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Preface

This report presents a brief history leading to the involvement of the Langley
Research Center of the National Aeronautics and Space Administration (NASA)
in space-radiation physics and protection. Indeed, a relatively complete summary
of technical capability as of the summer of 1990 is given. The Boltzmann equations
for coupled ionic and neutronic fields are presented and inversion techniques for
the Boltzmann operator are discussed. Errors generated by the straight ahead
approximation are derived and are shown to be negligible for most problems
of space-radiation protection. A decoupling of projectile propagation from the
target fields greatly simplifies the Boltzmann equations and allows an analytic
solution of the target fragment transport. Analytic and numerical methods of
solving the projectile transport equations are discussed. The study shows that
explicit numerical techniques can develop unstable roots that require some care
in applying discrete numerical methods. A second class of numerical methods is
derived by first inverting the Boltzmann operator to form a Volterra equation from
which an unconditionally stable numerical marching procedure is derived. Error
propagation in the marching procedure is studied. Local relative errors must be
on the order of h2 for adequate control of propagated errors, where h is the step
size.

The nuclear physics underlying the coefficients in the Boltzmann equation is
discussed. A coupled-channel optical model is found as a consequence of the loose
binding of nuclear matter and closure of the nuclear states in high-energy reactions.
An abrasion optical model is derived that agrees well with experiment if the two-
body interaction matrix is properly symmetrized. The optical model is found to
be a good approximation to the elastic channel in the coherent approximation.
Noncoherent effects are explicitly evaluated in a bordered matrix approximation.
A complete elastic channel data base is presented. Inelastic and nonelastic
processes are treated in the bordered matrix approximation with encouraging
comparisons with experiment. The theory of electromagnetic dissociation is
reviewed, and a model for single-nucleon and two-nucleon knockouts is presented
and compared with experimental data. A semiempirical nuclear-fragmentation
model is presented for the generation of a nuclear reaction data base and compared
with experimental data. A relatively complete nuclear reaction data base is
presented.

Transport solutions with the developed data base are used with laboratory
experiments to validate both the transport code and the data base. Numerical
benchmarks and comparison with Monte Carlo calculations are also used for code
validation.

xi
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The analytic methods and data base are used to study coupling of the local
radiation fields to electronic devices, dosimeters, and biological systems. Energy
deposition fluctuations in thin silicon detectors caused by target fragmentation in
the silicon device are shown and compared with experiment. Energy fluctuation in
microscopic volumes is studied and the relation to tissue equivalent microdosime-
ters is described. The bone-tissue interface is examined for possible damage en-
hancement effects in the transition region near the interface. Target fragmentation
corrections to damage coefficients of biological experimental data are discussed.
Comparisons are made with results obtained by others using different nuclear data
bases.

Approximate solutions to the Boltzmann equation in arbitrary convex geome-
try are found in preparation for application to space radiations. A buildup factor
formalism is derived for space use, and example calculations for the human gedm-
etry in a space vehicle or on the surface of the Moon and Mars are given. The
heavy ion transport code is used to study the shielding requirements for lunar
or martian missions. Future needs of the NASA radiation physics program are
discussed.

xii



Chapter 1
Introduction

1.1. Pre-NASA History

The panel meeting (Armstrong, 1949) on “Aero Medical Problems of Space
Travel,” sponsored by the School of Aviation Medicine, Wright Field, Ohio, was
held in 1949, the year following the first published account of the existence
of heavy ions in the galactic cosmic rays (GCR) observed at high altitude in
the Earth’s atmosphere (Freier et al., 1948). It was C. F. Gell, a member of
the panel, who suggested that space radiation may be life threatening despite
stratospheric radiation studies indicating the contrary. He gave two reasons for
this possibility: (1) The cosmic radiation that is unable to penetrate to the
stratosphere may be important and (2) the geomagnetic field deflects many of
the particles away from the Earth; therefore, they are not observed in current
stratospheric flight experiments. He proposed the need to further investigate
space-radiation protection and the subject plunged into immediate controversy.
In the following year, H. J. Schaefer (1950), of the Naval School of Aviation
Medicine, provided a review of atmospheric radiations. He reported that cosmic
rays are greatly diminished at the Earth’s surface (0.1 mR/day (1 R corresponds to
the exposure unit of formation of 1 esu/ cm3 of dry air at standard conditions)),
increase to a maximum of 15 mR/day at 70000 ft, and decrease beyond the
transition maximum formed by the well-known transition effect (fig. 1.1). The
transition effect results from interactions of the most penetrating radiations
producing secondary particles in sufficient numbers to increase the dose. A belief
that the ionization rates would decline to the free space values, where only the
primary particles were present, had been generally accepted. However, as Schaefer
notes, the discovery of “heavy nuclei rays” with their low penetrating power leads
one to expect the decline beyond 70 000 ft to reach a minimum followed by a rise
in ionization at higher altitudes. He credits C. F. Gell for first suggesting this
possibility. Schaefer further suggests that the unusually high specific ionization of
these energetic heavy nuclei indicates they may pose a significant health hazard
and stresses the importance of further study.

B200r
#E A 115
% .‘3 Geomagnetic
; i 102 latitude
2100 £ A 60°N
k! ; B 51°N
) ¢ s & C 38N
% D é_ D 3°N
a [$3]
= 0 1 0
W Y% 20 40 60 80 100x103 ft

0 10 20 30 km

Altitude

Figure 1.1. Altitude dependence of ionization in tissue from cosmic radiation (from Schaefer,
1950).
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(b) Neutral primary, 27 rela- (¢} Z = 17 projectile, high-
tivistic charged prongs. energy transfer event.

Figure 1.2. Nuclear-star events observed in nuclear emulsion (from Krebs, 1950).

After the publication of the findings of the panel, Krebs (1950) at the Field Re-
search Laboratory of the Army Medical Service, Fort Knox, Kentucky, described
his work on biological experiments with cosmic air showers by emphasizing the
importance of nuclear-star contributions. Krebs suggests in particular that the
“explosive (or ‘nuclear’) stars,” assumed to be created by “heavy nuclei com-
ing from outside of the atmosphere,” are a novel physical process (fig. 1.2) with
potential for biological effects that “cannot be overemphasized.” Clearly, Krebs’
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Chapter 1

emphasis on the nuclear-star contribution is to be distinguished from Schaefer’s
concern over the direct ionization of cosmic heavy nuclei. Although nuclear-star
effects in tissue remains an important biological issue (see chapter 11), it was the
insight of Schaefer on the nature of high energy and charge (HZE) ions 40 years
ago that is having a lasting impact on radiation physics and biology.

The Symposium on Space Medicine at the 23rd Annual Meeting of the Aero
Medical Association, held in March of 1952, was a watershed for space-radiation
biology and protection. Schaefer (1952) argued eloquently that delayed effects are
the likely consequence of cosmic heavy nuclei exposure and that we cannot ex-
trapolate from well-established dose response curves for common radiations. The
nature of atmospheric ionization exposure was discussed as was the problem of
extrapolation to free space (fig. 1.3) with the limiting effects of geomagnetic cutoff,
solar modulation, and thel uncertainty in the radiobiology. Schaefer then looked at
the issue of track structure (fig. 1.4) and described a model of injury near the end
of the heavy nuclei tracks (microbeams), which was a small linear lesion somewhat

20,
g
% L
glO- Total
é i He + hea Hea
K
53]
0 1 1 1 —
1 100 10 000

Altitude, miles

Figure 1.3. Ionization dosage from cosmic radiation for distances from 1 to 10000 miles from
Earth at higher latitudes (from Schaefer, 1952).

105 _
e 10° [
8 -
2 o' [

'k 64702 4686420246 202

Radial distance from center of track, pm
Heavy nucleus Heavy nucleus Alpha particle
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Figure 1.5. Ionization, counting rate, and average rate of energy loss (proportional to specific
ionization) (from Tobias, 1952).

similar to Todd’s microlesion but without the carcinogenic interpretation Todd
(1983) suggests. It was Schaefer (1952) who first suggested that linear energy
transfer (LET) may not be a good predictor of biological response because the
track width also controls the biochemistry.

Also presented at the Symposium on Space Medicine was a particularly lucid
paper by C. A. Tobias (1952), of the Donner Laboratory, on the radiation hazards
in high-altitude aviation. Like Schaefer, Tobias argued that a rapid change in GCR
composition is expected in the upper atmosphere where particles of high specific
ionization are absorbed (fig. 1.5) and are converted partly to particles of lesser
charge. He estimated the neutron-biological exposure to be 10 mrem/day (1 rem
(= 0.01 Sv) is an older unit of dose equivalent) at 45000 ft from the measurements
of Yuan (1951), with the assumption of a Relative Biological Effectiveness (RBE)
of 10, and stressed the need to look for low-energy, cosmic nuclei near the North
Pole where geomagnetic effects are minimal. Because primary iron nuclei will
undergo nuclear fragmentation in a few grams per centimeter?, he suggested that
less ionizing secondaries produced by fragmentation of heavy ions may pose a re-
duced hazard. One can observe the rapid decline of the high-energy pulse events in
gas-filled proportional counters (fig. 1.6) used by McClure and Pomerantz (1950).
Tobias argued that the RBE for cosmic-ray nuclei may be as high as 100 but
that the values are unknown because no such ground-based facilities are able to
accelerate iron nuclei to high energy (Tobias and Segré, 1946) and biological flight
experiments are impractical because of the low flux and limited exposure time.
He estimated the exposure to be 26 rem per year at the top of the atmosphere
or about 50 rem per year in free space. He then surveyed the biological data
available and proposed a radiobiological program that would be the mold for the
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Figure 1.6. Bursts produced by protons, neutrons, a-particles, and heavy ions (from McClure
and Pomerantz, 1950).

next 40 years of heavy iom, space-radiation biology. He predicted the possible
direct observations of light flashes from heavy ion exposure in dark-adapted eyes,
which were observed by Apollo astronauts nearly 20 years later.

New emphasis was given to space radiation after the occurrence of an enormous
solar flare on February 23, 1956, which was summarized by Schaefer (1957)
and further detailed in 1958 (Schaefer, 1958). After the successful launch of
an unmanned satellite by the USSR, NASA was formed out of the older civil
aeronautical agency (National Advisory Committee for Aeronautics (NACA))
and elements of the military space effort in 1958. In this same year, Van Allen
discovered the trapped radiation belts. In July 1959, Schaefer (1959) began to
explore the possibilities of space travel despite the presence of the Van Allen
belts.

1.2. History of Langley Program

In June 1960, a conference on radiation problems in manned space flight, orga-
nized by the Office of Life Science Programs, NASA (Jacobs, 1960), was convened
to address the problem of potential acute and chronic radiation damage. A back-
ground paper on space radiation was presented by J. A. Winckler of the University
of Minnesota in which the 1956 solar flare and subsequent events through 1959
were discussed. We now know that an even bigger solar flare event occurred
on November 12-13, 1960, 5 months after the June 1960 conference. Nearly all
factors important to solar flare events were identified at the NASA conference:
important locations on the Sun for active regions to affect the Earth, propaga-
tion and storage effects, geomagnetic effects including magnetic disturbances, the
significance of type-IV radio noise as a signature of particle events, importance
of riometer and ground-level neutron monitors, and an estimate of the required
shielding thickness. Winckler suggested that GCR exposures were probably unim-
portant for short-duration missions. Winckler's review noted that the inner Van
Allen zone was reasonably stable with dose rates of 30 R/hr compared with the
dynamic outer zone with peak rates near 10 R/hr. (Shielding of the ion cham-
bers was not specified.) An attempt was made to establish a rationale to define
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acceptable risk. J. E. Pickering, of the Air Force School of Aviation Medicine,
Wright Field, Ohio, suggested radiation risk should be in line with other mission
risks; this then became a dominant theme in NASA’s exposure-limits assessments.
The main conclusions to be drawn were that the Mercury program, which flew at
100 n.mi. at low inclination, was not expected to have a radiation problem, but
a vigorous radiation program would be required for future NASA missions. This
is the historical context of the beginning of space-radiation protection at NASA
Langley Research Center which continues at present and is the main focus of the
rest of this report.

The Langley effort began in 1958 with Trutz Foelsche (1959) evaluating specific
lonization caused by cosmic-ray primaries in water or tissue. Aware of the
high altitudes projected by the U.S. Supersonic Transport (SST) Program, the
potential impact on commercial operations was brought to the forefront (Foelsche,
1961). A major concern in Foelsche’s estimates was uncertainty in neutron and
target-recoil contributions (Foelsche, 1962a and 1962b) which would be a dominant
issue at Langley for the next decade. His estimates of space-radiation doses were a
prime contribution to the Conference on Environmental Problems of Space Flight
Structures, convened under the Advisory Committee on Missile and Space Vehicle
Structures (Vosteen, 1962).

The first Symposium on the Protection Against Radiation Hazards in Space,
held in Gatlinburg, Tennessee (first Gatlinburg Conference, Anon., 1962), was
a coming together of the diverse elements working on various aspects of the
space-radiation problem. At the conference, plans for the Space Radiation
Effects Laboratory (SREL) at Langley were unveiled with its central 600-MeV
synchrocyclotron and various other low-energy machines. (The site is the current
location of the Continuous Electron Beam Acceleration Facility (CEBAF).) The
main experimental thrust of the radiation-protection group was secondary particle
production from collisions of energetic protons and a-particles (Orr, 1972; Beck
and Powell, 1976). Also presented at the conference by Kinney, Coveyou, and
Zerby (1962) were the beginnings of the High-Energy Transport Code (HETC).
The most surprising feature of the conference in retrospect was the lack of papers
on energetic heavy ions, except for the biological experiments of H. J. Curtis, who
used deuteron microbeams to simulate the high-energy, heavy ion microlesions
suggested by Schaefer (1952) as a potential biological hazard a decade before.

The second Gatlinburg conference, held in Gatlinburg, Tennessee, 2 years later
(Reetz, 1965), showed considerable maturation. Foelsche identified major un-
certainties in neutron-exposure rates that justified an atmospheric-measurements
program starting in 1965, which ran out of funds just 7 months before the now-
famous solar event of August 1972 (Korff et al., 1979). Unlike the earlier con-
ference, there were three papers in reference to high-energy heavy ions. One was
written by P. Todd (1965) presenting a host of cell survival data for heavy ion
beams measured at the Donner Laboratory of the Lawrence Radiation Labora-
tory at Berkeley (LRLB) and the other was written by S. B. Curtis (Curtis, Dye,
and Sheldon, 1965), who later joined the staff at the Donner Laboratory. Sev-
eral fundamental papers appeared using HETC, including one by R. G. Alsmiller,
Jr., et al. (1965), showing the validity of the straight ahead approximation for
high-energy nucleon transport as applied to space radiations. This paper had
an important impact on transport theory development at Langley. Probably the
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most surprising paper in retrospect was the four-part paper written by J. Billing-
ham, D. E. Robbins, J. L. Modisette, and P. W. Higgins (1965). This paper
described the dose limits for design purposes in the Apollo mission as 200 rem
(blood-forming organ, ocular lens), 700 rem (skin), and 980 rem (hands and feet),
which were adequate to return the astronauts to Earth for proper medical atten-
tion (Reetz, 1965). A clear balance was established between radiation risk and
other mission risks for this exploratory high-risk mission.

In December 1964, the FAA requested that NASA resolve the issue of radia-
tion exposure for the commercial supersonic transport as had been so elegantly
discussed by Foelsche at the second Gatlinburg conference. A detailed measure-
ments program began the following year by combining efforts at Langley with the
work of the Korff group at New York University (NYU). The flight experiment
package included tissue-equivalent ion chambers, a fast neutron spectrometer (1-
10 MeV), and nuclear emulsion. Over the next several years, there were hundreds
of high-altitude balloon and airplane flights, a world latitude survey on a Boe-
ing 707 airplane, and high-altitude studies, especially for solar flare events, in U2
and RB-57F flights. (See fig. 1.7.) The main limitation of the Langley experimen-
tal effort was the lack of neutron spectrum measurements outside the fast region.
The year after the Langley measurements program began, the International Com-
mission for Radiological Protection (ICRP) Task Group (1966) for SST exposure
published their conclusion that the biological exposure from atmospheric neutrons
was nearly negligible.

The Langley effort was to extend the measured neutron spectrum to both
lower and especially to higher energies by using the Monte Carlo work at the
Oak Ridge National Laboratory (ORNL), namely, the HETC. The importance of

*Number of flights

Figure 1.7. High-altitude radiation measurements from 1965 to 1971.
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the development of the Bertini (1967) nuclear reaction code and the associated
shielding code (HETC) cannot be overemphasized. An outstanding feature of the
code is the inclusion of the intranuclear cascade code (Bertini, 1967) as part of
the internuclear cascade calculation (HETC) reducing the reliance on external
nuclear data bases. At the same time, this feature made the complete code
computationally inefficient in the midst of demands and requests for results for
various disciplines. The Langley atmospheric program found itself standing in
line with accelerator, biomedical, dosimetry, and space programs waiting to be
serviced by the HETC code. The decision was made at Langley to develop an
in-house capability.

Code development was undertaken by physicists within the computational
division at Langley with great vigor; for after all, when the supply of nuclear
data is exhausted, a real opportunity to develop nuclear theory exists. The code
(PROPER-C) chosen for Langley development was written by Leimdorfer and
Crawford (1968) for applications at energies below pion-production threshold.
This code was extended to high energies (PROPER-3C) by incorporating the
recently published Bertini (1967) data (Wilson, 1972b) and making a high-
energy extrapolation (Lambiotte, Wilson, and Filippas, 1971). There were critical
meetings concerning the SST in early 1969, and results from the Langley code
were the only available results to fill the gap (Foelsche et al., 1969; Foelsche
and Wilson, 1969; Wilson, Lambiotte, and Foelsche, 1969). The Langley code
was extremely fast because the intranuclear nucleon cascade was represented
by a numerical data set and yet required over $80,000 of computer time (1968
dollars) to make the extension of the fast neutron spectrum to high energies.
The results predicted the transition curve (fig. 1.8) measured for fast neutrons
(Foelsche et al., 1969; Foelsche and Wilson, 1969), the importance of high-energy
neutrons (Foelsche and Wilson, 1969; Wilson, 1969) in contributing to biological
dose (fig. 1.9), and an interesting structure in the atmospheric neutron spectrum
(Wilson, Lambiotte, and Foelsche, 1969). These results were confirmed by later
calculations at NYU (Korff et al., 1979) and ORNL (Foelsche et al., 1974). A
summary of the atmospheric radiation program is given by Foelsche et al. (1974)
and Korff et al. (1979). From these studies, the background radiation levels
were still uncertain, since the transition curves of the other heavier primary ions
were not known, and these heavier ions may make important contributions to
the dose equivalent for some solar flare events. Therefore, preliminary studies
for heavy ion reactions were begun (Foelsche et al., 1974; Skoski, Merker, and
Shen, 1973) at the Princeton Particle Accelerator (PPA). As further justification
for heavy ion experiments, a simple model of visual impairment by heavy ion
exposure revealed required shield uncertainties for a 3-year Mars mission of 4.5 to
29 g/cm? of aluminum (fig. 1.10) and further emphasized the value of a vigorous
heavy ion physics and radiobiology program (memorandum to the Langley director
concerning continuation and modification of the Princeton Particle Accelerator by
NASA in 1970). Experiments began at a meager level and were later moved to
the Lawrence Berkeley Laboratory (Schimmerling, Kast, and Ortendahl, 1979),
where they continue to this day at a very modest funding level (Schimmerling,
Curtis, and Vosburgh, 1977; Schimmerling et al., 1987 and 1989).

Two accomplishments resulted from the PROPER-3C code (Lambiotte, Wil-
son, and Filippas, 1971): The available nuclear data were exhausted, laying the
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groundwork for a theoretical nuclear program, and an appreciation of the tedious
details of the Monte Carlo method, not to mention the intense computer require-
ments. Consequently, the first fruits of a nuclear theory program produced new
skills in multiple scattering theory (Wilson, 1972a, 1973, and 1974b), a fundamen-
tal theory of heavy ion reactions (Wilson, 1974a), and the first Langley-developed
data base for heavy ion cross sections (Wilson and Costner, 1975). These theories
provided the framework for nuclear model development for the next 15 years and
continue to provide the core of the Langley nuclear program. The greater appre-
ciation of the limitations of the Monte Carlo methods in radiation shielding led to
the development of a series of deterministic codes beginning with nucleon trans-
port (Wilson and Lamkin, 1975; Lamkin, 1974; Wilson and Khandelwal, 1976b)
and moving onward toward the development of heavy ion transport theory (Wil-
son, 1977a, 1977b, and 1978). The deterministic approach at Langley was seen
as the necessary means of obtaining codes useful for an engineering design envi-
ronment. A more detailed overview of the Langley program was given by Wilson
(1978) at the workshop on the satellite power system, held at Lawrence Berkeley
Laboratory (Schimmerling and Curtis, 1978).

The third Gatlinburg conference was held in Las Vegas in March 1971 (War-
man, 1972). Reported at this conference were the light flashes in the Apollo
missions that Tobias (1952) had predicted 20 years earlier. A great deal of the
symposium was concerned with space nuclear power. Two important papers by
Wilkinson and Curtis (1972) and Curtis and Wilkinson (1972) showed that there
were major uncertainties in shield requirements caused by current uncertainty in
heavy ion fragmentation parameters. The importance of galactic cosmic-ray expo-
sure was a concern for long-duration missions in view of unknown but potentially
large biological effects. The emphasis in the conference was still the proton shield-
ing aspects of the Apollo mission and the successful conclusion of the Man on the
Moon Program. Although this conference provided important documentation of
the previous decade of work, it also marked the rapid decline in radiation research
funding within NASA. In spitc of the total lack of funding from 1973 to 1980,
Langley maintained its files on radiation interaction and managed to perform ra-
diation related tasks on a time-available basis. Fundamental work on dosimetry
(Khandelwal, Costner, and Wilson, 1974; Khandelwal and Wilson, 1974; Wilson,
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1975b), new methods in radiation transport (Wilson and Khandelwal, 1976a and
1976b; Wilson, 1975a; Wilson and Denn, 1977b and 1977c), and analysis of space-
radiation-protection issues (Wilson and Denn, 1976 and 1977a; Wilson, 1981) were
completed.

It was natural in these intermediate years to work in closely related disciplines.
The first such area was nuclear-induced plasmas and nuclear pumped lasers
(Wilson and De Young, 1978a and 1978b; Harries and Wilson, 1979; De Young and
Wilson, 1979; Wilson, De Young, and Harries, 1979; Wilson and Shapiro, 1980;
Wilson, 1980). The nuclear flash-lamp-pumped laser work (Wilson, 1980) was a
natural lead into direct solar-pumped laser systems (Wilson and Lee, 1980; Harries
and Wilson, 1981; Wilson, Raju, and Shiu, 1983; Wilson et al., 1984). With
new skills in nuclear-induced plasma chemistry, nuclear interactions in materials
became a natural work area more closely akin to space radiations. A small
amount of funds was available allowing work on structural materials (Wilson and
Kamaratos, 1981; Wilson and Xu, 1982; Wilson et al., 1982; Kamaratos et al.,
1982; Xu, Khandelwal, and Wilson, 1984a and 1984b; Rustgi et al., 1988) and
electronic materials (Wilson, Stith, and Stock, 1983; Wilson and Stock, 1984).
The space-radiation-protection research was restored under a proposal to the
Life Sciences Division entitled “Space Radiation Protection Methods,” submitted
July 31, 1979, by John Wilson. The proposal contained a local theoretical
effort at Langley and experiments at the Lawrence Berkeley Laboratory as an
augmentation of experiments funded by the National Cancer Institute conducted
by Walter Schimmerling.

The present report gives an account of the methods and underlying data bases
currently in use at the Langley Research Center. It is the goal of the Langley
program to go beyond progress in fundamental methods to provide analysis tools
that can be easily used by the nonexpert in engineering and experimental design
applications. Such tools are not only to be convenient to use but are also to have
been validated by laboratory experiments so that their domain of applicability is
clearly delineated. Although such a goal was barely conceivable 20 years ago when
we embarked on this course, this report demonstrates great progress toward this
goal. We look forward to its successful completion in the coming decades.

1.3. Overview of Space-Radiation Interactions

An overview of the space environment and its interaction with materials was
given by Wilson (1978). A number of details could be added but very little change
in the basic protection requirements would result, and considerable uncertainty in
radiation-protection practice remains even today. Here, we present a pedestrian
view of space-radiation interaction and refer to the earlier review (Wilson, 1978)
for somewhat expanded detail. The present document contains the interaction
description in greater detail and our aim in this section is to give an overview to
the processes described herein.

The energetic particles in space consist mainly of atomic constituents covering

a very broad energy spectrum and flux values as shown in figure 1.11 (Wilson,
1978). The particles themselves are small (= 1013 ¢m) but are electrically charged
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Figure 1.11. Space-radiation environment.

resulting in a long-range force component. A casual look at condensed matter
reveals mostly the structure of the electron clouds which contain only 0.05 percent
of the mass but occupy virtually all the space within the material. Embedded
within these electron clouds are the atomic nuclei whose dimensions are 1079
times smaller than the complete atom but contain 99.95 percent of the mass of
the atom. Clearly, an energetic particle passing through such a material will
mainly interact with the electrons in the cloud and seldom strike a nucleus.

We now discuss some of the physical parameters related to shielding calcula-
tions using elementary concepts. The dominant term in a shielding calculation is
energy loss through ionization, that is, a collision between the incoming charged
particle (whether it is a proton, electron, or heavy ion) and the orbital electrons of
the shielding material (fig. 1.12). They interact through coulomb scattering, and
the energy transferred from an ion of energy E and charge Zp to a target particle
of charge Zr is labeled Q. The cross section ¢ has an inverse Q2 dependence, and
therefore the energy transfer is usually quite small. In the figure, u is reduced
mass for the projectile target system of masses M p and M.

When the target is an electron bound in an atomic orbital, there are two
options of either producing excitation when specific energy transfers (g; — £j,
where ¢; and ¢; denote atomic energy levels) are made or ionization where the
energy transferred must be greater than the ionization potential (fig. 1.13). The
cross section is related to this energy transfer and goes like the inverse of Q2.
Another process that is extremely important, especially for incident electrons, is
coulomb interaction with the atomic nucleus which results in multiple-scattering
effects. These multiple-scattering effects are important for electron shielding or
for laboratory ion experiments.

The cross sections for secondary electrons produced from impacts of ions
with atoms as described in figures 1.12 and 1.13 are shown in figure 1.14. This
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Figure 1.13. Schematic of coulomb interactions with atomic electrons and atomic nucleus.

figure shows curve fits to the experimental data (Manson et al., 1975) at 1 and
5-MeV proton impacts, and the inverse Q? dependence above about 20 eV for the
secondary electron energy is again evident. The corrections below 20 eV are due
to binding effects which can only be treated quantum mechanically. The electron
is actually bound in an atom, and these binding effects become important when
the energy transfer is on the order of the binding energy. These types of data are
important in giving the lateral spread of the energy from the track as the particle
passes through a material.
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There are a number of other degrees of freedom that one contends with when
looking at molecular systems. Shown in figure 1.15 is a collection of data for N,
molecules, which we chose as a typical molecule mainly because we could find the
most data for it. Vibrational excitation is important for electron energies below
about 10 eV. Once the electronic excitation or ionization threshold is exceeded,
everything becomes heavily dominated by those two processes alone. In about
one half the cases, ionization results in dissociation; and according to the data we
have been able to collect, most molecules undergoing electronic excitation result in
dissociation. There are, however, considerable differences in the dissociation cross
section for the two processes as seen in figure 1.15. Those differences are probably
due to the small number of molecular states observed in the experiments. The
dissociative excitation cross section will probably change as future experiments
are performed, and total dissociative cross section will probably show the same
energy dependence as the ionization cross section at high energy. The data are
taken from Schulz (1976), Cartwright et al. (1977), Kollmann (1975), and Wight,
Van der Wiel, and Brion (1976). The problem of molecular binding effects is
difficult to treat using quantum theory but local plasma models have shown some
success in treating both the molecular binding problem (Wilson and Kamaratos,
1981; Kamaratos, 1982; Xu, Khandelwal, and Wilson, 1984a and 1984b) and
condensed phase effects (Wilson et al., 1984; Xu, Khandelwal, and Wilson, 1985).

Although most collisions in the material are with orbital electrons, the rare
nuclear collisions are of importance because of the large energy transferred in the
collision and the generation of new energetic particles. This process of transfer-
ring kinetic energy into new secondary radiations occurs through several different
processes, such as direct knockout of nuclear constituents, resonant excitation fol-
lowed by particle emission, pair production, and possible coherent effects within
the nucleus. Through these processes, a single-particle incident on the shield
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Figure 1.16. Cascade development in matter.

may attenuate through energy transfer to electrons of the media or generate
a multitude of secondaries causing an increase in exposure (transition effect).
The process that dominates depends on energy, particle type, and material
composition. This development of cascading particles is depicted in figure 1.16 as
a relative comparison between high-energy proton and a-particle cascades in the
Earth’s atmosphere. Note the similarities displayed in figure 1.16 for individual
reaction events and the nuclear-star events shown in figure 1.2 for nuclear emulsion.

The relevant transport equations are derived on the basis of conservation
principles. Consider a region of space filled by matter described by appropriate
atomic and nuclear cross sections. In figure 1.17, we show a small portion of the
region enclosed by a sphere of radius §. The number of particles of type j leaving
a surface element 62 d€} is given as ¢j(f+6ﬁ, 1, E)62 d$}, where #;(%, 3, E) is the
particle flux density, ¥ is a vector to the center of the sphere, @ is normal to the
surface element, and E is the particle energy. The projection of the surface element
through the sphere center to the opposite side of the sphere defines a flux tube
through which pass a number of particles of type j given as ¢;(Z — 50,4, E)s? dql,
which would equal the number leaving the opposite face if the tube defined by
the projection were a vacuum. The two numbers of particles, in fact, differ by the
gains and the losses created by atomic and nuclear collisions as follows:

¢;(Z + 60, 0, B)82 dS2
= ¢;(Z — 60,4, E)8? dO

— 6 i = —
+ 62 d§ f .’ / o0, E, Ny (2 +1Q,Q, E') dYdE
)
k
— 6 - =
_ 82 dQ/ dl o;(E) ¢;(% + 153,63, E) (1.1)
-6
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where ¢;(E) and ajk(ﬁ, (Y E, E') are the media macroscopic cross sections. The
cross section ojk(ﬁ,ﬁ' , E, E') represents all those processes by which type k

particles moving in direction ¥ with energy E’ produce a type j particle in
direction €} with energy E. Note, there may be several reactions which may
accomplish this result and the appropriate cross sections of equation (1.1) are the
inclusive ones. Note that the second term on the right-hand side of equation (1.1)

is the source of secondary particles integrated over the total volume 263 d€} and the
third term is the loss through nuclear reaction integrated over the same volume.
We expand the terms of each side and retain terms to order 6% explicitly as

62 dfd [qu(i;‘, G, E) + 80 - v, (, ﬁ,E)]
= 624} [qu (Z,G9,E) — 60 - v¢;(z,4, E)
+26%° / ok(, 5, E, By (7,6, E') &S dE'
k

~260;(E) ¢;(Z,4, E)] + 0% (1.2)

which may be divided by the cylindrical volume 26(62 df}) and written as
0 ve;(# 9, E) = Z/ajk(ﬁ,ﬁ’,E,E’) or (2, E') dVdE'
k

for which the last term O(6) approaches zero in the limit as § — 0. Equation (1.3)
is recognized as a time independent form of the Boltzmann equation for a tenuous
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gas. Atomic collisions (i.e., collisions with atomic electrons) preserve the identity
of the particle and two terms of the right-hand side of equation (1.3) contribute.
The differential cross sections have the approximate form for atomic processes

0% (3,0, E,E) = S 0% (E) 50 — 1) 8 6(E+en— E') (1.4)
n

where n labels the electronic excitation levels and &, are the corresponding
excitation energies which are small (1-100 eV in most cases) compared with the
particle energy E. The atomic terms may then be written as

> / 0% (8, E, E) ¢k(Z, &' E') diY dE' — 0% (E) ¢;(%, 8, E)
k
3" 0%(E) ¢;(2,5, B +en) - 0 (E) ¢5(3, L. B)
n

<Y om) [4@RE) + oo g5 HE) 6,29,5)

- o%(E) ¢;(%,Q, E)

_ 5‘% [53(B)4;(2, 8. B) ] (1.5)

since the stopping power is

$;(E) = Y ojn(Een (16)

and the total atomic cross section is

o¥(E) = > oh(E) (1.7)

Equations (1.5) to (1.7) allow us to rewrite equation (1.3) in the usual continuous
slowing down approximation as

§. 03 0,5) — 2 [S(B) ;@ 0. B)] +05(E) 6,20 B)

_ / Y o0, B, ') 64(3, 0, E) dSY ¢ (1.8)
k

where the cross sections of equation (1.8) now contain only the nuclear
contributions. '
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Chapter 1

The rest of this report concerns finding values for the atomic and nuclear cross
sections, evaluating solutions to equation (1.8) for various boundary conditions,
and making application to various radiation-protection issues.

The response of materials to jonizing radiation is related to the amount of
local energy deposited and the manner in which that energy is deposited. The
energy given up to nuclear emulsion (McDonald, 1965) is shown for several ions
in figure 1.18. The figure registers developable crystals caused by the passage
of the particle directly by iomization or indirectly by the ionization of secondary
electrons (6-rays). These 6-rays appear as hairs emanating from the particle track.
Note that the scale of the §-ray track is on the order of biological cell dimensions
(2-10 pm). Many of the modern large integrated circuits are even of the 0.5-um

scale. For this scale, track structure effects become important as interruptive
events as a particle passes through active elements of such circuits.

From the radiation-protettion perspective, the issues of shielding are somewhat
clearly drawn. Given the complex external environment, the shield properties alter
the internal environment within the spacecraft structure as shown in figure 1.19.
The internal environment interacts with onboard personnel or equipment. If suf-
ficient knowledge is known about specific devices and biological responses, then
the shield properties can be altered to minimize adverse effects. Since the shield is
intimately connected to the overall engineering systems and often impacts launch
cost, the minimization of radiation risk is not independent of other risk factors
and mission costs. Even mission objectives are at times impacted by radiation-
protection requirements (e.g., Viking solar cell design to ensure sufficient solar

Internal
environment

External
environment

NN

i

\—— Spacecraft

shield

NN\

Figure 1.19. Schematic of spacquadiation-protection problem.
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power in the event of decreased performance caused by a large solar flare during
the mission affected the weight allowed the experiments package). Clearly, the
uncertainty in shield specification is an important factor when such critical issues
are being addressed. There is uncertainty in subsystem response which can be
easily (more or less) obtained for electronic or structural devices. The uncertainty
in response of biological systems is complicated by the long delay times (up
to 30 years) before system response occurs and the unusually small signal-to-
noise ratio in biological response. Clearly, a difficult task remains before risk
assignments can be made for long-duration deep space missions.
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Chapter 2

Coulomb Interactions in Atoms and Molecules
2.1. Introduction
In deriving the Boltzmann equation in chapter 1, we included atomic/molecular

and nuclear collision processes. The total cross section o;(E) with the medium
for each particle type of energy £ may be expanded as

0;(E) = o3 (E) + 05 (E) + 05 (E) (2.1)

where the first term refers to collision with atomic electrons, the second term is
for elastic nuclear scattering, and the third term describes nuclear reactions. The
microscopic cross sections are ordered as follows:

o%(E) ~ 1071° cm? (2.2)
oSl (E) ~ 10719 cm? (2.3)
of(E) ~ 107 cm? (2.4)

to allow flexibility in expanding solutions to the Boltzmann equation as a sequence
of perturbative approximations, for example, the continuous slowing down approx-
imation is one such approach. It is clear that many atomic collisions (~ 108) occur
in a cm of ordinary matter, whereas ~ 103 nuclear elastic collisions occur per cm.
In distinction, nuclear reactions are separated by many cm. We shall further elab-
orate this point of view and indicate important atomic and molecular quantities
required for transport theory development. In particular, we will examine a more
general formulation than that presented in equation (1.5).

The Boltzmann equation, ignoring terms associated with equations (2.3) and
(2.4), can be written with the aid of equation (1.4) as

3.6, E) =Y ot (E+en) ¢; (8LE+ en) — 03(B) ¢(Z,%,E) (25)

where €, is the atomic/molecular excitation energy. Equation (2.5) is equivalent to

one-dimensional transport along the ray directed by 1. For simplicity of notation
we use a one-dimensional equation as

%@(;«, E)= zﬂ:oﬁt(E +en) ¢j(z, E+€n) — 0% (E) ¢;(2,E) (2.6)

where we drop the superscript at and subscript j in the rest of this section. The
boundary condition is taken as

#(0, E) = 6(E—Ep) (2.7)
The solution can be written with perturbation theory as
(2, E) = exp (~02)8(E~Eo) (28)
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¢(1)(z, E) = ozexp(—0z) Zgn O(E+en—Eyp) (2.9)
2
¢(2) (z,E) = % exp (—oz) nggn S(E+en+em— Ep) (2.10)

and similarly for higher order terms, where 6() is the Dirac delta function, and
Eg > € has been assumed so that ¢ and gn = on/o are evaluated at Ey. The
average energy after penetration to a distance z is given by

(E) =Ey—toz (2.11)
where the average excitation energy is

n

and the sum over n contains both discrete and continuous terms. The standard
deviation about the average energy is similarly found to be

5= <(E - (E>)2> =25z (2.13)

where

=3 g (2.14)
n

Similar results can be derived for the higher moments of the energy distribution,
which depend on atomic quantities through the g, terms. Considering the
nonlinear dependence of the transported spectrum on the atomic cross sections
On, it is somewhat surprising that the transported spectral parameters depend
linearly on g,,. Equations (2.11) and (2.13) apply when Zoz < Ej so that the
energy variations in the cross sections can be ignored. The expressions are easily
generalized to deep penetrations as

E(z) = By - /O “S[E()] dy (2.15)
and _
E2(z) = E%(0) + /0 ‘S;[[EE(%)]] dy (2.16)

where the stopping power is given by

S(E) =Y _on(E) en (2.17)

and the straggling is related to
SUE) =) on(E) e (2.18)
n
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The degrading particle energy E(y) is found through the usual range-energy
relations

E 4F'

S(E"
It is clear that R(E) is the average stopping path length for the ions. The
corresponding spectrum is taken as

R(E) = | (2.19)

_ _ T2
¢(z,E) = ﬁ exp [(—Eﬁﬂ} (2.20)

where the standard deviation s is given by equation (2.13). The usual continuous
slowing down approximation is found in the limit as s — 0. The evaluation
requires knowledge of the appropriate atomic cross sections oy.

The atomic collisions occur quite frequently in ordinary matter (106—107 per
cm). Less frequent are the elastic nuclear collisions, the largest contribution of
which is coulomb scattering. The elastic cross section for scattering from the
nucleus is represented as o4(#) with expansion in terms of Legendre polynomials
P,(x) as

0s(8) =Y _ an Po(cosb) (2.21)
where the coefficients are given as
1
ay = 2”2'* 1 / o5(8) Pa(cos6) dcos8 (2.22)
-1

and the corresponding equation for transport through a slab

cos @ —(,—;22- ¢(z,0) + op(z,8) = /03(7) &(2,0") dcos@dy’

= 27rz an Pn(cosé) / Py(cost’) ¢(z,8) dcos (2.23)

where
cosy = cosfcos§ + sinfsiné cos(p — ¢') (2.24)

and we have used the addition theorem

Pp(cosv) = Pp(cos8) Py(cosé’) +2 Z P! (cos ) P,lL(cos 8 )cosl(p — ¢') (2.25)
l

The differential operator can be inverted in equation (2.23) to obtain

#(2,6) = exp ( =22 ) 6(0,6)

+ 227( /OZ exp [:%;%T)] an Pn(cosa)/Pn(cosﬁ') o(1,8) deos§ dr (2.26)
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The scattering is strongly peaked in the forward direction and the integral kernel
varies slowly for forward propagation along off-axis rays (Breitenberger, 1959).
The attenuation kernel exp[—o(z — 7)/ cos 8] is shown in figure 2.1. We simplify
the propagation equation as

#(z,0) = exp(—0z) ¢(0,0)
+ ZWZ/Z exp[—0(z — 7)|an Pn(cos8) Py(cos@) ¢(r,8') dcosddr (2.27)
. Jo

The approximate multiple-scattering equation may be solved by expanding the

flux as
o(z,8) = ZAn(z) Py (cos8) (2.28)
where 9 ]
An(z) = T / $(2,0) Pr(cos8) dcosf (2.29)

The coeflicients then satisfy

z
Ap(2) = exp(—02)An(0) + 4—7ran/ exp[—o(z — 7)]An(7) d7 (2.30)
2n+1 )
Let the boundary condition be
1
#(0,0) = 7 6(cosf — 1) (2.31)

where 6( ) is the Dirac delta function. Then A,(0) = (2n + 1)/47. The iterated
solution of equation (2.30) may be written as

2n+1 4
An(2) = T oxp [— (o’ oy lan) z] (2.32)
1

T
§

°
' .
]

a.
8
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Figure 2.1. Transport kernel as a function of angle of propagation.

In the absence of absorptive processes, the forward isotropic term (n = 0) shows
no spatial dependence. In distinction, the higher order (n > 0) terms display
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spatial attenuation at greater depths of penetration. The angular distribution is
now characterized in terms of the mean cosine of the zenith angle as

{cosf) = /cos 0¢(z,8) dQ

= 2A1(2)

= exp [— (a - 4§7ra1) z} (2.33)

and is related to the average angular deflection as

(6%) = 2[1 — (cos 6)]

21 o[- (o= drm) ) 230

Initially the root-mean-square angle is zero as expected for the unidirectional
boundary condition (eq. (2.31)) and increases to a value approaching 90° at very
large depths. In cases of interest to us, we find that the asymptotic value is never
reached since energy loss due to atomic collision or nuclear reaction processes
limits the beam propagation before this occurs (e.g., see Janni, 1982a and 1982b).

2.2. Extremely Rarefied Gas Interactions

In passing through matter, an jon loses a large fraction of its energy to
atomic/molecular excitation of the material. Although a satisfactory theory
of high-energy interaction exists in the form of Bethe’s theory (Bethe, 1950)
using the Born approximation or more exact calculations using transitions from
specific atomic shells (Merzbacher and Lewis, 1958; Khandelwal, 1968), an equally
satisfactory theory for low-energy collisions is not available. In the rest of this
chapter, we give a brief overview of the theory of stopping power and the formalism
used in our transport calculations. Future directions of research to allow more
accurate evaluation of these transport parameters are discussed.

In an extremely rarefied gas, we may assume that the passing ion interacts
singly with the media molecules. This is an extreme simplification but is an
idealization which still leaves many challenges to theoretical treatment. Even so,
our aim is to treat the noble gases in fair detail, but even the interaction for
the extremely rarefied noble gases cannot as yet be fully calculated with great
confidence.

The gas atom can, for practical purposes, be taken as in the ground state before
interacting with the passing particle. At the lowest energies, the gas molecule
or atom interacts through adiabatic processes for which the Born-Oppenheimer
approximation is appropriate. The electronic portion of the total Hamiltonian
appears as part of the potential through which the massive nuclei move. The
exchange of electrons between the moving particle and target molecule or atom
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can change the charge state of the projectile as it passes through the media. The
exchange of electrons leads to potential curve crossing which is usually treated
in the Landau-Zener model (Landau and Lifshitz, 1958; Zener, 1932) or by a
molecular orbital approximation (Suzuki, Nakamura, and Ishiguro, 1984; Xu,
Khandelwal, and Wilson, 1989). In the media, the projectile state is not well-
defined and changes randomly in charge state and excitation level. The charge
state is usually described by some equilibrium distribution with some mean charge
that depends on both the kinetic energy of the projectile and the character of
the media. These charge changing cross sections are quite large, and equilibrium
values are achieved over relatively short distances (less than 1 mg/cm? of material).

