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ABSTRACT

During this research period we have made significant progress in the four proposed
areas: (1) Design of robust controllers via H> optimization, (2) Design of robust controllers
via mixed HZ/H>= optimization, (3) M-A Structure and robust stability analysis for
structured uncertainties, and (4) A study on controllability and observability of perturbed
plant.

It is well known now that the two-Riccati-equation solution to the H™ control
problem can be used to characterize all possible stabilizing optimal or suboptimal H™
controllers if the optimal H™ norm or ¥, an upper bound of a suboptimal H™ norm, is
given. In this research, we discovered some useful properties of these H™ Riccati
solutions. Among them, the most prominent one is that the spectral radius of the product of
these two Riccati solutions is a continuous, nonincreasing, convex function of ¥ in the
domain of interest. Based on these properties, quadratically convergent algorithms are
developed to compute the optimal H™ norm. We also set up a detailed procedure for
applying the H> theory to robust control systems design. The relationship between the H™
norm and robustness issues has been carefully reviewed and the guidelines to formulate H*
optimization problems including the construction of a state-space realization of the
generalized plant have been established. The controller formulas of Glover and Doyle are
slightly modified and used to construct an optimal controller without any numerical
difficulty.

The desire to design controllers with H* robustness but H2 performance has
recently resulted in mixed H2 and H* control problem formulation. The mixed H2/H*>
problem have drawn attentions of many investigators. However, solution is only available
for special cases of this problem. We formulated a relatively realistic control problem with
H2 performance index and H* robustness constraint into a more general mixed HZ/H*
problem. No optimal solution yet is available for this more general mixed HZ/H*>
problem. Although the optimal solution for this mixed H2/H* control has not yet been
found, we proposed a design approach which can be used through proper choice of the
available design parameters to influence both robustness and performance.

For a large class of linear time-invariant systems with real parametric perturbations,
the coefficient vector of the characteristic polynomial is a multilinear function of the real

parameter vector. Based on this multilinear mapping relationship together with the recent
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developments for polytopic polynomials and parameter domain partition technique, we
proposed an iterative algorithm for computing the real structured singular value. The
algorithm requires neither frequency search nor Routh's array symbolic manipulations and
allows the dependency among the elements of the parameter vector. Moreover, the number
of the independent parameters in the parameter vector is not limited to three as is required
by many existing structured singular value computation algorithms.

For task 4, the work during this period concentrated on developing software for
investigating the controllability robustness of linear time invariant systems. A preliminary
software package (described in Appendix A) was developed for measuring the size, shape
and location of the recovery region of initial states in finite time by bounded control.
Although the various optimization algorithms (needed to automatically obtain the value of
the indicators) work, they need to be refined in order to take care of such problems as ill-
conditioned recovery regions.
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PROGRESS REPORT

ROBUST CONTROL OF SYSTEMS WITH REAL PARAMETER
UNCERTAINTY AND UNMODELLED DYNAMICS

1. INTRODUCTION

This document is the second-period progress report on the NASA supported
research, "Robust Control of Systems with Real Parameter Uncertainty and Unmodelled
Dynamics", (No. NAG-1-1102). We are happy to report that in this research period we
have made significant progress in the following proposed research problems: (1) Design of
robust controllers via H= optimization, (2) Design of robust controllers via mixed H/H*
optimization, (3) M-A Structure and robust stability analysis for structured uncertainties,
and (4) A study on controllability and observability of perturbed plant.

Doyle, Glover, Khargonekar, and Francis (abbr.: DGKF) [1], and Glover and
Doyle [2] presented a celebrating two-Riccati-equation type solution to a standard H™
control problem. The two-Riccati-equation method characterizes all possible stabilizing
suboptimal H™ controllers whose order is not higher than that of the plant. The suboptimal
H™ controller formulas in [1], [2] can be easily transformed into descriptor forms to
construct optimal H™ controllers without numerical difficulties if the optimal H™ norm is
given. The optimal H™ controllers, with very few exceptions, have direct feedthrough
terms and therefore infinite bandwidth. Hence, control engineers may prefer strictly proper
suboptimal H™ controllers to the optimal ones. However, knowing the optimal H™ norm is
important in determining which suboptimal controller to be chosen in practical design.

Recently, an efficient algorithm for computing the optimal H™ norm was proposed
by Scherer [3). Scherer considered the inverse (or pseudo inverse) of the DGKF H”
Riccati solutions, X..(y) and Y..(Y), defined a new independent variable 4 = Y-z, and
showed that these inverses are concave functions of | in matrix sense on their domains of
definition. Based on this fact, a quadratically convergent Newton-like algorithm was
proposed to compute the optimal H™ norm.

Pandey et. al.'s hybrid gradient-bisection method [4] and Chang et. al.'s double
secant and bisection method [5] were also proposed for the computation of the optimal H™
norm. The significance of the conjecture that p[X..(Y)Y.(Y)], the spectral radius of
X(Y)Y(Y), is a convex function of ¥2 was mentioned in these two papers. Since there

was no proof for this conjecture, bisection was used in these two algorithms as supplement
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to guarantee convergence.

