: PRINT USING "###": MINM;
LOCATE 25, 72: PRINT USING "###": MAXM;
COLOR 14, 6
LOCATE 15, 61: PRINT "M": PRINT ;
LOCATE 16, 61: PRINT "N": PRINT ;
COLOR 15, 1
LOCATE 5, 3: PRINT "SET POINT": PRINT ;
LOCATE 9, 3: PRINT "PROCESS": PRINT ;
LOCATE 12, 3: PRINT "COMMAND": PRINT ;
LOCATE 15, 3: PRINT "INPUTS": PRINT ;
LOCATE 20, 3: PRINT "STATUS": PRINT ;
LOCATE 16, 3: PRINT "elete": PRINT ;
LOCATE 24, 3: PRINT "LIMITS";

COLOR 14, 1
LOCATE 16, 3: PRINT "D": PRINT ;

'Controller Program.
1000 GOSUB 8000

'Conversion of Digital Inputs to Engineering Units.
PP = E(1) * XPP
PPUSCS = PP * 14.696
PS = E(2) * XPS
 IF PS > (PP - .999999) THEN PS = PP * .999999
 PSUSCS = PS * 14.696
 IF E(3) > 1.191 THEN 2080 ELSE 2060
2060 TTM = 74.1826 + 105.3 * E(3) - 40.66 * E(3)^2 + 20.54 * E(3)^3 - 5.21 * E(3)^4
GOTO 2090
2080 TTM = 80.678 + 84.52 * E(3) - 12.717 * E(3)^2 + 1.805 * E(3)^3 - .1102 * E(3)^4
GOTO 2100
2090 TTM = 2080
2100 TMWL = 74.183 + 105.3 * E(3) - 40.66 * E(3)^2 + 20.54 * E(3)^3 - 5.21 * E(3)^4
GOTO 2130
2120 TMWL = 80.678 + 84.52 * E(4) - 12.717 * E(4)^2 + 1.805 * E(4)^3 - .1102 * E(4)^4
2130 FRPM = E(5) * XPAR
PLQ = E(6) * XPAR
PLQUSCS = PLQ * 14.696
DLP = E(7) * XPAR
GOSUB 5000

M = SQR(5 * (PP / PS) ^ .28571 - 5)
MF = (1 + .2 * M * M)
KRE = 63714 * CF * M / TTM ^ 1.4 / (MF) ^ 2.1
RE = KRE * PP
SAT = 50 + 27.34 * PS ^ .296
SAT1 = SAT * MF
LDPO = (PLQ - PP)
 IF LDPO < .5 THEN LDPO = .5
LF = CLTV * .8676 * SQR(LDPO)
DRPM = FRPM
 IF DRPM < 100 THEN DRPM = 100
KTGS = DRPM * SQR(PP) * KT / 3! / TTM / LF
TTMP = TTM
 IF TTMP < 80 THEN TTMP = 80
FKW = 100 * PP * (FRPM / 1000) ^ 2.26 / SQR(TTMP)
FB = FKW / (121 + TTM) / LF
SPR = SP / 14.696
SPRI = SPR / 14.696
SPRER = SPR / KR
 IF SPRER > MAXSPR THEN SPRER = MAXSPR
 IF SPRER < MINSRP THEN SPRER = MINSRP
 IF AUTORE = 1 THEN SPRER = SPR
SPRER = SPRER * 14.696
COLOR 14, 5
'Temperature Control Loop.

IF AUTORE = 1 THEN LOCATE 5, 43: PRINT USING "##.##"; SPRU

IF IE = 1 THEN 2950
IF (TMWL - T') > 1.5 * MXT THEN 2950
IF FRPM < 580 THEN 2950

ST = ST1
IF ST > TT THEN 2530 ELSE 2525
2525 IF ST < (STP - .04) THEN ST = (STP - .04)
2530 IF AUTOT = 1 THEN 2540 ELSE 2850
2540 IF AUTOP = 0 THEN 2610
2560 IF ABS(PP - SPR) < .15 THEN 2560 ELSE 2570
2570 IF (PP / TT) > .95 * (SPR / ST) THEN 2610 ELSE 2580
2580 IF TT > ST THEN 2610 ELSE 2590
2590 ST = TT - .02
2610 IF (TMWL - ST - MXT) > 0 THEN 2620 ELSE 2650
2620 ST = TMWL - MXT
FB = 0
2650 IF ST < SAT1 THEN ST = SAT1
ET = TT - ST
IF ABS(ET) < .3 THEN FL1 = 1 ELSE FL1 = 0
IF ABS(TMWL - T') < .24 THEN FL2 = 1 ELSE FL2 = 0
IF ET < -5 THEN FF = 0
IF ET > 0 THEN FF = 1
FBF = FB * FF * .8
RIT = RTM1 + KIP * KTGS * DEL * ET
IF RIT < -FBF THEN RIT = -FBF
IF RIT > (1 - FBF) THEN RIT = (1 - FBF)
IF (TMWL - T') > MXT / 2 THEN 2750 ELSE 2780
2750 LMT = 1 - (TMWL - TT - MXT / 2) * 2 / MXT
IF LMT < 11 / 11 THEN LMT = 11 / 11
IF RIT > LMT THEN RIT = 1
2780 ALQ = KTGS * (KPT * ET + KDT * (ET - 2 * ETM1 + ETM2) / 2 / DEL) + RIT + FBF
IF ALQ < 0 THEN ALQ = 0
IF ALQ > 1 THEN ALQ = 1
IF (TMWL - T') > MXT / 2 THEN 2820 ELSE 2830
2820 IF ALQ > LMT THEN ALQ = LMT
2830 LCMDS = ALQ / 100
GOTO 2970
2850 IF LCMDS > 100 THEN LCMDS = 100
ALQ = LCMDS / 100
2880 LMT = 1 - (TMWL - TT - MXT / 2) * 2 / MXT
IF LMT < 11 / 11 THEN LMT = 11 / 11
IF ALQ > LMT THEN ALQ = LMT
RIT = ALQ
GOTO 2970
2950 ALQ = 0
LCMDS = 0
2970 IF ALQ > ALQP + .01 THEN ALQ = ALQP + .01
DAC(1) = ALQ
DAC(2) = ALQ

'Pressure - Reynolds Number Control Loop.

KIPGS = 750 * KP / PP / SQR(T')
GF1 = 2.725 * CGV * PP / SQR(T')
IF PPUSCS > MAXP1 THEN PIE = 1: GOSUB 6000
IF IE = 1 THEN 3220
IF ABS(RE - SRE) < .05 THEN FL.7 = 1 ELSE FL.7 = 0
IF AUTOP = 1 THEN 3040 ELSE 3180

3040 EP = PP - SPR
IF ABS(EP) < .005 THEN FL.3 = 1 ELSE FL.3 = 0
RIP = RMP1 + EP * KPGS * KIP * DEL.
IF RIP < 0 THEN RIP = 0
IF RIP > 1! THEN RIP = 1!
AGV1 = KPGS * (KIP * EP + KDP * (EP - 2 * EPM1 + EPM2) / 2 / DEL) + RIP
IF AGV1 < 0 THEN AGV1 = 0
IF AGV1 > 1! THEN AGV1 = 1!
IF AGV1 > .9 THEN AGV2 = AGV2 + .01
IF AGV1 < .7 THEN AGV2 = AGV2 - .01
IF AGV2 < 0 THEN AGV2 = 0
IF AGV2 > 1! THEN AGV2 = 1!

GCMDS = AGV1 * 100
GOTO 3240

3180 IF GCMDS > 100 THEN GCMDS = 100
RIP = GCMDS / 100
AGV1 = GCMDS / 100
IF FRPM > 500 THEN LCMDS = 0
GOTO 3240

3220 AGV1 = 1!
GCMDS = 100
3240 IF AGV1 < AGVIP - .05 THEN AGV1 = AGVIP - .05
IF AGV1 > AGVIP + .05 THEN AGV1 = AGVIP + .05
DAC(4) = AGV1 + .8 + .2
DAC(5) = AGV2 * .8 + .2

'Fan Speed - Mach Number Control Loop.
IF IE = 1 THEN 3405 ELSE 3410

3405 NCMDS1 = 0
GOTO 3550
3410 NCMDS1 = NCMDS
IF FRPM > MAXP1 THEN NIE = 1: GOSUB 6000
IF AUTOM = 1 THEN 3421 ELSE 3550
3422 IF FRPM < 580 THEN AUTOM = 0: GOTO 3435
FKM = 1 - .5 * M
IF FKM < .71 THEN FKM = .71
KMC = 520 * SQR(TI) * FKM / PP ^ .035
KMGS = KMC * KMM
IF ALQ > .99 THEN 3432 ELSE 3440
3432 AUTOM = 0
NCMDS = FRPM - 500
IF NCMDS < 0 THEN NCMDS = 0: BEEP
3435 COLOR 14, 6
LOCATE 3, 64: PRINT * MANUAL *: PRINT
LOCATE 6, 62: PRINT USING "#####": NCMDS
GOTO 3550
3440 EM = SM - M
IF ABS(EM) < .002 THEN FL.4 = 1 ELSE FL.4 = 0
RIM = RIMM1 + KIM * EM * DEL * KMGS
IF RIM < -100 THEN RIM = -100
IF RIM > 100 THEN RIM = 100
NCMDS1 = KPM * EM * KMGS + RIM + FRPM
IF NCMDS1 > 5450 THEN NCMDS1 = 5450
3550 \text{IF NCMDS1} > \text{MAXN} \text{ THEN NCMDS1} = \text{MAXN}

3560 \text{EN} = \text{NCMDSD}1 \cdot \text{FRPM}
\text{IF ABS(EN)} < 10 \text{ THEN FLN}=1 \text{ ELSE FLN}=0
\text{IF ABS(EN)} > 100 \text{ THEN 3560 ELSE 3570}

3570 \text{KEN} = 5
\text{GOTO 3575}

3575 \text{KEN} = \text{SQR(TT)} / 20
\text{GOTO 3575}

3575 \text{RIN} = \text{RINM1} + \text{EN} \cdot \text{DEL} \cdot \text{KIN}
\text{IF RIN} > \text{RINM1} + \text{KEN} \text{ THEN RIN} = \text{RINM1} + \text{KEN}
\text{IF RIN} < \text{RINM1} - \text{KEN} \text{ THEN RIN} = \text{RINM1} - \text{KEN}
\text{IF RIN} < 0 \text{ THEN RIN} = 0
\text{IF RIN} > 6000 \text{ THEN RIN} = 6000
\text{SRPM} = \text{EN} \cdot \text{KPN} + \text{RIN}
\text{IF SRPM} > \text{SRPM1} + 5 \text{ THEN SRPM} = \text{SRPM1} + 5
\text{IF SRPM} < \text{SRPM1} - 5 \text{ THEN SRPM} = \text{SRPM1} - 5
\text{SNRPM} = \text{SRPM} / 7500
\text{IF SNRPM} > 1! \text{ THEN SNRPM} = 1!
\text{IF SNRPM} < 0! \text{ THEN SNRPM} = 0!
\text{DAC(6)} = \text{SNRPM}

'Fan Speed Band Warning.
\text{IF FRPM} < 3651 \text{ THEN 3790 ELSE 3830}
\text{IF FRPM} > 3549 \text{ THEN 3800 ELSE 3830}

3790 \text{COLOR 20, 8}
\text{LOCATE 13, 61: PRINT " SPEED BAND ": PRINT}
\text{BEEP}
\text{GOTO 3900}

3830 \text{COLOR 14, 6}
\text{LOCATE 13, 61: PRINT " ": PRINT}

'Temperature Gradient Calculation.
\text{3900 } \text{IW} = \text{IW} + 1
\text{IF IW} = 40 \text{ THEN 3920 ELSE 3980}
\text{IF WLG} > 8 \text{ THEN WLG} = 0
\text{IF WLG} < -8 \text{ THEN WLG} = 0
\text{COLOR 14, 3}
\text{LOCATE 20, 30: PRINT USING "###.#"; 12 * WLG}
\text{WLG} = 0
\text{IW} = 0
\text{3980 } \text{WLG} = \text{WLG} + \text{TMWL1} - \text{TMWL1}

'Liquid Back Pressure Control Loop.
\text{SLQ} = \text{SLQSC} / 14.696
\text{IF SLQ} > 10.2 \text{ THEN SLQ} = 10.2
\text{SLQSC} = \text{SLQ} \cdot 14.696
\text{ELP} = \text{PLQ} - \text{SLQ}
\text{IF ABS(ELP)} < .4 \text{ THEN FL5} = 1 \text{ ELSE FL5} = 0
\text{IF ELP} > .15 \text{ THEN ELP} = .15
\text{IF ELP} < -.15 \text{ THEN ELP} = -.15
\text{RIL} = \text{RLM1} + \text{ELP} \cdot \text{KIL} \cdot \text{DEL}
\text{IF RIL} < 0. \text{ THEN RIL} = 0.
\text{IF RIL} > 1! \text{ THEN RIL} = 1!
\text{ALN} = \text{KPL} \cdot \text{ELP} + \text{KDL} \cdot (\text{ELP} - \text{ELPM1}) / \text{DEL} + \text{RIL}
\text{IF ALN} < 0. \text{ THEN ALN} = 0.
\text{IF ALN} > 1! \text{ THEN ALN} = 1!
\text{DAC(3)} = \text{ALN}
DAC(7) = 1!

