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ABSTRACT

The active control of acoustic pressure in a 2-D cavity with a flexible boundary (a beam)

is considered. Specifically, this control is implemented via piezoceramic patches on the beam

which produce pure bending moments. The incorporation of the feedback control in this

manner leads to a system with an unbounded input term. Approximation methods in the

context of an LQR state space formulation are discussed and numerical results demonstrating

the effectiveness of this approach in computing feedback controls for noise reduction are
presented.
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1 Introduction

In recent years, the development of new fuel efficient turboprop engines has motivated the

development of a comprehensive active control methodology for interior pressure field cham-

bers. The active control of noise in this setting has been studied both in a frequency domain

setting [14, 19] and from an infinite dimensional state space time domain approach (PDE

approach) [2, 6, 7, 12] with techniques often centering around the generation of an appropri-

ate secondary pressure wave which optimally interferes with the offending primary pressure

wave. Here however, we consider a time domain state space formulation in which the active

control is implemented via piezoceramic patches which are imbedded in the boundary of the

acoustic cavity.

The example we consider consists of an exterior noise source which is separated from

an interior chamber by an active wall or plate. This plate transmits noise or vibrations

from the exterior field to the interior cavity via fluid/structure interactions thus leading to

the formulation of a system of partial differential equations consisting of an acoustic wave

equation coupled with elasticity equations for the plate. The control is implemented in the

example via piezoceramic patches on the plate which are excited in a manner so as to produce

pure bending moments. It should be noted that the incorporation of the feedback control

in this manner leads to a system with an unbounded input term. Experiments are being

designed and carried out at NASA Langley Research Center in which the interior cavity is

taken to be cylindrical with a circular active plate and sectorial patches.

As a first step toward developing an effective linear quadratic regulator (LQR) state space

control methodology for near field acoustic problems of this type, it is useful to consider a

simplified but typical model consisting of a 2-D interior cavity with an active beam at one

end (see Figure 1). Here .T"represents a perturbing force on the beam due to an exterior

noise source. This in turn causes fluctuations in the interior acoustic pressure field and hence

unwanted noise. The goal in the control problem is to optimally reduce the interior pressure

deviations by effectlng a force distribution on the beam that decouples the cavity acoustic

response.

In Section 2, a model set of differential equations for the problem is given and the math-

ematical framework needed to pose the control system in an abstract Cauchy formulation is

presented. Section 3 contains a brief discussion of the theory of finite and infinite dimensional

periodic optimal control problems while Section 4 is devoted to the general finite dimensional

approximation of the control problem. Specific approximation schemes are discussed in the

fifth section and examples demonstrating the viability of the method are presented.
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Figure 1. Acoustic chamber with piezoceramic patches.

2 Mathematical Model

When describing acoustic wave motion in a fluid, it is useful to introduce a velocity potential

¢ which is a complex-valued function satisfying _7(t, x, y) = -V¢(t, x, y) where g denotes the

fluid's velocity [15, 16]. If the equilibrium density of the fluid is given by p/, the acoustic

pressure p (the deviation from the mean pressure at equilibrium) is related to this velocity

potential by p(t,x,y) = p.tCt(t,x,y). For acoustic waves with small amplitude, both the

potential and the pressure satisfy the undamped first order wave equation with uniform

speed of sound c in the fluid; hence

¢. = c_/X¢ (x,u) _ _(t) ,t > o.

The boundaries on three sides of the variable cavity _(t) are taken to be "hard" walls thus

leading to the zero normal velocity boundary conditions

V¢.h = 0 (x,y) c r ,t > 0



where h is the outer normal. It is assumed that the perturbable boundary consists of an

impenetrable fixed-end Euler-Bernoulli beam with Kelvin-Voigt damping. If w(t, x) is used

to denote the transverse displacement of the beam with linear mass density pb, the equations

of motion are

02 0<x<a,

PbWu+-_x2M(t'x)=-Pf¢_(t'x'w(t'x))+f(t'x) t>0, (2.1)

aw aw
w(t, Ol=--_x(t,O)=w(t,a)=--_z(t,a)=O t>0 ,

where M(t, x) is the internal moment and f is the external applied force due to pressure from

the exterior noise field. For an uncontrolled beam with Kelvin-Voigt damping, the moment

contains both strain and strain rate components and is given by

(_2 w (_3W

M(t,x) = EI-_x 2 + CDI Oz20------_ .