In this research period, we discovered several important properties of the two
DGKF H™ Riccati solutions, X..(y) and Y..(y). Among them, the most prominent one is
that p[X..(Y)Y(y)] is a continuous, nonincreasing, convex function of y on (B3, e°), where
B is the infimum of v such that the two DGKF H™ Riccati solutions, X..(Y) and Y..(Y), exist
and are positive semidefinite. Based on this property, a quadratically convergent algorithm
can be easily developed to compute the optimal H™ norm, i.e., the Y, such that

PIXoo(Yoo) You(Yoo)] = Yifa starting v is given inside the interval (B, v..), i.e., Y > P and
PIX=()Y=()] > V-

A v inside the interval (B, y..) most of the time can be easily found without the
knowledge of B. However, the computation of B can be necessary if P itself is the
optimum, which occurs when p[X.(B)Y-(B)] < B2 Newton-Raphson's method can be
employed to compute B and the convergence is quadratic.

H= control theory can handle the following two robustness issues: (1) Minimization
of the maximum error energy for all command/disturbance inputs with bounded energy,
and (2) Closed-loop stability under unstructured plant uncertainties with bounded H>
norm. Besides, H* control theory is also indispensable in the structured singular value
treatment of structured plant uncertainties [6,7]. Detailed procedures to formulate these
robust control problems into H™ optimization problems will be given in the report.

For most practical control systems, a particular performance index is usually of
considerable interest. At the same time there is also a desire to improve on the closed-loop
system robustness. However, it is well known that there exists a tradeoff between these
two design objective. Any improvement gained in one of the design goals is usually
accompanied by a loss in the other. The Linear Quadratic Gaussian (LQG) Theory has
been used successfully to design observer-based controllers with optimal performance for
plants with fixed (or fixed power spectrum) exogenous signals. It is well known however,
that the controllers derived using this approach possess poor robustness properties when
compared to the guaranteed stability margins provided by full-state feedback control.
Doyle and Stein [8, 9] devised a procedure, usually referred to in the literature as the Loop
Transfer Recovery (LTR), to asymptotically recover the full-state feedback loop by tuning
the LQG designed observer. The adjustment procedure is achieved by introducing a
fictitious noise to the nominal plant input. A new LQG observer based controller is then
derived. For the case of minimum-phase plants, the asymptotic recovery is achieved by
letting the intensity of the added fictitious noise approach infinity. The procedure however,
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has limitations when applied to nonminimum phase plants.

In this research we concentrate on the recently developed H* theory which evolved
from the sensitivity minimization problem formulated by Zames [10]. It was shown there
that many of the classical design objectives can be incorporated in the H* design. For
instance, the modeling of plant uncertainties can easily be formulated in terms of normed
H*° plant neighborhoods. Another advantage of this relatively new theory can be revealed
in the flexibility it offers to the designer in the formulation of the problem. For example,
the well known design methodology of loop shaping can easily be achieved via the choice
of frequency dependent weights on input as well as output signals. Although no direct
relations between these two are known, with the new state-space solution to the general
H®° problem [1, 2, 11] the design approach as will be shown later reduces to simply
varying certain design parameters in order to achieve the design objectives.

The motivation to design controllers for desired H? performance with H* robustness
constraints has recently resulted in mixed H2 and H* control problem formulation [11, 12,
13, 14]. Special cases of this problem have been studied there and a solution in the form of
coupled Riccati equations has been proposed. Although the optimal solution for this mixed
HZ2/H* control has not yet been found, we proposed a design approach which can be used
through proper choice of the available design parameters to influence both robustness and
performance.

Stability robustness is an important issue in the analysis and design of control
systems. Currently, there are two major approaches to stability robustness analysis. One is
the structured-singular-value (SSV) [6,7] or the multivariable-stability-margin (MSM)
[15,16] approach and the other is the perturbed-characteristic-polynomials approach [17-
22]. Several significant progresses have been made in both approaches. In this research, an
iterative algorithm of computing the real SSV and the real MSM is developed based on the
existing results in both approaches.

For a large class of linear time-invariant systems with real parametric perturbations,
the coefficient vector of the characteristic polynomial is a multilinear function of the real
parameter vector. Based on this multilinear mapping together with the recent results by De
Gaston and Safonov [15], Sideris and Pena [16], Bartlett, Hollot, and Lin [18], and
Bouguerra, Chang, Yeh, and Banda [23], an algorithm for computing the real structured
singular value is proposed. The algorithm requires neither frequency search nor Routh’s
array symbolic manipulations and allows the dependency among the elements of the
parameter vector. Moreover, the number of the independent parameters in the parameter
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vector is not limited to three, as is required by many existing structured singular value
computation algorithms.

The literature on controllability gives various degree of controllability (DOC)
measures, each based on different point of view. That is either, in terms of the
controllability grammian or the recovery region of initial states in finite time by bounded
control, or the variation of the system and control matrices. The work during this period
concentrated on: (i) trying to develop a relation between the various DOC measures
encountered in the literature, and (ii) developing software for investigating the
controllability robustness of linear time invariant systems. A preliminary software package
(described in Appendix A) was developed for measuring the size, shape and location of the
recovery region. Although the various optimization algorithms (needed to automatically
obtain the value of the indicators) work, they need to be refined in order to take care of
such problems as ill-conditioned recovery regions.

In section 2 of this report, we will show the overall progress in this research
period. The work performed and the status of the proposed tasks are summarized in section
3. Section 4 is the conclusion. The work for future research will also be briefly described

in section 4.

2. OVERALL PROGRESS

Consider the system

[z(s)} G, G, [v(s)} . [v(s)}

= = 2'1
¥] [ Gy®  Gyls) |Lue) ® s @1a)
u(s) = K(s) y(s) (2-1b)

where Gy(s) € R()P™™!, Gy5(s) € R()P™™2, Gy (s) € R()PP™, and Gyy(s) €
]R(s)pzxmz. R(s)™" is the set of pxq proper rational matrices with real coefficients. Recall

that the standard H™ optimization problem is the problem of finding a proper controller
K(s) such that the closed-loop system is internally stable and IIT,,ll_ is minimized where

T, (s) is the transfer function of the closed-loop system from v to z.