GOSUB 9000

'Screen Pressure Drop Warning.
DLPC = .47 * PP * M * M / (M!) ^ 6 + .02
IF DLPC > DLPC THEN Fl.6 = 1 ELSE Fl.6 = 0
IF M < .25 THEN Fl.6 = 0
IF Fl.6 = 1 THEN BEEP

'Controller Screen Update.
JD = JD + 1
IF JD = 3 THEN 4160 ELSE 4700
4160 COLOR 14, 3
LOCATE 21, 30: PRINT USING "###.#"; SATI
IF (Fl.1 * Fl.2 * AUTOT) = 1 THEN 4190 ELSE 4200
4190 COLOR 14, 0
4200 LOCATE 8, 26: PRINT STRING$(6, 0)
COLOR 14, 5
LOCATE 21, 47: PRINT USING "###.#"; E12 * 20.07474
IF Fl.6 = 1 THEN COLOR 30, 5
LOCATE 22, 48: PRINT USING "###.#"; DLP
IF ANL = 0 THEN 4240
IF (Fl.7 * AUTORE) = 1 THEN 4250 ELSE 4260
4240 IF (Fl.3 * AUTOP) = 1 THEN 4250 ELSE 4260
4250 COLOR 14, 0
4260 LOCATE 8, 43: PRINT STRING$(6, 0)
COLOR 14, 2
LOCATE 5, 13: PRINT USING "###.#"; SLOSC
LOCATE 9, 13: PRINT USING "###.#"; PLOUSCS
LOCATE 12, 13: PRINT USING "###.#"; (1 - AI.N) * 100
IF Fl.5 = 1 THEN 4320 ELSE 4330
4320 COLOR 14, 0
4330 LOCATE 8, 13: PRINT STRING$(6, 0)
COLOR 14, 6
IF (Fl.4 * AUTOM) = 1 THEN 4360 ELSE 4370
4360 COLOR 14, 0
4370 LOCATE 8, 62: PRINT STRING$(6, 0)
IF (FlN-AUTOM) > 0 THEN 4374 ELSE 4376
4374 COLOR 14, 0
4376 LOCATE 11, 62: PRINT STRING$(6, 0)
COLOR 14, 3
IF AUTOT = 1 THEN LOCATE 6, 26: PRINT USING "###.#"; ST
LOCATE 9, 26: PRINT USING "###.#"; TT
LOCATE 10, 26: PRINT USING "###.#"; TMMWL
LQ = AI.LQ * 100
LOCATE 12, 26: PRINT USING "###.#"; LQ
COLOR 14, 5
LOCATE 9, 42: PRINT USING "###.#"; E11 * 20.07474
GV1 = AGV1 * 100
LOCATE 12, 43: PRINT USING "###.#"; GV1
GV2 = AGV2 * 100
LOCATE 13, 43: PRINT USING "###.#"; GV2
LOCATE 10, 42: PRINT USING "###.#"; RE
COLOR 14, 6
LOCATE 9, 62: PRINT USING "###.#"; M
LOCATE 10, 62: PRINT USING "###.#"; FRPM
LOCATE 12, 62: PRINT USING "##.#"; SNRPM * 100
JD = 0

'Setting Previous Cycle Values.
4700 AGV1P = AGV1
 ALOP = ALO
 EPM1 = ELP
 EPM2 = EPM1
 EPM1 = EP
 ETM2 = ETM1
 ETM1 = ET
 RILM1 = RIL
 RIMM1 = RIM
 RINM1 = RIN
 RIPM1 = RIP
 RITM1 = RIT
 SRPM1 = SRPM
 STP = ST
 TMW1.1 = TMW1.

4900 GOTO 1000

'Controller Input Subroutine.
5000 AS = INKEY$
 IF AS = "" THEN 5999
 IF AS = "D" OR AS = "d" THEN 5950
 IF XX > 5 THEN XX = 5
 IF AS = CHR$(13) THEN 5008 ELSE 5009
5008 IF XX = 5 THEN 5600 ELSE 5999
5009 IF J > 0 THEN 5010 ELSE 5014
5010 IF AS = "0" OR AS = "1" OR AS = "2" OR AS = "3" OR AS = "4" OR AS = "5" OR AS = "6" OR AS = "7" OR AS = "8" OR AS = "9" OR AS = "." THEN 5100 ELSE 5999
5014 COLOR 16, 3
 IF AS = "T" OR AS = "t" THEN J = 1: LOCATE 15, 36: PRINT ":,K": PRINT
 IF AS = "L" OR AS = "l" THEN J = 5: LOCATE 16, 36: PRINT ":,opn": PRINT
 COLOR 16, 5
 IF AS = "P" OR AS = "p" THEN J = 2: LOCATE 15, 54: PRINT ":,psia": PRINT
 IF AS = "R" OR AS = "r" THEN J = 4: LOCATE 16, 54: PRINT ":,miln": PRINT
 IF AS = "G" OR AS = "g" THEN J = 6: LOCATE 17, 54: PRINT ":,opn": PRINT
 IF AS = "C" OR AS = "c" THEN J = 8: LOCATE 18, 54: PRINT ":,in": PRINT
 COLOR 16, 6
 IF AS = "M" OR AS = "m" THEN J = 3: LOCATE 15, 71: PRINT ":,Mach": PRINT
 IF AS = "N" OR AS = "n" THEN J = 7: LOCATE 16, 71: PRINT ":,rpm": PRINT
 COLOR 16, 2
 IF AS = "B" OR AS = "b" THEN J = 9: LOCATE 15, 19: PRINT ":,psi": PRINT
 IF J = 1 THEN I.U = 15: MU = 30
 IF J = 2 THEN I.U = 15: MU = 48
 IF J = 3 THEN I.U = 15: MU = 65
 IF J = 4 THEN I.U = 16: MU = 48
 IF J = 5 THEN I.U = 16: MU = 30
 IF J = 6 THEN I.U = 17: MU = 48
 IF J = 7 THEN I.U = 16: MU = 65
 IF J = 8 THEN I.U = 18: MU = 48
 IF J = 9 THEN I.U = 15: MU = 13
 IF J > 0 THEN BEEP

GOTO 5999
IF J = 1 THEN 5105
IF J = 2 THEN 5405
IF J = 3 THEN 5205
IF J = 4 THEN 5405
IF J = 5 THEN 5405
IF J = 6 THEN 5405
IF J = 7 THEN 5350
IF J = 8 THEN 5405
IF J = 9 THEN 5105

Assemble Temperature and Liquid Back Pressure Inputs.

5105 XX = XX + 1
D1 = 1: D2 = 2: D3 = 3: D4 = 4: D5 = 5
GOSUB 5500
AA = H1 * 100 + H2 * 10 + H3 + H5 / 10
GOTO 5999

Assemble Mach Number Input.

5205 XX = XX + 1
D1 = 1: D2 = 3: D3 = 4: D4 = 2: D5 = 5
GOSUB 5500
AA = H2 / 10 + H3 / 100 + H5 / 1000
GOTO 5999

Assemble Fan Speed Input.

5350 XX = XX + 1
D1 = 1: D2 = 2: D3 = 3: D4 = 5: D5 = 4
GOSUB 5500
AA = H1 * 1000 + H2 * 100 + H3 * 10 + H5
GOTO 5999

Assemble Pressure, Reynolds Number, Injection Valve, Exhaust Valve, and Chord Inputs.

5405 XX = XX + 1
D1 = 1: D2 = 2: D3 = 4: D4 = 3: D5 = 5
GOSUB 5500
AA = H1 * 10 + H2 + H3 / 10 + H5 / 100
GOTO 5999

5500 IF J = 1 THEN COLOR 0, 3
IF J = 2 THEN COLOR 0, 5
IF J = 3 THEN COLOR 0, 6
IF J = 4 THEN COLOR 0, 5
IF J = 5 THEN COLOR 0, 3
IF J = 6 THEN COLOR 0, 5
IF J = 7 THEN COLOR 0, 6
IF J = 8 THEN COLOR 0, 5
IF J = 9 THEN COLOR 0, 2
IF XX = D1 THEN H1 = VAL(A$): LOCATE LU, MU + D1: PRINT USING "#": H1
IF XX = D2 THEN H2 = VAL(A$): LOCATE LU, MU + D2: PRINT USING "#": H2
IF XX = D3 THEN H3 = VAL(A$): LOCATE LU, MU + D3: PRINT USING "#": H3
IF XX = D4 THEN LOCATE LU, MU + D4: PRINT CHR$(46);
IF XX = D5 THEN H5 = VAL(A$): LOCATE LU, MU + D5: PRINT USING "#": H5
RETURN
*Set Temperature Input.
5600 IF J = 1 THEN 5620 ELSE 5660
5620 ST1 = AA
 IF ST1 > MAXT THEN ST1 = MAXT
 IF ST1 < MINT THEN ST1 = MINT
 IF ST1 < SAT1 THEN ST1 = SAT1
 COLOR 14, 3
 LOCATE 3, 29: PRINT " AUTO ": PRINT
 AUTOT = 1
 LOCATE 5, 26: PRINT USING "###.#", ST1

*Set Pressure Input.
5660 IF J = 2 THEN 5670 ELSE 5730
5670 SP = AA
 IF SP < MINP THEN SP = MINP
 IF SP > MAXP THEN SP = MAXP
 COLOR 14, 5
 LOCATE 3, 46: PRINT " AUTOP ": PRINT
 LOCATE 6, 43: PRINT " ": PRINT
 LOCATE 5, 43: PRINT USING "##.##"); SP
 AUTOP = 1
 AUTORE = 0

*Set Much Number Input.
5730 IF J = 3 THEN 5740 ELSE 5750
5740 SM = AA
 IF SM < MINM THEN SM = MINM
 IF SM > MAXM THEN SM = MAXM
 COLOR 14, 6
 LOCATE 3, 64: PRINT " AUTO ": PRINT
 LOCATE 6, 62: PRINT " ": PRINT
 LOCATE 5, 62: PRINT USING "#.###"); SM

*Set Reynolds Number Input.
5750 IF J = 4 THEN 5760 ELSE 5770
5760 SRE = AA
 IF SRE > MAXRE THEN SRE = MAXRE
 IF SRE < MINRE THEN SRE = MINRE
 COLOR 14, 5
 AUTORE = 1
 AUTOP = 1
 LOCATE 6, 43: PRINT USING "##.##"); SRE
 LOCATE 3, 46: PRINT " AUTORE ": PRINT

*Set Liquid Injection Valve Input.
5770 IF J = 5 THEN 5780 ELSE 5810
5780 LCMDS = AA
 COLOR 14, 3
 LOCATE 3, 29: PRINT " MANUAL ": PRINT
 LOCATE 5, 26: PRINT " ": PRINT
 LOCATE 6, 26: PRINT " ": PRINT
 AUTOT = 0

*Set Gas Exhaust Valve Input.
5810 IF J = 6 THEN 5820 ELSE 5860
5820 GCMDS = AA
COLOR 14, 5
LOCATE 3, 46: PRINT " MANUAL ": PRINT ;
AUTOP = 0
AUTORE = 0
LOCATE 5, 43: PRINT ": PRINT ;
LOCATE 6, 43: PRINT ": PRINT ;

'Set Fan Speed Input.
5860 IF J = 7 THEN 5870 ELSE 5935
5870 NCMDS = AA
 IF NCMDS > MAXN THEN NCMDS = MAXN
COLOR 14, 6
LOCATE 5, 62: PRINT "
LOCATE 3, 64: PRINT " MANUAL ": PRINT ;
LOCATE 6, 62: PRINT USING "####."; NCMDS
AUTOM = 0

'Set Chord Length Input.
5935 IF J = 8 THEN 5937 ELSE 5943
5937 CHIN = AA
 IF CHIN < MINCHIN THEN CHIN = MINCHIN
 IF CHIN > MAXCHIN THEN CHIN = MAXCHIN
COLOR 14, 5
LOCATE 20, 48: PRINT USING "##.##": CHIN
CH = CHIN * .0254

'Set Liquid Back Pressure Input.
5943 IF J = 9 THEN 5944 ELSE 5950
5944 SLQSC = AA
 IF SLQSC > MAXLQSC THEN SLQSC = MAXLQSC
COLOR 14, 2
LOCATE 5, 13: PRINT USING "####.": SLQSC

5950 IF J = 0 THEN 5962
 IF J = 1 THEN COLOR 14, 3
 IF J = 2 THEN COLOR 14, 5
 IF J = 3 THEN COLOR 14, 6
 IF J = 4 THEN COLOR 14, 5
 IF J = 5 THEN COLOR 14, 3
 IF J = 6 THEN COLOR 14, 5
 IF J = 7 THEN COLOR 14, 6
 IF J = 8 THEN COLOR 14, 5
 IF J = 9 THEN COLOR 14, 2
LOCATE IU, MU + 1: PRINT ": PRINT ;

5962 IF J > 0 THEN BEEP
 IF IE = 1 THEN COLOR 0, 6
 IF IE = 1 THEN BEEP: LOCATE 20, 60: PRINT "
 IF PIE = 1 THEN LOCATE 21, 60: PRINT "
 IF NIE = 1 THEN LOCATE 21, 60: PRINT "
 PIE = 0
 NIE = 0

J = 0
XX = 0
IE = 0

5999 RETURN
'Emergency Stop Subroutine.

6000 IE = 1
COLOR 20, 8
LOCATE 20, 60: PRINT " EMERGENCY STOP ": PRINT ;
COLOR 4, 8
 IF PIE = 1 THEN LOCATE 21, 60: PRINT " Pressure Limit ";
 IF PIE = 1 THEN LOCATE 21, 60: PRINT " Fan RPM Limit ";
COLOR 4, 8
AUTOT = 0
AUTOP = 0
AUTOM = 0
AUTORE = 0
LOCATE 3, 29: PRINT " MANUAL ": PRINT ;
LOCATE 3, 46: PRINT " MANUAL ": PRINT ;
LOCATE 3, 64: PRINT " MANUAL ": PRINT ;
RETURN

' Analog to Digital Conversion Input Subroutine.

