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1.0 PSAIf PROJECT OVERVIEW 

1.1 Introduction 

This Annual Report summarizes the work completed during the third year of 

technical effort on the referenced contract. Principal developments continue 

to focus on the Probabilistic Finite Element Method (PFEM) which has been 
under development for three years. Essentially all of the linear capabilities 

within the PFEM code are in place (Section 2.0); most have been validated 

(Section 6.0). Major progress in the application or verification phase has 

been achieved for the PFEM and is reported in Section 7.0. 

Additionally, the EXPERT module architecture has been designed and 

partially implemented, as reported in Section 4.0. EXPERT is a user interface 

module which incorporates an expert system shell for the implementation of a 

rule-based interface utilizing the-experience and expertise of the user 

community. EXPERT has been substantially modified from the Second Annual 

Report to incorporate a C-language expert system shell, CLIPS, written at NASA 

Johnson Space Center. The use of the C-language allows for an effective 

interface to a variety of needed Fortran utility subroutines. These 

subroutines perform a variety of operations on data sets used in the input and 

control of the PFEM and other modules that form the bulk of the user 

interface. 

The Fast Probability Integration (FPI) algorithm continues to demonstrate 

outstanding performance characteristics for the integration of probability 

density functions for multiple variables (Section 3.0). Several minor 

enhancements to the algorithm are reported. Additionally, an enhanced Monte 

Carlo simulation algorithm has been developed at the University of Arizona 

under Professor Wirsching's direction. A variety of numerical strategies were 

investigated in the process and are detailed in Appendix C. 

1.2 Probabilistic Finite Element Method (PFEM) 

The finite element algorithms are broadly classed in terms of the 

standard displacement method and as a mixed method with iteration for nodal 

equilibrium. Within each method the user has access to a variety of element 

types, as developed in the first two years of the contract effort. 

During the past year the PSAM project has implemented two new element 

types within the PFEM module. The MARC team, under the leadership of Drs. Joop 

Nagtegaal, S. Nakazawa, and Mr. Joao Dias, has implemented an advanced 

shell/plate element with the ability to handle through-thickness gradients. 

The element is an eight-noded solid element with assumed strain freedoms. 

Shell/plate behavior has been achieved in terms of a large aspect ratio 

capability for the element by the proper selection and tuning of the assumed 

strain terms.



The second new element is the sixteen-node hybrid (assumed stress) 

element developed under the direction of Dr. Satya Atluri and his staff at the 

Georgia Institute of Technology. Again, the element has surface nodes and is 

capable of aspect ratios approaching shell/plate requirements. 

1.3 Probabilistic goundarv Elements (PBEM) 

The focus during the past year has been on the development of a proper 

formulation strategy to permit the extension of an existing boundary element 

code to the probabilistic context. The selected BEM code for that development 

is the BEST3D code developed under NASA HOST funding in an effort directed by 

Drs. Banerjee and Wilson; much of that coding was accomplished by Dr. 

Raveendra, now working on the PBEM implementation. 

The PFEM strategy is to compute structural solutions for perturbed states 

of the random variables using an iteration algorithm. In this algorithm, the 

perturbed variables are shifted to the right-hand side of the system 

equations, and the perturbed solution obtained by iterating with the reduced 

stiffness matrix serving as a pre-conditioning matrix. 

The PBEM investigation has reviewed the strategies available for the 

generation of perturbed solutions. Since the BEM formulation is in te-s of 

surface variables, it was at first most natural to think of a direct means of 

computing geometry perturbations in analytical rather than numerical terms. 

While technically feasible, the analytical approach appears to involve 

substantially more cost of implementation than the numerical approach; thus 

the latter approach was selected. 

The use of BEM formulations for high temperature gradient problems in 

turbomachinery requires a treatment of volume terms associated with non-steady 

thermal strains, inhomogeneous material properties, and plastic strains. The 

usual treatment of these terms is through volume integrals requiring 

discretization of the body volume. Recent research in the BEM community has 

identified the potential use of surface-based interpolation functions for 

these volume integrals. The PBEM formulation has been based on the use of such 

surface interpolators. Perturbations are then performed in terms of surface 

data, even for internal variables, by this strategy. 

1.4 Code Validation and Verification Studies 

Code validation and verification are critical elements in the PSAM 

effort. Code validation is a task to establish the ability of the integrated 

analysis and probabilistic modules to generate the "exact" solution to simple 

problems, amenable to independent analysis. Code verification is to 

demonstrate the ability of the PSAM codes to generate meaningful probabilistic 
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analysis results for each of four SSME component analyses. The verification 

analyses, therefore, generally involve large modeling problems and loading 

conditions that preclude comparison to analytical results. 

The validation studies have made significant progress in the past year in 

terms of the number and diversity of the problems that have been solved. A 

standard format for the validation problems has been established that will 

facilitate the evaluation and replication of these results by other users. 

• The validation results have identified code errors and shortcomings that 

have been resolved. More importantly,-these problems have given significant 

insight into the operation of the PSAM codes for various types of modeling 

problems. These insights are being used to develop rules in EXPERT that will 

ease the user burden for these classes of problems. 

Additionally, the validation problems have provided critical technical 

insight into the nature of probabilistic analysis results. In particular, the 

results have all shown that, while the deterministic modeling answer my be off 

from the known solution,.the distribution of the probabilistic solution is 

highly accurate. Thus, by calibrating the model at the deterministic solution 

point, the PSAM algorithm is able to correctly predict the distribution of the 

results relative to the deterministic solution. This derives from the 

observation that the PSAM algorithm is based on the use of sensitivity data 

from the perturbation algorithm; sensitivity data is seen to be quite accurate 

so long as the physics of the problems has been properly modeled. 

The first major verification problem is nearly complete. The PSAM 

algorithms have been applied to a turbopump blade analysis. The random 

variables include geometry and material properties for the static analysis. 

Current work is applying random loading conditions and analyzing the dynamic 

response characteristics of the blade. 

Dr. Rajagopal of Rocketdyne has made major contributions to the PSA.'1 

effort in the verification task. He has identified numerous code problems 

which have been fixed as well as developing effective graphics interfaces for 

the PSAM results which facilitate the interpretation of the data. 

1.5 Planned FY88 Technical Effort 

Two major new tasks are underway in the current Fiscal Year (the fourth 

year of the project). The first is the implementation of'Probabilistic 

Approximate Structural Analysis Methods (PASAM) for selected components. The 

PASAN algorithms have been defined for each of the four components. The PAS-AM 

algorithms will be based on the observation made from the validation examples 

that the distribution of the solution can be accurate to within a 

deterministic calibration value, if the physics of the random variables are 
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properly accounted for. Thus, each of the four problem formulations will focus 

on the definition of critical response variables, and on the definition of the 

role of each of the random variables. 

Simplified mechanics models will be generated to estimate the required 

solution variable dependence on the random variables. It is expected that the 

deterministic solution will be crude and in error. It is assumed that a 

calibration analysis or an experimental result exists for defining an accurate 

deterministic solution. PASAM will generate distributional results, normalized 

to the deterministic solution. Thus, the analyst will be able to rapidly 

determine the sensitivity of the response variable to the random variables, as 

well as to predict the overall uncertainty in the design response variable. It 

is likely that this version of the PSAM capability could be PC-based. 

The second new task is the development of a Level III probabilistic 

material behavior model. The goal is to predict random stress-strain curves 

that derive from considerations of basic material mechanism behavior or 

appropriate phenomenological models from zero load to ultimate load. 

Consideration will be given to basic probabilistic variables for describing 

materials (grain sizes, defect structures, orientations, temperatures, etc.) 

such that the simulations can show the dependency of the response 

stress-strain curve character to the independent random variables. 

Interactions between mechanisms and dependencies between certain random 

variables is to be included.
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2.0 NESSUS FINITE ELEMENT CODE DEVELOPMENT 

2.	 Introduction	 - 

The NESSUS finite element code is being developed by MARC A.nalysis 

Research Corporation as part of the probabilistic structural anal y sis (PSM) 

effort, coordinated by Southwest Research Institute for the NS-Leis 

Research Center. The objective of this effort is to provide an advanced 

analysis capability by combining the versatility of a modern finite eiment 

code with the latest developments in the area of probabilistic modeling and 

structural reliability. Special attention was devoted to the efficiency and 

generality of the algorithms adopted in order to. make the code usable for the 

analysis of realistic engineering problems which are representative of typical 

SSME applications. 

2.1.1 Status at End of FY '86 
During FY '86 the NESSUS finite element code gradually evolved 

from a purely deterministic finite element code into a basic probabilistic 

analysis code. Version 1.1 of the NESSUS code was released to all members of 

the PSAM team in March '86 and was being extensively exercised at all sites by 

the end of FY '86. NESSUS 1.1 allowed linear elastic and eigenvalue analysis 

of structures with uncertain geometry, material properties and boundary 

conditions, subjected to a random mechanical and thermal Loading 

environment. Probabilistic analysis with . this version of the code was limited 

to a single increment of elastostatic or dynamic eigenvalue analysis, using 

the displacement formulation, and with no initial strain and/or stress 

effects. 

Initial experience with NESSUS 1.1 by the PSAM team members indicated the 

need for several enhancements to be provided with the second year code. The 

desired enhancements included: 

A faster equation solver using profile storage. 

The ability Co update an exsting perturbation database with results 

obtained in multiple runs. 

A "smarter" clastostatic oercurbation aiorichm, able to bypass most 
redundant or unnecessary comocations. 

The ability to refot'mua:e :re 'inoerz..irbec solution at a coinc oche' char 

the mean.
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•	 A more flexible set of integration schemes for strain recover y and 

projection, accommodatin g collaosec element configurations. 

• More user-friendly input of material properties for certain classes of 
anisotropic materials, allowing these parameters to be random. 

•	 The need for an enhanced 3D continuum element which could be deeenerated 
to a high aspect ratio to model plate and shell-like structures. 

•	 An algorithm for defining surface pressures on a nodal basis. 

• Performance improvements on the subspace iteration algorithm used for 

modal analysis.	 - 

•	 The explicit addition of the second tensor invariant for strains and 
stresses in the perturbation database. 

All of the above were being addressed in the development version of 

NESSUS by the end of EL '86, and were to be included in 'IESSUS 1.5 and 2.0, 
released to the members of the PSAM team on December '86 and February '87. 
respectively. 

An important feature lacking in these earlier versi:ns of NESSUS was the 

ability to introduce random initial strain and/or stress effects in the 

analysis. These can be rather significant in probabilistic analysis of 

rotating machinery when stress stiffening effects, due to larger centrifugal 

loads dominate the response. The solution strategy involved carrying initial 

stress terms for each perturbed problem across two increments in a consistent 

manner, and had been demonstrated in a special version of MESSUS in October 

1 86. However, the general multi-increment perturbed problem capability was 
not available as a standard feature of NESSUS until the release of version 2.5 

in September '87. 
The planned extension of the perturbation algorithms in NESSUS to multi-

increment, inelastic problems raised some important issues involving the 

internal data representation and the choice of a solution strategy. In 

particular, a decision had to be made regardirLg whether to pursue: (a) a pure 

displacement-based formulation allowing the internal storage of the element 

stresses and strains on an integration point basis, or (b) an MHOST-type 

mixed- iterati'ie fcrmulaticn allowing the storage of all stresses and strains 

on a purely nodal basis. By the end of EL '86, a decision had been made to 

pursue the latter.
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Although it necessarily involves the adoption of a less mature finite 

element technology, the decision to pursue the mixed-iterative approach 

allowed the use of a nodally-based strain recovery scheme as defined by the 

NASA Statement of Work— ' This approach also lends itself to a more elegant 

implementation of the inelastic perturbation analysis algorithms and a cleaner 

interface to the external perturbation database. By eliminating the need to 

remember the stress/strain history at the element integration points, the 

amount of data stored in the perturbation database is reduced, which helps 

keep the database files within a manageable size. The adoption of a mixed-

iterative strategy allowed large portions of FORTRAN code to be shared between 

the NESSUS and MHOST codes, facilitating the cross-transfer of new technology 

between these two codes. Nevertheless, due to the computational economy 

achievable with the displacement formulation in linear elastostatics, the 

option of invoking the displacement method for perturbation analysis of linear 

problems will be retained in the 'JESSUS finite element code. 

2.2 Code Deliveries During FY '87 

NESSUS 1.5 was released to SwRI, Rocketdyne and GIT in December 

'86. The objective of this limited release was to allow these subcontractors 

to exercise the code in order to identify any outstanding problems that needed 

to be addressed prior to the scheduled delivery of the second year code in 

February 1 87. This version of NESSUS addressed most of the needs identified 

while exercising NESSUS 1.1 on representative engineering problems. NESSUS 

1.5 also provided for the first time the ability to conduct perturbation 

analysis on problems, based on a mixed-iterative formulation, although it 

lacked the fine control over iteration tolerances that would be desirable for 

the effective use of this strategy. 

The second year code, identified as NESSUS 2.0, was delivered to 

all members of the PSAM team in February 1 87. The main feature introduced. 

with this version was an enhanced 3D continuum element based on an assumed 

strain field formulation and designed for improved accuf'acy in bending 

problems. This element can be degenerated to a high aspect ratio in order to 

reproduce thick plate and shell-type situations, and provides for surface 

pressure definition and strain recovery on a nodal basis, as defined in the 

NASA Statement of Work..
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NESSUS 2.5 was releasec to the members of the PSAM team ir. 

September 1 87. New features introcuced with this version include the ability 

to carry perturbation results across multi ple load increments, finer contro l-

over iteration tolerances for use with mixed-iterative and eigenvalue 

problems, and a lull library of assumed strain continuum elements with 

enhanced bending behavior. This version can accommodate random initial strain 

and stress fields, in order to capture the uncertainties in the stress 

stiffening effects governing the response of rotating machinery subjected to 

large centrifugal stresses. 

2.3 Extension of NESSUS/FEM to Mixed Method and Incremental Analysis 

The objectives of the PSAM effort include 
t
he development of 

probabilistic finite element methods for handling not only linear problems but 

also problems involving nonlinear material and geometric response. A 

successful strategy for achieving these goals will require: (a) the 

development of the means for tracking several perturbed solution paths across 

multiple increments, and (b) the ability to compute accurate response 

sensitivities for problems which have not been or cannot be iterated to a very 

high accuracy. Both issues were addressed during the past year as part of a 

strategy for extending NESSUS/FEM to the mixed method and incremental 

elastostatic analysis. These extensions involve data manipulations which are 

very similar to those needed for mildly nonlinear problems, and this 

development may be regarded as the first step towards the extension of 

NESSUS/FEM to material and geometry nonlinear situations. 

As stated above, the desire to rely on a purely nodal data representation 

for stress and strain for inelastic problems naturally led to the adoption of' 

a mixed finite element formulation [1] expressed in terms of nodal 

displacement, stress and strain. A practical approach for the solution of the 

mixed problem was developed under the. auspices of the HOST program at 

NASA/LeRC and implemented in the MHOST code. The MHOST implementation relies 

on an iterative strategy to recover the mixed solution,' using the displacement 

method solution as the iteration preconditioner. With this approach, the 

introduction of stresses and strains as mixed variables does not significantly 

increase the problem size, since only a matrix with the size of the number of 

displacement degrees of freedom needs to be factorized. 
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In the analysis of inelastic problems, the mixed method can be used 

effectively by combining the nonlinear iteration with the recovery of the 

mixed solution in the same iterative loo p . Since in ty p ical nonlinear 

problems the residuals are not iterated to within machine accuracy (the 

residual load dorrect ion term automatically carries it forward into the next 

increment), the mixed-iterative approach does not require a number of 

iterations that is significantly different from that used with the 

displacement method. 

That is not the case in the analysis of linear elastic problems, since 

the direct solution of the displacement equations will yield a residual force 

vector that merely reflects machine round-off in the multiple iterations, even 

for a linear problem, in order to recover the mixed solution from the 

displacement result. It should be noted, however, that the greatest 

improvements in the strain and stress solutions obtained with the mixed method 

occur in the first few iterations. Hence, for many p roblems, it is rather 

uneconomical to attempt to iterate the "mixed residual" to a very low value. 

Initial experiments with the use of the elastostatic perturbation 

algorithms using an MHOST-type mixed-iterative formulation have demonstrated 

the feasibility of the approach. However, problems will arise whenever the 

magnitude of the imposed perturbations result in a change in residuals that is 

smaller than the residual carried over from the unperturbed problem. It 

should be noted that a similar situation will be encountered when perturbing a 

nonlinear analysis performed with the displacement formulation, since in 

nonlinear problems the residuals are not usually iterated to a very small 

value (just as with the mixed-iterative formulation). 

The solution involves separating the residual load component induced by 

the perturbation from the residual load vector carried over from the 

unperturbed problem. This strategy has been described as an "equilibrium 

shift" and amounts to computing the displacement update for the perturbed 

problem using 

Th+1	 -1	 -o. 
d'	 d + K (f -	 BQ - r) (2.1) 
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where a carat is used to denote the perturbed auan:ities and r is the 

uniterated residual load 7ectcr from the unperturbed oroblem. This aPproach 

•	 provides an effective method for ccrnpucing the sensitivity of a solution which 

has not been iterated to a ver y small residual. 

The basic mechanism used to perform "equilibrium shift" is implemented in 

NESSUS 2.5.. In order to use "equilibrium shift" effectively, it is necessary 

to manipulate the iteration controls differently for the unperturbed and 

perturbed solutions. The recommended approach involves the generation of a 

mixed unperturbed solution in which the iteration tolerances are relaxed in 

order to achieve convergence with only a few steps of mixed strain recovery. 

This represents a relatively inexpensive wa y of improving the smoothness of 

the stress and strain solutions. All subsequent perturbation problems are 

then iterated to a finer tolerance, which is imposed only on the component of 

the residual load induced by small deviations of the random variables from 

their unperturbed values. The net effect isto prevent the response 

sensitivity calculation from being lost in the noise present in the 

unperturbed solution. When used in this way, the efficiency of the 

perturbation algorithm using the mixed-iterative formulation can be made to 

approach that of the displacement method, while retaining all the desirable 

features associated with the mixed formulation. 

The extension of NESSUS/FEM to incremental analysis involved the 

development of a mechanism for tracking several perturbed solution paths 

across multiple increments. In general, this will include the ability to 

recover the total displacements, stresses, elastic and plastic strains, and 

any other state variables from the converged solution for the current 

perturbation at the previous increment. By relying on a mixed-iterative 

formulation with all state variables defined on a nodal basis, it is possible 

to use the current structure of the perturbation database to store and recover 

these quantities. The same holds for linear elastic analysis using the 

displacement formulation, even if multiple load incremetts are present. The 

data structure currently implemented in the perturbation database would not be 

adequate for the use of the displacement formulation for inelastic problems. 

since that would require the availability of any history-dependent state 

variables (e.g., plastic strains) on an element integration point basis. This 

is one reason why the disacement methcd is not being pursued for ineas:ic 

problems within the PSN
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The simplest type of analysis involving a Consistent tracking of 

perturbed solutions across multiple increments is related to the ir.troducticn 

of random initial stress ard*s',ra';'.n fields. Initial stress effects account 

for the change in lateral deflection and natural frequencies when a turbine 

blade is subjected to large centrifuai loads. If there are uncertainties in 

the rotation speed, geometry, mate:'ial properties, etc., these will introduce 

uncertainties in the initial stress field, which can be estimated by a 

perturbed elastostatic analysis. In the following increment, each perturbed 

initial stress field obtainea in the previous increment is used to compute the 

stress stiffening effects for the corresponding perturbation. It is important 

that the bookkeeping is done correctly, so that the change in initial stress 

resulting from perturbing a given random variable is accounted for when the 

same variable is perturbed again in the following increment. In a similar 

manner, it is possible to include the effect of a random initial stress field 

computed in a probabilistic elastostatic problem on a subsequent random 

eigenvalue analysis. Random initial strain fields (induced, for instance, by 

a random temperature field) are handled in exactly the same way. 

As described above, in order to minimize in-core data storage 

requirements, NESSUS/FEM utilizes the perturbation database for temporary 

storage of the perturbed initial strain and stress fields. Hence, for 

analyses involving stress stiffening effects, the perturbation database size 

may have to be expanded in order to accommodate the generalized initial stress 

field. However, in order to keep the database size as small as possible, 

these additional quantities will not be stored unless it is clear that they 

are needed for the type of analysis in progress. It should be noted that 

earlier versions of the ENCODE and DECODE utilities (from NESSUS 2.0) remain 

compatible with the current format of the perturbation database. The same 

holds true for the perturbation database interface to NESSUS/EPI. 

2.14 Advances in Element Formulation 

Within the past year, several members of the PSAM team have expressed a 

desire to develope advanced element technology tailored to address specific 

SSME applications in a more effective manner. Many of the components 

addressed with this effort can be characterized either as a slender continuum 

or as a very thick, variable thickness shell using current finite element 

technolo gy. An accurac solution -r '.sualiy be obtained by using con:in 

elements. However, the modeling of sl'er.der shell-like components as a 3; 
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continuum requires a very fire mesh and involves considerable computational 

and modeling effort. This aorodch is often too expensive for standard design 

practice (see Figure 2.1). On t in e ocher hand, if shellelements are used, the 

computational effort is recuced oy some degree of accuracy and resolution is 

often sacrificed. This is often the case if the structure exhibits strong 

curvature (of radius less than five times the thickness of' the hell), large 

thickness variations or very localized thermo-mechanical loading. Also, the 

stresses in the neighborhood of shell intersections and connections are not 

accurately calculated.	 - 

Many heuristic rules have been developed for the use of shell elements in 

similar problems. This is frequently done by selecting an "effective" 

thickness near the discontinuity or by coupling the intersections in special 

ways. Nevertheless, it would be useful to have 3D elements with which such 

problems could be modeled effectively and accurately. In principle, continuum 

theory should always be able to represent the "exact" solution. 

However, regular continuum elements often lack the appropriate 

deformation modes to model shell-like structures in a satisfactory way. This 

was first observed by Ahmad and Zienkiewicz [3] in the de'ielopmr.t of th 

classical 8-node thick shell element. The problem was partially overcome by 

using a reduced integration formulation. Similar ideas were used later on in 

the development of thick shell elements. These elements frequently resort to 

the use of special interpolations for the transverse shear terms in order to 

retain the ability to accurately model the bending behavior of shells. These 

include the Heterosis element of Hughes and Tezdu yar [Li] and the 8- and 9-node 

thickness element proposed by Hinton and Huan g [5]. It can be argued that 

similar interpolations could be used for the strain and/or stress field within 

contthuumelements. Hence, one should be able to design continuum-like 

elements that perform well when degenerated in one direction to model shell-

like structures. 

There are several known strategies for constructing continuum elements 

with enhanced bending behavior (see Figure 2.2). One of the first attempts 

employed the use of selective integration [6]. The original element was very 

successful in the rectangular configuration when aligned with the global 

coordinate system, but behaved poorl y otherwise. The formulation of Kavanagh 

and Key (7] cured the oroblem b y in:roducing a local cartesian elemnz 

coordinate system and thus making the shear term invariant with respecc
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change of the global coordinate .c'stcm. This formulation is not easily 

extended to anisctrooic problems. in which the shear terms may be coupled with 

the direct stress comnoor.ents. A related approach i-nvolves the use of full 

reduced integration with the addition of hourglass control modes which are 

designed to enhance bending behavior. Examples include the formulation of 

Kosloff and Frazier [8] and the elements advocated by Fiannagan and Belytschko 

[9]. These elements lend themselves to very efficient implementation and have 

become quite popular for certain applications. The original library of 

continuum elements implemented in NESSUS/FEM (element Types 3, 7, 10 and ii) 

are based on a similar formulation. Another early attempt by Wilson [10] 

resorted to the addition of two incompatible quadratic "bubble" modes in an 

effort to reproduce the quadratic displacement field correspond i ng to "pure 

bending." However, when the element assumed the form of an arbitrary 

quadrilateral, it was found to behave erratically and failed the patch test. 

A cure for the problem was proposed by Taylor and Wilson [11] which is based 

on the evaluation of the "bubble" function derivatives at the centroid of the 

element. The resulting element was found to pass the patch test for arbitrary 

configuration, and is currently implemented in a number of commercial codes. 

However, these elements are used primarily for linear elastic analysis, since 

it is not readily apparent how the strains associated with the "bubble" modes 

should be handled in elastoplastic situations. Recently, PLan and Sumihara 

[121 have proposed a new element which exhibits excellent bending behavior 

even for somewhat distorted configurations. The element is an assumed stress 

hybrid, based on the use of five independent stress parameters to define the 

state of stress at the interior of the element. The assumed stress approach 

offers some problems regarding the implementation of plasticity algorithms. 

This is due to the fact that the most successful plasticity algorithms to date 

have been strain-driven, and not stress-driven. In particular, the 

implementation of a stress-driven plasticity algorithm (in itself a major 

coding task) cannot easily accommodate the perfectly plastic case in the 

absence of work-hardening effects. 

The approach pursued at MARC was aimed at the development of a family of 

continuum-tyoe elements with enhanced bending behavior and retaining good 

performance when degenerated to a hin aspect ratio. Of course, there are 

limits as to how far one can carr-'; such I degenerattn. For elerents of 
length 1 and thickness t; the 5en:r s 	 inss is of order 0(t 3 ' 4 ). both :ne 
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membrane and transverse shear stiffness are of order 0(t), and the direct 

transverse stiffness (change of thickness) is of order 0(1 2/t). Hence, for 

numerical reasons, it does not appear desirable to de generate these elements 

to an as pect ratio t/i K 0.01, which would cause the loss of more than eihc 

digits accuracy. This should not present a major problem, since the Primary 

application of these elements would be for thick shell-type situations, in 

which an element aspect ratio tIl < 0.1 should be adequate. The elements were 

constructed using an assumed strain formulation. The basic strategy involves 

the identification of a set of independent stress modes representing the 

desired element behavior, followed by the construction of a corresponding set 

of strain models which, under appropriate conditions (for any isotropic 

material or particular orthotropic material orientation), will yield the 

desirable stress modes. This allows the formulation of' an element which is 

based on a strain-driven constitutive algorithm, and can be readily 

implemented within the existing code framework. The strain modes are used to 

interpolate the strains within the element and are related to the displacement 

gradients by a weak variational form. All assumed strain modes are expressed 

in terms of a local element cartesian coordinate system obtained by polar 

decomposition of the isoparametric mapping at the centroid of the element. 

This strategy not only simplifies the derivation of the assumed strain modes, 

but also is expected to enhance the robustness of the element in distorted 

configurations. The stretch tensor obtained in the polar decomposition is 

used for computing scale factors to make the element computation 

dimensionless. This was observed to be particularly useful for reducing 

round-off for very high element slenderness ratios. Although the cost of' 

forming the B-matrix for the assumed strain elements can be as high as 2-3 

times that of a standard isoparanietric element, the increase in cost per 

element is frequently offset by the ability to use a much coarser mesh in 

bending-dominated problems. 

The library of assumed strain elements implemented in NESSUS'EEM includes 

4-node quadrilaterals for plane strain, plane stress and a:<isymmetric 

problems, and an 8-node solid element for modeling 'three-dimensiona l-

continua. The current implementation can be used with either the displacement 

or the mixed formulation and su pports different integration rules for strain 

projection and residual recover y . However, due to the unccnven:ionl r.at.re 

of the element formulation, th	 rtegracior. ruic for the eLement stiffness 
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computation is fixed. These elemen;s can be collapsed into triangles, wedges 

and tetrahedra, in accordance with the rules implemented for other continuum 

elements. 

In addition, an algorithm has been developed to allow the nodal 

definition of pressure loading on 2D and 3D continuum meshes (see Figure 

2.3). The agloribhm is based on a nodal assembly of tributary areas at each 

node in such a wa y that a unique outward boundary normal vector is defined at 

each surface node. These normals define the effective surface orientiation 

and the directi3n of the applied pressure at the node. The basic concept is 

depicted in Figure 2.3 and involves the following steps: 

1. Apply unit pressures to all faces of each element. 

2. Compute the corresponding nodal loads. 

3. Assemble the element force vectors. 

U.	 The assemble vectors cancel-out at all internal nodes. 

5.	 The actual nodal forces are obtained by multiplying the outward boundary 
vector by the negative of the nodal pressure value. 

For small deformation problems, this o peration is carried out only once, 

during the first element assembly loop, and the resulting boundary normals are 

used to compute consistent pressure loads throughcut the analysts. 

In probabilistic finite element problems with uncertain geometry and 

nodal pressure definition, the boundary normals are recomputed for the 

perturbed configuration at every geometry perturbation. Hence, if a geometry 

perturbation results in an increase of the surface area exposed to pressure 

loading, the corresponding increase in equivalent nodal forces is 

automatically accounted for in the algorithm. Likewise, in finite deformation 

problems using an updated LagrangLan formulation, the recompuation of the 

boundary normals can easily account for the follower pressure effects on the 

applied loading vector. 

2.5 Develooment of Deterministic Finite Deformation Alorichms 

The ability of conduct elastoplastic deterministic finite deformation 

analysis using a mixed-iterative formulation was introduced in NJESSUS/FEM 

within the time period covered in this progress re port. The basic formulation 

employs a Lagrangian mesh description, with the equations of motion evaluated 

at the current (deformed) configuration. Often described as an "edaed 
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Figure 2.3 An Assembled Boundary Normal Algorithm Allows Nodal 
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T	 . T a	 c+aRR -ARC (2.2) 

Lagrangian" formulation [3I, this app roach offers considerable comou:acionai 

simplicity since, by continualy upda:ing the mesh geometr y to the current 

configuration, all matrix expressions can be made to assume the same fcrm as 

in small deformation theory. The only additional matrices involve deformation 

gradients and rotation tensors, along with the matrices associated with 

follower forces. 
The follower force components are evaluated using body force and surface 

traction values at the end of the current increment. The following force 

matrices associated with change of volume or area are symmetric and easily 

included in the stiffness reformulation. However, unsyrnmetric matrices are 

associated with the rotation of follower forces. In keeping with the 

philosophy of the mixed-iterative approach, any contributions from unsymrnetric 

matrices are accounted for in the residual load correction term, and recovered 

by the iterative process. This avoids all the problems associated with the 

introduction of an unsymrrietric stiffness matrix. 

Using the mixed formulation, concentrated nodal follower forces enjoy the 

advantage of having the necessary rotation tensors readily available on a 

nodal basis as an integral part of the formulation. These nodal rotation 

tensors are easily obtained by poiar decomposition of the nodal deformation 

gradients. 