2.2.1. Stopping at low energies. At the lowest energies, the projectile is
hardly able to penetrate the atomic orbitals of the media, and the media atoms or
molecules recoil in tack. The stopping cross section has been calculated by Firsov
with the Thomas-Fermi model (Martynenko, 1970) to be

Su(E) = (2agc> I (1 N ‘f’\g) (2.35)
where

72 ZpZrC20.8853a, (Mp)l/ : (2.36)

=87 12 1a2B \ .
(2 + 2) '
2/3
C= 8°2par (25" + 27/°) " (Mp/M7)"" 2.37
= 70.8853a0 230
4MpMy
\— _AMpMr 2.38
(Mp + Mrp)? ( )

where Zp and Z7 are projectile and target atomic numbers and Mp and Mt are
their atomic weights, a, is the Bohr radius, e is the electron charge, and N is the
number of target atoms per unit volume.

At somewhat higher kinetic energy, the outer electron cloud is penetrated and
the nuclear electric repulsion becomes more effective giving rise to Rutherford
scattering described by

CI
Sp(E) =~ 5 InE (2.39)

where C’ is a constant and the raising of electrons to higher orbitals is possible.

2.2.2. Bethe stopping theory. At sufficiently high energies, the Born
approximation is applicable, which may be used for both molecules and atoms.
In practice, the molecular electronic wave functions are not known, and such
calculations are limited to interaction with atoms (noble gases in practice).
The differential cross section for the nonrelativistic case in lowest order (Born)
approximation is given by the formula

dow _ 2nZpe’ | |Fu(@)”

0= e T (2.40)
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and the mean energy loss (see eq. (2.17))

dE 2mZ%e*NZr 2my? 2dQ
—_—— = 5 E,—E F. (D —= 2.41
. . ;( n = Eo) /EE,;;?Z;I @Gy (@4

In equations (2.40) and (2.41), § is the momentum transferred to the electron,
and Q = ¢%/2m, the energy absorbed by a free electron of mass m at rest (Xu,
Khandelwal, and Wilson, 1986), Z7 is the target atomic number, and N is the
number of target atoms per unit volume. The quantity (En — Eo) is the excitation
energy, and the form factor F(q) is defined as

(%)
exp
h

in which 7; denotes the position of the jth atomic electron relative to the nucleus,
and ¥,, and ¥, are the final- and the initial-state wave functions of the target.

Zr

=) (2

\Po> (2.42)

The Bethe method (Fano, 1963; Bethe, 1933; Livingston and Bethe, 1937;
Bethe and Ashkin, 1953) depends on rewriting equation (2.41) by dividing the
integration over @ into two parts: low Q and high @ in which the intermediate
value is Qo. Thus consider the following term of equation (2.41):

Qma.x
S Eam B [ B G

n

Qo d
=3 (Bu- o) [ g IFoOF G

" R@)P %‘i— (2.43)

[

+;(En—Eo)/;m

Consider the first term in equation (2.43). Expanding |Fr(q)|? for low ¢ in
equation (2.42) and retaining only the first nonvanishing term give:

Notice that the other higher order terms are neglected in this approximation.
Thus, the first term in equation (2.43) becomes

2
(2.44)

2
IFa(@)2 = 5
n h2

2%
J

Qo 9 d@ Qo2mv?
En, - E, F(> =% =In (———) 2.45
zn:( ) (E;;“Ejolz l (q) Q2 I% ( )
where
Inlp =Y faln(En — Eo) (2.46)
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and
2

Jn= %(En — Ey) (2.47)

Z (nlz;0)

In equations (2.46) and (2.47), It is known as mean excitation energy of the
medium and f, is the optical oscillator strength.

The second term in equation (2.43) can be written as

2my? d
S~ ) [ R@F 5 ~n Qg (2.48)
where the Bethe sum rule
Z(En - Eo)IFn(q‘)lz =Q (2-49)

n

has been used. Equation (2.41) with equations (2.43), (2.45), and (2.48) becomes

dE _ 4nZ%e*NZp  2ma?
dz mu? o Ir (2:50)

which is the celebrated Bethe stopping power equation.

The derivation of equation (2.50) from equation (2.41) depends on the sum
rule (eq. (2.49)), the upper limit 2mv? in equation (2.41), and the intermediate
value Q,. The main thrust of these assumptions is to treat all the electrons as
essentially free electrons. This assumption fails for innershell electrons which are
tightly bound to the atom. To incorporate the correct treatment of these innershell
electrons, one introduces a “shell correction” term € in equation (2.50). Basically,
the treatment of the correction involves the exact evaluation of the form factor
|Fn|? of equation (2.42). The equation for energy loss per unit path length then
reads as

7 (2.51)

dE 47TZI%e4NZT 2mv? C
- = In
dz mu?

The evaluation of mean excitation energy It from equations (2.46) and (2.47) has
been studied intently for the last several decades. Extensive calculations for many
atoms using the Hartree-Slater potential model have been performed recently by
many authors (Dehmer, Inokuti, and Saxon, 1975; Inokuti, Baer, and Dehmer,
1978; Inokuti and Turner, 1978; Inckuti et al., 1981). These are later compared
with the values obtained with the local plasma model.

Similarly, shell corrections have been studied by various authors (Bethe, 1933;
Livingston and Bethe, 1937; Bethe, Brown, and Walske, 1950; Brown, 1950;
Walske, 1952 and 1956; Khandelwal, 1968 and 1982; Janni, 1966; Merzbacher
and Lewis, 1958; Bichsel, 1966') for the last 60 years. Basically, one employs

! Research on the L-shell correction in stopping power done by Hans Bichsel at the Nuclear Physics
Laboratory, University of Southern California, and supported by the National Cancer Institute and
the U.S. Atomic Energy Commission.
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the screened hydrogenic approximation (only one parameter for screened nuclear
charge Z; for both the initial- and final-state electron is used) and calculations
are made for a particular shell. The total shell correction C, in principle, can be
obtained by summing the contributions shell by shell.

As noted in section 2.1, the fluctuation in energy loss is also related to the
atomic cross sections as (see eq. (2.18))

Z%2eAN Qmax
sp = TBENI S e [TIRGE G 0)

m min

where the limits on Q are those discussed in connection with equation (2.41). By
arguments similar to those leading to equation (2.50), one finds

4rZ%eANZ 2
Zpe N2, 2my (2.53)

Si(E)~ — muv? A

where A is given as

InA =3 fa(En — Eo)In(En — Eo) (2.54)

These quantities are important in calculating the energy spectra of slowing ions
within a medium. (See eq. (2.20).)

As is evident from equation (2.51), the determination of the energy loss per
unit path length depends upon the accurate knowledge of the mean excitation
energy I and the shell corrections C. In practice one invokes some sort of
parameter fitting involving the experimental data on stopping power and the
quantities I and C. Quite often (Bichsel, 1963; Janni, 1966) the theoretical values
are used in conjunction with the experimental values for parameter fitting. It
would thus be desirable to obtain stopping power without the need to have access
to the parameters I and C.

We have initiated such an attempt which is described as follows. The main
thrust of the approach is to calculate exactly the one-electron form factor within
a screened hydrogenic model. As is known for an atom with more than one
electron, the form factor given by equation (2.41) within the one-electron model
can be approximated as

Frin(a) <¢n'(F)! exp(id f)|¢n<f~'>> (2.55)

where 1, and v, are wave functions with a single electron (henceforth, we use
natural units in which A and ¢ are unity). Historically, equation (2.55) has been
justified on the basis of Hartree-Fock approximation. The knowledge of the form
factor of equation (2.55) thus depends on knowing the radial integrals for the
process of excitation as well as ionization when a projectile passes through matter.
We have recently calculated the radial integral for the optically allowed transitions
in He atoms and helium-like ions under the screened hydrogenic model. The model
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describes the atom by single-particle hydrogenic wave functions and treats the
initial state and the final state by two different effective charge parameters Z; and
Zy, respectively. The generalized radial integral (corresponding to the expansion
of eq. (2.55) in a power series in q) is presented in the following section and the
dipole term is discussed.

2.2.3. Optical oscillator strengths within screened hydrogenic model.
The generalized radial integral Rg(n/l’ — ki) of concern is the following:

o0
Rp(n't! — kl) = / (RO, ;)P Rk, 1;7)r? dr (2.56)
0

where R(n',l;r) and R(k,l;r) are the bound and the free-state radial wave
functions, respectively. These wave functions in terms of Z; and Zj are

(_l)n’+l/+12nzfl+1/2
2
[(n’ + 1)!]1/2[(n’ — - 1)!]1/2nln’+1

R U;r) =

(' +U -0 -1 -1-9)

X
:\
o
S
|
B
| S )
A
:u

j=0 7 2 =0

X exp (%)rn,_l—]] (2.57)

_1)i+1 1/2
Rk, l;7) = (-nH+ (2\/5;) : H(32+Z_}) (i)m

[1—exp(-27)[F 0\ K2/ A%

—(1+1) L/
X r 5 fexp (—2tkre) <§ + %)

« (g - %)i%_l_l dé (2.58)

When equations (2.57) and (2.58) are substituted into equation (2.56), one obtains
(Khandelwal et al., 1989)

/2

\/Eexp{—2(Zf/k) tan‘l[k(n'/Zi)]} l:l (k2 3 )1 }
Ry(n'l'—kl) = Fy - 1] | =2 +1 Gi
(l—exp(—ZWZf/k))l/2 [k2(n’)2/Zf+1J(B+ * %

s=1 f

(2.59)
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Chapter 2
where the quantities F; and G are defined by

Z;+1/22n’+l+1 (n/)5+l+2(_1)l+l’—ﬁ

n = 2.60
! Ziﬁ+l+5/2i5+""l+1[(n’ + l’)!]1/2[(n’ _ = 1)!]1/2 ( )
n-1'-1 o 1d
Gi= Y, {(i/2)j(k/Zf)j‘”’_1’ﬁ+l [1 + ’i(Z’;_)z] Q;Tl)_!
3=0 i :
j-1 P J\ P—m 7\ m—-1
XH(n’+l'_i)(n’—l’_l—i)}Z{(i+Ii}) (z_EZ"_)
i=0 m=1 i [

=k k S kK
XH (—z—lz—’YZ—f) [(p — m)! (m - 1)) 11-1 (Z—IE;_KZ_f)} (2.61)

K=1
with
p=@3+n-1-j+2 (2.62)

The square of the radial matrix element is given by

kexp|(—4Z;/k) tan™!(kn'/Z;)]
[1—exp(—2nZ;/k)][(k?n2/Z}) + 1]2(5+nf+2)

Ry(n'l'—kl) dk = |F1)?

o

2
%2-32 + 1)[6‘1]2 dk (2.63)
f

The radial integral for bound-bound transitions can be obtained by substi-
tuting the bound wave functions into equation (2.56). However, it is easy to
accomplish the same task if one recognizes the fact that a continuous spectrum
of positive eigenvalues adjoins the discrete levels of negative energy (Bethe and
Salpeter, 1957). This implies the calculations of the residue of the bound-free
matrix element at

k=it (2.64)

Furthermore, [1 —exp (—27Z;/ k)] — 1. Such a prescription has been tested by
various authors (Khandelwal et al., 1989). Thus from equation (2.63), one obtains

Z3 R

RE(WI' —nl) dn -
’ n3 {1 - [(w)2/n%) (23/2}

2n [ 1
nZz; — n'Zf 82 .
* (m) {H (1 - 3 || 1Gel" dn (2.65)

s=1

)}2(ﬂ+n’+2)
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where the quantity G stands for the following:

i A B N T 8 B 2 22 (121 (- 11
Ga= Y. {(5) (4)i+ 1(7_1) [1__271;(”2)] (p-1)

j=0 7t

i-1
x [[(n' +0 -y =1 -1 —i)}

i=0

2L +(Z5/2) (0 /r)]P " (1 = (Z4/Z)( )™
XZ{ (p—m)! (m—1)!

m=1
m—1 p—m
I~ I«
><7=1 (—1—;—;)};[1(1—;—;)} (2.66)

withp=g8+n"—1—-j+2.

The discrete dipole oscillator strength f;, and the differential oscillator strength
df /de for ejected energy € are important in various physical applications (Khan-
delwal, Khan, and Wilson, 1989; Khan, Khandelwal, and Wilson, 1988a, 1988b,
and 1990). These can be obtained from equations (2.66) and (2.63) for 1s —np or
k transitions for 8 = 0 as:

2° 4 5 3,5 o (nZ; — Z)n=6
and )
a _ 2 2 ( Zy ) Ry
= (6+2zi %) 7 7)) -k (2.68)
where 9
Ze
2 _ f
- T (2.69)
ZQ
En,=222-7% - n_g (2.70)
and
R(1s ) dk 28k737; (z} +k2) (2Z; — Z;) % exp [—4(zf/k) tan—l(k/z,-)]
8§ — =

(Zi2 + k2)6 [1—exp (2nZs/k)]
(2.71)

Recently, we have applied equations (2.67) and (2.68) to helium atoms and
to helium-like ions (Khandelwal, Khan, and Wilson, 1989; Khan, Khandelwal,
and Wilson, 1988a, 1988b, and 1990). We find that the screened hydrogenic
model reasonably reproduces the existing dipole oscillator-strength values with
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little effort, and nonrelativistic numerical values for bound-bound and for bound-
continuum transitions are available for many target He-like ions. The model has
also been successful in reproducing the known dipole polarizability values and
in predicting the other unknown values. Moments of dipole oscillator-strength
distribution (Khan, Khandelwal, and Wilson, 1990) for the helium sequence have
also recently been calculated under the screened hydrogenic model. This approach
has resulted in values which are in reasonable agreement with the various moment
values of other authors (including the mean excitation energy parameter IT).

In order to obtain the stopping power, one has to include all momentum
transfers in the form factor. Khandelwal and coworkers at Old Dominion
University, Norfolk, Virginia, under sponsorship of the NASA Langley Research
Center, have recently calculated the related radial integral (generalized oscillator
strength) for the 1s to nl transitions. Thus, it would be an easy matter to obtain
stopping power of a helium atom for a projectile such as a proton or a heavy
ijon. This work is currently Underway. This is an ambitious undertaking but is
more satisfying in that the calculations are done directly for each atom from first
principles, thereby avoiding the inherent approximations such as the underlying
Bethe energy loss formula (involving I and C).

2.3. Stopping in Molecular Gases

In an extremely rarefied atomic gas, charge particle interactions can occur
singly with individual gas constituents leading to great simplification in theoretical
treatment. Two physical effects occur as the gas density increases: (1) The
projectile no longer reaches asymptotic states in subsequent reactions and (2) the
interaction is modified by the presence of the surrounding medium. In addition,
for low-energy collisions, the charge state of the projectile is likewise altered by
these same physical effects and new states of the partially charged projectile states
become important since radiative and Auger transition times become on the order
of or greater than the mean free time between collisions. Although Bethe’s theory
for ordinary matter has questionable applicability it has been shown to be useful
in estimating stopping powers provided empirical mean excitation energies are
used. This is further discussed in section 2.6.

2.9.1. Historical perspective. Early in the classical treatment of charged
particle slowing down it was recognized that the free-electron, long-range coulomb
interaction leads to divergencies in the energy-loss rate. These divergencies
indicate that there is a need for a long-range saturation effect. The saturation
in gases was discussed by Bohr (1915) in terms of Ehrenfest’s principle. Bohr
proposed that the saturation in gases is caused by the bonding of the electrons.
To effect energy transfer, the interaction time 7 = b/v (where b is the impact
parameter and v is the ion velocity) must be short compared with the oscillating
period of the bonded electron. Hence, the adiabatic long-range collisions provide
the necessary saturation, and an upper limit is established for the effective impact
parameters. Most of our modern understanding stems from Bethe’s detailed
quantum theory (1930) based on the Born approximation. Stopping power for

39



Transport Methods and Interactions for Space Radiations

gaseous media with this approximation is given by

47rNZI2,ZTe4 2muv? s C
S = " In 1=, —-p° - Z_T (2.72)

where Zp is the projectile charge, N is the number of targets per unit volume, Zp
is the number of electrons per target, m is the electron mass, v is the projectile
velocity, 8 = v/e, ¢ is the velocity of light, C is the velocity-dependent shell-
correction term (Walske and Bethe, 1951), and I is the mean excitation energy
given by solving

Zr nIp=>) fnIn E, (2.73)
n

where f, is the electric dipole oscillator strength of the target and E, is the
corresponding excitation energy. The sum in equation (2.73) includes discrete
and continuum levels. Empirically, it was observed that molecular stopping power
Is reasonably approximated by the sum of the corresponding empirically derived
“atomic” stopping powers (Bragg and Kleeman, 1905). Equations (2.72) and
(2.73) imply

Zr In Iy =) n;Z; In I (2.74)

J

where Z7 and It pertain to the molecule, Zj; and I are the corresponding atomic
values, and n; represents the stoichiometric coefficients. This additivity rule, given
by equation (2.74), is called Bragg’s rule.

Sources of deviations from Bragg’s additivity rule for molecules and the
condensed phase are discussed by Platzman (1952a and 1952b). Aside from shifts
in excitation energies and adjustments in line strengths as a result of molecular
bonding, new terms in the stopping power are caused by the coupling of vibrational
and rotational modes. Additionally, in the condensed phase, some discrete
transitions are moved into the continuum, and collective modes among valence
electrons in adjacent atoms produce new terms to be dealt with in the absorption
spectrum. Platzman proposed that the experimentally observed additivity rule
may not show that molecular stopping power is the sum of atomic processes but
rather it demonstrates that molecular bond shifts for covalent-bonded molecules
are relatively independent of the molecular combination. On the basis of such
arguments, Platzman suggested that ionic-bonded substances should be studied
as a rigid test of the additivity rule because of the radical difference in bonding
type. He further estimated that ionic-bond shifts could change the stopping power
by as much as 50 percent.

Among the early indicators of the violation of the Bragg rule was the calcula-
tion of 15 eV for the mean excitation energy of atomic hydrogen (using eq. (2.72)
with the exactly known oscillator strengths and excitation levels) compared with
a rather firmly established experimental value for molecular hydrogen of about
18 eV. Since accurate values of atomic mean excitation energies have been cal-
culated for numerous elements by Inokuti and coworkers (Dehmer, Inokuti, and
Saxon, 1975; Inokuti, et al., 1981) for the purpose of evaluating chemical bonding
effects in molecules, empirical values have been substantially perturbed by effects
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of the chemical bonds. Although the mean excitation energy for gas molecules
could be evaluated in principle from equation (2.72), the lack of knowledge of the
excitation levels and corresponding oscillator strengths is the main hindrance.

It was suggested by Dalgarno (1960) that the oscillator strength distributions
could be determined empirically from the photoabsorption spectra (aside from
experimental uncertainty). Much of these data are obtained by energy-loss
experiments by electron impact scattering at forward angles. Values of mean
excitation energy for a number of simple molecules have in this way been estimated
and demonstrate the shift in atomic values caused by chemical bonding (Zeiss and
Meath, 1975; Zeiss et al., 1977).

Theoretical calculation of mean excitation energies is hindered by the difficulty
of solving for the complete excitation spectrum of complex quantum systems.
Dalgarno (1963) was able to simplify the calculation by introducing a generalized
function, which is related to the excitation spectrum as follows:

In
— E,+w

Fp(w) = (2.75)

However, this function can be evaluated without explicitly forming the indicated
sum. Thus, Dalgarno was able to reduce equation (2.75) to

wiN

Zr
X, Vit (2.76)
i=1

Fp(w) =

with
Zr
(H-Eo+w)X +) Fitho =0 (2.77)

=1

where 9, is the ground-state wave function, E, is the corresponding energy, w is
an energy eigenvalue, and X is the corresponding eigenvector. Chan and Dalgarno
(1965) calculated I as 42 eV for helium and Kamikawai, Watanabe, and Amemiya
(1969) calculated 18.2 eV for molecular hydrogen by the same method. These
values are in excellent agreement with experiments.

Simultaneous with the development of the microscopic theory of stopping
power was the macroscopic electrodynamic description of energy loss as required
for the description of the long-range part of the interaction in the condensed
phase. This is because the interaction is simultaneous among many constituents.
The slowing down is through the force exerted on the passing particle by the
electric field induced in the medium by the passage (Landau and Lifshitz, 1960).
It is customary to assume that the electric displacement vector is linearly related
to the time-varying electric field as

- - L -
B(t) = B(t) + /O o(r) Bt —7) dr (2.78)
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for which the dielectric constant is
oC
elwy=1 +/ g(7) exp(iwTt) dr (2.79)
0

The short-range collisions are still treated by Bethe theory with the result for total
stopping power (see Ahlen (1980) for details) of

ArNZ% Zret 2
§ = L 2paTe {ml 2my ]—ﬂQ—é} (2.80)

mu? (1- B3Iy 2

where 6 is a density-effect correction applicable at high energies (82 > 1/¢(0)).
Also,
Zp In I i /Oo Im[_l]ln(h)dw (2.81)
nlyr=-——s w — w .
T T'™ or2Ne? 0 e(w)
where Im(Z) denotes the imaginary part of Z and % is Planck’s constant. A result
of dispersion theory is

#w Im[e(w)] = f(w) (2.82)

where f(w) is the dipole oscillator strength per unit cell of the medium, and

Zr In Iy = /0 > % In(hw) dw (2.83)

which reduces to the usual Bethe expression (eq. (2.73)) in a sparse gas for which
e(w) =~ 1.

If the long-range saturation effect is in terms of adiabatic limits for a gas
and in terms of the medium polarization response for condensed dielectrics, the
saturation effect for a free-electron gas is related to the tendency of a neutral
plasma to screen a local charge imbalance at large distances (Kramers, 1947).
The dielectric function of a free-electron gas is derived by Lindhard (1954) and
applied to the stopping power problem for a classical electron gas and for the
interaction-free Sommerfeld electron gas model. For a free-electron gas at rest,
Lindhard arrives at the equation

ArZ2 e4p 2mu?
— P
S = o2 In . (2.84)

where p is the electron density and w, is the classical plasma frequency given by

dre?
wl = —p (2.85)

Strictly speaking, equation (2.84) applies only when the electron gas is at rest, but
it also applies in the limit of high projectile velocity compared with the average
motion of the electrons.
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A discovery which paralleled the Lindhard investigations was made by Bohm
and Pines (Bohm and Pines, 1951 and 1953; Pines and Bohm, 1952), in which
collective long-range interactions in a quantum electron gas were separated from
individual electron motion through a canonical transformation, after which the
normal coordinates of collective oscillation appear. This separation of the Hamil-
tonian into collective and individual electron motions is accomplished because of
the effective screening of the coulomb fields of individual electrons for distances
greater than the screening distance Ac. For collective motion to give a major con-
tribution to the Hamiltonian, the individual electron wavelength must be greater
than .. Bohm and Pines (1953) found the average collective plasma frequency
to be
/ 3 X2

(Wy= |1+ 55 (1 + i;ﬁ)} wp (2.86)

where )\; is the average electron separation and x is the ratio of the average
electron wavelength to the screening distance. Pines (1953) suggests that the
screening parameter X should be chosen to minimize the electron long-range
correlation energy (that is, the electronic coulomb energy), which, for plane-wave
states appropriate to their degenerate electron gas model, is given by

2 Xs 10

B _0.866x%  0.458x° N 0.019x*
lr,COI‘I‘ )\%5 )\S As

(2.87)

Pines (1953) derived the stopping power in this degenerate electron gas and showed
that the usual classical plasma frequency wp is replaced by (w}, which includes
corrections for individual electron motion.

A rather bold suggestion was made by Lindhard and Scharff (1960) that
equation (2.84) could be applied on the atomic scale if the appropriate average over
the atomic electron density was made. They further suggested that the effects of
individual bonding of the electrons in their atomic orbitals could be incorporated
through the added factor v = V2 as

aret ZLN 2
S = _”‘jn_vf— / & p(7) In (277;:;> (2.88)

From equation (2.88), the mean excitation energy is given by

Zp In Ip= f &Br p(7) In(yhwy) (2.89)

Lindhard and Scharff estimated the mean excitation energy for atomic Hg as
768 ¢V compared with ~800 eV from experiment. For He, they got 37 eV
compared with 35 eV from quoted experiments (more modern experiments yield
42 eV). They further approximated molecular hydrogen by taking the effective
charge to be Z = 1.2 and obtained 16 eV.

Following this initial success of treating atoms as localized electron plasmas,
Lindhard and Winther (1964) extended equation (2.88) by using the more general
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velocity-dependent dielectric function derived by Lindhard (1954), and demon-
strated the ability of the Lindhard theory to predict tight bonding corrections of
similar character to those of Walske (1952) in connection with the Bethe theory.

Chu and Powers (1972) made extensive use of the work of Lindhard and Scharff
(1960) to demonstrate Zs oscillations in the mean excitation energy. This work
gave rise to corresponding Zs oscillations in stopping power from which periodic
variations are associated with the atomic shell structure (Chu and Powers, 1972).
The more detailed calculations of Rousseau, Chu, and Powers (1971) utilized the
velocity-dependent Lindhard-Winther theory and Bonderup’s (1967) simplified
form of the Lindhard theory and showed good agreement with 2-MeV a-particle
stopping power data (Chu and Powers, 1969). Throughout these efforts, the
parameter 7 is taken as the square root of 2, as suggested by Lindhard and Scharff
(1960).

Chu, Moruzzi, and Ziegler (1975), using the theory of Lindhard and Winther in
which individual electron corrections to the local collective excitation were treated
empirically by taking v as an adjustable parameter, evaluated the aggregation
effects for condensed noble gases and metals. The condensed-gas calculations de-
termined electron densities according to atomic Hartree-Fock densities, including
overlap from the nearest neighbors in the condensed phase. Metallic wave func-
tions were taken from the muffin-tin model calculations of Moruzzi, Janak, and
Williams (1978). In most cases, the empirically determined 7 was in the range
from 1.2 to 1.3. (See Ziegler, 1980.)

As noted by Dehmer, Inokuti, and Saxon (1975), equation (2.89) may be
rewritten as

Zpy Inlr = /dw [/ d3r §(w — Ywp) p(r)] In(hw) (2.90)
from which can be obtained
flw) = / B 6w — wp) p(r) 2.91)

where §(z) is the Dirac delta function. It is seen from equation (2.91) that,
in the local plasma approximation, the volume of plasma with cutoff frequency
Ywp = w approximates the total oscillator strength of the system at frequency w.
No exact equivalence is implied between the oscillator frequency distribution given
by equation (2.91) and the oscillator frequency distribution of a quantum system.
(This is true because equation (2.91) exhibits a continuous spectrum, although
quantum systems generally exhibit a series of poles associated with the discrete
quantum levels as well as a continuum at higher frequencies.) Some insight may
be gained by comparing dispersion relations for atomic systems with those for
a related plasma. The dispersion relation for a classical plasma is given by the
dielectric constant e(w) as

g~

ew)=1- (2.92)

Eml (3
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where wy, is the usual plasma frequency and equation (2.92) results from the plasma
conductivity (Hubbard, 1955). Indeed, the same pole term in ¢(w)~! appears in
metals as the result of the conduction electrons that give metals their characteristic
optical properties (Hubbard, 1955; Frohlich and Pelzer, 1955). The more general
dispersion relation, derived from equations (2.78) and (2.81), is

Z 2 oo
ew)y=1- éz—mT—e—P/O x2f§v302 dr (2.93)

where P denotes the principal value at the singularity. In atomic systems, the
oscillator strengths are broadly separated in frequencies according to shells; the
outer shells appear at the lowest frequencies, and the innermost shell appears at
the highest frequencies. The lack of oscillator strength at frequencies between
shells results in large gaps in the spectrum. Let w be a frequency in the broad
gap between two successive shells—the first centered at wy and the second at ws.
Then the dispersion relation (eq. (2.93)) becomes

(JJ21
elw)y=~1- Zpiz— (2.94)
where 9
dnZre w1
2 AT d 2.95
Arm T [V f(a) (295)

so that wy 1 is the plasma frequency associated with the electrons of the outermost
shell. Although equations (2.94) and (2.95) provide motivation (Wilson et al.,
1984b) for using the local plasma approximation (eq. (2.91)), there is plenty of
room for a more complete understanding as to why the model works as well as it
does in practical calculations (Wilson and Kamaratos, 1981; Wilson et al., 1984b).

In previous investigations, we considered the use of the local plasma model to
evaluate molecular bonding effects on the mean excitation energy of molecules
of covalent-bonded hydrogen and carbon (Wilson and Kamaratos, 1981) as
well as ionic crystals and gases (Wilson et al., 1982), in which quite sensible
corrections to the usual Bragg’s rule were obtained. The chemical-bond shifts were
unambiguously defined in terms of atomic integrals and molecular parameters. In
the usual implementation of the local plasma model (eq. (2.89)), 7y corrects for a
shift in the local plasma frequency caused by individual electron effects. Lindhard
and Scharff (1960) suggest v = v/2; however, v ~ 1.2 yields atomic mean excitation
energies from the local plasma model in better agreement with the accurate atomic
values calculated by Dehmer, Inokuti, and Saxon (1975). The fact that the larger

value (7 = \/5) gives better agreement with empirical data suggests that this

larger value corrects (in addition to individual electron shifts) for the chemical
shifts as well. Such chemical shifts were estimated separately for covalent and
ionic bonds by Wilson and Kamaratos (1981) and Wilson et al. (1982).

Encouraged by the smallness (<30 percent) of the empirical individual electron
corrections to the collective plasma frequency (Ziegler, 1980; Wilson and Kama-
ratos, 1981; Wilson et al., 1982), a calculation (Wilson and Xu, 1982) in which
individual electron shifts were estimated according to the theory for plane-wave
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states in an extended plasma, as calculated by Pines (1953), yields results that
are in good agreement with Dehmer, Inokuti, and Saxon (1975). Consequently,
the local plasma model is placed on a parameter-free basis (Wilson et al., 1984a
and 1984b) in which chemical shifts are determined from atomic/molecular pa-
rameters alone, and effects of individual electron motion are evaluated in terms of
the Pines correction, the combined effects of which are on the order of the plasma
frequency shift of v ~ /2 suggested by Lindhard and Scharff.

The Pines correction makes a remarkable improvement in the prediction of
the local plasma model, and further adjustments in the theory to account for
the plasma frequency shifts resulting from the atomic shell structure should
bring the model into predictive capability. To further elucidate the relationship
between the local plasma model and the more exact quantum treatment of bonded
systems, related quantities of both theories in the case of one- and two-electron
systems are examined in section 2.3.2. Atomic mean excitation energies and
straggling parameters, based on the local plasma model, are compared with
accurate calculations of Inokuti et al. (Dehmer, Inokuti, and Saxon, 1975; Inokuti,
Baer, and Dehmer, 1978; Inokuti et al., 1981) in section 2.3.3. The use of the
Gordon-Kim electron gas model of molecular bonding (Gordon and Kim, 1972) to
determine the effects of covalent chemical-bond shifts of mean excitation energy
for elements of the first two rows is presented in section 2.3.4. Calculations of
mean excitation energies of ionic-bonded substances are discussed in section 2.3.5,
and the mean excitation energies of metals are discussed in section 2.3.6.

2.3.2. Excitation spectra of one- and two-electron systems. The
hydrogen atomic excitation spectrum in the dipole approximation is well-known

8 -1 2n-5
po} z (1 - 51,) n7%:—+1))-2n—+5 6w —wn) (hw < R)
fulw) = (2.96)
1 £ 98 k exp[(—4/k) tan~! k]
WRe T T R T —ep(—zaR) (W > R)
where n is the principal quantum number, R is the Rydberg constant, w, is given
by

huon = R(1 — %) (2.97)

and
Rk* =hw-R (2.98)

The corresponding spectrum for the local plasma model (eq. (2.91)) is given as

dwwy? In?(w/w) (W < wo)
fplw) = (2.99)
0 (w > wo)
where w, = 55.12 V. The cumulative oscillator strength
w
Flw) = / £ do (2.100)
0
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is shown in figure 2.2 for each of the two models. Similarly, the excitation spectrum
of the helium atom has been evaluated for screened wave functions and is shown
in figure 2.2. The fractional excitations of the two models never differ by more
than ~15 percent above the excitation threshold. As noted by Dehmer, Inokuti,
and Saxon (1975), the main error in the local plasma model is the contribution to
absorption below excitation threshold all the way down to zero. This error is also
evident in the energy moments of the plasma model. The moments of the energy
spectrum for the hydrogen atom are shown in figure 2.3, where

e = [ (%) rw as (2.101)

and m is a continuous parameter. The low-frequency contributions associated
with the local plasma model cause a divergence in equation (2.101) at m = —2
which is not present in the quantum system. Atomic polarizability and the low-
frequency refractive index are affected the most. Other atomic properties, such
as the total inelastic cross section, the mean excitation energy, the straggling
parameter, and the mean electronic kinetic energy, are reasonably presented by
the plasma model. Also shown in figure 2.3 are results, including the Pines (1953)
correction to the plasma frequency, which indicate substantial improvement in
the prediction of atomic properties, although low-energy atomic properties are
still beyond the scope of the model..

Exact
7. e === 4r g — = — Local plasma, y=1
W Local plasma, Tpines
£
Fw) 1| :\i
—— Quantum
/ = = Local plasma
‘Y
& L 1 1 B | O L 1 L
0 12 34 s 2 1 0 1 2
2 m
(Z'eftR)

Figure 2.2. Cumulative oscillator strength Figure 2.3. Moments of oscillator strengths
distribution for atomic hydrogen of hydrogen atom.
and helium.

The plasma model is expected to be more accurate as more electrons are
added to the system. This occurs in two ways, as seen in figure 2.2. First, a
greater contribution comes from the continuum, which is most like the plasma.
Second, the excitation thresholds shift to relatively lower energies and fill in
the low-frequency region, for which the plasma model normally tends to err. A
considerable improvement in the energy moments of helium for the local plasma
approximation is clearly shown in figure 2.4.
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Kamikawai et al., 1969

Chan and Dalgamo, 1965

= = =Local plasma = = =Local plasma
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m
Figure 2.4. Moments of oscillator strengths Figure 2.5. Moments of oscillator
of helium atom according to quantum strengths of hydrogen molecule for
oscillator strengths using screened several models.

wave functions. Zg = 1.7.

The moments of the excitation spectrum of Hy have been evaluated empirically
by using experimental oscillator strengths (Dalgarno and Williams, 1965) and
theoretically (Kamikawai, Watanabe, and Amemiya, 1969) using the Dalgarno
(1963) sum rules (eqs. (2.75) and (2.76)). These are compared in figure 2.5 with
an “atomic” approximation to Hy taken as a generalization of Bragg’s rule (Zeiss
et al., 1977). Also shown in figure 2.5 are values for Hy calculated by using the
local plasma model with the Pines correction and with the Gordon-Kim model of
the molecular wave functions given as

pH, (F) = pu(7) + pu(7 — R) (2.102)

where py(7) is the atomic hydrogen electron density and R is the displacement
vector of length 1.4a, between the two centers. It is clear from figure 2.5
that, even with the simple Gordon-Kim approximation, the plasma model is
a considerable improvement over the Bragg rule, except for the lowest-energy
molecular properties (i.e., m < —0.5). Figure 2.5 also shows that the Gordon-Kim
approximation introduces minor errors compared with the inherent limitations of
the local plasma model.

The mean excitation energy for stopping power may likewise be evaluated.
Atomic hydrogen and molecular hydrogen are presented in table 2.1 along with a
recent compilation of experimental data (Seltzer and Berger, 1982). Quite reason-
able estimates of atomic and molecular properties of importance to ionizing radi-
ation are obtained by this local plasma model if the Pines correction is included.
Optical and other low-frequency properties, however, are poorly represented. The
plasma model should become more accurate for more complex many-electron sys-
tems, especially those in which the optical properties are more in line with those
predicted by the plasma model.
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Table 2.1. Hydrogen Mean Excitation Energy for Stop

Chapter 2

ping Power

‘7 Hydrogen mean excitation energy, eV, for stopping power for—
Oscillator Local plasma
Chemical Quantum strength model
species model distribution (a) Experiment
I ——
H b14.99 14.69
He €18.2 d18.4 18.9 €185+ 0.5

aith Pines correction.

bWwith oscillator strengths of equation (2.96).
cKamikawai, Watanabe, and Amemiya, 1969.
dDalgarno and Williams, 1965.

eGeltzer and Berger, 1982.

With the present results, it is now clear what approach should be taken to
improve the plasma model applications. Clearly, a correction factor similar to that
of Pines should be introduced to suppress absorption below excitation threshold
and, correspondingly, to enhance frequencies just above threshold. A number of
possibilities are open to implement such a correction, which would appear as a
first-order quantum correction for the discrete spectrum. Preliminary work by
Walecka (1976) on the study of collective atomic oscillations may be a starting
point for further development.

2.8.3. Stopping and straggling parameters of atoms. In this section,

parameters are considered for atoms associated with the stopping of charged
particles and fluctuations in their energy transfer. The energy moment is

S(m) = ((E/R)™) (2.103)
and the related quantity is
dS(m)
L = 2.104
(m) = = (2.104)
In terms of these quantities, the mean excitation energy is
L(0)
In I=—4= 2.105
and the straggling parameter related to fluctuations in energy loss is
L(1)
In A= -~ 2.106
n 5 (2.106)

The mean excitation energy (eq. (2.105)) has been evaluated in the context of the
local plasma model and is presented in figure 2.6 along with the values computed
by Inokuti and coworkers for atoms through krypton and the compilation of
experimental data by Seltzer and Berger (1982). Hartree-Fock wave functions
(Clementi and Roetti, 1974) have been used for clements helium through neon
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and sodium through krypton are represented by screened wave functions (Clementi
and Raimondi, 1963).

The values for the straggling parameter were similarly evaluated and are
presented in figure 2.7 with the values obtained by Inokuti and coworkers. Also
shown are values for noble gases compiled by Inokuti et al. (1981) and values
obtained by Zeiss et al. (1977). The present values tend to be about 25 percent
low at Z =~ 36, with improvements at lower values of Z , which may be caused by
the lack of shell structure corrections in the plasma frequencies of the K and L
shells.

It is clear from these atomic calculations that the plasma model with the
Pines correction generally provides good results for mean excitation energy and
reasonable estimates for the straggling parameter. Although the Hartree-Fock
wave functions are required for low atomic numbers, reasonable results are
obtained using screened wave functions for atoms heavier than argon. The
low-energy atomic properties mainly require improvements beyond the Pines
correction. These properties emphasize the need for a first-order quantum
correction to the atomic structure.

2.3.4. Covalent-bond effects. Early experimental work with ionization
energy loss was conducted in covalent-bonded gases (also noble gases) from which
Bragg’s rule was derived. Although more recent experimental work, beginning
with Thompson (1952), has shown systematic variation from Bragg’s rule, such
rules still seem appropriate for fixed molecular structures (Lodhi and Powers, 1974;
Neuwirth, Pietsch, and Kreutz, 1978). As a result of the theoretical efforts of
Inokuti and coworkers, it is clear that chemical-bond shifts in the mean excitation
energy have occurred, and as suggested by Platzman ( 1952a), all covalent shifts
are of similar magnitude.

In any molecular dynamic calculation, there is a trade-off between model
accuracy and computation efficiency. As pertains to the radiolysis of large
molecular structures, the most useful model is the lowest order possible. It is clear
that the use of self-consistent field methods to determine molecular wave functions
would seriously limit the ability to study systems of practical interest. Considering
the relative success of the Gordon-Kim electron gas model of molecular bonding
(Gordon and Kim, 1972; Tossell, 1979; Waldman and Gordon, 1979), a simple
method for the calculation of chemical-bond effects on the mean excitation energies
is suggested. As suggested by Gordon and Kim, the molecular electron density as
a superposition of the unperturbed atomic states is given by

p(7) = p1(7) + po (F - fhz) (2.107)

for diatomic molecules. There is an obvious generalization of equation (2.107) for
the polyatomic case. Whereas Gordon and Kim used equation (2.107) to calculate
the molecular potential (see Tossell, 1979; Waldman and Gordon, 1979, for ionic
and covalent applications) from which Ris is theoretically obtained, here R, is
taken from observed experimental bond distances. Substituting equation (2.107)
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Figure 2.6. Atomic mean excitation energies from quantum calculations of Inokuti et al., 1981,
and local plasma model. Empirical values are from Seltzer and Berger, 1982.
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Figure 2.7. Atomic straggling parameters from quantum calculations of Inokuti et al., 1981,
and local plasma model along with various experimental results.
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into equations (2.85) and (2.89) and reducing results in
T 1/2
p2 (T - R12> 3
ZIn(I) = 7, In(I}) +/p1(f') (14—t |

pP1 (F— fim) &
+ ZyIn(ly) + / P 14—t | i (2108

where I} and I are the corresponding atomic values, which are accurately known
(Inokuti, Baer, and Dehmer, 1978; Inokuti et al., 1981). The chemical-bonding
correction is generally

L= \n1/2

Equation (2.108) for diatomic molecules is generalized for polyatomic systems as

Zin() =3 Zhn [(1 + Zaij) I{l (2.110)
i j

where the sum over j includes every bond in which Z is attached in the
molecule. Correction factors have been calculated (Wilson and Kamaratos, 1981)
for hydrogen and carbon molecules with the bond parameters in table 2.2. Carbon
sp> hybrid orbital wave functions were used in these calculations, although s2p?
values were only slightly different. The tetrahedral orbitals were spherically
symmetrical in their eclectron densities. Therefore, spherical symmetry was
assumed throughout subsequent calculations.

Recommended values of mean excitation energies (Seltzer and Berger, 1982)
are presented in table 2.3 along with theoretical values calculated by using atomic
mean excitation energies from Dehmer, Inokuti, and Saxon (1975) with the bond
corrections in table 2.2. Bragg’s rule is also used with the atomic values of Dehmer,
Inokuti, and Saxon for comparison. Although the theoretical values are within
4 percent of the experimental and empirical values, Bragg’s rule values are from
17 to 21 percent low, indicating a substantial adjustment as the result of chemical
bonding.

Mean excitation energies have been calculated for covalent gases of the first
two rows using the local plasma model and the Pines correction. Results of this
calculation and the empirical values of Seltzer and Berger (1982) are given in
table 2.4. Corresponding values for covalent solids are shown in table 2.5.
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Table 2.2. Hydrogen and Carbon Molecular Parameters

Molecular H-C C-H CC CC

parameter HH | H-C | C-H | C-C | C=C | C=C |benzene benzene |benzene |graphite
Rapg,bohrs . . . . . 1.40 |2.08 |2.08 (294 252 |2.28 2.02 2.02 2.64 2.68
S . 0.261 |0.432 [0.044 }0.062 |0.087 @5 0.453 0.045 0.079 0.076

Table 2.3. Molecular Mean Excitation Energy
Molecular mean excitation energy, eV, for—
Chemical Present Seltzer and Bragg's
species theory Berger, 1982 rule

CHy 44.7 42.8 35.1

(CHa)x 55.0 53.4 43.5

CeHs 60.6 61.4+£19 50.6

Ho 18.9 18.5 £ 0.5 15.0

Graphite 76.1 78.5 + 1.5 62.0

Table 2.4. Molecular Mean Excitation Energies for Covalent Gases

I, eV
Chemical Rag, Local plasma Seltzer and
species bohrs model Berger, 1982
H; 1.40 18.9 219.2 + 04
Ng 2.08 85.0 ag2 + 1.6
(6)) 2.34 99.6 95 + 19
Fo 2.67 114.2 115 + 10
Cly 3.76 170.8 171 £ 14

@ These values are strongly influenced by Zeiss et al. (1977).