8000 OUT COMMAND REGISTER, ZSTOP
ZTEMP = INP(ZATA REGISTER)
WAIT ZSTATUS REGISTER, ZOMMAND WAIT
OUT ZOMMAND REGISTER, ZCLEAR
ZDGAIN = 1
FOR I = 1 TO 7
ZDCINL = 1 - I
WAIT ZSTATUS REGISTER, WRITE WAIT, WRITE WAIT
WAIT ZSTATUS REGISTER, ZOMMAND WAIT
OUT ZOMMAND REGISTER, ZADIN
WAIT ZSTATUS REGISTER, WRITE WAIT, WRITE WAIT
OUT ZATA REGISTER, ZDGAIN
WAIT ZSTATUS REGISTER, WRITE WAIT, WRITE WAIT
OUT ZATA REGISTER, ZDCINL
WAIT ZSTATUS REGISTER, READ WAIT
ZOW = INP(ZATA REGISTER)
WAIT ZSTATUS REGISTER, READ WAIT
ZIGII = INP(ZATA REGISTER)
ZOLT# = ZIGII * 256 + ZOW
 IF ZOLT# > 32767 THEN ZOLT# = ZOLT# - 65536!
WAIT ZSTATUS REGISTER, ZOMMAND WAIT
ZSTATUS = INP(ZSTATUS REGISTER)
 IF (ZSTATUS AND &1180) THEN GOTO 8100
ZO1.## = 5 * ZOLT# / 32768
E(1) = ZO1.##
NEXT I

'Sensor Failure Detection.

E11 = E(1): IF E11 < 0 THEN E11 = 0
 IF E(1) < .43 THEN E(1) = .43: FL.10 = 1
E12 = E(2): IF E12 < 0 THEN E12 = 0
 IF E(2) < .4 THEN E(2) = .4: FL.10 = 2
 IF E(3) < 0 THEN E(3) = 0: FL.10 = 3
 IF E(4) < 0 THEN E(4) = 0: FL.10 = 4
 IF E(5) < .001 THEN E(5) = .001
 IF E(6) < .3 THEN E(6) = .3
 IF ABS(E(7)) > 1 THEN FL.10 = 7
 IF FL.10 >= 1 THEN 8340 ELSE 8380

8340 COLOR 4, 8
LOCATE 21, 60: PRINT " Sensor Failure "; PRINT
IF FL10 = 1 THEN LOCATE 22, 60: PRINT " Total Pressure ";
IF FL10 = 2 THEN LOCATE 22, 60: PRINT " Static Pressure ";
IF FL10 = 3 THEN LOCATE 22, 60: PRINT " Gas Temperature ";
IF FL10 = 4 THEN LOCATE 22, 60: PRINT " Wall Temperature ";
IF FL10 = 7 THEN LOCATE 22, 60: PRINT " Screen Pressure ";
GOSUB 6000
8380 COLOR 6, 6
LOCATE 21, 60: PRINT " "; PRINT
LOCATE 22, 60: PRINT " "; PRINT
8400 FL10 = 0
RETURN

'Digital to Analog Conversion Output Subroutine.
9000 FOR IK = 1 TO 7
 DR1 = INT(DAC(IK) * 4005)
 HI = INT(DR1 / 16)
 DR2 = INT(DR1 - HI * 16)
 IF IK < 3 THEN 9050 ELSE 9070
9050 LO = INT(DR2 * 16) + 2 * IK - 2
GOTO 9080
9070 LO = INT(DR2 * 16) + 2 * IK - 1
9080 BEMP = INP(&I1225)
 IF BEMP = 0 THEN 9110
9100 GOTO 9080
9110 OUT &I1224, LO
9120 CEMP = INP(&I1225)
 IF CEMP = 16 THEN 9150
GOTO 9120
9150 OUT &I1224, HI
NEXT IK
RETURN
10000 END
Appendix B

Controller Simulator Source Code Listing

'0.3-m Transonic Cryogenic Tunnel Controller Simulator.
CLS
CLEAR

'Program Constants.
DEN = .1
CGV = 8
CH = 18
CHIN = .18 * .0245
CLQV = 4
IW = 39
K = 1
KDL = 0!
KDP = 0!
KDT = 0!
KIL = .02
KIM = 0!
KIN = .4
KP = .05
KIP = .1
KMM = .3
KP = .3
KPL = .2
KPM = 4.5
KPN = .6
KPP = 1!
KPT = 1!
KT = .04
MXT = 40
PLO1 = 3!
PLQ = 3!
PP = 1!
PPI = 1!
SLQSC = 17!
STP = 300!
TMWL = 300!
TMWL1 = 300!
T = 300!
TT1 = 300!

'Maximum - Minimum Limits Screen Layout.
COLOR 14, 9
CLS
LOCATE 3, 16: PRINT " Maximum - Minimum Limits for 0.3-m TCT Controller "

COLOR 12, 9
LOCATE 5, 25: PRINT "Tunnel"
LOCATE 6, 24: PRINT "Maximum"
LOCATE 5, 38: PRINT "Set"
LOCATE 6, 36: PRINT "Maximum"
LOCATE 5, 60: PRINT "Set"
LOCATE 6, 58: PRINT "Minimum"
LOCATE 5, 72: PRINT "Tunnel"
COLOR 7, 9
LOCATE 7, 3: PRINT "Temperature"
LOCATE 8, 4: PRINT "(kelvin)"
LOCATE 10, 3: PRINT "Pressure"
LOCATE 11, 4: PRINT "(psia)"
LOCATE 13, 3: PRINT "Normal Fan Speed"
LOCATE 14, 4: PRINT "(rpm)"
LOCATE 16, 3: PRINT "Mach Number"
LOCATE 19, 3: PRINT "Reynolds Number"
LOCATE 20, 4: PRINT "(Mln)"
LOCATE 22, 3: PRINT "Accept Tunnel Max./Min. Limits and Start 0.3-m TCT Controller." LOCATE 23, 3: PRINT "Accept Set Max./Min. Limits and Start 0.3-m TCT Controller."

COLOR 15, 9
LOCATE 7, 51: PRINT "I"
LOCATE 7, 49: PRINT CHR$(243)
LOCATE 7, 53: PRINT CHR$(243)
LOCATE 10, 51: PRINT "P"
LOCATE 10, 49: PRINT CHR$(243)
LOCATE 10, 53: PRINT CHR$(243)
LOCATE 13, 51: PRINT "N"
LOCATE 13, 49: PRINT CHR$(243)
LOCATE 13, 53: PRINT CHR$(243)
LOCATE 16, 51: PRINT "M"
LOCATE 16, 49: PRINT CHR$(243)
LOCATE 16, 53: PRINT CHR$(243)
LOCATE 19, 51: PRINT "R"
LOCATE 19, 49: PRINT CHR$(243)
LOCATE 19, 53: PRINT CHR$(243)

COLOR 14, 9
LOCATE 7, 3: PRINT "T"
LOCATE 10, 3: PRINT "P"
LOCATE 13, 3: PRINT "N"
LOCATE 16, 3: PRINT "M"
LOCATE 19, 3: PRINT "R"
LOCATE 22, 3: PRINT "A"
LOCATE 23, 10: PRINT "S"

"Tunnel Maximum - Minimum Limits.
MAXT1 = 340!
MINT1 = 77!
MAXP1 = 88!
MINP1 = 14.696
MAXN1 = 5600!
MINN1 = 0!
MAXM1 = .995
MINM1 = .15
MAXREI = 50!
MINREI = 1!
MAXCHIN = 15.75
MINCHIN = .394
MAXCHI = .4
MINCHI = .01
MAXI.QSC = 150!
MAXSPR = MAXP1 / 14.696
MINSPR = MINP1 / 14.696

MAXT = MAXT1
MINT = MINT1
MAXP = MAXP1
MINP = MINP1
MAXN = MAXN1
MINN = MINN1
MAXM = MAXM1
MINM = MINM1
MAXRE = MAXRE1
MINRE = MINRE1

COLOR 10, 9
LOCATE 7, 25: PRINT USING "###.#"; MAXT1
LOCATE 7, 37: PRINT USING "###.#"; MAXT1
LOCATE 10, 25: PRINT USING "###.#"; MAXP1
LOCATE 10, 59: PRINT USING "###.#"; MINP1
LOCATE 13, 25: PRINT USING "#####."; MAXN1
LOCATE 13, 60: PRINT USING "#####."; MINN1
LOCATE 16, 25: PRINT USING "#####."; MAXM1
LOCATE 16, 60: PRINT USING "#####."; MINM1
LOCATE 19, 25: PRINT USING "#####."; MAXRE1
LOCATE 19, 60: PRINT USING "#####."; MINRE1
LOCATE 7, 69: PRINT "Saturation"
LOCATE 8, 69: PRINT "Temperature"
LOCATE 10, 71: PRINT "Ambient"
LOCATE 11, 71: PRINT "Pressure"
LOCATE 13, 73: PRINT USING "#####."; MINN1
LOCATE 16, 73: PRINT USING "#####."; MINM1
LOCATE 19, 73: PRINT USING "#####."; MINRE1

'Maximum - Minimum Limits Inputs.
5 A$ = INKEY$
 IF A$ = "T" OR A$ = "t" THEN GOSUB 10
 IF A$ = "P" OR A$ = "p" THEN GOSUB 100
 IF A$ = "N" OR A$ = "n" THEN GOSUB 200
 IF A$ = "M" OR A$ = "m" THEN GOSUB 300
 IF A$ = "R" OR A$ = "r" THEN GOSUB 400
 IF A$ = "A" OR A$ = "a" THEN 500
 IF A$ = "S" OR A$ = "s" THEN 600
GOTO 5

'Temperature Minimum Limit Subroutine.
10 COLOR 15, 9
 BEEP
 LR = 7
 LC = 58
 LOCATE LR, LC + 1: PRINT " ,K"
 XX = 0
20 BS$ = INKEY$
 IF BS$ = "D" OR BS$ = "d" THEN 30 ELSE 40
30 LOCATE LR, LC + 1: PRINT " "
 RETURN
40 IF BS$ = "O" OR BS$ = "1" OR BS$ = "2" OR BS$ = "3" OR BS$ = "4" OR BS$ = "5" OR BS$ =
"6" OR BS = "7" OR BS = "8" OR BS = "9" OR BS = "." THEN 50 ELSE 20

50 XX = XX + 1
 IF XX = 1 THEN H1 = VAL(B$): LOCATE LR, LC + 1: PRINT USING ";#"; H1
 IF XX = 2 THEN H2 = VAL(B$): LOCATE LR, LC + 2: PRINT USING ";#"; H2
 IF XX = 3 THEN H3 = VAL(B$): LOCATE LR, LC + 3: PRINT USING ";#"; H3
 IF XX = 4 THEN LOCATE LR, LC + 4: PRINT CHR$(46)
 IF XX = 5 THEN H5 = VAL(B$): LOCATE LR, LC + 5: PRINT USING ";#"; H5
 IF XX = 5 THEN 60 ELSE 20

60 AA = H1 * 100 + H2 * 10 + H3 + H5 / 10
 MINT = AA
 IF MINT >= MAXP THEN MINT = MAXP
 IF MINT <= MINT1 THEN MINT = MINT1

70 CS = INKEY$
 IF CS = CHR$(13) THEN 80 ELSE 70

80 BEEP
COLOR 14, 9
LOCATE LR, LC + 1: PRINT USING ";###.##": MINT
RETURN

'Pressure Maximum Limit Subroutine.
100 COLOR 15, 9
 BEEP
 LC = 36
 LR = 10
 LOCATE LR, LC + 1: PRINT ",,psia"
 XX = 0
110 B$ = INKEY$
 IF B$ = "D" OR B$ = "d" THEN 120 ELSE 130
 RETURN
120 LOCATE LR, LC + 1: PRINT ","
130 IF B$ = "0" OR B$ = "1" OR B$ = "2" OR B$ = "3" OR B$ = "4" OR B$ = "5" OR B$ = "6" OR B$ = "7" OR B$ = "8" OR B$ = "9" OR B$ = "." THEN 140 ELSE 110
140 XX = XX + 1
 IF XX = 1 THEN H1 = VAL(B$): LOCATE LR, LC + 1: PRINT USING ";#"; H1
 IF XX = 2 THEN H2 = VAL(B$): LOCATE LR, LC + 2: PRINT USING ";#"; H2
 IF XX = 4 THEN H3 = VAL(B$): LOCATE LR, LC + 4: PRINT USING ";#"; H3
 IF XX = 3 THEN LOCATE LR, LC + 3: PRINT CHR$(46)
 IF XX = 5 THEN H5 = VAL(B$): LOCATE LR, LC + 5: PRINT USING ";#"; H5
 IF XX = 5 THEN 150 ELSE 110
150 AA = H1 * 10 + H2 * 11 + H3 / 10 + H5 / 100
 MAXP = AA
 IF MAXP <= MINP1 THEN 160 ELSE 170
160 MAXP = MINP1
COLOR 20, 8: LOCATE LR + 1, 36: PRINT " Warning! Set Max. = Tunnel Min. "
 FL0 = 1
 GOTO 180
170 COLOR 14, 9: LOCATE LR + 1, 36: PRINT "
 FL0 = 0
180 IF MAXP > MAXP1 THEN MAXP = MAXP1
190 CS = INKEY$
 IF CS = CHR$(13) THEN 195 ELSE 190
195 BEEP
COLOR 14, 9
LOCATE LR, LC + 1: PRINT USING ";###.##": MAXP
RETURN

33
'Normal Fan Speed Maximum Limit Subroutine.

