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Lewis Research Center has a strong history supporting seals, and seal
dynamics, research design, design, fabrication and test. Some efforts include
spiral groove, self energized configurations, Rayleigh lift pads, conical,
labyrinth, bore, honeycomb, face, tip, support for two-phase work, stepped
configurations for SSME, near critical expansion, visualization, dynamic
analyses, and materials.

Some researchers on these topics include: Larry Ludwig and Bob Johnson's
various seal designs and application; John Zuk's cavity analysis and seals
codes; Tom Strom's face and spiral groove seals; Dave Fleming's various
configurations including conical seals and dynamic stability predictions; Bob
Bill's abradable and ceramic configurations; Bill Hughes' two-phase flow
analyses; Hal Sliney's materials work; Gordon Alen, Bill Loomis, El Dirusso
and Bill Hady's test data comparisons and analyses; Isaaic Etsion's analyses
of a variety of configurations; Allen Lubeck's face and shaft seal analyses;
Hendricks1 shuttle seal and multiple aperture configuration research; Glen
McDonald and Hendricks1 ceramic shroud seal; and the Texas A&M program to cite
some of LeRC's efforts.

Some current efforts include: Bruce Steinetz and Paul Sirocky's self sealing
linear segmented ceramic configurations; George Bobula, Bob Bill and
Hendricks1 T700 brush seal engine test; flow and duration characteristics of
brush seals and other configurations with Margaret Proctor and Julie
Schlumberger; cryogenic hydrogen brush seal tests at Rocketdyne with Joe
Scharrer; Teledyne brush seal tester with USAF; and support for contracts and
grants.
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