The constitutive equations for elastoplastic finite deformation 

computations are based on the use of the Green-Maghdi rate of Cauchy stress 

and rate of deformation E1 14]. This rate was chosen for its computational 

efficiency, and its ability to avoid non-physical oscillatory stress response 

when used in conjunction with kinematic hardening (15). The specific rate 

form for Cauchy stress used in this implementation can be expressed as 

where R is the rotation tensor obtained by polar decomposition of the nodal 

deformation gradients. The resulting constitutive equation 

+ a R RT - R R 	 D d
	

(2.3) 
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where d is the rate of defo'macicr. ter.sor, can be transformed using the 

rotation tensor to the equivalent 

	

DRdR	 (2.4) 

where

• R T aR 

DR RTDR 

	

d R ZRTdR	 - 

For the continuum elements, the constitutive laws are expressed in the 

global coordinate system, and the above transformations can be utilized 

directly. Thus, the evaluation of the constitutive equation involves 

transforming its components from the global to the rotated coordinate system, 

with the actual evaluation being form-identical to the small deformation case. 

By contrast, the constitutive equation for the shell element is expressed 

in terms of a local Cartesian coordinate system, defined by averaging the 

normal vectors for all shell elements connected at the node. In finite 

deformation computations, the local system is continuously recomputed during 

the geometry update process. This results in a nodal coordinate system which 

remains normal to the shell surface as the model deforms. Therefore, the 

local coordinate system in which the constitutive equations are expressed will 

rotate with the structure. 

The finite deformation algorithm implemented for the shell element takes 

advantage of this fact to avoid additional calculations involving 

transformations to the constitutive equation. This effective l y replaces the 

rotation tensor in the equations above with a continuously updated global-to-

local transformation tensor. 

A similar transformation was implemented for the beam element. 
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2.6 Enhancements to Database Manioulaticri 

The perturbation database format implemented in MESSUS provides


considerable flexibility for management oerturbation data obtained in the 

course of multiple analyses with 'iESSUSiFEM and IESSUS/F?I. Earlier versions 

of rJESSUS fell short of utilizing the full extent of capabilities p rovided for 

in the database design. The development of new features for database access 

and data management in recen: versions of NESSUS/FEM effectively opened up the 

use of the database to perform more sophisticated types of analysis. 

The perturbation database resides in a binary (unformatted) direct-access 

file, and is structured as a two-way ordered linked list. This type of data 

structure allows the insertion, deletion and replacement of individual entries 

without the need to move large blocks of data. It is, therefore, possible to 

maintain and expand an existing database with results obtained in multiple 

runs of NESSUS/FEM. These capabilities are accessed with the use of the 

RECORD option, allowing the user to add or replace individual perturbed 

solution sets. This option makes efficient use of the data structures already 

implemented in the perturbation database, and performs updates by relocating 

points within the linked list. 

An example of the data manipulations performed with, the RECORD option is 

schematically depicted in Figure 2.4. An initial run of NESSUS/FEM is 

performed for three increments of static analysis with two perturbations cn 

each of the first two increments. If all data sets are recorded, the 

resulting perturbation database will look as shown on the left in the 

figure. Further investigation of these might indicate the lack of a 

satisfactory result (for instance, lack of a converged solution) for 

perturbation 1 of increment 0. In addition, it becomes apparent that three 

additional random variables should have been included in the analysis for 

increment 0. Hence, a second run of NESSUS/FEM is performed for increment 0, 

recording only the new values for perturbation 1 (thereby superseding the' 

earlier results) and perturbations 3 through 5 (corresponding to a 
perturbation of each of the three added random variables). Any computations 

not needed for the calculation of the modified or added perturbations can be 

skipped on the second run. The perturbation database, u pdated after the 

second run, will be structured as shown to the right in Figure 2. 14. This 

degree of fle:.:ibiiity allows very efficient use of the perturbation database 
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Figure 2.4 The Perturbation Database is Used to Maintain a Permanent 
Record of the Analysis History for a Given Model 
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C.
	 realistic problems which ma y recui:'e several test runs to obtain a good 

local reoresencation of the res ponse sensitivity. 

For problems in which preliminary results indicate tnat 
t
he lint state 

lies well beyond the range o' the perturbations used to determine the response 

sensitivity , it would be desirable to provide a way to reformulate the 

perturbation problem at a point closer to the limit state. This would allow 

the comoutacion of accurate point probability estimates ththe tails of the 

distribution, even though the response characteristics at the tails may be 

considerably different from what is observed near the means. This is possible 

with the use of the MOVE option, which redefines a new deterministic 

(unperturbed) state at a point other than the mean (see Figure 2.5). 

In a way, the MOVE option represents the probabilistic counterpart of a 

well-known deterministic design practice. An experienced' engineer will often 

choose to base his design on an analysis involving an extreme loading 

combination (worst loading case) acting upon a weak structure (with nominal 

material properties somewhat below the mean values). Using a reliability-type 

formulation, the location of the "design point" will provide the most likely 

combination of random variables that will result in the limit state being 

exceeded. Based on this information, it is possible to use the MOVE ootion to 

manipulate the random variables in order to reproduce the structure most 

likely to exceed a given limit state. 

A print-out of the new unperturbed problem at the redefined deterministic 

state is included in the output from NESSUS/FEM. This provides a convenient 

way of checking for input errors in random variable definitions. In addition, 

since a complete resolution of the problem is performed at the redefined 

deterministic state, the MOVE option also provides a (somewhat expensive) way 

of checking the results obtained with the perturbation algorithms. 

As indicated above, the perturbation database resides on an unformatted 

(binary) direct-access file which cannot be displayed or edited with a text 

editor. However, for small problems, it would be desirable to be able to 

generate a formatted translation which could be displayed at a console or sent 

to a line printer. This can be done by using the DECODE utility provided with 

t'JESSUS (see Figure 2.6). This utility, is a stand-alone program which provides 

a formatted translation of a binary perturbation database generated by 

NESSUS/FEM. The original binary database file can be regenerated from its 

formatted translation by using the ENCODE' ucilt , io orc . vied wttn 
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Figure 2.5 Improved Reliability Estimates are Obtainable by Redefining 
the Deterministic State at a Point Away from the Mean 
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Figure 2.6 DECODE and ENCODE Utilities Enhance the Portability 
of the Perturbation Database 
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NESSUS. ? small loss of accuracy is-incurred in the process, since the 

fcrmatted translation only carries five digit accuracy in order to fit the 

data from the largest record within one 132 character line. In s p ice of the 

shorter precision, the formatted translation files still occupy more memory 

than the (more compact) binary files, so that it may not be practical to 

obtain formatted translations of very large database files. 

Unlike the binary direct-access files, which have machine dependent 

format, the formatted translation can easily be ported between different 

computers. and operating systems. Hence, the availability of ENCODE and DECODE 

utilities on different machines allows the exchange of database files 

- generated by NESSUS/FEM. With the emergence of smarter network software, such 

as NFS, the need to physically move database files between computers may no 

longer be as important. However, until these smarter networks come into 

widespread use, the formatted database translation will continue, to provide a 

standard format for the exchange of database files. 

2.7 Other Enhancements and Improvements 

Several other enhancements and improvements were introduced in NESSUS/FEM 

in the course of the past years. These enhancements reflect needs that were 

-identified by exercising NESSUS on a variety of realistic engineering problems 

and across a broad spectrum of computing equipment and operating systems. 

What follows is merely a list of some of the most visible enhancements 

implemented in this period. 

Early attempts to use existing finite element meshes for probabilistic 

analysis with NESSUS/FEM identified the need to allow for collapsed 

configurations of the standard continuum elements. This raised some conflicts 

with the nodal strain projection algorithm used in NESSUS, since the use cf 

nodal quadrature requires a well-defined Jacobian for the isopararnetric 

mapping at each node. This problem was avoided by allowing the use of row-sum 

lumping to form the "lumped volume s' matrix used in the strain projection 

algorithm. Although the use of row-sum lumping is not Lis accurate as with 

nodal quadrature, this strategy allowed the degeneration of continuum elements 

to form triangles, wedges and tetrahedra in order to preserve the topology of 

existing meshes. Due to its superior performance, the use of nodal quadrature 

is still. recommended for most regular meshes without collapsed elements. 

additional efforts to improve the performance of row-sum lumping are planned 

for the comin g year.
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The existing format for the input of anisotropic material pro perties was 

found to be inconvenient for the input of simple types of anisotrooic 

materials which are being investigated for use in SSME -com ponents. The 

materials in question are single-crystal alloys exhibiting cubic- symmetry 

(such as PW1480) and amenable to a three-parameter material description. 

Furthermore, it was desirable to allow all three parameters to be random, 

which could not easily be done using the input format for general 

anisotropy. As a result, a special extension to the isotropic material 

properties input reader was-implemented to allow the specification of a three 

random parameter material model. This feature has been used extensively in 

the analysis of an SSME RPETP turbine blade model at Rocketdyne. 

During the eigenvalue analysis of some structural problems using subspace 

iteration, the matrices on the reduce eigenproblem were found to differ by 

several orders of magnitude, resulting in a very poorly conditioned problem. 

This often resulted in overflow problems during Jacobi iteration on machines 

that use a large mantissa with small exponent (such as the D-float format on 

VAX). The problem was cured by using a spectral transformation to improve 

conditioning of the problem in the subspace. A better algorithm for selecting 

the trail vectors also helped improve the performance of the algorithm. 

The eigenvalue perturbation algorithm currently implemented in NESSUS was 

subjected to a very extensive cleanup in order to remove a number of existing 

bugs, streamline the code and improve its reliability. In addition, the 

convergence criteria used to stop the recursive algorithm have been modified 

significantly. If an elastostatic analysis is used to obtain the initial 

stresses prior to the dynamic mode extraction, it is now possible to change 

the convergence criteria for the eigenvalue problem from the values used in 

the static perturbation analysis. 

A new option to extract the deformation modes present in the assemble 

stiffness matrix is available in NESSUS/FEM. This option involves the 

solution of the standard ei gevaiue problem. 

(K - x I) x	 0
	

(2.5) 

The resulting eigenvalues represent allowable deformation modes for the 

assemble stiffness, and the corresponding eigenvaiues indicate the strain 

energy associated with the moce. This information is very useful 'o' che 
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development of new element formulations and to obtain stability estimates for 

problems involving perturbations to the stiffness matrix. 

A new MONITOR facility was introduced to provide a convenient wa y to 

monitor the behavior of criticai response variables in the course of 

iteration. A summary of the current values for all monitored variables is 

printed on the log files at every iteration. During interactive execution, 

the log file is disp l ayed on the terminal screen, allowing the user to track 

these quantities while the iteration is in progress. 

Until recently, the trabsient dynamics capability using direct 

integration of the (deterministic) equations of motion was not active in the 

MESSUS code. Following a major cleanup of this analysis driver performed 

under the auspices of the MHOST project, this option has been reactivated and 

tested in NESSUS/FEM. 

A single-step direct time integration scheme based on the Newmark-3 

family of algorithms is used. Individual schemes within this family of 

al gorithms may be obtained by selecting the control parameters for the Newark 

algorithmas follows: 

	

Y	 8	 INTEGRATION SCHEME 

	

1/2	 0	 Central Explicit 

	

3/2	 1	 Backward Difference 

	

1/2	 1/10	 Linear Acceleration 

	

3/2	 4/5	 Galerkiri 

	

1/2	 1112	 Fox-Goodwin 

	

1/2	 1/4	 Average Acceleration 

The "average acceleration" scheme is the system default, with the stress and 

strain recovery at the end of each time step Only Rayleigh-type damping may 

be used in this type of analysis. In addition tc all the mechanical loadings 

available for static anal y sis, a general periodic loading or displacement 

constraint can be used,	 oe"_oc and amplitude both specified on a nodal 

basis. Nodal displacements. velocity or acceleration may be specified as part 

of the initial conditions for the cynamic Problem. 
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Finally, the MENTAT cornpacibie post-file writer in MESSUS was extended to 

include mode shapes for vibration, buckling and deformation mode analysis. 

The OUtDUt for eigenialues and eigenvectors follows the former MARC K.1 pos;-

file format and is fully .supported by the current commercial version o 

MENTAT. As with the static problem, only the unperturbed eigenvalue solution 

is written to the post-file. 

2.8 Random Vibration for Uncertain Structures 

The code used to perform random vibration analysis (PSD) in MESSUS was 

the object of extensive cleai-uo as a first step towards extending the current 

capabilities to include uncertain structures as well. .A strategy for the 

implementation of random vibration analysis of uncertain structures is 

currently being laid-out. The-proposed implementation is based on the use of 

the approximate natural frequencies and mode shapes for the perturbed 

structure, obtained with the eigenvalue perturbation algorithm, to provide 

information on the sensitivity of the RMS stress and displacement to small 

fluctuations of the random variables. 

A more sophisticated capability will involve the introduction of the PSD 

level itself as a random variable. The PSD level will have to be handled as a 

special type of random variable since it is irrelevant to the perturbed 

eigenvalue computation and will only affect the computations carried out in 

the frequency domain. The introduction of uncertainty in the PSD level may 

provide a systematic alternative to the more conservative practice of 

constructing an envelope to the POS function. 

2.9 Future Effort: Nonlinear and Transient Problems 

The iterative perturbation approach adopted in NESSUS/FEM appears 

suitable for extending the existing formulation to situations involving at 

least mild nonlinearities. The basic solution strategy will amount to 

tracking multiple perturbed time-histories, using the soluticn to the 

unperturbed problem as the iteration preconditioner for all perturbed problems 

at a given time step or load, increment.. Difficulties will arise if some of 

the perturbed problems drift too far from the -unperturbed state in the course 

of an analysis. The problem may be aggravated by the presence of constraint 

equations, which arise naturally from the formulation for deviatoric rate-

independent plasticity.
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Other problems are expected in situations involving repeated CCiiC 

loading, since the response for intermediate perturbations is not necessarily 

bounded at all times by the response corresponding to the largest 

perturbations. This problem has been observed in works by other researchers 

dealing with transient dynamics, in which the variance of the response appears 

to vanish at several points in time [16.17]. No solution has been offered for 

this problem. 

Yet another problem involves the emergence of secular terms in the 

response for the perturbed system, which may grow unbounded in time and 

invalidate the solution for large times. This pathology is well known to 

researchers working on nonlinear oscillations of complex dynamical systems and 

there is extensive literature on the subject. This problem has been discussed 

by Liu and Belytschko [17], and appropriate secularity filtering strategies 

have been suggested. 

Perhaps the most intractable problem in probabilistic nonlinear mechanics 

involves the presence of bifurcations, in which very small perturbations of 

the deterministic problem can lead down very different solution paths. With 

present finite element technology, these problems can become extremely complex 

even for deterministic analysis. However, the problem of detecting the 

presence of a nearby bifurcation point represents a much simple problem, 

involving the solution of a stochastic eigenvalue problem. 
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3.0 NESSUS PROBABILITY ALGORITHM DEVELOPMENT 

3.1 Introduction 
This chapter summarizes theprobability algorithms developed for. the 

NESSUS code. Two methods of probability modeling are to be included , . The 

first of these is the East Probability integration (EN) method [1,2]. The 

second method is the Monte Carlo method. Both methods use the same structura 

sensitivity data, which is generated by NESSUS. Confidence levels will be 

estimated for the response variables distributions that are calculated. 

The development of the Monte Carlo methods, performed at the University 

of Arizona, is completed. A summary of the Monte Carlo methods is included in 

Section 3.2. Among the four methods investigated, the Harbitz method is 
considered the best method, therefore, it will be integrated into the NESSUS 

code.

Section 3.3 describes the on-going development of the method for 
estimating the probabilistic solution' for the entire structure using limited 

perturbation solutions at selected nodes. 

Section 3.4 discusses a strategy for integrating the EN and the Monte 
Carlo codes. The issue of defining the proper perturbation ranges is 

addressed. 

Section 3.5 defines a code-structure that extends the NESSUS/PRE 
capability from normal to non-normal correlated random variables. The 

development of the FORTRAN routines for performing the variable 

transformations is com plete. In the future, minor modifications of the PRE 

and FEM modules will be required to integrate the codes. 

Section 3.6 describes two enhanced FPI iteration algorithms. One 
algorithm is for solving a response value given a specified probability 

value. The other algorithm is for solving a probability value given a 

specified response value. As decionstrated by an example, these algorithms 

provide very efficient solutions. 

Section 3.7 demonstrates, using one of the validation problems, the 
confidence bound estimation procedure. The procedure is consistent with the 

NESSUS/EPI solution algorithms.
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3.2 Fast-Monte Carlo Methods 

Consider the random variable 2 as a function of the random vector 

(X 1 , X2Xn) 

Z	 h(X) 

The distribution of each X i is known. It is assumed that all X i are mutually 

independent. 

A fundamental problem of probabilistic mechanics and design is to compute 

a point probability,

p	 P[h(X)Sh]
	

(3.2) 

For example, p could represent the probability of exceedance of a deflection 

or perhaps the probability of failure. 

Another problem is the extension of the first to the construction of a 

cumulative distribution function. 

Fz (z)	 P[h(X ) :5z]
	

(3.3) 

Clearly, the two problems are identical, but optimal strategies for analysis 

may differ. For example, to construct the CDE, one option would be to obtain 

point estimates of F2 at selected values of z, then fit a curve through the 

points. A second opticn would be to construct an empirical distribution 

function from a large sample of Z. There are a number of Monte Carlo 

techniques which can be employed to estimate P and/or F2. 

Monte Carlo traditionally has been considered to be a "last resort" 

method for solving a probability or statistics problem because of high cost 

relative to accuracy of the results. However, in recent times a combination 

of the development of new efficient numerLcal techniques and new digital 

computing hardware have made Monte Carlo more attractive. 

Appendix C presents descriptions of the following Monte Carlo programs 

dedicated to probabilistic structural analysis. 
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1. "Conventional" Monte Carlo: For conventional Monte Carlo, a random 

sample of X is obtained. In turn, a random sample of 1 is computed using 

Eq. (3. 1 ). An emp irical distribution function of Z is constructed. 

2. Variance Reduction Using Antithetic Variates: Given a sample of X, a 
negatively correlated "mirror image" X' is computed. The variance of 
point probability estimates is reduced by averaging the estimates made 

by X and X'. 

3. Mean Value Method with Stratified Sampling: This method directly 
evaluates a multiple integral expression for point probabilities. 

LL.	 The Harbitz Method: This is a scheme for reducing the sample space 
for X thereby, in theor y , producing efficient point probability 

estimates. 

Results of the performance study are summarized in Fi gure 3.1 where CYBER 
175 CPU time is plotted as a function of probability level 3 and number of 

variables, n. It is important to note that B is related to the tail 

probability level p by

p	 (-B)
	

(3.L) 

where 0 is the standard normal CDF. Computer time for each method depends on 

factors other than probability level and number of variables. The 

distribution type for each factor and the form of the response function 

influence computation time. Therefore, the curves of Figure 3.1 must be 

interpreted as characterizing the relationships for purposes of comparison. 

Several general conclusions can be made regarding the results presented 

in Figure 3.1. 

1. Fast probability integration (e.g., the Wu/FPI method) is far more 
efficient than Monte Carlo. 

2. Variance reduction does not appear to be competitive with the other 
methods. 

3. For small numbers of variables, the mean value and Harbitz methods are 
very efficient with the Harbitz method having a sl'ight edge. 

L •	 Computing time for both *the mean value and Harbitz methods increases 
sharply as the number of variables increases. 

5.	 For small numbers of variables, conventional Monte Carlo is not 
efficient. But the increase in comPuting time increases linearly with 
the number of variables. Because these curves are flatter than the mean 
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value or Harbitz curies. conventional Monte Carlo actually becomes more 
efficient relative to eacn of these methods above a given n. 

6. Conventional Monte Carlo gets very expensive as the probability level 
decreases. Note that the 3 	 4 curve is off of the chart. 

7. One feature of conventional Monte Carlo is that a full sample of the 
response variable can be generated. Therefore, the entire CDF of the 
response variable can be generated. On the other hand, several 
probability points have to be computed using the other methods. And the 
accuracy will be better for larger probability levels and worse for 

smaller p. 

In summary, a general conclusion is that the Harbitz method seeems to be 

the preferred a
pproach. Note, however, as the probability level p gets larger 

(and s smaller), the Harbitz method approaches conventional Monte Carlo. 

3.3 The Probabilistic Field Problem 

Probabilistic structural analysis using the NESSUS code requires 

constructing resp6nse function surface for each response variable. Such 

response surfaces can be constructed using curve fitting schemes. The MESSUS 

probabilistic solution strategy is to use only low-degree (i.e., first- and 

second-degree) polynomial surfaces because higher-degree surfaces are 

difficult and impractical to construct using the NESSUS generated response 

solutions. For such low-degree surfaces to be useful for generating accurate 

probability information, it is necessary to make a good selection of the 

response solution points for response surface approximations. 

In the current NESSUS technology, the selection of the solution points or 

regions is based on the "most probable point" (or design point) concept [2-

4 ]. The validation studies (see Section 6.0) indicate that the above strategy 
works well. However, for the solution to be accurate, the method requires, in 

addition to the mean-based perturbation, the deterministic re-computation/ 

correction of the response value at the most probable points. For further 

improvements, more perturbations may be required around the most probable 

points (see Section 3.6). In general, these most probable points are 

different for each response variable in the structure. For example, the most 

probable points for the stress at node 1 may not be the same as for the stress 

at node 10. 

In probabilistic structural analysis, it may be necessary to generate 

probability-based solutions for the entire structure under analysis. One 

reason is that the sub-critical areas identified from the conventional 
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deterministic solution may become critical, from the probabilistic point of 

view, if the areas are subjected to more uncertainties in loads, material 

properties, geometries, etc.). 

A useful probabilistic solution, in contrast to the deterministic 

solution, is the responses (e.g., stresses) at all nodes at selected 

probability of exceedance levels. To generate the field solutions, it may be 

extremely time-consuming to perform "full" NESSUS probabilistic analysis for 

"every" response variable because each response variable requires its own 

perturbation. Therefore, it- is important to develop a strategy to obtain 

approximate probabilistic response field without having to solve each response 

variable independently. 

To solve the above field, problem, work has been initiated to formulate an 

estimation strategy based on the most-probable-point-locus concept [4]. P 

preliminary solution for the field problem will be discussed in the following 

paragra phs. More detailed study of the field problem is in progress. P. 

computer program has been written to study and test several strategies. The 

goal is to investigate strategies and make recommendations for the code 

implementation. 

As a first approximation, the field's response can be made using the mean 

value first order (MVFO) database at the mean solution. This technique may be 

used to identify regions of greatest concern (high probability of exceedance) 

in the structure. However, high accuracy for the probability of exceedance 

throughout the entire field cannot be obtained for highly-nonlinear response 

surfaces using only the LMVFO database. 

However, if the response variables are statistically correlated within 

the regions of concern, it may be possible to predict or estimate the regions' 

field response based on a small number of accurate solutions for the 

"critical" response variables. 

A sample demonstration was selected to study the response field 

problem. The example consisted of a "fix-free" bar is subjected to an axial 

force. The bar has two elements with Young's modulus E 1 and 

respectively. If we assume that E 1 and E2 are mutually independent random 

variables, the longitudinal deflections constitute a response field that is 

nonlinear in the random variables. Based on a detailed FF1 study of this 

example, the following preliminary conclusions were reached: 
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(a) The correlation between any two response variables, measured by the 
correlation coefficient (ranging from - 1 to . + 1), can be estimated using 

the mean-value solutions. 

(b) Reasonably good probabilistic solutions can be predicted from the 
solution of one response variable to the other, provided that the 
response variables are reasonably well-correlated (e.g., correlation 
coefficient > 0.7 or K -0.7).	 S 

(c) The quality of the estimates depend on which response variable is used as 
a reference or "master" variable. This master response will provide the 
common computation points for the computations of the master as well as 
the other "slave" response variables. Because the selected points are. 
the most probable points for the master, naturally the master response 
has the highest accuracy. The accuracies of the slaves depends on the 
correlation coefficients. In general, the accuracy will decrease as the 
magnitude of the correlation coefficient becomes smaller. This suggests 
that it is important to select a good reference point. In general, a 
master may be selected, based on the MVFO solution, as the critical 
response (e.g. maximum stress) at a selected probability level. 

(d) When the correlation coefficients become far from unity (plus or minus) 
between a master and a slave, then a new reference point may be 
required. In general, several reference points may be selected after the 
mean value perturbations. 

3.4 The Integrated NESSUS/FPI/Monte Carlo Algorithm 

In the NESSUS analysis, the FPI algorithm is being applied at two 

levels. At the first level, the NESSUS/FPI code generates probabilistic 

output using the established response function established based on the NESSUS 

database. At this level, NESSUS/FPI is accurate relative to the accuracy of 

the response function. At the second level, which is most critical to the 

NESSUS accuracy, the FPI algorithm directs the FEM module to "move" to other 

perturbation centers (the most probable points generated from NESSUS/F?I). 

The first level is always efficient because the response function is 

explicitly defined. At the second level, however, finite element solutions 

are required to define the response function (i.e., the response function is 

implicitly defined), and the com putation time becomes dominant. 

The NESSUS Monte Carlo algorithm is applied as an lternative to the 

NESSUS/FPI only at the first level. The major reason is, based on the result 

of the studies of the Monte Carlo methods (Section 32), it appears that it is 

practically impossible to perform Monte Carlo simulation by actually 

generating a "sufficient" number (e.g., thousands or more) of FEM solutions. 

The advantage of including a Monte Carlo module is that Monte Carlo 


simulation has the capability f providing exact solutions (as the number of 
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samples becomes larger) and involves less potential numerical/convergence 

p roblems than the NESSUS/F?I algorithm. Therefore, the Monte Carlo module can 

be used for independently checking the NESSUS/FPI' results. 

it -is planed that the Monte Carlo module will be independent in the 

NESSUS system and that this module will be controlled by the PFEM module. The 

users will have the options of selecting the Monte Carlo or the NESSUS,'F?L 

solution type. 

Because Monte Carlo simulation will not be applied to generate the FEM 

solutions, the accuracy of the NESSUS will rely on the EPI algorithm (applied 

at the second level). To avoid gross error, a strategy is described in the 

following paragraphs which suggest that "large" perturbation solutions can be 

generated to fit a response surface. 

In applying the EPI algorithm, there is a possibility that the 

established (up to second-degree polynomials) response surface do not 

represent very well the actual response surface. Ori g inally, the EPI 

algorithm required only good fit of the response surface in the neighborhood 

of the most probable point. In other words, only "small" perturbations are 

required. However, it is not impossible that the response surface may require 

higher than a second-degree model for its accurate description, or that more 

than one local most probable point exists for the surface. Please note that 

this is based on theoretical considerations. It has been demonstrated that 

EPI provides high accuracy for all the validation problems performed, even 

with. only linear surface approximations. 

To provide the analysts with more confidence, "large" perturbation 

solutions can be generated so that the solution points cover a "wide" range. 

If there are no si gnificant differences in the solutions, then there is more 

confidence that the solution, based on the lower-order response surface, is 

correct. If the results show significant differences, indicating that the 

response surface cannot be modeled adequately by a second-degree surface, then 

a more detailed analysis must be considered. A possibl,e solution is to 

generate a higher-degree response surface and then use the Monte Carlo 

program. Note that after the regular NESSUS analysis, some probability 

information is already available; therefore, the higher-order effect needs to 

be considered only for those significant random variables. 
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3.5 Jon-normal Random Variables - 'JESSUS/PRE 

The MESSIJS/PRE module was originally designed to solve problems invoLving 

statistically correlated normal random variables. The PRE module generates a 

transformation matrix, [T], using the covariances of the correlated variables, 

such that

[1] = [T][ZJ
	

(3.5) 

where	 - 

[Y] a statistically correlated normal vector, and 

[Z] a vector of un-correlated normal 

The distributional input data requires only mean and standard deviation. The 

output of the NESSUS/PRE code includes the [T] matrix, which is required for 

the NESSUS/FEM input data. The PRE module has been tested successfully in a 

number of validation problems (see Section 6.0). 

For a correlated normal vector of random variables, the NESSUS solution 

procedure is straight-forward mainly because PRE is a totally independent 

module. The extension of the correlated normal model to the correlated non-

normal model is based on a methodology developed for the PSAM project [2]. 

The procedure is more involved and requires additional input and subroutines 

in the PRE and FEM modules. During the last year, several strategies, 

including the use of the NESSUS/EXPERT, have been investigated. The final 

structure has been defined and will be implemented in the next year code. 

Let [X] be a vector of correlated, non-normal variables. The input of 

the PRE module will be modified to include several distributional types 

(lognormal, Weibull, etc.). A subroutine will be added to the PRE module to 

transform [X] to [Y] using a transformation [2) abbreviated as 

X	 f(y)	 (3.6) 

where x and y are the elements of [X) and [Y], respectively. An "equivalent" 

covariance matrix for [Y] will be generated and then used to generate M. 
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In the FEM module, for a perturbation in z (element of [Z]), [Y] is 

computed using (3.5). An additional subroutine will be added to transform 1 

to X using (3.6). 

3.6 ?JESSUS Probabilistic Solution Iteration Alorithms 

The basic probabilistic analysis algorithm for.the NESSUS has been 

developed [2] and validated using a number of problems (Section 6.0). For 

constructing the entire cumulative distribution function (CDF), the algorithm 

has proven to be effective. However, the current procedure is not 

satisfactory if the analystsneed only one or a few points, on the ODE curve. 

To optimize the iteration procedure, two algorithms, one for specified 

probability levels, and the other for specified response levels, have been 

formulated to be used in the PFEM module. The first algorithm (for user-

specified probability level) is illustrated in Figure 3.2 using validation 

Case 3 (see Section 6.0 - beam natural frequency). The procedure is as 

follows: 

(a) Select a probability level. 

(b) Compute the most probable point using the MVFO method. 

(c) Recompute the response at the most probable point. (Note: the solution 
is called the advanced MVFO, or AMVFO solution) 

(d) Conduct NESSUS perturbation around the most probable point. (Iteration 
around the most probable point) 

(e) Go to (b) and repeat the process until response value converges. 

To implement the above procedure, the NESSUS/FPI code has been modified 

to solve the above step (b) for any user-specified probability level. The 

entire solution requires the PEEM module to interface the FPI and the FEM 

modules. It is expected that the solution should converge in a fast rate. In 

the present example, an accurate solution is obtained with the AMVFO method, 

i.e., no iteration is required. 

The second algorithm (for user-specified response level) is illustrated 

in Figure 3.3 using the same validation case. The procedure is somewhat 

complicated but is hi ghly efficient in minimizing the NESSUS/FEM 

computations. The procedure is as follows: 

(a) Using the MVFO method, construct CDF curve using the NESSUS/F9I code to 
get the intercept and the slope at the 501, probability level. 
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(b) Select a response value (e.g., frequency	 320 Hz). 

(c) Compute the corresponding point on the MVFO solution curve (i.e., point i 

in Figure 3.3) and compute the most probable point using the MVFO method. 

(d) Recompute the response at the most probable point (i.e.. locate point 2 

in Fi gure 3.3). 