The final coupling equation is the continuity of velocity condition

wt(t,x)=V¢(t,x,w(t,x)).h, 0<x<a,t>0 (2.2)

which results from the assumption that the beam is impenetrable to fluid. Under an as-

sumption of small displacements (w(t, x) = _(t, x) + _5where zb = 0) which is inherent in

the Euler-Bernoulli formulation, the beam equation in (2.1) can be approximated by

0 2
pbwtt + -_x2M(t,x) = -pl[¢t(t,x,O) + Cty(t,x,O)w] + f(t,x)

while (2.2) can be approximated by

wt(t,z) = re(t, x,0). _ + (vet(t, x,0)w). _.

To first order, these last two equations can be approximated by dropping the higher order

terms -pyCty(t,x,O)w and (V¢u(t,x,O)w). h. Then upon approximating the domain f_(t)

by the fixed domain f_ - [0, a] × [0, _], we obtain the approximate uncontrolled model

¢, = c_A¢ (_,v) c n ,t > 0,

V¢.h = 0 (z,y) e F ,t > 0,

0¢ 0) -w,(t,z) 0<x<a,t>0,
N(t,_, =

o_ ( 0_ 0_) o<x<a, (2.3)pbwtt + _ EI-_x 2 + CDI_ = --PlCt(t,x,O) + f(t,x) t > 0 ,

Ow Ow a) 0_(t,o) = -_x(t,o) = _(t,a) = --_ (t, =

¢(0,/,y) = ¢o(_,_) , _(0,_) = _o(_)

¢_(0,_,_)= ¢,(x,_) , _(0,x) = w,(z)

t>0 ,



For control of structural vibrations and the acousticpressurefield in this model, s piezo-

ceramic patches are attached to the beam as shown in Figure 1. These patches are excited

in a manner so as to produce pure bending moments ([8, 9, 11]) (see Figure 2). If H is used

to denote the Heaviside function, the model for the controlled beam can be written as

02 / O_w _ 03w'_

pbw.+ IF I-Z:i. + +
(2.4)

- 0x_ EI_ _ u,(t)[H(x - 4;1) - H(x - _,_)] + f(t,_)
i=l

Here ui(t) is the voltage applied to the i th patch, K _ is a parameter which depends on the

geometry and piezoceramic material properties, T is the patch thickness and k is a material

constant (see [8, 9]). It should be noted that the incorporation of (2.4) into (2.3) leads to a

system with an unbounded input term since it involves the second derivative of the Heaviside

function.

+

+

Figure 2. Piezoceramic patch excitation.

To formulate this problem in the context of existing infinite dimensional control theoretic

results, it is advantageous to pose the control system in an abstract Cauchy formulation. To

accomplish this, the state is taken to be z = (¢, w) in the Hilbert space H = L2(_t) × L_(r0)
with the energy inner product

Here L2(_t) is the quotient space of L 2 over the constant functions. We also define the

Hilbert space V = _qa(Ft) × Ho2(F0) where R_(_2) is the quotient space of 111 over the

constant functions and It3(F0) = {¢ C H2(P0): ¢(x) = ¢'(x) = 0 at x = 0, a}. The V inner

product is taken as (here and below we use the notation D = o--%)
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Followingthe ideasusedin the theoretical results in [3,4], weconsiderthe Gelfand triple
V _ H _ V* with pivot space H and define sesquilinear forms ai : V × V _ ¢, i = 1,2

by

a1(¢, _) =/a p.rV¢" V,_dw + fro EID2wD_qdT '

a2(¢, _) = fro{cDID2wD2_ + p1(4rl - w_)}d7

where ¢ = (4, w) and ¢ = (_, 7) are in V. It can be easily argued that the sesquilinear

forms satisfy the continuity and coercivity conditions

Re _1(_, ¢) >__c11_1_,

I_(¢, _)1 -<c_l_lvl_'lv,

Re a2(¢, ¢) >_ c3 (D 2w, D 2W)L2(r0) = ca]w[_0_(r0) ,

(for detailed arguments in a similar setting, see [1]). The control operator B e/:(U, V*) is

defined by

fc KSk 8(Bu, _)y,,y = EI--_
o i=1

for _ _ V, where H0(z) -- H(_- _j),i = 1,2,-.. ,_, j = 1,2 and (',')v.,v is the usual
duality pairing.

Finally, for F = (0, f/pb) we can write the control system in weak or variational form

(zu(t), t_)v.,y + a2(z,(t), _) + al(z(t), _) = (Bu(t) + F, _)y.,v (2.5)

for tp in V. The state is given by z(t) = (¢(t,.,.),w(t,.)) in V _ II. Since _r_ and _r2 are

bounded, we can define operators Ax, A2 e Z:(V, V*) by

{Ai'_ , O2}v.,v = ai(_, _)

for i = 1,2. This then yields the system

z,(t) + A_zt(t) + A,z(t)= Bu(t) + F

in V*.