The realization of the generalized plant G(s) is given by



G(s) = [ A I sl 82 -] (2-2)
C1 1 Dl2
C,| Dy Dn

with the following assumptions:

(i) (él, A) has no unobservable modes on jw-axis and (A, B,) has no uncontrollable

modes on jw-axis, where

A=A-B,D|,Cy, (2-3a)
&,=C,-D,,D,,Cy, (2-3b)
A=A-BD,C, (2-30)
B,=B,-BD, D,,. (2-3d)

0

I}a D21=[0 I], D22=0.

(i) D=0, Dyp= [
(iii) (A, B,) is stabilizable and (C,, A) is detectable.

The two Riccati equations involved in the H* solution can be expressed as:

A A - T

ATX.+X.A+X.(y’B;B -BB})X.+&,& = 0 (2-4a)
and

5 %T 2 AT T .

AY,+ Y. AT+ Y. (y2C[Ci- C)Cy) Y. + BB, = 0, (2-4b)

where A, A, B, and €, are defined on (2-3).

The following theorem characterizes suboptimal stabilizing controllers such that IIT,,ll., <.

DGKF Theorem : [1]
There exists a stabilizing controller such that IIT,,ll, <7y if and only if the following
three conditions hold.
(i) There exists a positive semidefinite stabilizing solution X_.(y) to (2-4a). (2-5a)
(i) There exists a positive semidefinite stabilizing solution Y _(}) to (2-4b). (2-5b)

(i) pXe(MNY.(N] <V (2-5¢)



Moreover, when these conditions hold, one such controller is
B
= r Ak | k _I (2-6)

K., =
ESER

Bk = -EL2, Ck = Fz,

with

F

Ak = A+ I:Bl BZJ[F2:|+ ELz(C2+D21F1),

where
E=(-y2Y.X.)", F,=-BTX_, F,=-Bx_-D,C,,

-2 T T T
Ll ='Y Y,,Cl, I‘/Z ='Y°°C2‘ B1D21.

The above theorem shows an easy state-space approach to construct a stabilizing
suboptimal controller such that IIT,,|l., <. The theorem can also be used to compute the

optimal H* norm and construct an optimal H> controller. The optimal IIT,,|l_, is the infimum
of ¥ such that the above three conditions hold. With very few exceptions, the optimum
occurs when p[X..(Y)Y..(¥)] = ¥? which will render A, and E undefined. This numerical

difficulty can be easily resolved by transforming (2-6) into a descriptor form [1][25][26].

2.1 PROPERTIES OF H>= RICCATI SOLUTIONS
First, we assume (C, -A) is detectable. This assumption will be removed later in this

section. Suppose we have Riccati equation
KAT+ AK + ('Y'zBlB’Il‘- B2B§) + ﬁcfclk =0, (2-7)
then solution X(Y) has following properties.

Theorem 2.1: ﬁ(y) is a well-defined function on (@, +e), where
o, == inf {y: e R, and X(y) exists} (2-8)
Moreover, ﬁ('y) is analytic with

Ko = d%(k(v)) >0 (2-9)
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2
Ky) = (K@ <0 (2-10)
dy

on (0, +0).
Furthermore, the following theorem gives the eigen properties of ﬁ(y).
Theorem 2.2: On (0, +o0),
a) all eigenvalues of 5((7) are smooth, nondecreasing functions of y;
b) the minimal eigenvalue of X(y) is a nondecreasing, concave function of y;

c) X(y) is invertible almost everywhere.

This theorem implies that if we define
B.=inf {y: ye R, and X(y) is positive semidefinite}, (2-11)

then either Xmm[ﬁ(ﬁx)] =0 or B, = o, which in turn implies X(y) is positive definite

everywhere on (B, +o°).

With these properties of ﬁ(y) in mind, one can easily find the corresponding
properties of X_(y) by comparing the following two equations.

ATX_+X_A+X_(y’B|B]-BB)X_+C]C; =0 (2-12)
KAT+ AR + (y?B;BI- B;B)) + XC[C,X = 0. (2-13)

In the beginning of the section, we assumed that (C,, -A) is detectable. In this case, it is
easy to see that X_(y)= ﬁ'l(y) almost everywhere on (0, +o) and X_(y)>0 on (B, +°).
This assumption will be removed in the following.

In the case that (Cv -A) is not detectable, one can always find an orthogonal matrix

U=[U; U] (2-14)
such that
UAU, 0
UTAU = T . , (2-15)
U,AU, U,AU,
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B

T
U,B, UB,

— =]

uUB=[u"B, U'BJ=| . ’ (2-16)
U,B

271 B

T
272

and

CIU = [C1U1 0] (2'17)
with (C U, -UTAUI) detectable [27]. Furthermore, the solution to (2-12) can be
expressed as

X 0
Ut (2-18)

Xu(y)=U [ 0 o
with X(7)= X (y) almost everywhere on (at,, +), where X(y) and X(y) are the stabilizing
solutions to (2-12) and (2-13) respectively with (A, By, B,, C,) replaced by (UTAUI,

T T
U,B,. UB,
always true that X_(Y) exists almost everywhere on (a.,, +e) and X_(Y) 2 0 on (8, +).

C,U)). Therefore, no matter whether (C,, -A) is detectable or not, it is

Moreover, we have the following theorem which gives the properties of the first and
second derivatives of X_(Y).