(e) Use point 2 and the information from step (a) to fit a quadratic curve. 
Use this curve to predict the probability level at the specified response 

level (i.e., locate point 3 in Figure 3.3) 

(f) Compute the corresponding MVFO response for point 3 (i.e., find point 14 
in Figure 3.3). 

(g) Compute the most probable point at point 14 and use this point as a 

starting point for iteration. 

(h) Start iterations about target response value. Iteration stops when the 
probability level converges. 

The implementation of the above procedure requires the use of the FFEM 

module to integrate EPI and FEM modules. Because of the quadratic curve, 

fitting scheme, it is expected that the solution should converge quickly. In 

the present example, the curve-fitting solution point (point 3) falls almost 

exactly on the AMVFO curve indicating the effectiveness of the quadratic 

fit. Note that point 3 in Figure 3.3 requires only mean-perturbation and an 

additional FEM deterministic solution. 

3.7 Confidence (Error) Bounds Estithatiori 

The NESSUS probability estimation algorithm described in Section 3.5 has 

assumed that the statistical distributions of the random variables are 

known. When the distributions are not certain because of the limited samples, 

the PSAM approach is to model the distribution parameters (mean, rn, and 

standard deviation, s) as random variables, and then establish the 

distribution of the response CDF for specified response values. [2] 

Consider an input random variable X. m and s are modeled as normally 

distributed and lognormally distributed variables, respectively. Given a


	

sample with size n, the COVs (coefficient of var i ation	 standard 

deviation/mean) for m and s are [2]: 

-.	 Cm	 C.1 // n	 (3.7) 

C 5	 1// 2 (n-I)
	

(3.8) 
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Where C. is the COy of the inouc. random variable X, C and C_ .are the 

COVs of m and s, respectively. 

The NESSUS/FPI code has an option to compute confidence bounds. The 

extra inout are C and C_ for each X. The output are the uDDer and lower 
m 

bounds that contain 90 and 951, of the probability. The method for computing 

the bounds is a combination of the FF1 method and the Monte Carlo 

simulation. More specifically, the response CDF (now becomes a random 

variable) is computed using FF1 method for every randomly generated 	 ands 

sets (2).	 - 

A validation problem was solved using validation •case 5 - Rotating Beam 

First Modal Frequency (see Section 6.0). The COV data are listed in Table 3.1 

where n	 20 was assumed for all five input variables. Figure 3.4 shows 

solutions at three frequencies using the AMVFO method. 

Table 3.1 

Data for Confidence Bounds Example 
(n20; simulation sample size 	 5,000) 

X .	 C Cm Cs 

Young's Modulus 0.10 0.02236 0.1622 

Length 0.05 0.01118 0.1622 

Thickness 0.05 0.01118 0.1622 

Width 0.05 0.01118 0.1622 

Density 0.05 0.01118 0.1622
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4.0 NESSUS/EXPERT.SYSTEM CODE DEVELOPMENT 

4.1. Sunirnary 

4.1.1. Change of Approach 

As stated in last year's annual report, the type of knowledge that 

must be embodied in NESSUS/EXPERT fits, in a fairly straightforward manner, 

the production rule knowledge representation technique. This is convenient. 

since most expert system building tools support this type of knowledge 

representation scheme. The main problem, at the start of this effort, was the 

lack of such tools that could integrate/communicate extensively with a system 

outside of its own environment. NESSUS/EXPERT requires integration with 

FORTRAN, so some time was spent searching for an expert system building tool 

written in FORTRAN. Consideration was even given to developing one for this 

project. However, due .to the limitations of standard FORTRAN-77, especially 

the lack of recursion, the undertaking would not be trivial if a truly useful 

tool was to be developed. Thus, the tool called OPS5 was selected because of 

its ability to at least access. the Lisp environment, and because it ran on a 

DEC VAX.

Near the end of the 1986 calendar year, DEC began to market a 

version of OPS5 written in Bliss that could access the non-Lisp environments 

on the VAX (including FORTRAN). Since that time, vendors have progressed 

towards offering some tools that can access non-Lisp environments, mainly 

because the tool is not written in Lisp, but a more conventional prograimiLng 

language - usually C. One such tool is CLIPS. 

As a result of the emergence of such tools, some time at the 

beginning of the 1987 calendar year was spent analyzing the effects of 

changing tools in the middle of the project. A port from the public domain 

version of OPS5 to the DEC OPS5 was made so that the interface to FORTRAN 

could be assessed. At the same time, a re-assessment of NESSUS/EXPERT was 

made and its functionality was divided into areas that should use rule-based 

vs. FORTRAN-based methods of implementation. The division was based not only 

on required functionality, but also on efficiency issues with the result being 

that the rule-based portion would perform all of the higher-level decision 

making and consistency checking between keywords while FORTRAN would do all of 

the lower-level checking required on the parameters and data associated with a 

single keyword.
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Such a division of capabilities required an extensive ability to 

pass information back and forth between the rule-based portion of the system 

and the FORTRAN code. This amount of integration was not handled easily or 

efficiently in DEC OPS5, so CLIPS was examined more closely. 

At the same time, the flow of control and menu interface 

implemented in NESSTJS/EXPERT were examined in detail to determine their 

validity and appropriateness. As a result of this analysis, it was decided 

that certain improvements could be made. The main improvement required some 

redesign of how the menus worked and what choices should show up on them. 

Due to the fact that NESSUS/EXPERT was undergoing a major change 

in design, that CLIPS is public domain, portable, and readily accessible from 

NASA, and that CLIPS could fairly easily and efficiently handle the 

integration issues, it was decided in March 1987 to reimpiement NESSUS/EXPERT 

in CLIPS and FORTRAN. .Though this design philosophy has required an extensive 

amount of FORTRAN coding, thus slowing development considerably, it has 

created a highly modular, efficient, and robust user interface to the NESSUS 

code.

14.1.2 The CLIPS Language 

CLIPS is a production rule-based, forward chaining, expert system 

building tool written in C by a group of individuals at Johnson Space Center 

[ 1 ]. It was developed to meet the needs of systems like NESSUS/EXPERT where 

speed and integration issues are key to the success of the system. It is the 

only tool we are aware of that can so completely integrate with other 

programming environments, including FORTRAN - the programming environment of 

interest in this effort. 

In many ways, CLIPS resembles the expert system building tool used 

previously in this effort, OPSS. Both use production rules (IF-THEN 

statements) as their primary means of knowledge representation. Both are 

forward chaining. That is, they start by gathering data and then make 

inferences based on this data rather than starting with an inference and 

•	 trying to find data about the problem that will support that inference. They 

•	 both use the Rete algorithm for efficient encoding and searching of the 

production rules in the knowledge base. 

In other ways CLIPS differs from OPS5, both in power and 

functionality. CLIPS provides a much less powerful way of representing data 

about the domain. It works simply on pattern matching sequences while OPS5 
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has an actual, though limited, frame representation capability. CLIPS 

performs conflict resolution using programmer-defined salience, factors while 

OPS5 provides a very nice, 'implicit method for doing this. On the other hand, 

CLIPS allows a means of completely 'integrating the FORTRAN code with the CLIPS 

rules. In the end. this functional capability out-weighed the disadvantages 

with respect to power. 

14.1.3 The CLIPS/FORTRAN Interface' 

As stated earlier, the division of work between CLIPS and FORTRAN 

resulted in separating the higher-level decisions and checks between sets of 

keywords from the lower-level checks and verifications of parameters and data 

within a single keyword. CLIPS rules were to be used on the former while 

FORTRAN routines were to be used to implement the latter. To properly handle 

• each keyword, NESSUS/EXPERT requires a set of FORTRAN routines, C-interface 

routines, and CLIPS rules. 

The integration of CLIPS. and FORTRAN can be implemented with 

either CLIPS or FORTRAN as the "main" program. Development of the system so 

far has been done with CLIPS as the main program. This arrangement allows for 

CLIPS to be run in interactive mode, thus providing easier access to CLIPS 

debugg ing tools. The main program can easily be changed to FORTRAN if it 

becomes desirable to do so. Control and communication between CLIPS and 

FORTRAN is implemented via direct-calls to FORTRAN routines or calls to C 

interface routines which, in turn, invoke the desired FORTRAN routine. The 

latter is necessary only if parameters are to be passed from CLIPS to 

FORTRAN. The process of passing parameters to FORTRAN from CLIPS requires the 

following steps: 

1. A C interface routine must be written for each FORTRAN routine that is 
called with parameters from CLIPS. These C interface routines are 
simple, the length varying according to the number of parameters being 
passed. They convert the parameters passed from CLIPS into the C format 
and then invoke the desired FORTRAN routine. 

2. A line of code must be added to a CLIPS routine called USRFUNCS for each 
C and FORTRAN function called. This line is simply a call to a function 
called DEFINEFUNCTION with the function name as one of its parameters. 

3. To receive the parameters passed from CLIPS into the FORTRAN routine, the 
parameters must be converted to FORTRAN data types via a call to a CLIPS 
function called LOADC. .
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-	 -	 - 

To create objects in the CLIPS world from within a FORTRAN routine, (i.e., 

passing parameters from FORTRAN back to CLIPS) the data must first be 

converted to a CLIPS data type and then given to CLIPS. This is accomplished 

via calls to two CLIPS functions, STOREC and ASSERT. 

4.1.3.1 The FORTRAN Side of the Interface 

FORTRAN is used to read-in data files or information 

provided by the user interactively from the keyboard. Based on the keyword 

that the data is associated with, the FORTRAN routines check for the 

appropriate number and type bf.data in each position on each line. Much of 

this knowledge was acquired from the MHOST Users' Manual {2]. Approximately 

seven FORTRAN routines must be written for each keyword. 

For example, suppose that the user wishes to input data 

associated with the keyword *ELEMENTS. A top-level FORTRAN routine is used to 

initiate getting the data, either from a file or directly from the user. 

Based on where the data is coming from, one of three other routines is then 

used to actually read-in the data and check it for consistency with respect to 

the requirements of the keyword in question. Little checking is required for 

system file input because it is assumed to be correct, having been generated 

by NESSUS/EXPERT at some previous point. However, user file in put or manual 

entry would require certain verifications. In the case of *ELEMENTS, checks 

should be made to ensure that the first parameter is a legal element type, and 

that the subsequent lines of data start with an integer element number 

followed by the correct number of node numbers for that element type. 

Formatting restrictions, such as the maximum number of nodes that can occur on 

a single line (15 in the case of *ELEMENTS) is not checked for here. Rather, 

the FORTRAN routine that uses this data to create the data deck contains such 

knowledge.

Salient features of the data are then asserted by FORTRAN 

into the CLIPS environment via an assert routine. Other routines are needed 

to get information back from CLIPS, to invoke a help file related to the use 

of the keyword, and to write the data to a temporary system file 

and to a NESSUS-readable data deck. 

Thus, FORTRAN is used to do all of the complex type 

checking on all data entered into the system related to a single keyword. 

CLIPS is not capable of doing certain kinds of type checking, such as integer 

vs. real, and is much slower at readin g large amounts of data into memory. 
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Though coding such routines in FORTRAN requires more time and effort, once 

coded the resulting routines are more efficient and effective in this 

situation.

4.1.3.2 The CLIPS Side of the Interface 

Though FORTRAN reads all of the data into memory, none of 

this information is available to CLIPS without an explicit assertion by the 

FORTRAN code into the CLIPS environment and a set of CLIPS rules to accept the 

assertions. Thus, for each keyword there is a set of CLIPS rules that takes 

the data in from FORTRAN and-enters the values into CLIPS data structures. 

This helps CLIPS keep track of what NESSUS/EXPERT does and does not know about 

the current problem so far. It also provides the system with the needed 

information to continue guiding the session (discussed in Section 4L1.14). 

Thus, for example, when data about the element types 

through *ELEMENTS are r.ead-in by FORTRAN, FORTRAN asserts into CLIPS only the 

total number of nodes for each element type. CLIPS then takes this data and 

stores it for use during consistency checkin g between keywords. Other 

information about the elements may need to be brought into CLIPS at a later 

time to support certain consistency checking. This will depend on the type of 

consistency checking that is required and will have to be determined on a 

case-by-case basis. The goal is to minimize the amount of data that must be 

passed into CLIPS since if most of the data ends up getting passed, then all 

of it might as well be read-in, thus slowing the system down. 

4.1.4 NESSUS/FEM Interface 

The NESSUS/FEM module is a complex finite element code geared 

toward solving problems with probabilistic data uncertainties. The code uses 

a newly developed, mixed type formulation, resulting in a new, different 

computational technology. In order to make this new technology accessible to 

the users unfamiliar with the code and its theoretical foundations, NESSUS/FEM 

must be interfaced with an additional code. The role of this new code will be 

to simplify the use of NESSUS/FEM and-to accumulate knowledge on the 

appropriate usage of the code for various types of problems. 

The NESSUS/EXPERT module will serve as an interface to NESSUS/FEM 

for deterministic analysis. In the complete probabilistic analysis conducted 

with the aid of NESSUS/FPI,a new module (PFEM) will be used. Its role will 

be to carry out the algorithms of the probabilistic finite element method and 

to assure proper information exchange between NESSUS/FEM and NESSUS/FPI. The 
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PFEM module will be discussed in Section 4.1.6. The new design concept of 

NESStJS/EXPERT is described in the following subsections. 

• 41.4L1 The New Design Concept 

•

	

	 The new design concept for the NESSUS/EXPERT system 

centers around the role of problem database and uses a structured 

interrogative-interactive mode of operation. The problem database stores all 

the information about structural problems to be solved, finite element model 

to be used, random variables to be accounted for, as well as 'the logistical 

information about the status of the problem solution process, i.e., if the. 

basic finite element model has been defined, or if any NESSUS/FEM analyses 

have been run, etc. The information saved in a form of various status 

indicators, switches and options in the problem database lets .JESSUS/EXPERT 

guide the system user through the solution process by presenting him/with menu 

selections suitable for' a given stage of solution process. For example, 

probabilistic descript . of a problem is not necessary until the determinsitc 

part of a problem is completed, consequently, the, user is not asked 'to provide 

probabilistic problem description until it is really needed. 

The advantage of this approach lies in the systematic, 

orderly way the problem is solved. This leads to simplifications in the way. 

the user has to interact with the system (he/she always faces menus that are 

relevant to the stage of solution at hand, not those that have already been 

used or those that are not important yet. The new approach markedly 

simplifies the process of utilization of accumulated knowledge. The 

information about suitable problem dependent option and parameter selections 

(determined by accumulated experience) can be conveyed to the user at the most 

appropriate time, and it can be triggered only as necessary, without 

overloading the user with excess information. 

Also, this step-like approach simplifies internal 

operations of the system, like model consistency checking, input of user data 

or preparation of NESSUS/FEM input decks. In this new structured 

interrogative-interactive approach, NESSUS/EXPERT is always in better control 

of operations, it does not need to be directed as to what to do next or what 

data to expect, but it governs the solution process, with the attendant 

decrease of code complexity and the decrease of need for all encompassing 

consistency data, parameter and option checking of totally unstructured 

'interaction operation, relying only on user input for control o f the solution. 
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• 4L1.4.2 An Examp le Interaction 

The prototype version of NESSUS/EXPERT does not have any 

finite element'generation facility. It is assumed that the basic model is 

normally generated using one of many available general purpose finite element 

preprocessors (PATRAN, MENTAT, GIFTS, etc.) and thegorups of data such as 

nodal coordinates, element connectivities, boundary conditions, etc., are 

stored in separate ASCII files. The proess of building NESSUS/FEM input deck 

using NESSUS/EXPERT then takes on a form of the following dialog betweent he 

suer and the program. 	 - 

The first choice presented to the user by NESSUS/EXPERT 

is that of starting anew job or resuming oneof the existing ones, whose names 

are listed by the system. If a new job is selected, the user is prompted for 

a job name and then for the input of the basic model. The basic model 

definition can be input by providing names of files containing descriptions of 

nodal coordinates, element connectivities, etc., or by specifying those 

quantities explicitly. This part of the process is performed in interrogative 

mode, the system asking specific question and the user providing explicit 

information (e.g., file name with coordiriatesor a string of nodal 

coordinates, etc.). The structural analysis type to be performed is input as 

part of the basic model description. 

As soon as the basic model is defined, the user may input 

other elements of the problem description, such as material data, loadings, 

additional elements of the model depending on analysis type, solution control 

parameters, etc. The mode of the input will be identical as for basic model 

data. For every category of the input data, the user will be interrogated 

only for information relevant for the problem at hand. Also, certain 

guidelines regarding the parameter selection will be presented to the user. 

The help information will be available onmost menu entries. The "exit/return 

to main menu" capability will exist in all themenus of the system, allowing, 

the user for an orderly completion of the interactive N,ESSUS/EXPERT session. 

The status of the computational model preparation is recorded in the problem 

database, giving the user a possibility to resume operation from the same 

stage of the process, at which it was stopped earlier. 

Once the full computational model is defined, the 

NESSUS/FEM input deck is submitted for execution (in batch mode) and the 

session is completed. The results of analysis are accessible to NESSUS/EXPERT 
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through PDB file. Upon inspection of the deterministic model results, the 

user can introduce modifications to the model (for example, to improve 

accuracy, correct errors, etc.) . or he may proceed to define the probabiiis;ic 

part of the model, and resubmit the modified deck. The process can be 

repeated until the user is satisfied with the results of deterministic and 

perturbation analyses, whereupon a full probabilistic analysis using PEEM 

module may be initiated. 

4.1.5. Geometr y Perturbation Module 

The geometry perturbation module has been developed for generation 

of perturbations of node coordinates for a typical turbine blade finite 

element model. The module is oriented for processing turbine blade models 

built with NESSUS 8-noded solid elements. 

4.1.5.1 Perturbation Degrees of Freedom 

The perturbation degrees of freedom have been identified 

based on the vast practical experience of Rocketdyne in the area of SSME 

turbine blade manufacturing.	 The identified practically important degrees of


freedom are: volume changes (Figure 4.1) translations, and rotations of parts 

of a blade. All the above perturbation degrees of freedom have been 

implemented in the module. 

The operation of volume change is performed in the global 

coordinate system (the coordinate system of the finite element model). 

Translations and rotations can be performed either in the global coordinate 

system or in any Cartesian local coordinate system specified by the user. 

Changes in nodal coordinates, resulting from operations 

performed upon a model, are accumulated until the user decides to cancel 

them. This, combined with the capability of storing coordinates of a 

perturbed model at any time of processing, gives the user maximum flexibility 

in creating different perturbed versions of an original model. 

4.1.5.2 Numerical Implementation 

Perturbations of a finite element model are generated in 

three major stages: 

1.	 The input of coordinates and corinectivities of a model from NESSUS deck 
and the input of model sub:'egiori definition from the user. The data from 
the NESSUS input deck are currently read in a fixed format (upon 
integration with NESSUS'EXPET the data will be retrieved from the 
problem database). The mcci e l. subregion definition to be provided by the 

user consists of the number	 reors in the model, their names, and the


first and last element nues fcr ever y region. 
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2. The preparation of the auxiliary geometrical database with such 
information as node numbers of every region of the model, numbers of 
surface nodes and walls, and numbers of surface walls attached to every 
surface node. The operation starts with selecting numbers of nodes 
associated with every region. Next, the surface walls of elements are 
identified for the entire model. It is done by checking if a wall 
belongs to more than one element. If the number of elements containing 
the wall is equal to one, it means that the wall lies on surface.' 

Later, all surface walls are sorted by the numbers of regions to which 
they belong. At last, the number. of surface walls attached to every 

surface node is calculated. 

3. The user data input and the execution of requested operations (volume 
change, translation, rotation, erase changes, save changes). 

Actual changes in nodal coordinates are calculated at this stage. 

Despite the significant amount of computations required for some of the 

perturbations (volume change), the response time of the module is still 

in a reasonable range of up to few seconds, even for the models of large 

scale (1500 elements, 2500 nodes). This good computational efficiency 

has been achieved by a careful design of the auxiliary database and the 

use of such entities as element walls and edges in the surface 

identification and normal calculation algorithms. 

The concept of dynamic storage dimensioning is used in the 

entire code, making it easy for the analyst to change maximum dimensions 

allowed inside the code, (it requires changing of appropriate parameters in 

the main module of the code).	 The entire code has been written in FORTRAN 

77.

4.1.5.3 Mode of Operation 

The code is designed to be run interactively. All the 

necessary information about required input is given to the user through 

prompts.

The volume change operation requires the following input from 

the user: 

1. region number to which the operation is applied, 

2. amount of volume change, measured by the length of a vector normal to the 
blade surface (+ volume increase, 	 volume decrease), 

3. coordinates of two points defining an auxiliary axis (Figure 14.2),used 
for defining the surfaces subjected to coordinate changes. 
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4.	 the value of the minimum angle allowed between the auxiliary axis and any 
of the element normals, (if the angle between an element normal and the 
the axis is smaller then the minimum angle, then the nodes of the element 
are not allowed to move in the normal direction). 

The operation of translation requires the following input 

from the user: 

1.	 region number to which the operation is applied, 

2.	 coordinate system in which the operation is performed (if a local 
coordinate system is selected then the coordinates of three points 
defining the system are-to be input), 

3.	 the values of translations in X, Y, and Z directions of the selected 
coordinate system.  

The operation of rotation requires the following input from 

the user:	 - 

1. reg ion number to which the operation is applied, 

2. coordinate system in which the operation is performed (if a local 
coordinate system is selected then the coordinates of three points 
defining the system are to be input, 

3	 the axis number of the coordinate system, about which the rotation is to 
be performed, 

14	 the value of the rotation angle (in degrees) 

4L1.6	 NESSUS/PFEM Module 

The NESSUS/PFEM module has been designed as a batch mode 

program for the Probabilistic Finite Element Method (PFEM). The principal 

function of the program is to perform complete probabilistic analysis of the 

problem using both the NESSUS/FEM and the NESSUS/FPI modules. The function is 

accomplished by repeated alternate executions of both modules, accounting for. 

various types of probabilistic analysis and/or possible numerical problems 

with perturbation analysis. - The batch mode of operation has been selected 

because of long run times of NESSUS/EXE module for computational models of 

practical size. The input data for the NESSUS/PFEM module is prepared during 

an interactive session with NESSUS/EXPERT. 

Detailed descriptionsof the NESSUS/PFEM module follow. 

4.1.6.1	 TyDes of Probabilistic Analvsi 

There are two basic types of probabilistic analysis available 

in the PFEM module. The first one, named global, evaluates the global 
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response of a performance function (stress at a point, at various levels of 

• probability). In other words, it gives an overall variation of the 

probability versus the performance function levels, over the range of 

practically attainable performanc function values. 

The second type of analysis is named local, since it is 

concerned with more "local" behavior of the performance function. There are 

two kinds of local probabilistic analysis: where the performance function 

level is calculated for a given probaility level, and where the probability 

level is calculated for a specified value of performance function. 

The global analysis is performed in two basic steps. The 

first step consists of. global mean-value-first-order (MVFO) analysis using the 

NESSUS/FPI code and the FEM perturbation data. In this step, design point 

coordinates are calculated at 9 -13 probability levels covering the range of 

practical interest (0.00001 < p < 0.99999). In the second step,, the 

NESStJS/FEM code is used to calculate the performance function values for 

design point coordinates calculated in the first step. It is assumed that the 

probability levels corresponding to design points are accurate and the 

performance function values calculated in the second step constitute a final 

solution (Figure 4.3). No iteration perturbations are performed at the final 

probability performance funciton levels. Practical experience showed that the 

improvement of the solution is small in such situations so that the more 

accurate, but also more expensive, iterative approach is used only for local 

analyses.

The local analysis for specified probability level utilizes 

the newly developed FPI code capability of calculation of performance function 

and design point values for a given probability value. The algorithm for this 

type of analysis starts with MFVO EPI run to determine the design point 

coordinates and performance function value for specified probability level. 

The subsequent.recomputatiOns of performance function and perturbation 

analysis around the design point in NESSUS/FEM is used to iterate for accurate 

value of performance function (Figure 

•

	

	 The local analysis for specified performance function value 

is more complex. The first step of the algorithm evaluates a crude 

-•	 approximation to the probability level and design point coordinates 

corresponding to specified performance function value, using the MVFO FPI 

run. A more refined approximation to the probability level and design point 
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coordinates is obtained by recalculating the performance function (NESSUS/FEM) 

at  previous level of probability and using quadratic interpolation. Once a 

good approximation to the design point coordinates is found, iterations using 

perturbation (FEM) data about that point are used to locate the final solution 

(Figure 4.5).

In the prototype version of the PFEM module only the global 

analysis is currently implemented. 

4.1.6.2 Transfer of Information Between FEM and FF1 Modules 

There isa-significant transfer of information between the 

FEM and FF1 modules of NESSUS in the process of probailistic analysis. The 

NESSUS/FEM module provides the values of performance function: stress, strain, 

displacement frequency, etc., for specified fixed values of random variables 

( geometry, material, loading parameters). Also, the FEM module provides 

information about success or lack thereof in the solution process, which 

information is later used in appropriate corrective actions. The NESSUS/FPI 

module provides the values of design point coordinates (values of random 

variables) and their corresponding probability levels, along with their 

estimated performance function values. 

The above information is transferred between the modules in 

form of files. The output from NESSUS/FEM is stored in the perturbation 

database (file PDB). The NESSUS/FPI output is passed to the PFEM module 

executive through a coded file with extension FPO. All of the files passed 

within PFEM have a common first part of filename and are treated as a part of 

Problem Database. 

4.1.6.3 Interaction with Database 

The PFEM module is designed in such a fashion that it 

receives very little data directly from the NESSUS/EXPERT code. The data 

passed to PFEM is limited to a few control parameters, defining type of 

anlaysis, identifying random variables and performance functions, etc. The 

bulk of input to PFEM is contained in the Problem Database. The information 

stored here is used to assemble both NESSUS/FEM and NESSUS/FPI input decks. 

On the other hand, all the intermediate problem data used by PFEM, as well as 

the final results, are also stored in the Problem Database. This arrangement 

makes it possible for NESSUS/EXPERT to access the status and the results of 

the analysis and present them to the user. 
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The interaction of the PEEM module with Problem Database is 

very extensive. The complete description of the finite element model along 

with random variable definitions are used in PFEM to build various perturbed 

variable models for NESSUS/FEM. Results of the FPI analyses, in terms of 

design point coordinats (and corresponding probability levels) are stored in 

Problem Database for later reuse in more accurate estimates of performance 

function values. Generally, all the information obtained in the course of 

analysis that is important from the point of view of further analysis 

(essential intermediate results and experience gathering (computational 

process efficiency measures), is saved in the Problem Database for later 

access. 

14.1.7 NESSUS/FPI Interface 

Nothing has been done on this portion of NESSUS/EXPERT to date. 

14.2 Current Efforts on NESSUS/EXPERT 

At the end of FY87, the initial NESSUS/FEM interface in NESSUS/EXPERT was 

nearing completion.	 Another month of effort will result in a prototype 

system ready for evaluation. The system will know about approximately 60 

keywords used to run NESSUS/FEM and will have a small amount of knowledge 

acquired through the experience of running NESSUS/FEM. 	 The experiential 

knowledge will grow for the duration of the project. This will involve 

maintaining records or experience gained from using NESSUS/FEM and embodying 

as much of the experience as possible into CLIPS rules. 

After completion of this initial NESSUS/EXPERT for deterministic 

analysis, efforts will turn to the development of the interface for the 

probabilistic portion. A basic design concept should be agreed upon before 

implementation begins. The plan is to have a completed version of the 

probabilistic portion of NESSUS/EXPERT during the third quarter of FY88. The 

system will then be distributed for evaluation as will be done with the 

deterministic portion.

U 
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5.0 NESSUS BOUNDARY ELEMENT CODE DEVELOPMENT 

5.1 Summary 

This section describes -the development of a boundary element method (BEM) 

formulation for probabilistic stress analysis. The BEM contrasts with domain 

methods such as finite element method for linear problems by the fact that the 

governing integral equations (called the Boundary Integral Equation or BIE) 

are expressed over the boundary of the body [1-3]. The essential feature of 

the boundary element method is the availability of singular (fundamental) 

solutions of the governing eqilibrii.im equation. In principle, the 

probabilistic boundary element formulation requires the solution of stochastic 

equilibrium equations,-which does not appear to be available for a general 

case. The approach used herein is to extract the probabilistic results from 

the deterministic solution. 

For problems with body forces such as thermoelastic and transient 

loading problems, a direct transformation of the equilibrium equations to 

integral equations over the surface of the body is generally not possible. The 

inhomogeneous part of the governing equations will appear as a particular 

integral over the domain of the body. Further, to obtain the probabilistic 

solutions, the deterministic problem is solved repeatedly for each 

perturbation of random variable. Therefore, efficient deterministic BEM 

formulations are sought for the current analysis. One of the major features of 

the current analysis is that the domain integrals are transformed through 

certain approximations such that the resulting BIE is expressed over the 

boundary of the domain only. 

Further, the probabilistic results are obtained from the deterministic 

solutions through perturbation of random variables. Efficient algorithms for 

the determination of perturbed solution variables are also discussed. 

5.2 Probablistic BEM Formulation 

The governing equilibrium equation can be transformed through the use of 

the fundamental solution to integral equations over the surface for	 - 

homogeneous, elastic, isotropic bodies in the absence of body forces. For 

nonlinear and general body force problems, such a surfac transformation, in 

general; is not possible. The resulting integral equation will consist of a 

particular integral over the domain of nonlinearity or inhomogeneity. 
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o	 1	 a	 a 

	

E 11	 t ( U11+U1) 

and

U=LL1—U

(5.6) 

(5.7) 

5.2.1 Governing E quations	 - 

Consider the equilibrium of an element of a body under 

therrnoelastic transient loading conditions. Using D'Aleinbert's principle, the 

equilibrium equation can be expressed as 

	

0
	

(5.1) 

where, a s,, is the stress tensor, b,, is the body forces vector, u, is the 
displacement vector, p, is the density, and superior dot indicates derivative 

with respect to time. The. strsses are related to strains through the 

thermoelastic constitutive relationship [4] as 

c ii = D Jkl(E, — EL)	 (5.2) 

where D,,,, is the (temperature dependent) elastic constitutive matrix given in 

terms of shear modulus, 4L, and Poisson's ratio, Y, as 

2vp	 (5.3) 

6jj6kl

 

_+_ 1j (oIk ji + ojkokz) 
1 -2y 

The total strain, e,, and thermal strain, e, are given by 

e 11 =	 + a),	
(5.4) 

E=ao11e	
(5.5) 

Ij 

where, a, is the temperature dependent coefficient of thermal expansion, and, 

o, is the change in temperature from unstressed state. 