Continuing with our abstract formulation, we next write the system in first order form.

To accomplish this, define the product spaces 12 = V × V and 7-( = V × H with the norms

I(¢,_)1_ - 1¢1_ + l_l_

and

For X = (q_, _) and @ = (T, h), the sesquilinear form a : ]2 x 1) _ _ is then defined by

cr((T, A), (*, q))= -(A, ¢)v + oh(T, q) + o'2(A, q). (2.6)

5



Sincethe duality product (., ")v.,v is the uniqueextensionby continuity of the scalarproduct
(', ")H from H x V to V* x V, it follows that for appropriate restrictions on O we can write

a(@, X) = a((T,A), (¢, _)) = -(A, _)v + (A,T, t_)v.,v + (A2A, ffg)v.,v

= -- (A, _)v + (AIT + AzA, _)u

= ((-A, A1T + A2A),(qL q))n

= (-Ao, x)_.

The operator .,4 : 7-/--_ 7/is given by

i]--A1 -A2
(2.7)

where dora A = {O = (T, A) E 7-/: A E V, A1T + AzA C H}, A1 and A2 are the operators

defined by ai and a2, respectively, and the above calculations hold for O C dora A (see [1]

for further examples concerning the definitions of operators and domains in this manner).

To write the first order system in weak or variational form, let Z(t) = (z(t),zt(t)),
.T(t) = (O,F(t)), and Bu(t) = (O, Bu(t)). The weak form of the system is then

(z,(t), x)v. ,, + o(z(t), x) = (8,4t) + 7(0, xh,..v (2.8)

for X E V. Formally, this is equivalent to the system

z,(t) = .as(t) + B_(t) + 7(0

in 7-t where .,4 is given in (2.7).

(2.9)

3 Periodic ControlProblems

As noted in the introduction, our control problem is motivated by the desire to reduce

cavity pressure fluctuations resulting from the perturbing noise 2-. In many applications,

it is reasonable to assume that 2- is periodic with period T; hence an important problem

of interest (e.g., see [6]) for the system (2.9) is an LQR problem for a periodic disturbing

force .7". This can be formulated as the problem of finding u C L2(0, r; U) which minimizes
a quadratic cost functional of the form

J(u) = -_ {(QZ(t),Z(t))u + (Ru(t),u(t))v} dt

subject to (2.9) with Z(0)= Z(r). Since Z = (¢,w,¢t, wt) T, the operator Q can be chosen

so as to emphasize the minimization of particular state variables as well as to create windows

that can be used to decrease state variations of certain frequencies. The control space U is

taken to be IRs if s patches are used in the model, and it is assumed that the operator R is

m

m

=



an s x _ diagonal matrix where Vii > 0, { = 1,..., s is the weight on the controlling voltage

into the i th patch. In the case that B is bounded on "H, a complete feedback theory for

this problem can be given as discussed in [10]. Under usual stabilizability and detectability

assumptions on the system as well as standard assumptions on Q, the optimal control is

given by

u(t) = -n -ltr[ne(t) - r(t)]

where II is the unique nonnegative self-adjoint solution of the algebraic Riccati equation

,4"17 + HA - IIBR-'B*H + Q = 0. (3.1)

Here r is the unique T-periodic solution of

i'(t) + (A* - HBR-113*)r(t) - IIgV(t) = 0 (3.2)

and the optimal trajectory Z is the solution of

z(t) = (.4- tSR-'_'H)Z(t) + t_R-lt3*,-(t)+ :r(t) .

These equations (in particular (3.1), (3.2)) are infinite dimensional (i.e., in 7-0 and hence

approximation techniques are required to obtain approximate feedback gains. Using a stan-

dard Galerkin approach, one typically chooses a sequence of finite dimensional subspaces

"Hg C 7"( with projections T 'N : H ---* 7-/g and defines an approximating problem in 7-(N of
• • . •

mmlmmmg
1

sN(u) = -_fo {<QNz'(t)'zN(t))'_ + <nu(t),_,(t))u}dt

subject to an approximating system

zN(t) = ANzN(t) + 13Nu(t) + _N(t)

z_(o) = z_(v)= _Nz(o).

The solutions are given by

uN(t) = --R-'BN'[HNzN(t)_ rN(t)]

2_(t) = baN_ tSNR-'t3_*17_)ZN(t)+ _Nn-'BN'_N(t) + _N(t)

where II g is the unique nonnegative self-adjoint solution of

.AN.I-I N ___ 1-INAN _ 17NBNR-,BN.IIN + QN = 0

and r N is the unique v-periodic solution of

÷N(t) + (.A N* - IINI3NR-'13N*)rN(t) -- IIN._N(t) = O.