Theorem 2.3: On (B,, +<),

a) ).(oo('Y) = ‘(%‘(Xm(Y)) <0, (2-19)
.o d2
b) XM= FXM(Y)) 2 0. (2-20)

Again, next theorem gives the eigen properties for X_(Y).

Theorem 2.4: On (B,, +),
a) all eigenvalues of X_(7y) are smooth, nonincreasing functions of 7y ;

b) the maximal eigenvalue of X_(Y) is a nonincreasing, convex function of .

Similarly, we can obtain the same results for Y_(7), the stabilizing solution to

Y_AT+AY_ +Y_(y°CIC;- CxCp)Y_+BB] = 0. @2-21)
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If (-A, By) is stabilizable, then Y_(Y)= ?'1(7) almost everywhere on (ty, +0) and

Y_(¥)>0o0n (By, +00), where §(Y) is the stabilizing solution to

AT® + §A +(¥7C[C1- CIC)+¥B1BIE =0 (2-22)
and

o = inf {y: Ye R, and Y_(7) exists} (2-23)

[3y :=inf {y: ye R, and Y_(y) is positive semidefinite }. (2-24)

If (-A, By) is not stabilizable, then an orthogonal matrix V= [V; V3] can be found such
that

T
V,AV. V AV
1V 122 VTB ClV CIV1 C1V2

VTAV= T , VIB,= and CV
0 V,AV, 1 0 c,Vv||cy, oV,

with (-VTAVP VTBl) stabilizable. Furthermore, the stabilizing solution to (2.21) can be

expressed as

Yy 0 ]
vT, (2-25)

with Y(y)= ?'l(y) almost everywhere on (a.,, ) and Y(Y)> 0 on (By, +e0). Again, Y(})
and ?(7) are the stabilizing solutions to (2-21) and (2-22) respectively with (A, By, Cy,

C,) replaced by (VTAVI, VTBI, C1V1, C2V)). Note that all results presented above for

XY, X(y) and X(’y) have their counterparts for Y..(y), Y(¥) and ?(y) respectively.
Before moving to the next theorem to investigate the properties of X..Y.., we define o
and B as follows:
o = max{a,, (xy} (2-26)

B := max{p,, By}. (2-27)
With these definitions, we can see that X..Y .. exists on (@, +e<) almost everywhere.
Moreover, X..Y.. has no negative eigenvalues on (B, +<), since both X, and Y.. are
positive semidefinite on (B, +oc). Now, we are in the position to state our main result.

Theorem 2.5: On (B, +),
a) all eigenvalues of X..Y.. are smooth, nonincreasing functions of 7y ;
b) p(X.Y..)is a nonincreasing, convex function of .
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on (B, +o<), the slope

Furthermore, lf we deﬁne p('Y): p(XeoYoe) and 6(’Y) = d(pd(:yy))

of p(y) can be expressed as

. VIKLY. XY
pyy = L ERY et XYW (2-28)

vV'w ’

where v and w are the left and the right eigenvectors of X_Y_ respectively corresponding

to its maximal eigenvalue. X, and ?,,, can be obtained by solving the following Lyapunov

equations:
ATX_+X_A -2y°X_B\BTX_=0 (2-29)
and AV +Y.AT 2y’v.clc Y. =0, (2-30)

with A = A +(y’B;BI-B;BDX_and A = A + Y.(y°C|C,-C,C,).

2.2 ALGORITHMS TO COMPUTE THE OPTIMAL H~> NORM

According to DGKF theorem, we can see that finding the optimal H,, norm,
denoted as v,., is equivalent to finding the infimum 7y such that all three conditions in (2-5)
hold. From the previous subsection, it is obvious that y,.e [B, +2). It is possible for B to
be ¥.., especially when B and a are identical, however, with very few exceptions, Y,.€ (B,
+00), which implies that v,, is the solution to p(y) = 72 The relations between a, 3 and v,

are shown in the figure below.
Both X« and Y exist

Both X~2>0and Y»20
All three conditions hold

0 ) B Yoo
Fig. 2.1
The figure implies that the problem of finding the optimal v, is actually that of either
searching for the intersection point of p(y) with 'yz inside (B, +co) or computing the
boundary point . Since p(y) is a convex function on (B, +e°), then gradient searching
method can be employed.
Assume that we have a starting point 7, in the interval (B, ¥..), then the optimal y

can be obtained easily as follows. Refer to Fig. 2.2, draw the tangent line with slope ﬁ(’yn)
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passing through the point (Y,. p(Y,)). The abscissa, ¥, , of the intersection of the tangent
line and the curve y = 2, always lies between Y, and v.,. The search process is repeated
until the gap ¥.. - ¥, is small enough.

y A \P 6] >

p(Y.)

%

0 B 'Yn Yn+l

Fig. 2.2

Furthermore, we will see that the convergence rate is quadratic. Define €, =¥, - ¥, and
€n+1 = Yoo - Yns1- It is straightforward to show that

_ .p.(‘yoo) 2
el T () - 2va ]

(2-31)

which implies quadratic convergence. For convenience, the algorithm described will be
referred to as Q-step, since the quadratic convergence is guaranteed, provided there is a
starting point Y, (B, ¥..) to start with.
Based on the discussion above, following procedure is given to compute the
optimal H_, norm.
Step 1. Initial point
Refer to Fig. 2.1, choose a relatively large initial ¥, such that y,e[B, +0). If
Y;€ (B, ¥..), then it can be used as the starting point for y... Go to Q-step. If ¥, e (V...
+e0), which implies X_(y;) 2 0 and Y_.(y;) = 0, then go to step 2.
Step 2. Starting point for Y.,
Evaluate p(y) at y;, we have the point (y;, p(¥;)). Refer to Fig. 2.3, draw a line

passing through the point (v, p(y;)) with slope p(y,). The abscissa, ¥,, of the

intersection of the straight line and the curve y = 2, is always less than v... If v,e (B,
Y..), then we are ready to go to Q-step with *y, as the starting point v, in Fig. 2.2.

