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Abstract

We apply the method of Bozzolo, Ferrante and Smith for the calculation of alloy energies
for bee elements. The heat of formation of several alloys is computed with the help of
the Connolly-Williams method within the tetrahedron approximation. The dependence

of the results on the choice of different sets of ordered structures is discussed.



Introduction

Recently, a new semiempirical method for calculating defect energetics in metallic alloys
was introduced by Bozzolo, Ferrante and Smith (BFS)!. This technique, which builds on
the ideas of Equivalent Crystal Theory (ECT)? was successfully applied to the study of heat
of formation and lattice parameters of fcc alloys as a function of alloy composition. BFS is a
Quantitatively accurate and computationally simple technique for determining the energetics
of ordered multicomponent structures. Although there has been extensive calculations for
fec alloys, similar results for bee alloys have been limited. This is in part due to possible
limitations in application of such approaches to bec metals. Since alloys of bee metals are
important in structural materials, the present work represents an important contribution
to the calculation of defect energies in alloys. In this effort, we apply BFS to the study of
bee-based binary alloys using the method of Connolly and Williams (CWM)?3 for the study
of the energetics of disordered structures within the tetrahedron approximation.

In Section 2 we present the BF'S method and discuss the application of CWM to several
choices of ordered structures. An application to selected bec-based binary alloys is discussed

in Section 3. Conclusions are drawn in Section 4.



Formalism

In BFS, the energetics of binary alloys is described in terms of pure metal properties and
only two experimentally (or theoretically) determined alloys properties. We build on the
formulation of ECT by dividing the total energy of the alloy into a chemical energy and a
strain or structural energy. The strain energy associated with a given atom is computed
as if all of its neighbors were of the same atomic species. It arises from neighbor locations
being different from in the elemental single-crystal environment. The remainder of the total
energy is defined to be the chemical energy, which is due to some of an atom’s neighbors
being of a different atomic species. We now proceed to outline the procedure for calculation
of heats of formation versus concentration for alloys with multiple atomic species. With
this procedure, the binding energy curve as a function of volume is obtained from which
the bulk properties of specified alloys can be extracted. The application of this technique
to different crystallographic structures is straightforward. In this work, we concentrate on
bece-based binary alloys.

Consider a cell containing Nx atoms of atomic species X, (X = A, B, ...), so that the
total number of atoms in this cell is given by ¥ = ¥ x Nx. The heat of formation of this
cell is

AEccll = Ecell - ZNXEX (1)
X

where E.j; is the total energy of the cell and Ex is the cohesive energy of an atom of species
X in a pure crystal of its own species. If E'(i, X ) denotes the energy of the i-th atom in

the cell (i = 1,..., Nx) of species X then

Nx
A-Ecell = E Z €iX. (2)

X i=1



where the energy difference e; x = E'(i, X) — Ex, has a strain and a chemical energy contri-
bution, linked by a coupling factor g; x that ensures that the chemical energy contribution

vanishes for large interatomic distances:
s c
&ix =€ x +gixex (3)

In order to compute the strain energy, e;s: x» we just 'flip’ every atom surrounding atom
(i, X) into an atom of the same species X, and perform a regular ECT calculation®. The
equivalent lattice parameter af x is determined by solving the appropriate ECT equation

applied to atom (7, X') in the defect (but pure) crystal. Then,

—aSt .
efx = B& [1 - (1+afy)e™ %], ofy = (afx - a¥)/lx. (4)

where a denotes the lattice constant of a pure X crystal and EX the corresponding cohesive
energy.

In Eq. (3), the strain and chemical energies are coupled nonlinearly. The coupling func-
tion g; x guarantees that the chemical contribution will vanish with increase in interatomic
spacings, as it should. We define the coupling function in terms of the scaled equivalent

lattice parameter of the strained crystal as follows
—as*
gix =€ X (5)

For the chemical energy contribution efx, we keep the actual chemical composition
of the cell (i.e.,, A, B, C in proper proportions for the alloy) , but we force the atoms
surrounding atom (%, X) to be located in the lattice sites of a pure crystal of species X.