200 COLOR 15, 9
 BEEP
 L.C = 36
 L.R = 13
 LOCATE L.R, L.C + 1: PRINT " rpm"

 XX = 0

210 BS = INKEYS
 IF BS = "D" OR BS = "d" THEN 220 ELSE 230
 LOCATE L.R, L.C + 1: PRINT " "
 RETURN

230 IF BS = "0" OR BS = "1" OR BS = "2" OR BS = "3" OR BS = "4" OR BS = "5" OR BS = "6" OR BS = "7" OR BS = "8" OR BS = "9" OR BS = "." THEN 240 ELSE 210

240 XX = XX + 1
 IF XX = 1 THEN H1 = VAL(BS): LOCATE L.R, L.C + 1: PRINT USING ";H1
 IF XX = 2 THEN H2 = VAL(BS): LOCATE L.R, L.C + 2: PRINT USING ";H2
 IF XX = 3 THEN H3 = VAL(BS): LOCATE L.R, L.C + 3: PRINT USING ";H3
 IF XX = 5 THEN LOCATE L.R, L.C + 5: PRINT CHR$(46)
 IF XX = 4 THEN H5 = VAL(BS): LOCATE L.R, L.C + 4: PRINT USING ";H5
 IF XX = 5 THEN 250 ELSE 210

250 AA = H1 * 1000 + H2 * 100 + H3 * 10 + H5
 MAXN = AA
 IF MAXN <= MINN THEN 260 ELSE 270

260 MAXN = MINN1
 COLOR 20, 8: LOCATE L.R + 1, 36: PRINT " Warning! Set Max. = Tunnel Min. "
 FLO = 1
 GOTO 280

270 COLOR 14, 9: LOCATE L.R + 1, 36: PRINT " "
 FLO = 0

280 IF MAXN > MAXN1 THEN MAXN = MAXN1

290 CS = INKEYS
 IF CS = CHR$(13) THEN 295 ELSE 290

295 BEEP
 COLOR 14, 9
 LOCATE L.R, L.C + 1: PRINT USING ";####.
 MAXN RETURN

'Mach Number Maximum Limit Subroutine.

300 COLOR 15, 9
 BEEP
 L.C = 36
 L.R = 16
 LOCATE L.R, L.C + 1: PRINT " Mach"
 XX = 0

310 BS = INKEYS
 IF BS = "D" OR BS = "d" THEN 320 ELSE 330
 LOCATE L.R, L.C + 1: PRINT "
 RETURN

330 IF BS = "0" OR BS = "1" OR BS = "2" OR BS = "3" OR BS = "4" OR BS = "5" OR BS = "6" OR BS = "7" OR BS = "8" OR BS = "9" OR BS = "." THEN 340 ELSE 310

340 XX = XX + 1
 IF XX = 1 THEN H1 = VAL(BS): LOCATE L.R, L.C + 1: PRINT USING ";H1
 IF XX = 3 THEN H2 = VAL(BS): LOCATE L.R, L.C + 3: PRINT USING ";H2
 IF XX = 4 THEN H3 = VAL(BS): LOCATE L.R, L.C + 4: PRINT USING ";H3
 IF XX = 2 THEN LOCATE L.R, L.C + 2: PRINT CHR$(46)
 IF XX = 5 THEN H5 = VAL(BS): LOCATE L.R, L.C + 5: PRINT USING ";H5
 IF XX = 5 THEN 350 ELSE 310

34
AA = H1 + H2 / 10 + H3 / 100 + H15 / 1000
MAXM = AA
 IF MAXM <= MINM1 THEN 360 ELSE 370
360
MAXM = MINM1
COLOR 20, 8: LOCATE LR + 1, 36: PRINT " Warning! Set Max. = Tunnel Min. "
FLO = 1
GOTO 380
370
COLOR 14, 9: LOCATE LR + 1, 36: PRINT "
FLO = 0
380
IF MAXM > MAXM1 THEN MAXM = MAXM1
390 CS = INKEY$ spaces
 IF CS = CHR$(13) THEN 395 ELSE 390
395 BEEP
COLOR 14, 9
LOCATE LR, LC + 1: PRINT USING ".###"; MAXM
RETURN

'Reynolds Number Maximum Limit Subroutine.
400 COLOR 15, 9
BEEP
LC = 36
LR = 19
LOCATE LR, LC + 1: PRINT " ,Min"
XX = 0
410 BS = INKEY$
 IF BS = "D" OR BS = "d" THEN 420 ELSE 430
420 LOCATE LR, LC + 1: PRINT "
RETURN
430 IF BS = "0" OR BS = "1" OR BS = "2" OR BS = "3" OR BS = "4" OR BS = "5" OR BS = "6" OR BS = "7" OR BS = "8" OR BS = "9" OR BS = "." THEN 440 ELSE 410
440 XX = XX + 1
 IF XX = 1 THEN H1 = VAL(B$): LOCATE LR, LC + 1: PRINT USING "; #; H1
 IF XX = 2 THEN H2 = VAL(B$): LOCATE LR, LC + 2: PRINT USING "; #; H2
 IF XX = 4 THEN H3 = VAL(B$): LOCATE LR, LC + 4: PRINT USING "; #; H3
 IF XX = 3 THEN LOCATE LR, LC + 3: PRINT CHR$(46)
 IF XX = 5 THEN H5 = VAL(B$): LOCATE LR, LC + 5: PRINT USING "; #; H5
 IF XX = 5 THEN 450 ELSE 410
450 AA = H1 * 10 + H2 + H3 / 10 + H15 / 100
MAXRE = AA
 IF MAXRE <= MINRE1 THEN 460 ELSE 470
460 MAXRE = MINRE1
COLOR 20, 8: LOCATE LR + 1, 36: PRINT " Warning! Set Max. = Tunnel Min. "
FLO = 1
GOTO 480
470 COLOR 14, 9: LOCATE LR + 1, 36: PRINT "
FLO = 0
480 IF MAXRE > MAXRE1 THEN MAXRE = MAXRE1
490 CS = INKEY$
 IF CS = CHR$(13) THEN 495 ELSE 490
495 BEEP
COLOR 14, 9
LOCATE LR, LC + 1: PRINT USING "; ###"; MAXRE
RETURN

'Starts the Controller with the Tunnel Maximum - Minimum Limits.
500 XX = 0
GOTO 800

35
'Starts the Controller with the Set Maximum - Minimum Limits.

600 IF F1.0 = 1 THEN GOTO 5
 XX = 0
 MAXSPR = MAXP / 14.696
 MINSPR = MINP / 14.696
 GOTO 800

'Controller Simulation.
'Controller Screen Layout.
800 COLOR 0, 0

COLOR 15, 4
LOCATE 1, 26: PRINT " 0.3-m TUNNEL T-P/R-M CONTROLLER ",

FOR I = 2 TO 25
COLOR 15, 1
LOCATE I, 2: PRINT STRINGS(10, 0); IF I = 4 THEN LOCATE 4, 2: PRINT STRINGS$(10, 205); IF I = 14 THEN LOCATE 14, 2: PRINT STRINGS$(10, 205); IF I = 19 THEN LOCATE 19, 2: PRINT STRINGS$(10, 205); IF I = 23 THEN LOCATE 23, 2: PRINT STRINGS$(18, 205);
COLOR 15, 2
LOCATE I, 12: PRINT STRINGS$(12, 0); IF I = 4 THEN LOCATE 4, 12: PRINT STRINGS$(12, 205); IF I = 14 THEN LOCATE 14, 12: PRINT STRINGS$(12, 205); IF I = 19 THEN LOCATE 19, 12: PRINT STRINGS$(12, 205); IF I = 23 THEN LOCATE 23, 12: PRINT STRINGS$(18, 205);
COLOR 15, 3
LOCATE I, 24: PRINT STRINGS$(17, 0); IF I = 4 THEN LOCATE 4, 24: PRINT STRINGS$(17, 205); IF I = 14 THEN LOCATE 14, 24: PRINT STRINGS$(17, 205); IF I = 19 THEN LOCATE 19, 24: PRINT STRINGS$(17, 205); IF I = 23 THEN LOCATE 23, 24: PRINT STRINGS$(18, 205);
COLOR 15, 5
LOCATE I, 41: PRINT STRINGS$(18, 0); IF I = 4 THEN LOCATE 4, 41: PRINT STRINGS$(18, 205); IF I = 14 THEN LOCATE 14, 41: PRINT STRINGS$(18, 205); IF I = 19 THEN LOCATE 19, 41: PRINT STRINGS$(18, 205); IF I = 23 THEN LOCATE 23, 41: PRINT STRINGS$(18, 205);
COLOR 15, 6
LOCATE I, 59: PRINT STRINGS$(18, 0); IF I = 4 THEN LOCATE 4, 59: PRINT STRINGS$(18, 205); IF I = 14 THEN LOCATE 14, 59: PRINT STRINGS$(18, 205); IF I = 19 THEN LOCATE 19, 59: PRINT STRINGS$(18, 205); IF I = 23 THEN LOCATE 23, 59: PRINT STRINGS$(18, 205);
NEXT 1

COLOR 15, 2
LOCATE 2, 14: PRINT " LN PUMP ": PRINT ;
LOCATE 3, 14: PRINT " AUTO ": PRINT ;
LOCATE 5, 18: PRINT ", psia": PRINT ;
LOCATE 9, 18: PRINT ", psia": PRINT ;
LOCATE 12, 18: PRINT ", %opn": PRINT ;
LOCATE 15, 12: PRINT ", =": PRINT ;
LOCATE 5, 13: PRINT USING "###.##": SI,QSC.
COLOR 14, 2
LOCATE 15, 12: PRINT "I": PRINT ;

COLOR 15, 3
LOCATE 2, 28: PRINT "TEMP LOOP": PRINT ;
LOCATE 3, 29: PRINT " MANUAL ": PRINT ;
LOCATE 5, 31: PRINT "K(Final)": PRINT ;
LOCATE 6, 31: PRINT "K(Used)": PRINT ;
LOCATE 9, 31: PRINT "K-GN2": PRINT ;
LOCATE 10, 31: PRINT "K-WALL": PRINT ;
LOCATE 12, 31: PRINT ",%opn": PRINT ;
LOCATE 15, 25: PRINT " cmp": PRINT ;
LOCATE 16, 25: PRINT "A Q%": PRINT ;
LOCATE 20, 25: PRINT "GRAD": PRINT ;
LOCATE 21, 25: PRINT ",K/mL": PRINT ;
LOCATE 24, 32: PRINT "T",
LOCATE 24, 30: PRINT CHR$(243);
LOCATE 24, 34: PRINT CHR$(243);
LOCATE 24, 36: PRINT USING "####": MINT;
LOCATE 24, 38: PRINT USING "####": MAXT;

COLOR 14, 3
LOCATE 15, 25: PRINT "I": PRINT ;
LOCATE 16, 26: PRINT "I": PRINT ;

COLOR 15, 5
LOCATE 2, 45: PRINT "Pl/Re LOOP": PRINT ;
LOCATE 3, 46: PRINT " MANUAL ": PRINT ;
LOCATE 5, 48: PRINT ",psi": PRINT ;
LOCATE 6, 48: PRINT ",Miln": PRINT ;
LOCATE 20, 42: PRINT "CHORD= 7.09,in": PRINT ;
LOCATE 9, 48: PRINT ",psi": PRINT ;
LOCATE 21, 42: PRINT "P st= psi": PRINT ;
LOCATE 22, 42: PRINT "Del P= psi": PRINT ;
LOCATE 10, 48: PRINT ",Miln": PRINT ;
LOCATE 12, 48: PRINT ",%opn V1": PRINT ;
LOCATE 13, 48: PRINT ",%opn V2": PRINT ;
LOCATE 15, 43: PRINT " rcs=": PRINT ;
LOCATE 16, 43: PRINT " yno=": PRINT ;
LOCATE 17, 43: PRINT "A v%": PRINT ;
LOCATE 18, 43: PRINT " hrd=": PRINT ;
LOCATE 24, 50: PRINT "P";
LOCATE 24, 48: PRINT CHR$(243);
LOCATE 24, 52: PRINT CHR$(243);
LOCATE 24, 43: PRINT USING "###": MINP;
LOCATE 24, 54: PRINT USING "###": MAXP;
LOCATE 25, 50: PRINT "R";
LOCATE 25, 48: PRINT CHR$(243);
LOCATE 25, 52: PRINT CHR$(243);
LOCATE 25, 43: PRINT USING "###": MINRE;
LOCATE 25, 54: PRINT USING "###": MAXRE;

COLOR 14, 5
LOCATE 15, 43: PRINT "P": PRINT ;
LOCATE 16, 43: PRINT "R": PRINT ;
LOCATE 17, 44: PRINT ",G": PRINT ;
LOCATE 18, 43: PRINT "C": PRINT;
COLOR 15, 6
LOCATE 2, 62: PRINT "RPM/MACH LOOP": PRINT
LOCATE 3, 64: PRINT " MANUAL ": PRINT;
LOCATE 5, 67: PRINT ",Mach": PRINT;
LOCATE 6, 67: PRINT ",RPM": PRINT;
LOCATE 9, 67: PRINT ",Mach": PRINT;
LOCATE 10, 67: PRINT ",RPM": PRINT;
LOCATE 12, 67: PRINT ",% Rhst": PRINT;
LOCATE 15, 61: PRINT ", rpm": PRINT;
LOCATE 16, 61: PRINT ", rpm": PRINT;
LOCATE 24, 68: PRINT "N";
LOCATE 24, 66: PRINT CHR$(243);
LOCATE 24, 70: PRINT CHR$(243);
LOCATE 24, 61: PRINT USING "#####": MINN;
LOCATE 24, 72: PRINT USING "#####": MAXN;
LOCATE 25, 68: PRINT "M";
LOCATE 25, 66: PRINT CHR$(243);
LOCATE 25, 70: PRINT CHR$(243);
LOCATE 25, 61: PRINT USING ",####": MINM;
LOCATE 25, 72: PRINT USING ",####": MAXM;
COLOR 14, 6
LOCATE 15, 61: PRINT "M": PRINT;
LOCATE 16, 61: PRINT "M": PRINT;
COLOR 15, 1
LOCATE 5, 3: PRINT "SET POINT": PRINT;
LOCATE 9, 3: PRINT "PROCESS": PRINT;
LOCATE 12, 3: PRINT "COMMAND": PRINT;
LOCATE 15, 3: PRINT "INPUTS": PRINT;
LOCATE 20, 3: PRINT "STATUS": PRINT;
LOCATE 16, 3: PRINT " channel": PRINT;
LOCATE 24, 3: PRINT " LIMITS";
COLOR 14, 1
LOCATE 16, 3: PRINT "D": PRINT;

'Simulation Controller Program.