Table 2.5. Mean Excitation Energies for Covalent-Bonded Crystals

I,eV

Chemical Rap. Local plasma Seltzer and

species bohrs model Berger, 1982
B (tetragonal) 3.06 67.3 7%+ 7.6
C (diamond) 2.94 75.3
C (graphite) 2.68 76.1 78+ 23
Si (diamond) 4.42 151.0 173+ 4
P (black) 4.16 155.7 %181 £ 14
S (rhombic) 3.85 162.7 2190 £ 15

eUnspecified allotropic form.
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Moments for the No molecule using the plasma model are presented in figure 2.8
with values calculated from the oscillator strengths compiled by Dalgarno, Degges,
and Williams (1967). As can be seen, good agreement between the present simple
plasma model calculations and the oscillator strength distribution of Dalgarno,
Degges, and Williams is obtained except for the lowest frequency phenomena.

Dalgarno et al., 1967
140 rp = — = Local plasma

70

((E/RY™)

I
Al
I
I
Lt
I
1
\

\

Figure 2.8. Moments of N3 oscillator strengths from empirical values of Dalgarno, Degges, and
Williams (1967) and local plasma model using Gordon-Kim molecular model densities,

2.3.5. Ionic-bond effects. Although covalent-bond shifts were found to
be relatively small corrections to atomic values, such a separation as in equa-
tion (2.108) in terms of neutral atomic values is not possible for ionic bonds. Using
the Gordon-Kim model electron density of the partial ionic (diatomic) system,

Po(F) = p g2 (F) + Pp(-p) (F— E’AB) (2.111)

where A(+?) and B(-P) refer to partially ionic states of the two constituents, & 45
is their nuclear separation, and p is the partial ionic fraction. The electron density
of a partial ionic atom in equation (2.110) is

P azp) (T) = (1 = P)pa(F) + pp 4= (7) (2.112)
where p4 () is the electron density of the neutral atom and p 42 (7) is the electron
density of the atomic ion. With the aid of equations (2.111) and (2.112), shifts in

the mean excitation energy caused by ionic and covalent effects can be evaluated.
As shown by Wilson et al. (1982),
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Lo 1/2
PBi-7) (T-RAB)] &

Zin() =2 In{I +/p ln |1+
(n Al+D) [ A(+p)] A(+p)( ) { P acn) G

- 1/2
7o R
+ Zgpin [Igen] + / pyi-n ()0 1+‘3A_“£)(——ﬁ§l Sro (2.113)
PB(—p)(F)

with
Z p(+p) In [IA(HJ)] = / P A(+p) (¥)In [’Yﬁw,q(ﬂ) (F)] d*r (2.114)

where v is the Pines correction given by equation (2.85) or estimated empirically
as given by Neuwirth, Pietsch, and Kreutz (1978). Mean excitation energies for
various stages of ionization calculated with the Pines correction and the atomic
wave functions of Clementi and Roetti (1974) are shown in figure 2.9. In addition
to the ionic-bond shifts, there are shifts caused by covalent-like character, as given

by

! ppn®- 11"
— (— ) - 3
n [1 + 5A(+p),B(—P)} = Zaom /PA(+p)(7‘) In {1 + W} d°r (2.115)

o Dehmer et al., 1975
—— Local plasma

200 ¢
Cl
Na
% 100 F
Py
N B
Li
0 1 i 1
-1 0 1

Tonic charge

Figure 2.9. Mean excitation energies for partially ionic atoms.

Mean excitation energies for partial ionic-bonded substances are shown in table 2.6
with the corresponding bond parameters used in the model. Also shown are
values for a pure covalent bond and Bragg’s values using the neutral atomic mean
excitation energies of Dehmer, Inokuti, and Saxon (1975), as well as Bragg’s values
of the corresponding partial ionic states. The ionic-bond fractions are taken from
Pauling (1967) as experimental data for HF and LiH. Bond lengths are for ionic
crystals except for the HF gas. Atomic mean excitation energies are shown for
partial jonic states in figure 2.9 and differ from values of Wilson et al. (1982)
because of the Pines correction.
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Table 2.6. Ionic-Bond Parameters

Chemical
species R4p, bohrs p I., eV Irp, eV Ip, eV I, eV
HF 1.72 0.50 97.6 91.7 91.0 96.4
LiH 3.85 0.25 27.8 25.2 25.9 26.7
LiF 3.85 0.90 83.4 92.6 81.6 93.6

It is clear from table 2.6 that the main contribution to corrections to the Bragg
rule is the adjustment from atomic neutral to atomic ion mean excitation energies
as proposed by Platzman (1952a). Indeed, when there is little difference between
the usual Bragg value and the partially ionic Bragg value, the covalent value is
in near agreement with the predicted value of I for HF and LiH in the table.
For LiF, the relatively large adjustment from the usual Bragg value (81.6) to the
partially ionic Bragg value (92.6) leaves a large difference between the covalent
value (83.4) and the predicted value of T (93.6). The adjustment of the ionic-
bond shift caused by the covalent-like character for LiF is 1 eV compared with
adjustments of the neutral states caused by the pure covalent bond of 1.8 eV.
This comparison shows the greater role of the coulomb attraction in forming the
bond of the ionic molecules relative to the two-electron interaction in forming the
covalent bond.

Calculated mean excitation energies for ionic crystals using the Pines correction
are shown in table 2.7, along with recommended values of Seltzer and Berger
(1982). The crystal parameter and fractional lonic charge have been taken from
Pauling (1967). The LiF value is the only one with an experimental basis (Wilson
et al., 1982).

Table 2.7. Mean Excitation Energies of Ionic Crystals

I,ev
Chemical Rug, Local plasma Seltzer and
species bohrs P model Berger, 1982
LiF 3.80 0.90 92.8 94+ 8
LiCl 4.86 0.73 139.1 144 £ 12
NaF 4.37 20.91 131.5 147 +£ 12
NaCl 5.31 0.75 159.1 181 + 14

“Pauling partial ionic character function.

2.3.6. Meiallic-bond effects. Our first approach to metals is similar to
that taken by Chu, Moruzzi, and Ziegler (1975), in which they employed the
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muffin-tin wave functions (Moruzzi, Janak, and Williams, 1978) and stopping
power theory according to Lindhard and Winther (1964). Individual electron
corrections to the local plasma frequency are treated empirically through an
adjustable parameter . (See table I of Ziegler (1980) and related discussion.)
Unlike this previous work, the present work includes estimates of shifts in the
plasma frequency according to the Pines correction in equation (2.86) and is in
that sense completely deterministic.

The metallic wave functions for lithium metal approximated by the Wigner-
Seitz model (Wigner and Seitz, 1934) are considered first. In deriving these
wave functions, the lithium ion core potential was taken from the screened wave
functions of Clementi and Raimondi (1963), and the calculated crystal-valence
wave functions (aside from normalization) were found to be a slight perturbation
(mainly due to boundary conditions) of the free hydrogenic (2s) orbital inside the
Wigner-Seitz sphere (Wigner and Seitz, 1934). The final crystal wave functions
used were constructed from unperturbed Hartree-Fock orbitals (Clementi and
Roetti, 1974) in the core region with a small perturbation outside the core. This
perturbation matched the boundary conditions on the surface of the Wigner-Seitz
sphere. This was followed by normalization of the valence-shell wave functions (to
make the valence electron density add up to give the correct number of valence
electrons). These wave functions are quite similar to the muffin-tin model and yield
mean excitation energies in substantial agreement with Ziegler (1980) when 7 is
taken as his empirical value. The mean excitation energies for metals of the second
and third rows using Wigner-Seitz wave functions (treating all valence electrons
as spatially equivalent) and the Pines correction are presented in table 2.8 along
with empirical values from Seltzer and Berger (1982).

Table 2.8. Metallic Parameters for Selected Metal of First Two Rows

I, eV
Iat1 eV

Chemical Dehmer, Inokuti, Wigner-Seitz Seltzer and

species and Saxon, 1975 Ts, bohrs model Berger, 1982
Lithium 34.0 3.260 45 415 £ 3.7
Beryllium 38.6 2.375 60 63.7 £ 3.2
Sodium 123.6 3.99 140 162 + 8
Magnesium 121.2 3.34 144 164 £ 8
Aluminum 124.3 2.991 149 166 £ 3

The present results clearly demonstrate that the effects of the metallic bond in
lithium and beryllium are large and are mainly the result of collective oscillations
in the free-electron gas formed by the valence electrons. Although similar good
agreement should be expected for sodium and magnesium, it is emphasized here
only that these empirical values are interpolations without an experimental basis,
and smaller empirical values more in line with the present results should not be
eliminated. The small value predicted for aluminum (149 eV) is in doubt, as the
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empirical value (166 + 3 eV) is based on one of the most experimentally studied
quantities since aluminum served as a standard in stopping power experiments
for many years. The fault could well lie in the use of the Wigner-Seitz model for
group III metals. It is well-known that the success of the Wigner-Seitz theory
rests mainly on application to alkali metals. Although some hope for application
to group II metals exists, treating the three valence electrons of group III as
spatially equivalent is clearly in error. Correction to metals from an alternate
model, proposed by Pauling (1967) for metallic orbitals and implemented here in
simplified fashion, is considered next.

In X-ray diffraction experiments, even beryllium metal shows a considerable
degree of covalent quality, as suspected from bulk material properties (Brown,
1972). In this view, a model is considered in which the valence-bond effects can
be included explicitly. In the spirit of the Pauling valence-bond theory and the
Gordon-Kim model of valence bonding, the electron density about the ion cores
is assumed to be a superposition of partial ionic core states among nearest core
neighbors. Additional contributions from the next nearest neighbors are assumed
to add to the electron continuum states in a manner analogous to the Pauling
unsynchronized resonances in lithium crystals (Pauling, 1967). The electron
density of the partially ionic core of charge p is

v -

2 = () 0a® + Bo o () (2.116)

where v is the number of valence electrons, p A(7) is the electron density of the
atomic neutral state, and p 4(+v) (T) is the electron density of the valence-stripped
ion cores. We have used the observation by Slater that radial wave functions of the
L shell are nearly the same for both values of { as a result of exchange interaction
between the (2s) and (1s) orbitals. The same is true for the M shell. In the present
calculation, each metal ion core has been placed into a Wigner-Seitz cell, and the
electron density from nearest neighbors has been approximated by reflecting the
exterior core density function across the cell boundary. The continuum electron
density is then taken as 3

4rrd

pe = [p+ (v - p)s (2.117)
where § is the next nearest neighbor contribution to the continuum. The value of
b is determined by requiring a full complement of v valence electrons per cell. The
resultant electron density p(r) was used to calculate the local plasma frequency
and mean excitation energy per cell. The Pines correction was used for individual
particle shifts. The radii rg for the Wigner-Seitz cell are given in table 2.8. The
ion-core wave functions were calculated from the Hartree-Fock wave functions
of Clementi and Roetti. A slight dependence on the ion-core charge appears
(Kamaratos et al., 1982) in which there is some increase in mean excitation
to I = 155 eV for aluminum. However, there are some unresolved questions
concerning periodicity at the cell boundaries, which leave the value of this model
somewhat in doubt.

The mean excitation energy for aluminum requires the reconsideration of the
data on which it is based and the corresponding analysis. In an analysis by
Andersen and Ziegler (1977), 162 eV was assumed as the mean excitation energy
for aluminum. A reduction in I to 150 eV results in a 3-percent increase in
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stopping power at 1 MeV, which leaves it within the stated uncertainty limits
of the Andersen and Ziegler parametric curves. These curves correspond to the
uncertainty in the experimental data used in the analysis. (See fig. 2.10.) Indeed,
a number of authors have reported mean excitation energies for aluminum in
line with the present results (Bakker and Segre, 1951; Simmons, 1952; Mather
and Segre, 1951; Sachs and Richardson, 1953; Bogaardt and Koudijs, 1952;
Vasilevskii and Prokoshkin, 1960), although more recent analyses are higher. A
recent study of aluminum optical properties indicates that a value of I several
electron volts lower than 166 is not inconsistent with the empirical dielectric
function (Shiles et al., 19803. The shift of several electron volts is associated
with polarization of the Al + core by the valence electrons in their metallic
orbitals. Such core polarization effects are not calculated in the present model.
Furthermore, quantum corrections to K- and L-shell discrete spectra may cause
further small adjustments. In any case, the apparent discrepancy is due to
the electronic wave functions used in the present calculation, to the inadequate
treatment of corrections to the Bethe formula, from which I is extracted from
the experimental data (see, for example, Andersen et al. (1977) and Khandelwal
(1982)), to quantum corrections, or to a combination of these.

To further clarify the relationship between the mean excitation energy for
aluminum and experimental data, a band is shown in figure 2.10 which brackets
the experimental data of Andersen et al. (1977), Kahn (1953), Neilsen (1961),
Leminen, Fontell, and Bister (1968), Nakata (1971), and Sorensen and Andersen
(1973) for proton energies between 0.5 and 10 MeV. These energies are compared
with the reduced stopping power calculated from the Andersen and Ziegler (1977)
empirical shell corrections. The older data of Kahn (1953), which would have
lowered the band considerably, were excluded from the figure. The mean excitation
energies exhibited in the figure are 167 eV used as input to Shiles et al. (1980),
162 eV determined by Andersen and Ziegler (1977), 155 eV estimated using one
form of valence-bond theory, and 149 eV calculated according to the present
(simplified) Wigner-Seitz model. Although it is not clear that the curve for 167 eV
is superior to the curve for 149 eV, a modest shift in the empirical shell corrections
can bring any of the four curves into an equally good fit to the data. It is
further emphasized that shell corrections are not exactly known, and, in empirical
analysis, shell corrections are not usually differentiated from other corrections to
the Bethe formula (eq. (2.72)).

“n
=

Reduced stopping power
¥3
(384

Figure 2.10. Reduced stopping power for aluminum for several mean excitation energies and
range of experimental data. Shaded area is band of experimental data.
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2.3.7. Discussion of results. The present results are combined in fig-
ure 2.11 with the evaluated data of Seltzer and Berger (1982). Care is taken
when possible to model the same physical chemical state. (See specific tables for
details.) Results for free atoms (Hartree-Fock wave functions for Z < 10 and
screened wave functions elsewhere) and the accurate atomic values of Dehmer,
Inokuti, and Saxon (1975) are presented in figure 2.11. It is clear that the trends
in the first- and second-period elements are well approximated by the present
application of the local plasma model, especially when the Pines correction is ap-
plied. The present results are generally in fair agreement with the compilation
and recommendations of Seltzer and Berger (1982), although small discrepancies
in the third period remain to be resolved.

25
-
A Atomic values (local plasma)
4 O Dehmeret al, 1975
20 = O Molecular values (local plasma)
ﬁ g A Seltzer and Berger, 1982

IZ, eV
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DO —p—fmn
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Figure 2.11. Mean excitation energies for atoms, molecules, solids, and metals. Specific data
taken from tables 2.3, 2.4, 2.5, and 2.8.

Perhaps the greatest criticism of the present application of the local plasma
model calculations is the use of the Gordon-Kim approximation to the covalent-
bonded wave functions. When the moments of the energy spectrum are considered,
it is clear that the Gordon-Kim model approximately adjusts the excitation
spectrum in the region of greatest importance to lonizing radiation and appears
no more in error than the basic plasma model in which it is used. (See fig. 2.5.)
Of course, accurate use of the local plasma model implies the necessary use of
the Pines correction, as demonstrated for the hydrogen atom in figure 2.3 and
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used throughout the present calculations. Although the Pines correction produces
marked improvements in the predictive capability of the model, further quantum
corrections for the discrete spectrum would produce additional corrections and
would hopefully remove most of the remaining error in the plasma model. Further
improvement in electronic wave functions would be helpful in identifying the
remaining corrections required for the plasma model.

2.4. Molecular Stopping Cross Sections

In section 2.3, departures from Bragg’s rule have been noticed in the theoretical
calculations of the mean excitation energies of various molecular systems. Analysis
of the experimental data on energy loss of low-energy a-particles in gases also
indicates deviations from Bragg’s rule (Bourland and Powers, 1971; Lodhi and
Powers, 1974). In this section, the stopping power theory of Lindhard and Winther
(1964) and the local plasma theory of Lindhard and Scharff (1960) are used
to perform calculations in the low-energy region. Modifications are introduced
through a simplifying model which incorporates the effects of the shell corrections
and of the screening of the projectile (Xu, Khandelwal, and Wilson, 1984a and
1984b). The model is justified on the basis of fulfilling the more ambitious aim of
obtaining the molecular stopping power. The Gordon-Kim electron density model
of molecular wave functions (Gordon and Kim, 1972} is utilized in the calculations.
As shown, such a model allows a successful method of calculating chemical-bond
effects. Calculations done on Ny, Og, and water vapor are found to be in fair
agreement with experiments (Xu, Khandelwal, and Wilson, 1984b). Furthermore,
departures from Bragg's rule are noticed for all these systems.

The celebrated stopping power formula for an energetic charged particle of
charge Zp and velocity v traversing matter of charge number Zr is given by

dE  4nZ%e?
- = —m—ll;—NZTL (2.118)

where m is the mass of an electron and N the number of atoms per unit volume
of the medium.

The stopping number L of equation (2.118) has been a topic of considerable
study. For instance, Lindhard and Winther (1964) have investigated the function L
for a free-electron gas in the regions of low- and high-energy incident charged
particles. For the high-energy case, these authors give the expression for L to
order 1/v? as
(T)

%mv2

L = ZrlnY — (2.119)

where Y = 2ma? /hwp, the classical plasma frequency wp = (4mpe? /m)l/ 2 pis

the electron density, and (T'), the average kinetic electron energy, is given by

1) = (35) mob

where v is the Fermi velocity.
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For the low-energy case, they give

o\ 3/4
L:(%) Y3/2C,(x) (2.120)
where 9 o 1
& = In : — 2.121
& 201 - (x2/3))? ( x? 1+—§x2) (2.121)
with 0
2_ ¢
X Thon (2.122)
h
= (2.123)

Equation (2.119) for the L function warrants some discussion. First, one
notes that the L function of equations (2.119) and (2.120) is derived by Lindhard
and Winther for a free-electron system. Transition to an atomic system of the
first term of equation (2.119), as studied widely, is accomplished under the so-
called local plasma model in which density p(7) is evaluated by using quantum
mechanical wave functions. The local plasma model is equivalent to replacing
the molecular dipole oscillator strengths by the corresponding classical plasma
absorption spectrum. The adequacy of such a replacement was recently shown by
Johnson and Inokuti (1983) to be most accurate for evaluating atomic quantities
associated with stopping power in spite of differences between the plasma spectrum
and the actual oscillator strength distribution. A quantum mechanical analog of
the second term of equation (2.119) would be of interest. In this context, a result
first derived by Brown would prove to be useful. Brown (1950) studied the K-
shell asymptotic stopping power of a hydrogenic system (with two K electrons)
for a fast projectile, taking the maximum momentum transfer equal to 2mv as if
the electron was free. (See Xu, Khandelwal, and Wilson, 1986.) The asymptotic
stopping power equation obtained by Brown can be expressed in a form similar to
equation (2.119). The first terms of both these equations, since they involve the
mean excitation energy, can be assumed essentially equivalent within the local-
plasma approximation. For the second term in equation (2.119) for a hydrogenic
system, he obtained 1/ns, where 7, = %va/ZS?R, Zs is the effective nuclear
charge for the s shell (s = K,L,...), and R is the Rydberg constant. Walske
(1952), on the other hand, taking the upper limit for momentum transfer as
infinity, overestimated the nuclear momentum recoiling and obtained 2/, instead.
In reality, however, because of the recoiling of the nucleus, the result should be
expected to fall somewhere between 1/7, and 2/ns. This fact is incorporated into
equation (2.126) as a parameter which we later estimate. At the present, however,
for the sake of simplicity, combining Brown’s result for the K shell with Walske’s
result for the L shell, but retaining the consistency with the free-electron model,
we write the analogous second term (known as shell correction C) for a hydrogenic
system with Z7 electrons as

1 1 (Zp—2
c=cC +C=—+—( ) 2.124
K total L k| nL 8 ( )
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which can be rewritten for a real atom as

1 (T)
C=35 Tmo? é(Zr) (2.125)
where
¢(Zt) = Zrf(Zr)g (2.126)
and
(T) = % [Z?{R +(Zr - 2)%2%1%} (2.127)

In equation (2.126), a coefficient f(Z7) has been introduced to distinguish a
real atom from a hydrogenic atom. The coefficient f(Z7) is known to be less
than unity for L shells for targets with low atomic number. The coeflicient g is
introduced to incorporate the effect due to the recoiling of the nucleus.

At this stage, it is appropriate to discuss various features associated with
the low-energy projectiles and the targets with low atomic number. First, in
the low-energy region, the projectile’s full charge Zp will not be operational in
the stopping process due to electron capture that is influenced mainly by the
outer shell electrons of the medium. Second, Walske has pointed out that the
coefficient f(Zr) is unreliable for the low atomic number Z7 < 30 due to use of
the hydrogenic wave functions.

It is evident from the above observations that some sort of crude estimate
of the quantity C is in order. This is justified since the usual incorporation of
these effects involves fitting with experimental data. The inclusion of the effect
of the projectile’s effective charge should decrease the stopping number of all
elements. The decrease should be the most for Li and the least for Ne. In order
to incorporate this effect and the other problem of the need for an accurate value
of the coefficient f(Zr), it is reasonable as a first approximation to assume a
semiempirical constant value of the quantity ¢(Z7) equal to one half the total
number of electrons in noble-gas atoms. Such a division should overestimate shell
corrections for lithium and beryllium in decreasing fashion and underestimate
that for helium, neon, carbon, nitrogen, oxygen, and fluorine also in a decreasing
manner. Such a change in shell corrections is indeed needed to compensate for
the effect of the effective charge of the projectile on the stopping power. In this
paper since we are interested in the atoms with atomic number below 10, this
assumption implies that

1 (Zr £2)
¢(ZT) = (2.128)
5 (3< Zp<10)

Implicit in the above partition of ¢ (eq. (2.128)) is the fact that the quantity C
no longer represents the so-called shell corrections only but presumably also some
other effects including those of the projectile’s effective charge and the neglect of
the higher order terms in equation (2.119). One can now write equation (2.125)
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as
L0 L (Zr <2)
C 2 %mv2 ZT
T 1 (T) 5
— —_— < <
2 T2 2 (3 < Zr <10)

where (T') by virial theorem is just the average kinetic energy of the electron and
should be averaged over all the Z electrons in the atom.

In order to make a transition to an atomic system, we assume the above results
and accordingly replace equation (2.119) with

31,5 1
- - Zr <2
10x27 Y (Zr<2)
L= (2.130)
31.5 1
nY - — (3<Zr<1
Tz Y (3<2r<10)

"The low- and high-energy L functions should now be combined to determine
the appropriate dependence of the stopping power on energy. To do this, we
used equations (2.120) and (2.130) for our desired results after replacing Wp
by ~ywp, where nonconstant values of 7 were obtained from Wilson and Xu
(1982). Bonderup (1967) had combined equations (2.119) and (2.120) and
assumed a constant value of v equal to v/2. Unlike Bonderup, we tried to
preserve the continuity between the low-energy stopping number function given
by equation (2.120) and the high-energy function given by equation (2.130). In
this way, stopping number values for a system can be obtained given the velocity
of the projectile and the density p(7).

For a diatomic molecule, the Gordon-Kim model gives the density as
Pmolecule = Pa(F) + pb (F - Rab) (2.131)

where p,(7) is the atomic ground-state density and éab is the distance between
the two atoms, which is known to be 1.094 A for Ny and 1.207 A for the Og9
molecule. Equation (2.131) was generalized for water vapor including its partial
ionic-bond nature and neglecting the overlap between the two H atoms. The
distance between the O and H nuclei was taken as 0.958 A. The molecular stopping
power for protons was obtained by averaging the stopping number over 7 for
N3, O2, and water vapor molecules. Hartree-Fock wave functions were employed
in these calculations. Tables 2.9 and 2.10 list the results of the present work,
together with curve-fitted results of Andersen and Ziegler (1977), and two sets
of experimental data for the Oz and N3 molecules, respectively, (Reynolds et al.,
1953; Langley, 1975). In table 2.11, the results for water vapor from the present
work and experimental data for energies ranging from 40 to 500 keV are presented.
Good agreement, within 10 percent, is found between the two sets of data.
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Table 2.9. Proton Stopping Cross Sections for Oxygen Molecule

Proton stopping cross section,
eV-cmn?/10!% atoms
Experimental
E, Theoretical Curve fitted Reynolds et al., Langley,

keV (a) (b) 1953 1975
40 15.89 14.6 152 + 26
80 17.48 17.0 17.25 £ 2.6
100 17.43 17.0 17.17 £ 2.6
300 11.84 11.9 11.99 £ 1.7
500 8.92 8.8 884 £ 1.7

1037 5.64 5.25

2591 2.97 \— 2.85

%Present paper.
bAndersen and Ziegler, 1977.

Table 2.10. Proton Stopping Cross Sections for Nitrogen Molecule

Proton stopping cross sectiomn,
eV-cm? M‘s atoms
Experimental
E, Theoretical Curve fitted Reynolds et al., Langley,

keV (a) (b) 1953 1975
40 17.20 16.0 171 £ 26
80 18.41 17.9 185 + 26
100 17.79 17.7 179 26
300 10.85 11.2 112 £ 1.7
500 8.10 8.1 8.08 £1.7

1037 5.20 4.78

2591 2.71 2.56

4Present paper.
bAndersen and Ziegler, 1977.

In order to discuss the departures from Bragg’s rule, it would be relevant to
cite a systematic study carried out in a series of experiments at Baylor University
(Bourland and Powers, 1971; Powers et al., 1972; Lodhi and Powers, 1974).
The study revealed that for low-energy projectiles there may exist a deviation
from Bragg’s rule depending on the physical state, but most importantly, on the
chemical structure of the compounds. The confusing status of the dependence
on the chemical structure can best be described by citing these studies in
chronological order. First, in 1971 the Baylor group (Bourland and Powers, 1971)
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theorized that the compounds with single and double bonds should obey Bragg’s
rule. The compounds containing triple-bond structures were found to deviate from
Bragg’s rule by as much as 12.8 percent (a-particles of energy between 0.3 and
2.0 MeV often were the projectiles). In particular, these authors indicated that
the molecular hydrogen (single-bonded molecule) should obey Bragg’s rule. Later
in 1972, the Baylor group (Powers et al., 1972) critically looked again at their
previous conclusions. They indicated that perhaps the hydrogen atomic stopping
cross section may be considerably different than one half the molecular stopping
cross section and thus should cause considerable deviations. However, the Baylor
group in 1974 (Lodhi and Powers, 1974) recognized the difficulty of obtaining
atomic cross sections experimentally and based their analysis on the existence of
some modified, but unique, atomic stopping cross sections.

Table 2.11. Proton Stopping Cross Sections for Water Vapor

Proton stopping cross section,
eV-cm?/10!% molecules, at E, keV, of —
Source 40 80 100 300 500

Present paper 28.81 27.8 26.8 17.1 12.6
Reynolds et al., 1953 | 25.0 + 2.6 | 27.6 & 2.6 2713+26 (179417 [13.0+17

It is therefore imperative that in order to discuss the deviations from Bragg’s
rule, one must have access to the atomic and molecular stopping cross sections. We
calculated both the atomic and the molecular stopping cross sections as a function
of projectile energy of the O3, N3, and Hy molecules. These results, together
with the deviations from Bragg’s rule, are exhibited in tables 2.12 through 2.14.
One sees that the deviations from Bragg’s rule become small as incident energy
increases —in agreement with observations made by many workers including those
at Baylor University. It is to be noted that Ny is a triple-bonded molecule, Og is
an approximately double-bonded molecule (from the bond energy point of view),
and Hj is a single-bonded molecule. The maximum deviations from Bragg’s rule
for energy of 100 keV and above are 6.1, 2.6, and 10 percent, respectively, for
these molecules. Thus, the deviation depends on the chemical structure. When
the Gordon-Kim model is used, the overlap of electron density determines the
deviation or molecular bond effects. For instance, for the hydrogen molecule,
the distance between nucleons is very small, 0.74 A. It is expected that the
overlap of electron density is large, thus explaining the considerable deviation
from Bragg’s rule. The stronger the bond energy, the shorter the distance will be.
It is interesting to note that single-, double-, and triple-bonded carbon molecules
have internuclear distances equal to 2.94, 2.52, and 2.24 bohrs, respectively. We
may thus expect that the triple-bonded carbon will have more deviation from
Bragg’s rule than the single-bonded carbon.
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Table 2.12. Deviations From Bragg’s Rule for Oxygen Molecule

E, keV, of—

Stopping cross section 40 100 | 200 | 300 |500 {1037 100000
¢ (atomic)?, eV-cm?/10" atoms . . . |17.44 17.48 |14.65 |12.15 (9.1 [5.72 |0.1492
¢ (molecule), eV-cm?/10'° atoms . . . {15.89 |17.43 14.36 [11.84 [8.92 |5.64 |0.1476
Deviation, percent . . . . . . - . . 89 103 2 26 |2 14 1.1

aQObtained from equations (2.116) and (2.126).
4

Table 2.13. Deviations From Bragg’s Rule for Nitrogen Molecule

E, keV, of —

Stopping cross section 40 100 | 200 | 300 |[500 |1037 [100000
¢ (atomic)®, eV-cm?/10® atoms . . . [19.33 18.57 14.32 [11.46 |8.53 |5.30 |0.1340
¢ (molecule), eV-cm?/10'° atoms . . . |17.20 117.79 13.75 |10.85 |8.10 |5.20 |0.1319
Deviation, percent . . . . . . . . . 11 4.2 4.00 |6.1 50 (1.9 (1.3

8Obtained from equations (2.116) and (2.126).

Table 2.14. Deviations From Bragg’s Rule for Hydrogen Molecule

E, keV, of —

Stopping cross section 100 | 200 | 300 |500 | 800 |1037 (2591
¢ (atomic)?, eV-cm?/10%° molecules . . | 12.7 |8.13 6.1 [4.17 [2.89 [2.36 |1.11
¢ (molecule), eV-cm?/10%° molecules . | 11.43 | 7.53 571 13.93 |2.75 |2.24 |1.07
Deviation, percent . . . . . . . . - 10 74 |64 |58 |48 [51 |36

aObtained from equations (2.116) and (2.126).

2.5. Stopping Cross Sections of Liquid Water. The stopping cross
section of water is of interest in many fields but especially in radiation protection.
Since the living tissues are basically composed of liquid water, a simple theoretical
model for the calculation of the stopping power of water is of great practical
interest. The importance of such a direct calculation has increased since various
authors (Bourland and Powers, 1971; Powers et al., 1972; Lodhi and Powers,
1974) found that deviations from Bragg’s rule may exist in the low-energy regime;
meanwhile, the physical-state effect has also been observed in many experiments.

In previous work (Xu, Khandelwal, and Wilson, 1984a), we have established a
modified local plasma model, based on the works of Lindhard and Winther (1964),
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Brown (1950), and Walske (1952 and 1956). The model, applied to molecules
using the Gordon-Kim molecular wave function (Gordon and Kim, 1972), has
shown reasonable predictive capability for molecular bond effects as well as for
atomic targets and covers a rather wide energy region.

In this section the modified local plasma model is applied to liquid water
by employing a simple model of water molecules (Xu, Khandelwal, and Wilson,
1985). The calculated stopping cross section of liquid water is found to be about
5.5 to 14 percent lower than the calculated gas-state results for energies from 80
to 500 keV and is about 8.5 to 13.4 percent lower than gas-state results in the
same energy range measured by Reynolds et al. (1953). The calculated liquid-
water stopping power is within 2.5 percent of experimental values for ice in the
energy range of 60 to 500 keV. It is proposed that for liquid water, this physical
effect is due to interactions with neighbor molecules which confine each molecule
to an effective close-packed sphere, thus causing the electrons to be more bonded
and confined. Hence, the momentum transfer between projectile and electrons is
reduced; this reduction decreases stopping power.

As is well-known, the structure of liquid water is complicated and far from
completely known. As Pauling (1960) pointed out, “the structure for water that
has received serious consideration for many years is the one proposed by Bernal
and Fowler.” Bernal and Fowler (1933) suggested that liquid water retains in
part a hydrogen-bonded structure, similar to that of ice. They pointed out that
as more and more hydrogen bonds are broken with increase in temperature, the
oxygen atoms rearrange themselves into an approximately more and more close-
packed structure. The rigidity of the hydrogen-bonded crystal structure is lost,
allowing the motion between liquid molecules to be more flexible than that in
the ice. A simple model of the close-packed structure of liquids was considered
by Lennard-Jones and Devonshire (1937 and 1938) who derived the potential of
the molecule in the liquid state from the interaction of all neighbors (fig. 2.12).
Figure 2.12 shows clearly the effective volume to which the molecule is confined.

Wir)
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Figure 2.12. Intermolecular potential of molecule in liquid phase (Lennard-Jones and
Devonshire, 1937 and 1938).

The hydrogen bond of the ice structure is rather weak compared with the
molecular O-H bond. When ice melts, these hydrogen bonds of ice are distorted,
and finally many are broken. Therefore, as a first-order approximation in
the stopping power calculation, we can ignore the electronic overlap between
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molecules. As was pointed out by Xu, Khandelwal, and Wilson (1984a), the
overlap of the electronic density in some sense expresses the bond energy or
molecular bonding effect. The simplest model of this picture is to confine each
molecule inside its close-packed sphere. Hence, the electronic density of this water
molecule vanishes at distances exceeding the sphere radius, as shown in figure 2.13.

7S

D

Figure 2.13. Liquid-water molecule in its close-packed spherical configuration.

In figure 2.13, O is the center of an oxygen atom, b and c are centers of two
hydrogen atoms, a is the angle between two O-H bonds, and Ob is the distance
between the center of the oxygen and the center of the hydrogen atom (Ob =
1.01 A) obtained by neutron diffraction of deuterium oxide ice (Peterson and
Levy, 1957). The radius OD is obtained from the effective volume per molecule
Vog as R = 3V, /41r)1/ 3 — 9.992 bohrs. Inside the sphere, the Gordon-Kim
model is employed; this model assumes that the molecular electronic density to
first-order approximation is simply the algebraic sum of corresponding atomic
electron densities. The molecular density for HoO can be expressed as follows:

Penol = Po(® + pu(7 — Rov) + pu(7 — Roc) (2.132)

where ROb and ﬁoc are displacement vectors of the nuclei at b and c, respectively
(fig. 2.13). Since the radius of the hydrogen atom is much smaller than that of
oxygen, the internuclear distance between the hydrogen atoms is large compared
with their radii and the H-H interaction may be neglected within the H0
molecule. Thus,

Prmol = PO(7) + 2ou(7 — R) (2.133)

The partial ionic-bond effects are considered through
Prmol = PO ) + 205 (F — R) (2.134)

with pt = (1 — p)p(¥) + pp*(7), where p is the partial ionic fraction with p(7) the
neutral-atom electron density and p*(7) the ionic electron density. In the water
molecule, according to Pauling (1960), p equals 0.33. The wave functions are
obtained from Clementi and Roetti (1974). These wave functions are renormalized
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within the close-packed sphere according to

/ Pmol @7 = 10 (2.135)
Veff

The above electronic density is to be used with the formula for stopping power
given by

dE _ 4nZiet

——=—X _NZsL 2.136

dx mu? T ( )

where m is the mass of an electron, N is the number of atoms per unit volume
of the medium, Zp is the charge of the projectile, and Z7p is the charge number
of target; L is given elsewhere (Xu, Khandelwal, and Wilson, 1984a and 1984b).
For the low projectile energies,

' 2\ 3/4
L:(%) Y32¢ (%) (2.137)

where

1 1+ 1-%
Ci(x) = In - : 2.138
1(x) 2(1_2&2_)2 ( 3 1+g§) (2.138)

where x? = e /nhvp, B = h/2m, vp is the Fermi velocity, Y = 2mv2/'thp,
wg = 4dne?p/m is the classical plasma frequency, and p is the electronic density.
For high projectile energies

3v31

y - Y2 Zr <
10x Y (Zr <2)
L= (2.139)
3\/5 1
nY - Y2~ (3<zr<
nY T T (3 < Zp < 10)

The low- and high-energy L functions should be combined by joining them
continuously (Xu, Khandelwal, and Wilson, 1984a and 1984b).

Table 2.15 shows the proton stopping cross section values of water vapor and
liquid water together with the experimental results of water vapor measured by
Reynolds et al. (1953). As can be seen, the agreement between the experiments
and the theory is very good. There is a marked reduction in stopping power in
the liquid phase by a few percent even at the highest energies shown. As noted by
Thwaites (1981), there appears to be little difference between the stopping power
of water in the liquid phase and of ice. (See, in particular, fig. 2 of Thwaites
(1981).) The experimental data of Wenzel and Whaling (1952) for ice are shown
in comparison with the calculated values for liquid water. The results given in
table 2.15 are shown graphically in figure 2.14.
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Table 2.15. Proton Stopping Cross Sections for Water

Proton stopping cross section,
eV-cm?/10!® molecules
Theoretical® ] Experimental
E, keV Water vapor Liquid water Vapor? D3O ice®
40 28.7 21.6 25.0 £ 2.6 22.6
60 28.6 23.5 26.9 + 2.6 24.0
80 27.8 23.9 27.6 £ 2.6 24.0
100 26.8 23.7 273+ 2.6 23.7
200 21.1 19.5 22.0 + 1.7 20.1
300 171 16.0 179 £ 1.7 16.0
400 14.4 13.6 15.0 £ 1.7 13.3
500 12.6 11.9 13.0 £ 1.7 11.6
600 11.2 10.7
700 10.1 9.7
800 9.3 8.9
900 8.6 8.2
1000 8.0 7.6
10000 1.37 1.34

3Present theory with partial ionic fraction of p = 0.33.
bReynolds et al., 1953.
“Wenzel and Whaling, 1952.

We see from table 2.15 that the calculated stopping cross section of liquid
water is about 5.6 to 14 percent lower than calculated gas-state results from 80 to
500 keV and is about 8.5 to 13.4 percent lower than measured gas-state results. In
the same energy regime, Matteson, Powers, and Chau (1977) reported that in their
experimental results for 0.3- to 2.0-MeV a-particles, the stopping cross section of
H,0 vapor was found to be 4 to 12 percent higher than that of ice. This difference
is less than that found previously for protons (10 to 14 percent) in the same
velocity interval. Thwaites (1981) reported that for a-particles down to 1.8 MeV,
the stopping cross section of HoO vapor was found to be ~4 percent higher
than that of liquid water. In the same velocity interval, our calculated results
show that the proton stopping cross section of water vapor is about 5.6 percent
higher than that of liquid water. The work of De Carvalho and Yagoda (1952)
and Ellis, Rossi, and Failla (1955) found that the stopping cross section of 5- to
8-MeV a-particles in HoO was the same in the vapor and condensed states. Wenzel
and Whaling (1952) and Reynolds et al. (1953) found a greater stopping cross
section for protons in the vapor states of H2O than in the solid state, and Palmer
(1966) observed the stopping cross section for a-particles to be less in the liquid
than in the vapor state of HyO. This physical-state effect is observed by most
experimental physicists. The results of De Carvalho and Yagoda (1952) and Ellis,
Rossi, and Failla (1955) may be explained since, in the high-energy regime, this
effect becomes less important. This tendency is also exhibited in our calculated
results. Palmer (1966) tried to explain this effect as a low-energy polarization
screen effect. Matteson, Powers, and Chau (1977) explained it as an aggregation
effect.
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Figure 2.14. Proton stopping cross section of water molecules in vapor and condensed phases.

We now consider the effect according to the local plasma model. We will first
explain the molecular effect or deviation from Bragg’s rule. It is found that in the
low-energy regime, the molecular stopping power may be lower than the atomic
stopping power calculated by employing Bragg’s rule. This is due to the fact that
when an electron in a molecular gas is more bonded than in an atomic gas caused
by the chemical bond, the momentum transfer between projectile and the electron
becomes harder, causing decreased energy loss or stopping power of the projectile.
In the formula

3V3 1 2mu? 1 (T)
L=InY - — =1 ————5% (Zr <2 2.14
M T Toxzpy T (»mw,,) Zrm? Pr=?) (2.140)
where w, ~ ,/p and the average kinetic energy of electron (T') = I%mv%pw 3 are

functions of electronic density. The chemical bond causes an increased electron
density in the interatomic space and, hence, increased mean excitation energy and
average kinetic energy. Physically, when an electron is more bonded, it is harder
to excite, resulting in increased mean excitation energy. When an electron is more
bonded, the magnitude of the total energy is increased (in bonded states), since
(T) = | (E) |, the average kinetic energy is increased. Both effects tend to decrease
the stopping power. In the low-energy regime, this effect becomes more important,
mainly due to the contribution of the (T} term. In the high-energy regime, this
term vanishes. The mean excitation term also becomes less important due to the
influence of the factor 1 /v2. Meanwhile, in liquid water, many of these hydrogen
bonds between molecules are broken; also, compared with the partial ionic bond,
the hydrogen bond is weaker. With this picture of molecular bond effects, how
are we to understand the considerable difference of stopping cross section due to
the physical state?

Matteson, Powers, and Chau (1977) correctly pointed out that the physical-
state effects are due to the effects of aggregation upon the molecules. As mentioned
previously, in liquid water these hydrogen bonds are not the main reason for
this physical effect. Rather, it is a collective effect of the whole liquid-water
molecule, since liquid molecules are more mobile than those in ice. Because of
the interactions with all its neighbors each molecule is confined in an effective
volume. This can be seen from figure 2.12, where we show W (r) as the average
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potential of each molecule due to the interactions of all neighbors, according to
the well-known Lennard-Jones and Devonshire theory (1937 and 1938). Thus, as
a part of the molecule, electrons are more difficult to remove from this volume or
more difficult to be excited. Simply said, the electrons are more bound because
of the neighborhood interactions. This confinement of the electron causes less
momentum transfer between the projectile and the electrons and decreases the
stopping power. Our local plasma model describes this picture because the
electronic density is more concentrated so that both the mean excitation energy
and average kinetic energy terms are increased and cause a decrease in the stopping
power. Moreover, we notice that the structure of ice is more open than that of
liquid water. It is reasonable to expect a slight difference of stopping cross section
between ice and liquid water.

2.6. Semiempirical Methods

In passing through an ordinary material, an ion loses the larger fraction of
its energy to electronic excitation of the material. Although a satisfactory theory
of high-energy ion-electron interaction is available in the form of Bethe’s theory
utilizing the Born approximation, an equally satisfactory theory for low energies
is not available. Bethe’s high-energy approximation to the energy loss per unit
path (that is, stopping power) is given as

AnNZ% Zpet 2
S, = X ZpoTe {m {-ﬁﬂ—}—[#——g} (2.141)

mu? (1-8%)Ir Zr
where Zp is the projectile charge, N is the number of target molecules per unit
volume, Zr is the number of electrons per target molecule, m is the electron mass,
v is the projectile velocity, 8 = v/c, ¢ is the velocity of light, C is the velocity-
dependent shell correction term (Walske and Bethe, 1951), and Ir is the mean
excitation energy given by

Zr Wn(I7) = > fn1n(En) (2.142)

where f, represents the electric dipole oscillator strengths of the target and
E, represents the corresponding excitation energies. Note that the sum in
equation (2.142) includes discrete and continuum levels. Empirically it has
been observed that molecular stopping power is reasonably approximated by the
sum of the corresponding empirically derived atomic stopping powers for which
equations (2.141) and (2.142) imply that

Zpn(Ip) =Y _n;Z;n(I}) (2.143)
j

where Z and I pertain to the molecule, Z; and I; are the corresponding atomic
values, and n; is the stoichiometric coefficient. This additive rule (eq. (2.143)),
usually called Bragg’s rule (Bragg and Kleeman, 1905), is the basis for providing
stopping cross sections for arbitrary material compositions.