In order to guarantee the convergence IINpNz _ IIZ for Z E 7-[, rN(t) _ r(t), and

hence the convergence of uN(t) to u(t), it is sufficient to impose various conditions on the

original and approximation systems. These hypotheses include convergence requirements for

the uncontrolled problem as well as the requirement that the approximation systems preserve

7



stabilizability and detectability margins uniformly. A fully developedtheory (see[4]) is
availablefor the casethat U -- 0 (in this case the tracking variable r does not appear in the

solution) even in the case that B is unbounded in the sense formulated in Section 1. The

theory in [4] requires rather strong damping assumptions on the second order system (2.5)

in order to be applicable. Under appropriate assumptions, the techniques and ideas of [3]

and [4] can be used to treat the case for .T" _ 0 in both identification and feedback control

problems.

i
1
!
!

2

J

4 Finite Dimensional Approximation

An advantageous feature of the state space approach for feedback control is that the optimal

control can be implemented using various approximation techniques. To illustrate the ideas
-¢B'_1._-1 denote the 1-D basis functions which are used to discretize the beaminvolved, let t i Ji=l

and let {B_}i_l, m = (m, + 1). (my + 1) - 1, denote the 2-D basis functions which are

used in the cavity. The n - 1 and m dimensional approximating subspaces are then taken
.f Bn'_n -1 m rato be H_ = span t ; Ji=l and H_ = span {Bi };=1 , respectively. Defining N = m + n - 1,

the approximating state space is H N = H_ × H_ and the product space for the first order

system is 7-(y = H N × H N. The finite-dimensional approximation is then determined by

restricting a to 7-(N × 7-(N where _r is given in (2.6). This yields the operator .A N : 7-(N _ HN

where

-A N -Af

and A N and AN are obtained by restricting al and or2 to H N x H N. We observe that the

restriction of the infinite dimensional system (2.5) to the space 7-(N x _N yields for tp = (_, 7/)

(zN(t),kg}H + cr2(zN(t),_)+al(zN(t),_)

fr K t3k _ fr= EI--__ui(t)(Hn- Hi2)D2rld'_ + frld'_.
0 /=1 0

When @ is chosen in H N and the approximate beam and cavity solutions are taken to be

n-1

 N(t, x) = X;
i=1

and

CN(t, y),
i=1

8
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respectively, this yields the system

MN_iN(t) = _xNyN(t) -I- [_Nu(t) + FN(t)

MNyN (O) -_ _I0N

where

vN(t)= (°N(t),}N(t))

Here v_N(t) (¢y(t), CN(t), ,¢_(t),wg(t),wN(t), N= ...... , Wn_l(t)) T denotes the N × 1 =

(m + n - 1) x 1 approximate state vector coefficients while u(t) = (ul (t), • • • u8 (t))T contains

the s control variables. The full system has the form

0 M ff _N(t) = -A N -A N (_N(t) + [3W u(t)+ pN(t )

[ M_ 0 ON(O)o _]
with

and

M N = diag[M N,MN],

M N = diag[M N, MNI,

A N = diag[AN,AN] ,

[0 A_]AN= A N A N

o ...o]
P_(t) = [ oPC(t) ]



The component matrices are given by

[M_],.:So_.r._-_.-,[-_].,,:].o.'.y.;_,
[.,].,. .,,o .

A N

, A N[A3N]t,,= --fro p.B_B?d7 [ 3']p,k= fro p'BrB;d7

[A_N].,i= fro cDID'B:D'B;dT,

[_:].,;=f°,'-.,,"_-,o.-
Jail 1_1T1._2 1Dpa"[ ,

[_;(4.:/_oS.;._
Moreover, the vectors gN = [gN,glg]T and gN = [gN,g2N]T have elements

[_] £ [-]:/....o...;..,g t = V¢0" VB'_dw , ga2 p o

[._],--/o_,.r,.,[._1.:/.o.1.;..•

In all cases, the index ranges are k,_ = 1,..-,m and i,p = 1,...,n - 1. The patch index

j ranges from 1 to s. It should be noted that the matrices A N and M N are symmetric and

positive definite by construction. The matrix A N has a symmetric block and a skewsymmetric

block and the eigenvalues of A N are real and nonnegative.
m m

IRn]'n-1 and {B i }i=1 chosen, the finite dimensional theory outlined inWith the bases t-, Ji=l

the last section holds with the various finite dimensional operators replaced by appropriate

matrices. Specifically, the finite dimensional control problem is then to find u E L2(O,T)
which minimizes