Let us define &z such that

The stress-strain relationship can then be written as 

or 
11

= D ijki Ic • I

	
(5.8) 
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Consider an auxiliary field with homogeneous material properties , and 

corresponding constitutive matrix fl . The fundamental solution, u', due to 

unit point force, e, for the field is well known and is evaluated from 

D I/kt u k Ii = ã,	
(5.9) 

where a is the Dirac delta. Let us define an 'initial stress', a, , as 

Q. i 
= h_	 -	 ( 5.10) 

-	 i	 'I	 J 

where,

Or li = 

Then equation (5.8) can be expressed as 

o J = 

and u is given by 

a 1 =

(5.11) 

(5.12) 

(5.13) 

(5.14) 

Using the relationship (5.12), the governing equilibrium equation can be 

expressed as 

'jk1k.lJ	 -bpü 1	 (5.15) 

Let us define a stress field , corresponding to displacement field u that 

satisfies the inertial part of stresses. i.e.

(5.16) 
ii i 

and

=	 k.1
	 (5.17) 

The governing equilibrium equation can then be expressed as

(5.18) 
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where,

(5.19) 

(5.20) 

5.2.2 BIE Formulation 

The classical direct boundary integral equation is obtained-by 

applying divergence theorem to the product of the equilibrium equation (5.18) 

and uf within the domain (2 as 

J aìj.j.LLdn=_fbi.udfl	
(5.21) 

which reduces to 

+ f T11dr -
	

= ibjUjjdP	
(5.22)

 U iJ idFr	 fr
where r is the surface of the domain, U, and T 1 are displacement and traction 

point force solutions, 1, is given by

(5.23) 

tr=an	
(5.24) 

1	
-  

and n, is the normal vectol at the surface. 

The above integral equation (5.22) still contains the domain 

integral of the body force vector. Other than thermal, inertial and 

inhomogeneity body forces, which have been taken into account already in the 

analysis, the only other body force considered in the present analysis is the 

• centrifugal loading. The centrifugal body force again can be treated by the 

procedure described earlier. However, the domain integral due to body forces 

with potential such as the centrifugal load can be converted to surface 

integrals as described in the next section. 

70



5.2.3 Body Force with Potential 

The domain integral due to body forces is given by 

C	 (5.25) 
B. = J 

U1b1dfl 

The body force vector due to the rotation of the body about an axis through 

the origin of coordinates with an angular velocity w, can be expressed as 

bi=RimXm	 (5.26) 

where x,, is any point within the domain, 

R im	 PeijjcWjiczmWi	 (5.27) 

and a.,, is the permutation tensor. 

Further, the fundamental solution can be expressed in terms of Galerkin 

vector, C,,. as

(5.28) 
U li = G ij . kk - 

2(1- v)Cik.ki	

(5.29) 1 
C =	 O1r


' 8rrp 

where r is the distance between source and field points. 

By substituting equations (5.26) and (5.28) into (5.29) and integrating by 

parts, we have 

B= 
fr 

PidF
	 (5.30) 

where P, is given in Appendix D (equation D-l). The transformation procedure 

described in this section follows previous works given in [5-7]. 

5.2.4 Numerical Inmiementation 

The boundary integral equation corresponding to (5.22) at the 

surface can be derived by treating the resulting singular integrals 

appropriately [1-3]. To solve these equations, the body is divided into 

arbitrary boundary elements over which the geometry as well as field variables 

are approximated by interpolation functions. Upon the evaluation of the 

discretized integrals, the equations can be assembled to form a system of 

equations, expressed in matrix form as 
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(5.31) 

or

(5.32) 

where

(5.33) 

fotd	 (5.34) 
i	 I	 - 

The solution to the above equations requires knowledge of : and :. These 

terms are evaluated by solving previously defined equations as described in 

the following section. 

5.3 Bodv Force Interpolation A1orithm 

As described in the previous section, the body forces due to thermal and 

transient loadings are transformed to the surface through particular solutions 

of the displacement fields of the inhomogeneous equations. The success of the 

procedure depends on the feasibility of obtaining particular solutions to the 

governing equations. 

5.3.1 Thermal Body Force Analysis 

A particular solution to u can be determined by the solutions of 

equations (5.5) and (5.6). i.e., 

(LL.1+ 4) =
	 (5.35) 

Since the solution requires the knowledge of the temperature 

field, an assumption is made regarding the temperature distribution. A 

convenient way is to represent the temperature field by a function of the form 

(P	 a(P)e(P) = K(?,Qm)(Qm)	 (5.36) 

where K(P.Q) is anassurned function, o'(Q.) is an unknown coefficient associated 

with point Q,, and summation is implied over subscript m. A solution for the 

displacement is obtained by satisfying equation (5.35) as 

u e (p) o (pQ) e (Q)
	

(5.37) 
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where expressions for K and G7 are given in Appendix D (equations D-2 & D-3). 

The accuracy of the procedure depends on how well the temperature 

field is approximated by equation (5.36). The temperature distribution for the 

problems considered in the current project will have a high thermal gradient 

at the surface of-the body. The global approximation described above may-not 

adequately represent this variation unless a large number of sampling points 

are selected near the surface, which makes the procedure inefficient. One way 

to enhance the procedure is to use a different scheme for the near surface 

temperature analysis. Let the temperature field be decomposed into two parts, 

e=ee 2	 -

	
(5.38) 

where 8111 is a one-dimensional.field varying exponentially normal to the 

surface of the body as	 - 

a9 ' = e°e
	 (5.39) 

In equation (5.39), s is the normal distance (referred to a local coordinate 

system constructed at the boundary point) and, L is the distance over which 

this exponential temperature variation is assumed to occur. A displacement 

field satisfying this conditions can be derived in terms of a displacement 

potential, ;', as

-	 (5.40) 

where v is given in Appendix D (equation D-4). The overall displacement 

solution is then obtained as

(5.41) 

where U ! 21 is obtained from equation (5.35) by replacing 0 by 0_011 

5.3.2 Temoerature Dependent Material Properties Analysis 

The Inhomogeneity arising from temperature dependent material 

• properties may be analyzed by a similar procedure. A displacement solution 

due to material inhornogeneity can be determined from equation (5.14). Assuming 

that a, may be interpolated by a generalized function, the corresponding 

- displacement solution is evaluated as 

c 1 (P) = K(P Q1)P:1(Q,)
	

(5.42) 
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d 
iJk1 U k1j = (A) ,OU	 - (5.44) 

u(P)= i i k ( 'Qm)j(Qm)	
(5.43) 

wherec:,. is given in Appendix D (equation D-5). 

5.3.3 Transient Analysis 

Transient problems may also be analyzed by the above procedure. In 

this report we consider free vibration analysis only and a displacement 

solution can be determined from equations (5.16) and (5.17); i.e. 

where w is the natural frequency. Representing PU, by a generalized function, 

a displacement solution that satisfies the above equation can be determined. 

u(P) = p(P)u 1 (P) = K(P Qm)ør(Qm)

	
(5.45) 

LL(P) = w2c'(.	 'Qm)ø(Qm)

	
(5.46) 

Using kinematic and constitutive relationship, the corresponding traction 

solution can be evaluated as 

t(P) w 2 H(P ",-.
m)j (Q.)

	
(5.47) 

where c',, and H are given in Appendix D (equation D-6 and D-7). A similar 

procedure for problems with constant material density is given in (8,9]. 

5.3.4 Deterministic Solution Algorithm 

The boundary values of displacements and tractions are obtained 

by solving equation (5.32) satisfying prescribed boundary loading. 

Substituting the particular solutions for displacements and tractions we have 

ut-	 (5.48) 

where the unknown coefficients '. . and ' are related to temperature, initial 

stress, and displacement fields by equations (5.36), (5.42), and (5.45). The 

straight forward approach for determining the unknown coefficients is to 

choose Q to coincide with the boundary nodes. Matrices corresponding to these 
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equations can be made square by collocating at the same number of points as 

the boundary nodes. The equations can then be inverted to obtain the following 

relationships: 

^ e	 F96 .49) 

(5.50) 

d.Fdu (5.51)

where E. E , and C are defined in Appendix D (equations D-8, D-9 and D-10). 

The system equation is then reduced to 

.1 = w2(Adx_ d)+ T e e+ TcJ' +b
	

(5.52) 

where is the-vector of unknown boundary displacement and tractions, £ is the 

vector due to applied mechanical loading, t is the vector due to centrifugal 

body forces , and A.	 V. t are obtained from matrix manipulation. 

Mechanical and Centrifugal Loading Solution Algorithm 

For mechanical and rotational loading cases, equation (5.52) can be 

reduced to 

=f+b_	 (5.53) 

and the solution to this equation is straightforward. 

Thermal Loading Solution Algorithm 

For thermal loading, equation (5.52) can be reduced to

(5.54) 

The initial stress in the above equation can be evaluated from 

=Th 'r-	 -	 (5.55) 
O•jj	 —D jIkIJ E kI	 - 

where

-	 - 6	 -	 (5.56) 
- E ki Eki 

The displacement gradient can be obtained from the derivatives of equation 

(5.22). Since the evaluation of displacement gradients requires complete 
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knowledge of boundary displacements and tractions, some form of iterative 

procedure is necessary for coupling the solutions of equations (5.54) and 

(5.55). 

Free Vibration Solution Algorithm 

For free vibration analysis, equation (5.52) is reduced to 

[A_w2iid]x=o
	

(5.57) 

Using eigenvalue extraction routines, the above equation can be solved. 

5.3.5 Perturbation Solution Algorithm 

The boundary element formulation and solution procedures described 

in the previous sections pertain to deterministic systems. The probabilistic 

structural response is determined by applying FPI to the sensitivities of 

response variables. The evaluation of the sensitivities requiresrepeated 

calculation of response parameters due to the perturbation of random 

variables. Since the substantial portion of the computational effort is spent 

for these evaluations, an efficient algorithm is essential for the method to 

be used as a practical solution tool. 

The boundary integral equations derived earlier are for the 

unperturbed system. The system equation (5.52) can be expressed as a function 

of random variables vector X. For quasi-static loading, the perturbed system 
equation can be expressed as 

d(Ax) - df = db+ d(T°e) + d(T'o)
	

(5.58) 

Loading Perturbations 

The randomness of applied mechanical and centrifugal loading will reduce 

equation (5.58) to 

ALIX= L1LLJb
	

(5.59). 

The perturbation solution of the response variable is then obtained by 

solving a system of equations with the same matrix as the one in the 

determined case. In the presence of thermal loading, equation (5.58) is 

reduced to 

-

	

	 AzJx=T°zi6Tc
	 (5.60) 

and equation (5.55) is reduced to
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Ja' = —z1Qj+(g—)zJ
	 (5.61) 

where ji can be determined from the perturbed displacement gradient equation 

corresponding to (5.22). 

Geometry Perturbations 

The system equations corresponding to geometric perturbations can be 

deduced from equation (5.58) as 

x= A L -lw LI	 JT TJa'	
(5.62) 

Since the same matrix as before is solved, the solution can be evaluated 

efficiently, provided df, dt, JA, it', and t, can be computed effectively. 

Material ProDerties Perturbations 

The change in stress due to changes in the material properties can be 

conceived as a form of initial stress (civ). We can define such an initial 

stress as

= (m 1 - Di)1
	 (5.63) 

where D is the constitutive matrix corresponding to the perturbed material 

properties and

(5. 

A system equation can be formed following the procedures described for 

thermal inhomogeneities as 

AxTtmcm	
(5.65) 

The perturbed equation for the material properties can be deduced from 

the above equation as

(5.66) 

where dr may be evaluated from appropriate derivatives of equations (5.22) 
and constitutive equation (5.63). Again, as with the temperature dependent 

material properties solution algorithm, an iterative procedure is necessary. 

For homogeneous bodies, the perturbation algorithm for the material properties 

may be simplified such that neither interior displacement derivative solution 

nor an iterative procedure is necessary.
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5.4 Status and Future Plans 

The effort in the reporting period mostly concerned with the theoretical 

development of a boundary element formulation for probabilistic stress 

analysis. The computer code for general stress analysis including eigenvalue 

analysis was developed from BEST3D code. A limited number of simple test 

problems were run using this code. The computer program is yet to be developed 

for thermal analysis that includes temperature dependent material properties; 

A perturbation solution algorithm is also not incorporated in the computer 
code.

The next year effort will mostly cover the completior of the programming 

of the algorithms discussed so far and to continue the development of BEM 

formulation. For the isotropic deterministic case, the BEN formulation is 

mostly complete. An efficient way to evaluate perturbed eigenvalue extraction 

is yet to be developed. Further, additional investigation is needed for 

efficient geometric perturbation analysis. Some of the analyses may be 

simplified considerably for homogeneous bodies. An investigation into using a 

simplified procedure for some specific cases will be completed during the next 
year.

Only linear problems have been considered in this report. Once the linear 

analysis is completed, the computer code will be validated using a number of 

sample problems. The code will then be included in the NESSUS framework. 

Further, a data base consistent with NESSUS/FEM will be developed for 

subsequent statistical analysis. Interface for NESSUS/EXPERT will also be 

developed. 

Even though the BEN formulation developed here is for isotropic 

materials, the formulation for most part can be used for anisotropic 

materials. However, a closed form solution for the single crystal anisotropic 

material used in this project is not available. To use the algorithm developed 

for the isotropic material to anisotropic case, some form of approximate 

solutions needs to be developed. The next year effort will also focus on such 

development. In addition, approximate nonlinear modeling strategies will be 
investigated.	 ' 

78



6.0 NESSUS CODE VALIDATION STUDIES 

6.1 Overview of Code Validation Efforts 

A plan for validating the MESSUS probabilistic finite element code'was 

included in the PSAM First Year Annual Report (Vol. III, Section 14). -The 

original plan consisted of nine validation problems. During , the last year, 

the number of the problems has increased to fourteen (see Table 6.1) to test 

other capabilities of the MESStJS code. 

Exact solutions, in' terms of probability distributions or the probability 

of ex'ceedance, have been obtained for validation problems numbers 1 to 7, 9 

and 10. NESSUS validations were successfully completed for this problem set 

except for problems 14 and 5. A summary of the validation problems completed 

in FY '87 and the problems to be completed in FY '88 is listed in Table 6.1. 

Note that, except for problem 8, problems to be addressed in the next year are 

those which could not he solved using the NESSUS version 2.0. The recently 

released NESSUS 2.5 version will be capable of solving problems 14 and 5 

(rotating beam and rotating plate). 

The results for the completed validation studies are presented in the 

following sections. More detailed summaries of the validation cases are 

documented in Appendix A using a "standard format." The standard format was 

designed to include all the required input data and information. In addition 

to validating the code, a new user can use these problems to gain confidence 

that he is using the code correctly. 

When closed-form probability solutions are not available, exact solutions 

were obtained by using Monte Carlo simulation. The "exact" solutions were 

compared with NESSUS results to validate the code as well as the solution 

algorithm. 

For each problem, several levels of accuracy were obtained by using the 

NESSUS code and the FF1 algorithm. As a first step, a mean-based perturbation' 

database was generated to generate a linear response surface. The result is 

called the mean-value-first-order (MVFO) solution. 

In the second step, one or several probability levels were selected. For 

each probability level, the MVFO solution was then improved by replacing the 

center of perturbation (the "determinitic state" in the NESSUS/FEM module) by 

the most-probable points (design points) generated using the previously 

established linear response surface. The re p lacement of the deterministic 

value was accomplished by using the 'MOVE" keyword in the MESSUS 2.0 code. 
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Table 6.1 

STATUS OF PSAN VALIDATION CASES 

CASE DESCRIPTION AALY5IS TYPE STATUS SCHEDULE 

1 Cantilever Beak Static Solution complete Coapieta 

Correlated loading (Progress Report al-B) 

2 Cantilever Plate Static Solution complete Complete 

Correlated loading (Progress Report 87-10) 

3 Cantilever Beam Natural frequency Solution complete Complete 

(Progress Report 87-7) 

4 Rotatina. Beam Centrifugal loading Analytical solution complete 2FY88 

+ Stress stiffening (See 2nd Annual Report) 

NESSUS solution required 

5 Rotating Plate Centrifugal	 loading Solution coaplete Complete 

+ Stress stiffening (Progress Report 88-1) 

6 Twisted Cantilever Natural frequency Solution coplete Complete 

Plate (Progress Report 88-1) 

.7 Plate Correlated loading Solution complete Complete 

(Multiple zones) (Progress Report 88-1) 

B Shell Static Analytical solution required Oct. 1987 

NESSUS solution required 

9 Cylindrical Shell Static Solution complete Complete 

(Progress Report 87-13) 

10 Notched Plate Stress Concentration Solution complete Completed 

(Progress Report 87-11) 

11 Shell Buckling Solution complete IFY88 

NESSUS solution required 

12 Beam Random vibration Analytical solution required 1FY83 

(See book by ELISHAOFF) NESEUS solution required 

13 Cylindrical Shell Random vibration. Analytical solution required F1E8 

Problem same as $12, except NESSUS solution required 

for cylindrical shell. 

(See paper by ELISHAKCFF, 

VAN ZANTEN and CRANDALL) 

14 Plate Random pressure field Analytical solution required FYBB 

(See paper by DYER NESSUS solution required 

$NOTE:	 Problem No. 4,11-14 not solvable using HESSUS version 2.0 (July 187)
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The "new" deterministic solution was then paired with the "old" MVFO 

probability estimates to form the Advanced MVFO (AMVFO) solutions. 

The probability estimates were further im proved by using the perturbation 

solutions around the updated point. This procedure is called the "first 

iteration." The solution can be further improved by using additional 

iterations until the solution (probability level, response value, or most 

probable point) converges. However, in , all the validation problems studied, 

it was found that, from a practical point of view, the first iteration 

solutions were sufficiently accurate. In fact, it was found that even the 

AMVFO solutions provided good accuracy for most cases. Therefore, additional 

iterations were not conducted. The NESSUS probabilistic analysis algorithm 

are described in Refs. [2_14]. 

In solving the validation problems, user involvement was necessary to 

integrate the NESSUS/PRE, the NESSUS/FEM and the NESSUS/EPI modules. This 

slowed down considerably the solution process. However, based on the 

experience gained through the validation studies, an automated procedure has 

now being defined to be included in the PFEM module (see Chapter LLO). It is 

anticipated that the user interactions in finding the probability solutions 

will be reduced considerably. The validation experience also has helped to 

design potentially more effective iteration algorithms as described in Chapter 

3.0. 

6.2 Validation Results Completed in FY '87 

6.2.1 Static Analysis of Cantilever Beam (Case 1) 

The exact, solution for the validation problem 1 was included in 

the First Year Annual Report. The problem addressed is a cantilever beam 

subjected to static, statistically correlated point loads (see Figure A-i in 

'Appendix A). Other. random variables include Young's modules, length, 

thickness, width, base spring and yield strength. The response function 

tested was the tip displacement. 

The finite element model consisted of 20 Tiposhenko beam elements. 

The NESSUS "mean" solutions of the ti p displacement (0.3969 inches) agreed 

with the theory (0. 14032 inches) w :-thin 1.5 percent. In this problem, the 

random variables were correlated. Therefore, the first step required that the 

NESSUSIPRE module be used to cransf'orm the correlated loads to uncorrelated 

random variables.
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In solving this problem it was found that the perturbation range 

for the length of the beam must be very small to avoid convergence 

instability. The perturbations used were 0.001 standard deviation for the 

length, and 0.1 standard deviations for the remaining variables 

The probability solution was checked by selecting three points in 

the right tail of the distribution (i.e., cumulative probability ) 501). The 

MVFO, the AMVFO, and the first iteration solutions are shown in Figure A-2 in 

Appendix A. The "exact" distribution shown in the figure was generated using 

Monte Carlo simulations with- a sam p le size of 100,000. 

Because there is a difference between the tJESSUS/FEM solution and 

- the theoretical solution, a "calibrated" or "adjusted" distribution curve was 

also established by matching the two (NESSUS and theoretical) solutions at the 

mean solutions. The adjusted curve provides a more reasonable reference to 

judge the accuracy of the NESSUS probabilistic solution. 

By comparing the FF1 solution with the adjusted solution shown in. 

Figure V1-3, it can be concluded that the AMVFO and the first iteration 

solutions provide excellent probability estimates. 

The result of this validation problem also suggests that the 

"small" numerical inaccuracy in the finite element solution (1.5% in the 

problem) may result in significant differences in the probability estimates. 

These differences may exceed the errors introduced by neglecting the second-

order terms in the FF1 al gorithm. In other words, the first-order (i.e., 

using the response surface linearized about the design point) FF1 method may 

be sufficient for practical applications. Nevertheless, the rJESSUS code has 

the capability of dealing with second-order effect by generating more 

perturbation solutions and using quadratic response surfaces. 

6.2.2 Static Analysis of Cantilever Plate (Case 2) 

This validation problem is similar to case 1 except that the 

cantilever beam is changed to cantilever plate. To produce a reasonable 

model, the thickness of the beam as well as the magnitude of the loads were 

reduced. The response functions considered are the bending stress at the base 

and the tip displacement. 

The finite element model consisted of 20 shell elements with 142 

nodes as shown in Figure A-3 in Appendix A. The NESSUS "mean" solutions were 

0.76 148 inches for the displacement and 3657 psi for the stress. These values 

agreed with theory - 0.7692 inches an' 3600 osi, respectively. The 

differences are 0.5% for the dLsplacement and 1.6% for the stress. 
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For either the displacement or the stress, the probabilistic 

solutions were checked by selecting two points in the right tail of the 

distribution (i.e., cumulative probability > 50). 

In solving the problem, it was found that the perturbation range 

for the length and the width of the cantilever plate must be small (0.01 

standard deviations for the length and the width, and 0. 1 standard deviations 

for the remaining variables) to avoid convergence instability. 

The MVFO, the AMVFO, and the first iteration solutions for the 

displacement and the stress,. respectively, are shown in Figures A-U and A-S in 

Appendix A. The "exact" solution shown in the uigurs was generated by 

applying Monte Carlo simulation (sample size	 100,000) to the theoretical 

solutions.

Because the "small" difference in the stress values between 'JESSUS 

and the theoretical solution resulted in significantly different probability 

estimates, a "calibrated" stress distribution curve was established for 

judging the FPI solution algorithm. By comparing the NESSUS solutions with 

the adjusted solutions, it can be concluded that the AMVFO and the first 

iteration solutions provide excellent probability estimates. 

6.2.3 Eigenvalue Analysis of Cantilever Beam (Case 3) 

The goal of the validation problem 3 was to validate the NESSUS 

eigenvalue solution algorithms. The problem consisted of a cantilever beam. 

The response functions of interest were the first three bending frequencies. in 

each of the two lateral directions. Exact CDF solutions are available for 

this problem (see PSAM 2nd Annual Report). 

The random variables selected were: modulus, density, length, 

width and thickness. The mean thickness (0.98 in.) and the mean width (1 in.) 

were chosen to be approximately equal to test the ability of the code for 

identifying closely spaced eigenvalues. 

The finite element model consisted of 20 beam elements (NESSUS 

element Type 98). The NESSUS "mean" solutions of the first six vibration 

modes were found to be in good agreement with the theory (neglecting the 

effects of rotary inertia and shearing deformations), with differences ranging 

from 0.205 to 2.2%. The accuracy of the perturbation results was judged by 

computing the sensitivities of the frequencies with respect to the perturbed 

random variables. It was found tha: the maximum error in sensitivities was 

6.3% (for width perturbation). A summary of the NESSUS perturbation analysis 

is given in Table A-i of Appendix A.
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In solving the problem, it was found that the perturbation range 

• for the length of the beam must be very small (0.001 standard deviation for 

• the length and 0.1 standard deviation for the remaining, variables) to avoid 

convergence instability. 

Probability analysis results were generated for the first-mode 

solution only. However, the - results for other modes are expected to have the 

similar accuracy based on the fact that the UESSUS generated sensitivities are 

accurate. Figure A-7 in Appendix A shows excellent agreement between the 

exact and the NESSUS solutions. 

6.2.4 Eigenvalue Anal ysis of Rotating Beam (Case 5) 

Validation problem 5 considers a rotating beam as illustrated in 

Figure A-8. There are five random variables: mass density, length, Young's 

modulus, thickness and width. This problem tests the centrifugal loading and 

stress stiffening capabilities in the NESSUS beam element. The response 

functions consider the tip axial displacement and the first bending 

frequency. The approximate frequency solution was derived by assuming a 

bending mode shape. 

In the original test plan, the beam was fixed at the center of 

rotation. To represent a turbine blade configuration more closely, the inner 

radius (measured from the center of rotation to the "fixed" end of the beam) 

was defined to be 4.237 inches. Analytical solutions were revised and used to 

generate exact solutions using Monte Carlo simulation (sample size 500,000). 

In solving the problem, it was found that the perturbation range 

for the length of the beam must be very "small" (0.001 standard deviation for 

the length) to obtain the correct perturbation solution. When the 

•	 perturbation range was 1.0 standard deviation, there was no solution 

(convergence instability problem) and when the range was 0.1 standard 

deviation the generated perturbation result was incorrect, the frequency 

increased as the length increased. This perturbation problem is being 

investigated. All the key parameters for the eigenvalue perturbation are 

•	 included in Appendix A for further testing. - 

Using the "small"perturbation range for the length, the 

•	 probability analysis results were generated. Figures A-9 and A-10 in Appendix 

A show very good agreement between the "adjusted exact" solutions and the 

NESSUS AMVFO solutions.
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6.2.5 Eienvalue Anal ysis of Twisted Place (Case 6 

The problem definitions and the solution are summarized in 

Appendix A. The geometry of the twisted plate was selected the same wa y as 

one of the test samples described in the paper by Macbath, Kielb and Leissa 

entitled, "Vibrations of Twisted Cantilever Plates - Experimental 

Investigation." The selected response functions were the first bending and the 

first torsion frequency. 

A total of 192 shell elements (Type 75 - four-node shell) were 

used. The deterministic NES-SUS solutions for the selected frequencies agreed 

well with the experimental results (about 47. difference).. However, because 

the general theoretical solution for the twisted plate is unavailable for 

bending, torsion and mixed vibration modes, the validation of the 

probabilistic solution is only partially completed. 

The "exact' solution for the first bending mode was based on the 

flat plate solution. For the selected geometry, this solution is reasonable 

based on the experimental results which suggests that the analytical solution 

can be used to predict, with good accuracy, the frequencies for different 

thicknesses. The probabilistic analysis solution using the advanced mean-

value-first-order method (AMVFO) as shown in Figure A-13 agrees very well with 

the calibrated exact solution (adjusted so that the mean value FEM solution 

equals the experimental data). For the torsional mode, it was found that the 

flat plate solution cannot be used reliably to predict the results of the 

experiment. However, the probabilistic solution was obtained (Figure A_14) 

and can be used to compare with the theoretical solution should it become 

available. 

6.2.6 Static Anal ysis Flat Place (Case 7 

The problem definitions and the solution are summarized in 

Appendix A. The special feature of this problem is that the loads are applied 

to multiple "zones" as illUstrated in Fi gure A-iS. In each zone, the loads 

are either independent, partially correlated, or fully correlated. 

The MVFO, AMVFO, and the first iteration solutions for the 

displacement are shown in Figure A-16 in Appendix A. The "exact" solution 

shown in the figure was generated by applying the Monte Carlo simulations 

(sample size	 500,000) to the theoretical solutions. 

An adjusted exact stress distribution curve was established for 

judging the accuracy of the 'iESSUS solution. ton. 3y comparing the NESSUS 
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solutions with the adjusted solutions, it can be concluded that the AMVFO and 

the first iteration solutions provide excellent probability estimates. 

6.2.7 Static Anal ysis of C y lindrical Shell (Case 9) 

This problem is.a cylindrical shell subjected to axisymnietric ring 

loads. Seven random variables consisting of Young's modulus, inside radius, 

and five correlated loads were selected. The finite element used was ?JESSUS 

element Type 153 - a four-node assumed strain axisyrametric element. The 

finite element model had a total of 50 elements, and the element mesh is shown 

in Figure Pt-17.	 - 

The "exact" probabilistic solution was solved by using Monte Carlo 

simulation (sample size 500,000) with the theoretical solution taken from 

Timoshenko's "Theory of Plates and Shells." The difference between the 

deterministic (based on mean values) NESSUS and Tirnosheriko solution was 2.2 

percent for radial displacement under the load. 

Validation results for both the NESSUS/FEM code and the 

probabilistic analysis algorithm (EN) were obtained (see Figures A-iS and A-

19). Note that the validation of the NESSUS/FEM code was based on the FEM 

solution, and the validation of the FF1 algorithm was based on the Tiinoshenko 

solution. The probabilistic analysis procedure, however, is identical for 

both solutions. 
The perturbation range was chosen as 0.1 standard deviation for 

each random variable. It was found that the NESSUS/FEM solution required very 

tight convergence limits for generating accurate Young's modulus sensitivity 

data. Also, it was found that this convergence problem can be solved by 

increasing the perturbation range to 0.5 standard deviations. 

Figure A-18 and Figure A-19 present the MVFO and the AMVFO 

solutions. If required, accuracy can be improved by applying the iteration 

procedure. However, Figure A-19 indicates that the AMVFO solution is 

sufficiently accurate for this problem. Therefore, no iteration solution was 

obtained for NESSUS/FEM. 

For the NESSUS/FEM solution (Figure A-18), a calibrated "exact" 

solution was again used to compare with the NESSUS/FEM solution. Figure A-19 

shows that NESStJS solutions and adjusted solutions are very close, thus, 

indicating that the PLMVFO solution provides very good probability estimates. 
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6.2.8 Analysis for Stress Concentration Factor (Case 10) 

The response function considered was the maximum stress at the 

notch of an axially loaded sheet in Figure A-201. The radius of the notch is 

defined as the random variable which has a lognormal or truncated-normal 

distribution. The problem definitions and the solutions are summarized in 

Appendix A. The radius is not a standard input in NESSUS/FEM, however, this 

validation case shows that the user can define a geometry parameter as a 

random variable by providing proper perturbed coordinate data in the 

NESSUS/FEM random variables setting. 

Because the response is a function of one random variable, it can 

be shown that,. theoretically, the advanced MVFO method should yield the exact 

CDF solution. Therefore, the difference between the NESSUS solution and the 

exact solution (Figure A-21) is due to the error in the finite element 

solution. However, the error is small (about 1% in stress). Note that, for 

the case where the radius has a truncated distribution, the resulting NESSUS 

probability distribution is also truncated (Figure A-22), as expected. 

6.3 Validation Plans for FY '88 

6.3.1 Summary of FY '88 Effort 

The validation cases planned are listed in Table 6.1. The 

emphasis will be on dynamic problems and response to random loading. 

Descriptions of the planned validation problems follow. 

6.3.2 Eigenvalue Analysis of Rotating Beam (Case L) 

Validation case 14 is the same as case 5 except that the finite 

elements are Tirnoshenko beam elements. 