Sources of deviations from Bragg’s additive rule for molecules and for the
condensed phase are discussed. Aside from shifts in excitation energies and
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adjustments in line strengths as a result of molecular bonding, new terms in
the stopping power appear due to coupling between vibrational and rotational
modes. Additionally, in the condensed phase, some discrete transitions are
moved into the continuum, and collective modes among valence electrons in
adjacent atoms produce new terms in the absorption spectrum that needs to
be dealt with. Platzman (1952a and 1952b) proposed that the experimentally
observed additive rule may not show that molecular stopping power is the sum of
atomic processes but rather demonstrates that molecular bond shifts for covalent-
bonded molecules are relatively independent of the molecular combination as was
theoretically demonstrated in section 2.3.4. On the basis of such arguments,
Platzman suggested that ionic-bonded substances should be studied as a rigid test
of the additive rule because of the radical difference in bonding type. He further
estimated that ionic-bond shifts could change the stopping power by as much as
50 percent. Recent results on molecular bond shifts and condensed phase effects
on mean excitation energies were discussed in section 2.5 (Wilson and Kamaratos,
1981; Wilson and Xu, 1982; Wilson et al., 1982).

The electron stopping power for protons is adequately described by equa-
tion (2.141) for energies above 500 keV for which the shell or “tight binding” cor-
rection C' makes an important contribution below 10 MeV (Andersen and Ziegler,
1977; Janni, 1982a and 1982b). For proton energies below 500 keV, charge ex-
change (electron transfer) reactions alter the proton charge over much of its path;
therefore, equation (2.141) is to be understood in terms of an average over the pro-
ton charge states. Normally an average over the charge states is introduced into
equation (2.141) so that the effective charge is the root-mean-square ion charge and
not the average ion charge. At any ion energy, charge equilibrium is established
very quickly in all materials. Utilizing the effective charge in equation (2.141)
appears to make only modest improvement below 500 keV, presumably an indi-
cation of the failure of this theory based on an empirical basis (Andersen et al.,
1977; Janni, 1966, 1982a, and 1982b). The resultant stopping power for protons
in water is shown along with the evaluated data of Bichsel (1963) in figure 2.15.

6
10%¢ o Bichsel, 1963
[ O Palmer and Akhavan-Rezayat, 1978
E 105L < Matteson et al., 1977
N ¥4 Northeliffe and Schilling, 1970 56Fe
§ | — Calculated
- 104
8]
:
oo 103
5
& 102
10!
10-2 10-1 100 101 102 103

Particle kinetic energy, MeV

Figure 2.15. Calculated and experimental stopping powers in water for typical cosmic-ray ions
as function of particle kinetic energy.
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The electronic stopping power for a-particles requires terms in equation (2.141)
of higher order in the projectile charge Zp resulting from corrections to the
Born approximation. The alpha and proton stopping powers cannot be related
through their effective charges. Parametric fits to experimental data are given by
Ziegler (1977) for all elements in both the gaseous and condensed phases.

The electronic stopping powers for heavier ions are related to the alpha
stopping power through their corresponding effective charges. The effective charge
suggested by Barkas (1963) is used:

R —~12583

where Zp is the atomic number of the ion.

At sufficiently low energies, the energy lost by an jon in a nuclear collision
becomes important. The nuclear stopping theory used in this report is a
modification of the theory of Lindhard, Scharff, and Schiott (1963). The reduced
energy is given as

32.53ApArE

(2.145)

€= 1/2
ZpZr(Ap + ATr) (ng/:; + Z;/s)

where E is in units of keV/nucleon and Ap and Ar are the atomic masses of the
projectile and target. The nuclear stopping power in reduced units (Ziegler, 1977)
is

( 1.59¢1/2 (e < 0.01) )
1.7¢/21n[e + exp(1)]
Sn={ T1 68+ aagr OOy (2.146)
In(0.47¢)
L T (10 < 6))

and the conversion factor to units of eV-cm?/10%° atoms is
8.426ZpArAp

(2.147)
172
(Ap + Ar) (Zf;/ v 22

f:

The total stopping power S is obtained by summing the electronic and nuclear
contributions. Other processes of energy transfer such as Bremsstrahlung and pair
production are unimportant.

For energies above a few MeV per nucleon, Bethe’s equation is adequate
provided that appropriate corrections to Bragg’s rule (Wilson et al., 1984a and
1984b), shell corrections (Janni, 1982a and 1982b), and an effective charge are
included. Electronic stopping power for protoms is calculated from the parametric
formulas of Andersen and Ziegler (1977). The calculated stopping power for
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protons above a few MeV in water is shown in figure 2.15 along with data given
by Bichsel (1963).

Because alpha stopping power is not derivable from the proton stopping power
formula using the effective charge at low energy, the parametric fits to empirical
alpha stopping powers given by Ziegler (1977) are used. Applying his results
for condensed phase, water poorly represented the data of Matteson, Powers,
and Chau (1977) and Palmer and Akhavan-Rezayat (1978). Considering that
the physical-state and molecular binding effects are most important for hydrogen
(Wilson and Kamaratos, 1981), the water stopping power was approximated by
using the condensed phase parameters for hydrogen and the gas phase parameters
for oxygen (which are known experimentally). These results are presented along
with experimental data for condensed phase water in figure 2.15. It appears that
Ziegler overestimated the condensed phase effects for oxygen since the gas phase
oxygen data give satisfactory results as seen in figure 2.15.

Electronic stopping powers for ions with a charge greater than 2 are related to
the alpha stopping power through the effective charge given by equation (2.144).
For water, the condensed phase formula of Ziegler for a-particles probably gives
the best stopping powers for heavier ions. Calculated results for 160 and 6Fe
ions in water, shown in figure 2.15 along with the Northcliffe and Schilling (1970)
results for 56Fe ions, are especially important, since their data seem to agree with
the range measured in General Electric Lexan plastic by J. H. Chan (Fleischer,

Price, and Walker, 1975).
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Chapter 3
High-Energy Interactions

3.1. Introduction

We will not attempt to give any comprehensive review of nuclear physics but
will touch only on the highlights of work directly related to the development
of nuclear models at the Langley Research Center. We will attempt to place the
Langley work into a cohesive framework and relate it to the early work on reaction
model development.

Following the discovery of cosmic rays through air ionization phenomena, the
development of the cloud chamber and nuclear emulsion began to reveal the details
of cosmic-ray interactions. These observations showed the production of fast
particles in the forward direction and isotropic slow particles.

Serber (1947) suggested that the fast particles produced in high-energy proton
and neutron reactions are direct knockout products of scattering with individual
nuclear constituents followed by the emission of slow particles in the evaporation
decay of the residual excited nucleus. This two-step Serber model was imple-
mented through the first step by Goldberger (1948) at the University of Chicago
using semiclassical methods and Monte Carlo techniques whereby the importance
of the Pauli exclusion principle is demonstrated. G. F. Chew (1951) who per-
formed the Monte Carlo calculation as a student for Goldberger introduced a
corresponding quantum mechanical model in the so-called impulse approxima-
tion. Watson (1953) derived a complete quantum description of the first Serber
step as a multiple-scattering series in which the impulse approximation of Chew
is the first term in the series. A great simplification in the quantum theory came
with the introduction of the eikonal by Glauber (1955) for which a successful,
yet simple, scattering theory was derived including the multiple-scattering series
(Franco and Glauber, 1966). Remler (1968) later derived a formal relation be-
tween the CGlauber multiple-scattering theory and the Watson multiple-scattering
theory.

The second step of the Serber model assumed that the level density within
a nucleus is large and that the high excitation energy is distributed in thermal
equilibrium among the many states. The excitation energy is then given up to
the most energetic nuclear particles that can escape the nuclear potential region.
Such a model was based on low-energy reaction studies in which reactions proceed
through a compound nuclear state. The formation of the compound nuclear state
at low energies was taken as the absorption of the passing plane wave by the
nucleus which was assumed to act like a “cloudy crystal ball.” This crystal ball
is referred to as the optical model (Fernbach, Serber, and Taylor, 1949) in which
the nuclear interior is treated as a medium with a complex index of refraction.
The relationship between multiple scattering and the optical model was given by
Watson (1953).

There was rapid progress in the development of intranuclear cascade models
with compound nuclear de-excitation after the introduction of large-scale scientific

computers (Metropolis, et al., 1958; Bertini, 1969). These intranuclear cascade
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codes had a large impact on the Apollo mission and continue to be used even
to this day (Santoro et al., 1986). The primary data base for shielding against
high-energy protons and neutrons remains to be that derived from intranuclear
cascade codes. An effort to extend the intranuclear cascade codes to include
complex projectiles has met with some success but is computationally inefficient
(Gabriel, Bishop, and Lillie, 1984).

The Langley program began with computations using the multiple-scattering
formalism (Wilson, 1973a and 1973b) derived from the work of Mandel
stam (1955). In accordance with Mandelstam, the transition amplitude is re-
lated to the residue at the pole of the propagator of the particles appearing in
the asymptotic states. The propagator is fully symmetrized and can be formed
into a multiple-scattering series by neglecting three-body terms and by project-
ing only the positive energy states. As Gross (1965) noted, the nuclear vertex
can be related to nonrelativistic nuclear wave functions. The two-body scatter-
ing amplitudes were reconstructed from phase shift analysis and extrapolated to
off-shell values by evaluating the one-pion exchange contributions directly and
extrapolating the remaining contributions by assuming a two-pion exchange pole
(Wilson, 1972). The S-state and D-state wave functions were taken from Hum-
berston and Wallace (1970). The final calculation performed by Wilson (1973a,
1973b, and 1974a) was very successful (fig. 3.1) at describing the measured angular
distributions of cross section and polarization measured for 146 MeV protons by
Postma and Wilson (1961). With this success at applying the multiple-scattering
theory to the three-body nuclear problem, we were encouraged to see these new
skills help solve problems closer to NASA’s interest.
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Figure 3.1. Comparison of S-wave plus P-wave fits using numerical integration for single
scattering. D-state restricted to 6.93 + 1 percent in search procedures and 5.93 at minimum
E =146 MeV.
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Chapter 3
3.2. Multiple-Scattering Theory

9.2.1. Glauber theory. The content of the Glauber (1955) theory is
contained in the profile operator

T(8) = 1 — exp|—ix(b)] (3.1)

where b is the impact parameter vector and the phase shift operator is
1 o0
x(B) = 5 / V(E+7)de (3.2)
—00

where v is the projectile velocity, V' is the interaction potential, and z is the space
variable in the direction of motion. The interaction potential for scattering an
elementary projectile from a composite system (assuming only two-body potentials
between projectile and constituents) is taken as

V) =3 ValF - 7o) (33)

which leads to the usual Glauber result. The usual extension to the scattering for
composite systems is to take (Czyz and Maximon, 1969)

V(@ = Vialfj — Ta) (3.4)
jo

where a constituents are located in the target of atomic weight Ar, and j con-
stituents are located in the projectile of atomic weight Ap. The multiple-scattering
form of the profile function is then (assuming that the potentials are commutative)

1) =1-TITI0 - 7ia(®) (3.5)
j [0
where ;o is the profile of the (j, @) colliding pair given as
1 00
T5al®) = 1~ expl-iz= [ VialFs ~ 7o) da (36)
—00

Equation (3.5) is expanded as

) CGekd
T =Y vjald) - S Vialb)1kp®) +- - (3.7)
jo >k

The graphical representation of the single-scattering term of equation (3.7) is
shown in figure 3.2. The double-scattering term contains two distinct types of
graphs illustrated in figure 3.3. Note that the series in equation (3.7) ends after
(Ap - Ar) terms.
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E=U————0—

Figure 3.2. Single-scattering graph.

Figure 3.3. Rescattering graphs.

3.2.2. Multiple-scattering series. The free projectile and target Hamilto-
nians, Hp and Hr, respectively, are taken together with the interaction potential
V' (assumed to be sums of two-body potentials between constituents) to form the
full Hamiltonian

H=Hp+Hp+) V,; (3.8)
aj

The wave function in a remote region of space after the scattering satisfies
HU =EV (3.9)

and consists of the superposition of the incident plane wave and the asymptotically
scattered wave

U=0p+7, (3.10)
where
(Hp+ Hr)p = Ep (3.11)
and
Ve =GTop (3.12)
with Green’s function given by
lim (E-Hp—-Hr+in)G =1 (3.13)
n—04
and the transition operator by
T=V+VGT (3.14)

In future equations we will assume that 7 is set to zero in the sense of the limit in
equation (3.13). The usual wave operator  that transforms plane wave entering
states to final scattered states

¥ = Qp (3.15)
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is given as

Q=1+GVQ (3.16)

so that 7 is formally given as
T=VQ (3.17)

Our purpose is to find a series for 7 that is in terms of simpler functions. The
development closely follows the original work of Watson (1953). The present
derivation for heavy ions was made by Wilson (1974b).

To proceed with this purpose, the transition operator is defined for scattering
the o constituent of the target with the j constituent of the projectile as

loj = Vaj + VajGtaj (3.18)

The wave operator that transforms the entering free state up to the collision of
the a and j constituents is given by

waj =1 + Z Gtﬁkwﬂk (319)
(8.k)#(.5)

Equation (3.19) is interpreted in the following way. The propagation to the time
just before the a and j constituents scatter is the sum of an operator that brings
the initial free state plus the scattered part from the scattering of all other 3 and
k constituents. Clearly, the full wave operator consists of the wave operator that
transforms the system to the a and j collision, plus the additional contribution
caused by the scattering of the o and j constituents; that is,

Q= Waj + Gtajwaj (3.20)

which, written symmetrically using equation (3.19), is

Q=1+ Giajwaj (3.21)
aj

The series given by equations (3.18) through (3.21) constitutes an exact represen-
tation of the scattering process defined by equations (3.8) through (3.17). Consider
the product

Vil = Vajwaj + VajGlajwaj
= (Vaj + VajGtaj)waj = tqjWaj (3.22)

Summing the a and j constituents gives

T= Z Vol = Z tajWaj (3.23)
aj aj

which shows equations (3.18), (3.19), and (3.21) as a solution to (3.16). By
iteration of equations (3.23) and (3.19), the multiple-scattering series

T = Z taj + Z tajGtﬂk +... (3.24)
aj (8,k)#(a.j)
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is obtained, which constitutes a formal solution to the exact scattering problem
(Wilson, 1974b). If the usual replacement (Watson, 1953; Wilson, 1974b) is made,
that is,

G_’GOEE—ETJ'—ZTQ

j o

where G is the free n-body Green’s function given in terms of total energy
and constituent kinetic energy operators, then ta; becomes essentially two-body
operators and equation (3.24) becomes a series of sequential two-body operators.
The graphical representations of the terms of the series of equation (3.24) are the
same as those shown in figures 3.2 and 3.3. The series (eq. (3.24)) reduces to
the usual Watson series when the projectile consists of a single particle. When
equation (3.24) is evaluated using the eikonal approximation, the Glauber theory
is obtained, implying cancellation of an infinity of terms of equation (3.24) in the
eikonal context. This type of cancellation was first noted by Remler (1968) and
Harrington (1969).

3.2.3. Optical potential. A potential operator Vopt must be found whose
corresponding Born series for the T-matrix is equivalent to the multiple-scattering
expansion (eq. (3.24)). Such an operator is closely related to the so-called optical
potential (ﬁlehla, Gomolcék, and Pluhaf, 1964; Foldy and Walecka, 1969), which
will be referred to as Vopt- The transition operator

7:)pt = Vopt + %ptG%pt (3~25)
will be defined by
Vopt = ) _ taj (3.26)
aj
from which
T =Topt+ D _tajGtoj+... (3.27)
aj

The optical model is obtained by retaining the first term in equation (3.27), and
the order of approximation is

~ Vopt GVopt

T — Topt ™ Y (3.28)

because to; ~ Vopt/(A7Ap) where Ay and Ap are the atomic weights of the
target and projectile, respectively. The amplitude in equation {(3.25) is a rather
good approximation to the exact amplitude for light as well as heavy nuclei.

In summary, a multiple-scattering series for heavy ion scattering has been
derived that appears as a natural extension to the Watson formalism. The
structure of this series indicates that it reduces to the Glauber result within the
eikonal context. A potential operator is found which shows that an optical model
for heavy ion scattering is a good approximation for even rather light nuclei.
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Chapter 3
3.3. Heavy Ion Dynamical Equations

In the previous section, an optical potential equation was derived for use
in the scattering of heavy jons. In this section, the coupled-channel equations
for composite particle scattering are examined. Our method will be similar to
that of Foldy and Walecka (1969) and has been presented elsewhere (Wilson,
1975). Particular attention will be given to the relation between the coherent
elastic-scattered wave, the Born approximation, Chew’s (1951) form of impulse
approximation, the distorted-wave Born approximation (DWBA), and various
approximation procedures to the coupled equations. Finally, the coupled equations
will be solved by using the eikonal approximation. A simplified expression for
the scattering amplitude is derived from that approximation, which includes the
elastic- and all the inelastic-scattered amplitudes for small scattering angles. A
discussion about the customary use of the optical theorem to estimate total cross
sections from the coherent elastic-scattered wave will shed some light on the
reasons that this estimate of total cross sections is successful.

3.8.1. Coupled-channel equations. The starting point for the present
discussion is the coupled-channel (Schrodinger) equation relating the entrance
channel to all excited states of the target and projectile. This equation was derived
by Wilson (1974b and 1975) by assuming the kinetic energy to be large compared
with the excitation energy of the target and pro jectile and closure for the accessible
internal eigenstates. These coupled equations are given as

. 2mApA
(924 F2) (@) = T 3 Vimugmit (@) eyt (@ (3.29)

miy!

where subscripts m and p label the eigenstates of the projectile and target; Ap and
Ag are projectile and target mass number, respectively; m is constituent mass;
k is projectile momentum relative to the center of mass; and Z is the projectile
position vector relative to the target, with

ap (E) o1 (&) )
(3.30)

Vopt (gP» &r, 55)

Vmu,m’u’(f) = <9P,m (EP) 9T.u (ET)

The quantities gpm (Ep) and gru (ET) are the projectile and target internal

wave functions, respectively; {p and ET are collections of internal coordinates of
the projectile and target constituents, respectively; and Vopt (EP,ET,:E‘) is the
effective potential operator derived in the previous section and is given by

Vopt (EP?ET:'%) = zta] (fayfj) (331)
aj

Here, to; (Za, :i'j) is the two-body transition operator for the j constituent of the
projectile at position Z; and the o constituent of the target at Zo. The total
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constituent number N is defined as
N=Ap+ Ay (3.32)
The notation is simplified by introducing the wave vector

Yoo (Z)
P(F) = wﬁ) & (3.33)

and the potential matrix

Vo0,00(Z)  Voo,01(Z)  Voo,10(F)
—— Vor,00(Z) Vo1,01(2) Vor,10(2) ...
U@) = ZEL2P 1 Vipoo(E) Vi (F) Viepo(d) ... (3.34)
N Vigeo(@) Vino(@) Vi@ ...

The coupled equations are then written in matrix form as
(V2+EY) (@) = U@ v(@) (3.35)
for which the approximate solution is considered.

The object of the solution of equation (3.35) is the calculation of the scattering
amplitude given by

£(@) = —\/g / exp (—uéf f) U(Z) ¢(7) d°F (3.36)

where k 7 is the final projectile momentum and § is the momentum transfer vector

- -

G=ks—k (3.37)
Because equation (3.35) cannot be solved in general, the rest of this chapter is
devoted to the study of approximation procedures for the evaluation of equa-

tion (3.36). To gain insight, the simplest approximations are examined first and
provide a basis for more accurate and complex procedures.

3.3.2. Born approzrimation. The Born approximation is obtained by
approximating % (Z) by the incident plane wave. The coupled amplitude is then
written as

2@ = —i exp (—i7 - Z) U(&) d°%F (3.38)

which is a matrix of approximate scattering amplitudes relating all possible
entrance channels to all possible final channels. For example, diagonal elements
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relate to all possible elastic scatterings of the system where the elastic channel
is defined by the entrance channel. Using the definition of the potential given in

equations (3.30) and (3.31) results in
Vi, () = > <9P,m (EP) 9T (ET) 9P’ (EP) 9Ty (ET) >

taj (fa,fj)

o
= / o7t (7o) taj (FarE5) PPt (75) d°7, &7 (3.39)
o
where
ppmm (F5) = / 9pm (EP) 8 (’Fj —EP,j) 9pm’ (EP) d*€p (3.40)
and
o1t (7o) = [ 91, (Er) & (Fo ~Era) omr (&) &8 (3.41)

where an asterisk denotes complex conjugation. The Fourier transform of equa-
tion (3.39) yields

/ Voumtt(3) exp(—id - 7) &3
= / exp(—i§ - %) [ / 7t (Fa) PPmm (75) tog (Za, %) Fa d37"'j] d3z
aj

= Z taj(k’ Ej) FT,p,p’(‘_j) FP,mm’(—‘—j) (342)

aj

where the transition amplitudes to; (o, ;) used depend only on the relative po-
sition vector of the a and j constituents relative to one another. The form factors
Fp (@) and Fr , (@) are the Fourier transforms of their corresponding single-
particle transition densities given in equations (3.40) and (3.41), respectively. Us-
ing equations (3.34) and (3.42) in equation (3.38) results in the following form for
the Born approximation:

1 [2mALA2 . e
rg’u’,mp(q‘) = T ( ]\}; T) FT,p"u(q) FP,m'm(—q) t(k,q) (3'43)
where
~ 1
Hh,§) = —— 3 ta;(k, 3.44
(6 = iy St (3.44)

is the transition amplitude averaged over nuclear constituents.

Consider now the projectile form factor given by the Fourier transform of the
single-particle densities as
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Fpmim(@ = [ exb G- 7a) bpmtm (o) &%
= [ b (Er) o0 (id-Epa) opm (&) P80 (35)

Expanding the exponential factor as a power series results in

1.,eo

FP,m’m(‘i) = b + idp) - §— 5‘? ap2-G+... (3.46)

where the first term in equation (3.46) corresponds to the normalization condition
of the eigenstates; the second term contains the dipole transition moment given
by

§P,a

dpy = <9P,m’ (EP) 9Pm (EP) > (3.47)

and the third term contains the dyadic quadrupole transition moment
«— -
ap2 = (9gpm (fp)

The higher order multipole transitions are indicated by dots in equation (3.46).
The lowest order nonzero term in equation (3.46) depends on the properties of
the internal wave functions involved. In general, the £th transition moment with
magnitude given by

apg = ‘<gp,m/ (ép) l (EP,Q)g {gP,m (p) >’ (3.49)

EPalPa

9pm (&) > (3.48)

is zero unless
(3.50)

Ty —Jmlé ¢ = lJm,+Jm

as a result of the Wigner-Eckart theorem where J,,, and Jy are the projectile
internal angular-momentum quartum numbers in the entering and final states,
respectively. Because of the orthogonality, equation (3.49) reduces to

apo = 6,1 (3.51)

for £ = 0. It follows from relations (3.50) and (3.51) and for small momentum
transfer that

- apep|dl’?
FP,m’m(Q) & Omim + _pr—' (3-52)
where
fp =max{’Jm: —Jml,l} (3.53)
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is the angular momentum associated with the lowest order transition moment.
Similarly, for the target one obtains

. ar, |87
Fr (@) = 6, + _’eT?‘— (3.54)
where
br = max{ Jy = Ju ,1} (3.55)

It follows from relations (3.43), (3.52), and (3.54) that the Born amplitude has
proportionality given by

y apepldl’? ar e AT 5,0 4
ﬁg’u’,mp,(‘]) & (6m’m + —_;P—'—> (611"1" + ——ET’T‘—‘ t(k,q) (3.56)

where apy, and at g, are the lowest order nonvanishing transition moments of
the projectile and target corresponding to equations (3.53) and (3.55).

On the basis of the Born approximation, a very strong threshold effect on
the various excitation processes is observed. This effect causes an ordering in the
contribution of specific excitation channels in going from small to large momentum
transfer. At zero momentum transfer, only the elastic channel is open. As the
momentum transfer increases, the single dipole transitions for either the target
or the projectile, but not both, are displayed first. Note that this condition
severely restricts the accessible angular momentum states in the excitation process.
At slightly higher momentum transfer, coincident dipole transitions in projectile
and target and single quadrupole transitions are in competition with and may
eventually dominate the single dipole transitions at sufficiently high momentum
transfer. Similarly, at higher momentum transfer, transitions to higher angular-
momentum states are possible.

9.9.3. Perturbation expansion and distorted-wave Born approzrima-
tion. According to the previous discussion, for a restricted range of momentum
transfer, the off-diagonal elements of the “Born” matrix of scattering amplitudes
are small compared with the elastic-scattering amplitudes for the various channels
found along the diagonal. By noting that these amplitudes are proportional to
the potential, a decomposition of the potential into large and small components
(Wilson, 1975) may be made as

U (&) = Uy(&) + Uo(%) (3.57)

where Uy(Z) denotes the diagonal parts of U(Z) and Uy(%) denotes the corre-
sponding off-diagonal parts. Clearly,

Uy(Z) >> Uo(T) (3.58)
which is in accordance with the preceding discussion. Treating the off-diagonal
contribution as a perturbation and considering the iterated solution will lead to

substantial simplification (Wilson, 1975).
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Rewriting equation (3.35) as
(V2 + 2 - U] v(@) = U.(2) $(@) (3.59)
and taking as a first approximation
[V2+k2- Uy(3)] wo(2) = 0 (3.60)
leads to a solvable problem. The only nonzero component of Yo (Z) is the elastic

coherent scattered wave. If the initial prepared nuclei are in their ground states,
then the solution for the coherent elastic wave is obtained from

(V2 +72) ve(@) = Unooo(@) we(@) (3.61)
and the first approximation to the coupled-channel problem is
Ye(Z)

0
Yo(2) = g (3.62)

Estimating the perturbation by using equation (3.62) yields the lowest order
correction as .
[V + B2~ Uy(®)] v (@) = Un(@) 0(2) (3.63)

The right-hand side is a term describing the source of excitation caused by the
interaction of the coherent amplitude and is of the form

0
Uo1,00
U,(Z) 9o(F) = g;g,gg Ye(Z) (3.64)

Because the first component of the source of excitation is zero, the equation for
the first component of equation (3.35) is

(V2 + k2 - Voo 0(@)] v (@) = 0 (3.65)

and reveals that the iteration of the elastic channel yields again the coherent elastic
amplitude

U0 (@) = pu(@) (3.66)

The remaining components of equation (3.63) are
2+k2 -y, B)| Y@ = U (3) %e(@ 3.67
Vit+k mp,mu(E) Tpmu(x) = Upmp,00(%) Ye(T) (3.67)
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This process of successive iteration is equivalent to the series approximation

#(Z) = Yo(@) + $1(F) + Y2(@) + - (3.68)
where
[V2+ B2 - Uy@)] o(d) = 0 (3.69)
and
[V2 4+ 2 - Uy(@)] (@) = Uo(@) i (@) (3.70)

The iterated solution and series solution are related as
$i(Z) = (@) - (@)
(@) =0

(3.71)

and the ith iterate () (Z) is the ith partial sum of the series.

Further insight can be gained by considering the formal solution to the coupled
equations (3.69) and (3.70). Introducing the diagonal coherent propagator

G. = [Vi+R2- U] (3.72)
and the coherent wave operator
Q. =1+ (Vi+Fk N7 Uy@) (3.73)
produces the solution to equation (3.70) as

¥i(Z) = G Uo() $i1(2) (3.74)

with
Py = NPy (3.75)

where 9, is the entering plane-wave state. The series (eq. (3.68)) may now be
written as

The first term is the coherent elastic-scattered wave as noted in equation (3.75)
and represents attenuation and propagation of the incident plane wave in matter.
Since 2 is diagonal, this propagation is in undisturbed matter. The second
term of equation (3.76) relates to the excitation caused by the presence of the
coherent elastic wave followed by coherent propagation in disturbed matter. Note
that the second term has no contribution in the elastic channel. The third term of
equation (3.76) relates to further excitation caused by the presence of the scattered
waves formed exclusively by coherent excitation and the first correction to the
elastic channel caused by incoherent processes. Hence, the coherent elastic wave
is correct up to second-order terms in off-diagonal elements of the potential matrix.
These off-diagonal elements show considerable damping or suppression at small
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momentum transfer as shown in connection with equation (3.56). This may well.

be the reason that the coherent elastic amplitude has been so successful in nuclear
applications (Wilson, 1975; Wilson and Costner, 1975; Best, 1972).

The structure of the second term in the series (eq. (3.76)) is either the
usual distorted-wave Born approximation (Austern, 1963) or the single inelastic
scattering approximation (Goldberger and Watson, 1964). The entire series could
be aptly referred to as the distorted-wave Born series. However, recalling that
the terms of the series correspond to a successively larger number of changes
in states of excitation (that is, the first term contains no excitation, the second
term transforms the coherent elastic wave to the excited states, the third term
transforms the excited states of the second term to new excitation levels, and so
on), a more appropriate name for the series would be the “multiple-excitation
series.”

3.4. Coupled-Channel Amplitudes

The coupled equations (3.35) are now solved within a small-angle approxi-
mation. This solution in effect sums the multiple-excitation series to all orders
and, as a final result, gives expressions for the scattering amplitudes connect-
ing all possible entrance channels to all possible final channels. By making the
forward-scattering assumption, the boundary condition is given by

32
lim 9(z) = ( 1) exp(if - 7) (3.77)

Z——00 ﬂ
where —2 is the direction to the beam source and & is a constant vector with a
unit entry at the entrance channel element but zero elsewhere. Equation (3.77)
simply states that no particles are scattered backward. Physically, this assumption
is justified because the backward-scattered component for most high-energy

scattering is many orders of magnitude less than the forward-scattered component.
The form of the solution to equation (3.35) is taken as

1\3/2 - .
P(Z) = (%) exp [i¢(F)] exp(ik-Z) & (3.78)
where the boundary condition (3.77) implies that

lm ¢(Z) =0 (3.79)

Z— =0

as a boundary condition on ¢(&). By using equation (3.78), one may write an
equation for ¢(Z) as

V2 $(@) ~ Vo ¢(3)]2 - 2k - V,(2) - U() = 0 (3.80)
If U(Z) is small compared with the kinetic energy
U(Z) << k? (3.81)
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and if the change in U(Z) is small over one oscillation of the incident wave, that
is,

v, U(E) << k U(Z) (3.82)

where inequalities refer to magnitudes of elements on each side of equations (3.81)
and (3.82), then equation (3.80) may be approximated by

21% #(2) = ~U(@) (3.83)

which has the solution L
6(8) = — 5 /a U dz’ (3.84)

where the value of a is fixed by the boundary condition (eq. (3.79)) to be —oo.
The scattered wave (eq. (3.78)) may now be written as

z LYY i [* u@)dE ik - 7) 3.85
s@=(5) owl-5 [ U@ |eE-05 @)
Note that the wave operator is approximated by
1 z oy ~/
Q~exp|—=7 U(Z') dzZ (3.86)
2k J-_oo

The eikonal result for the scattering amplitudes is given by

(@) 8= —\/§ [ exo (<iky 2) U@ w(@) 22

(e [T U@ @] 6 &2
= 471_/exp( iq :r)U(x)exp[ ok /;ooU(z )dz]&d Z  (3.87)

where k 7 is the final projectile momentum and § the momentum transfer given by

-

g=k;—k (3.88)

The eikonal approximation to the coupled-channel amplitude (eq. (3.87)) can be
further simplified by making an additional small-angle approximation as follows.
By using a cylindrical coordinate system with cylinder axis along the beam

direction and writing
F=b+7 (3.89)

where b is the impact parameter vector, the product of § and £ may be written as
g-2=3-5+0(6% (3.90)

where 8 is the scattering angle which is assumed to be small. This small-angle
approximation allows equation (3.87) to be written as

- — ) z — -
7@ = —21; / exp(—ig-b) U(B+ %) exp [-5% /_ ~ UG+ z) dz’} 4% dz (3.91)
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where the integral over Z can be performed exactly. Performing the integral over 7
in equation (3.91) yields the final simplified expression for the scattering amplitude
as

f@=>é§ mm4aa{appnayq}d% (3.92)
where

x@:—%Z:U@+aﬁ (3.93)

Equation (3.92) gives the matrix of scattering amplitudes of all possible entrance
channels to all possible final channels of the system.

The relation between the eikonal result for the full scattering amplitude
(eq. (3.92)) and the various approximate results discussed earlier in this section
is now derived. First, consider the expansion in powers of x of the integrand of
equation (3.92):

ik - 1 1 —
ﬂ@:E;/mM—ﬁb)Gx~ﬂf—§#f+”>d% (3.94)
The first term is the Born approximation at small angles. Higher order terms are
multiple-scattering corrections to the Born result. Recall that the Born approx-
imation for the optical potential is equivalent to Chew’s impulse approximation.
A more interesting result is obtained by separating the x matrix into its diagonal
and off-diagonal parts as

x(8) = xa(B) + x0(b) (3.95)

which correspond to the diagonal and off-diagonal parts of the matrix potential
U(Z). An expansion in powers of the off-diagonal part of x in equation (3.92)
yields

F@ == 55 [ep-i7-5 {exp [i xal®)] -1} %

ik R . 1 (. 1 1. =

~ o exp(—i7 - b) exp [z Xd(b)] (z Xo — axﬁ ~ 3 X3+ .. ) d’b (3.96)
The first integral is the elastic coherent amplitude, the first term of the second
integral is the distorted-wave Born approximation, and the remaining terms are
multiple-excitation corrections.

3.5. The Elastic Channel

Section 3.4 showed that within a small-angle approximation, the coupled-
channel equations could be solved. The principal difficulty in calculating the full
coupled-channel amplitude lies in the almost complete lack of knowledge of the
internal wave functions for the colliding nuclei for all orders of excitation. On the
very general principles for near forward scattering, transitions to the excited states
are kinematically suppressed. This was the main motivation for expanding the
solution in terms of off-diagonal matrix elements of the potential. Near forward
scattering, the scattering amplitude is dominated by the diagonal elements. If
elastic scattering is strongly forward, then a reasonable approximation to the
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elastic amplitude is obtained by neglecting the off-diagonal contribution (coherent
approximation), and, in addition, the eikonal small-angle approximation should be
accurate. In this vein, the elastic-channel amplitude is approximated by retaining
only the first term in equation (3.96). Detailed comparisons with experimental
data are made to justify this approximation.

Wilson (1975) showed that the elastic-channel potential (actually the coherent
potential) can be reduced to

. 2mA2. A% . . . o wr
Ui@) = 2O [z 7() [ @G opE+ gD WY B9

where pr(Z) and pp(?) are the target and projectile ground-state single-particle
densities, respectively, and t(k, ) is the energy- and space-dependent two-body
transition amplitudes averaged over the projectile and target constituent types as

_ 1
= ApAr

[NPNTtnn + ZpZytpy + (NpZ7 + ZPNT)tnp] (3.98)

with Np and Np being the projectile and target neutron numbers, respectively,
and Zp and Zr being the corresponding proton numbers. The normalization of
the ¢ amplitude is given by

ahm=—5%§/uwamf@®fa (3.99)

with the usual expression for the spin-independent two-nucleon transition ampli-
tudes as

« ole)y/me ) 1 iy

o) = DT (o) 4] exp |- B0) (3.100)
where e is the kinetic energy in the two-body center-of-mass frame, yu = m/2 is the
two-body reduced mass, o(e) is the energy-dependent total two-body cross section,

a(e) is the ratio of real to imaginary parts, and B(e) is the slope parameter. The
elastic-channel phase function may now be approximated by

- 1 [ .
x(®) = o /_ U+ (3.101)

from which the elastic-channel (coherent) amplitude may be calculated by

£o(@) = —ik /0 “bdb Jo (2kb sin %) {exp [i X(B')] - 1} (3.102)

where the property that the phase function is cylindrically symmetric about the
3-direction has been used and Jy( ) is the zeroth-order Bessel function. Applying
now the optical theorem

oo = - Tm [ £(0)] (3.103)

yields -
Otot & 47r/0 b db {1 — exp [—xi(g)] coS [XT(E)]} (3.104)
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where xr and x; are the real and imaginary parts, respectively, of x. Since the
scattering is strongly forward, the total elastic cross section may be calculated by
using the eikonal expression by

%=/umF@
~~ 4 /000 b db {1 — exp [‘Xi(g)] cos [Xr(g)J }

—or /Ooob db {1 — exp [—2 Xi(B)]} (3.105)

from which it follows that

Tabs = Otot — Ts & 27 /0 b db {1 — exp [—2 xz-(F)]} (3.106)

The use of the coherent wave as an approximation to the elastic channel has, at
least in part, been justified by comparison with experiment (Wilson, 1975; Wilson
and Costner, 1975). The formalism gave good agreement with the experiments of
Schimmerling et al. (1971 and 1973), as shown in figures 3.4 and 3.5, and predicted
oscillations in cross sections for nuclei corresponding to the shell structure of nuclei
(Wilson, 1975) as shown in figures 3.4 to 3.6.

1% £ Wilson, 1975 2 "% F _ wikson, 1975
_;E: ¢ Schimmerling et al., 1971 E ! Schimmerling et al., 1973
g
! 8
£ 5
g 103 | 21031
e 5
5 §
E
: i
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Ar ATt
Figure 3.4. Total nucleon-nucleus cross section Figure 3.5. Nucleon-nucleus absorption
as a function of a nuclear mass number cross section as a function of nuclear
at 1.064 GeV. mass number at about 1 GeV.

3.6. Abrasion Theory

Abrasion theories developed in recent years have relied on Glauber theory as
the basic formalism for the evaluation of probabilistic collision factors. Conse-
quently, the inherent restrictions of Glauber theory are also limitations in these
models. With the more powerful theoretical methods now available (Wilson,
1975), the development of a new abrasion theory is appropriate based on these
more general results from current abrasion theories. The present development
follows closely the work of Townsend (1983 and 1984).
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Figure 3.6. Triton-nucleus absorption cross section as a function of target mass at
100 MeV /nucleon.

In the abrasion-ablation collision model, projectile fragmentation is a three-
step process. In the first step (abrasion), m nucleons are knocked out of the
projectile nucleus of mass number Ap, leaving an excited prefragment nucleus of
mass number

Ap=Ap—m (3.107)
In the next step, the prefragment is ablated by gamma emission, particle emission
(usually nucleons or a-particles), or a combination of the two. The third and final
phase involves interactions between the particles in the final state. These final-
state interactions, although not unique to this collision formalism, are nevertheless
significant experimentally and must be included in any complete theory.

9.6.1. Abrasion cross section. From Bleszynski and Sander (1979), the
cross section for abrading m projectile nucleons is given by

Om = (A )27r / [1 _ P(E)]m P(B)*F b db (3.108)

P
m
where (’2,{’ ) is the binomial coefficient that reflects the number of possible

combinations of m nucleons taken from an ensemble of Ap identical nucleons.
The total absorption cross section

Tobs = 27 / [1- P(B)AP] b db (3.109)

is obtained by summing over all values of m according to

Ap
Tabs = Y Om (3.110)
m=1

In equations (3.108) and (3.109), P(b) is the probability as a function of impact
parameter for not removing a single projectile nucleon in the abrasion process.

Hence, 1 — P(E) is the probability for the removal of a nucleon.
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The probability in Glauber theory is given by (Bleszynski and Sander, 1979)

-

P() = 2W/Dp(s') exp [~ Arowy Dr(s +5)] s ds (3.111)

where Ap is the mass number of the target and D(3) denotes the single-particle
densities summed along the beam direction (thickness functions)

D@ = [ p(3+2) d ' (3.112)

0o

The abrasion theory is now extended to a more general collision theory that does
not exhibit the convergence problems inherent with Glauber theory (Wilson, 1975;
Wilson and Costner, 1975; Wilson and Townsend, 1981). An added feature of the
extended abrasion theory, which gives symmetry to the final result, is that the
projectile and target nuclei are treated on an equal basis. .

3.6.2. Generalized abrasion theory. From the optical model derived in
a previous section, the absorption cross section is expressed using the eikonal
approximation

Oabs = 27 /OOO {1 — exp [—2 Im X(l;)] } b db (3.113)

where the eikonal phase function X(E), with the optical-model potential approxi-
mation from Wilson and Costner (1975) incorporated, is written as

x(B) = %APAT o) [ale) +1] 1(5) (3.114)
where

16) = en B@™? [z [ & pr(r)

—~2
32 7 .3 —i
X /d §pp(b+Z+§F+&7) exp [——2 B(e)] (3.115)

In equations (3.114) and (3.115), o(e) is the energy-dependent nucleon-nucleon
cross section, a(e) is the energy-dependent ratio of the real part to the imaginary
part of the scattering amplitudes, B(e) is the energy-dependent slope parameter,

and pp and pr are the projectile and target single-particle nuclear densities,
respectively. Townsend (1983) uses equations (3.109) and (3.113) to imply that

P(B)AP = exp [—2 Im x(5)) (3.116)
Substitution of equation (3.114) into equation (3.116) yields
P() = exp [~ A o(e) 1(5)] (3.117)
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Finally, the cross section for abrading any m nucleons (eq. (3.108)) is written as

Om = (f}:) 27r/ {1 — exp [—AT o(e) I(i)‘)} }m exp [—ATAF o(e) I(g)] b db
(3.118)

In evaluating equation (3.118), values for o(e) and B(e) were taken from the
compilations of Hellwege (1973) and Benary, Price, and Alexander (1970). The
nuclear single-particle densities in equation (3.115) were extracted from the charge
density data in De Jager, De Vries, and De Vries (1974) using the detailed
procedure of Wilson and Costner (1975).

3.6.3. Isotope production cross section. Up to this point, all nucleons
have been treated as identical objects. To differentiate between protons and
neutrons, equation (3.111) is replaced by (Hiifner, Schéfer, and Schiirmann, 1975)

Onz = (N P ) (ZP ) 2 / 1 —P(E)]”“ P(b) 4P~""%b db (3.119)

n z

where P(b) is again given by equation (3.117). In equation (3.119), op; is the
cross section for abrading n out of Np neutrons and z out of Zp protons from the
projectile nucleus. Implicit in this expression is the assumption that the neutron
and proton distributions in the projectile nucleus are completely uncorrelated.
This oversimplification of the actual complex nature of nucleon correlations in
nuclei provides an analytically simple and convenient starting point for computing
cross sections for specific fragment species.

3.6.4. Results. Figure3.7 displays results obtained from equation (3.118) for
16() projectile nuclei colliding with various stationary target nuclei. The incident
kinetic energy is 2.1 GeV /nucleon. The shapes of the curves are largely determined
by the 27b factor and the effect of the spatial variations of pr and pp on P(E) in the
integrand of equation (3.118). The comparatively large cross sections for abrading
1 or 2 nucleons are indicative of the dominance at large impact parameters of the
o factor. Were it not for the large degree of nuclear-matter transparency in this
very low density region, these cross sections would be even larger in magnitude.
Physically, these theoretical results are not unexpected. In peripheral interactions,
the nucleons near the surface are the least tightly bound and are more easily
removed than those in the nuclear interior. Because of the short finite range of
the nuclear force, abrasion is possible even if the projectile and target densities
do not physically overlap.

As the number of abraded nucleons increases, overlap between the projectile
and target must occur. This increases the overlapping densities that do not,
however, offset the initial decrease in the impact parameter. As a result, the
cross sections initially decrease with increasing values of m. Between m = 5
and m = 11, the cross-section curves flatten as the increasing nuclear densities
tend to balance the decrease in the 27b factor. For m 2 11, the curves display a
marked dependence on the size of the target nucleus. The rapid decrease in om
for the ?Be target indicates that abrasion of all, or nearly all, projectile nucleons
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by the smaller target is likely to occur only for very small impact parameters. If
the target is pure hydrogen (curve not shown), the cross section for abrading all
projectile nucleons in one collision, from equation (3.118), is less than 5 nanobarns
(nb)-—approximately a million times smaller than for the Be target. As target size
increases, the abrasion cross sections increase as m increases. This results from
the larger geometric area for which the projectile and target volumes completely
overlap.