15



YA PW |2

/ : » 7
0 B YT, Y

Fig. 2.3

Remark: Most of the time, the method described in the previous paragraph gives the
starting point v, inside the interval (B, v..). However, this method may fail, see Fig. 2.4
and Fig. 2.5. For the case described by Fig. 2.4, a smaller 7, could do the job. However,
for the case of Fig. 2.5, 7y, is always less than a, and therefore less than B, no matter how
small v; is. Since it is difficult to tell which case we are facing and there is no efficient
guideline to reduce y;, we suggest to continue if two or three rials of 'y, does not give a

starting point.
If Y,e (at, B), go to step 3 to compute B. If ¥, < a,, then go to step 4 to compute a.
' 94 . by
o)
¥
7 p(Y)
> —
T, B oo Y, @ Y
Fig. 2.4 Fig. 2.5

Step 3. Computing P
For the computation of B, one also needs a starting point to use Newton method. It
is similar to the gradient method described earlier. See Appendix for details. Note that
the v, obtained in step 2 can be used as a starting point for B. If B is optimal  (i.e., all
the three conditions in (2-5) are satisfied), see Fig. 2.1, then the algorithm will
terminate here. Otherwise $+€ can be served as the starting point 7y, for v.. in Fig. 2.2,
where € is a very small positive real number. Go to Q-step.
Step 4. Computing o
If either X_.(Y,) or Y..(y,) does not exist, which implies ¥, < a, we will compute o
first. Appendix will give the algorithm for the computation of a. If & is optimal y (i.e.,
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all the three conditions in (2-3) are satisfied), see Fig. 2.1, then the algorithm will
terminate here. Otherwise o can be used either as a starting point for 8, when a.#p; or
a starting point for y.., when a = f8. Go to step 3 and Q-step respectively.

Q-step. Computing Y.,
This step was described in Fig. 2.2. We can see from the earlier discussion, once
we have a starting point for vy,,, the quadratic convergence is guaranteed. Algorithm

terminates.

Example 2.1: The following is a simple H* optimization problem which is used to
illustrate the proposed algorithm of computing the optimal H* norm. A realization of the

generalized plant G(s) is given by

- 7 -1 0|1 040
AlB B 0 210 0¢}1
Gs)=|C, |D, D,[=]1 1[0 0}O0
1 11 12 0 0 0 0 1
G, | Doy Dy 1 1|0 110]

Starting from 7y, = 100, we have p(Yp) = p[X(Yp) Ye(Yo)] = 2.16e01. The slope of
p(Y) at this point (Yo, p(Yp)) is P(Yo) = -3.49¢-05. The tangent line at this point will
intersect with the curve y =y? at y, = 4.65. Again, evaluate p(y;) = 2.24e01 and compute

the slope p(y) at (y;, p(yy)). Since p(y;) > ylz, ¥ is inside the interval (B,y..) and therefore

from now on the convergence is guaranteed. The process is repeated until the gap between

vP(Yy and v, is small enough. The following data show that only four iterations are
needed to reach the optimum, Y,,= 4.734160476390407, with accuracy better than 10-14,

Iter Yn |~/W - Yn P(Yn)
0 100 9.535e+01 -3.487¢-05
1 4.647998761538930e+00 8.403e-01 -3.811e-01
2 4.734064423866624e+00 9.440e-04 -3.595¢-01
3 4.734160476276923e+00 1.115e-09 -3.595¢-01
4 4.734160476390407e+00 7.105e-15

By the formulas in (2-6) and the descriptor-form technique described in [26], we are

able to construct an optimal controller as follows:
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,_-.87542 | -0.13925_l

K .(s)=
opi(S) L4.42042 -4.73416_]

with the H> norm of the closed-loop system equals Yop- Note that the optimal controller has
a direct feedthrough term and thus has infinite bandwidth. If we choose y = 4.8 which is

about 1.4% higher than 7, we have a suboptimal controller

[-8.67072e-01 1.32928e-01

-1.3895%¢-01
-1.38320e+01  -1.52323e+02

4.73733e+00

Kopt(s) =
| 9.30025¢400 -1.49792e+02 | o |

which has a reasonable bandwidth and the closed-loop H* norm, IIT, I _< 4.8 which is

only 1.4% away from the optimal H>= norm.

2.3 Formulation of H> Optimization Problems

Many control problems can be formulated as the standard H> optimization problem.
For the purpose of demonstration, two examples are given in the following. The first is a
mixed-sensitivity optimization problem to be formulated as a two-block H* optimization
problem; the second is a disturbance reduction problem with measurement noise which
turns out to be a four-block problem.