1000 CRPM = FRPM
 IF FRPM < 0 THEN FRPM = 0
 IF CRPM < 50 THEN CRPM = 50
 CRM = 2.77 - CRPM / 157 / SQR(TT) * PP ^ .035
 IF CRM < .001 THEN CRM = .001
 M = 1.67 - SQ(R(M))
 IF M > .999 THEN M = .999
 PS = PP / (1 + .2 * M ^ 2) * 3.5
 PPUSCS = PP * 14.696
 PSUSCS = PS * 14.696
 PLQUSCS = PLQ * 14.696

GOSUB 5000

 MF = (1 + .2 * M * M)
 KRE = 63714 * CH * M / TT ^ 1.4 / (MF) ^ 2.1
 RE = KRE * PP

38
\[
\begin{align*}
\text{SAT} &= 50 + 27.34 \times \text{PS}^{.296} \\
\text{SAT1} &= \text{SAT} \times \text{MF} \\
\text{LDPQ} &= (\text{PQ} - \text{P}) \\
&\quad \text{IF LDPQ < .5 THEN LDPQ = .5} \\
\text{LF} &= \text{CLQV} \times .8676 \times \text{SQR}(\text{LDPQ}) \\
\text{DRPM} &= \text{FRPM} \\
&\quad \text{IF DRPM < 100 THEN DRPM = 100} \\
\text{KTGS} &= \text{DRPM} \times \text{SQR}(\text{PP}) \times \text{KT} / \text{TT} / \text{LF} \\
\text{TTMP} &= \text{TT} \\
&\quad \text{IF TTMP < 80 THEN TTMP = 80} \\
\text{FKW} &= 100 \times \text{PP} \times (\text{FRPM} / 1000)^{2.26} / \text{SQR}(\text{TTMP}) \\
\text{FB} &= \text{FKW} / (121 + \text{TT}) / \text{LF} \\
\text{SPR} &= \text{SP} / 14.696 \\
\text{SPR1} &= \text{SPR} / \text{KRE} \\
&\quad \text{IF SPR1 > MAXSPR THEN SPR1 = MAXSPR} \\
&\quad \text{IF SPR1 < MINSPR THEN SPR1 = MINSPR} \\
&\quad \text{IF AUTORE = 1 THEN SPR = SPR1} \\
\text{SPRU} &= \text{SPR} \times 14.696 \\
\text{COLOR} &= 14, 5 \\
&\quad \text{IF AUTORE = 1 THEN LOCATE 5, 43: PRINT USING "##.##"; SPRU} \\
\end{align*}
\]

'Temperature Control Loop.'

\[
\begin{align*}
\text{IF IE = 1 THEN 2950} \\
\text{IF (TMWL - TT) > 1.5 \times \text{MXT} THEN 2950} \\
\text{IF FRPM < 580 THEN 2950} \\
\text{ST = ST} \\
&\quad \text{IF ST > TT THEN 2530 ELSE 2525} \\
2525 &\quad \text{IF ST < (STP - .04) THEN ST = (STP - .04)} \\
2530 &\quad \text{IF AUTOT = 1 THEN 2540 ELSE 2580} \\
2540 &\quad \text{IF TOP = 0 THEN 2610} \\
&\quad \text{IF ABS(PP - SPR) < .15 THEN 2560 ELSE 2570} \\
2560 &\quad \text{IF ABS(TT - ST) < 2! THEN 2610 ELSE 2570} \\
2570 &\quad \text{IF (PP / TT) > .95 \times (SPR / ST) THEN 2610 ELSE 2580} \\
2580 &\quad \text{IF TT > ST THEN 2610 ELSE 2590} \\
2590 &\quad \text{TT = TT - .02} \\
2610 &\quad \text{IF (TMWL - ST - MXT) > 0 THEN 2620 ELSE 2650} \\
2620 &\quad \text{ST = TMWL - MXT} \\
\text{FB} &= 0 \\
2650 &\quad \text{IF ST < SAT1 THEN ST = SAT1} \\
\text{ET} &= \text{TT} - \text{ST} \\
&\quad \text{IF ABS(TT - ST) < .3 THEN FL1.1 = 1 ELSE FL1.1 = 0} \\
&\quad \text{IF ABS(TMWL - TT) < 24 THEN FL2.1 = 1 ELSE FL2.1 = 0} \\
&\quad \text{IF ET < -.5 THEN FF = 0} \\
&\quad \text{IF ET > 0 THEN IF = 1} \\
\text{FBF} &= \text{FB} \times \text{FF} \times .8 \\
\text{RIT} &= \text{RITM1} + \text{KIT} \times \text{KTGS} \times \text{DEL} \times \text{ET} \\
&\quad \text{IF RIT < -FBF THEN RIT = -FBF} \\
&\quad \text{IF RIT > (1 - FBF) THEN RIT = (1 - FBF)} \\
&\quad \text{IF (TMWL - TT) > MXT / 2 THEN 2750 ELSE 2780} \\
\text{LMT} &= 1 - (\text{TMWL} - \text{TT} - \text{MXT} / 2) / \text{DEL} \\
&\quad \text{IF LMT < .5 THEN LMT = .5} \\
&\quad \text{IF RIT > LMT THEN RIT = LMT} \\
\text{ALQ} &= \text{KTGS} \times (\text{KPT} \times \text{ET} + \text{KDT} \times (\text{ET} - 2 \times \text{ETM1} + \text{ETM2}) / 2 / \text{DEL}) + \text{RIT} + \text{FBF} \\
&\quad \text{IF ALQ < 0 THEN ALQ = 0} \\
&\quad \text{IF ALQ > 1 THEN ALQ = 1} \\
&\quad \text{IF (TMWL - TT) > MXT / 2 THEN 2820 ELSE 2830} \\
2820 &\quad \text{IF ALQ > LMT THEN ALQ = LMT}
\end{align*}
\]
2830 LCMDS = AI.Q * 100
 GOTO 2970
2850 IF LCMDS > 100 THEN LCMDS = 100
 ALQ = LCMDS / 100
 IF (TMWI - TT) > MXT / 2 THEN 2880 ELSE 2910
2880 L.MT = 1 - ((TMWI - TT - MXT / 2) * 2 / MXT
 IF L.MT < 1 / 1.F THEN LMT = 1 / 1.F
 IF ALQ > 1.MT THEN ALQ = LMT
2910 RIT = ALQ
 GOTO 2970
2950 ALQ = 0
 LCMDS = 0
2970 IF ALQ > AL.QP + .01 THEN ALQ = AL.QP + .01
 DAC(1) = ALQ
 DAC(2) = ALQ

'Pressure - Reynolds Number Control Loop.
 KPUSCS = 750 * KP / PP / SQRT(TI)
 GP1 = 2.725 * CGV * PP / SQRT(TI)
 IF PPUSCS > MAXP1 THEN PIE = 1: GOSUB 6000
 IF IE = 1 THEN 3220
 IF ABS(RE - SRE) < .05 THEN FL7 = 1 ELSE FL7 = 0
 IF AUTOP = 1 THEN 3040 ELSE 3180
3040 EP = PP - SPR
 IF ABS(EP) < .005 THEN FL3 = 1 ELSE FL3 = 0
 RIP = RIPM1 + EP * KPUSCS * KIP * DEL.
 IF RIP < 0 THEN RIP = 0
 IF RIP > 1 THEN RIP = 1!
 AGV1 = KPUSCS * (KPP * EP + KDP * (EP - 2 * EPM1 + EPM2) / 2 / DEL) + RIP
 IF AGV1 < 0 THEN AGV1 = 0
 IF AGV1 > 1 THEN AGV1 = 1!
 IF AGV1 > .9 THEN AGV2 = AGV2 + .01
 IF AGV1 < .7 THEN AGV2 = AGV2 - .01
 IF AGV2 < 0 THEN AGV2 = 0
 IF AGV2 > 1 THEN AGV2 = 1!
 GCMDS = AGV1 * 100
 GOTO 3240
3180 IF GCMDS > 100 THEN GCMDS = 100
 RIP = GCMDS / 100
 AGV1 = GCMDS / 100
 IF FRPM > 300 THEN LCMDS = 0
 GOTO 3240
3220 AGV1 = 1!
 GCMDS = 100
3240 IF AGV1 < AGV1P - .05 THEN AGV1 = AGV1P - .05
 IF AGV1 > AGV1P + .05 THEN AGV1 = AGV1P + .05
 DAC(4) = AGV1 * .8 + .2
 DAC(5) = AGV2 * .8 + .2

'Fan Speed - Mach Number Control Loop.
 IF IE = 1 THEN 3405 ELSE 3410
3405 NCMS1 = 0
 GOTO 3550
3410 NCMS1 = NCMS
 IF FRPM > MAXN1 THEN NIE = 1: GOSUB 6000
 IF AUTOM = 1 THEN 3422 ELSE 3550
3422 IF FRPM < 580 THEN AUTOM = 0: GOTO 3435
FKM = 1 - .5 * M
IF FKM < .7 THEN FKM = .7
KMC = 520 * SQRT(T1) * FKM / PP * .035
KMGS = KMC * KMM
IF ALQ > .99 THEN 3432 ELSE 3440

3432
AUTOM = 0
NCMDS = FRPM - 500
IF NCMDS < 0 THEN NCMDS = 0; BEEP

3435
COLOR 14, 6
LOCATE 3, 64; PRINT " MANUAL "; PRINT
LOCATE 6, 62; PRINT USING "####."; NCMDS
GOTO 3550

3440
EM = SM - M
IF ABS(EM) < .002 THEN FLA = 1 ELSE FLA = 0
RIM = RIMM + KIM * EM * DEL * KMGS
IF RIM < -100 THEN RIM = -100
IF RIM > 100 THEN RIM = 100
NCMDS1 = KPM * EM * KMGS + RIM + FRPM
IF NCMDS1 > 5450 THEN NCMDS1 = 5450
IF NCMDS1 > MAXN THEN NCMDS1 = MAXN

3550
EN = NCMDS1 - FRPM
IF ABS(EN) < 10 THEN FLN = 1 ELSE FLN = 0
IF ABS(EN) > 100 THEN 3560 ELSE 3570

3560
KEN = 5
GOTO 3575

3570
KEN = SQRT(T1) / 20

3575
RIN = RINM + EN * DEL * KIN
IF RIN > RINM + KEN THEN RIN = RINM + KEN
IF RIN < RINM - KEN THEN RIN = RINM - KEN
IF RIN < 0 THEN RIN = 0
IF RIN > 6000 THEN RIN = 6000
SRPM = EN * KPN + RIN
IF SRPM > SRPM1 + 5 THEN SRPM = SRPM1 + 5
IF SRPM < SRPM1 - 5 THEN SRPM = SRPM1 - 5
SNRPM = SRPM / 7500
IF SNRPM > 1 ! THEN SNRPM = 1!
IF SNRPM < 0 ! THEN SNRPM = 0!
DAC(6) = SNRPM

"Fan Speed Band Warning.
IF FRPM < 3651 THEN 3790 ELSE 3830
3790
IF FRPM > 3549 THEN 3800 ELSE 3830

3800
COLOR 20, 8
LOCATE 13, 61; PRINT " SPEED BAND "; PRINT
BEEP
GOTO 3900

3830
COLOR 14, 6
LOCATE 13, 61; PRINT " "; PRINT

"Temperature Gradient Calculation.
3900
IW = IW + 1
IF IW = 40 THEN 3920 ELSE 3980
3920
IF W1.G > 8 THEN W1.G = 0
IF W1.G < -8 THEN W1.G = 0
COLOR 14, 3
LOCATE 20, 30: PRINT USING "####."; 12 * W1.G
W1.G = 0
IW = 0

3980 WLG = WL G + TMW1. - TMW1.1

'Liquid Back Pressure Control Loop.

SLQ = SLOSC / 14.696
IF FRPM < 600 THEN SLQ = 9!
IF FRPM < 400 THEN SLQ = .1
IF SLQ > 10.2 THEN SLQ = 10.2
SLOSC = SLQ * 14.696
ELP = PLO - SLQ
IF ABS(ELP) < .4 THEN FL5 = 1 ELSE FL5 = 0
IF ELP > .15 THEN ELP = .15
IF ELP < -.15 THEN ELP = -.15
RIL = RILM1 + ELP * KII. * DEL.
IF RIL < 0 THEN RIL = 0
IF RIL > 1! THEN RIL = 1!
ALN = KPL * ELP + KDL * (ELP - ELPM1) / DEL + RIL.
IF ALN < 0 THEN ALN = 0
IF ALN > 1! THEN ALN = 1!
DAC(3) = ALN
DAC(7) = 1!

'Screen Pressure Drop Warning.

DLPC = .47 * PP * M * M / (M)^6 + .02
IF DLPC > D LPC THEN FL6 = 1 ELSE FL6 = 0
IF M < .25 THEN FL6 = 0
IF FL6 = 1 THEN BEEP

'Controller Screen Update.