350

al
[

1 L L L 1

1 3 5 7 9 11 13 15 17
Number of abraded projectile nucleons, m

Figure 3.7. Oxygen-target abrasion cross sec- Figure 3.8. Equivalent Feynman diagram (low-

tions oy, as a function of the number of est order; no time reversal) of projectile
abraded projectile nucleons m. The lines prefragmentation used in this work.

are merely to guide the eye. Incident

kinetic energy is 2.1 GeV /nucleon.

3.7. Abrasion-Ablation Model

In previous work (Townsend, 1984; Townsend et al., 1984b: Townsend, 1983),
abrasion-ablation cross sections have been determined by calculating abrasion
Ccross sections that are then multiplied by an ablation probability obtained
from compound nucléus decay probabilities. This study demonstrates (Norbury,
Townsend, and Deutchman, 1985) that the method of determining abrasion-
ablation cross sections arises solely from particular approximations to the general
formalism developed herein, and it is therefore only a special case of this more
general formalism.

In terms of the transition rate, the total cross section is written as
v
o= —w (3.120)

v

where v is the normalization volume and v is the incident velocity of the projectile.
The transition rate is given as

27
w =T plex) (3.121)
where Planck’s constant is denoted by % and the transition amplitude is given by
n

TEt =3 T8 G T (3.122)
mn
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where T,‘c’g’ is the ablation amplitude, Gp; is the propagator, and T,‘:f” is the
abrasion amplitude. The total abrasion-ablation cross section for the phase space

associated with figure 3.8 is

v v d
hv (27rh)9 dEZXRTI

x / / / TAAR dpx dPppr oz (3.123)

Using a phase space recurrence relation

o(Z) =

pa(ezxRT) = / / / p2(€zXRT)

x pa(ezxr) p2(ezx) dezx dezxR (3.124)
demonstrates that d3px can be replaced by d3ppr in equation (3.123) where
d3pp = d*pzx (3.125)

This, together with equation (3.122), allows the cross section in equation (3.123)
to be written as

oy V3 d
G(Z) _—ﬁT (271’71,)9 dEZXRT' ///

x d3ppr d°pp dpz (3.126)

2

bl br
ST Gy Ty
k{3

A major approximation is now introduced as
2

D3

n

2 2 2

abl abr
Tkn Tm'

Gni

‘ S T G Tl (3.127)
n

which will henceforth be referred to as the “classical probability approximation”
because it involves the classical addition of probabilities (right-hand side) rather
than the quantum mechanical addition of amplitudes (left-hand side). In essence,
it involves ignoring the interference terms of the left-hand side of equation (3.127).
We believe that the famous Bohr assumption for compound nucleus decay (Blatt
and Weisskopf, 1959), which justifies the separation of a two-step cross section
(such as compound nucleus formation and decay or abrasion-ablation) into a
product of formation and decay (partial width) cross sections, is based upon
this classical probability approximation. The Bohr assumption is so widely used
because of the reasonableness of the classical argument. Equation (3.127) is
sometimes justified quantum mechanically, especially when dealing with angular-
momentum matrix elements (Brink and Satchler, 1968) where theorems on
Clebsch-Gordan coefficients are available (Norbury, 1983). This is especially
true, for example, for a single (one-level) resonant state involving several different
angular-momentum projections M where the summation over n simply becomes
s summation over M for the single resonance of a particular energy (Brink
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and Satchler, 1968). This was also the case for the pion production work of
Townsend and Deutchman (1981); Deutchman and Townsend (1980 and 1982);
Deutchman et al. (1983); Townsend et al. (1984a); and Norbury, Deutchman,
and Townsend (1984) where there was only the single intermediate isobar A
resonance at a fixed energy but with various spin and isotopic spin projections.
Norbury (1983) has shown that equation (3.127) results from the spin-isospin
Clebsch-Gordan algebra. Another example is the photonuclear excitation of a
compound nucleus where the formation of a resonant state of a single energy, but
with different spin projections (Norbury et al., 1978), justifies the use of the Bohr
assumption when calculating (7y, n) cross sections via compound nucleus formation
and decay. In general, however, the preceding simplifications that justify the
classical probability assumption do not hold for the abrasion-ablation process.
For example, a particular final projectile fragment could result from the ablation
of numerous different prefragments, each with a quite different excitation energy.

The partial width, which is simply a transition rate multiplied by Planck’s

constant, is
2
abll - g3, (3.128)

v d
r,=2r——— ——_ T,
* T T ann)3 deP,/ kn

Substituting equations (3.127) and (3.128) into equation (3.126) yields

124 V2 d 2 br 2
Z) = — T || T
J( ) zn: h’U (27Th)6 deXRTI /// n an e
x d3ppr dppv depr (3.129)
which can be rewritten as
v 2 b'r'2
o(Z) :Z ho //Pn Ghri T’r?i
n
xd NipS (EP’RT';pP"pR”pT’) dfpl (3130)

where d Nips is the noninvariant phase space factor. The abrasion cross section is

on(t) == [

X lepS (GPIRTI;pPI,pR,pT/) (3131)

b 2
abr
Tm’

where P’ is approximated by the on-shell value. Equation (3.131) yields

a(Z):%Zn:/Fn

Inserting Green’s function, the abrasion-ablation cross section is

2
on(A) depr (3.132)

Gm’

1 T
o(2)= 5 En:/ e r TR oA dep (3.133)
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where the total I' and partial widths are related by

I'=> Ty, (3.134)

To evaluate the integral in equation (3.133), the zero-width approximation
(Pilkuhn, 1967)

lim L/
T—0 (en — €)% + ([/2)?

is introduced. If we write the energies explicitly as

= 8(en — €) (3.135)

€n =€pr + €1+ €R (3136)

with an initial-state energy given by

€ =€pter (3.137)
and the final-state energy as
€ =€x +ez+em+eg (3.138)
then conservation of energy
€ =€ (3.139)
yields
En—fizfpl—(6X+€Z) (3.140)

Inserting equation (3.140) into equation (3.133) indicates a variable, interme-
diate, virtual resonance energy epr centered about ex + €z, which is integrated
over. The nature of the delta function in equation (3.135), however, destroys this
quantum mechanical feature of virtual energy in the integral. The zero-width ap-
proximation, then, can be considered as another classical approximation. Inserting
equations (3.135) and (3.140) into equation (3.133) yields

r

o(Z2)=) ?"crn(A) (3.141)
n
If the branching ratio is defined as
r
gn = —F'i (3.142)

and is recognized as the usual ablation probability factor (Townsend et al., 1984b;
Townsend, 1983)

o(Z) =7 gn on(A) (3.143)

which is the standard abrasion-ablation cross-section result (Bleszynski and
Sander, 1979; Hiifner, Schifer, and Schiirmann, 1975; Townsend et al., 1984b;
Townsend, 1983; Bowman, Swiatecki, and Tsang, 1973).
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This result (eq. (3.143)) can also be obtained from equation (3.133) by an
alternative method. Since o,(A) is obtained by integrating over all impact
parameters, it is independent of e€pr. Taking it outside the integral enables
equation (3.133) to be written as

o(2) = %Zﬂ:an(x“) / s e,»)l;l T2 depr (3.144)
Inserting
r
T= 1 (3.145)

inside the integral in equation (3.144) and substituting equation (3.142) yields

1 T
7(2) = 5z S on(4) e (3.146)

If g, is independent of epr (which merely requires I'y, and T" to possess the same
energy dependence), then it can be taken outside the integral to yield

1 r
o(Z) = o Z;gn on(A) / S Y depr (3.147)

In principle, if the dependence of " on €ps is known, then the integral can be
calculated numerically if not analytically. If the zero-width approximation is
inserted from equation (3.135), equation (3.143) is again obtained.

Equation (3.143) is one of the central results of the present work. It represents
a first-principles derivation of the usual abrasion-ablation cross section and results
directly from the following: (1) the time-ordering approximation, (2) the classi-
cal probability approximation, and (3) the zero-width approximation. Clearly,
then, the most obvious improvements to the abrasion-ablation theory would be to
remove these assumptions. (The time-ordering approximation is the least impor-
tant.)

3.8. Electromagnetic Interactions

So far we have discussed specifically nuclear interaction processes that domi-
nate whenever the impact parameter is less than or equal to the sum of the nuclear
radii. At larger impact parameters, the electromagnetic processes dominate be-
cause of the long-range interaction of the coulomb field. The elastic coulomb scat-
tering contributes to the beam divergence with negligible energy loss (Rossi and
Greisen, 1941; Highland, 1975). The inelastic coulomb scattering contributes to
fragmentation of the projectile and target nuclei (Norbury and Townsend, 1990).

The ejection of the particles X from a nucleus by coulomb dissociation is given
by

opm(X) = . E,X) N"YE) dE 3.148
En(X) %fa(z)“’( ) N™(E) (3.148)
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where 7f indicates the active electromagnetic moment of the transition (# = E or
Mie¢=1,2 ..),N ™ (E) is the virtual photon density distribution generated by
the passing heavy ion, and a,’Y’e(E, X) is the usual photonuclear cross section.
The electric dipole (E1) contribution is related to the giant dipole resonance
absorption cross section and the Weizsicker-Williams virtual photon density
function (Norbury and Townsend, 1986 and 1990; Norbury, Townsend, and
Badavi, 1988; Norbury et al., 1988; Norbury, 1989a and 1989b; Cucinotta,
Norbury, and Townsend, 1988). The electric quadrupole (E2) contributions are
considered by Norbury (1990) and Norbury and Townsend (1990).
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Chapter 4

Elastic Channel Data Base

4.1. Introduction

The development of the multiple-scattering theory and the corresponding
optical model described in chapter 3 had a tremendous unifying effect on the
Langley approach to nuclear scattering. The elastic channel amplitude could be
reasonably represented by the free two-body scattering amplitudes and the ground
state nuclear matter densities. From the elastic channel amplitude, one obtains the
values of elastic differential cross sections, total elastic cross sections, and (by the
optical theorem) the total cross sections. Armed with these new methods, a search
for adequate nuclear matter density functions was undertaken (Wilson, 1975).
Matter densities were derived from charge density distributions, and the Woods-
Saxon distributions gave the best overall agreement with the neutron experiments
of Schimmerling et al. (1971, 1973) and Palevsky et al. (1967) as seen in figures 4.1
and 4.2. Energy dependence was introduced through the usual analytic form for
the two-body amplitudes, which is

(@ = = o(hlale) +ilexp |3 BT (1)

where § is the momentum transfer, o(e) is the total cross section at ki-
netic energy e, knyn is the wave number, a(e) is the ratio of real to imagi-
nary part, and B(e) is the slope parameter. In the first data base derived
by Wilson and Costner (1975), the nuclear matter densities below Ar = 17
were taken as Gaussian and densities above Ay = 16 as Woods-Saxon. Re-
sults for copper targets are shown in figures 4.3 and 4.4. Calculated absorp-
tion cross sections for various projectiles and targets are shown in figures 4.5
through 4.8 with experimental results (Lindstrom et al., 1975; Cheshire et al.,
1974; Jakobsson and Kullberg, 1976; Antonchik et al., 1981). (See Wil-
son and Townsend (1981) for details.) The matter densities for light nuclei
(3 < Z < 8) were subsequently replaced by Townsend (1982) with harmonic
well functions, and Pauli correlations were added to modify the free two-body
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Figure 4.1. Total nucleon-nucleus cross Figure 4.2. Nucleon-nucleus absorption
section at = 1 GeV as function of cross section at =~ 1 GeV function
nuclear mass number for three model of nuclear mass number for three
single-particle densities. model single-particle densities.
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E, GeV

Figure 4.3. Nucleon-copper total cross
section as function of laboratory
energy. Curves give range of
uncertainty.
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Figure 4.5. *He-nucleus absorption cross
sections at 3.6 GeV /nucleon.
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Figure 4.4. Nucleon-copper absorption
cross section as function of lab-
oratory energy. Curves give range
of uncertainty.

— Present work

. I Lindstrom et al., 1975

& Cheshire et al., 1974

+ & Jakobsson & Kullberg, 1976

1 1 1 1 ] J

1 L -
0 30 60 90 120 150 180 210

AT

Figure 4.6. 150-nucleus absorption cross
sections at 2.1 GeV/nucleon.
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Figure 4.7. 12C-nucleus absorption cross

sections at 3.6 GeV /nucleon.
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Figure 4.9. 12C-12C elastic differential cross sections as function of center-of-mass scattering

angle.

amplitudes. The low-energy elastic scattering required a partial wave analysis
after which Bidasaria, Townsend, and Wilson (1983) found good agreement with
scattering experiments (Cole et al., 1981) as shown in figure 4.9. The final data
base uses the charge form factor data compiled by De Jager, De Vries, and De Vries

(1974).
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Although model developments for meson (Hong et al., 1989) and antinucleon
(Buck et al., 1986 and 1987) data bases are underway, we will only discuss the
nucleonic and heavy ion data as they now exist for space-radiation shielding.

4.2. Optical Model Cross Sections

The nucleus-nucleus potential (Wilson, 1975; Wilson and Townsend, 1981)
including Pauli correlation effects (Townsend, 1982) is

W(Z) = ApAr / PErpr (Er) / &7 pp(E +7 + Er)

x e, 1 - C(@)] (4.2)

This potential was derived from an optical model potential approximation to the
exact composite-particle multiple-scattering series.

The collision absorption (incoherent) cross sections are given by

00 -
. / (1 - exp{—2 Im[x(B)]})b db (4.3)
0
where the complex phase function, in terms of the reduced potential U, is
. 1 [ .
x(B) = —= / U@, 2) dz (4.4)
2k J_
and the reduced (coherent) potential is

U(Z) = 2mApAr(Ap + Ar) " 'W (&) (4.5)

where m is the nucleon mass, Ap is the nuclear mass number of the projectile,
and At is the nuclear mass number of the target.

In equation (4.2),  is the constituent-averaged, energy-dependent, two-body
transition amplitude

2o _ (€2 , ~3/2 —i
Hed)==(,;) " o@lae) +ilmBE ™ e | sl (46)
and the correlation function is taken to be
- —k2 =2
&) = 0.25 exp( lgy ) (4.7)

For the analyses of this work, the Fermi momentum is assumed to be that of
infinite nuclear matter, kp = 1.36 fm™1.

4.2.1. Nuclear density distributions. The correct nuclear density dis-
tributions p; (j = P,T) to use in equation (4.2) are the nuclear ground state,
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single-particle number densities for the collision pair. Since these are not experi-
mentally known, the number densities are obtained from their experimental charge
density distributions by assuming that

ool = [ ool Vpa+ ) 7 (48)

where p. is the nuclear charge distribution, p, is the proton charge distribution,
and p4 is the desired nuclear single-particle density. All density distributions in
equation (4.8) are normalized to unity. The proton charge distribution is taken
to be the usual Gaussian form and is

3/2 0
o 3 -3
Pp(T) = (QWT%) €Xp ( 27% ) (4'9)

where r, = 0.87 fm is the proton root-mean-square charge radius (Borkowski
et al., 1975).

When the projectile is a nucleon, equation {4.8) yields a delta function for p4:
pa(F+ 7)) =6(F+7") (4.10)
because p. and p, are identical.

For nuclei lighter than neon (A < 20), the nuclear charge distribution is the
harmonic well (HW) form given by De Jager, De Vries, and De Vries (1974) as

el = po |14 (2)° | exp (;—;) (411)

where p, is the normalization constant, r is the radial coordinate, and a and
~ are charge parameters. Values for a and y used herein are given in table 4.1.
Substituting equations (4.9) and (4.11) into equation (4.8) yields (Townsend, 1982)

3 2 2.2 2
I 3y 3rva ya*r -r
= 14+ —— —_— 4.12
Palm) = 53 ( Ty et 1634>6Xp<4s2) (4.12)
where
2 2 T%
== -2 4.1
$T% 7% (4.13)

For neon and heavier nuclei (4 > 20), the nuclear charge distribution is taken to
be the Woods-Saxon (WS) form

- Po
pe(F) = 1+ exp[(r — R)/c] (4.14)

where R is the radius at half-density, and the surface diffuseness c is related to
the nuclear skin thickness ¢ through

t
-t 4.1
€= 14 (4.15)
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Values for R and ¢ used herein are given in table 4.1. Most values in table 4.1 are
taken from De Jager, De Vries, and De Vries (1974). Inserting equations (4.9)
and (4.14) into equation (4.8) yields, after some simplification (Wilson and
Costner, 1975), a number density p4 that is of the WS form (see eq. (4.14)) with
the same R, but different overall normalization factor p, and surface thickness.

The latter is given by

8.8r 36-1\]"!
tA=§l-/7p[ln<3_ﬁ>] (4.16)
where id
- . Tp
B = exp (—tc31/2) (4.17)

with ¢, noting the charge skin thickness obtained by using equation (4.15) and the
charge distribution surface diffuseness values listed by De Jager, De Vries, and
De Vries (1974).

Table 4.1. Nuclear Charge Distribution Parameters
From Electron Scattering Data

o a, fm
or or
Nucleus Distribution t, fm R, fm
(a) (b) (b)
’H HW 0 1.7
4He HW 0 1.33
TLi HW 0.327 1.77
9Be HW 0.611 1.791
g HW 0.811 1.69
12¢ HW 1.247 1.649
uN HW 1.291 1.729
160 HW 1.544 1.833
20Ne WS 2.517 2.74
27A] WS 2.504 3.05
4OAr WS 2.693 3.47
56Fe WS 2.611 3.971
640y WS 2.504 4.20
80, WS 2.306 4.604
138, WS 2.621 5.517
1087 g WS 2.354 5.139
208py, WS 2.416 6.624

%The harmonic well (HW) distribution (eq. (4.11)) is used for A < 20 and the Woods-
Saxon (WS) distribution (eq. (4.14)) for A > 20.

b~ and @ are for HW distributions and t and R are for WS distributions.
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4.2.2. Nucleon-nucleon scattering parameters. The nucleon-nucleon
cross sections o(e) used in the energy-dependent, two-body transition amplitude
(eq. (4.6)) are obtained by performing a spline interpolation of values taken from
various compilations (Benary, Price, and Alexander, 1970; Schopper, 1973 and
1980; Binstock, 1974). The results are displayed in figures 4.10 and 4.11 as a
function of incident kinetic energy. No curve for neutron-neutron cross sections
is displayed because only limited quantities of experimental data exist for these
collisions. For computation purposes, we assumed that the proton-proton values
for each energy listed adequately represented the neutron-neutron cross sections.
Details of the constituent averaging for o(e) are given by Wilson and Costner
(1975).

103 103

" \_/\
1 L) L1 L1 | 1 21 M L1 P
1002 101 100 101 102 V2101 100 101 102
Ejap, GeV Elap, GeV
Figure 4.10. Neutron-proton total Figure 4.11. Proton-proton total cross
cross section as function of section as function of incident
incident kinetic energy. kinetic energy.

Since scattering at these energies is mainly diffractive, the nucleon-nucleon
slope parameters B(e) are those appropriate to purely diffractive scattering. From
Ringia et al. (1972) these are given by

B(e) =10+05 In (%) (4.18)

where s’ is the square of the nucleon-nucleon center-of-mass energy and s, =
1 (GeV/c)_2. Typical values from equation (4.18), displayed in figure 4.12
differ markedly from the nondiffractive compilation values of B ~ 5 (GeV/ c)“";
used previously by Townsend, Wilson, and Bidasaria (1983a and 1983b). The
improved agreement between theory and experiment obtained with equation (4.18)
is clearly demonstrated by Bidasaria and Townsend (1983). Values of the
parameter a(e) are not required for these analyses, because only the imaginary
part of equation (4.6) is used in equations (4.3) and (4.4).
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Figure 4.12. Nucleon-nucleon scattering slope parameter as function of incident kinetic energy.

123



Transport Methods and Interactions for Space Radiations

4.2.3. Results. With the formalism described in sections 4.2.1 and 4.2.2,
absorption cross sections for nucleons, deuterons, and selected heavy ions colliding
with various target nuclei have been calculated.

Theoretical predictions for nucleon-nucleus scattering and representative ex-
perimental results of Schimmerling et al. (1973); Renberg et al. (1972); and
Barashenkov, Gudima, and Toneev (1969) are presented in figures 4.13 through

4.18. Also displayed are the predictions using the empirical parameterization of

Letaw, Silberberg, and Tsao (1983). The agreement between theory, empirical
predictions, and experimental data is good.
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Figure 4.13. Nucleon-carbon absorption

cross sections as function of
incident nucleon kinetic energy.
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Figure 4.15. Neutron-iron absorption
cross sections as function of
incident nucleon kinetic energy.
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Figure 4.16. Nucleon-copper absorption

cross sections as function of incident
nucleon kinetic energy.
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Figure 4.17. Nucleon-silver absorption
cross sections as function of
incident nucleon kinetic energy.

Figure 4.18. Nucleon-lead absorption
cross sections as function of incident
nucleon kinetic energy.

Figures 4.19 and 4.20 compare the theoretical predictions for deuteron-helium
and deuteron-carbon scattering with experimental results from Jaros et al. (1978).
For the helium target, theory and experiment agree to within 1 percent of
the quoted cross sections, and the theory is well within the uncertainty in
the experiment. For the carbon target, the disagreement between theory and
experiment is less than 3 percent.

250 475
200 o 425
E e
© 150 — Theory © 375 — Theory
I Jarosetal., 1978 L I Jarosetal., 1978
100 1 { 1 i 325 L 1 L J
10-1 100 101 10- 100 101

Ejab, GeV/nucleon Elap, GeV/nucleon

Figure 4.19. Absorption cross sections
for deuteron-helium scattering as
function of incident kinetic energy.

Figure 4.20. Absorption cross sections
for deuteron-carbon scattering as
function of incident kinetic energy.

————i

Heavy ion absorption cross sections are presented along with experimental data
(Jaros et al., 1978; Heckman et al., 1978; Cheshire et al., 1974; Skrzypczak, 1980;
Jakobsson and Kullberg, 1976; Cole et al., 1981; Kox et al., 1984; Buenerd et al.,
1984; Kullberg et al., 1977; Perrin et al., 1982; Antonchik et al., 1981; Westfall
et al., 1979) in figures 4.21 through 4.30. The agreement between theory and
experiment is excellent, even for energies lower than 100 MeV /nucleon, where the
validity of the eikonal formalism is questionable (Vary and Dover, 1974). Further
details are given by Townsend and Wilson (1985).
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Figure 4.21. Absorption cross sections
for helium-carbon scattering as
function of incident kinetic energy.
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Figure 4.23. Absorption cross sections
for carbon projectiles at 83 MeV /nucleon
as function of target mass number.
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Figure 4.25. Absorption cross sections
for carbon projectiles at 3.6 GeV /nucleon
as function of target mass number.
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Figure 4.22. Absorption cross sections
for carbon-carbon scattering as
function of incident kinetic energy.
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Figure 4.24. Absorptiof cross sections
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Figure 4.26. Absorption cross sections
for oxygen projectiles at 2.1 GeV /nucleon
as function of target mass number.
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Figure 4.27. Absorption cross sections Figure 4.28. Absorption cross sections
for oxygen-emulsion scattering for neon projectiles at 30 MeV /nucleon
as function of energy. as function of target mass number.
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Figure 4.29. Absorption cross sections Figure 4.30. Absorption cross sections
for iron projectiles at 1.88 GeV /nucleon for iron projectiles at 1.88 GeV /nucleon
as function of target mass number as function of target mass number
with experimental data obtained with experimental data obtained
with emulsion target. for removal of one or more nucleons.

4.3. Coupled-Channel Formalism

The optical model is extremely successful in describing the elastic scattering
amplitude for many combinations of interacting systems. Section 4.2 used the
optical model in the coherent amplitude approximation (Wilson, 1975; Wilson
and Costner, 1975). This section represents the work of Cucinotta et al., 1989,
and evaluates noncoherent contributions to the elastic scattering amplitude.

The coupled-channel (CC) Schrédinger equation for heavy ion scattering can
be solved in the eikonal approximation (Wilson, 1975; Feshbach and Hiifner, 1970;
Dadié¢, Martinis, and Pisk, 1971) resulting in the following matrix of scattering
amplitudes

1@ =52 [ exnl-ia - Beplix(®] -1} i (4.19)
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where the boldface quantities represent matrices, k is the projectile momentum
relative to the center of mass, b is the projectile impact-parameter vector, g is
the momentum transfer, and x(b) is the eikonal phase matrix. For a projectile
transition from quantum states n to n’ and target transition from v to V| we write

APvAT . Z
Xm,’n/yl(b, z) = Z ﬁlﬁ dz' <nu|taj1n'1/'> (4.20)
aj —oc

where t,; is the free-particle, two-body amplitude in the overall center-of-mass
frame and g is the projectile-target reduced mass. The matrix elements of x
are given by equation (4.20) with z — oco. Equation (4.19) holds only if the
commutator (Feshbach and Hiifner, 1970)

{x(& 2), gd_%i,z_)] =0 (4.21)

Assuming this commutation relation will hold effectively eliminates all reflection
terms and reduces the optical potential solution to Watson’s form of the nucleus-
nucleus multiple-scattering series (within small-angle and high-energy approxima-
tions) to the Glauber series (Wilson and Townsend, 1981). This can be seen by
considering an element of f and expanding the exponential in equation (4.19):

—ik o .
Fusat @ = [ exp(ia 8 (i molsin's')

52 (g {mali' )+ ) ¥ (422

which is equivalent to
o~ ik T n
Frwgiw @ = 5 / exp(—i§ - b)<mfl[1 - exp(zx)]In'V'> db (4.23)

Upon introduction of the two-body profile function, we arrive at the Glauber form
for the nucleus-nucleus scattering amplitude (Franco and Nutt, 1978)

(1 T (- TayB—5a - gj)])
aj

We note that we have not considered the question of noncommutating interactions.
Also, the eikonal CC approach is based on an ansatz for the optical-model
CC equation wave function; therefore, we have not rigorously considered the
connection between Watson’s form of the nucleus-nucleus multiple-scattering
series and the Glauber approximation. Such considerations can be found in
Wallace (1975). Having shown the equivalence of the CC approach to the Glauber
approximation, we next consider the second-order solution to equation (4.19) for
the elastic channel, which we will compare with the second-order optical phase
shift approximation to the Glauber amplitude.

fnu,n’u’(q') = ';% /’eXP(_i‘_I.' g)<nu ’nll/’> d%b (424)
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The second-order approximation to the elastic amplitude is obtained by
including all transitions between the ground and excited states and assuming
that transitions between excited states are negligible. Furthermore, the densities
of all excited states are approximated by an average excited-state density. The
phase matrix is then of the bordered form

Xel  Xoo,01 Xoo,10  Xo00,11

XOl,OO Xexc 0 0 .
X(l-)') = | X10,00 0 Xexc 0 <o (4.25)

X11,00 0 0 Xexc

where X = Xgo,00- The characteristic equation of this bordered matrix is
(Xexe = MV 2[(Xa = N) (Xexe = ) = T = 0, (4.26)

where N is the rank of x, A is the eigenvalue, and Y2 is defined by

T2(g) = Z XOD,anm/,OO (4'27)
n or v#0
The eigenvalues are then given by

1/2
1 1 2

with all others taking the value Xexc. The form of the eigenvalues allows us to
treat the scattering system as an effective two-channel problem with

_ [ Xa T .
X = ( Y Xexc) (4.29)

Then using Sylvester’s theorem (Merzbacher, 1970), we find

. . 1 1/2
@) = —21? /exp(—zq +b) 4 exp [‘Z‘Z(Xel + Xexc)] cos (X?iif + Tz)

sin (Xﬁif + Tz)l/z

2
(X + 2)"/

+ Xgif —1} d% (4.30)

where Xgif = % (Xel — Xexc). An examination of equation (4.30) reveals, as
expected, that Xexc appears only in third-order and higher order terms in fNn(q)-
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As discussed by Feshbach and Hiifner (1970) a reasonable approximation to Xexc
is to assume the ground-state density for the excited states. If Xexc is set equal to
Xel, we find

(2) (@) =~ o /exp( iq - b)[exp(zXel) cos T — 1] d% (4.31)

The coherent approximation (Wilson, 1975; Wilson and Townsend, 1981) is
recovered in the limit of small T.

Using closure to perform the summations in equation (4.27) and transforming
from the overall center-of-mass (CM) frame to the nucleon-nucleon (NN) CM
frame using nonrelativistic kinematics, Y2 is

2
12(5) = APAT(2 N) [’ exp(-id- B exp(~ia" B

< in@fnn @) [-Ap ArFO@FO (@)W (-6 (-7")
+(4p — 1)(Ar - VFI(G,7)G (-3, -7')

+ (A - DFN(G+ 36D (-3,

+(4p - 1)FP(§,§)6V (-7 - §")

+ FO@G+3)6M(-3-7")] (4.32)

where F(1) and F(2) (G(l) and G(2)) are one- and two-body ground-state form

factors, respectively, for the projectile (target). The last term on the right-hand
side of equation (4.32) is a self-correlation term that appears through the use of
closure. The physical meanings of the other terms in equation (4.32) have been
discussed by Franco and Nutt (1978).

The optical phase shift expansion given by Franco and Nutt (1978) to the
Glauber approximation is written

W —tk R .
Fetauver@ = 5 [ exp(=id- B fexplixops) 1] @b (4.33)
with
Xopt = X1+ X2.... (4.34)
In compa.nson we note that X; = X, and dropping the last term in T2 yields
iXg = — T Approximating the density of all excited states by the ground-state

density ylelds almost the same results for the coupled-channel and Glauber optical
models:

—ik - 1 1
166 = 57 [ewtia- jexp(oxa) (1- 302+ g0t ) -] b
(4.35)
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and

2 - —ik e . 1 1

f((;ll.uber(q) = —2;-/exp(—zq - b) [exp (tXe1) (1 - 5'1"2 + §T4 —.. ) - 1] d2b
(4.36)

if %Tz <« 1. Note that %T2 < 1is found to be true for light collision pairs, whereas

for large mass number nuclei, this condition should at least hold at large impact

parameters, where most of the scattering occurs but may give rise to differences
and should be further studied.

We now consider the evaluation of the elastic amplitude for a-a scattering.
At high energies, only the central piece of the NN amplitude will be important in
spin-0-spin-0 scattering. Therefore, we use the following parameterization:

(@ = oot + D exp (~ 3 Be?) (437)

The isospin-averaged values for the parameters o, B, and a at the energies
considered in this paper are listed in table 4.2. For the calculation of Xq, we
use the following parameterization for the 4He charge form factor (McCarthy,
Sick, and Whitney, 1977):

Fan(@) = [1 — (ag)'?] exp(—bg?) (4.38)

with @ = 0.316 fm and b = 0.681 fm2. The charge form factor Fy, is related
to the matter form factor F by F = Fg,/Fp with Fp = exp (— %r%q2), where

rp = 0.86 fm. We also include coulomb effects in the usual way, assuming just
the first term in equation (4.38).

Table 4.2. Nucleon-Nucleon Parameters

E, MeV o, mb B, fm™2 a
635 3.93 0.132 —0.39
1050 44 0.25 —-0.28

The 4He correlations caused by CM recoil are important. It is well-known that
the CM motion can only be treated exactly for shell-model, harmonic-oscillator
wave functions. Therefore, we use the harmonic-oscillator CM correction factor
in our calculations such that the intrinsic one- and two-body form factors that
appear in equation (4.32) are written in terms of model form factors Fs such as

= Fom@ (4.39)
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and F(2)(-' _‘,)
F(Z)(—o’ qol) — M —’q,q-"
Fem(@+3")
with Foum(q) = exp [— (R2/4A) q2}. For “He, we use R? = 1.94 fm?. The

model two-particle density described below will be integrated to obtain these form
factors.

(4.40)

In the Jastrow (1955) method (see Frullani and Mougey, 1984), if three-particle
and higher particle correlations are ignored, we write

P27 7Y = Nups V()00 (7))g (7, 7) 2 (4.41)

where pgl) is the uncorrelated single-particle density, p; o< exp (—rz/R2), and
Ny, is the normalization constant. The correlation factor can be written in terms

of the nucleon-nucleon relative momentum distribtition as (Frullani and Mougey,
1984)

977y =1~ / explify - (7 — 7)IN () di» (4.42)

where fr is the NN relative momentum vector. We parameterize N (p,) according
to Akaishi (1984) as

N{p)=C [exp (-a_lig) + Sexp (_azf)] (4.43)

with a; = 5.4 fm“2, az = 4a1, § = 0.015, and C as the normalization. The first
term on the right-hand side of equation (4.43) can be attributed to a Hartree-
Fock-type correlation with the value of a;, leading to a correlation length of
about 0.8 fm, upon comparison with the usual Gaussian parameterization of the
correlation factor. The higher momentum component in equation (4.43) should
reflect the true dynamical correlations (Akaishi, 1984).

An average excited-state phase can be a complicated quantity to calculate.
4He has many resonance states lying below an excitation of 40 MeV that should
contribute. Some calculations are available (Liu, Zamick, and Jagaman, 1985),
but states higher in the continuum should be more dominant. Because this phase
element only appears at third order in fyy, a simple model will suffice to show that
significant deviations from the ground-state phase are of negligible importance in
the double scattering region. Since the form factor for this state must approach
unity as § — 0, we choose a Gaussian and consider deviations from the ground
state through

Rexc = R(1+6R) (4.44)

In figures 4.31 and 4.32, we show our predictions compared with 635 MeV /nucleon
(Berger et al., 1980) and 1050 MeV /nucleon (Satta et al., 1984) a-a scattering
data. As can be seen, the Glauber and CC calculations, with excited-state phase
approximated by the ground-state phase, are virtually indistinguishable at all
momentum transfers. We find no appreciable differences between the results for
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Xexc = X¢ and 6R = 0.5 until the second minima at both energies. The effect
of this phase on the double scattering region appears to have been overestimated
by Feshbach and Hiifner (1970). No conclusions can be made at larger angles
because three-body correlations should become important there. As noted by
previous authors (Franco and Nutt, 1978) and as can be seen in figures 4.31
and 4.32, the differences between first- and second-order calculations become
significant for increasing angles in a-a scattering. The second-order effects should
be large enough to distinguish between models for the two-body density, for
example, the Jastrow method used here and the more phenomenological Gaussian
parameterization of the correlation factor that is used by Franco and Nutt (1978).

104 104
—— CC, Xexc = Xel
— CC, Yexc = Xel ---- CC,0R=0.5
103 ---- CC,0R =05 103 —-— Glauber second order
—-— Glaubersecondorder |\ First order
----- First order = Sattaetal., 1984
o 02l *  Bergeretal., 1980 o 102
L 2
% E 10!
< 101 <
E E 100
3 g
g 100 §
10-1
-1
10 102
10-2 10-3
0 . . . . .
-1, (GeV/c)? -t, (GeV/c)?
Figure 4.31. The a-a elastic differential Figure 4.32. The o-a elastic differential
cross section at 5.05 GeV/c. cross section at 7 GeV/e.

In conclusion, the coupled-channels, semiclassical approximation of an optical-
model solution to Watson’s form of the nucleus-nucleus multiple-scattering series
has been shown to be equivalent to the Glauber approximation. A second-order
solution to the elastic channel obtained by neglecting all transitions between
nuclear-excited states was found to be almost identical to the second-order optical
phase shift expansion of the Glauber series. An average excited-state phase
was seen to be of minor importance in studying the role of correlations in a-a
scattering. The a-a scattering data studied is expected to be sensitive to how the
two-body density is modeled and should warrant further study.

4.4. Parametric Cross Sections

In sections 4.2 and 4.3, we discussed basic theoretical issues required for an
accurate understanding of the interaction process. This understanding is necessary
to fill in gaps in experimental data and to further develop reactive theories. The
rest of this chapter is a review of parametric representation of results for transport
code input.
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4.4.1. Total nuclear cross sections. After many decades of experimental
activity at various accelerators with ever increasing energies, the cross sections for
two-nucleon interactions are reasonably well-defined. Although recent advances
in the theory of the two-nucleon interaction in terms of phenomenological meson
exchange models (Gross, 1974) show considerable success, a simple parameteriza-
tion of the experimental data is sufficient for our purposes. For E > 25 MeV, the

proton-proton (pp) total cross section (mb) is found to be reasonably approximated
by

opp(E) = (1 + %) {40+ 109 cos (0.199VE) exp [~0.451 (E — 25)02%8] | (4.45)

and for lower energies, by

0.7
opp(E) = exp {6.51 [exp (~%) ] } (4.46)

These forms are compared with experiments above 50 MeV (Lock and Measday,
1970) shown in figure 4.33. For E > 0.1 MeV, the neutron-proton (np) cross
section is taken as

onp(E) = 38 + 12 500 exp [~1.187(E — 0.1)°%| (4.47)

and at lower energies, by

E 0.3
onp(E) = 26 000 exp [— m} (4.48)

These forms are compared with experiments above 25 MeV (Lock and Measday,
1970) in figure 4.34.

Cross sections, mb
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5 102 5103 5 104 5 105 101 102 103 104 105
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Figure 4.33. Total proton-proton cross Figure 4.34. Total neutron-proton cross
sections. sections.

The low-energy, neutron-nucleus total cross sections exhibit a complicated fine
resonance structure over a broad, slowly varying background. This background is
marked by very broad Ramsauer resonances that persist even to neutron energies
of 100 MeV. Although a simple fundamental theory for the Ramsauer resonances
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is not available, a semiempirical formalism is given by Angeli and Csikai (1970
and 1971). Their formalism starts with the usual partial wave expansion as

ot = 2mA2Y_(2€+ 1)[1 — Re(ny)] (4.49)
£

with
ne = exp(ibe) (4.50)

where §; is the complex phase shift for the ¢th partial wave and Re(Z) denotes
the real part of Z. In the opaque nucleus model, the fact that ny ~ 1 for all values
of £ > R/A, where R is the nuclear radius, leads Angeli and Csikai to assume that

ator & 2m(R + A)?[1 — Re(n)] (4.51)
where 11 = 0 gives the usual opaque nucleus result such that
Re(n) = exp [-Im(6)] cos [Re(6)]

= pcos (quT/ 3_ 7') (4.52)

is a reasonable starting point to parameterize the total cross sections, where Im(6)
denotes the imaginary part of §. Their complete parameterization is

Otot = 27 (‘T‘()A;w/:} + /\)2 [a, — pcos (qA;w/3 - r)] (4.53)

where rg = 1.4 fm, and the neutron wavelength is

455 Ai+1
vE A

The parameters of Angeli and Csikai (1970 and 1971) are adequately approximated
by

(4.54)

1

a= (4.55)
1+ [2/(38E +0.1EVE +0.1E3VE)]

p = 0.15 - 0.0066v'E (4.56)

g =272~ 0203VE (4.57)

r = min {—5.3 + 1.66VE; 1.3} (4.58)

Strictly speaking, equations (4.53) to (4.58) apply only to A7 >40and 0.5 < E <
40 MeV. A simple extension to all values of Ay and 0.1 € E < 100 MeV gives
qualitatively similar results to the experimental data and provides a starting point
to representing the total cross section. The cross sections given by equations (4.53)
through (4.58) are shown in figure 4.35. These should be compared with the
experimental data (Hughes and Schwartz, 1958) shown in figure 4.36. Note that
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the data in figure 4.36 have only the broad resonances shown. The very narrow
resonances have been averaged. We now seek some pure empirical modification to
the Angeli-Csikai cross sections to better approximate the total cross sections.

-

Stot \\“\ -‘

:“‘= 3 :\‘3:::\“ N , II””” Lithium

X0 X
“ , \\ ’ \Q\\‘“ RS
Element

Plutonium

Neutron energy,
MeV 100

Figure 4.35. Total neutron-nucleus cross section according to Ramsauer resonance formalism.

Our modifications to the Angeli-Csikai formalism are as follows:

1. If A7 > 75, then a is taken as 0.18 for values of equation (4.55) less than
0.18

2. The value of p is taken to be greater than 0.4a unless Ar > 76 for which p
can be as small as 0.3a

3. A modifying factor of 1 + D exp(—«FE) is used with

D= 0.5 (145 < A1 < 235)
“ 110 (Otherwise)

and
o= { 1.0 (205 < Ap < 235)

2.0 (Otherwise)
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4. An additional modifying factor is applied as

—(Ap — 63.54)2
Fi{1 - 05exp [—(flT—Q(TSﬂ]

— _ 2
— 0.45exp [ (Ar 458'71) ] exp(~2E) + Fy}
where
o _ [07 (A7 S63E<08)
1710 (Otherwise)
0 (E > 0.5)
Fy ={ —4.95 exp(—18E) (40 < Ar < 42)
—~1.79 exp(—15E) (32 < Ar < 34)

5. If Ay < 30, then numerical interpolation between experimental values is
used

The final cross sections as modified above are shown in figure 4.37 and should be
compared with figure 4.36

},/',4

H Ilh !o
). \\t\\h I L

AN R
%

$ | ithium

\‘ =3 ‘ A'
\ ‘a \‘\ " i
3 -‘::ea:‘:-;!%‘ i [[IIII”

RN RRTES
RRRREFAT
W
e
\o <3
~.2?wa"{ 5
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Ctot \ ‘\ \\‘ \\"\t\\\ "-ﬁ'n;\i‘\‘\“‘““ ‘ V20,
_ X
‘ "’ Tt
MeV

Plutonium

Figure 4.36. Total neutron cross section according to Hughes and Schwartz (1958).
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Figure 4.37. Total neutron-nucleus cross section according to present formalism.

The total cross sections above 100 MeV have been taken from Townsend,
Wilson, and Bidasaria (1983b). The high-energy cross sections of Townsend,
Wilson, and Bidasaria {1983b) have been approximated by

—A _
owot(Ar, E) = 52.5A07'~758 [1 + [0.8 + 2.4 exp (3_07‘)] exp (—E—) sin GE]

135
59)
where the phase angle is given by
_J1441 (F <40 MeV)
Op = { 129 10%(E) — 7 (E > 40 MeV) } (4.60)

The expressions (4.59) and (4.60) are shown along with the theory of Townsend,
Wilson, and Bidasaria (1983b) and a compilation of experiments in figures 4.38
through 4.41. Equations (4.53) through (4.58) are connected smoothly at 70 MeV
to the results of equations (4.59) and (4.60) at 130 MeV with an assumed
exponential dependence on energy. The total cross section is used to calculate
the scattering cross section as

US(E) = Utot(E) - UabS(E) (4-61)

The total (tot) neutron-nucleus cross section is shown with experimental data
(Hughes and Schwartz, 1958) in figures 4.42 through 4.45.
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4.4.2. Nuclear-absorption cross sections. Qualitatively, the nuclear-
absorption cross sections show an energy dependence similar to that observed for
the total nuclear cross sections. An analytic formula for protons was derived by
Letaw, Silberberg, and Tsao (1983) by first fitting the cross sections of Bobchenko
et al. (1979) with the formula

Tabs = 454%7{1 + 0.016 sin[5.3 — 2.63 In(Ar)]} (4.62)

where A7 is the mass number of the target nucleus. Equation (4.62) reproduces
the Bobchenko data to within +2 percent. A somewhat better fit to the Bobchenko
data is given by

Tabs = 454%7(1 — 0.018 sin O 4) (4.63)

where the angle © 4 is
©4 = 2.94 In(Ar) + 0.63 sin[3.92 In(Ap) — 2.329] — 0.176 (4.64)

Equation (4.63) fits the Bobchenko data to within the 1.2-percent difference, which
is on the order of the quoted experimental uncertainty. Although the Bobchenko
data represent a consistent set of measurements for many different targets and
probably well define the A-dependence of the high-energy cross sections, they may
nonetheless be in error in absolute value as suggested by many other independent
experiments (Townsend and Wilson, 1985).