JN(u) = -_ (QNyN(t),yN(t))_N + (Ru(t),u(t))n, dt , N = rn + n - 1

where QN is nonnegative definite and yN solves

_N(t)= ANyN(t)+ BNu(t) + FN(t)

yN(O)= _o_ .
(4.1)

Here A N = (MN) -l fi N , B N = (MN) -'_n FN(t) :

condition yN = (MN) -1 fiN. The optimal control is

(MN) -1FN(t) with the initial

=

uN(t)=n-'(BN)_ [r_(t)- n_yN(t)] (4.2)

10



where H N is the solution to the algebraic Riccati equation

(AN)TII N + IIN A N- ]-IN BN R-I(BN)TIll N -4- QN _. 0 . (4.3)

Since QN denotes the matrix representation for the operator QN, a suitable choice for QN is

0]QN = D
o

where the diagonal matrix 7) is given by

_D=diag[dxI'_,d2I'_-',dJm,d4I n-']

Here I k , k = m, n - 1 , denotes a k x k identity and the parameters dl are chosen to enhance

stability and performance of the feedback. The s x s diagonal matrix R contains the positive

control weights and has entries rii, i -_ 1,.--,s. For the regulator problem with periodic

forcing function Fn(t), rn(t) solves the linear differential equation

('U(t) = --[ AN- BN R-I( BN)TrIN]T rN (t) + I-[N FN(t) (4.4)

rN(o) = rN(r)

while the optimal trajectory is the solution to the linear differential equation

_lN(t) = [A N - BNR-I(BN)TII N] yN(t) + BNR-I(BN)TrN(t) + FU(t) (4.5)
uu(o) = vu(r).

5 Specific Approximations and Numerical Results

We next turn to a discussion of specific choices of basis functions in the general formulation of

the approximation schemes in the last section. We shall also present numerical results from

related computations. When choosing bases for the finite dimensional subspaces H_ and

H_ in a control setting, one must weigh criteria such as smoothness requirements, uniform

preservation of exponential stability of approximating systems (see [5]), accuracy, sparsity

of system matrices and ease of implementation.

From energy considerations, it follows that the system (2.3) is dissipative; hence all the

eigenvalues lie in the left half plane. The model of Section 1 includes no medium damping

however, and hence the energy dissipation in the cavity results exclusively from the boundary

(Kelvin-Voigt damping in the beam) thus making the system (2.3) only weakly damped.

In spite of the lack of strong damping, numerical tests have indicated that when physically

relevant parameters are used in the model, the system (2.3) is exponentially stable (the fixed-

end boundary conditions on the beam make difficult a thorough analytical analysis of the

eigenstructure). When considering various methods of discretizing the problem, one would

like to choose schemes which uniformly preserve the exponential decay rate as the dimension

11
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of the approximate system (4.1) increases. This can be easily checked by determining whether

or not there exists a uniform margin for increasing N between the open loop eigenvalues of

the system matrix A N in (4.1) and the imaginary axis.

When considering the control problem, one is also concerned with the preservation of

uniform stabitizability and detectability margins for the closed loop approximation systems.

Hence care must also be taken so that approximation schemes are chosen so as to preserve

a uniform margin between the closed loop eigenvalues of A u - BNR-I(BN)TII N and the

imaginary axis. Numerical schemes which satisfy these various criteria will now be discussed.

Cubic splines were used as a basis for H/' since they satisfy the smoothness requirement

as well as being easily implemented when adapting to the fixed-end boundary conditions

and patch discretizations. For a given positive integer n, a uniform partition was taken with

'_ = ±a i= 0,1,...,n. Ifl 'Ji=-_the gridpoints x i ,_ , ,f/3_'l, n+2 is used to denote the standard cubic

spline basis corresponding to this partition (see [18], page 79), then the basis functions for
the beam discretization were taken to be

B; = B3- -

B? =/_? ; i=2,3,.--,n-2

B__, h_ 2J__ 1 ^n= - _ 2B_+ a

It is readily seen that these basis functions satisfy the essential boundary conditions; that is,

B'_(O) = DB_(O)= B'_(a)= DB'_(a)= 0

for i = 1,2,...,n - 1. As mentioned previously, the corresponding n - 1 dimensional

approximating subspace is then given by H/_ = span t i Ji=l and the approximate beam
solution is taken to be

n--1

wN( ,x) = wN(OB (x) .
i=1

With this choice of basis functions, the matrices )tl N and M N are easily constructed and

are 7-banded. It should be noted that a Tau-Legendre discretization was also considered

for the beam but had the disadvantage of the loss of four equations due to the constraints

mandated by the fixed-end boundary conditions(see [13] for a discussion of Tan methods).