Thus, we are including the effect of changing a neighbor to an A, B or C atom). Two similar



ECT calculations are then performed:

ey = eZx({Ay,x}) — eZx (0). (6)

For the first term, efx({Ay, x)}, the chemical perturbation is included in the appropriate
values of the set of parameters {Ay x} which include the effects of changing the atomic
species of a neighbor, where Y denotes the atomic species of a given neighbor of atom
(i, X). In order to determine the parameters Ay x and A x,y for a given pair of atomic
species (X,Y), two experimental values of any property of the X Y;_, alloy are needed.
We choose to use the experimental heats of solution in the dilute limit which in most cases
are readily available.

The equivalent lattice parameter afx is obtained by solving the corresponding ECT

equation?
1
12RPXe~exP1 4 GRBXC—(O’X+}7)R2 - ZNXYT;’XC_(GX+AYX)TI
Y
- 1
+ ) MyyrgreT xR A ()
Y
where R, and R; are the nearest-neighbor and next-nearest-neighbor distances in the equiv-

alent crystal of lattice parameter afx. The first term in the chemical energy, efX(Ay' x)is

then given by
—aCs .
eCx(Bvx) = vix E& [1 - (1+al})e “'-"] , alx = (afx —al)/lx (8)

with v; x = 1 if af} > 0 and 9;,x = —1 otherwise. The second term in Eq(8) is obtained
by a similar procedure, but setting all the perturbative parameters {Ay x} equal to zero.

This is done in order to free the chemical energy from any structural defect information,



retaining only the contribution of the chemical composition of the surroundings of atom
(4, X).
In this work, we are concerned with calculating the heats of formation of the bec-based

ordered binary alloys A;B;j_;z. If no relaxation of the individual atomic sites is allowed,

‘then the strain energy is simply

*

ef = EX [1- (1+ a§)] e, af = (r - ad)/Ix. (9)

where 7 is the actual interatomic distance of the alloy. Within this approximation, the
second term in the chemical energy (Eq.(6)) vanishes, leaving us only with the computation
of the first term, e%(A). For a given ordered structure m, the ECT equation for the

equivalent lattice parameter a§ (Eq.(8)) is

1
- - )R - -
12R}l)xe ale I 6R127xe (OlX+,\X) 2 — Nxxrfxe axTi NXYT‘;XC (ax+Ayx)r1
b Myxrpxe Xt

+ Myyrjre@xtagtorm (10)

with Ry = 32@]22; Ry=a$im = 5@1"2; r, = aX. The parameters px,ax and Ax are listed
in Ref. 2 and the coeflicients Nxx, Nxy, Mx x and Mxy depend on the different ordered
structures considered.

As in previous applications, we will use the heats of solution in the dilute limit as the
experimental input for determining the parameters A 4g and Ag4. In order to compute the
heats of formation of the disordered alloys, we use the Connolly-Williams method®. This
method is based on a formal expression for the total energy first derived by Sanchez?, where

the total energy of a particular configuration m of a binary alloy consisting of atoms A and



B on a lattice of fixed symmetry is given by

ABn(r) = 3 vy(r)ER (11)

where v,(r) are many-body potentials, the £J* are multisite correlation functions defined on
a 7-type cluster, r is the lattice parameter and the sum includes all y-type clusters on the

lattice. The multisite correlation functions are defined as

1
6.7 = ‘]-V— Ony---On,y (12)
T {ni}

where o, is a spinlike variable which takes the values +1 and —1 depending on whether
the lattice point n is occupied by an A or B atom , and N, is the total number of y-type
clusters.

The many-body potentials »,(r) are obtained by inversion of Eq. (11), which implies
the existence of a maximum cluster ¥4, beyond which the v,(r) are supposed to be neg-
ligible. Thus, for a certain set of ordered structures o and by arbitrarily truncating the

summation in Eq. (12), the many-body potentials are

o(r) = () AER(r) , $< 7S Tonas

m

V9(r) = 0 , Ymazr <Y< 0 (13)
where ¢ represents the empty cluster. Recently®, the CWM was extended to include more
ordered structures and cluster sizes than the ones originally proposed® . Multisite correla-
tions for the most common bcc and fcc based superstructures were also given®. Table 1 lists
the correlations included in the tetrahedron truncation of the CWM for some structures
on the bcc lattice. Table 2 shows the coefficients Nxx, Nxy, Mxx and Mxy needed to

solve Eq. (10) for all the possible ordered structures included in Table 1. These ordered



structures are derived from the tetrahedron cluster shown in Fig. 1: « and ¥ are on body
centers and 3 and § are on cube edges. When a =y and 8 = é the structure is called B2.
The B32 structure is derived when a = § # 3 = v and the DOj structure is obtained when
B=b6#a#7.