Letaw, Silberberg, and Tsao (1983) assume the energy dependence for all nuclei
to be the same and to be approximated by

f(E)=1-0.62exp (;—0%) sin (10.9E~0-28) (4.65)

where the nucleon kinetic energy is in units of MeV. We observe oscillations
according to the quantum mechanical calculations of Townsend, Wilson, and
Bidasaria (1983b) with phase angle

144 (E < 25 MeV)
OF = {1.33 In(E) — 2.84 (Otherwise)} (4.66)

but with an A-dependent amplitude given by

f(E)y=1- [0.313‘0-22 +0.76 exp (ITEs)] [0.4 +0.9 exp (%‘—giﬂ sinOf (4.67)

The absorption cross section as given by equations (4.64), (4.66), and (4.67), the
fit of Letaw, Silberberg, and Tsao, and various experimental results are given in
figures 4.46 through 4.50. As one can see from the figures, a figure of merit is
difficult to assign to the fit because great scatter in the data obscures the result.
Generally, above 20 MeV the results are on the order of £10 percent accurate as
estimated from the scatter in the experiments.

Below 20 MeV, the neutron cross sections are represented by numerical data
sets at discrete energies of 1, 3, 5, 10, 14, and 20 MeV as taken from Hughes and
Schwartz (1958), Stehn et al. (1964), and Brodsky (1978). Interpolated values
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between data points at the available target masses are shown in figures 4.51
through 4.56. Intermediate energy values are found according to

o(Ar, E) = 0(Ar, E;) exp[—a(E — E;)] (4.68)

where E; and a are taken according to the appropriate subinterval. The cross
sections are assumed to be zero at energies below 0.5 MeV. The absorption
cross sections for elements from lithium to plutonium for energies between
1 and 100 MeV are displayed in figure 4.57.

The cross sections presented in this section are probably sufficiently accurate
for most applications. Because of their special importance in evaluating radiation
quantities in tissue systems, the low-energy meutron cross sections for carbon,
nitrogen, and oxygen are treated on a special basis. These neutron cross sections
are represented by a data table that was compared with the ENDF/B-V data file
compiled by Brookhaven National Laboratory (1982) in figures 4.58 through 4.60.

In section 4.2, we formulated a fully energy-dependent optical model potential
approximation to the exact composite particle, multiple-scattering series. The
formulation includes the effects of the finite nuclear force, treats Pauli correlations
in an approximate way, and has no arbitrarily adjusted parameters. It is applicable
to any projectile nucleus of mass number Ap colliding with any target nucleus of
mass number Ar at any energy above 25 MeV/nucleon. When used within the
context of eikonal scattering theory, which has been shown to be valid (Townsend,
Bidasaria, and Wilson, 1983) even at energies as low as 25 MeV/nucleon, the
absorption cross sections can be calculated from

Oabs = / d?5(1 — exp{~2 Im [x(B)]}) (4.69)
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Figure 4.58. Nuclear cross sections for neutron projectiles onto carbon targets.
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Figure 4.60. Nuclear cross sections for neutron projectiles onto oxygen targets.
where the complex phase function as a function of impact parameter bis
x(B) = —mApArk~ (Ap + Ap)~ / V(B 2) de (4.70)
and the optical potential is
V(,2) = ApAr / B3 opB+ 2+ 7+ Dpr(® Hed)  (4T1)

In equations (4.69) and (4.70), m is the nucleon mass, k is the momentum wave
number, and p; (i = P,T) is the respective number density distribution for the
projectile and target nuclei. The constituent-averaged, two-nucleon transition
amplitude ¢ is used to describe high-energy nucleon-nucleon scattering. Details
can be found in Wilson and Townsend (1981) and Townsend and Wilson (1985).
Typical results for carbon projectiles are displayed in figure 4.61 along with recent
experimental data of Kox et al. (1984). Because these calculations are too complex
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to be repeatedly performed within a transport calculation, extensive tables, which
can be easily stored on disk or magnetic tape for access as needed, have been
published (Townsend and Wilson, 1985). Typical agreement between theory and
experiment is within 10 percent for energies as low as 25 MeV /nucleon and within
3 percent for energies above 80 MeV /nucleon.

[ —— Theory
I Koxetal, 1985

Absorption cross section, b

"0 20 40 60 80 100
Target nucleus mass number

Figure 4.61. Absorption cross sections for carbon beams at 83 MeV /nucleon.

As an alternative to these tables, an energy-dependent parameterization of
these tables has been formulated (Townsend and Wilson, 1986)

2
oubs = 1r2B(E) (A7 + af® - s) (4.72)
where
—1, 4-1 -k 0.453
6=0200+Ap" +Ar —0.292 exp 7o ) €8 (0.229E%%°) (4.73)
with
B(E)=1+5E"! (4.74)

7o = 1.26 fm, and E expressed in units of MeV /nucleon. Note that for large values
of E, B(E) — 1 and 6 becomes energy independent, so that a typical form from
Bradt and Peters (1950) is reproduced. Nominal differences between the cross
sections obtained with equations (4.69) and (4.72) are less than 5 percent for A > 4
and E > 50 MeV/nucleon. For E < 50 MeV /nucleon, the differences are less than
10 percent. For helium-helium collisions, differences of approximately 20 percent
exist at all energies. Representative predictions for carbon-carbon scattering as
a function of energy are displayed in figure 4.62 along with experimental results
(Kox et al., 1984; Jaros et al., 1978; Aksinenko et al., 1980; Heckman et al,
1978; Kox et al., 1985) and estimates obtained from a recently proposed energy-
independent parameterization (Silberberg et al., 1984). The agreement with
experimental data is quite good for the energy-dependent predictions, whereas
the energy-independent parameterization clearly breaks down at low energies.
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Figure 4.62. Absorption cross sections estimated by energy-dependent and energy-independent
parameterizations and experiment for carbon-carbon scattering.

4.5. Parametric Differential Cross Sections

After the angular distribution in elastic scattering is sufficiently known, then
the energy transferred to the target nucleus may be found as well as the new
energy spectrum of the projectile. The differential energy and angle distributions
are discussed in this section and simple parametric forms are given.

4.5.1. Nucleon-nucleon spectrum. The forward scattered nucleon differ-
ential cross section (Schopper, 1973) is well represented by

exp [-B(E' — E)]

, p—
ff(E’, EY=B 1~ exp(—BE)) (4.75)
where 0
2me*b
B = T (4.76)

In equation (4.76), me? is the nucleon rest energy (938 MeV), and b is the usual
slope parameter given by (in units of GeV~?)

3+ 14 exp (5-(%) (For pp)
3.5+ 30 exp (‘E'OEO:) (For pn)

(4.77)

where E’ (MeV) is the initial nucleon energy in the rest frame of the target. The
backward scattering spectrum is similar in form

B exp(—BE)

I BB = T BEY

(4.78)
where we assume the backward scatter slope parameter is the same as the forward
value. This is strictly true for pp scattering, but the slope parameter for pn
charge exchange scattering (Bertini, Guthrie, and Culkowski, 1972) would be more
correct. The forward-to-backward ratio for np scattering is well represented by

0.41
1+ exp[4(E’ — 1.2)]

Fg(E') = 0.12 — 0.015E' + (4.79)
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where E’ in equation (4.79) has units of GeV. The full differential spectrum is
then

B exp|-B(E' — E)] + Fg(E")B exp(—BE)
7 ; (4.80)
[1 — exp(—BE')|[1 + Fp(E")]
where Fg(E') = 1 for pp scattering. The differential cross sections are normalized
such that

f(E,E) =

do / ’

o = o(ENJ(E, E) (4.81)
where o(E’) is the appropriate nucleon-nucleon total cross section. Obviously, we
have neglected the inelastic processes that must yet be included so that o(E’) in
equation (4.81) is currently set equal to total cross section to ensure conservation
of energy, mass, and charge. The distribution of the center-of-mass angle 8¢,
is related to the energy change in the laboratory frame of reference (relativistic

kinematics are not yet included) by

do E'do
d—Q =17 dE (4.82)

where € denotes the solid angle element in the center-of-mass frame of reference.
The center-of-mass angular distributions are compared with the compilation of
experimental data (Hess, 1958) in figures 4.63 and 4.64.
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Figure 4.63. Neutron-proton differential
elastic scattering cross section of
present model and experiment.

Figure 4.64. Proton-proton differential
elastic scattering cross sections.

4.5.2. Nucleon-nucleus spectrum. The nucleon-nucleus differential cross
section in Chew’s form of the impulse approximation (note that this is just the

Born term of the optical model) is given by

dq?

1 _ ¢ exp(~2bq%)|Fale?)

2

2.2

~ ¢ exp(—2bg?) exp (_2‘; kl ) (4.83)
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where b is the slope parameter of equation (4.77) averaged among nuclear
constituents, g is the magnitude of momentum transfer, and a is the nuclear

root-mean-square (rms) radius. The nuclear rms radius (Wilson, 1975) in terms
of the rms charge radius (in fermi) is given as

a= (\/ag - 0.64) 2 (4.84)

where the rms charge radius (in fermi) is

0.84 (Ap = 1)
2.17 (Ar = 2)
1.78 (Ar = 3)
2 =Y 1.63 (Ar = 4) (4.85)
2.4 (6 < A < 14)
0.8241° + 0.58 (Ar > 16)

the nuclear form factor is the Fourier transform of the nuclear-matter distribution.
Note that the above equation assumes that the nuclear-matter distribution is a
Gaussian function. Such an approximation is reasonable for the light-mass nuclei
but is less valid for Ar > 20.

The energy transferred to the nucleus E'r is restricted by kinematics to

0<Er<(1-a)E (4.86)
where (A )2
_Ar—1
a= (Ar +1)2 (4.87)

The energy-transfer spectrum is given as

4Armc? (B + '—133) exp [—4ATmc2 (B + 932—) Et]

f1(Er, E') = (4.88)
1 —exp [—4Atmc2(1 - a) (B + ‘—‘32—) E’]

Similarly, the scattered nucleon energy FE is restricted to

aF' <E<F (4.89)
The nucleon spectrum is given by
2 2
4Armc® (B+ % ) exp |-4Armc2 (B+ % ) (E' — E)

f(E,E') = ( T) [ ( F) ] (4.90)

1—exp [—4ATﬁzc2(l - a) (B + 93%) E’]

One should note that both equations (4.88) and (4.90) reduce to the usual isotropic
scattering results at low incident energy. The differential spectrum is normalized

as
do

o = 0,(E') f(E,F') (4.91)
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where o¢(E') is the total scattering cross section obtained from equation (4.61).

The angular distribution of scattered nucleons is rather well-defined by equa-
tion (4.83) near the forward direction (Wilson et al., 1989). To approximate the
cross section at large angles, we evaluate the £ = 0 phase shift (Merzbacher, 1970)
and introduce an energy-dependent parameter as follows. The S-wave phase shift
8, is related to the optical potential as

xR
tan 6y ~ —k / lio(kr) > UG ()2 dr’ (4.92)
0
where 2 42
2mA -
Uz:=__;LJL/d%d3 Npp(@ + 7+ 7) Uk, 4.93
() Ar+ Ap) y pr(Z)pp( 7) t(k,y) (4.93)

as given in chapter 3. Because we assume that p7(Z), pp(Z), and t(k,7) are
Gaussian in coordinate space, the integrals are easily evaluated. The S-wave cross

section is given as
mE' |
oy = 2 sin 50 (4.94)

with the corresponding differential contribution

d Ap + Ap)?
doo _ (Ap+ Ar)” 00 (4.95)

dE ApArE' A4rm
where Ap = 1 for neutron scattering.

The S-wave contribution is combined with the impulse approximation, with
the interference terms neglected, as follows

dos  [doy ,\ dog
Fioh [dE + bs(E") dE’] Ns (4.96)

where the renormalization factor N is chosen to preserve the relation

(1-a)E’ dos
for which Nj is found to be
!
N, as(E') (4.98)

" 0u(E') + bs(E")oo(E)
The parameter bs(E’) is taken as a function of energy

1 3
bs(E) = + = F' 4.

s(B)=5+55 (4.99)
The results are compared with the work of others (Fernbach, 1958; Goldberg, May,
and Stehn, 1962) in figures 4.65 through 4.68. The scaled S-wave contribution used
to represent the large angle scattering of neutrons shows improvement for most
nuclei and gives satisfactory KERMA values as shown in chapter 10.
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4.6. Summary

A reasonably accurate data base is available to describe the elastic channel of
nucleon and nucleus interactions. Future activity should concentrate on generating
a meson and antinucleon data base.
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Chapter 5

Reaction Channel Data Base

5.1. Introduction

After substantial improvements had been made to the description of the elastic
channel (Wilson and Townsend, 1981), Townsend (1981) began the development
of an abrasion reaction model for the absorptive processes observed in the elastic
amplitude, Cucinotta (1988) began a theory for a-particle breakup and Khan
et al. (1988) investigated heavy ion abrasion dynamics by using the optical model.
It was in this development that the need for inclusion of Pauli correlation and
more accurate density functions for light nuclei became apparent (Townsend,
1982). Development of abrasion theory was greatly encouraged by the work of
Stevenson, Martinis, and Price (1981) (whose experiments measured directly the
abrasion event). The « breakup model is required to further extend the nucleon
transport code to light fragments. The first semiempirical code was also developed
by Wilson, Townsend, and Badavi (1987a and 1987b) and Badavi et al. (1987) to
provide the data base for heavy ion reactions.

5.2. Nuclear Abrasion Model

We now discuss the work of Townsend (1981) in deriving a nuclear abrasion
model for the optical potential formalism.

5.2.1. Optical potential. The optical model potential operator (Wilson,
1974a) is

Vopt = 9 _ taj (5.1)
aj

where 1 is the transition operator for scattering between the a constituent of the
target and the j constituent of the projectile. The optical potential was derived
as

W(Z) = ApAr / Peror@r) [Eiop@+i+i) e (52)

when couplings to various excited internal states were neglected. The development
of equation (5.2) was made independent of the eikonal approximation (Wilson,
1975) and then subsequently used within that context. Note that Franco and
Varma (1978) use this same expression to represent their single-scattering term.
Differences between Wilson’s and Glauber’s approximations occur in the higher
order terms. For example, unlike the Glauber theory, the Wilson (1974b)
propagator includes target recoil and terms to order k2. In equation (5.2), t is the
two-body transition amplitude averaged over the constituent types, and pr and
pp are the target and projectile single-particle matter densities. Equation (5.2)
does not include the correlation effects of the Pauli exclusion principle because only
simple unsymmetrized product wave functions were used by Wilson and Townsend
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(1981). The accuracy of the results of Wilson and Townsend (1981) supports
the idea that exchange correlation effects were unimportant when determining
total and absorption cross sections. This section confirms this idea. For abrasion
predictions, however, correlation effects of Pauli are found to be important when
there is a large overlap between the colliding nuclear volumes (i.e., for small
residual mass fragments of the projectile nucleus).

Because equation (5.1) was derived independent of any assumptions regarding

nuclear wave functions, it is the starting point. When rewriting equation (5.1) in
second quantization notations, we have

Vopt = Y > (Bkltlaj)alalaqa; (5.3)
Bk o

where the az and a; are the usual creation and annihilation operators for the single-
particle state 7. After the usual operator manipulations, the optical potential
reduces to

Ar Ap

W(z) =) z [(ej]t]ag) — (ajltlja)] (5.4)
J

a

When assuming a correlation function C, which depends only upon the relative
separation of the o- and j-constituents, Townsend (1982) derives

W) = Apar [ drorr) [ PiopE+7+EHe N -C@  (65)

Note that equation (5.5) reduces to equation (5.2) if there are no correlation effects
(C =0).

5.2.2. Abrasion theory. From Bleszynski and Sander (1979), the cross
section for abrading n-projectile nucleons is

On = (‘ZP ) / d?b [1 - P(”)]" P(b)AF (5.6)

where P(E) is the probability for not removing a nucleon in the collision and Ap,
the residual fragment mass number, is

A F= A p—n (5.7)
The total absorption cross section
Tabs = / d% [1- P (5.8)
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is obtained by summing oy, over all values of n. In the eikonal approximation, the
absorption cross section is

Tabs = / d%5 (1 - exp {-2m [x(i;)] D (5.9)
where Im (X) denotes the imaginary part of X. Comparing equation (5.8) and
equation (5.9) gives

. —2Im |x(b)
P(b) = exp {'—[]—} (5.10)
Ap

Substituting for the eikonal phase function gives
P(g) = exp [—ATU(e)I(g)] (5.11)
with
16) = 2xB) ™" [ @ [ Prorn)
2
3 N -y
X /d Jpp (b+z+y+€T)exp [2B(e)]

x [1-C(@®) (5.12)

Values for o(e) and B(e), the nucleon-nucleon cross section and slope parameter,
were taken from compilations.

The Glauber theory result (Bleszynski and Sander, 1979) is

P(b) =2n / Dp(3) exp [—ATaNN Dr(3+ 5)] s ds (5.13)

where D(3), the single-particle densities summed along the beam direction, is
given by

D) = /_ O:o p(5+7) de (5.14)

The main advantages of equation (5.11) over equation (5.13) are its improved
convergence and the added symmetry feature that the projectile and target are
treated on an equal basis.

Substituting equation (5.11) into equation (5.6) gives

= (1) 450 e o

X exp [—ATAFa(e)I(i;)]

(5.15)
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5.2.3. Collision parameters. From Bohr and Mottelson (1969), the corre-
lation function in the Fermi gas model is

35 (kFy) (5.16)

where kp = 1.36 fm~!. For analytic simplicity, equation (5.16) is replaced by a
simple Gaussian function. Expanding equation (5.16) in a power series gives

373 (kry) ke?y® 4,4

=1 - | = 0(k 5.17
p o) TOkFY) (5.17)
For small values of kpy, where correlations are most important in actual nuclei,
we note that

_kF2y2 kF2y2
~1- .18
=P ( 10 10 (5.18)
Thus, for computations in this work, we use
1 —kF2y2
Cly) =  exp ( 10 (5.19)

Determinations of oy, require the use of nuclear single-particle matter densities p
for the nuclei in the collision. For the 2°Ne projectiles, matter densities are
extracted from Woods-Saxon charge data of Knight et al. (1981) as described
by Wilson and Townsend (1981). For the %Mo target, the matter density was
found from the three-parameter Gaussian charge density data (De Jager, De Vries,
and De Vries, 1974) by assuming that the charge density is given by the folded
integral of a Gaussian proton charge density pp, with the unknown nuclear matter
density py, according to

pe®) = [ oo (7 +7) & (5.20)

Inserting the Gaussian for pp(7), simplifying the ensuing expression (Wilson and
Costner, 1975), and using a two-point Gauss-Hermite quadrature formula to
evaluate the result yield

1 T
pelr) % 3 [om (4 7 )+ om (7 - ) (5.21)

for determining the %Mo matter density. In equation (5.21), r, ~ 0.87 fm is
the proton rms radius (Borkowski et al., 1975). For the 12C target, which has a
harmonic well charge density, a matter density expression can be analytically ex-
tracted. Taking the Fourier transform of equation (5.20) and using the convolution
theorem yield the following well-known result:

Fe(g) = Fp(a)Fm(q) (5.22)
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where for a Gaussian proton charge density,

—q27'p2

Fy(q) = exp ; (5.23)

The 12C harmonic well charge density (De Jager, De Vries, and De Vries, 1974)

T\2 —r?
oc(T) = po [1 + (a> ] exp (7) (5.24)
has a form factor (Townsend, 1982)
2,2 2,2

Fu(q) = por®/2d® (1 + 37“ - aq4“ ) exp ( q4“ ) (5.25)

Values for parameters o and a are also given by De Jager, De Vries, and De Vries
(1974).

Using equations (5.23) and (5.25) in equation (5.22) gives the matter density
form factor Fpu(q). Taking the inverse transform of this Fp(g) gives a 12c
harmonic well matter density

3 2 2,2 2
poa Ja  3aa aa“r —r
{2 14+ = - + —— — 2
pm(r) (853>( Tty T2 b 1654> eXp(452) (5-26)
with 0 0
2_ @ Tp
= — - .2
s 1 6 (5.27)

These density results are displayed in figures 5.1 through 5.3.

5.2.4. Results. Abrasion cross sections for 22Ne-12C collisions at 2.1 GeV/
nucleon obtained from equation (5.15) are given in table 5.1. Also listed are
predicted cross sections when the Pauli correlation effects are ignored. From
these results, the correlation effects have little or no effect on the abrasion cross
sections for n < 12 because peripheral processes are the greatest contributors to

018 -
- — Charge
S - - - Matter
<
E o009}
a
1 B |
0 1 5

Figure 5.1. Harmonic well charge and matter density distributions for 12,
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ot2r 0024 — Charge
______ — Charge -~ ~Matter
-~ ~ Matter

r, fm

Figure 5.2. Woods-Saxon charge and matter Figure 5.3. Three-parameter Gaussian charge
density distribution for 2Ne, and matter density distributions for ®¥Mo.

Table 5.1. Optical Model Abrasion Cross Sections
for ®Ne-12C Collisions at 2.1 GeV/Nucleon

oy, mb
Pauli No Pauli
n correlations correlations
1 248 248
2 134 134
3 95 95
4 76 75
5 64 64
6 57 56
7 52 51
8 48 48
9 45 45
10 43 43
11 42 42
12 40 42
13 38 42
14 33 41
15 27 39
16 18 33
17 10 25
18 14
19 1
20 0.1 1
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these abrasions. As n increases, greater overlap between the colliding nuclear
volumes is required, and the importance of correlation effects increases. They
are most important when there is complete overlap between the colliding volumes
(n = 20). On the other hand, summing the abrasion cross sections to give a total
absorption cross section demonstrates that correlation effects only reduce oq,s by
~6 percent (1076 mb versus 1144 mb) for this collision. These abrasion results
are also displayed in figure 5.4 with the recent experimental results of Stevenson,
Martinis, and Price (1981). Because the experimental results are given in relative
probabilities (RP) rather than cross sections, theoretical relative probabilities were
calculated from

On

RP = (5.28)

Oabs — 0.501

where the denominator correction 0.50; accounts for the missing 9Ne fragments
that were discriminated out experimentally as discussed by Stevenson, Martinis,
and Price (1981). Additionally, for n = 1, the relative probabilities were
determined by setting the numerator in equation (5.28) equal to 0.50; to again
account for the missing 1°Ne fragments. Finally, the theoretical RP, which
are discrete numbers, were folded with the finite detector resolution (o =
1.5 amu) to yield the displayed curves. As shown, the agreement between
theory and experiment when correlation effects are included is excellent. The
slight disagreement for small residual fragment masses may be caused by the
approximations used in the correlation function.

To test the sensitivity of the abrasion results to the shape of the nuclear density
distributions, relative probabilities were determined for the Ne + C collision by
using a Woods-Saxon density for the neon projectile and two different distributions
for the carbon target: a Woods-Saxon and a harmonic well. Correlation effects
were not included. The superiority of the more exact harmonic well density is
obvious in figure 5.5, where the theoretical predictions and the experimental results
are presented.

Table 5.2 lists abrasion cross sections for 20Ne-%Mo collisions, at 2.1 GeV/
nucleon, obtained from equation (5.15). Pauli correlation effects are included in
the results. The relative probabilities, obtained from equation (5.28), are plotted
in figure 5.6 with the experimental results of Stevenson, Martinis, and Price (1981).
The agreement between theory and experiment for this collision pair is good but
not as good as was obtained in the Ne-C collision. The discrepancy may be caused
by inaccuracies in the correlation function approximation and/or the %Mo matter
density distribution approximation because the theoretical RP clearly overshoot
the experimental values for small residual mass fragments (Ap < 6).

5.3. Simple Ablation Model

The quantum mechanical abrasion model using the optical model approxi-
mation was so successful that further development (Townsend et al., 1984) seems
warranted. The obvious starting point is to use a simple compound nuclear evapo-
ration decay model. Such calculations require specification of the initial compound
nuclear state defined by the mass, charge, and excitation energy.
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Table 5.2. Optical Model Abrasion Cross Sections
for PNe-*Mo Collisions at 2.1 GeV/Nucleon

n On, Mmb
1 380
2 207
3 148
4 119
5 101
6 90
7 82
8 77
9 73

10 71

11 70

12 71

13 72

14 75

15 81

16 90

17 105

18 135

19 201

20 294

5.3.1. Prefragment charge distributions. Since the abraded nucleons
consist of protons and neutrons, which are not identical, a prescription for
calculating the charge dispersions of the prefragments is needed to calculate final,
isotope, and/or elemental production cross sections caused by the fragmentation
process. Two such methods are used in the fragmentation theory described in
this work. The method of Oliveira, Donangelo, and Rasmussen (1979) treats the
neutron and proton distributions as completely uncorrelated. The cross section
for forming a particular prefragment of mass A; and charge Z; is then given in
terms of the

NyN/Z
o (Z‘A-)—wa (5.29)
abr\4j, 45 = ( A P) m .
m
where z out of the original Z projectile nucleus protons is abraded along with n
out of the original N projectile neutrons. Note that

Ap=N+2 (5.30)

and
m=n+2z (5.31)

with
Z;j=27Z-z (5.32)
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Figure 5.4. Ne-C abrasion results. Experi-
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Figure 5.5. Theoretical Ne-C abrasion pre-

dictions. Experimental results are from
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Figure 5.6. Ne-Mo abrasion results. Experimental results are from Stevenson, Martinis, and

Price (1981).
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and
AJ’ = AP —m (533)

This hypergeometric distribution is based on the assumption that there is no
correlation at all between neutron and proton distributions. Therefore, unphysical
results such as abrading all neutrons or protons from a nucleus while leaving the
remaining fragment intact could occur.

As an alternative to the hypergeometric distribution, Morrissey et al. (1978)
proposed a charge dispersion model based upon the zero-point vibrations of the
giant dipole resonance of the projectile nucleus. In this model, equation (5.29)
becomes

~1/2 —[Z; — A;(Z/Ap)]?
e ) = Nanagy ™ oy [T s

where the variance (dispersion) is

u\Y2 Z dm 3
= _— _— -3/4
oz 2.619( Ap) = Fa+u (5.35)
with 37
__ 3 5.36
‘T Quapi (530)

In the droplet model of the nucleus, the coefficients J and @ have the nominal
values of 25.76 and 11.9 MeV, respectively. The rate of change of the number
of nucleons removed as a function of impact parameter (dm/db) is calculated
numerically by using the geometric abrasion model of Bowman, Swiatecki, and
Tsang (1973). The normalization factor N ensures that a given value of Aj,
the discrete sum over all allowed values of Z;, yields unity for the dispersion
probabilities. This overall normalization is a new feature of this work and is not
included in the original model of Morrissey et al. (1978).

5.3.2. Prefragment excitation energies. The excitation energy of the
projectile prefragment following abrasion of m nucleons is calculated from the
clean-cut abrasion formalism of Bowman, Swiatecki, and Tsang (1973) and Gosset
et al. (1977). For this model, the colliding nuclei are assumed to be uniform spheres
of radii R; (i = P,T). In collision, the overlapping volumes shear off so that the
resultant projectile prefragment is a sphere with a cylindrical hole gouged out
of it. The excitation energy is then determined by calculating the difference in
surface area between the misshapen sphere and a perfect sphere of equal volume.
This excess surface area A is given by Gosset et al. (1977) as

A=d4rRp? [1+P—(1- Fy?| (5.37)

where the expressions for P and F differ, depending upon the nature of the
collision (peripheral versus central) and the relative sizes of the colliding nuclei.
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For the case where Ry > Rp, we have

P = 0.125(uv)/2 (% —2) (1 _ﬂ)z

v

—-0.125 [0.5(W)1/2 (% -2)+ 1] (1 — ﬂ)3 (5.38)

v

and

F=0.75(1-v)l/2 (#)2 ~0.125 [3(1 - »)1/2 - 1] (1—;3)3 (5.39)

with
Rp
= 5.40
Rp+ Rt ( )
b

= 5.41

s Rp + Ry ( )
and

1 _Rr
u—;—l—RP (5.42)

Equations (5.38) and (5.39) are valid when the collision is peripheral (i.e., the two
nuclear volumes do not completely overlap). In this case, the impact parameter b
is restricted such that

Rr—Rp<b< Rr+Rp (5.43)
If the collision is central, then the projectile nucleus volume completely overlaps

the target nucleus volume (b < Ry — Rp), and all the projectile nucleons are
abraded. In this case, equations (5.38) and (5.39) are replaced by

P=-1 (5.44)

and
F=1 (5.45)

and there is no ablation of the projectile because it was destroyed by the abrasion.

For the case where Rp > R and the collision is peripheral, equations (5.38)
and (5.39) become (Morrissey et al., 1978)

P = 0.125(uv) /2 (% - 2) (#)2 - 0.125{0.5 (%)1/2 (% - 2)

_ama -2 - 12 - w2 } (1 - ﬂ)3

w3 v

(5.46)
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and ) 12
F=075(1-v)/2 (ﬂ) - 0.125{3’9—_")—
v p
5.47)
1/2 (
[1- (-2 [1- (-2 (1_;; 3
o u3 v )
where the impact parameter is restricted such that

Rp—Rr<b<Rp+Rp (5.48)

For a central collision (b < Rp — Rr) with Rp > Ry, equations (5.46) and (5.47)

become
1/2

P= [%(1 iz 1] [1 — (g)z} (5.49)
1/2

F= [1 —(1- p2)3/2] [1 - (%)2} (5.50)

For the excess surface area obtained from equation (5.37), the excitation energy
is given by

and

Eexc - A Es (5.51)

where E,, the nuclear surface energy coefficient (Bowman, Swiatecki, and Tsang,
1973; Gosset et al., 1977) obtained from the liquid drop model of the nucleus, is
0.95 MeV /fm?.

5.3.8. Ablation factors (EVAP-}). Depending upon the excitation en-
ergy, the excited prefragment may decay by emitting one or more nucleons (pro-
tons or neutrons), composites (deuterons, tritons, 3He, or a-particles), or gamma
rays. The probability a;; for formation of a particular final fragment of type i as a
result of the de-excitation of a prefragment of type j is obtained from the EVAP-4
computer code (Guthrie, 1970) by treating the prefragment as a compound nu-
cleus with an excitation energy given by equation (5.51). The final fragmentation
cross section for projectile of the type i isotope is then given by

or(Zi, A) =Y aijoan(Z5, Aj) (5.52)
J

where oa4:(Zj, A;) is obtained from equation (5.29) or equation (5.34). The
elemental production cross sections are obtained by summing over all isotope

contributions as
or(2) =Y or(Z,4) (5.53)
A

5.3.4. Fragmentation results. As an illustrative application of the theory,
element production cross sections for fragments of calcium (Z = 20) and heavier
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Table 5.3. Elemental Production Cross Sections for

Reaction Fe + 2C - Z + X

[Incident kinetic energy, 1.88 GeV/nucleon]

Elemental production cross sections, mb
Element Giant dipole
produced Hypergeometric resonance Westfall et al., 1979
Fe 161 209
Mn 321 308 181 + 27
Cr 156 142 124 + 13
\' 126 124 100 £ 11
Ti 90 88 87 + 11
Sc 69 69 54+ 9
Ca 77 78 78 + 11
Table 5.4. Elemental Production Cross Sections for
Reaction 6Fe + 18Ag . Z + X
[Incident kinetic energy, 1.88 GeV /nucleon]
Elemental production cross sections, mb
Element Giant dipole
produced Hypergeometric resonance Westfall et al., 1979
Fe 296 262
Mn 381 446 280 + 23
Cr 226 230 218 + 21
A% 150 149 117 + 15
Ti 126 128 124 £ 15
Sc 101 100 104 £ 13
Ca 102 112 118 + 14

elements were calculated for 56Fe projectiles at an incident kinetic energy of
1.88 GeV/nucleon and collided with stationary target nuclei of 12C, 198Ag, and
208ph. These reactions were chosen for analysis because of the availability of
experimental data for comparison purposes (Westfall et al., 1979) and because
relativistic ®6Fe nuclei are among the dominant high charge and energy (HZE)
particles of radiobiological significance for manned spaceflight.

Tables 5.3 through 5.5 display the elemental production cross sections obtained
for carbon, silver, and lead targets by using both the hypergeometric (eq. (5.29))
and giant dipole resonance (eq. (5.34)) dispersion expressions. Also displayed are
the experimental results of Westfall et al. (1979). Except for the cross section
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for Mn production (carbon and silver targets) and V production (silver and lead
targets), the agreement between theory and experiment is quite good. When
compared with the predictions obtained with the hypergeometric distribution
assumption of equation (5.29), the use of the giant dipole resonance expression for
charge dispersion (eq. (5.34)) appears to yield slightly improved overall agreement
between theory and experiment.

Figures 5.7 through 5.9 display the elemental production cross sections ob-
tained from equation (5.34), for the giant dipole resonance dispersion (GDR) along
with the experimental data from Westfall et al. (1979). Also displayed, for com-
parison, are the predictions from the semiempirical relations of Silberberg, Tsao,
and Shapiro (1976). For the semiempirical relations, the unmodified predictions
are displayed. Also displayed are the fragmentation cross sections obtained by
renormalizing to ensure mass and charge conservation. Details of the renormal-
ization can be found in Wilson et al. (1984). For the carbon target (Bevington,
1969), x2 for the giant dipole resonance predictions is 31.6, which is larger than
the 19.4 obtained using the Silberberg-Tsao (ST) methods. For the GDR, most of
the x? comes from the Mn overestimate. If that point is excluded, x2 is reduced
from 31.6 to 9.4. The comparative results for Ca, Sc, Ti, V, and Cr are in better
agreement with the experiment for the silver target; the x? for GDR is 57.3 (5.2
if the Mn datum is excluded), whereas the x? for ST is 32.4 (9.5 if the Mn datum
is excluded). For the lead target, the x? for GDR is 4.4 (1.9 if the V datum is
excluded), compared with the x2 for ST of 52.4 (2.3 if the Mn underestimate is
excluded). In general, the overall agreement between theory and experiment for
the abrasion-ablation model is satisfactory when considering its simple nature.

To illustrate further the results of the model, cross sections for the production
of sulfur, phosphorous, silicon, and aluminum isotopes caused by the fragmen-
tation of 40Ar projectiles at 213 MeV/nucleon by carbon targets are shown in
figure 5.10. These theoretical predictions were obtained with the hypergeometric
distribution.

Also shown are the experimental data from Viyogi et al. (1979). In general, the
agreement is surprisingly good, considering the simple nature of the calculations.
Partial production cross sections for these same isotopes were also calculated with
the GDR distribution. In general, those cross sections were less accurate when
compared with the experiment than the ones obtained from the hypergeometric
distribution. Typical results are shown as dashed lines in figure 5.10 for the sulfur
and silicon isotopes.

In previous heavy ion transport work (Wilson, 1983; Wilson et al., 1984), the
improved agreement between theory and experiment for Bragg (depth-dose) curves
was obtained by using ST fragmentation parameters modified to scale by velocity
(rather than total kinetic energy) and renormalized to conserve fragment charge
and mass. As shown in figures 5.7 through 5.9, the modifications (labeled VR) do
improve the ST predictions for the predominant, near-projectile mass fragments
(in this case, Mn) but yield substantial overestimates for the fragmentation cross
sections for the lighter mass fragments. Simple corrections to the ST parameters,
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Table 5.5. Elemental Production Cross Sections for
Reaction %Fe + 208Pb - Z + X

(Incident kinetic energy, 1.88 GeV /nucleon)

Elemental production cross sections, mb
Element Giant dipole
produced Hypergeometric resonance Westfall et al., 1979
Fe 345 302
Mn 445 521 509 + 40
Cr 267 268 242 + 25
v 175 174 142 + 20
Ti 152 151 148 + 22
Sc 121 119 111 + 17
Ca 116 129 144 + 22
450

N~ w w
3 8 3
T T 1
& 38 8
Y T

[\
]
T
[x*]
th
[~
T

Production cross section, mb
=
T

Production cross section, mb
@
S
L}

100 | 150+
50+ 100 - 5
oL e—1 i A 1 1 | 50 — 1 1 1 A ]
Ca S¢c Ti V Cr Mn Fe Ca S¢c Ti V Cr Mn Fe
Element produced Element produced
Figure 5.7. Elemental production cross sec- Figure 5.8. Elemental production cross sec-
tions for iron projectile nuclei fragment- tions for iron projectile nuclei fragment-
ing in carbon targets. ing in silver targets.
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such as renormalization, are apparently adequate for gross total-dose comparisons
(Wilson et al.,, 1984). However, only certain fragments may be biologically
significant. Therefore, these corrections may be inadequate for the more pertinent
shielding problems such as the accurate predictions of individual fragment species
production. Clearly, the need remains for a comprehensive and accurate HZE
particle fragmentation theory, of which the work just described is a beginning.

Improvements to this simple abrasion-ablation model should center on extend-
ing the GDR charge dispersion method to incorporate the actual quantum me-
chanical abrasion formalism rather than using the geometric model approximation
of Bowman, Swiatecki, and Tsang (1973). Improved methods for estimating the
prefragment excitation energy spectrum should also be developed (Khan, 1989).
Finally, an alternative to the EVAP-4 ablation code should be tried, such as an
intranuclear cascade code (Morrissey et al., 1979); or the development of other
methods to describe the ablation step should be undertaken (Townsend et al.,
1986a and 1986b; Cucinotta et al., 1987).

5.4. Abrasion Dynamics

One possible limitation of the abrasion-ablation model described in sections 5.2
and 5.3 is the use of the geometric model in estimating the prefragment excitation
energies. We now look at an alternative method (Khan, 1989) of estimating the
prefragment system parameters closely related to the work of Fricke (1985).

5.4.1. Method of calculation. The coupled-channel Schrodinger equation
for composite particle scattering, which relates the entrance channel to all the
excited states of the target and projectile, was derived by assuming large, incident
projectile kinetic energies and closure of the accessible eigenstates (Wilson, 1975
and chapter 3). The equation is written as

(V2 + k) ¥ny(E) = 2m ApAr (Ap + A7) Y Vi i @ne(Z)  (5.54)

TI.,[JI

where the subscripts n and p (with and without primes) label the projectile and
target eigenstates; m is the nucleon mass; Ap and Ay are the mass numbers of
the projectile and target; k is the incident projectile momentum relative to the
center of mass; and Z is the projectile position vector relative to the target. As
for the nucleon-nucleon scattering t-matrix ¢,; and the internal state vectors of

the projectile g©’ (E p) and target gz‘ (ET), the potential matrix can be expressed as

Vopt (gPa ETa f)

Vot (E) = <g,’f A g,f’l,gf,> (5.55)

where

Voot (€, 81,2) = 3 tag (5.56)
aj

This same formalism can be used to investigate relativistic heavy ion collision
momentum transfers. Within the context of eikonal scattering, the solution to the
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Schrodinger equation
H ¢ (7,8p,8r) = E ¥ (2,8p.8r) (5.57)

at high energies is

Y (fa EP:ET) = (2)73/2 exp [—ijz Vopt (f,gPagT) dZ']
x gP(€p) 9T (ér) exp(ik - ¥) (5.58)

where v is the velocity. The total momentum of the projectile is then given by
the matrix element involving the sum of the projectile smgle-nucleon momentum

operators as
P
Prot = <T/J —1 Z Vpa ‘4’> (5.59)

where the subscript P on the gradient operator denotes that the gradient is to
be taken with regard to the projectile internal coordinates £p. Equation (5.59)
actually denotes a momentum matrix P pnyd 0 analogy with equation (5.55).
Therefore, substituting equation (5.58) mto equation (5.59) yields

Ap
Py = ( 9F Ep) g (Ep)|exp(=i8) [ =i Y Vpa | exp(iS)|of(Ep) 1 Er)
=1 #
(5.60)
where ;
s=3 [ Vou (2.EpEr) a (5.61)

With the chain rule for differentiation, equation (5.60) can be further expressed

Ap
- VpaS
s
where the incident projectile momentum before the collision is
Ap
i) VPa
a=1
The total momentum transfer to the projectile is then given by

(3

For high-energy collisions, dominant scattering processes occur near the forward
directions, because the momentum transferred is small when compared with the

ﬁnu,n'ul = 130 + <grj:g;7: g,I;gZ/> (562)

B, = <gﬁg£ g,’;gﬂ> (5.63)

Gyt = Py — Po= <g,’f 9 gf,’,g}f,> (5.64)
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incident momentum of the projectile; hence, couplings between excited states are
small and can be neglected (Wilson 1975). The total momentum transfer to the
projectile is then approximated by

@ = Qoo0 = <935D 9l 99T > (5.65)

e

In terms of projectile and target number densities and the constituent-averaged
two-nucleon transition amplitude ¢, equation (5.65) becomes

Q(b) = —ApAr / d*€p pp(€p) / &*¢r pr(ér)
x [vp /:; tb+7 +&p— &) d%] (5.66)

where the integration limit in the longitudinal direction has been extended to
infinity. The momentum transfer in equation (5.66) is therefore only a function of
the impact parameter of the collision. The projectile and target number densities
(pp and pr) are normalized to unity as

/ p(@) 32 =1 (5.67)

The constituent-averaged, two-nucleon transition amplitude is obtained from the
impulsive, first-order ¢-matrix used in our previous studies (Wilson 1975; Wilson
and Townsend, 1981; Townsend, 1981 and 1982; Townsend et al., 1986a and 1986b)
of nucleus-nucleus collisions as

e .2
ie, ) = — (E)l/ 2 oe) [ale) +i] [2nB(e)]"¥/? exp [Fie)] (5.68)

where e is the two-nucleon kinetic energy in its center-of-mass frame, o(e) is
the nucleon-nucleon total cross section, a(e) is the ratio of the real-to-imaginary
part of the forward-scattering amplitude, and B{e) is the nucleon-nucleon slope
parameter. Values for these parameters taken from various compilations are given
in Wilson and Townsend (1981) and Townsend (1982).

The dynamic momentum transfer to the projectile, given by equation (5.66),
results from interactions with the target. Note that it is a complex quantity that
is consistent with the use of a complex optical potential (Rodberg and Thaler,
1967). The real part of the momentum transfer, which comes from the real
part of the complex optical potential, is the contribution arising from elastic
scattering. It is purely transverse. The imaginary component, which comes from
the absorptive part of the complex optical potential, arises mainly from absorption
and inelastic scattering processes. At high energies, the latter are mainly
breakup (fragmentation) reactions because these account for over 95 percent of
the total reaction cross section. Physically, this imaginary component represents
attenuation of the incident wave front in analogy with the usual discussions for
a complex index of refraction in an absorptive medium (Rodberg and Thaler,
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1967). Concomitant with this attenuation of the incident wave by these absorptive
processes, there is a loss of momentum from the wave front in the beam direction.
This longitudinal momentum transfer (loss) is interpreted as arising from the

imaginary component of C_j From equation (5.66), the transverse component is

QL= _APAT/d3EP PP(EP)/dng pr(€r)
dz

— 00 ~ — —

< Vp / Re {5+ 7 +&p — )] = (5.69)

—0 v

and the longitudinal component is
Q= —APAT/d35P pP(EP)/d35TPT(§T)

— o0 ~ - — - 4
X {Vp/ Im [t(b+2"+£p—§T)] (1%—} (5.70)

0 v

Calculated momentum transfers obtained with equations (5.69) and (5.70) are
displayed in figure 5.11 for 160 at 2.1 GeV/nucleon colliding with a beryllium
target. These calculations use the harmonic well nuclear densities from our
previous work (Townsend, 1982 and 1983; Townsend et al., 1984). From the figure,
two features are readily apparent. First, the longitudinal momentum transfer
is larger than the transverse; this indicates the primarily absorptive nature of
the nuclear collision at this energy. Second, the predicted momentum transfer
decreases rapidly with increasing impact parameter. This decrease is discussed
further in sections 5.4.3 and 5.4.4, but its occurrence is not surprising because
the nuclear optical potential decreases rapidly with increasing separation of the
colliding nuclei.