A. Mixed-Sensitivity Optimization Problem
Consider the following system:

y(s) = P(s)u(s) + v(s) (2-32a)

u(s) = K(s)y(s) (2-32b)
where v(s) is disturbance, y(s) is output and K(s) is controller to be designed. It is well
known that a smaller II(I-PK)'III” means a better disturbance attenuation, whereas a smaller
IPK(I-PK)! Il _ implies a better robust stability. Unfortunately, the H norms of (I-PK)™!
and PK(I-PK)! may not be made small at the same time. If we make one of them smaller
then the other will become larger. To have a trade-off between these two quantities,
Kwakernaak [24] formulated the mixed-sensitivity problem as the problem of finding a
controller K(s) which stabilizes the closed-loop system and minimizes I®ll_ where @ is

given by
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W, (I-PK)"
®= A (2-33)
W,PK(I-PK)
W, and W, are weighting matrices chosen by the designer according to the concrete

situation. In other words, they depend on the characters of the disturbances and system
uncertainties. Usually, the disturbances occur most likely at low frequency, therefore
W (s) is chosen to be a low-pass filter to emphasize the error energy at low frequency. The

plant uncertainty is also frequency-dependent; the higher the frequency is, the larger the
uncertainties become. Hence, Wy(s) is usually chosen to be a improper transfer function
(but W,P(s) has to be a proper transfer function), which is analytic in closed right half
plane. In the following, we assume that W,(s) is strictly proper, W,(s) is a polynomial
such that W,P(s) remains proper and both of them are analytic in closed right half plane.

The problem of finding a K(s) which stabilizes the closed-loop system and

minimizes lIPll_ can be rearranged into the standard H> optimization problem. Consider the

following system:

A W, | WP
B (2-34a)
=|lo {wpi||lV

Z, 2 [ " :I
y I P
u=Ky (2-34b)

It is easy to show that the matrix @ defined by (2-33) is just the transfer function from v to
[le zzT ]T of the closed-loop system (2-34). Comparing (2-34a) with (2-1a), we can see

that
G = 5 G = ’
11 12 W_.P

2 (2-35)
G, =1, G, = P.

If P, W,P, and W, have state-space realizations as follows

A | By A | By At | Buy
pP= WP = W, = (2-36)
CP Dp Cw2 Dw2 ’ Cwl le

Then the generalized plant G(s) has a state space realization as shown in (2-2) with
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1 wl P
leCP Cwl le le P
C, = C o | D), = » D= D
w2 0 w2
c,=[C 9], D,y =1, Dy = D, (2-37)

Note that because W, is a polynomial, the A-matrix of W,P is same as that of P.

B. Disturbance Reduction Problem

NS P(s) W, 5)|—»

z

1

< W,(5) K(s) |[€—O @ W,(s)|€—n
Z u y

Fig.2.6 A disturbance attenuation problem

Consider the feedback system shown in Fig.2.6. P(s) is a given plant, W(s),
i=1,2,3,4 are weighting matrices, and K(s) is the controller to be designed. The
disturbance and noise are the outputs of W3 and W, driven by d and n respectively. z, is
the weighted error response; z, is the weighted control input. Let Zl = [le zzT]T, vl = [dT
nT]T and assume that v is unknown but with its energy bounded by unity. The objective is
to find a controller K(s) which stabilizes the closed-loop system and minimizes the worst
lizlly, i.e., minimizes the H* norm of T, the closed-loop transfer function from v to z. T,,

is given by

WIP(I-KP)'1W3 WIPK(I-PK)'IW 4
-1 -1 (2-38)
W KP(I-KP) W, W, K(-PK) W,
Note that W,PK(I-PK)-!W, and W,KP(I-KP)-1W3) are the output and input
complementary sensitivity functions. Their H* norms indicate the stability robustness of

the closed-loop system for the multiplicative plant uncertainty introduced at the output and
input respectively. W,K(I-PK)-1W, is the control complementary sensitivity function

whose H*> norm indicates the stability robustness of the closed-loop system for additive
plant uncertainty. Hence, reducing IIT,,ll,, will also improve the robust stability of the

closed-loop system.
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It is easy to verify that the generalized plant of the system can be expressed as:

z, W.PW. o [WP [ 4
21710 01w in (2-39)
y PW; W, i p u
That is,
W PW, 0 w,p
Gy, = v G =
0 0 W,
(2-40)
G, = [PW, W,], G,, = P,
If P, W,, i=1,2,3,4 have state-space realizations as follows:
Ap Bp Awi Bwi
P - W, = i=1,234 (2-41)
G | Dy Cwi | Dwi

Then the generalized plant G(s) has a state space realization as shown in (2-2) with

i A‘P 0 0 BPCW3 07 -BPDW3 07 i BP
A= BWICp Awl 0 BwlDPCw3 0 Bl = BwlDPDw3 0 B2 = Bwle
0 0 A, 0 0 0 B,,
0 0 0 A; 0 Bl 0 0
L 0 0 0 o Ayl L 0 B, 0
lecp Cwl 0 leDpr3 0 D leD 3 0 leDp
C, = D,=[ © " Dy, =
L 0 0 Cw2 0 0 s H 0 04, Dw2
C,=[& 0 0 DGy Cy] D, =[PPu; Dy, D,=D,. (4

Above {A,B,C,D} is the state-space representation for the generalized plant G(s).

2.4 A Design Approach to Achieve H2/H*> Objectives

The mixed H2 and H* control problem in its most general form has not been solved
as of yet. However, taking advantage of the recent advances in H* theory, we believe
that it is possible to develop a simple design procedure that will address the performance-

21



robustness problem. In the following, we consider the disturbance attenuation problem
with control weighting as shown in Figure 2.6. The nominal plant is denoted by #(s)and
the energy bounded exogenous signals consist of plant input disturbances 4 and
measurement noise n. The weighted error response and the weighted control input consist
of z; and 2z, respectively.