The bases that were considered for the cavity discretization included tensored one-

dimensional Legendre polynomials, tensored linear splines and finite elements. The methods

of system formulation as well as the advantages and disadvantages of each can be summa-

rized as follows. Consider first the Legendre basis. Let P_(x) and P[(y) denote the standard

Legendre polynomials that have been scaled by transformation to the intervals [0, a] and

[0, g], respectively. The basis functions {B/'_} for the cavity are then defined as

BiT(x,y)=P_(x)Pf(y ) for i=0,1,...,m_, j=0,1,...,mu, i+j¢O,

where m = (m= + 1). (mu + 1) - 1. The condition i + j ¢ 0 eliminates the constant function

thus guaranteeing that the set of functions is suitable as a basis for the quotient space. For

definiteness, the basis functions are ordered by assuming that i varies for each fixed j which

12



is analogousto a left to right, bottom to top ordering. Notice that becausenatural boundary
conditions occur on all sidesof the cavity, onedoesnot haveto employ a Tan method; that
is, the method is simply a Galerkin scheme without modification of the basis elements to

satisfy some essential boundary conditions.

The component matrices M N and M N can then be succinctly described as follows. Let

the fundamental (m_ + 1) x (rex + 1) matrices M: and If_ be defined as

M TM = ff[ ],j P '(x)P;(x)dx

" ?'rl, _0 fg[F._ ]ij = DP_(x)DP;(x)dx

with similar definitions for M_, I(_. Using the tensor properties of the 2-D basis, we can

form the matrices /_/N and )t_/N defined by

_N = M_ ® I(: + I(_" ® M:

JVI N P_l. ll ff"rn= c2""g ®Mg

The ordering in the above definition depends on the ordering of the basis functions. The

matrices M_ and M_ are obtained by removing the first row and first column of 3?/N and

/12/N to reflect the deletion of the constant function from the basis set. Note that with

this definition, both matrices are very easily constructed and that the mass matrix M N is

diagonal; hence the inverse is trivial to calculate. Although the matrix Mll is not sparse, it

has a well-defined structure due to its tensor product nature and the fact that M2 and Mp

are diagonal. It too can be efficiently inverted when one takes advantage of this structure. In

the case that p/is constant, the stiffness matrix A N can be constructed in the same manner

as Mll and the tensor product structure can be used advantageously both when solving the

Riccati equation (4.3) and the ODE systems (4.4) and (4.5).

In order to use a tensored linear spline or finite element basis in the cavity, some constraint

must be applied in order to guarantee that H_ is a quotient space (one cannot simply drop

the constant function as was done with the tensored Legendre polynomials). One such

constraint which is commonly used is the requirement that

L cN(t, y)dw =0X_ o

If ,f/)-_," is used to denote the standard tensor product linear spline basis (see page 129
l _ Ji=l

of [18]), then the integral constraint leads to the quotient basis {B_'}_=2 where

B'_(x,y) = [_m(x,y) - 4ai[_'_(x,y)

with al = {¼,-_, 1} depending upon whether the function B_ is a corner basis function, a
side basis function or an interior basis function, respectively. As a result of the modifica-

tions needed to obtain a quotient space basis with the tensored linear splines, the matrices

M N, M N and All are full and hence one loses the structural advantages obtained with the

Legendre basis.
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Similar modifications must be made when using a finite element basis in a quotient space

with the result that the system matrices are also full in that case. Moreover, the lower

order accuracy of the splines and finite elements necessitates the use of a larger number of

basis functions and hence larger matrices in order to match the accuracy of the Legendre

polynomials. The fact that the Legendre basis yields smaller, structured matrices than

those obtained with the linear splines and finite elements is important but not crucial in the

problem under consideration since the cavity is only two dimensional and hence matrix sizes

are reasonably small. This issue will become much more critical when considering the 3-D

problem of interest because of the large matrix sizes which will be encountered.

As discussed earlier, a final item which should be considered when choosing a means

of discretizing the control problem is whether or not the approximation scheme effects a

uniform preservation of exponential stability for the open and closed loop approximating
systems. This issue is illustrated by the results in the Example 5.1.