6.3.3 Static Anal ysis of Shell (Case 8) 

Validation case 8 is a static problem. The main goal is to 

validate the general two-dimensional shell (non-axisytnmetric) element in the 

NESSUS library. 

6.3.14 Buckling Analysis of Cylindrical Shell (Case 11) 

The random variables will be shell thickness and the applied 

pressure. This problem has been solved using the "move" option. However, the 

solution using the NESSUS perturbation scheme has not been obtained using the 

NESSUS 2.0 code. 

6.3.5 Random Vibration Anal ysis of Beam (Case 12) 

This problem was described in detail in [1]. A concentrated 

random loading defined usin g a power spectral density function is applied to a 
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I	 - 

simply-supported beam. The response of interest is the displacement. and 

approximate solutions for the mean and standard deviation of the response ar m-

available.	 - 

- 6.3.6 Random Vibration Anal y sis of Cy lindrical Shell (Case 13) 

This problem is similar to case 11. The structure is a 

cylindrical shell subjected to a random uniform ring loading at a section of 

the shell [5]. 

6.3.7 Random Pressure Loads on Plate (Case 14) 
The goal of thisF validation case is to validate NESSUS' capability 

to solve random pressure field problems. In this validation case, a plate is 

subjected to a random pressure field [6]. 
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7.0 NESSUS CODE VERIFICATION STUDY 

7.1 Scope of Verification Problems 

The purpose of the verification efforts is to apply the Probabilistic 

Structural Analysis Methods (PSAM) to the analysis of actual typical aerospace 

propulsion system components. Four components, typical of the hardware found 

in rocket propulsion engine systems have been chosen for this application. 

They are turbine blade, high pressure duct, LOX post and transfer tube 

liner. These components are, subject to environments with many random 

variables. Detailed discussion of the environments, failure modes and the 

deterministic analysis techniques were reported as part of the first annual 

report. 

A wide range of probabilistic structural analysis tools will be or have 

already been implemented in the NESSUS/FE1M code. The verification studies have 

been tailored such that different areas of structural mechanics are emphasized 

on each of the components. This has been done consistant with the primary 

design requirement for each component. 

The turbine blade analysis concentrates on linear static and modal 

frequency extraction analysis. The duct application emphasizes the random 

vibration capabilities within the linear dynamics domain. The LOX post 

application involves the use of nonlinear material analysis. The transfer 

tube liner application involves material and geometric nonlinear analysis. All 

the efforts on the above components analyse various response variables in the 

probabilistic domain. 

Initial verification efforts concentrated on the accuracy, robustness, 

and efficiency of the methodologies implemented in the NESSUS/FEM code. 

Several test cases were run using NESSUS/FEM and the results were compared 

with results from commercial codes such as ANSYS. The initial studies pointed 

the way to improvements in user interface, analysis tools, and element 

formulation. Some of the details of these studies can be found in the earlier 

annual and monthly reports. 

7.2 Turbine Blade Random Variables 

A high performance, high pressure.fuel turbopump second stage blade was 

considered for this study. The blade is made of single crystal PW1480 

material which has directional properties. The following variables have been 
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identified as random and will be considered for the probabilistic linear 

static analysis. 

1. Material axis orientation 

2. Single crystal material elastic constants 

3. Geometry 

4. Centrifugal load 

5. Temperature load	 - 

6. Pressure load

The initial study considering the first three items is reported herein. The 

random load variables will be included in the subsequent effort; the 

contribution of loading can be analysed by adding the NESSUS/FEM results to 

the existing database. 

Statistical data for material axis orientation were obtained from a set 

of approximately one hundred blades. For these single crystal blades the 

primary material axis was controlled but not the secondary axis orientation. 

The statistical analysis of the data indicated a standard deviation of 3.87 

degrees for the primary axis orientation. Further, there was no correlation 

observed between the primary and secondary axis data. The new blades that will 

be manufactured and tested will have both the primary and secondary material 

axis controlled. This study considers the material axis orientations, both 

primary and secondary, as independent random variables each having a standard 

deviation similar to that observed in the set of one hundred blades discussed 

above. Analysis of data from a small sample of blades where primary and 

secondary axes were controlled indicate similar standard deviations. For the 

purposes of this study, a normal distribution was assumed. 

The elastic material constants were assumed to be functions of 

temperature and were introduced through the use of user. subroutines in 

NESSUS/FEM. The material properties used is reported i'n the Table 7.1. The 

variations in elastic constants in single crystal materials is considered to 

be small. A coefficient of variation of 0.025 was used for all the elastic 

constants. The standard deviation was assumed to be the same at all 

temperatures.
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Table 7.1 

Matérial Properties for the Turbine Blade Model 

TEMP	 E	 NU	 G	 ALPHA 

RANKIME	 PSI	 PSI	 INCH/INCH/R 

	

60	 19.95E6	 0.376	 20.50E6	 2.30E-6 

	

360	 18.82E6	 0.382	 19.30E6	 3.80E-6 

	

530	 18.38E6-	 0.386	 18.63E6	 14.65E-6 

	

660	 17.61E6	 0.389	 18.00E6	 5.29E-6 

	

1860	 114.79E6	 0.395	 15.27E6	 7.76E-6 

	

2060	 13.91E6	 0.1401	 14L6OE6	 8.07E-6 

Mass density	 0.805E-3 lbf.sec2/in.' 

The nature of thegeometrical variations in a turbine blade shape is a 

function of the manufacturing methods. Procedures have been implemented in 

the NESSUS/EXPERT system to introduce many types of geometric perturbations to 

the finite element model. These include uniform volume increase or decrease, 

geometrical translation and/or rotations about some arbitrary set of axes. 

For cast and then machined blades such as the one being analysed in this 

study, actual measured data indicate that the majority of geometrical 

differences from blade to blade occur as rigid body shift and/or rotation 

about the stacking axis. Thus, geometrical perturbations as rigid body shifts 

of lean, tilt and twist angles have been introduced in this study; That is, 

the relative change of the center of mass (CG) with reference to stacking axis 

is more critical to stress analysis than the minor profile variation from 

blade to blade. Consequently, the lean, tilt, and twist angles have been 

treated as random variables (Figure 7.1). The data from a similar set of LOX 

blades was used to determine the standard deviations of these geometric 

angles. These three geometric angles were converted, through a preprocessor, 

into equivalent nodal coordinates and were then input to NESSUS. 

In summary, a total of nine random variables were introduced in this 

first set of verification study. They are listed in Table 7.2. The study 

will be extended in the next phase to include the load random variables of 

speed, pressure and centrifugal load.
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Table 7.2


Random Variable Data for Blade Verification Study 

Random	 Description	 Mean Value	 Std. Deviation	 Distribution 

Variable 
Number 

1	 Mat.	 orien. +0.05236 (rad) 0.06754 14(rad) Normal 

Theta Z . 

2	 =	 Mat.. orien. -0.03 14907(rad) 0.067544(rad) Normal 

Theta Y 

3	 Mat. orien. +0.082766(rad) 0.0675 14 14(rad) Normal 

Theta  

-	 E Temp.Dependent 0. 14596E6.lbs/sq4inch Normal 

5	 NU Temp.Dependent 0.00965	 . Normal 

6	 G Temp.Dependent 0. 146575E61bs/sq.inch Normal 

7	 Georn.Lean 0.0	 (degree) 0.14	 (deg) Normal 

8	 Geom.Tilt 0.0 (degree) 0.14	 (deg) Normal 

9	 .	 Geom.Twist 0.0 (degree) 0.30	 (deg) Normal

7.3 Turbine Blade Verification Study Results 

The finite element model used in this study is shown in Figure 7.2. The 

blade is subjected to complex pressure and temperature profiles shown in 

Figure 7.3 and Figure 7.4, respectively. 

The probabilistic analysis results, considering the nine random variables 

discussed earlier, are presented below. The mean-value, first-order (MVFO) 

solution consists of one deterministic analysis (at the mean value state) 

followed by nine perturbation analyses, one for each random variable. The 

perturbation setting of 0.1 times the standard deviation was used to compute 

the gradients near the mean values. A NESSUS/POST FORTRAN interface program 

is available that will convert the geometry, displacements, stresses and-

strains available in the perturbation database into PATRAN readable, neutral 

and results files. The I'JESSUSIFPI module was modified to write the EPI 

results data into a PATRAi'J readable results file. Further, the NESSUS/FPI 
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module was modified to process the entire model (2519 nodes) for a given 

response variable for the mean-value, first-order method. The results are 

presented in the form of graphical contour plots. These graphical plots aid in 

an effective interpretation of deterministic, perturbation as well as 

probabilistic analysis results. 

Effective stress is considered as one the important stress response 

variables. The mean value of the effective stress for the entire model is 

shown in Figure 7.5. This particular blade, because of the coolant flow from 

the disk, has steep thermal gradients at the trailing edge of the shank root 

and at the shank - platform trailing edge intersection (Figure 7.14). Further, 

the trailing edge of the airfoil root has a high critical effective stress. 

Three nodes at their critical locations (node 21470, node 2518 and node 817) 

(Figure 7.14) were chosen for additional study using the advanced mean-value 

first-order method (ADMVFO), in which the design points are shifted. 

Based on the MVFO method, the standard deviation and coefficient of 

variation for the entire finite element model were calculated for the 

effective stress and are shown in Figure 7.6 and Figure 7.7. Some of the 

larger coefficient of variations occurred in the lower stress regions away 

from the critical areas and inside the blade. The inaccuracy of the nodal 

stresses computed using the displacement approach near the free edges is also 

noted. 

One of the important results of the NESSUS/FPI program is the relative 

sensitivity information of each random variable among all the random variables 

considered in that particular analysis. This information, called the 

sensitivity factor, can be plotted on the model for each random variable as 

shown in Figure 7.8 through Figure 7.16. This sensitivity factor, more 

appropriately called the probabilistic sensitivity factor, is a combination of 

physical sensitivity and uncertainty of the random variable measured by the 

standard deviation. In other words, a random variable with high physical 

sensitivity but with low standard deviation will have a low probabilistic 

sensitivity and vice-versa. This provides valuable information regarding the 

importance of each random variable for the response variable being 

considered. It might also be noted that the influence of the random variables 

differs in various regions of the blade. 

In addition to the sensitivity information using the NESSTJS/FPI and MVFO 

methods, one can map the probability of exceedence for the response variable 
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for many different levels with one single run of NESSUS/FPI. This is 

illustrated in Figure 7.17 through 7.19 where the probability of exceedence of 

effective stress is plotted. This can be used to quickly identify critical 

areas of high stress and identify probable nonlinear material behavior 

regions. 

After initial processing of the entire model for the effective stress, 

three nodes in the critical regions were selected for further processing. 

They are node 2470 and node 2518 in the shank root region and node 817 in the 

airfoil root region (Figure 7.4). The cumulative probability distribution 

functions based on MVFO method are shown in Figure 7.20 through Figure 7.22. 

The probabilities for the effective stress are also represented in a 

different form in Figure 7.23 throughFigure 7.25. For the advanced mean-

value, first-order method, the finite element analysis was again run 

corresponding to three different levels of probability for the response 

variable: 1-sigma, 2-sigma, and 3-sigma from the mean. For each level, the 

deterministic solution was moved to the design point as calculated by 

NESSUS/FFI. The NESSUS/FPI was again used to successfully process this new 

deterministic data at the respective design points but using old perturbation 

data obtained around the mean values. The results are shown in Figure 7.23 

through Figure 7.25 under the legend "PLDMVFO" method. It is seen that for the 

nodes 2518 and 2470, the difference between the two methods is rather small 

indicating the linearity of the response function. However, at node 817, the 

differences between the two methods were significant enough to further process 

the results. At the 3-sigma level of the design point, perturbations were 

again calculated at node 817 for the effective stress and the new 

probabilities obtained is reported in Figure 7.25 as ADMVFO with new 

perturbations. 

Next, the results of radial displacement (x-component) response variable 

are presented. The mean value of the response variable is presented in the 

form of contour plots Figure 7.26. The standard deviation of the radial 

displacement is displayed in the form of contour plots shown in Figure 7.27. 

Though the magnitudes of the standard deviations are small, the trailing edge 

of the airfoil shows the largest deviation (Figure 7.27). Sensitivity factors 

of the radial displacement to the random variables considered are shown in the 

form of contour plots in Figure 7.28 through Figure 7.36. The sensitivities 

point out that the radial probabilistic displacement at the trailing edge of 

ill
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the airfoil is primarily affected by the elastic modulus and the primary 

material axes orientation random variables. 

A node having the maximum radial tip displacement (node 14) was chosen 

for further processing. The cumulative distribution function for the tip 

displacement based on the MVFO method is shown in Figure 7.37. The 

cumulative probabilities are plotted in a different form in Figure 7.38. The 

response variable was further processed using advanced fast probability method 

in which the desigfl points were successively moved to -1 sigma, -2 si gma, and 

-3 sigma values. MESSUS/FPI was used again to calculate the new probabilities 

but with old perturbation data. The results are reported in Figure 7.38 as 

the advanced mean-value, first-order method. Further comparison between the 

results for the blade verification analysis and validation cases will be made 

in the future. 

7.4 NESSUS/FEM and NESSUS/FPI Comoutational Exoerience 

The NESSUS/FEM code has been executed in a variety of computers during 

the verification, validation and check out phases. As computational cost is 

of much interest to the end user some of the computational statistics are 

reported in Table 7.3. The details of the blade finite element model used in 

the verification efforts are shown in Figure 7.2. 

Table 7.3 

Blade Verification Study Run Time Statistics 

	

CRAY XMP1-.14 IBM 3090	 CDC 990	 CDC 860	 ALLIANT FX-8 1-cu 

COS	 MVS	 NOS-VE	 NOS-VE	 UNIX 

A	 A/B	 Ps/B	 B	 A 

185	 280/3614	 370/460	 2890	 24145 

	

A	 Vectorized	 B	 Non-Vectorized 

NESSUS/FPI 2519 NODES - MVFO METHOD - 330 SECS (CDC990 NOS-VE) 

It has been observed that, for this verification problem, the 

computational solution times for element formulation, equation solution and 

stress recovery phases in NESSUS are comparable to the commercial codes such 

as ANSYS. However, the band width optimizer module is inefficient and takes 
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an inordinate percentage of the total solution time. For the case of blade 

verification, nearly 1 011. of the computational time for the deterministic 

analysiswas spent on bandwidthoptimiZatiofl modules. Without specifically 

tuning the FORTRAN code for any specific compiler on 	 particular machine, a 

20% to 257 increase in computational speed is obtained by vectorizing. For 

the blade verification problem, each perturbation solution took about two to 

three iterations to converge. Computation time for each converged 

perturbation solution was approximately 50% of the corresponding deterministic 

solution. Improvements in this ratio can be expected when the node optimizer 

module is improved. 

While all the verification studies conducted so far used the strict 

isoparametric Type 7 elements, the newly developed element Type 154 was also 

exercised on the blade verification model for selected cases. The results 

indicated for the Type 154 element the stiffness formulation times were 

approximately 2 times that of element Type 7. The stress recovery and 

perturbation iteration phases were approximatly 2.5 times more time-consuming 

compared to element Type 7. While element Type 154 provided improved results, 

improvements in the computational speed for Type 154 modules is recommended. 

As part of the preliminary verification process, the mixed iteration technique 

was also exercised. It was found that a combination of mixed iteration and 

multiple perturbation solutions for the size of the blade verification problem 

was considered excessive CPU time-consuming and, therefore, was not used. The 

standard displacement solution was used throughout the verification studies. 

Minor modifications to the NESSUS/F2I code allowed the processing of all 

nodes in the verification model for a given response variable for the MVFO 

method. The cost of the solution which allows to process the entire mode! 

using MVFO method is equivalent to a single deterministic FEM solution. Based 

on the current experience for the size of models considered under the blade 

verification study, it is unrealistic to expect to process the entire model 

using the ADMVFO method for different probability levels. This is because of 

the continuous shift of the design points to obtain ne deterministic 

solutions and the new gradients around the design point for each probability 

level and node point. However, new techniques and strategies using iterative 

solutions to obtain values corresponding to new design points might be worth 

pursuing to reduce the computational cost. It is feasible now to process 

selected critical nodes using ADMVFO method for many probability levels. 
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7.5 Fiscal Year 1988 Effor: 

Blade verification studies will continue during Fl 88. The load 

variables of pressure, temperature and speed will be created as random. The 

method of treatment of these load variables for the blade has been obtained 

from the composite load spectra contract. The perturbation results from the 

load variables will be added to the existing database to reanalyze the 

response variable presented in this report. 

Initial verification studies conducted on a simplistic model pointed out 

the shortcoming and errors in deterministic frequency extraction as well as in 

the method of frequency extraction for the perturbed structure. The new 

NESSUS 2.5IFEtM release which has enhancements and bugs removed for this phase 

of analysis will be used. for probabilistic analysis of frequencies in turbine 

blades. The additional random variable to be considered for this phase would 

include mass density. A method for considering support stiffness variations 

will be studied. 

The verification efforts for the duct component will be g in. The primary 

analysis will be random vibration analysis with vibration levels, the 

structure properties, and geometry considered as random. Initial verification 

efforts will define the enhancements if any needed in NESSUS/FEM followed by 

the full verification analysis.
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8.0 A STRESS-BASED HYBRID FINITE ELEMENT METHOD FOR ELASTO-PLASTIC

ANALYSIS USING THE ENDOCHRONIC THEORY 

8.1 Introduction 

In this chapter, a three dimensional 16-node stress-based hybrid finite 

element for shell structural analysis will be formulated, using the 

endochronic elasto-plastic constitutive theory. The iterative scheme for the 

solution of the nonlinear system of equations that results will be presented, 

with the mid-point radial return algorithm being used to improve the accuracy 

of the integrations.	 - 

The motivation for the stress-based element is predicated on the 

observation that the assumed-stress hybrid model has been demonstrated to give 

more accurate displacements and stress solutions than the conventional 

displacement model [1]. In general, for shell analysis the degenerated shell 

element is often used. However, in such an element the nature of stresses, 

strains, and displacements is limited to a linear variation through the 

thickness, which may not be the situation in complicated problems of 

loading. On the other hand, conventional displacement-based three dimensional 

solid element can present well, all of the physical fields in the in-plane 

directions as well as in the through thickness direction, but can not tolerate 

higher aspect ratios (i.e. the case when the thickness, compared with other 

two dimensions, is too small). In a recent study [2], it is shown that the 

stress-based hybrid element, in addition to providing better stresses, can 

also sustain much more severe distortions than the displacement element. 

Furthermore, due to the more accurate stress solution, the use of the hybrid 

stress model for nonlinear problems, where the nonlinearity arises from the 

coupling of material behavior to the stress field, should result in a faster 

rate of convergence. 

8.2 Stress-Based Hybrid Finite Element Formulation 

8.2.1 Assurnotions for the H ybrid Formulation 

Here, it is assumed that the loads and/or d i splacements are 

applied incrementally, and one must satisfy the following e quations within the 

volume of the element:

137



Linear Momentum Balance;

(Q 
Ac.	 + L\f.	 0	 in V 

ij,j	 m 

Angular Momentum Balance; 

Aa. .	 Ac..	 in V 
1J	 Ji	 m 

Strain - Displacement Relation; 

AE..—(Au..+Au. .)	 in V 
ij	 2	 ij	 J,1	 m 

Constitutive Relation; 

AE..S..	 AG 
iJ	 1j k9.	 k9. 

Traction Boundary Condition; 

Ao..n.	 AT.	 at  
1JJ	 1	 a 

Displacement Boundary condition; 

Au.	 Au.	 at S 
1	 3.	 U 

Inter-element Boundary Conditions;

(8.2) 

(8.3) 

(8.4) 

(8.5) 

(8.6) 

traction reciprocity 

+ 
Ac. •n.	 + Ac. .n.	 0	 at S  

1) 1	 1J J	 0 

displacement 

+	 C, 

u. . u
- 
.	 at S	 (o.c) 

1	 1	 0 

In the above, S 0 is defined to be on the boundary of the interface of' twc 

elements with the total boundary of an element defined as 
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ss 
0	 O 
Us Us 

U	
(8.9) 

Relaxing the requirement that the stress fieid within the elerner.t 

satisfy the equilibrium equation a priori, the stress field Wi1 be selected 

to satisfy the angular momentum balance, iXa 1	 only. Likewise, assume 

that the change in strain can be related to the change in stress through: 

AE	 - S	 AG	 (8.10) 
ij -	 ijk9.	 k9..	 - 

	

Note that in what follows 5. . 	 was assumed to be composed of an elastic cart 
iJk9. 

and a plastic part with 

A. . z EE.. +	 (8.11) 
ij	 13	 1J• 

AE	
5e	

+S k ii	 ijkz	 ijk	 Ck	
(8.12) 

where

e	 ôikj9.	 x 
S i j k	 2	 2u + (3x+2)	 ij 6kZ	

(8.13) 

S	
-	 k9. (8.1k) 

ijkt - (2)(C-1)  

8.2.2 Weak Form 

Based on the a priori conditions and the enforcement of 

equilibrium condition, compatibility condition, traction boundary condition 

and traction reciprocit-y t the weak form of this stress-based hybrid 

formulation can expressed as: 

f	 ((S. . '117 (au. . +	 u. . )	 So.. dV 

M v	
ijkZ k9. 	 3,1	 13 

M 

+ f	 (ta. .n. - AT.) óu.dS + 	 Ac. .ri.6u. dS	 (8.15) 

S	
1	 1	 .133 

a	 0 

r	 (	 . +	 Aa. . . + A.J	 u. 

	

£J,J	 - 
m

I-)
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Which after applying Greens theorem reduces to: 

	

L J	 S .	 Ac	 Ac. . dV + I	 Au ..6c.. dy + 
ikZ	 k9.	 U	 .	 1,3	 13 

	

my	
i

rn	 ca	 Ca 

	

+ f	 AT 6u dS + f	 Af. 6u. dV	 0 

	

S	
•	 1	 1. 

Ca

'5u.	 .Aa. . dV 
.,j	 ii

(8.16) 

8.2.3 Discrete Weak Form 

The stresses within an element were represented as a summation of 

polynomial stress modes,  ijm,with undetermined parameters AS M; 

Ca Ac 13 
. . = A lJrfl . .	 (8.17) 

Refer to Aooendix B for the exact form of the polynomials used to formulate 

the hybrid element. To enforce compatibility in a weak form, one may use a 

test function of the same class as the function for stress. Define 6o. . as 13 

the test function in terms of the same polynomial stress modes, Ajjm with the 

arbitrary parameters 

6c. . 
13 = A ijrn 

. . 66 
Ca	

(8.18) 

The displacements were interpolated from the nodal 

values,	 and the standard isoparametric shape functions,4 jk'
 as: 

A" - 0 i A
	 (8.19) 

-  

The trial functions for the displacements and the stresses were expressed in 

terms of the parameters ABm and Ac,. Define 

6u.	
Lk k
	 (8.20) 

as the test function in terms of the shape functions used in tr.e interpolation 

of the displacements. The parameters, 6q 	 will be arbitrary e: .:cept on the 
ky 

portion of the boundary where the dis p lacements are prescribed, in which case 

they will be zero.
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Substitution of the discrete form for the test and trial functions 

(Eq. 8.17-8.20) ex pressed the combined weak form in terms of 	 and 

give:

f zs AjmSijk2,	 63 dY + f	 68 dS + 
ml. 

rn	
tn n	 j ijm m 

m	 (8.21) 

f AS. A. ni 60 dS + f	 - AT.4.kôQidS	 0 mijmj ik k
CY

rn 

Defining the matrix 

.1. 9 

	

Sijk A	 dV	 (8.22) 

V	
. kzn 

- 
m 

and the matrix 

'4)	 n	 A	 dS	 (6.23) 

-	
ik j ijm 

One may express the combined weak form in matrix form as 

Z AS H 68 + AG T G ô +
	
T G AS	 AT  6 + AFT 6a	 (8.24a)


m 

where

AT	 •f ATibik dS ; AF	 j Af '4ik 
dV
	

(8.214b) 

The global 

retained as unknowns. 

reduced by eliminating 

domain of the element, 

one must satisfy 

-	 B + G Aa	 2

stiffness matrix may be assembled with AS and Aq 

The number of unknowns at the global level may be 

the stress parameters which are assumed only within the 

with no coupling between elements. For arbitrary ôS 

(8.25) 

Thus. AS may be e:: pressed in terms of the disolacemenc of the element as 
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-1 
G Ac	 (d..o.i 

For arbitrary 60. then one must have at the global level 

+	 (8.27a)


rn 

or

GTHlGAcAT+AF	 (8.27b) 

M 

8.2.4 Constitutive icdeiin 

While, until a few years back, simple constitutive relations such 

as isotropic hardening or linear kinematic hardening plasticity were the 

mainstay of computer programs, currently there is a widespread interest in the 

constitutive modeling of experimentally observec behavior of materials 

involving plastic and creep deformations under monotonic and cyclic loading. 

The general theory of internal variables has played a key role in 

the development of more and more realistic constitutive models to characterize 

inelastic material behavior. Typical internal variables that are widely 

employed include: i) the so-called 'back-stress' (the tensor locating the 

center of the yield surface in stress space), ii) the parameters that 

characterize the expansion of the yield surface, iii) the parameters that 

characterize the 'boundary-surface' in multi-yield-surface theories of 

plasticity [3-7], and iv) the 'drag-stres' used to characterize the creep 

surface.

Here, the concept of intrinsic time dependent on plastic strain is 

used for the derivation of the differential or incremental form of the 

integral relation of .stress and strain for plasticity. This derivation 

presents the endochronic theory in a structure that is similar to that of 

classical plasticity, thus, leading to a stiffness type finite finite element 

fcrmulat ion.

While the endochronic relation as develo ped by Watanabe & Atluri 

[8] is similar in its structure to that of classical plasticity, there are 

se'/erai novel advanta ges present in ne e ndochron-ic theory not present in the 

classical plasticity theor y . Teailtv to rcce. test data for bc:h 
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monotonic or cyclic plasticity as accurately as possible, with a minimal 

number of material parameters makes the endochronic theory a sim p le theor y to 

implement in a finite element code. 

Eollowing, is a summarized table of the rate form of the• 

endochronic theory. The detail of the derivation will be shown in Appendix B. 

Table 8.1 

Summary of the Internal-Time Theory of Plasticity 

Endochronic Theory: 

do	 z (2u+3x) dc, (c) 
kk 

Where u, X are lame constants 

f()	 1 + a	 (linear); or 

r()	 a + (1-a)e ' 	 (exponential) 

	

(S-c):h	 S °(df/d) 
c	 1 +	 +	 02	

+ 

C	

S I (c)	 21 

S	 2'.to 

P 6(z) + p ( z) (	 P u	 e) 

E	 ;
(i)	

- ;.	
i) 

Rate of Kinematic Hardening: 

a.a(i) 
• (i)	 .0 

	
(• 

ac	 2z p 1 . cc	
-	

ae	 : d	 j-
U 

(no sum on i) for i	 1,2 .....

1: 

2P	 de,-
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Table 8.1 

Summary of the Internal-Time Theory of Plasticity 
(Continued) 

Rate of Isotrooic Hardening: 

(linear f) 

0	 P	 P1 
dS	 S3(de :de) 

(exponential f) 

	

r j	 - S ° [a + (1-a)e']}(de	 : deP)2 

8.2.5 Residual Calculation and Iteration Scheme 

Assuming that the material at state n+1 involves plastic process, 

then the resulting stress field will not be in equilibrium; however, one may 

compute the out-of-balance loads needed to produce an equilibrated stress 

field at that state. For equilibrium at state n+i, one should nave: 

	

n+1	 n-i-i 
C. .	 + 1.	 0	 o.ba 

	

iJ,J	 1 

ij n+1
	 n+1

T	 (8.2o) 

Weighing the above with the test function 6u. will give after application of 

Green's theorem:

	

n+1
r.Soq	

V	
1"ik,j 

oq d'!	 219 .) 

The out-of-balance loads will be: 

f T.1 'jk dS + f	 - ()	 ( 8.30) 

or the points where the elastcaily ao1ed s::'esS e:-:ceeded the y Le1- stress. 

the process should be pas:Lc. The s:'fnes.s a:ri:•. na; be	 to reflect 

the LastLc process an: allow the cu:-t'-balance lca	 to foLLc.	 iastc 
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stress-strain path. This. will give a correction to the displacements as welL 

as the stress. However. wren the strain is computed from the stress through 

the constitutive relations, there will be error in compatibility. 

To, enforce this condition, a weighting function of the same class 

as the function for the stress field may be used.' The following residual load 

due to the error in compatibility is obtained: 

n+1	 1	 n+1. 
-	 (u	 u11)	 }	 c 

Application of the above residual to the system will give disolacements that 

are compatible with the strains obtained from the stress field. There will be 

some redistribution of the stress when the strain residual is apoled. but for 

the most part, the displacements will change more during each iteration than 

the stress. One may apply both R 0 and R at the same time, and continue the 

iteration process until the norm of the displacement does not change 

significantly. 

8.2.6 Consistenc y Condition 

With the above hybrid method, unless the stress/strain increments 

are very small, there will be errors in the consistency condition. 

ni-i, n+1	 ni-1	 .	 n+i	 n+i	 2 

F	 -	 ) •' E 	 -	 ) R - (8.32) 

A mid-point rule is used for the integration of the strains to 

reduce the errors. Considering the finite change of A, the plastic strain 

may be computed as: 

NT 
Aep	

11 :Ac - 

where

*
	 ((gfl 

+ B) -
	

+	
(331.1) 

+	 - ('+ 3'LI 

Likewise, the change in strain for a 31a:Lc process may be aooro:dmated as: 

(S.3) 
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Using the mid-point rule will lead to compatibility errors. However. :he 

application of the residual . will correct the errors that accumulate due :o 

compatibility. 

The final system of eauaticns that result when both R_ ar.d R are 

applied during the iteration process will have the form

-j G As

} (	 T
Act	

I - -
+ +

'ICY

I.,	 ,' u) 

Here, the matrix G is constant and only need be evaluated once. The matrix H 

depends on the material behavior, and must be evaluated for each iteration. 

As each iteration, 1, is carried out, the stress and displacement 

are updated as: 

n+1	 n	 i 
9 + AU 

AB+
	 Ac	 (8.7a) 

n+i	 n	 i. 
G	 a +Aa+ZAa	 (8.310) 

1 

The strain must be computed in two parts with the elastic part given by 

AE
A3	

e
 AGAB
	 (8.36) 

and the plastic part by 

6E 
BC

	 P	
A	 (8.39.) 

8.2.7 Imolemer.tation of the 16-Mode Stress-Based H y brid Element in 

NESSCS 

The stresses within an element were re p resented as a suirat ion of' 

equilibrated pclyncmiai stress modes. . 	 with undetermined parameters a; 

146 



Ac .	 AS	 (E.40) 
1J	 Urn	 m 

Followin g the guidance and suggestions from Punch and Atluri [2], 42 stress 

modes were selected. The details of the derivation and the exact form of the 

polynomials used are presented in Appendix B. To enforce compatibility, the 

test functions 6c. chosen are of the same class as in the trial functions for 

stress.