Following the approach presented by Doyle et. al. in [1,2], this problem can easily
be transformed to the general H2/H™ configuration. The task is then to design a stabilizing
H® controller K(s) such that the H*® norm of the transfer function matrix from the
exogenous input vector wT =[ dT nT ]T to the output vector zT =[ z;T 2z,T|T is minimized.
From Figure 2.6, this transfer function matrix is given by:

Wi P(I-KP)lw; W PK(I-PK)!lW,

Tpw =
W,KP(I-KP)!W; W,K(I-PK)!'W,

(2-43)
where W; (s), 1 =1, ... ,4 are weights to be chosen by the designer appropriate to the plant
and design objectives being considered. Usually, W3 is a low frequency filter indicating
that the disturbances introduced at the plant input are low frequency signals. The rest are
usually assumed to be high frequency filters to include measurement noise, unmodeled
dynamics, and any other plant uncertainties that may occur at high frequencies. Notice that
W, can be nonproper, hence providing the flexibility to consider frequency dependent
output responses. In this note however, we will only consider weights that lead to
controllers having the same order as that of the nominal plant.

The above disturbance rejection problem turns out to be a four-block problem and
its solution is described in [2]. It has been realized however, that suboptimal controller,
1.e. controllers satisfying Il T,y llo <7y for some positive 7y greater than the optimal H*-
norm of the closed-loop transfer matrix, are much easier to characterize than optimal ones.
It also turns out that the variable y can be used as a design parameter. This can easily be
verified when the general mixed H2/H*° control problem is restricted to the case where the
H2 closed-loop transfer matrix is the same as that of the H*® problem. In this case, the
suboptimal H* controller approaches the H2/LQG controller as y approaches oo,

From the input/output relation described above, it can be seen that it is possible to
address the performance/robustness problem via the design weights. For instance, the
complementary sensitivity function which is a measure of the closed-loop robustness is
represented by the (1,2) block of the closed-loop transfer matrix above with the weights
W, and W included. Thus by appropriately choosing these weights one can hope to gain
on performance without giving up too much robustness. As we will see later in the
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example, this procedure when used effectively is comparable to the LTR technique as far as

H? performance and robustness are concerned.
Example 2.2
Consider the following typical LQG problem:

(o[§ 4] o[

y=[2 1]x+n

with E(d) = E(n) = 0; E[d(1)d(t)] = E[n(t)n(t)}= &(t-T). The following performance index
is of particular interest

J=I (xTQTQx+u2)dt where Q=4V3[y35 1]
0
In the H*® formulation, we construct the generalized plant

A| B B]
G(s) =

Ci | Di1 Dy,

C,| D,y Dy,

by considering the same nominal plant as in the LQG problem with the following weights:
Wi (s) =0y in}?;—ﬂ and W3z34 (s) = @234 where the ai's are real. The optimal
LQG performance index turns out to be equal to 493. Introducing a fictitious noise at the
plant input as described by the LTR technique improves the stability margins of the closed-
loop system, but at the expense of performance. The solid-line curve 3 in Figure 2.7
represents the singular values of the complementary sensitivity function with the LQG
controller implemented while curve 4 corresponds to the LTR design. The improvement in
robustness using the LTR technique results in a loss in performance as summarized in the
table below. The dashed line Curve 1 in Figure 2.7 corresponds to the implementation of
the (a-design) H* controller with the constants o = ot2= 003 = 1 and 04=0.01. The
reason why o4 was varied was because it is directly related to the complementary
sensitivity function as indicated by the input-output relations above. The suboptimal H*
controller was obtained for a value of 7y that is 15% higher than the optimal H* norm.
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Figure 2.7 Complementary sensitivity function (db)

Curve 2 corresponds to the implementation of a H* controller (B-design) with the
following data:

men3 8] c-ml%T 47

D12=[33[01} Dy =P4[0 1]

Notice that the case when all the constants Bi's equal to 1 corresponds to the special case
of the mixed H2/H® control where both the H2 and H* closed-loop transfer matrices are
the same. Curve 2 which was obtained by setting B, and B4 to be equal to 0.1. Notice that
at high frequencies curve 2 is below curve 4 (LQG/LTR) indicating a better robustness
measure. The resulting performance index in this case is the same as the LTR case, i.e.
equal to 587. One interesting point can be seen in here by examining the open-loop
Nyquist plots of the LQG/LTR controller and the H* controller shown in Figure 2.8. The
dashed-line curve which corresponds to the H* controller implementation illustrates a
phase margin that is almost 10 degrees better than that of the LTR design. There is
however a loss of 1 db in gain margin. It is not clear exactly why this happens but we
intend to look into the problem in further research.
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Figure 2.8. Nyquist Plots

2.5 Computation of the Real Structured Singular Value

For a large class of linear time-invariant systems with real parametric perturbations,
the coefficient vector of the characteristic polynomial is a multilinear function of the real
parameter vector. Based on this multilinear mapping together with the recent results by De
Gaston and Safonov [15], Sideris and Pena [16], Bartlett, Hollot, and Lin [18], and
Bouguerra, Chang, Yeh, and Banda [23], an algorithm for computing the real structured
singular value is proposed. The algorithm requires neither frequency search nor Routh's
array symbolic manipulations and allows the dependency among the elements of the
parameter vector. Moreover, the number of the independent parameters in the parameter
vector is not limited to three, as is required by many existing structured singular value
computation algorithms.

- A(S) f@———ou,

——p M(s)

Fig.2.9 Standard structure for a perturbed closed-loop system.