The problem under consideration in Examples 5.1 and 5.2 is

¢tt =c2A¢ (x,y) Cfl ,t >0,

V¢.h=0 (x,y) CF,t >0,

0¢
oy (t,x,o) = -w,(t,x) o < x < .6 ,t > o,

pbwtt +

i

-- PfCt(t,x,O) + f(t,x) O < x < .6 , t >0 ,

w(t, O)= Ow Ow
_x (t,0) = w(t,.6) = _xx (t,.6) = 0 t > 0 ,

02 [ O_w _ 03w

_
(5.1)

¢(0,x,y) = ¢,(0,_,y) = w(O,x)= w,(0,_) = 0

where

f(t,x) = 2.04sin(1507rt) .

The parameter choices a = .6rn, g = 1 rn, pf = 1.21 kg/m 3, c2 = 117649 rn2/sec _,

Pb=l.35kg/m, EI= 73.96Nm 2, CDI=.OOlkgrn3/sec, K R = 82.9629, T=.0005m,

k = 1.9 × 10 -l° re�V, aia = .25 and ai2 = .35 are physically reasonable for a .6 m by 1 m

cavity in which the bounding end beam has a centered piezoceramic patch covering 1/6 of

its length (see Figure 3). The beam is assumed to have width and thickness. 1 m and .005 m,

respectively. The quadratic cost functional parameters were taken to be da = d2 = d4 = 1,

d3 = 104 and R = 10 -6 with d3 of much larger magnitude than dl,d2 or d4 to emphasize

the penalization of large pressure variations. Note that because there is only one patch, the

control weight R is simply a positive scalar.

For a beam with the above dimensions and density, the natural frequency of the first

mode is 73.21 hertz and the frequency of the forcing fnnction was chosen so as to be close

to this value. To obtain the magnitude 2.04, it was assumed that the forcing function was

m
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the result of an exterior plane wave with a sound pressure level of 120 dB (which forces an

interior sound pressure level of 98 dB).

f_

0 .6

jF

Figure 3. Example acoustic chamber with one piezoceramic patch.

Example 5.1

In this example, the uniform preservation of exponential stability for the open and closed

loop approximating systems is examined. For n = mx = my = 5, 6, 7 and 8, the margins of

stability for the open and closed loop systems obtained with tensored Legendre polynomials

and tensored linear splines are listed in Tables 1 and 2, respectively. The gains needed

for the closed loop system were calculated via Potter's method (see [17]). For each n, the

locations of the open and closed loop eigenvalues obtained with the Legendre polynomials

are displayed in figures 4 and 5, respectively. When plotting the eigenvalues of A N and
T

A N - BNR -1 (B N) II N, those eigenvalues having real parts with magnitude greater than
1 have been excluded in order to better see the distribution near the imaginary axis. Note

that a uniform margin of stability is maintained between both the open and closed loop

eigenvalues and the imaginary axis for both sets of bases. Results similar to those obtained

with the Legendre basis were obtained when finite elements were used as a basis for H_m.
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Table 1. Margin betweenthe open and closedloopeigenvaluesand the imaginary axiswith
tensoredLegendrepolynomials.

5 5 -.0145 -.0196
6 6 -.0213 -.0220
7 7 -.0200 -.0200
8 8 -.0158 -.0290

Table 2. Margin betweenthe openand closedloop eigenvaluesand the imaginary axiswith
tensoredlinear splines.

5 5 -.0269 --.0868
6 6 -.0612 -.0612
7 7 --.1222 -.2732
8 8 -.2361 -.2388
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Figure 4. Eigenvalues of A N for n = mx - my - 5,6,7 and 8 with tensored Legendre

polynomials.
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tensored Legendre polynomials.

As seen in Example 5.1, a larger margin of stability is naaintaiued in both tile open and

closed loop systems with the linear spline basis than with tile Legendre basis; hence one might

conclude that the linear splines are the basis of choice when solving the control problem. As

noted earlier however, one must also weigh factors such as system size, accuracy and efticiency

when choosing a numerical method. Numerical tests have indicated that in spite of the larger

eigenvalue margins of the linear splines, their performance when used in the control problem

is nearly identical to that obtained with the Legendre polynomials. Moreover, because of the

lower order accuracy of the splines, a larger number of basis functions is needed to obtain

suitable accuracy thus leading to matrix dimensions that are almost twice those resulting

f,'om the Legendre discretization. Finally, as noted earlier in this section, the matrices

obtained with the Legendre discretization are much more structured than those obtained

with finite elements or linear splines hence making Legendre implementation more ellicient

than the other cases. Results for the LQR control problem for (5.1) with the tensored

Legendre basis for the cavity and cubic splines for the beam with nz, = my = 4 and n = 8

are reported in Example 5.2.
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Example 5.2
In this example,the effectof the feedbackcontrol on the problemfor system(5.1) is de-

scribed. In order to solvefor the optimal control and trajectory, it is necessaryto solveboth
the trajectory equation (4.5) and the tracking equation (4.4). Becausenumerical evidence
indicated that both unconstrainedsolutionswereroughly periodic with period r = 1/75, the

problems were solved as initial value problems with starting values y(0) = 0 and r(10/75) = 0

rather than as free boundary value problems. The choice for initial state is physically rea-

sonable while the choice to integrate backwards in time in (4.4) is made to reduce numerical

instability when solving the ODE system for rN(t).