The displacements are interpolated from the nodal values, and the 

standard isooararnetric shape functions are used. The exact form of shape 

functions is shown in Appeidix B. 

Once the trial and test functions for stresses and displacements 

are determined, the needed matrices H, G, AT, and AF can be evaluated. A flow 

chart is presented in Appendix B to show the complete procedure. 

8.2.8 Validation Problems 

1.	 Linear Case 

Introduction 

A standard test problem for finite elements applied to the field of shell 

analysis is the pinched cylinder problem. It was carried out by Cantin and 

Clough [9] with a special displacement based cylindrically curved element. 

Henshell et al. [10] used an assumed stress hybrid element with both 

ccnforrning and non-conforming versions. Later Ashwell and Sabir [11] analyzed 

this problem by using a cylindrical shell element which is based on 

indeoendent strain functions. Various mesh sizes were used by these works and 

convergence results were reported elsewhere. 

Results 

The dimensions of this pinched cylinder are shown in Figure 8.1. Due to. 

the symmetric behavior of he geometry and loading, onl y one eighth of the 

domain is mcdeled. Two thickness values (0.094 in. and 0.01548 in.) are used 

to simulate thick and thin shell structure respectively. 

For the thick cyl i nder (t0.094 in). an Lnextensior.aU theory was used by 

Timoshenko and Woinows:y-Krieger fl21 and the deflection of 0.1064 in. was 

recorted which is known to be :co low. Cantin and dough [13] obtained the 

value of 0.1128 in. b y di;idir th c:anz of. the cvird2r into three eien:s 

longitudinally and 49, circum:'	 .	 ;• with 1200 degrees of freedom. 
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D 

Figure 8.1	 . :.Lhed Cylinder Problem 

L	 10.35 in., r	 4L953 in. 

E	 10.5xl0E6 lbf/in. 2 , v	 0.3125 

P 100 Of 

Thickness	 0.0911 in. (thick), 0.015 148 in. (thin). 

El 
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Henshe 1 l et al 110] used the assumed stress nybrid element with mesh sizes 

from lxi up to 6x6 and reached a converged dis placement as 0.118 in. For the 

present 16-node stress-based hybrid element, two meshes ( 1xL and 1x8) were 

used and the displacement o f 0.118 in. was obtained from both meshes as shown 

in Table 8.2. 

For the thin cylinder (t0.0l5U8 A. 	 the approximated analytical 

solution 0.2439 in. was compared with the present hybrid element, with three 

different mesh sizes (1x4, 1x8, and 2x8), as shown in Table 8.2. Also listed 

in Table 8.3 is the displacement solution obtained by Ashweli and Sabir [1] 

with the cylindrical shell element based on strain functions. 

It is clear that the solution based on the present 16-node stress-based 

hybrid element converges for both thick and thin shell p roblems, and agrees 

well with other numerical-solutions. 

2.	 Non-linear Case 

Introduction 

One of the popular problems in the field of elasto-plastic structural 

analysis is that of a perforated plate under tension loading. Extensive works 

have been carried out in prior literature by using experimental testing and 

finite element techniques. Theocaris and Marketos [13] handled this problem 

experimentally by using photo-elastic coating techniques. Total strains and 

plastic strains were reported as well as stresses which are estimated by 

Prandtl-Reuss incremental plasticity relations. Finite element methods were 

used by many researchers, among them Marcal and King [ 14 ]; Yamada, Yoshimura, 

and Sakurai [15]; Zienkiewicz, Vallipoan, and King [16]; and Bartelds [17]. 

Though the problem was analyzed by researchers for, both cases of plasticity 

with and without strain hardening, only the case with strain hardening is 

studied here. 

Results 

The perforated plate problem considers a plate with a center hole under 

uniform tension as shown in Figure 8.2. Due to the symmetric characteristics 

of the geometry and loading, only one eighth of the plate is modeled. 

Increments of load equal to 0.1 of the load at first yield were used. 

The plastic zones at these loading steos are presented in Figure 8.3, which 

are in good agreement with resics obtained by Zienkiewicz et al. . who use 

constant strain triangle with an initial stress' finite element atroach. 
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8.2 

Deflection under One L 	 hick Pinched Cylinder Problem


(c0.094 in.) 

Present 
mesh	 diso.	 (in.)

Henâheil et al 
mesh	 disp.	 (in.)

Cantin 
mesh

& Clough 
diso.	 (in.) 

1	 X	 14	 0.1180 1 X 1 0.1166 1	 X	 3 0.0297 

1	 x	 8	 0.11813 2 X-2 0.1111 2 X 5 0.0780 

3 x 3 0.1049 1	 X 7 0.0987 

U X 14 0.1170 2 X 7 0.1002 

5X5 0.1173 3X49 0.1128 

6 x 6 0.1174 

Table 8.3 

Deflection Under One Load for Thin Pinched Cylinder Problem 

(tz0.015146 jr.) 

Analytical	 Present 

disp.	 (in.)	 mesh	 disp.	 (in.)
Ashwell & Sabir 

mesh	 diso.	 (in.) 

0.02439	 1	 X 14	 0.023516 1 X U 0.02403 

x 8	 0.024891 1 x 8 0.02406 

2 x 8	 0.024315 2 x 4 0.02409 

2 X 8 0.02414 

3 x 14 0.024!4 

3 x 8 0.02418 

8 8 0.021431
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__ I 

36mm

20 mm 

-	 1	 1 
Aluminum alloy 57S 

E	 7000 kg/rrmi 

0.2 

y	
214 . 3 kg/mm 

p	 S /2i	 (i—a )/2i 0	 y	 3y 

3 140129x10	 - 
-	 3 -	 1 do 

He	 f (P) =
de 

11.28983 

Figure 8.2 Perforated Tension Strip 
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The calculated total strains are compared with the experimental results 

from Theokaris and .arketos (. 1 3] and other finite element solutions [14.16} as 

shown in Figure 8.4. it can be seen that the soluticns frcm present methcd 

agree well with others. 

8.2.9 Consideration of' Low to Zero Strain ardenin g Problem 

The present stress-based hybrid formulation provides a more 

accurate representation of the stress and the strain than the displacement 

based method, yet the formulation breaks down for certain classes of material 

behavior. For elastic perfectly plastic material, or for anon-linear 

hardening material where the tangent modulus beccthes very small, the stress 

based method, in the present variational formulation, is incapable of 

correctly modeling the solid. Likewise, for elastically incompressible 

materials, the stress based method, in the present form, breaks down. 

The magnitude of plastic strain in the endochronic theory was 

expressed in terms of the strain increment as 

d	 : dc
	 (8.41) 

To express the magnitude of plastic strain in terms of the stress increment, 

one may, through, a simple substitution, note

(8.42) + dE) 

dS 
1	 - - . - + - 
C-	 2	 C 

or

(C-i)2u (J : dS) 

which gives the plastic strain as 

(N : dS) !

(8.143) 

(314) 

If Ci.O, then for the p lastic strain to reriain finite the stress inrener.: 

must b cr:oonai co the r.o:'	 c' the y ield surface. 
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Figure 8.4 Develo pment of Maximum Strain Point of First Yield 
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'I. .dS. 1]	 ii 
Lim (C-i) 
C-'o

(8.47) 

N	 dS	 0
	

(8.146) 

In the limit as C tends to 1.0, the hybrid finite element formulation will no 

be feasible due to the inability of a computer co numerically evaluate the 

limit of

For values of C that are close to 1.0, as is the case when a material is in 

the range of strain hardening where the rate of hardening is such that the 

stress strain curve is nearly horizontal, numerical difficulties will occur. 

In order to avoid numerical difficulties when C is approximately 

1.0, the variational statement should be reformulated by introducing a new 

field variable for the magnitude of plastic strain, dç. The magnitude of 

plastic strain is related to the deviatoric stress increment through 

(C)2	
J : dS	 (8.148) 

The total strain is given by 

d	 d	 + de d	 + dç!'J	 (8.149) 

where the increment of plastic strain is ex pressed in terms of a normal to the 

yield surface with ma gnitude d. Ex pressed this way, the compatibility 

equation becomes, assuming that" the constitutive equationis-satisfied a 

priori, 

	

du. .	
+	 x	

(dc:I)I + dç N 

	

L,J	 2	 (3x +

or

(8.50a) 

fl 
. 50b  du. .	 S	 dc	 + d U. 

ijkz	 k2.	 -J

with
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1 (C-1) 2u	 (N : dS)
	

(8.51) 

(N : d) 

When C1.0, the stress increment must be orthogonal to the yield surface, an--' 

the magnitude of plastic strain is no longer coupled to the trace of the 

stress increment with the normal to the yield surface. Instead, the magnitude 

of plastic strain is determined from the compatibility condition. The 

magnitude of plastic strain will become an undetermined parameter to be 

resolved at the global level-. 

8.2.10 Weak Form 

For the incremental formulation, the finite change in magnitude of 

plastic strain, Ll r, must be considered. The weak form for the magnitude of 

plastic strain is expressed by using a weighting function Ah of the same class 

as A. The weak form becomes: 

r	 T {	 (C-1)2u - N : Aa} d dv	 0
	

(8.52) 

mV
m 

The compatibility condition may still be expressed in weak form through the 

use of the weighting function	 The weak form of the compatibilityIj
 condition becomes:

N.	
i 

. - AU. .} 6c. . dV	 0 f	 [Se 	 kk9.+ T Ac ii	 1J	 i 

mV
in

(8.53) 

Applying Green's theorem, the combined weak form may be expressed by ccrnbining 

the weak form for compatibility and plastic strain with the weak form for 

equilibrium (8.16), and traction boundary condition (8.5,8.7) as: 

E r	 - S'.	 ,	 + f	 ...... 
LJZ	 U	 v	 U 

Sc.. d 	 +	 u. 1	 ,Aa..dV	 5... dS	 (6.5L) 

V	
-J	 V	 -j	

S 
in	 in	 a 

+ f	 Af. 6u. dV + i Ac((C-)2ii - N.a .) d d7	 0 
V 

in
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H	 :j	 A2u(C-1)T1\ dv 
-.zlcl	 k 

m

(8.57c) 

3.2.11 Discrete Weak Form 

In the stress-based method, the stress increment.	 . J ... was 
defined throu gh a set of pol ynomial basis function, P1. . , and unde-rmined -	 - 

stress parameters	 Likewise, the change in magnitude to plastic 

strain	 , was defined througha set of polynomial bases functions,Ak, and 

undetermined parameters Ack. The test function, 'Sc, may be defined through 

the sane basis functions. 

k 
A 
k

-	 (8.55) 

'Sc

Using the same basis functions for the stress and dis p lacement, as 
was used in the hybrid method, a three field variational statement was 

formulated. After substitution of 

Ac	 2. AakAk,	 Ac. .	 A. •. A3 ,	 Au	 4	 (8.56) 
U	 jn n	 n	 n9.  

lSczkAk,	 'Sc. .	 A. . 'SB ,	 5u	 z 4)
	
6q 

91 U	 ijfl fl	 fl	 n2. 

and defining the matrices 

33	
A•Sj	 Ak2.n dV 

M 

H	 J.	 T A N. A. .	 dV k ij Un

(8.57a) 

(8.57b) 

U

(8.57d) 

	

Gf	 .	 . A..	 dv 

	

V	
19.,J	 Ujfl 

m 

where
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H_ 	 AS 
-	 cic cS -

(8.61) 

1]
	 (8.58) 

jj 

The combined weak form may be expressed as: 

	

- 68TH AS + 68TGA -	 TH Ac - 6TH Aci +	 ( 8.59) 
— S3 —	 --	 —ciS 

	

5 + ASG6C	 ATT6O + AF
T
 6C3

—a3 —	 --	 - -	 - - 

The following system of algebraic equations results for arbitrary 6a, 

and 6c.

-H.	 -H	 C	 AS	 0 

	

-	 - 

-H	 H	 0	 Aa	 0	 (8.60) 
—cLS

	

0	 0	 Ac 

As in the stress-based hybrid method, the parameters Aa and AS may be 

eliminated at the element level. This reduction is possible because the 

parameters for stress and magnitude of plastic strain were defined in such a 

way that no coupling occurred between elements. When H 	 is non-singular one 

may express Aa in terms of AS as 

Substitution then allows AS to be expressed in terms of the displacement as 

(8.62) H	 H ) AS + GAo	 0 
¼ -SS	 -aS -cia =as	 -	 - -	 - 

or

AS + G Ac
	 0.6-) 
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T 
! G I - C Lc	 .T+ A F 

m

(8.6L1) 

For non-singular H the usual hybrid stiffness matrix results aric may be 

assembled and solved as a system of algebraic equations. 

When the material is in the fully plastic range, the orthogonality 

constraint prevents the inversion of H 	 due to its singular form. 

In the event that H	 is singular.	 is retained as a global 

variable and solved for as an unknown parameters at the global level. While 

for a single element H	 may be singular, the global system of equations will 
CL CL 

be non-singular if proper boundary conditions are a pplied. The number of 

stress parameters at the global level may still be reduced provided H 	 is 

non-singular. 

Since the incompressibility constraint arose as a limit condition, 

all elements would not be expected to behave in an incompressible manner. 

substantial savings can be made if the decision to reduce or retain the 

parameters for the magnitude of plastic strain is made for each element. The 

criteria used to determine if an element should be reduced may be based upon 

the value of C at each Gauss point in the element. 

By setting up the element variational statement for an element, as 

in equation (8.60), the matrix may be partitioned into reducible degrees of 

freedom and non-reducible degrees of freedom. Employing a standard 

substructure algorithm {18,19] allows one to reduce the unnecessary parameters 

while mapping the recuired parameters and reduced stiffness terms to glcbai. 

Likewise, once the global parameters have been determined, the back 

substitution to find the reduced degrees of freedom may be im plemented through 

a standard substructure algorithm. 

8.2.12 Considerations for Finite Deformation 

Rigorous and consistent formulations for numerical anal y sis of 

elastic-plastic large strain problems have become necessary due to the 

increased importance in recent years of analyzing problems such as metal 

forming processes, ductile fracture initiation and stable crack growth in 

cracked bodies, etc. Indeed several such formulations, and a pplications of 

the same, have appeared in recent literature. P.mcng these can be cited :h 

works of: Hiboit,Marcal and Rice [20], whc use a total Larangean (IL,' 
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formulation; Needleman and T'íergaard [21,221 and Hucchinson (23), whoalso use 

a TL formulation using convected oordinates; Yamada,ec al. [2] who use an 

updated Lagrange-a n (UL) formulation; Oasias [25], who uses an UL scheme which. 

due to the use of an elastic- plastic race constitutive law that does .not admit 

to a potendal, leads to non-symmetric stiffnesses through a Galerkin scheme: 

McMeeking and Rice [26], who also use an UL scheme, which throu g h the use of a 

rate constitutive law with a potential leads to symmetric stiffnesses; and 

r'1emat-Nasser and Taya [27], whose formulation re presents a modification of 

that in Ref. [26] to improve-the accuracy in the case of large deformation of 

compressible materials. All of these rate formulations [20-271 are based on 

the principle of virtual work, or its variant, a variational principle due to 

Hill [281. Thus, all the above works are based on assumed displacement type 

finite element methods. 

A stress-based hybrid formulation for the analysis of finite 

deformation problems was presented by Atluri [29] at early 1970's. Later a 

series of research works on using hybrid formulation based on complementary 

energy principle or its rate form were done by Atluri and his colleagues [30-

63]. The problem of determining suitable stress modes for hybrid or mixed 
formulations in the finite' strain analysis has also been investigated by 

Atluri etc., and guidances and recommendations to choose those stress modes 

which will result in stable, invariant and least order elements were reported 

[64-671. The endochronic theory which has its. superior constitutive modeling 

capability, in cross-hardening, cyclic hardening and initial strain problems, 

over the classical theory has been successfully im p lemented into hybrid finite 

element method for finite deformation analysis by Atluri et al. [68-77]. 

For finite deformation analysis, a rate form stress-based hybrid 

formulation cn be found in [37]. This formulation, based on the Hellinger-

Reissner princiole with total Larangean aporoach, can be imDiemented into any 

existing finite element program. 

The weak form 
of 

th i s stress-based hybrid r,ormulation can be 

represented as:
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Au.	 . Ac1 
I

(8.63) 

a	 I [	 - s.	 u.	 u. . +	 S.. (au . +u,	 .u. 
-rn .	 il<	 j,k	 J,i	 2	 U	 L,J	 •J,L	 k(,1	 tZ.J 

- 1 C. .	 AS. . AS ;	 dJ 
2 IJk2	 i

(865) 

6	 0N+1 bAu dV	 .1	 tAU dS - .1 (Si<FJkAuii) dV 

+-	
(U	 + Uki u)] • AS 1 dV} 

where

sij 	 second Kitchhoff stress 

- : incremental second Kirchhoff stress 

Ij
	 Green-Lagrange strain tensor at state N 	 (8.66) 

ij
	 deformation gradient tensor 

b	 : body force per unit mass 

The incremental second Kirchhoff stresses within an element were 

re presented as a sumration of polynomial stress modes, A, jm , with undetermined 

parameters As; 

AS. -
	 (8.67) 

1J.	 Urn	 m 

The dspiaceens were interpolated from the nodal values, Aq , . and he 

standard tsoparae:ric shape functions, lJ• as: 

The same form of pol y nc•mial stress modes and interpolation £ur.ciOnS 	 be 

used fcr che :=s t functions 33 :, and 6. , respectiveL'i. 
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Substicute these discrete forms into the weak form (8.65) and rearrange 

terms, the following mat-ix form can be obcained, 

-	 H SB + c. < 5	 + 5sG c ^ 5 G Sc

(8.69) 

where

H	 zfC..	 Ps..	 .	 dV 
1jk9. 

A i ; m Zn 

K	 f S. 1.	 i.	 . dv 
ik jZ.,k jfl,]. 

I Ajjr(.j + 1 Jki + 'kn jkr	
dV	 (3.70)

 lbR 	 f S. E.,. 	 . dV 
—e	 ik J Jk,]. 

	

N	 1 N	 N	 N	 N 
R	 I	 2	

U	 .^ u. . + u	 u	 )]A . . dv 
—c	 i,j	 j,i	 k. k,j	 ijm 

	

N+1 b. 
lj.	 dV ^ I	 cis

	

v 
°	

S
a 

For arbitrary 53, one must satisfy 

_+ c	
(3.71) 

Thus, 3 may be expressed in t e rms of dis p lacement for the element as 

B	 P(G a - R e,)
	

(8.72) 
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For arbitrar y SAq , then one must have at gLobal level 

! (K 6a + cT3	 (	 + Q)
	

(8.73) 

	

m -	 - 

or

C T H	 G) 6rj	 (GT1	
c	

A)	 (8-74) 

Then the final solutions can - be obtained by the similar iterative scheme used 

for the elasto-plastic analysis presented in previous sections. 

8.2.13 Considerations for Thermal Loading 

In general, for structural analysis with large temperature change, 

the thermal effect is im portant and can not be ignored. The stress-based 

hybrid formulation presented in previous sections includes mechanical loading 

only. However, this formulation can easily be extended to account for thermal 

loading as well. The necessary modifications for the consideration of thermal 

loading are present as follows. 

With the consideration of thermal loading, the total strain 

components can be separated into three parts, 

E. e + c. t: +	 (8.75) 

	

ii	 Li	 ii	 ii 

where	 and	 are elastic and plast i c strain ccmtonents due to mechanical 

	

1]	 U 

loading respectively and E	 are thermal strains which can be shown as 

1\ 
&. .K(T - T )	

0 76 

	

1J	 12	 0 

where	 is Kronecker delta,	 is the linear coefficient of the:'rnal expansion 

of the material, T is the prescribed temoerature and T o is the reference 

temperature.
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Then the new modified weak form is 

f	 f[s. . 	 u. .	 ...} dv 
m v	 jk2.	 k9.	 2	 1.3	 j,i	 13	 U 

fl 

	

+ I (Ao..n. - T.)5udS + J	 dS	 (8.77) 

S	 "'	 -.	 S

a 

+ f (a.. . + Af1j5u i . dV	 0 

	

13,3	 .- 

m 

After substitutions of the discreced form of the trial and best functions as 

those used in section 8.2, one may express the new matrix form as: 

	

- A3" H 69 + ACT G da + So G	
tT6 + AT  . + AFT 6C	 (8.78) 

where

At	
j.	 A..dV	 (8.79) 

For arbitrary 66, we can get the form 

 -HAB+GAAF	 (o.80) 

Thus, As may be ex p ressed in terms of Aa as 

AS	 H(GAa - AEt)	 (8.81) 

For arbitrary 6c, the final global form can be obtained as 

GTAS	 AT + AF	 (8.82) 

or

GTp_it +	 . .E	 (E.83. 
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VALIDATION CASE I 

TITLE:	 Static Analysis of Cantilever Beam 

PROBLEM:	 A Cantilever beam is Subjected to correlated point loads. 
Determine the probabilistic distributions of the tip displacement. 

TYPE:	 Static, correlated loading 

RESPONSES: Tip displacement 

FEM MODEL: NESSUS element type 98 - Two-node Ti moshenko beam element Number of elements = 20 
Number of nodes = 21 (6	 per node) Boundary conditions: Two base springs 

Figure V1-1 

rw 

(2 * Pi * Li**2 * (3*L - Li) + Pi * Li * L / K) 
1 to 5) 

ith load 
Youngs modulus 
Total Length 
Distance from the fixed end to Pi 

Base spring constant 

ANALYTICAL MODEL: 

Analytical Solution: 

Tip displacement = Sum 
(i 

where Pi 
E= 
L= 
Li

Reference: PSAM 1st Annual Report, Vol. III, 1985 
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VALIDATION CASE i. (Continued) 

DEFINITION OF RANDOM/DETERMINIS TIC VARIABLES 
Number of Random Variables = 10 

Variables Distribution Median	 '	 Coef. of Vari 

Correlated Loads 
P1 to P5* Normal 20 lb	 (mean) 107. 

Youngs Modulus, Lognormal I0E+06 psi 37. 

Length Lognormal ' in 20 57. 

Thickness Lognormal 0.98 in 57. 

Width Lognormal 1.0	 in 57. 
Base Spring Lognormal 1E+05 lb-in/rad 57.

*Note: Correlation coefficients = exp-Distance between loads/20) 

NESSUS CONVERGENCE/PERTURBATION SETTINGS 
1. Convergence Limit: 

Max. number of iterations allowed:	 25 
Max. allowable rel. error in the residuals: 	 0.001 
Max. allowable abs. error in the residuals:	 Inactive 
Max. allowable,rel. ' error in the r.m.s. of displacement:	 Inactive 
Max. allowable rel. error in the r.m.s of strain energy: Inactive 

2. Perturbation Range: 
+o.o(:'l standard deviation for length. 
+0.1 standard deviations for the remaining independent random var: 

SOLUTION COMPARISON: 
1. Deterministic solution using mean values of random variables: 

(node 21 component 7)

Tip Displacement 

Theory	 0.4032 in 

NESSUS	 0.3969 in 

Difference	 1.57. 
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VALIDATION CASE 1 (Continued) 

2. Probabilistic solutjons ' at selected p robabilistic levels: 
Theory: Monte Carlo solution (sample si z e = 1o.00(:)) 
NESSUS: Mean-Value-First-Order (MVFO) solution 

Advanced MVFO solution 
First iteration solution 

(See Fiqure 2) 

REMARKS: 

1. The perturbation range for the length must be small enough, otherwise the 
perturbation solutions may diverge. 

2. For the probabilistic solution, a calibrated 'exact solution is derived 
by dividing the theoretical displacement by a factor of 1.0157. This 
factor is the ratio of the theoretical solution to the NESSUS solution, 
both computed at the mean values. 

3. The output of the NESSUS code does not include stresses (moments are 
the standard output). • The validation of the root stress is included-
in validation case 2 which employs plate element. 

Figure V1-2 

TIP DISPLACEMENT (CASE 1) 

0.4	 0.5	 0.6	 0.7	 0.8 

Displacement (in.) 
"EXACT"	 • MVFO	 A ADV. AVF0 

X 1ST ITERATION	 -- CAUBRATED EXACT 
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VALIDATION CASE 2 

TITLE:	 Static Analysis of Cantilever Plate 

PROBLEM:	 A cantilever plate is subjected to correlated point loads. 
Determine the probabilistic distributions of the tip 
displacement and the root stress. 

TYPE:	 Static correlated loading 

RESPONSES: Tip displacement and root stress 

FEM MODEL: NESSUS element type 75 - Four-node shell element 
Number of elements = 20 
Number of nodes = 42 (6 degrees-of-freedom per node) 
Boundary conditions: Two base springs 

Figure V2-1 

9

ANALYTICAL MODEL: 

Analytical Solution: 

Tip displacement = Sum (2 * P1 * Li**2 * (3*L - Li) + Pi * Li * L / I 
(i = 1 to 5) 

where Pi = ith load.('loads are partially correlated) 
E = Youngs modulus 
L = Total Length 
Li	 Distance from the fixed end to Pi 
K = Base spring constant 

Reference: FSAM 1st Annual Report. Vol. III 1985 
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NESSUS CONVERGENCE/PERTURBAT 
1. Convergence Limit: 

Max. number of iterations 
Max. allowable rel. error 
Max. allowable abs. error 
Max. allowable rel. error 
Max. allowable rel. error 

2. Perturbation Range:

ION 

al 
in 
in 
in 
in 

VALIDATION CASE 2 (Continued) 

DEFINITION OF RANDOM/DETERMINISTIC VARIABLES 
Number of Random Variables = 10 

Variables Distribution Median	 Coef. of Variation 

Correlated Loads. 
P1 to P5* Normal 0.1	 lb	 (mean) 107. 
Youngs Modulus Lognormal I0E+06 
Length Lognormal 20 in 
Thickness Lognormal 0.1	 in 57. 
Width Lognormal 1.0 in 57. 
Base Spring Lognormal IE+05 lb-jn/rad 57.

*Note: Correlation coefficients = expC-Distance between loads/20)


SETTINGS 

lowed:	 8 
the residuals:	 0.001 
the residuals:	 Inactive. 
the r.m.s. of displacement: Inactive 
the r.m.s of strain energy: Inactive 

+0.01 standard deviations for the length and the width. 
+0.1 standard deviations for the remaining independent random variables. 

SOLUTION COMPARISON: 
1. Deterministic solution using mean values of random variables: 

(node 21. component 3)

Tip Displacement	 Root Stress 

Theory	 0.7648 in	 3600 psi 

NESSUS	 0.7692 in	 3657 psi 

Difference	 0.57.	 1.67. 
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VALIDATION CASE 2 (Continued) 

Probabilistic solutions at selected probabilistic levels: 
Theory: Monte Carlo solution (sample size = 1 00 `000) 
NESSUS: Mean-Value--FirStO rder (MVFO) solution 

Advanced MVFO solution 
First iteration solution 

(See Figures 2 and 3 for comparison) 

REMARKS: 

1. The perturbation range for the length and the width must be small 
enough otherwise the perturbation solutions may diverge. 

2. For the probabilistic solution of stress (see Figure 3) a çalibra 
exact' solution was derived by dividing the theoretical stresses by a 
of 0.982. This factor is the ratio of the theoretical solution to thE 
NESSUS solution ., both computed at the mean values. 

2.
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VALIDATION CASE 2 (Continued) 


Figure V2-2 

Tip Oi5plocemerit 

0.7	 0.9	 1.1	 1.3	 1.5	 1.7 

Displacement (in.) 
- Monte Carlo(100000)	 0 M'0 

ADV. M'O	 X 151 ITERAT!ON 

Figure V2-3 
Root Stress 

3.4	 3.8	 4.2	 4.6	 5	 5.4	 5.8	 6.2	 6.6

(Thousands)

Stress (p&.) 

Monte Corio(100000)	 MVFO	 A ADV. MVFO 
)< 1ST ITERA11ON	 _B._ CUBRATED EXACT 
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VALIDATION CASE 3 

TITLE:	 Eigenvalue Analysis of Cantilever Beam 

PROBLEM:	 Determine the probabilistic distribution of the 
natural frequency 

TYPE:	 Natural Frequency 

RESPONSES: First three modal frequencies in two directions 

FEM MODEL: NESSUS element type 98 - Two-node Timoshenko beam element 
Number of elements = 20 
Number of nodes = 21 (6 degrees-of-freedom per node) 
Boundary conditions: Cantilever 

Figure V3-1.	 FEM model

ANALYTICAL SOLUTION: 

Frequencies (for both Z and X directions) 

= Ci * SORT '(E*I/(r*w*t*L**4 

where E = modulus 
I = moment of inertia = w*t**3/12 
r = mass density (per unit volume) 
w = width 
t = thickness 
L = length 
i = mode number 
Cl = 3.52 C2 = 22.4. C3 = 61.7 

Reference: Harris & Crede (Editors), Shock and Vibration Handbook, 3' 
F'SAM 1st Annual Report, Vol. III, 1985 
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VALIDATION CASE 3 (Continued) 

DEFINITION OF RANDOM/DETERMINISTIC VARIABLES 
Number of Random Variables = 5 

Variables Distribution Median	 Coef. of Variation 

Youngs Modulus Lognormal. IOE±06 psi 3 y. 
Length Lognormal 20 in 57. 
Thickness* Lognormal 0.98 in 57 
Width* Lognormal 1.0	 in y. 
Density Lognormal 2.5E-4 lb-sec/in 57. 

*Note: See Figure V3-1- - 

NESSUS CONVERGENCE/PERTURBATION SETTINGS 
1. Convergence Limit: 

Max. number of iterations allowed:	 2o 
Max. allowable rel. error:	 0.01 

2. Perturbation Range: 
+0.001 standard deviation for length. 
+0.1 standard deviations for the remaining random variables. 

SOLUTION COMPARISON: 
1. Deterministic solution using mean values of random variables: 

Mode Theory NESSUS 7. Difference . Comments 

1 497.9 496.7 0.2 1st mode in Z	 Dir. 
2 508.1 506.8 0.2 1st mode in X	 Dir. 
3 3168.5 3099.8 2.2 2nd mode in Z	 Dir. 
4 3233.2 3161.5 2.2 2nd mode in X	 Dir. 
5 8727.5 8640.9 1.0 3rd mode in 2 Dir. 
6 8905.6 8807.6 1.1 3rd mode in X Dir.
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VALIDATION CASE 3 (Continued) 

2. Perturbation Solutions (about mean values) 

Vib. Perturbed E L t r Freq.;F Sradient (dF/dX) Percent 
Node Variable I --	 -	 - Theory ?ESSUS Theory NESSUS Diff.  