JD = JD + 1
IF JD = 3 THEN 4160 ELSE 4700

4160 COLOR 14, 3
LOCATE 21, 30: PRINT USING "###.#"; SAT1
IF (FL1 * FL2 * AUTOT) = 1 THEN 4190 ELSE 4200

4190 COLOR 14, 0
4200 LOCATE 8, 26: PRINT STRINGS$(6, 0)
COLOR 14, 5
LOCATE 21, 47: PRINT USING "###.#"; PSUSCS
IF FL6 = 1 THEN COLOR 30, 5
LOCATE 22, 48: PRINT USING "###.#"; DLPC
IF AUTORE = 0 THEN 4240
IF (FL7 * AUTORE) = 1 THEN 4250 ELSE 4260
4240 IF (FL3 * AUTOP) = 1 THEN 4250 ELSE 4260
4250 COLOR 14, 0
4260 LOCATE 8, 43: PRINT STRINGS$(6, 0)
COLOR 14, 2
LOCATE 5, 13: PRINT USING "###.#"; SLOSC
LOCATE 9, 13: PRINT USING "###.#"; PLOUSCS
LOCATE 12, 13: PRINT USING "###.#"; (1 - ALN) * 100
IF FL5 = 1 THEN 4320 ELSE 4330
4320 COLOR 14, 0
4330 LOCATE 8, 13: PRINT STRINGS$(6, 0)
COLOR 14, 6
IF (FL4 * AUTOM) = 1 THEN 4360 ELSE 4370
4360 COLOR 14, 0
4370 LOCATE 8, 62: PRINT STRINGS$(6, 0)
IF (I:N-AUTOM)>0 THEN 4374 ELSE 4376
4374 COLOR 14,0
4376 LOCATE 11,62;PRINT STR$(6,000)
 COLOR 14, 3
 IF AUTOT = 1 THEN LOCATE 6, 26: PRINT USING "###.#"; ST
 LOCATE 9, 26: PRINT USING "###.#"; TT
 LOCATE 10, 26: PRINT USING "###.#"; TMWL
 LQ = ALQ * 100
 LOCATE 12, 26: PRINT USING "###.#"; LQ
COLOR 14, 5
 LOCATE 9, 42: PRINT USING "###.#"; PPUSCS
 GV1 = AGV1 * 100
 LOCATE 12, 43: PRINT USING "###.#"; GV1
 GV2 = AGV2 * 100
 LOCATE 13, 43: PRINT USING "###.#"; GV2
 LOCATE 10, 42: PRINT USING "###.#"; RE
COLOR 14, 6
 LOCATE 9, 62: PRINT USING "###.#"; M
 LOCATE 10, 62: PRINT USING "###.#"; FRPM
 LOCATE 12, 62: PRINT USING "###.#"; SNRPM * 100
 JD = 0
4700 GOSUB 7000

'Program Timing Counter.
 K = K + 1
 IF K = 600 THEN BEEP ELSE 4800
 K = 0

'Setting Previous Cycle Values.
4800 AGVIP = AGV1
 ALQP = ALQ
 ELPM1 = ELP
 EPM2 = EPM1
 EPM1 = EP
 ETM2 = ETM1
 ETM1 = ET
 RILM1 = RIL
 RIMM1 = RIM
 RINM1 = RIN
 RIPM1 = RIP
 RITM1 = RIT
 SRPM1 = SRPM
 STP = ST
 GOTO 1000

'Controller Input Subroutine.
5000 A$ = INKEYS
 IF A$ = "" THEN 5999
 IF A$ = "Q" OR A$ = "q" THEN 7500
 IF A$ = "E" OR A$ = "e" THEN 6000
 IF A$ = "D" OR A$ = "d" THEN 5950
 IF XX > 5 THEN XX = 5
 IF A$ = CHR$(13) THEN 5008 ELSE 5009
5008 IF XX = 5 THEN 5600 ELSE 5999
5009 IF J > 0 THEN 5010 ELSE 5014
5010 IF A$ = "O" OR A$ = "1" OR A$ = "2" OR A$ = "3" OR A$ = "4" OR A$ = "5" OR A$
COLOR 16, 3
IF A$ = "T" OR AS = "t" THEN J = 1: LOCATE 15, 36: PRINT ",K": PRINT;
COLOR 16, 5
COLOR 16, 6
IF A$ = "M" OR A$ = "m" THEN J = 3: LOCATE 15, 71: PRINT ",Mach": PRINT;
COLOR 16, 2
IF A$ = "B" OR A$ = "b" THEN J = 9: LOCATE 15, 19: PRINT ",psi": PRINT;
GOTO 5999

IF J = 1 THEN 5105
IF J = 2 THEN 5405
IF J = 3 THEN 5205
IF J = 4 THEN 5405
IF J = 5 THEN 5405
IF J = 6 THEN 5405
IF J = 7 THEN 5350
IF J = 8 THEN 5405
IF J = 9 THEN 5105
GOTO 5999

'Assemble Temperature and Liquid Back Pressure Inputs.
5105 XX = XX + 1
D1 = 1: D2 = 2: D3 = 3: D4 = 4: D5 = 5
GOSUB 5500
AA = H1 * 100 + H2 * 10 + H3 + H5 / 10
GOTO 5999

'Assemble Mach Number Input.
5205 XX = XX + 1
D1 = 1: D2 = 3: D3 = 4: D4 = 2: D5 = 5
GOSUB 5500
AA = H2 / 10 + H3 / 100 + H5 / 1000
GOTO 5999

'Assemble Fan Speed Input.
5305 XX = XX + 1
D1 = 1: D2 = 2: D3 = 3: D4 = 5: D5 = 4
GOSUB 5500
AA = H1 * 1000 + H2 * 100 + H3 * 10 + H5
GOTO 5999
'Assemble Pressure, Reynolds Number, Injection Valve, Exhaust Valve, and Chord Inputs.

5405 \(XX = XX + 1 \)
 \(D1 = 1; D2 = 2; D3 = 4; D4 = 3; D5 = 5 \)
 GOSUB 5500
 \(AA = H1 \times 10 + H2 + H3 / 10 + H5 / 100 \)
 GOTO 5999

5500 IF J = 1 THEN COLOR 0, 3
 IF J = 2 THEN COLOR 0, 5
 IF J = 3 THEN COLOR 0, 6
 IF J = 4 THEN COLOR 0, 5
 IF J = 5 THEN COLOR 0, 3
 IF J = 6 THEN COLOR 0, 5
 IF J = 7 THEN COLOR 0, 6
 IF J = 8 THEN COLOR 0, 5
 IF J = 9 THEN COLOR 0, 2
 IF XX = D1 THEN H1 = VAL(A$): LOCATE LU, MU + D1: PRINT USING ";";H1
 IF XX = D2 THEN H2 = VAL(A$): LOCATE LU, MU + D2: PRINT USING ";";H2
 IF XX = D3 THEN H3 = VAL(A$): LOCATE LU, MU + D3: PRINT USING ";";H3
 IF XX = D4 THEN LOCATE LU, MU + D4: PRINT CHR$(46);
 IF XX = D5 THEN H5 = VAL(A$): LOCATE LU, MU + D5: PRINT USING ";";H5
 RETURN

'Set Temperature Input.

5600 IF J = 1 THEN 5620 ELSE 5660

5620 ST1 = AA
 IF ST1 > MAXT THEN ST1 = MAXT
 IF ST1 < MINT THEN ST1 = MINT
 IF ST1 < SAT1 THEN ST1 = SAT1
 STP = TT
 COLOR 14, 3
 LOCATE 3, 29: PRINT " AUTO ": PRINT ;
 AUTOT = 1
 LOCATE 5, 26: PRINT USING "###.#"; ST1

'Set Pressure Input.

5660 IF J = 2 THEN 5670 ELSE 5730

5670 SP = AA
 IF SP < MINP THEN SP = MINP
 IF SP > MAXP THEN SP = MAXP
 COLOR 14, 5
 LOCATE 3, 46: PRINT " AUTOP ": PRINT ;
 LOCATE 6, 43: PRINT " "; PRINT ;
 LOCATE 5, 43: PRINT USING "##.##"; SP
 AUTOP = 1
 AUTORE = 0

'Set Mach Number Input.

5730 IF J = 3 THEN 5740 ELSE 5750

5740 SM = AA
 IF SM < MINM THEN SM = MINM
 IF SM > MAXM THEN SM = MAXM
 COLOR 14, 6
 LOCATE 3, 64: PRINT " AUTO ": PRINT ;
 LOCATE 6, 62: PRINT " ";
 AUTOM = 1
LOCATE 5, 62: PRINT USING "#.###"; SM

'Set Reynolds Number Input.
5750 IF J = 4 THEN 5760 ELSE 5770
5760 SRE = AA
 IF SRE > MAXRE THEN SRE = MAXRE
 IF SRE < MINRE THEN SRE = MINRE
COLOR 14, 5
AUTORE = 1
AUTOP = 1
LOCATE 6, 43: PRINT USING "#.###"; SRE
LOCATE 3, 46: PRINT " AUTORE ": PRINT ;

'Set Liquid Injection Valve Input.
5770 IF J = 5 THEN 5780 ELSE 5810
5780 LCMDS = AA
COLOR 14, 3
LOCATE 3, 29: PRINT " MANUAL ": PRINT ;
LOCATE 5, 26: PRINT "
LOCATE 6, 26: PRINT "
AUTOT = 0

'Set Gas Exhaust Valve Input.
5810 IF J = 6 THEN 5820 ELSE 5860
5820 GCMDS = AA
COLOR 14, 5
LOCATE 3, 46: PRINT " MANUAL ": PRINT ;
AUTOP = 0
AUTORE = 0
LOCATE 5, 43: PRINT "
LOCATE 6, 43: PRINT "

'Set Fan Speed Input.
5860 IF J = 7 THEN 5870 ELSE 5935
5870 NCMDS = AA
 IF NCMDS > MAXN THEN NCMDS = MAXN
COLOR 14, 6
LOCATE 5, 62: PRINT "
LOCATE 3, 64: PRINT " MANUAL ": PRINT ;
LOCATE 6, 62: PRINT USING "####."; NCMDS
AUTOM = 0

'Set Chord Length Input.
5935 IF J = 8 THEN 5937 ELSE 5943
5937 CHIN = AA
 IF CHIN < MINCHIN THEN CHIN = MINCHIN
 IF CHIN > MAXCHIN THEN CHIN = MAXCHIN
COLOR 14, 5
LOCATE 20, 48: PRINT USING "###.##"; CHIN
CHIN = CHIN * .0254

'Set Liquid Back Pressure Input.
5943 IF J = 9 THEN 5944 ELSE 5950
5944 SLQSC = AA
 IF SLQSC > MAXLQSC THEN SLQSC = MAXLQSC
COLOR 14, 2
LOCATE 5, 13: PRINT USING "###.##"; SLQSC

46
IF J = 0 THEN 5962.
IF J = 1 THEN COLOR 14, 3
IF J = 2 THEN COLOR 14, 5
IF J = 3 THEN COLOR 14, 6
IF J = 4 THEN COLOR 14, 5
IF J = 5 THEN COLOR 14, 3
IF J = 6 THEN COLOR 14, 5
IF J = 7 THEN COLOR 14, 6
IF J = 8 THEN COLOR 14, 5
IF J = 9 THEN COLOR 14, 2
LOCATE I.U, M.U + 1: PRINT " ": PRINT ;

IF J > 0 THEN BEEP
IF IE = 1 THEN COLOR 0, 6
IF IE = 1 THEN BEEP: LOCATE 20, 60: PRINT " ": PRINT ;
IF PIE = 1 THEN LOCATE 21, 60: PRINT ": PIE = 0
IF NIE = 1 THEN LOCATE 21, 60: PRINT ": NIE = 0

J = 0
XX = 0
IE = 0

RETURN

'Emergency Stop Subroutine.

IE = 1
COLOR 20, 8
LOCATE 20, 60: PRINT " EMERGENCY STOP ": PRINT ;
COLOR 4, 8
IF PIE = 1 THEN LOCATE 21, 60: PRINT " Pressure Limit
IF NIE = 1 THEN LOCATE 21, 60: PRINT " Fan RPM Limit
COLOR 4, 8
AUTOT = 0
AUTOP = 0
AUTOM = 0
AUTORE = 0
LOCATE 3, 29: PRINT " MANUAL ": PRINT ;
LOCATE 3, 46: PRINT " MANUAL ": PRINT ;
LOCATE 3, 64: PRINT " MANUAL ": PRINT ;
RETURN

'Simulation of 0.3-m TCI Dynamics.

WG = 4375 * PP / TT
WT = 3200!
CM = (5.5 * TT - .008 * TT ^ 2) / 1000
CP = 1.04
CV = .75
TMC = .28 * TT ^ 1.2 / PP ^ .7 / M ^ .7
LMFL = ALQ * LF
GMFL = (AGV1 + AGV2) * CGV * 2.725 * PP / SQR(TT)
 IF PP < 1.5 THEN GMFL = (AGV1 + AGV2) * PP / SQR(TT) * 21.8 * (2 - (1.5 / PP) ^ 1.7)
WLIT = (TMLWL - TT) * WT * CM / TMC
HEAT = WLIT + FKW - LMFL * (121 + CV * TT) - GMFL * (CP - CV) * TT
DPP = DEL * PP * HEAT / TT / WG / CV + DEL * (LMFL - GMFL) * PP / WG
PPN = PP + DPP
 IF PPN > 6! THEN PPN = 6!
 IF PPN < 1! THEN PPN = 1!
TMWL = (DEL / (2 * TMC + DEL)) * (TT + TT1) + ((2 * TMC - DEL) / (2 * TMC + DEL)) * TMW1.