5.4.2. Results. The collisional momentum transfers computed with the
model described in section 5.4.1 can be related to experimentally measured, heavy
ion fragment momentum downshifts/widths through considerations of energy and
momentum conservation. As has been formulated by Goldhaber (1974) and Wong
(1981), a momentum transfer in any direction Q; modifies the width h; of the
fragment momentum distribution in that direction by

F? Q?
14
(hj)2 = h? T ¢ (5.71)
and the mean by

-/ - F -

Pj = Pj + ZQ] (5.72)
From equation (5.72), the longitudinal momentum downshift is given by

’ F
AR =P - B =730 (5.73)
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Figure 5.11. Momentum transfer to 160) projectile as function of impact parameter for oxygen
colliding with beryllium target at 2.1 GeV/nucleon.

where Q is the magnitude of the longitudinal momentum transfer (obtained from

eq. (5.70)), F is the fragment mass number, and A is the initial mass number of
the fragmenting nucleus. Recalling that Q“ is a function of impact parameter,
an appropriate method for choosing the impact parameter for each fragmentation
channel is necessary. Recently, a semiempirical abrasion-ablation fragmentation
model (NUCFRAG) was proposed by Wilson, Townsend, and Badavi (1987b).
Although it assumes simple uniform density distributions for the colliding ions
and a zero-range (delta function) interaction, it does include frictional spectator
interactions (FSI) and agrees with experimental cross-section data to the extent
that they agree among themselves. Also, and most importantly for this work, it is
easily modified to yield impact parameters for each fragmentation channel. Hence,
the procedure for evaluation of equations (5.71) and (5.73) is to extract impact
parameters from NUCFRAG for each nucleon removal corresponding exactly to
AA =1, 2, 3,.... These most probable impact parameters are then inserted in
equations (5.69) and (5.70) to obtain the corresponding momentum transfers for
use in evaluating equations (5.71) and (5.73) because NUCFRAG uses uniform
densities; uniform densities are also used in evaluating equations (5.69) and
(5.70). In addition, the zero-range interaction in NUCFRAG is simulated for
numerical integration purposes in equations (5.69) and (5.70) through the use of
a very narrow Gaussian form for the {-matrix given by equation (5.68). This
narrow Gaussian is the same width for all collision pairs and therefore is not
an arbitrarily adjusted parameter. We have checked the validity of using the
“most probable” impact parameter in the calculations by actually computing the
momentum transfers averaged over a range of impact parameters from NUCFRAG
corresponding to AA — 0.5 to AA 4+ 0.5. The differences between the estimates
using averaged and most probable values are negligible (Khan, 1989).

Representative calculations for momentum downshifts as a function of frag-
ment mass number are displayed in figure 5.12 for 160 projectiles colliding with
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targets of Be, C, Al, Cu, Ag, and Pb at 2.1 GeV/nucleon. These momentum
downshifts are target averaged by using simple arithmetic averaging. For com-
parison, the target-averaged experimental data of Greiner et al. (1975) are also
displayed. For display and comparison purposes, the theory is also averaged over
all isotopes contributing to each fragment mass number using

Tai (aF)
(AP“)av = _—ZT

where 0; is the experimental production cross section for the ith fragment isotope.
Reasonable agreement is obtained for the heavier fragments when comparing the
theoretical estimates to the experimental data. When considering the simplified
form of the nuclear fragmentation model used in these calculations and the
overall semsitivity of the calculated momentum transfer to the choice of impact
parameter, the agreement is rather good. Improved agreement is expected if
impact parameters from a fragmentation model using realistic nuclear densities
and interactions were used. This is especially true for collisions involving lighter
ions, such as carbon, oxygen, and beryllium, which are poorly represented by
simple uniform nuclear distributions.

(5.74)

Figure 5.13 displays transverse momentum widths as a function of fragment
mass number for 13%La fragmenting in carbon targets at 1.2 GeV/nucleon. The
experimental data are taken from Brady et al. (1988). Again, impact parameters
from NUCFRAG are used as inputs into the momentum transfer expressions
(eqgs. (5.69) and (5.70)). For consistency with the use of these impact parameters,
a narrow Gaussian t-matrix and uniform nuclear densities were again used in the
momentum transfer calculations. From figure 5.13, the agreement is much better
than in figure 5.12 and probably reflects that a uniform nuclear density distribution
is a more reasonable approximation for a heavy nucleus like lanthanum than for
light nuclei such as oxygen.

5.4.3. Estimating collision impact parameters. So far in this work, we
have used collision impact parameters as inputs into a momentum transfer com-
putational model, which in turn, has yielded estimates of heavy ion fragment
momentum downshifts/widths for comparison with experimental data. However,
this procedure can be reversed and the model used to estimate collision impact
parameters from measured momentum downshifts for relativistic collisions. Let F
be the fragment mass number with measured longitudinal momentum downshift
AP" produced in a relativistic collision between a projectile nucleus (mass num-
ber A) and some target. Then, from equation (5.73), the longitudinal momentum
transfer to the projectile from the target is

A
Q= fAP” (5.75)
The collision impact parameter can then be estimated from equation (5.70) by
computing Q" as a function of impact parameter (e.g., in fig. 5.11) and using

Q” from equation (5.75) as the entry. To illustrate, consider a collision involving
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targets at 2.1 GeV/nucleon.

oxygen colliding with a beryllium target at 2.1 GeV/nucleon. The calculated
momentum transfer using realistic nuclear densities is displayed in figure 5.11.
If the measured (hypothetical) momentum downshift for the MN fragment is
35 + 7 MeV /¢, then equation (5.75) yields a longitudinal momentum transfer of
40 &+ 8 MeV/c. From figure 5.11, the corresponding range of impact parameters is
6.1-6.4 fm. A similar procedure incorporating measured momentum distribution
widths and equations (5.71) and (5.69) or (5.70) could also be used to estimate
collision impact parameters. These proposed methods for estimating collision
impact parameters are similar in concept to the use of heavy fragment yields in
the quantum molecular dynamics approach of Aichelin and collaborators (Aichelin
et al., 1988).

5.4.4. Remarks. Beginning with composite particle multiple-scattering the-
ory, an optical model description of collision momentum transfer in relativistic
heavy ion collisions was derived. General expressions for transverse and longi-
tudinal momentum transfers, which use a finite-range, two-nucleon interaction
and realistic nuclear densities, were presented. The theory was used as input
into the Goldhaber (1974) formalism to estimate heavy ion fragment momentum
downshifts for relativistic oxygen and transverse momentum widths for relativistic
lanthanum projectiles. The main new feature of this work was the interpretation
of the imaginary component of the momentum transfer as the longitudinal collision
momentum transfer. Finally, the use of the model as a mechanism for estimating
collision impact parameters was described.

The present theory is mainly applicable at intermediate or high energies be-
cause of the use of eikonal wave functions and the impulse approximation. At
lower energies (below several hundred MeV/nucleon), the validity of straight-
line trajectories and the assumption of a constant projectile velocity are ques-
tionable. Therefore, revisions to the model are necessary to compare theory
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with experiment at lower energies. In particular, deceleration corrections to the
constant velocity assumption are being developed. For incident energies greater
than 1 GeV/nucleon, first-order deceleration corrections are small (<1 percent}.
As the incident energy decreases, however, the first-order corrections increase
significantly (over 50 percent) at 100 MeV/nucleon; this indicates that higher or-
der terms must be included (Khan, 1989). Work on this is in progress.

In addition to the described work on abrasion-ablation models, Khan et al.
(1988) have examined contributions of direct knockout and excitation decay
contributions in 2C fragmentation (Webb et al., 1987). The t-matrix formulation
of Norbury, Townsend, and Deutchman (1985) has received additional analysis
(Cucinotta et al., 1987) but requires more fundamental development.

5.5. Direct Reaction Processes

Reaction mechanisms discussed in sections 5.2 through 5.4 have dealt with
the outcome for spectator constituents in the reaction. In this section we look
at collision participants and the direct breakup and knockout of particles from
the projectile or target nucleus including transitions to excited nuclear states.
The calculations follow closely the work of Cucinotta (1988) and Cucinotta et al.
(1988).

5.5.1. Ezxclusive inelastic scattering. The scattering amplitude matrix in
the eikonal approximation is given by Wilson (1975) as

f(@ = ik exp (—z’{j- S) {exp [zx(i)‘)} - 1} d?b (5.76)

o

where the eikonal phase shift matrix is related to the coupled-channel optical
potential

x(5) = ;—,: /_ o; U, 2) dz (5.77)

where U is the optical potential relating all the states of the interacting systems.
The elastic scattering amplitude is found to be (Cucinotta et al., 1988)

folas(@) = ;—:rk /exp(—i('j- E) [exp(ixopt) cos T — 1] d%b (5.78)

where the inelastic amplitudes are

k I . sinT
foomu(@ = - [ exp(=id- B) explixop) T Xoomu & (5.79)
where
2= > XepnuXnuoo (5.80)
(n,1)#(0,0)

The usual coherent approximation and the DWBA (distorted-wave Born approx-
imation) are found for T — 0 in equations (5.78) and (5.79), respectively.
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The function T as given in equation (5.80) is directly related to the pair
correlation function. This can be seen as follows (Cucinotta et al., 1988):

2/ 1\4 — -
T2 = (g—’%) (E) /d2qd2q'exp(—zq~b) exp(—i7 - b)

o0

x > Fon(@Fon(d@") Fou(—9) Fuo(-7)
i oor n#0

3 OECY

(5.81)

From Kerman, McManus, and Thaler (1959), we have the following sum rule on
the form factors

S Fon(@ Fao(@) = = Foo(g) Foo(@")
n#0 A
1

2

Ro@+7)+(1- 5) Cn@d) (582

where A is the mass number of the nucleus in question, and Cpo(g,§’) is the
Fourier transform of the pair correlation function. Analytic models for Coo(d, 7)
are under investigation. In section 5.5.3, we consider a numerical study of long-
range correlations involving partial summation of the infinite sum that appears in
equation (5.81) for 2C.

Finally, the first- and second-order solutions to the eikonal coupled-channel
scattering amplitudes were found by approximating the form of x. We expect that
higher order solutions, though more difficult, could be found by approximating the
form of higher powers of x.

5.5.2. Physical inputs. As a numerical study, we compare the first- and
second-order eikonal coupled-channel solutions of p for 12C and “He on 2C
scattering. The 2% at 4.65 MeV, 0t at 7.66 MeV, 3~ at 9.65 MeV, and 4%
at 14.1 MeV excited states of 12C are considered. An advantage of the bordered
interaction matrix is that the eikonal phase matrix elements may be obtained
through knowledge of form factors measured in electron scattering experiments,
so that no excited-state wave function is needed as inputs. This would not be true
for couplings between the off-diagonal elements. The charge form factors for the
ground and first three excited states have been parameterized by Saudinos and
Wilkin (1974) and Viollier (1975) in the form

Fiharge(q) = Ba™(1 — Cq?) exp(—dg’) (5.83)

where the parameters B, C,d, and m are listed in table 5.6. Table 5.6 also lists
the form factor for excitation of the 47 state at 14.1 MeV of 12¢, which we have
parameterized to the data of Nakada, Torizuka, and Horikawa (1971).
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Table 5.6. Form Factors

(a) IZC
E, MeV JP m B C d, fm~2
0 ot 0 1.0 0.296 0.7
443 2+ 2 0.24 0.13 0.57
7.65 ot 2 0.167 0 0.99
9.67 3 3 0.134 0 0.77
14.1 4+ 4 0.00392 0 0.64
(b) “He
C1 = 1.098
C, = 0.098
di =0.72
d; = 3.6

The matter form factors are obtained from the charge form factors in the
following equation (Uberall, 1971):

Feharge
Falg) = ——sz’;’) }ffaiq()q) (5.84)

where Fp(q) is the proton charge form factor given by

—7'2(12
Fp(Q)=eXP( : ) (5.85)

where rp = 0.87 fm, and Fy(g) is a center-of-mass correction of the form

q2a2
Fom(g) = exp | <1 A") (5.86)
with
(r?) —r2

_2_52 + 3(4-1)

where (r?) is the root-mean-square radius of the nucleus. For the ground state of
4He, we use the parameterization of Auger, Gillespie, and Lombard (1976),

a3 = (5.87)

Fyy, = C1 exp(—di1¢®) — C; exp(—dag?) (5.88)
where C}, Cy,d, and ds are listed in table 5.6.

The two-body amplitude is assumed to contain only a central piece of the usual
form

t(g) = —\/go(e)[a(e) + 1] exp (—%B(e)qz) (5.89)
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Table 5.7. Two-Body Amplitude Parameters

[Isospin-averaged parameters of Ray (1979)]

Chapter &

Tiap, MeV B(e), fm? o(e), fm? ale)
340 0.62 3.03 0.28
800 0.20 4.3 —0.056

1000 0.21 4.3 —0.26

where the energy-dependent parameters o(e), a(e), and B(e) are taken from Ray
(1979) and given in table 5.7. The Gaussian forms for the form factors and two-
body amplitude assumed in the calculations allow us to obtain analytic solutions
for all eikonal phase matrix elements needed as inputs for our calculations.

5.5.9. Results and discussion. The first- and second-order scattering
solutions and experimental data (Blanpied et al., 1981; Bertini et al, 1973;
Chaumeaux et al., 1976) for elastic and inelastic scattering of p on 12 at 800 MeV
and 1000 MeV and for *He on 12C at 340 MeV/nucleon are shown in figures 5.14
through 5.24. For p-12C elastic scattering (figs. 5.14 and 5.18), the coherent ap-
proximation (dashed line, first-order) and bordered matrix (solid line, second-
order) results are nearly the same in the region of the forward peak where single
scattering dominates. This was implied by Wilson (1975) on theoretical arguments

104 —

Second-order calculation

— — - First-order calculation
I Blanpied etal., 1981

103 |-

do/dS2, mb/sr

Figure 5.14. Theoretical and experimental elastic angular distributions for p-12C scattering at
800 MeV.
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repeated in chapter 3. We include coulomb effects only in an approximate way
assuming a point coulomb interaction. A more exact treatment is needed to
completely fill in the first minimum. (See, for example, Chaumeaux et al.,
1976; Glauber and Matthiae, 1970.) Here, spin effects may also be important as
noted by Saudinos and Wilkin (1974) and Ahmad (1975). The effect of coupling
the elastic channel to low-lying excited states is seen in the second maximum
(figs. 5.14 and 5.18) where the bordered matrix agrees well, whereas the coherent
approximation underestimates the data both at 800 and 1000 MeV. The sensitivity
to the number of channels included in the second-order calculations can be seen
in figure 5.19, where the dashed line includes only the 27 state; the long-dash—
short-dash line, the 2 and 0" states; and the solid line, the 2+,0%,3™, and 4%
states. At larger angles, agreement with the data is poor. Here, the validity of the
eikonal approximation is suspect, and the momentum transfers being probed are
beyond the region where the phenomenological fits to the form factors and two-
body amplitudes are made. For the second-order solutions, the effects of channel
truncation, including the neglect of short-range correlations in the YT-function,
may be more important at larger angles.

Calculations of the excitation of the 2*,0%, and 3~ states in 12C by 800 and
1040 MeV protons are shown in figures 5.15 through 5.17 and 5.20 through 5.22,
respectively. The dashed line is the DWBA, and the solid line is the bordered
matrix (second-order) solution. For all excited states, the DWBA and bordered
matrix give similar results in the region of the first and second maxima. Although
the bordered matrix contains all couplings to second order for the elastic channel,
the cascades between excited states, which are neglected, should be considered
a second-order effect for inelastic transitions. These cascades would be more
important in the region of the second maximum. In the region of the third
maximum, we do see better agreement for the bordered matrix solutions as
compared with the DWBA for all transitions considered.

In figures 5.23 and 5.24 we show calculations for elastic scattering and
excitation of the 0% state of 12C for *He on 12C collisions at 340 MeV /nucleon.
The experimental results of Chaumeaux et al. (1976) do not report the forward
peak with the data beginning at approximately 5°. No correlation effect is included
for “He in the calculations. The importance of correlations is expected to increase
for the lightest nuclei (Feshbach, Gal, and Hiifner, 1971).

In table 5.8, total cross sections are given for all channels considered for p-12C
scattering at 340, 800, and 1000 MeV. The total of the cross sections o(tot)
is calculated by the optical theorem, and the reaction cross section o(re) is
taken as the difference between the total and total elastic cross sections o(el).
The first- and second-order results are nearly the same for all channels. This
agreement is expected because our angular distributions show almost complete
agreement between the two solutions in the forward angles where most of the
cross section occurs. In table 5.8, we also sum the excited-state cross sections
o(2%), o(0%), a(37), o(4*) for the bound-excited (BE) states calculated, o(be).
We note that o(be) represents only a small fraction (<5 percent) of the total
reaction cross section. This is an indication that the neglect of the bound-excited
states in the abrasion model is a good approximation, although the importance of
the giant dipole resonance state should be estimated.
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Figure 5.15. Theoretical and experimental inelastic angular distributions for excitation of 2%
state in 12C by 800-MeV protons.
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Figure 5.16. Theoretical and experimental inelastic angular distributions for excitation of 0%
state in '2C by 800-MeV protons.

189



Transport Methods and Interactions for Space Radiations

102 —

Second-order calculation
- — - DWBA
1 Blanpiedetal, 1981

101 |-

2
I

do/dQ, mb/sr
3
|

102
103 _
hY
| | l | I 1 I 1 I |
104, 6 10 14 18 2226 30 34 38 a2

eC m

Figure 5.17. Theoretical and experimental inelastic angular distributions for excitation of 3~
state in 12C by 800-MeV protons.
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Figure 5.18. Theoretical and experimental elastic angular distributions for excitation for p-12C
scattering at 1040 MeV.
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Figure 5.19. Effects of channel truncation in second-order calculations for p-12C elastic
scattering at 1040 MeV.
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Figure 5.20. Theoretical and experimental inelastic angular distributions for excitation of 2+
state in 12C by 1040-MeV protons.
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Figure 5.21. Theoretical and experimental inelastic angular distributions for excitation of 0%
state in 12C by 1040-MeV protons.
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Figure 5.22. Theoretical and experimental inelastic angular distributions for excitation of 3~
state in 12C by 1040-MeV protons.
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Figure 5.23. Theoretical and experimental elastic angular distributions for o-12C scattering at
340 MeV.
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Figure 5.24. Theoretical and experimental inelastic angular distributions for excitation of 0%
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Table 5.8. Total Channel Cross Sections for p on 12¢

Tiap = 340 MeV | Tigp = 800 MeV | Tjpp, = 1000 MeV

Cross section Coherent |Bordered |Coherent |Bordered [Coherent |Bordered
gelmb . . . ... 54.1 53.5 925 | 913 | 1035 | 102.1
abe)ymb . . . . . ... .. .. 3.5 35 7.1 7.1 7.5 7.5
o2t),mb . . ... 2.2 2.2 4.1 41 43 43
e(0t)ymb . . .. ... 0.3 0.3 0.4 04 0.4 0.4
o(37),mb . .. ... 1.0 1.0 2.5 2.5 26 2.6
g(dt),mb . . . . ... 0.03 0.03 0.1 0.1 0.1 0.1
ofre),mb . ... 2209 | 2203 | 2383 | 2372 | 2238 | 223.0
oftot), mb . . . . . ... .. .. 2750 | 2738 | 3308 | 3285 | 3273 | 325.1

5.5.4. Inclusive inelastic scattering. Cucinotta et al. (1990) consider
nucleus-nucleus scattering at high energies for the case where an inclusive mea-
surement of the projectile final state is made,

P+T—>P+X (5.90)

with P and T labeling the projectile and target, respectively, and X being some
final state of the target that is not measured. In equation (5.90), the projectile
scatters without fragmenting, and meson production is not considered. In the
overall center-of-mass (CM) frame, with the projectile and target states denoted
by |mp) and |vr), respectively, the angular distribution for equation (5.90) is found
by summing the nuclear-scattering operator over all final states of the target,

do?f Pl 2
m) = 3 lwr0p| F@00p)] (5.91)
tot vr

where f‘ is the scattering operator and § is the momentum transfer to the projectile
defined by

G=k-kp (5.92)

In equation (5.92), k and kg are the initial and final projectile wave vectors,
respectively. In equation (5.91), the phase space is approximated by a two-body
phase space that is expected to be accurate at high energies. Equation (5.91) can
be separated into elastic and inelastic contributions given by

o). = les0rii@iopor)y (5.93)
and
do® y 2
—dﬁ> = Z |<0PVTlf(q)‘0POT)‘ (5.94)
in  vpF#0
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The summation in equation (5.94) includes all excited states, bound and contin-
uum, of the target. This infinite summation can be reduced to a single matrix
element through the use of closure on the target states:

> lvr){vrl = 1- | 07)(0r | (5.95)

vr#0

Inserting equation (5.95) into equation (5.94), we find

P P
do _ do _ da) (5.96)
aQ /. df dQ /] &
in tot

where
dof

1) = Grloeli@n 0 @A) 690
tot

The great advantage of equation (5.96) over equation (5.94) is that only the
ground-state wave function of the target is required.

A second reaction that we consider is complete inelastic scattering
P+T - X+Y (5.98)

where the projectile and target are both left in excited states. The angular
distribution for equation (5.98) is given by

dotT X
W) = 3 Y Kernplf@I0p0r) (5.99)
in  wvp #£0 npA0
which is written, using closure on both the target and projectile states, as
daPT) = d—a) + d—a) - £> - diT—) (5.100)
dQ i dQ/ it d)e  d2 tot dQ ot
where p
a _ ~ =2
%), = (or0r] (17@0) joror) (5.101)
Equation (5.100) may be written as
PT P T
do "\ - ﬁdi) - i‘g) _do ) _do” (5.102)
dﬂ . dQ tot dﬂ el dQ . dQ .
m mn mn

The distributions given by equations (5.96) through (5.102) are evaluated when
models for the muclear-scattering operator and ground-state wave functions are
introduced.

5.5.5. Correlations and inclusive scattering. The effects of short-range
dynamical correlations and Pauli blocking in the nuclear wave function will be
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most pronounced in the inelastic distribution at small and medium momentum
transfers. In order to include these effects in the inelastic scattering distributions,
we consider the eikonal coupled-channel (ECC) model. Assuming correct or
equivalent kinematics, the ECC can be considered the matrix representation of
the Glauber amplitude. In the ECC, the matrix of scattering amplitudes for all
possible projectile-target transitions is given by Cucinotta et al. (1989) as

(@)= % / d%b exp(ig - b) {exp [z'x(z?)] _ 1} (5.103)

where bold-faced quantities represent matrices and the elements of x are written
as

. 1 -
m v(b)|npvy) = /d2 exp(ig - b
(mpur|x(b)|nprr) Py QZJ q exp(id - b)

x B ()60 @ fuw @ (5.104)

where F' and G are projectile and target form factors. Assuming that the off-
diagonal terms in x are small compared with the diagonal terms (see chapter 3
and Wilson, 1975), we separate x into diagonal (x p) and off-diagonal, xo terms
as

x(8) = xp () + x0(b) (5.105)

We further assume that the nuclear density in the excited states is approximately
the same as the ground state, such that the elements of the diagonal matrix xp
are all taken as the elastic element,

- ApA R

xB)= 2L [ a2 FO(-) 6@ expli B (5.100)
(27 kNN)

To treat off-diagonal scattering, we expand f in powers of xp

]m

f=5r [dow g F+ixp®) X XD (5.107)
m=1 ’

The inclusive distribution for the projectile then follows as:

%)' _ %2 /dzbd2brexp [ia.(E_E')] exp {z- [X(g)_XJr(g,)]}
x 2 [Ts(F,E’)+TD(5, 5”)+...] (5.108)
vr#0

where the single inelastic scattering terms are

Ts (5,5') = (0p Or|%(8)|0pvr) (vr0p|X T (8)|0pOT) (5.109)
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OPVT>

()

and the double inelastic scattering terms are

Tp(b,¥) = -% >y <0P0T

pr#0 np=0

-,

x(b) x(d)

MT”p> <NTnp
ot ) (v

Each term in the inelastic scattering expansion of equation (5.108) can be reduced
through use of closure to terms involving matrix elements of one-, two-, ..., n-
body operators over the ground state and thus includes the effects of two or more
particle correlations. Details are given by Cucinotta et al. (1990).

@) opoT>(5.110)

x 3 Y <uT0P

up#0 ny=0

5.5.6. Model calculations. We now consider the evaluation of the inelastic
distributions in equation (5.106). Ignoring spin effects, we use an isospin-averaged,
two-body amplitude given by

- _n.2
fn(@ = ZOTIIN o (—'2—"—) (5111)

where the energy dependent parameters o, B, and a are listed in table 5.9. For
the projectile, we use a one-body form factor

p2.2
F(l)(q‘) = exp ( R4Pq ) (5.112)

where Rp is the matter radius of the projectile. For the target one-body form
factor, we use the harmonic well form of Townsend and Wilson (1985)

_p2.2
(@) = (1 - Cpq?) exp ( 7 1 ) (5.113)
where Rr is the target matter radius and
v RE
Cr=—"17"— (5.114)

41+ 3v;)
where values of v, are given by Townsend and Wilson (1985)

Correlation effects are included in the two-particle density through the approx-
imate form given by Moniz and Nixon (1971) as

/D (z,7) = V(@) (@) {1 _exp [‘“‘—Q;yi]} (5.115)
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Table 5.9. Parameters For Nucleon-Nucleon Scattering Amplitude

Reaction o, fm? B, fm? a
o-a at 642 MeV/nucleon . . . . . . . . . 3.93 0.13 —-0.39
a-12C at 3.64 GeV/nucleon . . . . . . . . 4.2 0.28 -0.43
p1%0 at 1 GeV/nucleon . . . . . . . .. 4.3 0.26 -0.22
a-Ar at 1 GeV/nucleon . . . . . . . .. 4.3 - 0.26 -0.23
105
103
104 — Sum of elastic and
—_ Correlation model inelastic contributions
o Maleck et al., 1984 S o Ableev etal, 1982
S 102 ﬁ 103
L
: .
s ‘3; 102
3
~ 1 N
%10
10!
100 1 } 100 1 L L 1 I H
o 1 2 3 4 5 6 0 05 .10 .15 20 .25 .30
-t, GeV2 -t, GeV2
Figure 5.25. Inclusive a cross section on Figure 5.26. Inclusive a cross section on
helium target. carbon target.

where £ is an effective correlation length, £, = 0.7 fm. For comparison with
experimental results, the inclusive invariant distribution is written as

do¥ r dof
in in

with
t~ —g? (5.117)

In figure 5.25, we show the correlation model and the experimental results of
Maleck, Picozza, and Satta (1984) for o-a scattering at 642 MeV/nucleon. The
correlation model produces good agreement over the region of momentum transfers
studied.

Experimental results of Ableev et al. (1982) for total inclusive scattering of
a-particles on 12C at 3.64 GeV/nucleon are shown in figure 5.26. The solid line
represents the sum of inelastic and elastic contributions. Agreement with the
data is fair, whereas calculations underestimate the data at larger values of .
Correlation effects in elastic scattering have been shown to imcrease the cross
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section in this region by a substantial amount (Cucinotta et al., 1989; Cucinotta,
1988) such that a second-order elastic scattering model should lead to improved
agreement. The dominance of elastic scattering at small values of ¢, as seen in
figure 5.26, indicates that the model is sufficient when total scattering distributions
are considered.

5.6. Coulomb Dissociation

The coulomb cross section for producing state X was given as a multipole
series as

Tem(X) =) _ /E c:X) oT{(E,X) N™(E)dE (5.118)

where U"I(E X) is the photonuclear cross section and N™(E) is the virtual

photon density produced by the passing ion. The virtual photon densities N "[(E )
are known, and the corresponding photonuclear cross sections are the primary
uncertainties.

5.6.1. Electric dipole transitions. The E1 virtual photon density experi-
enced by a passing ion is (Norbury and Townsend, 1990a)

NEYE) = ZZZ}a2 {xKo(x)Kl(z) S22 [K%’(x>—K§(m)]} (5.119)

where E is the photon energy, Z; the nuclear charge of the target, 3 is the velocity
in units of ¢, a the fine structure constant, and Ky(z) and K1(x) are the modified
Bessel functions of the second kind.

The parameter x is given as

- E bmin

e (5.120)

where v is the usual relativistic factor and by, is the minimum impact parameter
taken as (Norbury et al., 1988)

bmin = Ry, l(AT) + Ry I(AP) (5'121)

where the 10-percent charge density radius measured in fm is given by (Norbury
et al., 1988)

Ro1(A) = (1.18473 4 0.75) (5.122)

The photonuclear cross sections are assumed to be of the form

oF (B, X) = g§1(E)oEL

abs

(5.123)

with g}lgl(E) assumed to be energy independent. The E1 absorption cross section
is taken to be the giant electric dipole resonance (GDR), which is

oabs(E) = T E%DR) 7B (5.124)
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where Egpg is the resonance energy, I is the resonance width, and oy, is given
by (Levinger, 1960)

_ OTRK
Om = _—ﬂ(F/2) (5.125)
with the Thomas-Reiche-Kuhn cross section in MeV-mb given by
60NZ
OTRK = — 2 (5.126)

where N, Z, and A are neutron numbers, proton numbers, and nucleon numbers,
respectively. The resonance energy is given by (Westfall et al., 1979)

-1/2
m* R ( 1+e+3u )
= l+u— ———— :
EcDpR ﬁc[ 37 +u 1+€+'u,€ (6.127)
with 37
U= — (5.128)
Q/A1/3
and
R, =r,AY3 (5.129)

where € = 0.0768, Q' = 17 MeV, J = 36.8 MeV, r, = 1.18 fm, and m* is 0.7 times
the nucleon rest mass. The resonance width in MeV is approximately

10 (A < 50)
I'= (5.130)
4.5 (A >50)
The branching ratios g; satisfy
> g:(BE)=1 (5.131)
I
The proton branching ratio was found by Westfall et al. (1979) to be
. |2
gp = min [Z’ 1.95exp(—0.0752) (5.132)

If all other processes are assumed to emit neutrons, we may write

Z oy(E, sn) = o4(E,n) +0y(E,2n) + ...
5 (5.133)
= (1- gp)o5u(E)
with the total photoneutron production cross section as
M(E) Z oy(E,sn) = Z s o4(E, sn)
S 3

(5.134)
= z Sgsno'fbls(E)
s
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and further assume that the processes emitting more than two neutrons are
negligible yields

M(E) (1 - gp) = gn +2g2n (5.135)
which yields
gon = [M(E) - 1J(1 - gp) (5.136)
and
gn=1-0p—gom (5.137)

The average multiplicity was shown to be

M(E)=1+(1- f3) [1 - (1 + E(S_)“) exp (— Eéec)] (5.138)
where Esec = E — Ey(y,2n) (5.139)

and the nuclear temperature (Blatt and Weisskopf, 1952) is

o {(8{;*)1/2 _ %} B (5.140)

where the excitation energy

E* = E - Ey(v,n) (5.141)

See Norbury and Townsend (1990a) for details.

5.6.2. Results. Reasonable values of coulomb dissociation are obtained with
experiments (Heckman and Lindstrom, 1976; Mercier et al., 1984) by neglecting
the 2n channel (Norbury, Townsend, and Badavi, 1988) by setting M(E) = 1
as shown in tables 5.10 and 5.11. Further analysis is given by Norbury (1989).
A fully parameterized computer program is available for generating one nucleon
removal cross section (Norbury, Townsend, and Badavi, 1988). Preliminary work
on evaluating the 2n photonuclear cross sections is hopeful but not complete
(Norbury and Townsend, 1990a; Cucinotta, Norbury, and Townsend, 1988).

5.6.3. Electric quadrupole transitions. The E2 virtual photon density
experienced by a passing ion is (Bertulani and Baur, 1988)

NE%E%=—;;Taﬁz{xl—ﬂ%Kﬂ@+x@—ﬂ%KMmem
(5.142)

2

—ﬁﬂﬁ@—ﬁmﬁ

where F is the photon energy, Zr is the nuclear charge of the target, 3 is the
velocity of the projectile in units of ¢, « is the fine structure constant, and Ky(z)

201



Transport Methods and Interactions for Space Radiations

Table 5.10. Calculated Total Electromagnetic Reaction Cross Sections
for 12C And 160 Incident Upon Various Targets

Energy, OEM, b OEM, mb
Projectile | GeV/nucleon | Target Final state (a) (present work)
12 2.1 208pp, UC +n 50 + 18 68
HB 4+ p 50 + 25 68
1.05 UC 4+ 38 + 24 43
B 4+ p 50 + 26 43
160 2.1 150 +n 50 + 25 99
BN +p 97 + 17 99
12¢ 2.1 1087 ¢ o4 n 22 4+ 12 26
1B +p 20 4+ 12 26
1.05 HC +n 22 + 12 17
UB +p 25 + 20 17
160 2.1 150 +n 26 + 13 37
BN +p 29 + 19 37
12¢ 2.1 64Cy Ho 4 n 10+ 6 11
B 4+p 4+ 8 11
1.05 HC 4+ n 10+ 7 74
B +p 5+ 8 74
160 2.1 150 + n 10+ 7 16
BN +p 14+ 9 16
12¢ 2.1 2T Al U 4+ p 0+ 3 2.5
g4+ p 0+ 3 25
1.05 HC 4+ n 1+ 3 1.8
B +p 1+ 3 1.8
160 2.1 150 4+ n 0+ 3 3.6
BN +p 0+ 0 36
120 2.1 12¢ HC 4+ n 0+ 1 0.58
UB 4+ n 0+ 3 0.58
1.05 RYGIENY 0+ 2 0.43
B +p 0% 1 0.43
160 2.1 150 4+ n 0+ 2 0.83
BN +p 0+ 3 0.83

%This column represents the measurements (isotope averaged) of Heckman and Lindstrom
(1976). See Mercier et al. (1984).
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Table 5.11.

Various Projectiles Incident Upon 197 Ay

Chapter §

Calculated Total Electromagnetic Reaction Cross Sections for

Energy, OgM, mb oEM, Mb
Projectile GeV /nucleon Final state (a) (present work)
2¢ 2.1 196Au 4+ n 66 + 20 39
20Ne 2.1 136 + 21 104
40Ar 1.8 420 + 120 299
56Fe 1.7 680 £ 160 588

@ This column represents the data of Mercier et al. (1984).

Table 5.12. EM Cross Sections for Reaction 8Y (projectile, X)%Y

Rpa1(P) Energy, Oexpt, Mb | oww, | 0g1, | 02, | 0E1 + 0B,
Projectile fm GeV /nucleon (a) mb mb mb mb
12¢ 3.30 2.1 9+ 12 12 12 1 13
0Ne 4.00 2.1 43 + 12 32 31 3 34
0Ar 4.72 1.8 132 £ 17 90 88 9 97
56Fe 5.24 1.7 217 £ 20 175 171 16 187

@ This column represents the data of Mercier et al. (1984).

and K(z) are the modified Bessel functions of the second kind. The parameter
z is given as

r= Ebyin

"~ yBhe

where 7y is the usual Lorentz factor and by, is the minimum impact parameter
taken herein as the sum of the 10-percent radii of the target and projectile. The
photonuclear cross section is assumed to be the isoscalar component of the electric
giant quadrupole resonance (GQR) given by Norbury (1990b) as

(5.143)

oewsr E&qr

E) = 144
0E2( ) 1+ (E2 — EéQR)g/FQEQ (5 )

where the energy-weighted sum rule (EWSR) cross section in pub/MeV is

0.22Z A%/3

T2 (5.145)

OEWSR = f

The data of Mercier et al. (1986) were analyzed by Norbury (1990a) with
results shown in table 5.12. In this table, the 10-percent charge radius used
for 89Y is 6.02 fm and the GQR parameters are f = 0.55, T = 3.2 MeV, and
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Egqr = 13.8 MeV. The 3%Y (v, n) threshold is at 11.0 MeV. Calculations are made
for Weizsacker-Williams theory (oww), and individual E'1 and E2 multipole cross
sections are calculated. The cross section og; + o9 is in reasonable agreement
with experiment. All calculations use the minimum impact parameter given by

bmin = Ro.1(Ap) + Ro.1(AT).

5.6.4. Nuclear versus coulomb contributions. An extensive comparison
of the electromagnetic theory (Norbury, 1989, 1990a, 1990b, and 1990c) with
experiment (Hill et al., 1988) showed that significant discrepancies still remained
at higher energies. These have been attributed to an incorrect subtraction
of the nuclear contribution to the total experimental cross section; thus an
incorrect experimental electromagnetic cross section (Benesh, Cook, and Vary,
1989) resulted. Calculations were then performed (Benesh, Cook, and Vary, 1989;
Norbury and Townsend, 1990b) of both the nuclear and electromagnetic cross
sections and were compared with the total measured cross sections. Much more
satisfactory agreement was then obtained. Thus, the electromagnetic and nuclear
contributions to single-nucleon removal seem reasonably well understood; however,
recent comparisons with exclusive data for nucleon removal from 28Si indicate
that some work remains to be done in understanding how to calculate excitation
energies relevant to single-nucleon removal at higher energies (14 GeV/nucleon).

Future work should be directed to understanding nuclear and coulomb contri-
butions to the removal of a few nucleons.

5.7. Semiempirical Data Base

Even though the accuracy of the data for specific reactions improves, a
reasonable means of representing data in computational procedures is still a
challenge. We have avoided a point representation of the data since large
multidimensional arrays will eventually rival computer storage. Mostly, we use
empirical methods built on some theoretical base which describes approximately
the systematic variation of reaction cross sections and add a few adjustable
parameters or interpolation and extrapolation procedures.

5.7.1. Nucleon mnonelastic spectrum. The nonelastic differential cross
sections (the inelastic process in which the nucleus is raised to an excited level is
ignored) use the results of Bertini’s MECC-7 (Anon., 1968) program. The nucleon
multiplicities are given in tables 5.13 and 5.14. We have required the multiplicities
to be monotonic in energy, and thus the values in parentheses, which were obtained
by scaling from lower and higher energies, are correct values and are used in the
calculations. The results below 400 MeV were taken from Alsmiller, Barish, and
Leimdorfer (1968), and the results for carbon, calcium, bromine, cesium, and
holmium above 400 MeV are obtained by interpolation. The nonelastic spectra
are represented as

3
" N; exp(—E'/a;)
FEE)=Y o T E o)

=1

+ % {1 + exp [—20(1 — E/E’)]} (5.146)
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The first term of the summation represents the evaporation peak so that N
(the number of evaporation nucleons) is taken from table 5.13 and the spectral
parameter & (in GeV) is taken from Ranft (1980)

_ [(0.019 + 0.0017E)(1 - 0.00147) (E' <5 GeV)
%12 =1 0.027(1 - 0.00147) (E' > 5 GeV)

ar. = § (0017 +0.0017E')(1 - 0.00147) (E' <5 GeV) (5.148)
In =1 0.023(1 - 0.001 A7) (E' > 5 GeV) '

The second term is taken from Ranft (1980) to represent the low-energy
cascade particles as

0.0035/ A1 (E' 0.1 GeV)

ngp = { 0.007VAr[0.5+ 1(1 +logio E)?] (0.1 < E' <5GeV) p (5.149)
0.0245/ A (E' <5 GeV)
0.0042/A7 (E' 0.1 GeV)

non = 4 0.007VA7[0.6 + 1.3(1 +log1o E')?] (0.1 < E' <5 GeV) § (5.150)
0.032\/47 (E' <5 GeV)

with the corresponding spectral parameters

(0.11 + 0.01E")(1 — 0.00147) (E' <5 GeV)

gy = (5.151a)
0.16(1 — 0.001 A7) (E' > 5 GeV)
0.1 +0.01E')(1 - 0.0014 E' <5 GeV

arn=1{ X ) V) (5.151b)
0.15(1 — 0.001A47) (E' > 5 GeV)

The third term in the summation is the balance of cascade particles after the
inclusion of the quasi-elastic contribution.

The quasi-elastic contribution is estimated by including the nuclear attenuation
following the quasi-elastic event. The proton quasi-elastic cross section is

OQpp = ZTUpp + (AT — ZT)anp

(5.152)
0Qm = (A1 — Z7)onp
and similarly for neutrons
0Qnn = (AT - ZT)Unn + ZTo'np
(5.153)

OQmp = LT0np
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Table 5.13. Number of Evaporation Nucleons Produced in Nuclear Collisions

[Values in parentheses are modified and used in the code]

Number of nucleons produced at—
25 MeV| 200 MeV | 400 MeV | 1000 MeV 2000 MeV 3000 MeV
Ap=12 '
PP .. 0.51 0.54 0.50 0.72 0.75 0.84
p—on ... .. 0.026 0.32 0.35 0.79 0.79 0.79
n—p .. ... 0.052 0.30 0.35 0.73 0.73 0.80
non ... 0.43 0.57 0.52 0.77 (0.71) | 0.71 (0.71) 0.73
AT = 16:
pPop .. 0.62 0.73 0.71 0.84 0.89 | 0.98 (0.93)
pon ... 0.87 0.36 0.441 | 0.11(0.87) |0.93(0.87) | 0.82(0.87)
n-sp ... .- 0.12 0.47 0.53 0.86 0.86 0.89
n—n .. ... 0.55 0.60 0.59 0.79 0.79 0.81
Ap =27
PP - - .- 0.54 0.99 1.03 1.36 149 1.86
pom ... 0.37 0.61 0.62 1.29 | 2.03(192) | 1.52(1.92)
n—p .. ... 0.14 0.78 0.82 1.29 1.60 1.74
n—-n ... .. 0.75 0.76 0.71 1.34 1.51 1.60
Ap=00
p—=p .. 0.50 1.03 1.06 1.74 2.32 2.93
pon ... 0.53 1.12 1.24 2.63 3.36 3.64
n—-p .. ... 0.12 0.74 0.84 1.60 2.29 2.67
n—-n .. ... 0.89 1.39 1.44 2.76 3.25 3.54
Ay =65
p—=D .. 0.18 0.75 0.91 2.11 3.15 4.00
p—=n ... .. 1.04 2.33 2.65 3.97 4.79 5.37
n—=p .. ... 0.03 0.49 0.66 1.90 2.98 3.61
n—-n .. ... 1.46 2.77 2.90 417 4.99 5.49
AT = 80:
P=p ... 0.10 0.60 1.07 2.2 3.18 4.89
p—n . .. .. 1.29 2.20 3.18 3.72 5.07 6.77
n—osp .. ... 0.02 0.53 0.79 1.87 291 4.53
n—n . .. .- 1.58 3.19 343 4.07 5.35 6.91
AT = 100:
pP—p .. 0.03 0.46 1.28 2.96 4.56 5.78
p—n ... .- 1.53 1.97 3.72 5.46 7.04 8.17
n—=p . ... 0.004 0.59 0.96 271 4.27 5.44
n—n ... .. 1.67 3.60 3.97 5.63 7.31 8.33
Ay =132
PP 0.01 0.61 1.03 2.68 4.51 6.32
p—n ... 1.91 4.11 5.25 8.76 11.34 12.31
n—=p .. ... 0.001 0.47 0.81 2.51 4.47 5.98
n—n ... .. 1.96 4.73 5.59 8.93 10.6 12.42
Ap =164
P—Pp . .- .. 0.003 0.42 0.76 2.38 4.68 6.86
PR . . . . 2.17 5.79 7.07 12.09 15.7 16.45
n—p .. ... 0.003 0.28 0.58 2.30 4.68 6.52
n—n . . .. - 2.26 5.96 7.07 12.3 14.6 16.51
AT = 207:
P=p . 0.001 0.21 0.44 2.23 5.19 7.39
pon ... 2.29 7.22 9.24 153 17.81 20.6
n—sp . .. .. 0.00 0.10 0.30 2.10 4.88 7.05
n—n .. ... 2.29 7.38 9.53 15.6 18.2 20.6
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Number of nucleons produced at—
25 MeV | 200 MeV | 400 MeV | 1000 MeV | 2000 MeV | 3000 MeV
Ar=12 e ‘
pP—p . . ... 0.58 143 1.63 1.95 2.15 2.48
p—n .. .. 041 0.86 0.93 1.42 1.66 2.08
n—p .. ... 0.42 0.90 0.92 1.43 1.65 191
e P 0.56 1.42 1.69 1.95 227 | 257
Ar =16
p—p . . . .. 0.56 141 1.72 2.05 2.39 2.60
[ 0.38 0.90 0.98 1.47 1.86 2.19
nop ... .. 0.38 0.91 0.96 1.49 1.85 2.01
n—on ... .. 0.54 1.43 1.70 2.05 2.52 2.70
Ar =27
p—=p . . ... 0.46 1.38 1.67 2.29 2.86 3.19
p—n ... .. 0.34 0.97 1.16 1.86 2.54 3.25
n-op .. ... 0.32 0.93 1.01 1.69 2.28 2.71
n—-n .. ... 0.49 1.48 1.81 242 3.22 3.71
A7 =40 T
p—p ... .. 0.40 1.33 1.69 2.32 3.01 3.53
p—n ... .. 0.30 1.04 1.24 2.46 3.52 4.48
n—op .. ... 0.28 0.89 1.08 1.79 2.51 3.06
n—sn ... .. 0.45 1.49 1.88 2.99 413 4.83
Ar =865 ) 7
P—PB . . ... 0.30 1.21 1.69 2.35 3.16 3.87
P . ... 0.28 1.09 1.46 3.06 4.49 5.72
n—op ... .. 0.21 0.86 1.08 1.88 2.75 341
n—n .. ... 0.40 1.53 2.00 3.55 5.03 5.95
At = 80:
PSP .. ... 0.27 1.18 1.57 2.32 318 3.95
p—=n . . ... 0.25 1.08 1.45 3.27 492 6.35
n—p . . ... 0.19 0.81 1.04 1.86 278 3.54
n—-n ... .. 0.36 1.51 1.98 3.78 540 | 664 |
Ar =100
PoPp . 0.25 115 1.55 2.29 3.20 4.04
p—n ... .. 0.22 1.06 1.52 3.47 5.35 6.98
n-p ... .. 0.17 0.78 1.08 1.84 244 3.67
n—-n ... .. 0.31 1.47 2.03 3.96 5.76 | 733 ]
Ar =132
P—=D . ... 0.20 1.00 1.46 2.21 3.17 3.87
p—n . ... 0.20 1.11 1.57 3.31 5.20 7.91
n—op ... .. 0.13 0.70 1.00 1.79 2.69 3.52
n—n ... .. 0.28 1.45 210 3.86 6.86 829
Ar =164
pP=p ... .. 0.16 0.90 1.36 2.13 3.15 3.69
PN ... .. 0.18 1.11 1.60 3.16 5.06 8.86
n—p .. ... 0.11 0.63 0.88 1.72 2.55 3.39
n—-n .. ... 0.26 142 2.11 3.56 7.94 9.25
AT = 208 )
PP . ... 0.14 0.82 1.27 2.05 7.74 351
p—n ... .. 0.16 1.03 1.71 2.97 7.23 9.77
n—p .. ... 0.09 0.58 0.87 1.67 241 3.24
non ... .. 0.23 1.36 2,10 3.36 7.63 10.21
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The corresponding multiplicities are taken as

exp (—0.05\/ZT) 7Q,jk
§ 9Q.5¢

Nojk = (5.154)

where the exponential factor accounts for the attenuation of the quasi-elastic
particles before they escape the nucleus. The balance of the cascade particles
is contained in N3 as

N3 = N, — N2 — Ng (5.155)

with an assumed spectral coefficient given by

a3

a3=ﬁ

(5.156)
Results of the present formalism and the calculations of Bertini, Guthrie, and

Culkowski (1972) are shown in figures 5.27 to 5.40. Some further improvements
in this parameterization need to be made.
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Figure 5.27. Nucleon cascade spectrum for Figure 5.28. Nucleon cascade spectrum for
protons produced by 100-MeV protons on protons produced by 500-MeV protons on
oxygen. oxygen.