I Mean 1.000E+07 20.000 0.9800 1.000 2.500E-04 497.9 496.7 
1 E 1.003E+07 498.7 497.4 2.5€-05 2.5E-05 0.3 
1 1 20.001 497.9 496.6 -5.OE+01 -4.8E+01 2.9 
1 t 0.9849 500.4 499.1 5.1E+02 5.IE+02 0.3 
1 N 1.005 497.9 496.7 0.0E+00 0.OE+00 0.0 
I r 2.513E04 496.7 495.4 9.9E+05 9.9E+05 0.0 

2 Mean 1.000E+07 20.000 0.9800 1.000 2.500E-04 508.1 506.8 
2 E 1.003E+07 508.8 507.5 2.5E-05 2.5€-05 0.2 
2 L 20.001 508.0 506.7 -5.IE+01 -5.0E+01 0.9 
2 t 0.9849 508.1 506.8 0.OE+00 0.0€+00 0.0 
2 w 1.005 510.6 509.3 5.1E+02 5.IE+02 0.4 
2 r 2.513E-04 506.8 505.5 -1.OE+06 -1.0E+06 -0.0	 - 

3 Mean 1.000€+07 20.000 0.9800 1.000 2.500E-04 3168.5 3099.8 
3 E 1.003E+07 3173.2 3104.4 1.6E-04 1.5E-04 2.2 
3 1 20.001 3168.2 3099.5 -3.2E+02 -3. OE+02 3.8 
3 t 0.9849 3184.3 3115.0 3.2E+03 3.IE+03 4.2 
3 w 1.005 3168.5 3099.8 O.OE+00 0.0€+00 0.0 
3 r 2.513E-44 3160.6 3092.0 6.3E+06 -6.2E+06 1.9 

4 Mean 1.000E+01 20.000 0.9800 1.000 2.500E-04 3233.2 3161.5 
4 E 1.O0.3t+07 3238.0 3166.3 1.6E-04 1.6E-04 2.3 
4 1 20.001 3232.8 3161.2 -3.2E+02 -3.IE+02 3.6 
4 t 03849 3233.2 3161.5 0.0€+00 O.OE+00 0.0 
4 w 1.005 3249.3 3177.0 3.2€+03 3.IE+03 4.3 
4 r 2.513€04 3225.1 3153.6 6.4E+06 6.3E+06 2.0 

5 Mean 1.000E+07 20.000 0.9800 1.000 2.500E-04 8727.5 8640.9 
5 E 1.003E+07 8740.6 8653.9 4.4E-04 4.3E-04 1.0 
5 L 20.001 8726.6 8640.1 -8.7E+02 -8.4E+02 3.9 
5 t 0.9849 8771.2 8681.9 8.9E+03 8.4E+03 6.0 
5 w 1.005 8727.5 8640.9 0.O€+00 0.0E+00 0.0 
5 r 2.513€-04 8705:8 8619.3 -1.7E+07 -1.7E+07 0.7 

6 Mean 1.000E+07 20.000 0.9800 1.000 2.500E-04 8905.6 8807.6 
6 E 1.003E+07 8919.0 8820.8 4.4E-04 4.4E-04 1.1 
6 1 20.001 8904.7 8806.7 -8.9E+02 -8.5E+02 4.4 
6 t 0.9849 8905.6 8807.6 0.0E+00 0.OE+O0 0.0 
6 w 1.005 8950.2 8849.3 8.9E+03 8.3E+03 6.3 
6 r 2.513E-04 8883.4 8785.6 -1.8E+07 -1.8E+07 019
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VALIDATION CASE 3 (Continued) 

Probabilistic solutions for the first mode frequency at selected 
probabilistic levels: 

Theory: Exact CDF based on analytical solution 
Simulation: Monte Carlo (sample size = 
NES5US: Mean-Value-First-Order .(MVFO) solution 

Advanced MVFO solution 
First iteration solution 

(See Figure V3-2) 

REMARKS: 

1. The perturbation range for the width must be very small otherwise the 
perturbation solutions may diverge. 

2. The median width (1.0 in) and thickness (0.98 in) were deliberately 
chosen to be slightly different to validate the NESSUSS capability to 
identify near roots in eigenvalue analysis. 

Figure V3-2	 CDF of First Mode Natural Frequency 

200	 240	 280	 320	 360	 400	 440	 480 

FREQUENCY (Rod/Sac) 
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VALIDATION CASE 5 

TITLE:	 Rotating Beam (plate elements) 

PROBLEM:	 Determine the probabilistic distributions of the 
first bending natural frequency and the tip displacement 
of a rotating beam 

TYPE:	 Centrifugal loading and stress stiffening effects 

RESPONSES: First bending frequency and tip displacement 

FEM MODEL: NESSUS element type 75 - Four-node shell element 
Number of elements = 40 
Number of nodes = 55 (6 degrees-of-freedom per node) 
Boundary condition: cantilevered 

Figure VS-i. Sketch and FEM model 

ANALYTICAL SOLUTION: 

Assumed first bending mode shape: (x**4 -4*L*x**3 + *L**2*x**2)/L** 

Frequency = SORT ( 1.0384 * E * t**2 / (r*L**4) + (1.173+./L) * f*: 

Tip displacement = r * (f**2) * (1**3) * (1 + Ri/L) / (3..*E) 

where	 E = modulus 
r = mass density 
w = width 
t = thickness 
L = length 
I = rotating frequency = 400 rad/sec 
Ri inside radius = 4.237 in. 
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VALIDATION CASE 5 (Continued) 

DEFINITION OF RANDOM/DETERMINISTIC VARIABLES 
Number of Random Variables = 5 

Variables Distribution	 Median	 Coef. of Variation 

Youngs Modulus Lognormal 29E-s-06 psi lOX 
Length Lognormal 3.844 in 5% 
Thickness Lognormal 0.0416 in 
Width Lognormal 1.424	 in 
Density Lognormal 9E-4 lbsec 2/jn 5% 
Rotating Frequency Fixed 400 rad/sec 
Radius Ri* -Fixed 4.237

*Note: see Figure V5-1 

NESSUS CONVERGENCE/PERTURBATION SETTINGS (NESSUS 2.5) 
1. Modal extraction: 

*MODAL	 3	 0	 1 
2. Convergence criteria: 

Increment 0: 
*ITER	 0	 5 

20	 1.E-04 
Increment 1: 
*ITER	 0	 5 

20	 1.E-06 
3. Perturbation Settings: 

+0.001 standard deviation for length. 
+0.1 standard deviations for the remaining random variables. 

SOLUTION COMPARISON: 
1. Deterministic solutions using the mean values of random variables: 

Table VS-i Comparisons of the deterministic solutions 

	

Theory	 NESSUS	 NESSUS1Theor-y 

	

Frequency	 853.0	 862.4	 1.01 

Tip displacement	 2.4945E-4	 2.4797E-4	 0.994 
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VALIDATION CASE 5 (Continued) 

2. Probabilistic solutions for the frequency and the displacement 
at selected probabilistic levels: 

Simulation: Monte Carlo (sample size 	 500000) 
NESSUS: Mean-Value-First-Order (MVFO) solution 

Advanced MVFO solution 
First iteration solution 

	

-	 (See Figures V5-2 and V5-3) 

	

REMARKS:	 Date: 10/16/87	 NESSUS 2.5 

1. The selection of the perturbation range for the length is very cri. 
as illustrated in the following table: 

Perturbation range	 Results 

+1.0	 std.	 No solution (instability) 
+0.1	 std.	 I Incorrect solution (frequency decreast 
+0.001 std.	 Correct solution 

The NESSUS eigenvalue perturbation algorithm needs to be reviewed. 

2. The'adjusted' exact curves in Figures V5-2 and V5-3 are defined u 
the ratios of the NESSUS mean solutions to the theoretical mean 
solutions. (see Table V5-1)
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VALIDATION CASE . 5 (Continued)


Figure V5-2 First Bending Frequency 
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VALIDATION CASE 6 

TITLE:	 Elgenvalue Analysis of Twisted Cantilever Plate 

PROBLEM:	 Determine the probabilistic distribution of the 
natural frequencies 

TYPE:	 Natural Frequency 

RESPONSES: First bendin g and torsional modal frequencies 

FEM MODEL: NESSUS element ty pe 75 - Four-node shell element 
Number of elements = 192 
Number of nodes = 225 (6 degrees-of-freedom per node) 
Boundary conditions: Cantilever 

Figure I. Sketch and FEM model 
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VALIDATION CASE 6 (Contin(ed) 

FigLtre 2. First 
bending and torsion mode 
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VALIDATION CASE 6 (Continued) 

ANALYTICAL SOLUTION:. 

First bending frequency (use flat plate solution) 

3.31 *

 

SORT 

where E = modulus 
r	 mass density (per unit volume) 
h = thickness 
L = length 
v = Poisson's ratio 

First torsional frequency: not available 

Experimental results: see Reference 

Reference: Macbain J. C. Kielb, R. E. &Leissa A. W., "Vibrations 
Twisted Cantilevered Plates - Experimental Investigation" 
29th International Gas Turbine Conference s Amsterdam The 
Nether-land, 1984. ASME paper 84-GT-96	 - 

DEFINITION OF RANDOM/DETERMINISTIC VARIABLES 
Number of Random Variables = 

Variables Distribution Median	 Coef. of Van, 

Youngs Modulus Lognormal 10.34E+06 psi 37. Thickness Lognormal 0.1	 in 5/. Density Lognormal 2.61E-4 lb-sec/in 57. Twisted Angle Deterministic 45 degrees - 
Length Deterministic 6 in - 
Width Deterministic 20 in - 
Poisson's ratio Deterministic 0.3 -

NESSUS CONVERGENCE/PERTURBATION SETTINGS 
1. Convergence Limit: 

Max. number of iterations allowed: 	 30 
Max. allowable rel. error:	 0.001 

2. Perturbation Range:	 - 
+()j standard deviations for all the random variables. 
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VALIDATION CASE ' 6 (Continued)

Figure 3 

1 t Bending Fruery 
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G NESSUS WVF0	 X NESSUS Aói. WU 

Figure 4 
lzt Tcrw Frequency 
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0 NESSUS MVFO	 X NESSUS Adw. UWO 
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VALIDATION CASE 6 (Continued) 

SOLUTION COMPARISON: 
1. Deterministic solution using mean values of random variables: 

Mode	 Experiment	 NESSUS	 Y. Difference 

Bending	 55.8	 572.4	 3.3 
Torsion '	 4718.2	 4933.1	 4.5 

2. Probabilistic solutions for the first bending frequency at selectei 
probabilistic levels: 

Theory: Exact CDF based on analytical solution. 
NESSUS: Mean-Value-First-Order (MVFO) solution 

Advanced MVFO solution 
(See Figure 3 for comparison) 

Probabilistic solutions for the first torsior frequency at selecte 
probabilistic levels:  

Exact: Only 50 ' % probability level experiment result availal 
NESSUS: Mean-Value-First-Order (MVFO) solution 

Advanced MVFO solution 
(See Figure 4) 

REMARKS: 
1. The analytical solution for the first bending mode was based on th€ 
flat. plate solution, therefore should be considered as approximate so: 
only. However, based on experimental investigation (see Ref.), the 
analytical solution predicts well for different thickness. 
2. For the first bending mode, a calibrated (or adjusted) 'exact' 
probabilistic solution was derived by multiplying the experimental re 
by a factor of 1.033. This factor is the ratio of the FEM solution s c 
at the mean values to the experimental result. 
3. For the first torsional mode, the analytical solution for the flat 
can not be used as an approximation because the experimental results 
do not follow the analytical solution. 
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VALIDATION CASE 7 

TITLE:	 Static Analysis of Simply Supported Plate 

PROBLEM:	 A simply supported rectangular plate is subjected to point 
loads. Determine the probabilistic distribution of the maximum 
(center) displacement. 

TYPE:	 Static, correlated loading (Multiple :ones) 

RESPONSES: Maximum displacement 

FEM MODEL: NESSUS element type 75 - Four-node shell element 
Number of elernents 100 
Number of nodes 121 (6 degrees-of-freedom per node) 
Boundary conditions: Simply supported 

Figure 1.	 FEM Model 

ANALYTICAL SOLUTION: 

Max. displacement	 48 * (1-v**2) I (pi**4 * E * t**3 *L**2) 

*[1574*(Pl+P2) + 2373*P3 + 676.6*P4 + 207.7*P6 + 16917*P7] 

where

	

	 E = modulus of elasticity 
v = Poisson's ratio 
t = thickness 
L = Length 

Reference: Timoshenko and Woinowsky-Krieger, Theory of Plates and Shells, 
2nd ed. pill
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NESSUS CONVERGENCE/PERTURBAT 
1. Convergence Limit: 

Max. number of iterations 
Max. allowable rel. error 
Max. allowable abs. error 
Max. allowable rel. error 
Max. allowable rel. error 

2. Perturbation Range:

[ON 

al 
in 
in 
in 
in 

VALIDATION CASE 7 (Continued) 

DEFINITION OF RANDOM/DETERMINISTIC VARIABLES 
Number of Random Variables (a) = 25 

Variables	 Distribution	 Mean	 Coef. of Var 

Correlated Loads 
P1(c) EVD(b) 15 lb iox 

P2(c) EVD 15	 lb 107. 
P3 to P6	 (d) Normal 10 lb iox 
P7 to P22 (e) Lognormal 2 lb 107. 
Young's Modulus Weibull 10.5E+06 psi 37. 
Poisson's ratio Lognormal 0.25 37. 
Thickness Lognormal 0.1	 in 57. 

Width Deterministic 10 in

Notes: 
(a) Number of independent random variables = 10 
(b) Type I extreme value distribution 
(C) Independent 
(d) Partially correlated with 

correlation coefficients = expC-Distance between loads/91 
(e) Fully correlated

SETTINGS 

lowed:	 100 

	

the residuals:	 0.015 

	

the residuals:	 15.0 
the r.m.s. of displacement: 0.002 
the r.m.s of strain energy: 0.002 

+0.1 standard deviations for all the independent random variables 

SOLUTION COMPARISON: 
1. Deterministic solution using mean values of random variables: 

(node 61; component 3)

Tip Displacement 

Theory	 0.05297 in 

NESSUS	 0.05493 in 

Difference	 3.77. 
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VALIDATION CASE 7 (Continued) 

2. Probabilistic solutions at selected probabilistic levels: 
Exact: Monte Carlo simulation (sample - size= 5(:)(--)q000) 

based on analytical solution 
NESSUS: Mean-Value--First-Order (MVFO) solution 

Advanced MVFO solution 
First iteration solution 

(See Figures 2 for comparison) 

REMARKS: 
1. For the probabilistic solution of displacement (Figure 2). a calibrated 
or adjusted exact' solution is derived by multiplying the'theoretical 
displacement by a factor of 1.036. This factor is the ratio of the 
theoretical solution to the NESSUS solution, both computed at the mean 
values of the random variables.

Figure 2. 

(Toodth.)

Dipocemt (in.) 

1 - UONTE(Size--OO,c*DO)	 * NESSUS ).4W0 
X NESSUS 1ST hER.	 12 - -•

NESSUS Áô.'. )4W0 
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VALIDATION CASE 9 

TITLE:	 Static Analysis of Cylindrical Shell 

PROBLEM:	 A cylindrical shell is subjected to correlated point loads 
Determine the probabilistic distribution of the maximum 
displacement. 

TYPE:	 Static, correlated loading 

RESPONSES: Displacement 

FEM MODEL: NESSUS element type 153 Four-node assumed strain axisymmet 
Number of elements = 50 	 - 
Number of nodes = 102 (2 degrees-of-freedom per node) 
Boundary condition : constrined z-direction displacement 

26 and 77 

Figure V9 - 1 

P	 D 

ANALYTICAL MODEL: 

Analytical Solution: See Reference 
Reference: Timoshenko and Woinowsky-Krieger, Theory of Plates and Sh 

2nd ed., pill 
-	 198



VALIDATION CASE 9 (Continued) 

DEFINITION OF R ANDOM/DETERMINISTIC VARIABLES 
Number of Random Variables = 8 

Variables Distribution Mean Coef.	 of Variation 

Correlated Loads, 
P1 to P5* Normal 1000 lb 
Young's Modulus Lognormal 29E+06 psi 3% 
Thickness Lognormal 0.1	 in 
Mean Radius Lognormal 2.5	 in 
Poisson's ratio Deterministic 0.3 07. 

*Note: Correlation coefficients = exp(-Distance between loads/0.2) 

NESSUS CONVERGENCE/PERTURBATION SETTINGS 
1. Convergence Limit: 

Max. number of iterations allowed: 120 
Max. allowable rel.	 error in the residuals: 0.02 
Max. allowable abs.	 error in the residuals: 20 
Max. allowable rel.	 error in the r.m.s.	 of displacement: 0101 
Max. allowable rel.	 error in the r.m.s	 of strain energy: 0.055 

2. Perturbation Range: -
+0.1 standard deviations for all the independent random variables. 

SOLUTION COMPARISON: 
1. Deterministic solution using mean values of random variables: 

Displacement 

Theory	 0.00797 in. 

NESSUS	 0.008145 in. 

Difference	 2.2 7. 

2. Probabilistic solutions at selected probabilistic levels: 
Theory: Monte Carlo solution (sample size = 500,000) 
NESSUS: Mean-Value-First-Order (MVFO) solution 

Advanced MVFO solution 
First iteration solution 

(See Figure V9-2)
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VALIDATION CASE 9 (Continued) 

REMARKS: 

1. The perturbation range was chosen as 0.1 standard deviation for 
each random variables. It was found that NESSUS/FEM solution required 
very tight convergence limits for generating accurate Young's modulus 
sensitivity data. Also it was found that this convergence problem ca 
be solved by increasing the perturbation range to 0.5 standard 

deviation. 

2. For the probabilistic solution (see Figure V9-2), a calibrated exa 
solution was derived by multiplying the theoretical solution by a fact 
of 1.02. This factor is the ratio of the NESSUS solution to the 
theoretical solution, both computed at the mean values. 

. Because thickness is not a standard input, it is necessary to provi 
thickness information in terms of the coordinates (i.e., inside and O.i 
radius). Also, the perturbation solution for the thickness must be obt 
by perturbing simultaneously the inside and the outside radius. 
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VALIDATION CASE 9 (Continued) 

Figure V9-2	 F'AESSUS Validation 
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VALIDATION CASE 10 

TITLE:	 Stress Concentration Analysis 

PROBLEM:	 Two U notches in a member of rectangular section. Determii 
the probabilistic distribution of the maximum stress. 

TYPE:	 Static loading 

RESPONSES: Maximum stress 

FEM MODEL: NESSUS element type 3 - Four-node plane stress element 
Number of elements = 117 
Number of nodes	 140 (2 degrees-of-freedom per node) 
Symmetry conditions along longitudinal axis of the member 
Symmetry conditions across the center of the member 
(one quarter of the member modeled) 
Constant tensile stress applied at the y = max. boundary 

Figure V10-1 

ANALYTICAL MODEL: 

Analytical Solution: See Reference 

Reference: R. J. Roark and W. C. Young Formulas for Stress and Stra 
page 590
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VALIDATION CASE 10 (Continued) 

DEFINITION OF RANDOM/DETERMINISTI C VARIABLES 
Number of Random Variables = 1 

Variables	 Distribution	 Mean	 Coef. of Variation 

Radius	 Case A. Lognormal	 2.4	 2 X 
Case B. Truncated Normal* 	 2.4	 2 X 

Load	 Deterministic	 8000 lb 
thickness	 Deterministic	 0.1 in 

*Note. Truncated at +/- 3 standard deviation (2.25 to 2.55) 

NESSUS CONVERGENCE/PERTURBATION SETTINGS 

1. Convergence Limit: 
Max. number of iterations allowed: 	 30 
Max. allowable rel. error in the residuals: 	 0.03 
Max. allowable abs. error in the residuals: 30.0 
Max. allowable rel. error in the r.m.s. of displacement: 0.05 
Max. allowable rel. error in the r.m.s of strain energy: 0.05 

2. Perturbation Range: 
+0.1 standard deviation 

SOLUTION COMPARISON: 

1. Deterministic solution using mean value of radius: 

Stress 

Theory	 3545.6 psi 

NESSUS	 3562.2 psi 

Difference	 0.57. 

2. Probabilistic solutions at selected probabilistic levels: 

Theory: 'Exact' CDF based on analytical'solution 
NESSUS: Mean-Value-First-Order (MVFJ) solution 

Advanced MVFO solution 
(See Figures 2 and 3 for comparison) 
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VALIDATION CASE 10 (Continued) 

REMARKS: 

1. For the probabilistic solution of stress (see Figures 2 and 3) a 
'calibrated exact' solution was derived by multiplying the theoretica. 
stresses by a factor of 1.005. This factor is the ratio of the 
theoretical solution to the NESSUS solution, both computed at the mear 
values. 

2. This validation problem involves only one random ''ariabl. In such 
case, the advanced MVFO solution will yield exact solution. Therefore 
the difference between the NESSUS solution and the exact solution is c 
to the finite element solution. However, the error is small (about 17. 

stress). 

;. Figure 3 is the result for the case where the radius has a truncate 
distribution. This is the reason the resulting probability distributic 
also is truncated.
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VALIDATION CASE 10 (Continued) 

Figure viO-2	 Case A (Lognormal) 
CDF OF STRESS 

+ FEU 

99. 

99 

-o 
0 

.0 
0

9 

5

3.5	 3.5	 3.7	 3.8 
(Tb ou8ondc) 
STRESS (psi) 

FEIM MVFO	 X Ccib. Exact(1.005) 

Figure v10-3	 Case B (Truncated Normal) 
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APPENDIX B 

A Stress-based Hybrid Finite Element Method for 


Computational Elasto-plaStiC Analysis, Using an Endochronic Theory 

Prof. Satya Atluri 
Mr. Tony Fitzgerald 

Georgia Institute of Technology 
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A STRESS-BASED HYBRID FINITE ELEMENT METHOD FOR 
COMPUTATIONAL ELASTO-PLASTIC ANALYSIS, USING AN ENDOCHRONIC THEORY 

INTRODUCTION 

In this section, the hybrid stress finite element will be formulated using 
the endochronjc theory. The iterative scheme for the 

solution of the nonlinear 
system of equations that results wiii be presented with the mid-point radial 
return algorithm used to improve the accuracy of the integrations. 

The motivation for the stress based element is predicated on the 
observa'tjon that the assumed-stress hybrid model has been demonstrated to give 
more accurate d isplacements and stress solutions than the conventional 
displacement model C,.l.]. Due to the more accurate stress solution, the use of 
the hybrid stress model for nonlinear problems, where the 

nonlinearity arises 
from the coupling of material behavior to the stress field, should result in a 
faster convergence. 

The use of the classical models of plasticity in a tangent stiffness 
approach have been reported by Yamada et al (B-21 and Luk (.3). Neyssen and 
Beckers CB•41 reported an increased rate of convergence for a hybrid stress 
finite element using the Classical Plasticity theory. 

ASSUMPTIONS FOR THE HYBRID FORMULATION 

As in the displacement based method, one may assume that the loads and/or 
displacements are applied incrementally. One must satisfy the following 
equations within the volume of the element: 

Linear Momentum Balance, 

74. = 0	 ;7	 vY,1.	 (	 . f ) 

Angular Momentum Balance, 

c'•. =	 S.
In 

Strain - displacement relation; 

=	 (	 U:,)	 ;n v 
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Constitutive relation; 

- SLkL
	

(3.4i.) 

Traction Boundary condition;

= h 

Displacement Boundary condition; 

LJ = 

Inter-element Boundary conditions; 

traction reciprocity 

^0 

displacement

at	 $(
	

( r3_ 3-) 

CL
	 . ' ) 

(. 7) 

(	 3) 

In the above, S. is defined to be on the boundary of the interface of two 
elements with the total boundary of an element defined as 

S.	 S  U
	

(3. q) 

For the derivation of the element stiffness matrix one may assume the 
following conditions hold a priori. For now, neglect body force, and assume a 


	

stress field	 3-which is selected to satisfy the angular momentum balance, 
and the linear momentum balance 	 . Likewise, assume that 

the change in strain can be related to the chane in stress through: 

	

=	 (B. / ) 

Note that in what follows j3-hE was assumed to be composed of an elastic part 

210



and a plastic part with 

e	 F 
=	 +

+	 (.j2) 

where 

•_________ 
+	 ( 3 ) 

2,U	 -	 (3+2,)2,U 

tc /VkL 

=	 (i)(C-l)	 (./) 

WEAK FORM 

The following r elations must be enforced through the variational statement: 

1) compatibility 

	

= (	 + 

2) traction reciprocity 

4-
(.A d. 7\)	 ^ (	 7i. ) = o	 o"-	 5	 ( 13. i6) 

3) traction boundary condition 

6	 =	 o  

L) displacement boundary condition 

=	 (.i) 

Defining d to be a test function (weighting function) for the 


	

compatibility equation (eq.	 .15), the weighted form of the compatibility 

	

relation becomes:	 . 

-	 +	 Sd4 dv = 0	 (.,q) 
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To enforce the traction boundary condition one may use a test function of the 

same class as the displacemants . Let SU Z be the weighting function for the 
enforcement of the traction boundary condition.. Weighting the traction boundary 

condition with the test function gives:

	

8  = 0
	

(.zo) 

To enforce the traction reciprocity in weak form, one may use the weighting 

functin 6qz to get 

5	 +	 't) cU dS =	 (.2I) 

Here	 represents the traction on one face of an element and 
represents the traction of the corresponding face of an adjacent element. When 
summed over all elements, the above reduced to the single term 

z	 St d$ = 

Assuming that the constitutive relations are satisfied a priori one may write 
the weak form of the compatibility condition (B .21 ) as: 

S+
	 -	 dv	 °	 (.23) 

r'-	 V 

Choosing the stress polynomials in such a way that the equilibrium equation wa s
 satisfied by the test function allowed one to rewrite the combined weak form as 

E ^s S (^ - TL a U .	

5 
4d.: 

- (	 iT £'	 dS = 0
	

(.i)


JS6 

DISCRETE WEAK FORM 

The stresses within an element were represented as a summation of equilibrate 
polynomial stress modes, A, with undetermined parameters 

=
	 (p.25) 

Refer to Appendix B for the exact form of the polynomials used to formulate the 

212



hybrid element. To enforce compatibility in a weak form, one may use a test 
function of the same class as the function for stress. Define	 as the test 
function in terms of the same polynomial stress modes, 	 with the arbitrary 
parameters

= Az '- 4(3.,%	 (.2) 

The displacements were interpolated from the nodal values, 	 and the 
standard isoparametric shape functions,	 , as: 

tA= f)L	
k

	

(.'7) 

The trial functions for the displacements and the stresses were expressed in 
terms of the parameters 	 and	 Define 

(\lt&k
	

(. 
2.g) 

as the test function in terms of the shape functions used in the interpolatton 
of the displacements. The parameters,&., will be arbitrary except on the 
portion of the boundary where the displacements are prescribed, in which case 
they will be zero. 

Substitution of the discrete form for the test and trial functions 
(Eq. B .2 5_B . 28) expressed the combined weak form in terms of &.and zi c to give: 

I	 A	 Sv +	 + '%. Jv V 

(a ç; A	 + 

Defining the matrix 

H =	 S	 A2	 v = 

and the matrix

ds

- T	 S d S	 o 

(.2) 

(.3o) 

(. 31) 

One may express the combined weak form in matrix form as

42
	 (. 32-) 
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The global stiffness matrix may be assembled with 	 and	 retained as


unknowns . The number of unknowns at the global level may be reduced by 
eliminating the stress parameters are assumed only within the domain of the 
element, with no coupling-between elements. For arbitrary 	 brte must satisfy 

+-67 = 0	 (.33) 

Thus,	 may be expressed in terms of the displacement of the element as 

(.3) 

For arbitrary	 then one must have at the global level 

=f TS 	 GH	 - 

C1, ) 

From the global stiffness matrix that results, il- is obtained, with stress 

parameters computed from equation (B•34)• 

Relaxing the requirement that the stress field withinthe element satisfy 
the equilibrium equation a priori allows one to introduce a prescribed body 
force, f . If the linear momentum balance conditions are relaxed and 
expressed in weak form through the weighting function S LI . the weak form 

becomes:

+ A f.)	 . dv = o 
-v' 

One has by adding to the combined weak form: 

-

+	 ' - T;.  

+ c	 + f) 3v

( 
n- SLAL dS 

0	 - 

Which after applying Green's theorem reduces to: 

-' (	 5	 $	 5	 d + 5 g	 . d 
1 3

 
-'---

= 0 

V
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After substitution of the discrete form of the trial and test function one may 
express the combined weak form as: 

	

H -SS -+ 	 =T OF+ 

where	 dS	 1Z J V	 (3.396) 

Note that the above formulation, while possessing the same number of unknowns as 
the weak form where the stress was eq uilibrated (Eq. 3 39),was substantially less costly to implement numerically. The saving came from the volumetric 
integration to formulate the matrix G. Performing a volumetric integration 
allowed for the evaluation of the ,. matrix at the same time as the volumetrfc 
integration for the matrixH . -This=. This means the same Gauss points may be used for 
the integration of H and G, as opposed to having to define Gauss points within 
the volume for H as well as on the surface for C. 

RESIDUAL CALCULATION AND ITERATION SCHEME 

The tangent stiffness matrix expressed in equation ( B . 35) allowed one to 
compute the change in stress and the change in displacement based on the 
material parameters at state n being approximately constant over the increment. 
Due to the linearization of the material behavior, the actual state of stress 
and the actual di splacements at state n deviated from the nonlinear path that 
material should have followed. 

In addition to the errors introduced in the linearization of the material 
parameters, other errors are generated. For exam p le, if one assumes that the 
behavior was plastic (perhaps the last load increment caused plastic 
deformation) but , the next loading i ncrement unloaded the point from the yield surface, then the wrong tangent to the stress-strain relation would have been taken. L

ikewise, if the material was near the yield point, and the next 
loading increment caused it to go from elastic material behavior to plastic 

behavior, then the assumption of elastic material behavior for the
' increment would not be valid over the entire increment. 

For the case where a plastic stress/strain increment was assumed, but the 
resulting load increment moved the stress, point to inside the yield 

surface, one was left with no alternative but 
to reformulate the stiffness matrix to 

reflect the correct tangent to the material properties. One must then 
recalculate the change in stress based on the correct 

str ess-strain path. For 
the case where the path was part elastic and part plastic one must divide the 
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stress into-two parts, applying the first part as an elastic process, then all 
the second part to be applied in the residual calculation. 