DFR1 = (1 / (DEL ^ 2 + 1.12 * DEL + .8))

DFR2 = (DEL ^ 2) * (SRPM + SRPM1 * 2 + SRPM2) - FRPM * (2 * DEL ^ 2 - 1.6)

DFR3 = DFR2 - FRPM1 * (DEL ^ 2 - 1.12 * DEL + .8)

FRPMN = DFR1 * DFR3

DTT = DEL * HEAT / WG / CV

TTN = TT + DTT

ALF1 = (ALN - .2) * 5

PLO = 7.3 + ALF1 * 3 + ALQ * .7

PLQN = DEL / (2 + DEL) * (PLO + PLO1) + (2 - DEL) / (2 + DEL) * PLQ

IF PLQN < 7.3 THEN PLQN = 7.3

PP1 = PP

TT1 = TT

TMWL1 = TMWL

FRPM1 = FRPM

SRPM2 = SRPM1

PLO1 = PLO

TT = TTN

IF TT < SAT1 THEN TT = SAT1

PP = PP1

TMWL1 = TMWL

FRPM = FRPM1

PLQ = PLQN

RETURN

7500

CLS

SYSTEM
Appendix C
Source Code Variables

Limits Input Keyboard Commands

A,a Accepts the tunnel maximum-minimum limits and starts the 0.3-m TCT controller.

D,d Delete the previous input keys shown on the screen and not yet executed.

M,m Input maximum Mach number limit. Maximum Mach number limit format is #.##, range to 0.15 to 0.995.

N,n Input maximum fan speed limit. Maximum fan speed limit format is ####, range is 0 to 5600 rpm.

P,p Input maximum tunnel total pressure limit. Maximum tunnel total pressure limit format is ##.#, range is 14.7 to 88.0 psia.

R,r Input maximum Reynolds number limit. Maximum Reynolds number limit format is ##.#, range is 1 to 50 million.

S,s Accepts the user set maximum-minimum limits and starts the 0.3-m TCT controller.

T,t Input minimum temperature limit. Minimum temperature limit format is ###., range is 77 to 340 K.

Controller Input Keyboard Commands

B,b Input LN$_2$ back pressure set point. LN$_2$ back pressure set point format is ###., range is LN$_2$ pressure to 150 psia.

C,c Input mean aerodynamic chord. Chord format is ##.#, range is 0.39 to 15.75 inches.

D,d Delete the previous input keys memorized on the screen and not yet executed.

G,g Input GN$_2$ discharge valve area. Takes the pressure controller and Reynolds number controller to manual control mode. GN$_2$ discharge valve area format is ##.#, range is 99.99%= full open to 0%=closed.

L,l Input LN$_2$ injection valve area. Takes the temperature controller to manual control mode. LN$_2$ injection valve area format is ##.#, range is 99.99%=full open to 0%=closed.
M,m Input Mach number set point. Takes fan speed to automatic Mach number control mode. Mach number set point format is #.###, range is 0.150 to 0.995.

N,n Input fan speed set point. Takes the fan speed to manual Mach number control mode. Fan speed set point format is ####., range is 0 to 5600 rpm.

P,p Input tunnel total pressure set point. Takes the controller to automatic pressure control mode and manual Reynolds number control mode. Total pressure set point format is #.##, range is 14.7 to 88 psia.

R,r Input Reynolds number set point. Takes the pressure controller to automatic Reynolds number control mode by generating the required pressure set point. Reynolds number set point format is ##.##, range is 1 to 50 million.

T,t Input temperature set point. Takes the controller to automatic temperature control mode. Temperature set point format is ###.#, range is saturation temperature to 340 K.

Program Variables

AA Keyboard input function. Combines the integer inputs H1, H2, H3, and H5 with proper decimal scaling for use in program calculation.

AEMP Temporary data register output in digital to analog conversion routine to check status.

AGV1 Area of GN1 discharge valve #1. Full open AGV1=1 and closed AGV1=0. AGV1=KPGS*(KPP*EP+KDP*(EP-2*EPM1+EPM2/2/DEK)+RIP

AGV1P Area of GN1 discharge valve #1, previous cycle value.

AGV2 Area of GN1 discharge valve #2. Full open AGV2=1 and closed AGV2=0. Valve #2 opens only when AGV1 > 90% open and starts closing when AGV1 < 70% open. Valve #2 moves at a rate of 1% per cycle.

ALF1 Simulator variable. Variable related to the area of LN2 back pressure valve used in calculating the estimated LN2 back pressure. ALF1=(ALN-2)*5

ALN Area of LN2 back pressure control valve. Full open ALN=1 and closed ALN=0. ALN=KPL*ELP+KDL*(ELP-ELPM1)*DEK+RIL

ALQ Area of LN2 injection valve. Full open ALQ=1 and closed ALQ=0. ALQ=KTGS*(KPT*ET+KDT*(ET-2*ETM1+ETM2)/2/DEK)+RIT+FBF

ALQP Area of LN2 injection valve, previous cycle value.
<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTOM</td>
<td>Mach number controller: AUTOM=1 automatic Mach number control. AUTOM=0 manual Mach number control.</td>
</tr>
<tr>
<td>AUTOP</td>
<td>Pressure controller: AUTOP=1 automatic pressure control. AUTOP=0 manual pressure control.</td>
</tr>
<tr>
<td>AUTORE</td>
<td>Reynolds number controller: AUTORE=1 automatic Reynolds number control. AUTORE=0 manual Reynolds number control.</td>
</tr>
<tr>
<td>AUTOT</td>
<td>Temperature controller: AUTOT=1 automatic temperature control. AUTOT=0 manual temperature control.</td>
</tr>
<tr>
<td>A$</td>
<td>Input variable from the keyboard buffer.</td>
</tr>
<tr>
<td>BEMP</td>
<td>Temporary status register output in digital to analog conversion routine to check status.</td>
</tr>
<tr>
<td>BSD</td>
<td>Dummy calculation to create a time delay between resetting the digital to analog conversion and reading its status. Used only during initialization of digital to analog conversion.</td>
</tr>
<tr>
<td>B$</td>
<td>Input variable from the keyboard buffer.</td>
</tr>
<tr>
<td>CEMP</td>
<td>Temporary status register output in digital to analog conversion subroutine.</td>
</tr>
<tr>
<td>C$</td>
<td>Input variable from the keyboard buffer.</td>
</tr>
<tr>
<td>CGV</td>
<td>Coefficient for N_2 exhaust valve.</td>
</tr>
<tr>
<td>CH</td>
<td>Aerodynamic chord in meters.</td>
</tr>
<tr>
<td>CHIN</td>
<td>Aerodynamic chord in inches. Loaded through the keyboard using the "C" command. Default value is CHIN=$0.1800*0.0254$.</td>
</tr>
<tr>
<td>CLQV</td>
<td>Flow coefficient of N_2 injection valve.</td>
</tr>
<tr>
<td>CM</td>
<td>Simulator variable. Specific heat of tunnel metal. $\text{CM}=(5.5*\text{TT}-0.008*\text{TT}^2)/1000$</td>
</tr>
<tr>
<td>CP</td>
<td>Simulator variable. Specific heat of nitrogen at constant pressure.</td>
</tr>
<tr>
<td>CRPM</td>
<td>Simulator variable. Fan speed in rpm with a minimum limit of 50 rpm.</td>
</tr>
</tbody>
</table>
CRM
Simulator variable. Variable used in calculating Mach number as a function of fan speed, pressure, and temperature.
\[CRM = 2.77 - \text{CRPM}/157/SQR(TT) \times PP^{0.035} \]

CV
Simulator variable. Specific heat of nitrogen at constant volume.

DAC(1)
Control variable ALQ output.

DAC(2)
Control variable ALQ output.

DAC(3)
Control variable ALN output.

DAC(4)
Control variable AGV1 output.

DAC(5)
Control variable AGV2 output.

DAC(6)
Control variable SNRPM output.

DAC(7)
RPM/MACH controller output for rheostat control. DAC(7) = 1 for normal operation. DAC(7) = 0 for rheostat control.

D1
Integer used to print properly the variable being loaded through the keyboard.

D2
Integer used to print properly the variable being loaded through the keyboard.

D3
Integer used to print properly the variable being loaded through the keyboard.

D4
Integer used to print properly the variable being loaded through the keyboard.

D5
Integer used to print properly the variable being loaded through the keyboard.

DEL
Cycle time step.

DFR1
Simulator variable. Variable used in calculating the estimated fan speed rpm.
\[DFR1 = (1/(DEL^2 + 1.12 \times DEL + 0.8)) \]

DFR2
Simulator variable. Variable used in calculating the estimated fan speed rpm.
\[DFR2 = (DEL^2 \times (SRPM + SRPM1 \times 2 + SRPM2) - FRPM \times (2 \times DEL^2 - 1.6)) \]

DFR3
Simulator variable. Variable used in calculating the estimated fan speed rpm.
\[DFR3 = DFR2 - FRPM1 \times (DEL^2 - 1.12 \times DEL + 0.8) \]

DLP
Difference in pressure across the screens of the tunnel settling chamber, (psia).
<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPC</td>
<td>Maximum safe screen pressure drop allowed. LPC = 0.47PPM*(M)/(MF)*6+0.02</td>
</tr>
<tr>
<td>DPP</td>
<td>Simulator variable. Estimated change in tunnel total pressure for one cycle. DPP = DELPPHEAT/TT/WG/CV+(LMFL-GMFL)*PP/WG</td>
</tr>
<tr>
<td>DRPM</td>
<td>Fan speed in rpm with a minimum limit of 100 rpm.</td>
</tr>
<tr>
<td>DR1</td>
<td>Command output high integer buffer in digital to analog conversion routine, (12 bit).</td>
</tr>
<tr>
<td>DR2</td>
<td>Command output low integer buffer in digital to analog conversion routine, (4-bit).</td>
</tr>
<tr>
<td>DTF</td>
<td>Simulator variable. Estimated change in tunnel temperature for one cycle. DTF = DEL*HEAT/WG/CV</td>
</tr>
<tr>
<td>ELP</td>
<td>Error in LN2 back pressure control, (atm). ELP = SLQ-PLQ</td>
</tr>
<tr>
<td>ELPM1</td>
<td>Error in LN2 back pressure control, previous cycle value.</td>
</tr>
<tr>
<td>EM</td>
<td>Error in Mach number control. EM = SM-M</td>
</tr>
<tr>
<td>EN</td>
<td>Error in fan speed control, (rpm). EN = NCMDS1-FRPM</td>
</tr>
<tr>
<td>EP</td>
<td>Error in total pressure control, (atm). EP = PP-SPR</td>
</tr>
<tr>
<td>EPM1</td>
<td>Error in total pressure control, previous cycle value.</td>
</tr>
<tr>
<td>EPM2</td>
<td>Error in total pressure control, twice previous cycle value.</td>
</tr>
<tr>
<td>ET</td>
<td>Error in temperature control, (kelvin). ET = TT-ST</td>
</tr>
<tr>
<td>ETM1</td>
<td>Error in temperature control, previous cycle value.</td>
</tr>
<tr>
<td>ETM2</td>
<td>Error in temperature control, twice previous cycle value.</td>
</tr>
<tr>
<td>E(1)</td>
<td>Input millivolts from total pressure sensor.</td>
</tr>
<tr>
<td>E(2)</td>
<td>Input millivolts from static pressure sensor.</td>
</tr>
<tr>
<td>E(3)</td>
<td>Input millivolts from total temperature thermocouple.</td>
</tr>
<tr>
<td>E(4)</td>
<td>Input millivolts from the tunnel metal wall temperature thermocouple.</td>
</tr>
<tr>
<td>E(5)</td>
<td>Input millivolts from fan speed sensor.</td>
</tr>
</tbody>
</table>
Input millivolts from LN₂ pressure transducer.

Input millivolts from the screen pressure drop transducers.

Output from analog to digital conversion of the tunnel total pressure for monitor display.

Output from analog to digital conversion of the tunnel static pressure for monitor display.

Fan bias, an equivalent of FKW in LN₂ flow. \(FB = \frac{FKW}{(121+TT)/LF} \)

Product of FB and FF. \(FBF = FB \times FF \times 0.8 \)

Feed forward logic integer. \(FF = 1 \) the fan bias is fed forward as LN₂, \(FF = 0 \) the fan bias is not fed forward as LN₂. The feed forward is off during tunnel warm-ups.

Variable used in calculating the tunnel fan speed/test section coupling. \(FKM = 1 - 0.5 \times M \)

Estimated fan power released to gas, (kilowatts). \(FKW = 100 \times PP \times (FRPM/1000)^{2.26}/SOR(TTMP) \)

Logic flag. \(FL0 = 1 \) when the set limit maximum equals the tunnel minimum value. This condition is an unacceptable condition to run the tunnel controller. \(FL0 = 0 \) corresponds to acceptable tunnel set limits to run the tunnel controller.

Logic flag. \(FL1 = 1 \) when the error in the temperature control is less than 0.3 K. \(FL1 = 0 \) corresponds to a larger temperature control error.

Logic flag. \(FL2 = 1 \) when metal temperature is within 24 K of the tunnel temperature set point. \(FL2 = 0 \) corresponds to a larger temperature difference. \(FL1 \times FL2 = 1 \) corresponds to the temperature of the tunnel at the temperature set point.

Logic flag. \(FL3 = 1 \) when the error in pressure control is less than 0.005 atm. \(FL3 = 0 \) corresponds to a larger pressure control error.

Logic flag. \(FL4 = 1 \) when the error in Mach number is less than 0.002. \(FL4 = 0 \) corresponds to a larger Mach number control error.