In this work, we considered different choices of ordered structures, as well as the type of
clusters included in Eq. (12). Being that the experimental input is, obviously, the same for
all cases studied, a comparison with available experimental data for the heats of formation
of binary alloys® should give us an indication of the preferred ordered structures for a given
binary alloy.

The different choices are related to the two possible ordered structures at 50 % compo-
sition ( B2 and B32) and the corresponding pair multisite correlation functions ({3 and &3).
We will denote the cases studied as follows: (i) B32/&;: includes the B32 ordered structure
and the £; correlation function (nearest-neighbor pair), leaving out the B2 structure as well
as the &3 function (next-nearest-neighbor pair); (¢7) B32/£3: includes the ordered structure
B32 and the &3 function, leaving out B2 and £2; (#if) B2/£;: includes B2 and &3, leaving
out B32 and &3 and (iv) B2+B32/£2 + £3: includes all the structures and functions listed in
Table 1. In each case, the excess energy AE,,(r) for the corresponding ordered structures
is obtained with Eq. (2). Within the tetrahedron approximation, this calculation involves
just a few atoms, as indicated in Table 2.

Following CWM, the excess energy for the disordered alloys A;B;_; is given by
AEp(r,z) = Y (1 - 2)"7u,(r) (19)
Yy

where n., is the number of sites contained in the v cluster. For each choice of ordered



structures and multisite correlation fuctions we have different many-body potentials

o(r) = 3 (€))7 AER(r). (15)

m
Replacing Eq. (15) in Eq. (14), we can write AEp(r,z) for each one of the cases studied
as

AEp(r,z) = Z cn(T)AEL(7) (16)

where the sum runs over the appropriate ordered structures included in each case considered
and the polynomials ¢,,(z) are also dependent on the clusters and structures included in
each case. Table 3 lists the polynomials ¢, () for the reduced basis sets (i), (iz) and (i11)
and Table 4 displays the corresponding polynomials for the general case (all structures and
multisite correlation functions included in Table 1). Finally, the heat of formation for a

given concentration z is obtained by finding the minimum value of AEp(r, z).



Results and Discussion

In this section we present results for selected bce-based alloys which display quite different
behavior. For the four systems studied, we used the experimental values of the heats of
soiution in the dilute limits,r listéd in Table 5. Table 6 displays the values of p, o, l and E¢
for the pure elements?, needed to solve Egs. (4)-(10). Table 7 shows the values of A 4p and
Ap, one obtains with our procedure for the different choices of basis sets described in the
previous section.

The parameters A4p and Ap4 can be taken as ’perturbations’ to the pure-element
a’s listed in Table 6, trying to simulate the interaction between two atoms of different
species. In all cases, these quantities are small compared to the pure-element a’s, and,
surprisingly, rather insensitive to the different choices of basis sets. However, these small
differences translate into a noticeable change in the heat of formation versus concentration
curves obtained for each choice of basis set, as can be seen in Fig. 2.

Fig. 2.a shows the results obtained for Cr-Fe alloys where the regular, symmetric
behavior of the heat of formation curve is accurately reproduced by using the basis set (i),
where a B2 structure is included. Although there is no known ordered phase of Cr-Fe with
the B2 structure, the fact that the choice (iii) is favored over the others can be taken as
an indication of the possible existence of such phases. This assumption is further validated
by similar results for Fe-V alloys (Fig. 2.b) where, again, basis set (iii) best approximates
the available experimental values of the heat of formation®. In this case, there is some
experimental evidence that such an ordered phase exists®7.

The predictions for Cr-Mo alloys show a drastic change in behavior as compared to

Cr-Fe, although both systems display similar features in the experimental values of the heat

10



of formation. Fig. 2.c shows the theoretical results. In this case, the basis sets (i) and (if)
yield comparable results, predicting a preference for a B32 structure, although there are no
known ordered phases of these alloys.