The uncontrolled and controlled approximate acoustic pressures (pN = [IcN) at the

point (X,Y) = (.3, .1) are plotted in Figure 6 for the time interval [0, 10/7,5]. Similar plots

for the approximate beam displacement at X = .3 are given in Figure 7. The uncontrolled

solutions exhibit a beat phenomenon which results from the fact that the frequency of the

forcing function is slightly greater than the natural frequency of the first mode of the beam.

After a transient interval, the controlled solutions are periodic and are maintained at a

level which is approximately 10% of that found in the uncontrolled case (note the scales in

Figures 6 and 7). This produces an interior sound pressure level of 77 dB which is a 21 dB

reduction. To further illustrate the state reduction with feedback control, the uncontrolled

and controlled acoustic pressures at the times T = 1/75, 2/75, 6/75 and 10/75 are plotted

in Figures 8 - 11, respectively. The two dimensional plots in each figure show spatial slices

of the uncontrolled and controlled pressures at X = .3, 0 < y _< 1. Figures 12 and 13

contain plots of the uncontrolled and controlled beam displacements at the times T = 6/75

and T = 10/75, respectively. The results in Figures 8 - 13 are representative of those found

throughout the time interval (0, 10/75] and in conjunction with Figures 6 and 7, demonstrate

that the pressure and beam displacement are uniformly reduced and maintained at a very

low level of magnitude in spite of the periodic forcing function.

The controlling voltage u(t) is plotted in Figure 14. As expected, it is periodic with

period 1/75. It should be noted that the magnitude of u(t) remains less than 601/- which is

a physically reasonable voltage to put into the piezoceramic patches.

As mentioned in the last section, the choice of the quadratic cost functional parameters

dl - d4 and R influences the control stability and performance of the feedback. In this

problem, the emphasis is on the the reduction of variations in the acoustic pressure; hence

da was taken to be larger than dl, d2 or d4. It should be noted that this choice of parameters

does not exclude the control of the other state variables; in fact, the beam displacement is

significantly reduced as seen in Figures 7, 12 and 13. Since the parameter R is a penalty

term for u(t), more control of the state variables can be effected by choosing R smaller. The

tradeoff, however, is an increase in the voltage. Hence one must weigh the amount of state

reduction desired against the amount of voltage which can be put into the patches.

The amount of control is also directly influenced by patch size, placement and the number

of patches being used. In the examples that. we have observed, the best results were obtained

with one centered patch, and we have noticed that the amount of control obtained increases

with increasing patch length. Thus one must weigh the amount of control desired against

physical limitations on the size of the piezoceramic patches being used.
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Figure 6. Uncontrolled and controlled pressures at the point (X, Y) = (.3,.1) throughout

the time interval [0, 10/75].
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the time interval [0, 10/75].
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6 Conclusion

For the 2-D acoustic problem involving the transmission of exterior noise into an interior

cavity via fluid/structure interactions, a model set of differential equations has been devel-

oped. Control is implemented in the model via piezoceramic patches on the beam which are

excited in a manner so as to produce pure bending moments. By writing the resulting system

as an abstract Cauchy equation, the problem of reducing interior pressure fluctuations can

be posed in the context of an LQR time domain state space formulation and approximation

schemes which are suitable for this theory are presented.

For one typical patch configuration, examples are given which demonstrate the stabiliz-

ability of the open and closed loop systems under approximation as well as the reduction of

cavity pressure and beam displacement when the feedback control is invoked. The examples

show that input of the optimally controlling voltage u(t) uniformly reduces both the pressure

and the beam displacement and maintains them at a very low level of magnitude throughout

the time interval of interest.

As mentioned in the example section, the amount of control obtained is directly influenced

by patch size, placement and the number of patches being used. Initial results have indicated

that for a uniform periodic forcing function, the best results can be obtained with one

centered patch with the amount of control increasing with increasing patch length. Further

computational studies are currently being conducted to determine the effect of various patch

configurations and forcing functions on the decibel reduction in the cavity.
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