5.7.2. Light-fragment spectrum. The light-fragment yields per event are
given in table 5.15 as obtained from Bertini’s MECC-7 (Anon., 1968) calculations.
These results are extrapolated and interpolated in energy and mass number. The
corresponding mean energies are given in table 5.16. The mean energies are used
in Ranft’s formula for nucleons and are similarly used for the light ions.

5.7.3. Fragmentation cross sections. The local distribution of ions and
radicals produced in ionizing radiation events is known to be an indicator of
biological response. Such distributions for high-energy nuclear radiation vastly
altered by local nuclear-reaction events have been studied in nuclear emulsion
(Van Allen, 1952; Lord, 1951) and are regular components in risk assessments
in high-energy neutron and proton radiation fields (Alsmiller, Armstrong, and
Coleman, 1970; Foelsche et al., 1974). Risk assessments have generally depended
on the results of calculational models of these reactions because the detailed study
of such reactions was largely inaccessible to experimental study until the advent
of high-energy heavy ion beams.
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Table 5.15. Evaporated Ion Yields From Nucleon-Nucleus Collisions

[Values in parentheses are for proton reactions]

Chapter 5

Ton yields at—
500 MeV 1000 MeV 2000 MeV 3000 MeV
A =16 N ’ -
d . . ... .. 0.111 (0.094 0.199 (0.237 0.257 (0.265
[ 2 0.022 (0.029 0.024 {(0.025 0.033 (0.025
he . . . ... 0.018 (0.034 0.035 {0.043 0.037 (0.052
o ... 0.664 (0.400 0.720 {0.696 0.666 (0.624
Ar =27
d . ... ... 0.126 (0.130 0.245 (0.269 0.380 (0.396
t ... 0.028 (0.023 0.048 (0.052 0.063 (0.065
he . . . ... 0.042 (0.035 0.067 (0.074 0.073 (0.091
a ... 0.370 {0.400 0.550 (0.566 0.597 (0.582
Ar =65
d . ... ... 0.150 (0.171 0.379 (0.390 0.748 (0.766
... 0.031 (0.035 0.075 (0.068 0.145 (0.145
he . .. ... 0.013 (0.014 0.039 (0.056 0.112 (0.124
a . ... ... 0.124 (0.137 0.231 (0.231 10.373 (0.377
A7 =100 ’
d .. ..... 0.174 (0.183 0.456 (0.475 1.01 (1.02)
2 0.028 (0.029 0.080 (0.081 0.207 (0.192
he . .. ... 0.012 (0.017 0.055 (0.060 0.162 (0.185
a . . . ... 0.158 (0.156 0.320 {0.339 0.490 (0.467
Ar =207
d . ... ... 0.131 (0.152 0.536 (0.565 1.51 (1.57)
to.. . 0.038 (0.037 0.152 (0.163 0.415 (0.424
he .. .. .. 0.001 (0.002 0.017 (0.017 0.112 (0.106
[ 0.053 (0.063 0.195 (0.210 0.527 (0.515

The first detailed relativistic heavy ion beam experiments were performed
by the Heckman group (Heckman, 1975; Greiner et al., 1975; Lindstrom et al.,
1975) at the Lawrence Berkeley Laboratory (LBL), in which beams of carbon
and oxygen were fragmented on a series of targets ranging from hydrogen to
lead. The momentum distribution of the projectile fragments relative to the
projectile rest frame was measured for all the isotopes produced. These results
will be analyzed to ascertain relevant biological factors with their corresponding
implications on radiation risk assessment in high-energy nucleonic radiation fields.
An ion fragmentation model will be recommended for use in radiological protection

and studies.

Individual nuclear constituents are ejected in the collision of high-energy
neutrons and protons by direct collision (Serber, 1947). The remaining nuclear
structure is left in an excited state that seeks an equilibrium minimum-energy
configuration through particle emission (Rudstam, 1966). This is the basis of
Rudstam’s study of the systematics of spallation products produced in such
collisions in which he assumes that the resultant isotopes are distributed in a bell-
shaped distribution near the nuclear stability line. The total change in nuclear
mass and the dependence on the incident projectile energy are treated empirically
in Rudstam’s formalism.

The fragment charge distribution for a given fragment mass A is given as

f(Zp) =exp (pAF —r IZF —sAp + UA%D

(5.157)
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Table 5.16. Mean Energies of Light Nuclear Fragments
Produced in Nucleon-Nucleus Collisions

[Values in parentheses are for proton reactions]

Mean energies at—
500 MeV 1000 MeV 2000 MeV 3000 MeV
Ar =16
oo . 5.55 (6.19 7.91 (7.89 9.55 (9.81 111 9.80%
P oo 6.10 (6.40 8.33 (8.69 9.71 (10.2 10.3 (11.2
d .. .. ... 8.53 (7.64 12.2 (10.7 14.9 (14.8 16.3 (13.08)
B 6.40 (7.83 10.6 (10.4 12.5 (9.74 13.7 (10.1
he . . . ... 12.1 (8.76 11.8 (11.2 11.1 (13.1 12.9 (10.3
O .. .. 9.36 (6.24 12.6 (12.3 13.1 (14.6 13.6 (13.8
Ar =727 }
£ 5.08 (5.09 7.34 (7.48 9.91 (10.5 11.6 (12.0
P oo e 6.87 (6.90 8.61 (8.92 11.1 (11.9 13.5 (13.7
d . ... ... 9.57 (9.42 10.8 (11.2 14.3 (14.8 17.2 (174
o 9.16 (9.54 10.8 (11.1 13.0 (13.9 16.6 {13.7
he . . .. .. 10.5 (10.8 12.5 {12.8 13.4 (14.1 14.4 (14.5
a ... 12.7 (134 13.2 (13.6 13.8 {13.8 14.5 (14.6
Ar =65
o 4.24 (4.32 5.67 (5.70 7.92 (7.91 9.67 (9.58
P oo 8.25 (8.30 9.66 (9.76 12.1 (12.3 14.4 (14.2
d . ... ... 9.88 (10.1 13.5 (11.8 13.8 (14.2 15.6 (15.9
| 2 10.0 (10.5 11.7 (11.6 13.7 (13.8 15.1 (15.9
he . . . ... 14.6 (14.1 16.4 (16.2 17.5 (19.3 19.5 (19.2
a ... 12.7 (134 13.2 (13.6 13.8 (13.8 14.5 (14.6
I Ar =100
no.o. .. 3.90 (3.90 5.13 (5.16 7.11 (7.04 8.61 (8.74
P oo e 9.63 (9.62 11.0 (11.0 12.9 (13.2 14.6 (14.7
d .. ... .. 11.0 (11.1 12.5 (12.6 14.4 (15.0 16.1 (16.0
oo 11.3 (11.7 12.6 (13.0 14.7 (14.3 15.5 (16.5
he ... ... 17.8 (18.7 13.2 (13.6 13.8 (13.8 14.5 (14.6
o .. ... 16.5 (16.5 16.8 (16.9 17.5 (17.5 17.6 (17.6
Ap =107 )
n ... ... 3.28 (3.27 4.37 (4.33 5.83 (5.78 6.90 (6.95
2 12.5 (12.5 12.2 (134 14.9 (14.9 16.2 (16.3
d . ... ... 13.2 (13.2 14.4 (14.2 16.0 (16.8 17.4 (17.8
t . 13.6 (13.8 5.0 (153 16.6 (16.8 17.4 (17.8
he . . . . .. 24.1 (27.0 26.2 (26.5 28.0 (27.8 29.1 (28.5
Q. o s e s 25.3 (25.7 26.0 (26.3 26.4 (26.3 25.9 (26.4

where the coefficients show a slight energy and fragment-mass dependence as

r=11.8470% (5.158)
s = 0.486 (5.159)
v=238x10"% (5.160)

20E-077 (E < 2100 MeV)
p= (5.161)

0.056 (E > 2100 MeV)

where E is the nucleon energy. The complete Rudstam cross section is given by

FiFpAL™ f(Zp)
D

o(AF,Zp) = (5.162)
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Table 5.17. Present Correction Factors
for Rudstam’s Formula

Correction factor for—
AA 2c 160
1 13 15
2 0.5 1.0
3 0.3 1.0
4 0.1 1.0
5 1.0 1.5
6 0.35 0.5
7 0.5
8 0.1
9 2.5
10 1.0
where 0.3 0.3 0.3
D =179 [exp A (1 - —) -+ ——} 5.163
(pAT) oar) " Ay T oAr ( )
F; = 5.18 exp(—0.25 + 0.0074Ar) (5.164)
exp(1.73 — 0.0071E) (E < 240 MeV)
F = (5.165)
1 (E > 240 MeV)

We have applied a simple mass-dependent correction factor to Rudstam’s formula
as shown in table 5.17 and renormalized his cross sections to the total absorption
cross section. Many corrective factors have been added to Rudstam’s formalism
by Silberberg, Tsao, and Shapiro (1976). Estimates have also been made by
Guzik (1981) for some of the isotopes produced in connection with cosmic-ray
propagation studies with some attempts at experimental verification (Guzik et al.,
1985).

From a nuclear model point of view, isotope production at low energy results
B from the formation of a compound nuclear state that decays through particle
emission. At higher energies, the direct ejection of particles from the nucleus
becomes important, and intranuclear cascades represented as sequences of two-
body scatterings within the nucleus with Pauli blocking are the usual means of
evaluation. Subsequent to the cascade, the residual nucleus is assumed to be in
thermal equilibrium and seeks to minimize its internal energy through particle
emission.

'The measurement of isotope production cross sections at proton accelerators
does not allow the direct observation of the fragment products. Customary
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measurements used v or § counting techniques to identify the isotopes produced.
Stable and short-lived isotopes produced in the reactions were either not observed
or their number was greatly distorted by loss through decay.

This is particularly true for light-mass targets such as those that are important
to biological health considerations. Consequently, the fragmentation of carbon and
oxygen nuclei by protons remained shrouded in experimental obscurity until the
advent of heavy ion accelerators.

One of the earliest experiments performed at the Lawrence Berkeley Lab-
oratory Bevatron, when the ions of carbon and oxygen could be accelerated
to relativistic energies, used detectors able to measure the energy and charge
of an ion beam in conjunction with a bending magnet for momentum analysis
(Heckman, 1975). In this way, the density in phase space was measured for each
isotope produced in collision with a fixed target.

The isobar cross section (oppgy) measured by Lindstrom et al. (1975) for
2.1 GeV/nucleon oxygen fragmentation on hydrogen targets is given in table 5.18
along with the results of the Bertini MECC-7 code (Anon., 1968), Rudstam (1966),
and Silberberg, Tsao, and Shapiro (1976). Note that the Rudstam results contain
the correction factors from table 5.17 and are renormalized as described previously.

The oxygen-fragmentation cross sections represented by three parametric forms
are shown in figures 5.41 to 5.45 along with the Bertini results and various
experiments. The baryon-15 isobaric cross sections in figure 5.41 show that
experiments favor the curve of Silberberg, Tsao, and Shapiro, 1976. Although
the Bertini model provides an overestimate, the other parametric curves provide
improved estimates compared with the Bertini code. The baryon-14 isobaric
experimental cross sections are in reasonable agreement with the three parametric
curves as well as with the Bertini model as seen in figure 5.42. Again, the
experiments show no clear advantage of one parametric curve over another for the
baryon-13 cross section as seen in figure 5.43, although the Bertini results appear
somewhat low. We show experimental results for baryon numbers between 9 and
14 of the LBL Group (Lindstrom et al., 1975) in table 5.18. Clearly, the equally
good agreement for the Rudstam parameterization and the parameterization of
Silberberg, Tsao, and Shapiro is obtained for baryon numbers 12, 11, and 10. The
Bertini cross section is far too low to represent the cross section for baryon-11.
The baryon-9 cross sections are shown in figure 5.44. (The results of Yiou are
reported in Guzik, 1981.) The cross sections of Silberberg, Tsao, and Shapiro are
favored. The baryon-7 cross sections are shown in figure 5.45. At energies below
300 MeV, the baryon-7 results of Silberberg, Tsao, and Shapiro are favored. \

The measurements of Lindstrom et al. (1975) for relativistic carbon beams are
shown along with the results from Rudstam and Silberberg, Tsao, and Shapiro
in table 5.19 for two beam energies. The good agreement with the results of
Silberberg, Tsao, and Shapiro is no surprise, because their parameterization was

fit to these experimental data sets.
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Table 5.18. Oxygen Fragmentation Cross Sections

Fragmentation cross section, &, mb, from—
Bertini LBL NRL
Ar (a) ()] Present (c)

16 7.0 0.02 8.7

15 85.1 61.5 61.0 59.4

14 39.0 354 32.6 32.2

13 13.9 22.8 29.7 17.7

12 28.1 34.1 27.9 36.0

11 5.0 24.4 314 19.9

10 9.1 12.7 12.0 11.0

9 1.0 5.2 7.1 12.1

8 0.2 1.23 2.1 14.7

7 1.1 22.2 27.8 19.4

6 3.8 13.9 18.0 16.7

Total 193.3 235.5 258.3 239.1

¢ Anon., 1968.
b Heckman et al., 1975.
¢ Silberberg, Tsao, and Shapiro, 1976.

5.7.4. Heavy-fragment spectrum. Following the direct ejection of nucleons
in nuclear collision, the nucleus is left in a highly excited state that decays through
particle emission. From a sudden approximation point of view, as proposed by
Serber (1947), the momentum distribution of the decay particles is governed by the
Fermi distribution before collision. The collective momentum of decay products
and nuclear fragments is thus derived on the basis of combinatorial rules on the
random ways in which a given fragment mass can be formed from the nucleon
distributions before collision. The formulation of Goldhaber (1974) is physically
meaningful and simplistic. The momentum distribution is Gaussian in momentum
space with a momentum width parameter given by

M] 2 (5.166)

Up:ao[ (Ar - 1)

where g is the usual mean fermi momentum of the struck nucleus. However,
the oo of nuclear fragmentation is found to be about 25-percent smaller than
that observed in electron scattering experiments (Greiner et al., 1975). The mean
Fermi momentum is a slowly varying function of nuclear mass.

A slight modification of Goldhaber’s results is found to adequately represent
the experimental results of Greiner et al. (1975) given by

464 }1/2

=% 505

(5.167)
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Table 5.19. Carbon Fragmentation Cross Sections
(a) 12C at 1000 MeV /nucleon

Fragmentation cross section, 0, mb, from—

LBL NRL
Ap (a) Present (b)
12 0.1 6.7 0
11 55.3 63.2 69.0
10 22.7 28.0 22.0
9 5.8 10.0 15.2
8 14 4.8 26.0
7 18.9 21.7 20.7
6 12.4 14.7 16.9
Total 116.6 149.1 169.8
@ Heckman et al., 1975.
b Silberberg, Tsao, and Shapiro, 1976.
(b) 12C at 2000 MeV /nucleon
Fragmentation cross section, o, mb, from—
LBL NRL
Ap (a) Present (b)
12 0.09 6.2 0
11 57.0 60.4 58.5
10 22.7 27.8 20.5
9 6.20 104 14.2
8 1.6 5.2 24.1
7 20.49 24.4 19.9
6 14.8 17.2 16.7
Total 122.9 151.6 153.9
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where the parameters b and §4 are given, respectively, by

b = min (112AT1/2, 260) (5.168)
and
0.45 Ap=A
b4 = (4r = 4r) (5.169)
Ar — Ap (Otherwise)

A comparison of formulas (5.167) through (5.169) with experiments and the
parameterization of Greiner et al. is given in table 5.20. Clearly, the present
formulas are quite accurate.

The spectral distributions of the nuclear fragments in the rest frame of the
struck nucleus before collision are given by

where o is the fragmentation cross section and the energy parameter is

302
Ey= L 17
0= 54, (5.171)

The average energies E(= 3Ej) of various fragments obtained by equations (5.167)
through (5.171) and the results of the Bertini model are presented in table 5.21.
Generally, the average energies predicted by the Bertini model are reasonably
accurate, although some specific isotopes differ by a factor of 2 or more.

5.7.5. Energy-transfer cross section. The energy-loss spectrum (&,
Q, E) of the ion fragment j may be written as (Wilson, 1977)

I (B m 32 - —-mkE’ ,
W8, E) ~ A (@) /E (27(02) NGY exp( - )dE (5.172)

p p
where A; is the fragment mass number, ¢;(Z) is the fragment source, and E,is
related to the distance to the boundary along the direction € as given elsewhere

by Wilson (1977). For distances far from the boundary, one may take Ey = oo.
The cumulative energy-loss spectrum far from the boundary (Ey = c0) is

(x> pmgd
Dj(Z,E) = 4r /E ¥;(Z,Q, E') dE’ (5.173)
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Figure 5.45. Oxygen fragmentation cross sections for baryon-7 isobars in proton collisions.

Table 5.20. o, for 180 Fragments Produced by 2.1-GeV Protons

gp, MeV/c, from—
Greiner et al.,
Fragment Experiments Present work 1975
150 94+ 3 80.0 83.8
g 99+ 6 109.5 113.1
130 143 + 14 129.2 133.5
16N 54 + 11 55.0
15N 95+ 3 80.0
4N 112+ 3 109.5 113.0
13N 134+ 2 129.2 133.5
12N 153 + 11 1434 148.1
15¢ 125 + 19 80.0 82.8
Mg 125+ 3 109.5 113.10
3¢ 130 + 3 129.2 1335
2¢ 120 + 4 143.36 148.09
RYe 162+ 5 153.45 158.5
10¢ 190+ 9 160.3 165.6
13 166 + 10 129.2 133.5
12g 163+ 8 143.4 148.1
11 160+ 2 153.5 158.5
10 175+ 7 160.3 165.6
8B 175 + 22 165.5 171.0
Iige 197 + 20 153.5 158.5
10B, 159+ 6 160.0 165.0
9Be 166 £ 7 164.24 169.66
"Be 166 + 2 164.24 169.66
ILi 188 + 15 164.24 169.66
8Li 170 + 13 165.4 171.0
TLi 163 + 4 164.24 169.66
i 141+ 7 160.0 169.66
SHe 167 + 20 160.0 165.0
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Table 5.21. Average Recoil Energy E of 6O Fragments
Produced by 2.1-GeV Protons

Average energy, E, MeV, from—
Bertini Present
Fragment {Anon., 1968) results Experiments

16 2.65 1.01

15 4.19 69

160 1.05 1.012 1.01
150 52 69 .88
o) 1.82 1.37 1.12
130 4.24 2.05 2.51
16N 1.11 1.01 .30
15N 63 69 .96
4N 1.12 1.37 1.42
BN 1.84 2.05 2.20
2N 3.85 2.74 3.11
N 5.95 3.42 3.64
Lle] 1.62 1.34 1.78
3¢ 1.97 2.05 2.07
12¢ 2.64 2.74 1.91
g 4.70 3.42 3.81
10¢ 5.58 4.11 5.76
Sc 4.41 4.79 5.10
13g 2.35 2.05 3.38
12 3.43 2.74 3.53
1ig 4.33 3.71 3.42
10 4.79 4.11 4.89
9B 1.19 4.79

08¢ 4.53 4.11 4.03
9Be 8.76 4.79 4.89
1074 4.61 4.11

9Li 2.26 4.79 6.27
8Li 4.41 5.48 5.76
TLi 4.75 6.16 6.06
6Li 5.76 6.85 5.29
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Energy-transfer cross sections, Eo, MeV-mb, from—
Greiner et al.,

Ap Bertini 1975 Present
16 5.04 0.0006 0.26
15 60.6 56.9 56.4
14 48.8 48.3 62.9
13 37.6 48.3 62.9
12 85.8 68.2 55.8
11 379 99.1 117.9
10 52.8 62.0 58.6

9 6.5 25.7 35.1
8 2.5 7.1 121
7 6.11 121.7 152.4
6 314 734 95.1
Total 375.1 614.1 694.2
104 -
/—Experimental

Energy-transfer cross section, MeV-mb

103} <
Bertini / A

102

100 1000
LET, keV-pm-!

—_
o

Figure 5.46. Linear energy-transfer (LET) cross section for fragmenting oxygen nucleus in

water.
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for which the distribution in linear energy transfer (LET) of energy deposit can
be found. The total energy absorbed is given by

D(Z) = Z D;(Z,0)
’ (5.174)
~ Y Ejojpé
j

where Ej; is the average energy of the fragment j, o; is the fragmentation cross
section, p is the target density, and ¢ is the effective nucleon flux initiating the
fragmentation events. The energy-transfer cross section of the various fragment
components is E;o; and is shown in table 5.22 for the Rudstam parameterization
(present results), Bertini data, and experiments of the Heckman group (Greiner
et al., 1975) for comparison. Equations (5.172) through (5.174) also provide a basis
for resolving the energy-transfer cross section into its various LET components.
The LET components of equation (5.173) are shown in figure 546 for p=¢ =1
for all contributions with a fragment charge greater than 1. The two curves shown
in the figure are for the Bertini data and the experiments of the Heckman group.
Results obtained with our modified Rudstam formalism and the parameterized
momentum distributions are virtually indistinguishable from the curve based on
the LBL experiments. The results shown in figure 5.46 clearly show that estimates
of exposure from heavy ion recoil nuclei in tissue based on Bertini cross sections
are generally low.

5.7.6. Heavy ion fragmentation model. In the abrasion-ablation frag-
mentation model, the projectile nuclei, moving at relativistic speeds, collide with
stationary target nuclei. In the abrasion step, those portions of the nuclear vol-
umes that overlap are sheared away by the collision. The remaining projectile
piece, called a prefragment or primary residue, continues its trajectory with es-
sentially its precollision velocity. As a result of the dynamics of the abrasion
process, the prefragment is highly excited and subsequently decays by the emis-
sion of gamma radiation and/or nuclear particles. This step is the ablation stage.
The resultant isotope, sometimes referred to as a secondary product, is the nu-
clear fragment whose cross section is measured. The abrasion process can be
analyzed with classical geometric arguments (Bowman, Swiatecki, and Tsang,
1973) or methods obtained from formal quantum scattering theory (Townsend
et al., 1986a and 1986b). The ablation stage can be analyzed from geometric
arguments (Bowman, Swiatecki, and Tsang, 1973) or more sophisticated methods
based upon Monte Carlo or intranuclear cascade techniques (Gosset et al., 1977,
Hiifner, Schafer, and Schiirmann, 1975; Morrissey et al., 1978; Guthrie, 1970).
Predictions of fragmentation cross sections can also be made with the approxi-
mate semiempirical parameterization formulas of Silberberg, Tsao, and Shapiro
(1976). The present data base uses the method of Wilson, Townsend, and Badavi
(1987b).

The amount of nuclear material stripped away in the collision of two nuclei is

taken as the volume of overlap region times an average attenuation factor. The
relevant formula for the constituents in the overlap volume in the projectile is
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given by the following formula:

1 -C 1 -C
Ay = FAp [1 — 5 exXp (TP) — 5 exp (TT)] (5.175)

where Cp and Cr are the maximum chord lengths of the intersecting surface in the
projectile and the target, respectively, and the expressions for F' differ depending
on the nature of the collision (peripheral versus central) and the relative sizes of
the colliding nuclei. The value for F' is given by equations (5.38) through (5.50).
The charge ratio of removed nuclear matter is assumed to be that of the parent
nucleus.

The surface distortion excitation energy of the projectile prefragment following
abrasion of m nucleons is calculated from the clean-cut abrasion formalism of
Bowman, Swiatecki, and Tsang (1973). For this model, the colliding nuclei are
assumed to be uniform spheres of radii R; (i = P,T). In the collision, the
overlapping volumes shear off so that the resultant projectile prefragment is a
sphere with a cylindrical hole gouged out of it. The excitation energy is then
determined by calculating the difference in surface area between the misshapen
sphere and a perfect sphere of equal volume. This excess surface area AS is given
by Gosset et al. (1977) as

AS=4rR2[1+P~(1- F)?] (5.176)

where the expressions for P and F' differ depending upon the nature of the collision
(peripheral versus central) and the relative sizes of the colliding nuclei which were
given in section 5.3.2. (See eqgs. (5.38) through (5.50).)

The excitation energy associated with surface energy is well-known to be
0.95 MeV/fm? for near equilibrium nuclei so that

E, = 0.95AS (5.177)

for small surface distortions. When large numbers of nucleons are removed in
the abrasion process, equation (5.177) is expected to be an underestimate to the
actual excitation. We therefore introduce an excess excitation factor in terms of
the number of abraded nucleons A, as

2
L 108y | 2882,

5.178

fF=1

which approaches 1 when the impact parameter is large but increases the excess
excitation when large portions of the nuclei are removed in the collisions and when
grossly misshapened nuclei are formed. The total excitation energy is then

E;=E\f (5.179)

which reduces to equation (5.177) for small A,;,. We assume that all fragments
with a mass of 5 are unbound, that 90 percent of the fragments with a mass of 8
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are unbound, and that 50 percent of the fragments with a mass of 9 (°B) are
unbound.

A secondary contribution to the excitation energy is the transfer of kinetic
energy of relative motion across the intersecting boundary of the two ions. The
rate of energy loss of a nucleon when it passes through nuclear matter (Westfall
et al., 1979) is taken at 13 MeV/fm, and the energy deposit is assumed to be
symmetrically dispersed about the azimuth so that 6.5 MeV/nucleon-fm at the
interface is the average rate of energy transfer into excitation energy. This energy
is transferred in single particle collision processes, and on half of the events, the
energy is transferred to excitation energy of the projectile and the remaining half
of the events leaves the projectile excitation energy unchanged. The first estimate
of this contribution is to use the length of the longest chord C, in the projectile
surface interface. This chord length is the maximum distance traveled by any
target constituent through the projectile interior. The number of other target
constituents in the interface region may be found by estimating the maximum
chord C; transverse to the projectile velocity which spans the projectile surface
interface. The total excitation energy from excess surface and spectator interaction
is then

E, =13C1 + % 13C1(C; — 1.5) (5.180)

where the second term only contributes if C; > 1.5 fm. We further assume that
the effective longitudinal chord length for these remaining nucleons is one third
the maximum chord length.

The decay of highly excited nuclear states is dominated by heavy particle
emission. In the present model, we assume that a nucleon is removed for every
10 MeV of excitation energy as

(Es + Ez)

10 MeV (5.181)

Agp =

In accordance with the previously discussed directionality of the energy transfer,
E; is double valued as
B, (P:=1%)

E, = . (Pz _ %) (5.182)

where Pj is the corresponding probability of occurrence of each value in collisions.

The number of nucleons removed through the abrasion-ablation process is given
as a function of impact parameter as

AA =Dy (b) + Agpi(b) (5.183)

The values of AA for carbon projectiles on a copper target and for copper
projectiles on a carbon target are shown in figure 5.47. In each case, the dashed
curve corresponds to E; = 0, whereas the solid curve corresponds to E; = Ej
as given by equation (5.180). A real collision would be given by a statistical
distribution between the limits shown by these two curves. The average event

224



Chapter 5

80
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Figure 5.47. Nucleon removal number as function of impact parameter in carbon-copper
collisions.

is calculated as if the two extremes occurred with equal probability, as noted in
equation (5.182).

The nuclear fragmentation parameters herein are approximated according to
the abrasion-ablation model of Bowman, Swiatecki, and Tsang (1973). The cross
section for removal of AA nucleons is estimated as

o(AA) = nb3 — nb? (5.184)

where by is the impact parameter for which the volume of intersection of the
projectile contains A,y nucleons and the resulting excitation energies release an
additional A,y nucleons at the rate of 1 nucleon for every 10 MeV of excitation
such that

1
Aabr(b2) + Aabl (b2) =AA - 5 (5.185)

and similarly for b;
1
Aabr(b1) + Agpi(b1) = AA + 2 (5.186)

The charge distributions of the final projectile fragments are strongly affected by
nuclear stability. We expect that the Rudstam (1966) charge distribution for a
given o(AA) to be reasonably correct as

3/2

Zp - SAp + TA% o(AA) (5.187)

o(Ap,Zp) = Fiexp {—R

where R = 11.8/A2, D = 0.45, S = 0.486, and T = 3.8 x 104 according to
Rudstam and F} is a normalizing factor such that

> a(Ap, Zp) = 0(AA) (5.188)
Zp

The Rudstam formula for ¢(AA) was not used because the AA dependence is
too simple and breaks down for heavy targets (Townsend et al., 1984; Townsend,
Wilson, and Norbury, 1985).
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The charge of the removed nucleons AZ is calculated according to charge

conservation
Zp=Zp+AZ (5.189)

and is divided among the nucleons and a-particles according to the following
rules. The abraded nucleons are those removed from that portion of projectile
in the overlap region with the target. Therefore, the abraded nucleon charge is
assumed to be proportional to the charge fraction of the projectile nucleus as

ZpA
Zape = T (5.190)
P

This, of course, ignores the charge separation caused by the giant dipole resonance
model of Morrissey et al. (1978). The charge release in the ablation is then given

as
Zapl = AZ — Zoy (5.191)

which simply conserves the remaining charge.

The a-particle is known to be unusually tightly bound in comparison with
other arrangements of nucleons. Because of this unusually tight binding of the
a-particle, the helium production is maximized in the ablation process

Ng = int (%) (5.192)

where int(z) denotes the integer part of z. The number of protons produced is
given by charge conservation as

Np=AZ — 2N, (5.193)
Similarly, neutral conservation requires the number of neutrons produced to be
Np=AA—- N, —-4N, (5.194)
The fragments with masses of 2 and 3 are ignored.

The calculation is performed for AA = 1 to AA = Ap — 1, for which the
cross section associated with AA > Ap — 0.5 is missed. These are, of course,
the central collisions for which it is assumed that the projectile disintegrates into

single nucleons if Rp < Rt as
Np=17Zp (5.195)

N,=Ap—Zp (5.196)

and is ignored otherwise. The energetic target fragments as well as the mesonic
components are being ignored. The peripheral collisions with AA < 0.5 are also
missing. Most important in these near collisions will be the coulomb dissociation
process studied by Norbury and Townsend (1986).
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Only the nuclear radius for use in the model is yet undefined. The nuclear
absorption cross sections are taken as energy independent and are approximated
by Townsend and Wilson (1986) as

2
o(A1, 4z) = mrd (41 + 4,7 —0.2— a7 - A7) (5.197)

where rgp = 1.26 fm. Equation (5.197) is an accurate representation of the high-
energy cross sections. The choice of nuclear radius as

R=1264!3 (5.198)

is consistent with equation (5.197) when the peripheral collisions (AA < 0.5) are
taken into account. This completes the description of the basic fragmentation
model in present use.

In the present evaluation, we look only to elemental fragmentation cross
sections for which most of the experimental data have been obtained. This is
also motivated by the crudeness of the present model which is not expected to
be completely accurate. Even so, the quality of the experimental data base is
uncertain with experiments of different groups differing by a factor of 2, in general,
and differing even more for specific isotopes.

The first comparison is with the experiments of Heckman (1975) with 12C
ion beams at 1.05 GeV /nucleon on the series of targets extending from hydrogen
to lead as shown in table 5.23. The present calculations are shown as values in
parentheses. The calculated values for hydrogen targets are those of Rudstam.
Note that all values are within 20 percent of the experiments with few exceptions
(namely, fragments from hydrogen targets and the neutron removal cross section
in copper and lead targets).

The charge removal cross sections for several projectiles on carbon targets are
given in table 5.24. The agreement between the present model and the Lawrence
Berkeley Laboratory groups (Heckman, 1975; Westfall et al., 1979) is quite good.
Our results tend to be low compared with the experiments of Webber et al.
(1983a and 1983b) and Guerreau et al. (1983). The model can be adjusted once
experimental differences are resolved.

The elemental fragmentation cross section of iron projectiles on several targets
is shown in table 5.25. Again, reasonable agreement is found generally with a
few examples of relatively large errors. The bracketed quantities at the bottom
of the table are the coulomb dissociation cross sections for forming manganese.
These are to be added to the nuclear fragmentation cross sections for manganese
in parentheses before comparing with experimental values.

Comparing the model cross sections with the experimental data set reveals that
92 percent of the calculated cross sections are within 50 percent of the measured
values. If we reduce the error band to 30 percent, we will find 81 percent of the
cross sections are in agreement to within this level. Among the least accurate are
the iron on hydrogen target data which again is Rudstam’s theory and the cross
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Table 5.23. Fragmentation Cross Sections of Carbon Beams
at 1.05 GeV/nucleon in Various Targets

[Quantities in parentheses are present theory]

Carbon cross section,® mb, in target of—

H
Fragment (b) Be C Cu Pb

Li 23+ 2 (34) (5142 (54) | 52+3 (61) | 71+5 (81) |103 & 14 (113)
Be 17+1(22) |35+1(32) |35+1 (33) | 47+2 (48) | 71+ 6(63)
B 50 + 4 (42) |81+ 4 (86) | 78 +3 (100) |119 + 8 (138) |203 + 32 (185)
C 28+ 3 (10) |49+ 3 (39) |50 +4 (44) | 86 +8 (57) | 139 + 22 (79)

¢ Heckman, 1975.
b Values in parentheses in this column are those of modified Rudstam (1966).

Table 5.24. Charge Removal Cross Sections of Various
Projectiles on Carbon Targets

Quantities in parentheses are present theory;
number in brackets is energy in GeV /nucleon

Charge removal cross section, mb, of projectile of—
AZ C [2.1] 0O [2.1] 0 [0.9) Ne [0.47] Ar [0.21] Fe [1.88]
(@) @ | ® | © (d)
0 |50 +4 (40) 45+ 2 (45) | ------ | ------ (40) | ------ (132) | ------ (64)
1 (78+£3(100) |105+4(101) |176 £5 [129£3(%0) | ------ (151} | 181 + 27 (157)
2 [35+1 (33) [116+6 (93) |164+5 [214+3(98) |154+ 26 (85) 124 +13 (110)
3 |52+2 (61) 50 £ 2 (65) 55+ 3 (155 +3(75) |122 £16(72) |100 £ 11 (87)
4 36 +1 (24) 27+ 2 1140 + 3 (65) |144 £ 19 (64) 87 + 11 (76)
5 65+ 3 (47) | ------ 74 + 2 (54) 81 + 15 (59) 54+ 9 (62)
6 33 £1(19) |112 £ 15 (51) 78 £ 11 (67)
2 N I N ats (40) 90 + 3 (50) 52+ 7 (57)
8 92 + 13 (44) 55+ 9 (52)
9 65 + 11 (42) 53+ 7 (49)
10 83 + 13 (37) 54 + 10 (45)
of 9 0  t p ===e-- (35) 59 + 10 (42)
12 57+ 10 (39)
13 83 £ 11 (36)
s 4+ 4 v | === (35)

% Heckman, 1975.

b Webber et al., 1983a and 1983b.
¢ Guerreau et al., 1983.

d Westfall et al., 1979.

sections of Webber et al. Note that our model agrees with experiments to the
extent that the experimentalists agree among themselves for the same projectile-
target combinations. From this point of view, little progress can be made in
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Figure 5.48. Representative argon-carbon fragmentation cross sections.

improving the model until the experimental situation is clarified. Clearly, the
model of Silberberg, Tsao, and Shapiro (1976), which includes many corrections
to Rudstam’s formulas, is preferred for hydrogen targets.

The semiempirical model for argon fragmentation on carbon is shown with
the quantum mechanical optical model calculation in figure 5.48. Also shown
are experimental data of Viyogi et al. (1979). Reasonable agreements are seen
between the two models except for neutron removal where there are no data yet
to resolve the difference (Townsend and Wilson, 1989).
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5.8. Summary

The current empirical data base represented in this chapter constitutes the
nuclear data over which the current radiation transport codes are written. The
adequacy of the data base depends on whether the important transport quantities
are accurately represented. This issue is further addressed in chapters 8 and 9.
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Chapter 6

Transport Theory

6.1. Introduction

The 1912 experiments of V. Hess to study the decline of terrestrial radiation
in the atmosphere led to the discovery of cosmic rays (Hess and Eugster, 1949).
The next two decades saw the study of the increase of cosmic rays with altitude
and decreasing atmospheric shielding. Even after 30 years of study, a meaningful
theory of the propagation of the nucleonic component came only after sufficient
understanding of the nuclear force and nuclear theory. Thus, development began
with the historic paper of Bethe, Korff, and Placzek (1940), which concerned
atmospheric neutrons; these results, although incomplete, remain substantially
correct today. The detection several years later of neutrons in coincidence with
atmospheric air showers (Cocconi, Cocconi-Tongiorgi, and Greisen, 1948) and
cloud chamber data with evaporation stars leads one to suspect that moderate
energy neutrons are part of a normal air shower event as assumed by Bethe,
Korff, and Placzek (1940). The subsequent work of Cocconi, Cocconi Tongiorgi,
and Widgoff (1950) on atmospheric cascades begins to place the whole subject of
air showers on firm ground. Yet to be added to the understanding of air showers
is the discovery of the heavy ion component (Freier et al., 1948) and the related
propagation equations.

Early works in setting up the galactic ion transport equations ignored energy
loss by ionization of the medium. Peters (1958) used a one-dimensional equilibrium
solution ignoring ionization energy loss and radioactive decay to show that
the light ions of the galactic cosmic rays have their origin in the breakup of
heavy particles in interstellar space. Davis (1960) showed that one-dimensional
propagation is simplistic and that leakage at the galactic boundary must be
included. Ginzburg and Syrovatskii (1964) argued that the leakage can be
approximated as a superposition of nonequilibrium one-dimensional solutions.

In distinction to cosmic-ray studies that accentuated the nuclear reactions and
ignored ionization energy loss, the early space shielding studies (mainly concerned
with solar proton events and trapped radiation) ignored nuclear reaction effects
and treated only the ionization energy loss (Shaefer, 1959; Foelsche, 1959; Dye
and Noyes, 1960). Such studies were mainly limited by the available nuclear
data. The hope for comprehensive nuclear data began with a study by M. L.
Goldberger (1948) in which a two-dimensional, intranuclear cascade calculation
by a young student named G. F. Chew was made with random number tables
and a mechanical calculator. (G. F. Chew cast his vote for nuclear democracy at
the first heavy ion conference at Lawrence Berkeley Laboratory 25 years later.)
Detailed development of the intranuclear cascade method awaited the introduction
of large-scale scientific computers (Metropolis et al., 1958) which, when developed,
had a tremendous impact on the space-radiation program (Bertini, 1962; Alsmiller,
1967). A series of Monte Carlo and deterministic transport codes began to emerge
using the new nuclear models (Alsmiller, 1967; Dye, 1962; Lambiotte, Wilson, and
Filippas, 1971; Wilson and Lamkin, 1975). A relatively complete set of shielding
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codes was then available for determining shield requirements for protection from
space protons. Now heavy ion transport required future development.

Heavy ion transport was important for understanding the origin of galactic
cosmic rays as in the early works of Peters (1958), Davis (1960), and Ginzburg
and Syrovatskii (1964). In these early works, the complications introduced by
ionization energy loss were ignored. Even later papers would ignore or simplify
the energy loss term. The “solution” to the steady-state equations is given
as a Volterra equation by Gloeckler and Jokipii (1969) which is solved to first
order in the fragmentation cross sections ignoring energy loss. They provide an
approximation to the first-order solution with ionization energy loss included but
are valid only at relativistic energies. Lezniak (1979) gives an overview to cosmic-
ray propagation and derives a Volterra equation including the ionization energy
loss, which he refers to as a solution “only in the iterative sense,” and evaluates
only the unperturbed term. No attempt is made to evaluate the first-order
perturbation term or higher order terms. The main interest among cosmic-ray
physicists has been in solution to, at most, first order in the fragmentation cross
sections since path lengths in mterstellar space are on the order of 3 to 4 g/cm?.
Clearly, higher order terms cannot be ignored in accelerator or space shielding
transport problems (Wilson, 1977a and 1983; Wilson et al., 1984). Aside from
this simplification, the cosmic-ray studies discussed previously have neglected the
complicated three-dimensional nature of the fragmentation process.

Several approaches to the solution of high-energy, heavy ion propagation,
including the ionization energy loss, have been developed over the last 20 years.
All but one (Wilson, 1977a) have assumed the straight ahead approximation
and velocity conserving fragmentation interactions. Only two (Wilson, 1977a;
Wilson et al., 1984) have incorporated energy-dependent nuclear cross sections.
The approach by Curtis, Doherty, and Wilkinson (1969) for a primary ion beam
represented the first-generation secondary fragments as a quadrature over the
collision density of the primary beam. Allkofer and Heinrich (