All the plant uncertainties, structured or unstructured, unmodeled dynamics or
parametric perturbations, can be described by the block diagram shown in Fig.2.9. In
Fig.2.9, A(s) = block diag { A,(s), A,(s), ..., A_(s) } and M(s) is the nominal system
which includes the nominal plant and the stabilizing controller. The structured singular
value (SSV) is defined based on the above perturbation structure. The SSV is
nonconservative scalar stability-margin measures for multivariable systems.

Algorithms [6,7] to compute the SSV are available only for those cases where the
number of perturbation blocks are less than or equal to three. The computational problem
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for the cases with more than three perturbation blocks is still an unsolved problem.
One important special case of plant uncertainties is the real parametric perturbation.
In this case the perturbation matrix A(s) is a real diagonal matrix. The SSV defined for this

case is called the real SSV. An iterative algorithm of computing the real SSV for real
diagonal A was developed by De Gaston and Safonov [15] and generalized by Pena and

Sideris [16]. There is no limitation on the number of perturbation parameters. However,
this iterative algorithm is complicated since an extensive frequency search is required.

In the following we assume that the perturbation matrix A in Fig.2.9 is real
diagonal, i.e., A = diag { 31, 52, Sm } and the nominal system M(s) is a rational matrix
with real coefficients. If the parameters vary independently and -1 < Si <l,i=12,..m
the parameter perturbation domain 9 can be described as a hyper-cube  with 2™ vertices

(1, ..., £1) in the m-dimensional real space. In general, the perturbation matrix A can be
written as A = diag (8,1 , 3 oIz -+ 81} where I_. is the identity matrix of order mi

and m1+m2+ ...+mr = m. That is, 81=52= =8 —8 S . =% =3 =d,,
.., etc. In this case, the parameter perturbation domain 9 is an r-dimensional hyperplane

inside the m-dimensional hypercube &. The system is said to be robustly stable in & if
and only if it is stable for every parameter vector § = [ 81 52 Sm 1Tin 0. Throughout

ml+l ml+2= ml+m?2

the report, we may use "8 is stable" to replace “the system is robustly stable in "

whenever there is no confusion.

The real multivariable stability margin (real MSM) kM is defined as the largest real

constant k such that the closed-loop system remains robustly stable in k49 where kd is the
enlarged (or shrunk) parameter perturbation domain of &, i.e.,

kd:={5:8= [51,..,81, 52..,82, 81”'"81'] e R™
and 18.1<k, i=1,2,..r } (2-44)
The enlarged (or shrunk) hypercube of 1\3, kD is
k®:=(8: 8 e R™and 18,15k, i=1,2,..,m }. (2-45)
Recall that the real structured singular value (real SSV) u is defined as
= [ min { k | det [I+M(jw)A] =0 for some w and A e XKk}t (2-46)

where
X&) = { Al diag {31 RN m2» - O L} with 18, 1<k, foralli} (2-47)
That is, the real SSV p is the reciprocal of the smallest k such that the system is unstable in
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k9. It is easy to see that the relation between the real SSV p and the real MSM k,, is
= 1/ky (2-48)

As mentioned earlier, several significant results [17-22] have been obtained in the
perturbed-characteristic-polynomials approach. Probably the most famous are the
Kharitonov's theorems [17] which apply to the special case with a hyper-rectangular
perturbed region in the coefficient space. In this special case, the coefficients of the
characteristic polynomial vary independently and the robust stability of the system can be
easily determined by four bounding characteristic polynomials. Unfortunately, the
Kharitonov's theorems cannot be applied to our problem since the coefficient variations of
the characteristic polynomial are not independent.

Bartlett, Hollot, and Lin [18] developed an important theorem which is applicable to
the case when the coefficients of characteristic polynomial are linearly dependent. The
theorem is now well known as the Edge Theorem: For the set of characteristic polynomials
inside a polytope ® in the coefficient space, every polynomial in ® is stable if and only if
all the exposed edges of ® are stable. This simplifies the stability checking tremendously
since checking the stability of exposed edges is much simpler than checking that of the full
®. The exposed-edge stability checking is done by sweeping t from O to 1 such that

tod+ (1-0) o (2-49)
are all stable for all vertices ol and o of ®.

Bialas [20] and Fu and Barmish [19] reduced the checking of the exposed-edge
sweep stability to a one-shot test. They showed that tal+ (1-t) o is stable forallte
[0,1] if and only if the real eigenvalues of -H. H are all negatxve where o and o are

assumed to be stable and H, and H are the Hurthz matrices for o and o respectively.

Recently, a fast algorithm based on Chapellat and Bhattacharyya's Segment Lemma [22]
was proposed by Bouguerra, Chang, Yeh, and Banda (23] for checking the stability of the
exposed edges. The computation in the algorithm mainly depends on the number of vertices
instead of the edges and therefore reduces the computation burden due to the "combinatoric

explosion”.

There are no such celebrated properties in the parameter space as those in the
coefficient space discovered by Kharitonov [17], Bartlett, Hollot, and Lin [18]. The
closed-loop system may be unstable inside D although it is stable at all the edges of the
hypercube 0. So far, there is no easy way of checking robust stability in the parameter
space.
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For each parameter vector § in the parameter perturbation domain {9, there is a
corresponding characteristic polynomial, i.e., a coefficient vector o in the coefficient
space. Let 9(D) be the image of & in the coefficient space. The closed-loop system is
robustly stable in £ if and only if every characteristic polynomial in 9(d) is stable.
Although several significant results for robust stability have been obtained in the coefficient
space, there is no efficient way to check robust stability for 9(D) since 9() usually is
neither a Kharitonov's hyper-rectan