Of the four examples shown in this work, Cr-V (Fig. 2.d) displays the most surprising
features, therefore providing a severe test to the sensitivity and accuracy of our method. In
the large body of experimental data for binary alloys, Cr-V is one of the very few to display
the irregularities seen in the heat of formation vs. concentration curve, characterized by a
sudden change in curvature for a small range of concentrations. As it was the case for Cr-
Mo, this {feature of Cr-V is approximately reproduced only by the results generated with the
choice of the basis set (ii). Once again, no ordered phase is known, but the clear distinction
between the different basis set choices shown in Fig. 2.d can be taken as an indication of
the crystallographic structure of these alloys.

The fact that we used the experimental heats of solution in the dilute limit (i.e., the
derivative of the heat of formation at z = 0 and z = 1) might lead one to believe that that
choice somehow predetermines the behavior of the heat of formation curves. The examples
shown in this work obviously contradict this fact: all four curves (for each choice of basis
set) were obtained with the same values of the heats of solution. However, their behavior
for the whole range of concentration is quite different in each case.

The explanation for the particular features of the heat of formation vs. concentration
curves is not then in the heats of solution, which is our only experimental input, but in
the delicate balance between the strain and chemical energies, as defined in our formalism.
Except for the case of Cr-Fe, where the small lattice mismatch results in an almost negligible

strain energy, in all the other cases the heat of formation predicted with our method is

11



obtained from large competing strain and chemical energy contributions.

Fig. 3 displays these contributions for the four systems considered in Fig. 2, showing
the results obtained with the best basis set choice for each system, as discussed before. The
apparent similarity seen in Cr-Fe and Cr-Mo for their heats of formatibn, arises from quite
different strain and chemical energy contributions: while the positive chemical energy is
mainly responsible for the heat of formation for Cr-Fe alloys (Fig. 3.a), a large negative
chemical energy in Cr-Mo (Fig. 3.c) is necessary to balance a large strain energy contribu-
tion, absent in Cr-Fe. Also, the symmetry seen in the heat of formation curve for Cr-Mo
is a result of completely different regimes in the strain and chemical energies: linear for
Mo-rich systems and with a pronounced curvature for Cr-rich alloys. Fig. 3.b shows, for
Fe-V, how the chemical energy is solely responsible for the axis-crossing seen in the heat of
formation curve.

As noted before, Cr-V provides the appropriate grounds for testing the sensitivity
of this method. Fig. 3.d displays the strain and chemical energy contributions for the
Cr-V systems. One can see how a barely noticeable flattening in the chemical energy
contributjon is the source of the unusual feature seen in the heat of formation curve. These
results correspond to the basis set (i), which best approximates the experimental results.
Finally, Fig. 4 expands on the results shown in Fig. 3.d in that the strain and chemical
energy contributions are displayed for all four basis sets. The strain energy contribution
(independent of Ag,v and Ay, ) shows small differences due to the choice of different
ordered structures. The chemical energy term dictates the behavior of the heat of formation
as a function of concentration: the asymmetry seen in Fig. 3.d arises from the chemical

behavior of the B32 structure.

12



Conclusions

In this work, we applied the semiempirical method of Bozzolo, Ferrante and Smith to the
study of bcc-based alloys. The method was used to compute the total energy of ordered
structures. The energetics of disordered alloys was studied with the CWM and several
choices of basis sets were considered. Good agreement with experimental results for certain
choices of basis sets gives an indication of the possible symmetries underlying the ordered
compounds. The partition of the heat of formation into strain and chemical contributions

provides some insight in the physical behavior of the systems studied.
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TABLE 1. - CORRELATIONS INCLUDED IN THE TETRA-
HEDRON TRUNCATION OF THE CWM FOR SOME
STRUCTURES ON THE BCC LATTICE

[The & with increasing index i, correspond
to the empty cluster, the point, the nearest-
neighbor (NN) pair, the next-nearest-neighbor
(NNN) pair, the triangle formed by two NN

pairs and one NNN pair, and the tetrahedron

formed by four NN pairs and two NNN pairs.]

