This presentation package covers the CFD activity at Aerojet related to seals and fluid film bearing. The presentation addresses the following topics:

1. Aerovisc Numeric and Capabilities
2. Recent Seal Application
3. Future Code Development

PRESENTATION PREVIEW

- AEROVISc NUMERICS AND CAPABILITIES

- RECENT SEAL APPLICATION

- FUTURE CODE DEVELOPMENT
AEROVISC Numerics

- Formulation
 - Reynolds Stress Averaged Navier-Stokes Equations in Cartesian, Strongly Conservative, Primitive Variable Form
 - k-e and ARS Turbulence Models With Log-Law Wall Functions

- Discretization
 - "Flux" Element Based Finite Volume Method
 - General Non-Orthogonal Boundary-Fitted Structured Grid
 - Choice of Advection Schemes
 - Upward Difference (Most Robust, Least Accurate)
 - Mass Weighted Skew (Enhanced Accuracy)
 - Linear Profile Skew (Most Accurate)
 - Second-Order-Accuracy With Physical Advection Correction Term
 - Rhie-Type Pressure Redistribution for Incompressible Flows

- Algebraic Solver
 - Choice of Vectorized Gauss-Siedel or Incomplete Cholesky Base Solver
 - Additive Correction Multigrid (Large Grids)
 - Block Correction (High Aspect Ratio Grids)

RELEVANT CODE CAPABILITIES

- INCOMPRESSIBLE FLOW
- SUBSONIC, TRANSONIC, AND SUPERSONIC FLOW
- NON-ISOTHERMAL AND ISOTHERMAL FLOW
- LAMINAR, TURBULENT, OR INVISCID FLOW
- CORIOLIS AND CENTRIFUGAL TERMS FOR TURBOMACHINERY APPLICATIONS
- FIXED, MOVING OR ROTATING TURBULENT WALLS
- CONJUGATE HEAT TRANSFER or SPECIFIED WALL TEMPERATURE/FLUX
- VARIABLE FLUID AND SOLID PROPERTIES
- MULTI-COMPONENT FLOW (N ADDITIONAL SCALAR TRANSPORT EQUATIONS)
- MULTIPLE BLOCKED REGIONS
FUTURE CODE DEVELOPMENT

- GRID EMBEDDING/ATTACHING
 - GRID REFINEMENT IN AND NEAR SEALS
 - IMPROVED SOLUTION ACCURACY

- MULTI-LAYER TURBULENCE MODEL

- AUTOMATED PROCEDURE TO PREDICT FLUID SEAL DYNAMIC COEFFICIENTS
Schematic of Fluid Film Bearing Analysis Methodology