Logic flag. \(FL5 = 1 \) when the error in the LN₂ back pressure control is less than 0.4 atm. \(FL5 = 0 \) corresponds to a larger LN₂ back pressure error.
FL6 Logic flag. FL6=1 when the pressure difference across the tunnel screens is unsafe. FL6=0 corresponds to a safe pressure difference.

FL7 Logic flag. FL7=1 when the error in the Reynolds number control is less than 0.05. FL7=0 corresponds to a larger Reynolds number control error.

FL10 Logic flag. FL10=1 when a sensor fails. FL10=0 corresponds to normal operation. A sensor failure will cause an emergency stop.

FRPM Fan speed in rpm.

FRPMN Simulator variable. Estimated fan speed. FRPMN=DFR1*DFR3

GCMDS GN₂ discharge valve area. Loaded through the keyboard using the "G" command.

GF1 Mass flow from the tunnel. GF1=2.725*CGV*PP/SQR(TT)

GMFL Simulator variable. GN₂ exhaust mass flow.

GV1 Product of AGV1 and 100. GV1=AGV1*100

GV2 Product of AGV2 and 100. GV2=AGV2*100

H1 First integer of an input keyed during a variable input.

H2 Second integer of an input keyed during a variable input.

H3 Third integer of an input keyed during a variable input.

H5 Fourth integer of an input keyed during a variable input.

HEAT Simulator variable. The total heat flow of the tunnel.
HEAT=WLHT+FKW-LMFL*(121+CV*TT)-GMFL*(CP-CV)*TT

HI High byte to digital to analog conversion buffer of the digital to analog conversion routine.

I Integer cycle counter used to display the controller screen borders.

IE Logic flag. IE=1 corresponds to an emergency stop. IE=0 corresponds to normal operation.

IK Integer cycle counter used for output of digital to analog conversion variables.

IW Integer cycle counter for integrating the wall temperature gradient.
J Integer variable that identifies the input variables.

JD Integer cycle counter for displaying certain variables on the screen.

JJ Integer cycle counter for calculation of BSD.

K Simulate variable. Integer cycle counter for a 600 cycle beep.

KDL LN$_2$ back pressure control derivative gain.

KDP Pressure control derivative gain.

KDT Temperature control derivative gain.

KEN A gradient term limiting the rpm of the fan speed.

KIL LN$_2$ back pressure control integral gain.

KIM Mach number control integral gain.

KIN Fan speed control integral gain.

KIP Pressure control integral gain.

KIT Temperature control integral gain.

KMC Constant corresponding to tunnel fan speed/test section coupling in the Mach number controller. KMC = 520 * SQR(TT) * FKM / PP$^{0.035}$

KMGS Mach number control gain schedule function. KMGS = KMC * KMM

KMM Mach number control gain.

KP Pressure control gain.

KPGS Pressure control gain schedule function. KPGS = 750 * KP / PP / SQR(TT)

KPL LN$_2$ back pressure control proportional gain. KPL = 0.2

KPM Mach number control proportional gain.

KPN Fan speed control proportional gain.

KPP Pressure control proportional gain.

KPT Temperature control proportional gain.
KRE Constant used for evaluating Reynolds number related functions.
KRE = 63714 * CH * M / TT^1.4 / (MF)^2.1

KT Temperature control gain factor.

KTGS Temperature control gain schedule function.
KTGS = DRPM * SQR(PP) * KT / 3.0 / TT / LF

LC Screen column number used in LOCATE statements.

LCMDS LN₂ valve area. Loaded through the keyboard using the "L" command.

LDPO Difference between LN₂ back pressure and tunnel pressure.
LDPO = PLQ - PP

LF LN₂ flow when LN₂ injection valve is full open.
LF = CLQV * 0.8676 * SQR(LDPO)

LMFL Simulator variable. LN₂ injected mass flow.
LMFL = ALQ * LF

LMT Limiter for LN₂ flow.
LMT = 1 - (TMWL - TT - MXT) / 2 * MXT

LO An output driving the digital to analog conversion low buffer for final command.
Low byte data register in digital to analog conversion routine.

LQ Product of ALQ and 100.
LQ = ALQ * 100

LR Screen row number used in LOCATE statements.

LU Screen column number used in LOCATE statements.

M Tunnel flow Mach number in the test section based on the difference between total and static pressure.

MAXCH Maximum aerodynamic chord length limit in meters.

MAXCHIN Maximum aerodynamic chord length limit in inches.

MAXLQSC Tunnel maximum LN₂ back pressure.

MAXM User set maximum Mach number limit. Must be less than MAXM1.

MAXM1 Tunnel maximum Mach number limit.

MAXN User set maximum fan speed limit. Must be less than MAXN1.
MAXN1 Tunnel maximum fan speed limit.
MAXP User set maximum pressure limit. Must be less than MAXP1.
MAXP1 Tunnel maximum pressure limit.
MAXRE User set maximum Reynolds number limit. Must be less than MAXRE1.
MAXRE1 Tunnel maximum Reynolds number limit.
MAXSPR1 Maximum pressure set point estimated from the Reynolds number set point. Valid in automatic Reynolds number control. MAXSPR1=MAXP1/14.696
MAXT Maximum temperature limit.
MAXT1 Tunnel maximum temperature limit.
MF Isentropic function of the tunnel flow Mach number. \(MF = (1 + 0.2 \times M \times M) \)
MINCH Minimum aerodynamic chord length in meters.
MINCHIN Minimum aerodynamic chord length in inches.
MINM Minimum Mach number limit.
MINM1 Tunnel minimum Mach number limit.
MINN Minimum fan speed limit.
MINN1 Tunnel minimum fan speed limit.
MINP Minimum pressure limit.
MINP1 Tunnel minimum pressure limit.
MINRE Minimum Reynolds number limit.
MINRE1 Tunnel minimum Reynolds number limit.
MINSPR1 Minimum pressure set point estimated from the Reynolds number set point. Valid in automatic Reynolds number control mode. MINSPR1=MINP1/14.696
MINT User set minimum temperature limit. Must be greater than MINT1.
MINT1 Tunnel minimum temperature limit.
MU	Screen column number used in the LOCATE statements.
MXT	Maximum safe temperature difference allowed between tunnel gas and tunnel metal wall.
NCMDS	Fan speed set point. Loaded through the keyboard using the "N" command.
NCMDS1	Fan speed set point derived from NCMDS or other safety fan speed commands.
NIE	Logic flag. NIE=1 when the tunnel exceeds the fan speed rpm limit. NIE=1 will cause an emergency stop of the tunnel. NIE=0 corresponds to normal operation.
PIE	Logic flag. PIE=1 when the tunnel exceeds the total pressure limit. PIE=1 will cause an emergency stop of the tunnel. PIE=0 corresponds to normal operation.
PLO	Simulator variable. Variable used in calculating the estimated LN$_2$ back pressure. PLO=7.3+ALF1*3+ALQ*.7
PLO1	Simulator variable. Variable used in calculating the estimated LN$_2$ back pressure, previous cycle value.
PLQ	LN$_2$ back pressure, (atm).
PLQN	Simulator variable. Estimated LN$_2$ back pressure. PLQN=DEL/(2+DEL)*(PLO+PLO1)+(2-DEL)/(2+DEL)*PLQ
PLQUSCS	LN$_2$ back pressure, (psia). PLQUSCS=PLQ*14.696
PP	Tunnel total pressure, (psia).
PPN	Simulator variable. Estimated tunnel total pressure. PPN=PP+DPP
PP1	Simulator variable. Tunnel total pressure, previous cycle value.
PPUSCS	Tunnel total pressure, (psia). PPUSCS=PP*14.696
PS	Static pressure, (atm).
PSUSCS	Static pressure, (psia). PSUSCS=PS*14.696
RE	Flow Reynolds number based on aerodynamic chord. RE=KRE*PP
READ.WAIT	Digital to analog software read command.
RIL LN₂ back pressure control integral error, \((\text{atm-sec})\).
\[\text{RIL} = \text{RILM1} + ELP \times KIL \times \text{DEL} \]

RILM1 LN₂ back pressure control integral error, previous cycle value.

RIM Mach number control integral error, \((\text{Mach-sec})\).
\[\text{RIM} = \text{RIMM1} + KIM \times EM \times \text{DEL} \times KMGS \]

RIMM1 Mach number control integral error, previous cycle value.

RIN Fan speed control integral error, \((\text{rpm-sec})\).
\[\text{RIN} = \text{RINM1} + EN \times \text{DEL} \times KIN \]

RINM1 Fan speed control integral error, previous cycle value.

RIP Tunnel total pressure control integral error, \((\text{atm-sec})\).
\[\text{RIP} = \text{RIPM1} + EP \times KPGS \times KIP \times \text{DEL} \]

RIPM1 Tunnel total pressure control integral error, previous cycle value.

RIT Temperature control integral error, \((\text{K-sec})\).
\[\text{RIT} = \text{RITM1} + KIT \times KTGS \times \text{DEL} \times ET \]

RITM1 Temperature control integral error, previous cycle value.

SAT Nitrogen saturation temperature based on Jacobsens data.
\[\text{SAT} = 50 + 27.34 \times PS^{0.296} \]

SAT1 Nitrogen saturation temperature applied to tunnel static pressure.
\[\text{SAT1} = \text{SAT} \times MF \]

SLQ LN₂ back pressure control set point, \((\text{atm})\).
\[\text{SLQ} = \text{SLQSC} / 14.696 \]

SLQSC LN₂ back pressure set point. Loaded through the keyboard using the "B" command.

SM Mach number set point. Loaded through the keyboard using the "M" command.

SNRPM Fan speed rheostat drive command normalized to one.
\[\text{SNRPM} = \text{SRPM} / 7500 \]

SP Tunnel total pressure set point. Loaded through the keyboard using the "P" command.

SPR Tunnel total pressure set point, \((\text{atm})\).
\[\text{SPR} = \text{SP} / 14.696 \]

SPR1 Tunnel total pressure set point estimated from the Reynolds number set point.
Valid in automatic Reynolds number control mode.
\[\text{SPR1} = \text{SRE} / KRE \]
SPRU Tunnel total pressure set point estimated from the Reynolds number set point, (psia). SPRU = SPR * 14.696

SRE Reynolds number set point. Loaded through the keyboard using the "R" command.

SRPM Fan speed command from control law. SRPM = EN * KPN + RIN

SRPM1 Fan speed command from control law, previous cycle value.

ST Tunnel use temperature set point. Based on a safe temperature for given tunnel conditions. Also for conditions when both TT and PP are high and the gas mass in the tunnel is inadequate to reach the final temperature set point.

ST1 Tunnel temperature set point. Loaded through the keyboard using the "T" command, (kelvin).

STP Tunnel use temperature set point, previous cycle value.

TMC Simulator variable. Metal time constant of heat release. TMC = 948/TT^1.2/PP^0.8/M^0.8

TMWL Tunnel metal wall temperature, (kelvin).

TMWN Simulator variable. Estimated tunnel metal wall temperature. TMWN = (DEI + 2*TMCI + DEI) * (TT + TT1) + ((2*TMCI + DEI) * (2*TMCI + DEI) + TMWL

TMWL1 Tunnel metal wall temperature, previous cycle value.

TT Temperature of tunnel gas, (kelvin).

TTN Simulator variable. Estimated tunnel gas temperature. TTN = TT + D'TT

TT1 Simulator variable. Temperature of tunnel gas, previous cycle value.

TTMP Temperature of tunnel gas with a minimum limit of 80 K.

WG Simulator variable. Mass of nitrogen gas in the tunnel. WG = 4375 * PP / TT

WLG Rate of change for the tunnel metal wall temperature. Wall temperature gradient. WLG = WLG + TMWL - TMWL1

WLHT Simulator variable. Rate of heat release from the metal walls in the tunnel. WLHT = (TMWL - TT) * WT * CM / TMC

WRITE_WAIT Digital to analog software write command.
WT Simulator variable. Mass of the tunnel metal exposed to the tunnel flow.
XDLP Screen pressure drop transducer sensitivity.
XFRPM Fan speed sensor sensitivity.
XPLQ LN₂ back pressure sensor sensitivity.
XPP Tunnel total pressure transducer sensitivity.
XPS Static pressure transducer sensitivity.
XX Integer counter between 0 to 5. Represents the number of keyed in characters while inputting set points into the controller.
ZADIN Analog to Digital In software command.
ZASE.ADDRESS Sets the DT2801 series board base address.
ZATA.REGISTER Sets the data in register and data out register.
ZCLEAR Digital to analog software clear command.
ZDCHNL Analog to digital conversion channel number.
ZDGAIN Analog to digital conversion gain switch at software level.
ZEMP Data register output for digital to analog conversion.
ZIGH High byte of analog to digital conversion output.
ZOL# Analog to digital conversion output normalized to 5 volts.
ZOLT# Analog to digital conversion output as a 16 bit binary number.
ZOMMAND.REGISTER Register for the analog to digital commands.
ZOW Low byte of analog to digital conversion output.
ZSTOP Defines the hex value for a stop command, ZSTOP.
ZSTATUS.REGISTER Register for the analog to digital status.
&H1 Hex value for ZCLEAR.
&H2 Hex value for WRITE.WAIT.
&H5 Hex value for READ.WAIT
&HC Hex value for ZADIN.
&HF Hex value for ZSTOP.
&H2EC Base address on the PC/AT microcomputer for analog to digital conversion.
&H224 Port number on the PC/AT microcomputer for digital to analog conversion.
&H225 Port number on the PC/AT microcomputer for digital to analog conversion.
The 0.3-m Transonic Cryogenic Tunnel (TCT) microcomputer-based controller has been operating for several thousand hours in a safe and efficient manner. This document provides a complete listing of the source codes for the tunnel controller and tunnel simulator. Included is a listing of all the variables used in these programs. Several changes made to the controller are described. These changes are to improve the controller ease of use and safety.