Structure | Composition [ & | & [ & | & | & | &
bce A 1 111] 1 1] 1
DO3 AsB 1| 1 0{0f=-3]-1
B2 AB 1 0fl-111 0 1
B32 AB 1 0 0} -1 011
DO3 AB3 1]-3]1 0] 0] 3f-1
bee B 1 11111 -1} 1

TABLE 2. - COEFFICIENTS Ny, Nxy, Myy, and Myy

Struc./Comp. | Atom | Naa | Nap | Ngp | Npa | Mua | Mus Mgg | Mpa
bee/B B(4) 0 0 8 0 0 0 6 0
A1) 0 8 0 0 0 6 0 0
DO3/AB; B(2) 0 0 4 4 0 0 6 0
B(1) 0 0 8 0 0 0 0 6
B2/AB A(2) 0 8 0 0 6 0 0 0
B(2) 0 0 0 8 0 0 6 0
B32/AB A(2) 4 4 0 0 0 6 0 0
B(2) 0 0 4 4 0 0 0 6
A(2) | 4 4 0 0 6 0 0 0
DO3/A3sB A1) 8 0 0 0 0 6 0 0
B(1) 0 0 0 8 0 0 0 6
bec/A A(4) 8 0 0 0 6 0 0 0

TABLE 3. - POLYNOMIALS c_(x) FOE CASES (i), (ii), AND (iii)

G

Giid)

Struct. | Comp. | m (1)

bee B 0 1 - 4z + 5z% — 22° 1—4r + 722 —62x3+22% [ 1 — 4z + 7x° — 62° + 227
DO; AB5 1 |42 — 1222 + 1223 —4z* | 4z — 1222 + 1223 — 424 | 4z — 1222 4 1223 - 42*
B2 AB 2 - - 4z% — 823 + 424
B32 AB 2 822 — 1623 + 824 422 — 823 4 424 -

DO; AsB 3 423 — 424 4z3 - 424 423 — 424

bec A 4 —z2 4+ 223 2% — 223 4+ 224 z2 — 223 + 224

16




TABLE 4. - POLYNOMIALS c,,(x) FOR CASE (iv)

Structure | Composition | m (iv)

bec B 0 | 1-4z+6x2 —4z° + 2!

DOs3 ABj 1 | 4z — 1222 + 122% — 421

B2 AB 2 4z% — 823 + 421

B32 AB 2 222 — 423 4 224

DO3 A3B 3 42° — 4z*

bece A 4 ot

TABLE 5. - EXPERIMENTAL
HEATS OF SOLUTION TABLE 6. - INPUT PARAMETERS FOR BCC ELEMENTS
Esp AND Egy Element | p ) o A Cohesive | Lattice

Al| B Ean Epa Energy | Constant
Cr| Fe | 0.218 | 0.218 Cr 61]0.254 | 2.880 {1 0.714 4.10 2.88
Fe | V |-0.102 | 0.807 Fe 610277 3.124 | 0.770 4.29 2.86
Cr| V |-0.088]-0.189 \Y% 6 | 0.305] 2.726 | 0.857 5.31 3.03
Cr | Mo | 0.215] 0.323 Mo 8 10.262 | 3.420 | 0.736 6.82 3.15

TABLE 7. - PARAMETERS A,p AND Ag,

A B | Basis set oY) ABa
(1) 0.0445 0.0277
Cr | Fe () 0.0443 0.0279
(#17) 0.0447 0.0275
(iv) 0.0448 0.0274
(1) 0.0751 1 -0.0644
Fe | V (%) 0.0757 | -0.0647
(i13) 0.0768 | -0.06515
(iv) 0.0775 | -0.0649
(%) -0.0228 | -0.0215
Cr| V (77) -0.0230 | -0.02115
(i77) -0.0222 | -0.0226
(iv) -0.0217 | -0.0221
(1) -0.0246 { -0.0060
Cr | Mo (#1) -0.0248 0.0060
(117) -0.0238 | -0.0143
(iv) -0.0230 [ -0.0075




Figure 1.—Tetrahedron cluster in a bec lattice (see text).
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Figure 2.—Heat of formation versus concentration for different bcc-based alloys. In all cases, the solid squares indicate

(d) Cr-v.

experimental values, and the different curves the results obtained using the basis sets and correlation functions

described in the text: (i) B32/£5 (long-dashed line), (ii) B32/£3 (short-dashed line), (i) B2/§5 (solid line) and {iv) B32+B2/¢3

{dotted line).
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