To illustrate the part elastic-part plastic case, assume that at sate n, 
no plastic strain has occured. Let the next load increment be such that only a 
part of the stress increment may be applied elastically. For a given change in 
body forces and change in surface tractions assume that the corresponding 
change in stress predicted by the elastic stiffness formulation is such that 

/	 n	 2 

F =.CA --'.- o' )	 ( d'	 - 2	 -	 ) - R ) 0	 (13.4o) 

i.e. the stress point, if elastic material behavior is assumed, would fall to 
the outside of the yield surface. At a point, assume that the stress 6 A lies o 

the inside of the yield surface. Let 6 5 be the point on the yield surface wher 
the trajectory ofA+ intersects the yield surface. The point of intersection 
may be computed as 

=  

where

(.-2) 

d'A( d'A^A) 
Only the portion of	 that is required to move the stress point to the yiel


surface is applied, with the rest of the stress that would occur during the 
plastic material behavior neglected for now. The resulting stress field will 
not be in equilibrium; however, one may compute the out-of-balance loads neede 
to produce an equilibrated stress field at state n+l. For equilibrium at n+l 
one, should have: 

41 3 	 ) 

(& . ''3	 ) 

Weighting the above with the test function ia j 	 give after application of

Green ' s theorem: 

-	
P	

= 
fV, dv 

The out-of-balance loads will be: 

=
 J

-	 n+I 

T	 J  J .	 dv - P6	 (5) 
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For the points where the elastically applied Stress exceeded the yield stress, 
the process should be plastic. The stiffness matrix may be updated to reflect 
the plastic process and allow the out-of-balance loads to follow the plastic 
stress-strain path. This will give a correction to the displacements as 

and a correction to the stress of

-1 
= A	 .;	 L = 

with the stress at n+l being given by:

(L) 

, b) 

AS 
^	 .
	

(c4.8) 

One may compute the strain at n '. l from the stress using the constitutive 
relation as: 

r	

+4A& 

The displacements at n+l will be given as 

"1.	 1. 

Ff 

Due to the above approach of splitting the stress into two parts, there will be 
errors in compatibility. At state n+l one should have 

-	 ( Uj 4 U	 )' = 0 

where j: is computed from the stress through the constitutive relation. 
d 

To enforce this condition, a weighting function of the same class as the 
function for the stress field may . be used. The following load due to the error 
in compatibility is obtained: 

= J	 - 4 (u	 U; j)	 S	 d V	 (6.52) Aa 

Application of the abov.e residual to the system will give displacements that 
are compatible with the strains obtained from the stress field. There will be 
some redistribution of the stress when the strain residual is applied, but for 
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P c=N I- C - I )
(p.55) 

where

the most part, the displacements will change more during each itertion than - 

the stress. One may apply both Rand R., 
at the same time, and continue the 

iteration process until the norm of the displacement does not change 
significantly. 

CONSISTENCY CONDITION 

With the above hybrid method, 'unless the stress/strain increments are ver 
small, there will be errors in the consistency condition. 

,tI	 tI 
F	 (' -°	 ) : .( — o<' )-R o	 (13.c3) 

The errors may be reduced by using a mid-point rule for the integration of 
the strains, the plastic strain may be computed from the stress as: 

P
N 

I	 -	 2 (c-i) 

For the finite change Ac? one may use the approximation

(B4L) 

(.c6) 

Likewise, the change in strain for a plastic process may be approximated as: 

-A) 
-	 (:)I +	 (57) 

Using the mid-point rule will lead to compatibility errors. However, the 

application of the residual	 will correct the errors that accumulate due to 

compatibility. 

The final system of equations that result when both R and R are appiLE 
during the iteration process, will have the form 

	

-H	 ( 

	

-	 =	 x	 - 

;	
(A)
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Here, the matrix  is constant and only need be evaluated once. The matrix H 
depends on the material behavior, and must be evaluated for each iteration. 

As each iteration, i is carried out, the stress and displacement is 
updated as: 

t.I

	

+	 AS +  

	

+	 +	
(.c) 

The strain must be computed in two parts with the elastic part given by 

(.ci) 

and the plastic part by 

e	 A:	 A. 

	

8C = 5	 +	 .	 ( . z) 

CONSTITUTIVE EQUATIONS 

The equations used to characterize the behavior of • a material and its 
reaction to applied loads are called constitutive equations, since they 
describe the macroscopic behavior resulting from the internal constitution 
of the material. The objective of a constitutive relation is to provide a 
good description of the relationship between stress and strain for a given 
material. The problem is complicated by the fact that different classes of 
materials exhibit different characteristics. The goal of well-formulated 
constitutive theory is to allow for all of the different observed phenomena 
to be described by the same mathematical formulation. 

The mathematical model governing the elastic-plastic behavior of solids, 
in particular, should have the following key ingredients: i) a relationship 
between stress and strain to describe the behavior under elastic conditions; 
ii) a criterion which will indicate the level of stress at which plastic 
strains will occur; iii) laws governing the growth of plastic strains as 
the material is stre ssed/strained beyond the elastic ra'nge; iv) laws governing 
the change in elastic limit as plasticity . develops (strain harding, Baushinger 
effect, strain softening). 

The general theory of internal varrables has played a key role in the 
development of more and more realistic constitutive models to characterize 
inelastic material behavior. Typical internal variables that are widely 
employed include i) the so-called'back-str' ess' (the tensor locating the 
center of the yield surface in str ess_space),ji) the parameters that 
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characterize the expansion of the yield surface, Ili) the parameters that 
characterize the'bounding-surface' in multi-yield-surface theories of 

plasticity	 iv) the drag-stress used to characterize the creep 

surface. 

Of the constitutive relations proposed for inelasticity, the'Internal-
time' (endochronic)theory'of Valanis(.IO], Watanabe and Atluri (.{t], The 

Multi-yield-Surface theories of Morz	 Dafalias & Popov I B•7' B' 
Kreig	 and the internal variable theories of Onat 	 I1-' 

Fardshishefl & Onat	 Onat & Fardshisheh (B. U). Chaboche (•I7)' 
Chaboche & Rousselier	 all appear on the surface to be unrelated to 


each other and to be based on totally diverse concepts. The work of Watanabe 

& Atluri cP).l] places all the relations in perspective by showing that the 
internal-time S theory	 is general enough to encompass all other


relations reported in the literature as special cases . Likewise,(,. j9] shows 
that their internal time theory as expressed in differential form is no more 
difficult to implement numerical than the classical Prager-Ziegler kinematic 

harding theory. 

The Endochronic Theóry was presented by Valanis	 ] in 1971


and held out the prospect of explaining the experimentally observed phenomena 
of cross-hardening cyclic hardening, and initial strain problems. While the 
initial version of the theory was subject to much criticism tB . fli , certain 

features of the theory allow for constitutive laws that are better in modeling 
observed phenomena in cyclic plasticity of metals than the classical elasto-

plastic constitutive relations. 

The new intrinsic time model presented by Valanis 	 in 1.980 rectifiE

some.of the shortcomings of the earlier theory. The work of Valanis and Fan 

[B.1#) presented an incremental or differential form of the integral relation 
of stress and strain for plasticity [B .23) . The computational implementation 
of the differential relation in 	 is not in a standard tangent stiffness


format, thus, a finite element formulation in thetraditional sense is not 

possible. Watanabe & Atluri C . tt]p resent an alternative derivation of the 

differential stress-strain relation using the concept of intrinsic time 

dependent on plastic strain	 This alternative derivation presents 
the endochronic theory in a structure that is similar to that of classical 
plasticity, thus, leading to a stiffness type finite element formulation. 

While the endochronic relation as developed by Watanabe &Atluri [B.tI) 
is similar in its structure to that of classical plasticity, there are 

several novel advantages present in the endochronic theory not present in the 
classical plasticity theory. The ability to model test data for both monotonic 
or cyclic plasticity as accurately as possible, with a minimal number of 
material parameters makes the endochronic theory a simple theory to implement 

in a finite element code. 

Summary of the Endochronic theory 

The deviatoric stress, 3	 is related to the mean stress, Z, , by 
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with

3	 S; d-/' 

The back-stress, , is defined as the center of the yield surfsce in 
deviatoric stress space. One may, for the inf initesimal strain problem, 
let the differential strain tensor, dE be composed of elastic and plastic components,

 p 
d = cis " + d

(.	 _) 

For metals, the assumption of plastic strains being only deviatoric in 
nature allows one to write the differential of strain as: 

= d e	 e + 8 . d
	

C) 

where de' is the deviatoric component of strain. 

Following Watanabe and Atluri E B .II], one may define at a material point 
an intrinsic time measure, 

ç , related to the magnitude of plastic strain 
that has accumulated at that point as: 

=(de: de')
	

(. 7 ) 

As in the classical theories of plasticity, the isotropic expansion of the 
yield surface is asumed to be a function of the magnitude of plastic strain 
The isotropic expansion is introduced though the non-negative function 

f(;)	 with f(0) - 1.
(B-69 ) 

A differential intrinsic time, 

dz= d

(.9) 

is defined from the magnitude of plastic strain and the function describing 
the growth of the yield surface. From Valanjs (B . lo), and modified by 
Watanabe and Atlurj ( . 1I], let the devjatorjc stress be related to the 
plastic strain through

z	 P 
-	 = 2 5 ?( z - z ) S.	 dz	 (B.7o) 
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or

S-o(	 S-ad	 - 

Lr

- / 

d
(.77 ) 

In order to recover a yield surface, allow the kernal, e(z), to be of the 
singular form: 

e( z ) -	 F. ( z) +
	

(B11 

where, g (z) is a Dirac delta function and e1(z) is a non-singular function, 
Substitution of	 into ( .7o) results in the deviatoric stress being 

related through the equation as 

d 
5= z,u e.	 + (Z)	 72.. 
-	 cJZ 

with

r 
z  

(2)= 2 c	 ) - dz Jo 

to give

-	 -  
(d!: di')	 2A  

Let be the initial radius of a yield surface, and let be the radius 
of the yield surface as plasticity develops. 

In order to distinguish an elastic process from a plastic process, 
one may look at the conditions required for dç to be non-zero. From the 
definition of the differential intrinsic time measure the magnitude of 
plastic strain is expressed as: 

d: d]	 (7k) 

During plastic flow, from the definition of the direction of plastic strain, 

one has, by definition 

r

d 

or
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:	
=
	

(• T' ) 

Equation (•78) may be viewed as the equivalent of the c lassical Von ilises 
yield criterion. Thus, if plastic flow occurred during an increment of 
stress/strain, the above equations ( B76-R.7 ) should be satisfied throughout, and at the end of the increment. 

The direction of plastic strain is given by 

d€	 _____ 

d	 =	
=	 ; f(	

1) 
where

d= d
1(	 (.o) 

which may be expressed as 

;	 / 

In equation	 the tensor /V is analogous to the normal to the 
classical yield surface. From the definition of d 	 for admissible plastic 
flOw ,.64 must be non-negative. 

d 5 >	 0 plastic flow admissible 

d <	 0 plastic flow not admissible

Taking the trace of both sides of Eq. 	 ) with the differential of 
plastic strain, dc! , gives the requirement of admissible plastic flow 
in terms of the normal to the yield surface and the plastic strain. 

> o 

Equation	 is not a convenient condition to apply within a finite 

element codes, since the finite element code will return directly dE not 

Therefore, the admissible flow condition is best expressed in terms 
of the differential of total strain, di. 

To express d in terms of d E directly requires differentiation of 
equations (Bo) with respect to dç. 
This gives:
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+	 r	

s (f-) cl 

The rate of deviatoric stress with respect to the magnitude of plastic 
strain,	 , may be obtained by noting that the plastic strain is 
expressed as 

d€."-d'	
d 

-	 (B•a 

which may be expressed as P
d E	 d5 

or

d	 dt'	 d! 
=2(	 -i-) 

d'	 c1	 o5	 (7) 

The tensor, d , which is analogous to the center of the yield surface in 
stress space is expressed by the integral 

=	
fZ 

Recall that Leibnitzs rule allows one to differentiate under an integral 
as

d ( 
) A

5 

t( x , *) d	 fA, d	 ^ 5cz, B)

(B9) 
—	 — 

One may express the rate of change of the center of the yield surface 
with respect to the magnitude of plastic strain as 

d =	 (-- 4-	 (a) -)	 (1o) where

1(z-z') d  

	

Z	 (11) 
dz'

224



Substitution of (.7) and ( B . 0) into (3 . 43 gives after rearrangement: 

d' =d(I,(o) +	
; '" 

I + 

	

2/A	 (92) 
+ 5 0 dçL	 d; 

Taking trace of both sides with normal,,"J, gives 

	

.	 /	 4 21 
C1 i': N	 dç 11+ (o) + ° d 

'd;2'	
(B) 

Note that since

= / 
dç 

it follows that 

dE 1 	 d	 d2	
:  

2 
N = o 

cJ52 	 J.	 dç 

The magnituge of plastic strain expressed in terms of the total strain and 
the normal to the yield surface is given by: 

where

_c•__•	
(,.cR) 

0	 /	 - 

c= 1 I+ e,(0)+	 (i7) 144

For an increment in total strain ' , the criterion for establishing whether 
or not a process leads to an admissible plastic strain is expressed now in 
terms of cIE instead of dip. 

To summarize, for plastic strain to' be admissible, the following must 
hold:

(s-') = R 
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and

dc':N >0 

Otherwise, an elastic process will occur if 

(-)(-	

2
	 (B .10 

or	 2 

(-)	 ( -	 ) 
= R 

and

d€': Al < 
Here ° is viewed as the back stress, or in , the geometric description of 
the yield surface, as the center of the yield surface in deviatori.c stress---
space. R is viewed as the radius of the yield surface. Note that when a 
monotonically increasing load is applied, the stress and the back stress are 
co-axial, and the simple picture of the yield cylinder moving in stress space 

is possible . However, in the general case of non-proportional loading, the 
back stress and the yielding stress are not co-axial and the geometric pictur 
cannot be drawn. In the case where 6andc4are not coaxial, the back stress 
does not reduce to three principal directions in stress space. Instead, it 
is composed of six components. One may still get an idea of how the yield 
surface is translating, if one plots a projection of the yield surface. 

An incremental (or rate or differential) form of the stress-strain 
relation in the presence of plastic deformation is required for formulation 
of the computational scheme in a variational sense Recall that the total 
differential strain is assumed to be made up of an elastic part plus an 
inelastic part. From Eq. 1.23 the plastic strain is expressed in terms of 
the total strain and the deviatoric stress as:

(3 I o2) - 
-	 2? 

The plastic strain may be expressed in terms of the magnitude of 


plastic strain, d , and the normal to the yield surface, iv . Using Equation 

(,-'1) in ( . tt2), the deviatoric stress is expressed in terms of 
the deviatoric strain: 

d= 2)A
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or

/ 
= 2 d - 

The total differential of stress becomes: 

of	 2J  
Cs02 4'2 

-	
)	 J	 (.IrD 

where
ow 

C = 1+	 ^!k) : k	 2; c'() 

2)A — 

h= 
Sz 

D P. (z-z')	 d
0a - I ri dz' 

with the rate form for back stress expressed as: 

__	

P ' = 2e(a)d	
+—	 (€	 d	 3 

7(g) 

Defining the correct form for e,(z) and f(), allows the yield 
surface expansion and translation of the yield surface to be prescribed in any 

manner that one wishes. 

The most convenient form for 	
(z) is expressed as a sum of exponential terms, such as 

Z)	
-01, z 

p,(= 1 (°L e I
(B t) 

By proper choice of the constants ( i and 0 Z, the rate of kinematic 
hardening may be controlled by the form of f(ç). For linear 

i sotropic hardening, one may use: 

- 
-ì -	 1+	 -	 (.() 

where (3 is the rate of isotropic expansion of the yield surface. For non-linear isotropic hardening, Watanabe and Atlurj have suggested the form
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--7-c 
f ()	 a. i- ( i — a...) e	 (fo) 

where y and a are chosen to fit a given material. 

For the exact procedure used to select the constants e 1 z , G, and (3 

(or Y, and a) refer to Appendix A where the incremental form for the case 
of uniaxial tension is expressed in terms of c',, and 	 . While all that is 
required for determining the constants is the uniaxial tension test, the 
test must be perfqrmed over several cycles of load so that the hysteresis 
loops of stress/strain are available. This cycling is needed to separate 
the Baushinger effect from the isotropic expansion. 

With C, (z) expressed as an exponential form as in ( . 1o%), the rate form 
of the endochronic theory so described reduces to 

=	 d	 .	 ( B.ttl) 

= 2	 +	 —	 ,v r 

- 
=	 a 

a	 RC) 
with 1'l if the increment in strain results in a plastic process or 
if the increment is an elastic process. Here N may be viewed as the normal 
to a yield surface in stress space as in classical plasticity. The rate 
of growth of the back stress is given by 

do=	 2JA):
	

e	 dz 

or

CI O< = 	 d=	 U .. CIE '— ( 

with the plastic strain given by 

P.
', (: dE) 

11	 C 

Note that the endochronic theory departs from the classical plasticity 
theory in the sense that the back stress is an assumed quantity in the 

with 

and
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classical development. Whereas in the endochronic theory, the evolution 
of the back stress arises from the assumption of the stress being related 
to an intrinsic time measure. The rate form of the endochronic thecry is 
summarized in the table below: 

Table 1 : Summary of the Internal-Time Theory of Plasticity 

Endochronic Theory 

c1= (2p+3) d() 
where	 , .. are lame constants 

ç() =	 ( linear); or 

(( O) e	 (exponential) 

0 
(5-):k	 (	 ) C= i+ (o)+	 - + 

() 

±	 (z)	 0 L 

•	 CA)	
. 

'Q 
-	 2	 ) 

Rate of Kinematic Harding: 

dt)= 2	 e	 d€r	 a	
(dee: dee) 

( rto	 -J''-	 or	 £ )	 r-	 j	 1 2 

d = Z	 = dee — (dE	 dJ 

• Rate of Isotropic Hardening: 

(linear f)
0 de ] 

(exponential f) 

=	 C( '—)	 } 1de: dr] 
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The form of the endochronic theory needed to produce the classical 
forms of plasticity is presented in Table 1.2. 

Table 1.2 Comparison of The Classical Theories of 
Plasticity with the Endochronic Theories. 

Classical Theories of Plasticity: 

i) Isotropic Hardening(Prandlt and Reuss) 


	

M = J61 1 f 	 rate of harding 

- equivalent stress 

eq. plastic strain 

d6kK — (- 3X) d 

	

= 2,Lt d	
(5: d' r 

d	 ILA - 

Endochronic Theory


	

e(z)= hCz.	 = o 

	

i-	 2%) -i'c 

ii) Linear Kinematic Harding (Prager () 

d= (2) dE 

	

= 2d	
( ) 

()Z (-)	 d	 (5- ) 

do<	 C	 cI€. 

Endochronic Theory 

P c 2)e	 c/	 ;	 °  

iii) Non-linear Kinematic Harding 

(Mroz-Shrivastava-Dubey	 ) 

230



(Eisenberg and Phillips (? ) 

c(c) 

iv) Combined Isotropic and Kinematic Hardening 

(Chaboche and Rousselier 

Kinematic Harding: 

dg	 Zd; dd1'= 

•1

	
and P are constants; 

Isotropic Hardening: 

.	 ) ; dcy = 

b, Q are constants 

v) Perfect Plasticity 

dS	 jtt di'— (Sa<)(S—o) :d 

c= 1.0 ;	 ( c) =	 ;	 (z) = 

SELECTION OF POLYNOMIALS FOR INTERPOLATION OF THE STRESS 

The presence of unwanted kinematic mechanism modes in the stress-based 
element is a primary concern when selecting the polynomial basis functions 
used to interpolate the stress field within an stress-based hybrid element. 
The kinematic mechanism modes that may arise due to a poor choice of stress 
polynomials are not unlike the mechanisms that may result when a displacement 
based element is subjected to reduced integration. 

The criteria for the stability and convergence of discrete variational 
problems with Lagrange multipliers was'the focus of the fundamental work of 
Ladyzhenskaya, Babuska and Brezzi (LBB) (B.'-30]. The LBB condition may be 
used as an a posteriori check of a formulation. While the work of LBB was 
limited to a variational statement with only one parameter, the multi-field 
case was the focus of the work of Xue and Atluri (B.31]. While the 
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satisfaction of the LBB condition will guarantee the convergence and 
stability of the formulation, it does not specify how the condition should 
be met. The work of Punch [B.323 and Punch and Atluri (B.3], addressed the 
problem of establishing criteria for the selection of stress polynomials 
such that the resulting element will be stable, invariant and least order. 

In general, for a stress-based hybrid formulation, if the number of 
stress parameters 3 for an element is s, then the matrix H should be a 
(sxs) positive definite symmetric matrix. The element stiffness matrix 

K - Sf , should have a rank of (d-r) where d is the number of generalized 
nodaT displacement' and r is the number of rigid body modes. Thus, the 
matrix Cassociating the assumed stress and displacement fields, is the most 
critical component of the formulation - the (sxd) homogeneous equation 

£	 -.9	 6. 11-7 

should have, as its nontrivial solutions, only the r rigid body modes q . By 
virtue of the divergence theorem and the equilibrated stress field d;	 this 
expression can be written as 

=	 a ds	 f	 4 () dv	 (.H) 

where the following relation holds, 

	

= 0	 or ,-fd bodq 7td-

1A () dv	

, 0	 or (d-) 
VP,' 

With Eij (U) . O for r rigid modes q,, the rank of C and consequently the 
overall rank of K, which it determines, is the minimum of (s,d-r) at best. 
For a formulation free of spurious energy modes, the minimum rank must be (d-r) 
and the number of chosen stress modes must therefore satisfy 

'
	

(r. 

Noting that each extra term adds more stiffness fl3-), least-order selections 
(s - d-r) are considered to be best and are, of course, optimal with respect 
to compute resources. 

The C matrix not only governs the existence, but is also central to the 
determination of convergence and stability through the LBB condition  
This convergence condition of functional analysis features C on a domain 
and states that, if there exists a	 such that 

Y6.: EH,(

	 _1 t'j	 (&) dv	
ool
	 i!hllU 

	

V	 U. 
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then the finite element problem has a unique solution. () and (j) are 
necessary and sufficient conditions for stability, res pectively. When 3 is 
independent of mesh parameter h, Convergence is then est ablished. However, 
this theory only provides an posteriori check on a particular finite element 
formulation since the value and mesh dependence ofmust be ascertained 
numerically in each case. 

In addition to accomadating all reasonable load di s t ributions, the 
chosen stress modes must be nonorthongal to the strain field in order to 
eliminate spurious zero energy modes and guarantee convergence. One possible 
approach to the eradication of mechanisms lies in the painstaking assembly 
of the C matrix from complete equilibrated polynomial stress, and strain 
tensors derived from the element displacement field. The rank of C may be 
computed by Gaussian elimination and stresses added or removed until the 

desired (d-r) value is reached. This rudimentary procedure, nevertheless, 
fails to address the requirement of coordinate invariance in the overall 
stress interpolation, as a result of which further criteria must be applied. 

Coordinate invariance entails certain symmetry relations between the 
coordinates, relations which are governed by symmetry group theory. Although 
this theory applies exactly to perfect squares and cubes only, it nontheless 
provides a very effective approximation for distorted elements and generates 
a convenient sparse quasi-diagonal C matrix from which stress selections can 
easily be made. The mathematical foundation appears fully in C B.	 ], and	 - 
the complete derivation for plane elements, as well as three-dimensional 
bricks, can be found in 

Considerable success has been achieved in approaches where the equilibrium 
constraints are relaxed on some 	 or all stress terms (ta . ] by means of

displacement field Lagrange multipliers. Taking advantage of the variation of 
natural coordinates in curvilinear elements, the stress tensor is expected 
as an unequilibrated summation of natural coordinate polynomials A 4	 with
unknown

=	 (L	 "	 (. (n.) 
Define

=	 A	 dv	
(.	 ) 

where	 is interpolation functions for nodal displacement. With matrix C 
in this form, the derivation of stress modes for this hybrid stress 
formulation with a posteriori. equilibrated local stress field can follow 
the procedures used by the formulation with a priori eqtitlibrated stress 
stress field. The foregoing least-order stress polynomial selections in 
natural coordinate variable 	 - are introduced into A-' but this do not 
necessarily form stable, irreducible, invariant interpolations. However, it 
has been demonstrated in 	 J that. for the curvilinear elements if the 
stress mode is chosen to be of the same polynomial form as that of the stress 
mode which is derived by using group theory for squares and cubes, then the 
rank of C is maintained to be (d-r) even for very severely distorted elements. 
Further, it has been clearly demonstrated (?:,sZ.] that the least-order, 
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invariant, isoparametric curvilinear hybrid elements are less distortion-
-sensitive and' lead to more accurate results compared to the standard 
displacement elements in a variety of examples. 

For the present 16-node isoparametric hybrid element, 42 stress component 
( - 48-6) should be chosen to form the least-order, stable, invariant element. 
The following stress polynomial selection was made based upon the suggestions 
provided in

2. 
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INTERPOLATION FUNCTIONS FOR DISPLACEMENT 

Standard isoparametric shape functions were chosen for this 16-node 
stress-based hybrid ' element. The local coordinates and nodal numbering 
are shown in Fig. Bt' and the 16 shape functions are presented as following: 
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Fig. Bi. Definition of element nodal numbering and natural coordinate. 
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FLOW CHART FOR THE IMPLEMENTATION OF 16-NODE STRESS-BASED HYBRID ELEMENT 
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USER MANUAL 

There are 
two keywords and some modifications in the parameter data section 

of NESSUS input data file. 

* ELEMENTS 

There is one more element type 

50 : 16-node hybrid shell element . None of the five element properties are 

effected.
I-, 

* HYBR 

This option enables the hybrid shell element. One parameter is required 

parameter 1 : "42"	 NSTSFN , number of stress function parameters. 

* ENDO 

This keyword invokes the endochronic theory. no parameter is required. 

NOTE : When * HYBR is flagged , * BFGS can not be used. 

There are two new keywords in the model data section of NESSUS input data 

file. 

* HYPR 

This data segment is used to specify the material properties of the hybrid 

shell element. Five real numbers are required . These are (1) thickness (dummy 

(2) Youngs modulus. (3) Poisson's ratio, (4) initial yield stress. and (5) 

1S.. strain hardening coefficient. 

If	 ENDO is flagged, the last two property data are ignored. 
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* ENDO 

This data segment is used to specify the endochronic theory properties of the 
hybrid shell element. A maximum of ten property data can be spec3ified. 

In the linear strain hardening case the first data is 

the second data is H' 	 ...L	 and the others are dummy.
	 p 

e S;E 

* PROP 

If * HYPR is flagged * PROP is ignored. 
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SUMMARY OF TAPES 

There are eight new data files in the hybrid shell element portion of NESSW 

(1) BYBR.DAT (Tape 3) 

This files contains H t and Cfor each element- C is calculated at the 

begining- H'is calcu1aed ateach Iteration. 

(2)STRES.DAT (Tape 2) 

This files contains the stress vector of each Gaussian point. 

(3) RES.DAT (Tape 7) 

This file contains residual forces arising from enforcing the compatibility 

condition.

	

-	
—UV 

-These residual forces are used to calculate 	 the stress parameter 

increment. 

(4) EPIND.DAT (Tape 10) 

This file contains an index of each Gaussian point indicating whether it is 

elastic or plastic. 

(5) STRAN.DAT (Tape 13) 

This file contains the strain vector of each Gaussian point . These strain 

vector are calculated from 	 -çç relations. 
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IMPORTANT SUBROUTINES AND VARIABLES 

1) CAZETA 

This subroutine is to calculate the Incremental internal time parameter 

DEPt.	 : incremental plastic strain 
DZETA	 : incremental internal time parameter 

2) D3D16N 

This subroutine is to calculate the shape function derivative for the 16-n 
shell element. All the variables are the same as the other similiar subroutjt 

3) FORMAM 

This subroutine is to set up the A matrix in each Gaussian point. 

C, H, and Q : natural coordinate of the gaussian points 
D	 : A matrix 
XINVER	 : base vectors of the cent rial curvilinear coordinate 
NSTSFN	 : number of stress function been used, 42 

4) FORMBV 

This subroutine is to calculate incremental stress parameter 

BETAIN	 incremental stress parameter 
DISWRK	 : displacement increment 
ELEM1	 : H matrix 
ELEH2	 : C matrix 
RSTRAN	 residual force arised from compatibility 

4) FORMCM 

This subroutine is to set up the elastic strain-stress relation matrix, C, at 
each Gaussian point. 

CMATRX	 : C matrix 
CHAR	 : elastic material property at Gaussian points 

5) FORMGM 

This subroutine is to set up the C matrix. It is called only once for each 
element. 

GMATRX	 : C matrix
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(6) EPSN.DAT (Tape 22) 

This file contains the total plastic strain vector and the incremental plastic 
strain vector of each Caussian point. 

(7) ZETA.DAT (Tape 14) 

This file contains the total internal time parameter	 and the incremental 
internal time parameter	 of each Gaussian point. 

(8) VALCLO.DAT (Tape 30) 

This file contains the accumulated nodal values of 	 , E , ', and	 These 
values must be divided by the number of elements which con 'tain' the node to get 
the average values at the node.
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This subroutine is to set up the plastic stress-strain relation matrix, D 

DMATRX	 D matrix 
HYSIC	 : stress vector 
ENCHAR	 endochronic theory property 
STEMP	 : stress deviator 

13) PLASTC 

This subroutine is to set up the plastic strain-stress relation matrix, C. 

CMATRX	 C matrix 

14) RESID 

This subroutine is to set up the residual forces arised from equilibrium a 
compatibility. 

DISTOT	 : total displacement 
DISINC	 : total incremental displacement up to iteraton i. 
RXII	 : incremental displcaement of iteration i 
XP	 equilibrium residual force , total residual force later 
XP2	 : compatibility residual force 
STRN1	 : strain ( strain-displacement 
STRN2	 strain ( strain-stress 

15) S3Dl6 

This subroutine is to set up the shape functions of 16-node shell element.A 
the variables are the same as the other similiar subroutines. 

16) SICBAR 

This subroutine is to calculate the effective stress and stress deviator. 

SIC	 : stress vector 
S	 : stress deviator 
SEQ	 effective stress 

17) UPEPSN 

This subroutine is to update the total plastic strain and total internal tin 
parameter after each load increment. 

18) YIEL2 

This subroutine is to calculate the radius of yield surface from internal 
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COOR	
: coordinate of each nodal point in one element 

6) FORMHM 

This subroutine is to set up the H matrix. It is Called 
each element.	 in each it eration for 

HHATRX	 : H matrix 

	

EPIND	 index of elast ic/plastic for each Gausian point 

7) CHOOK 

This subroutine is to set up the elastic 
stre

ss-strain relation matrix, D, at each Gaussian point. 

	

DMATRX	 D matrix 

8) HYOUT 

This subroutine print out the di splacement of the hybrid shell element. 

9) HYSTIF 

This subroutine is to set up the element 
St iffness matrix for the hybrid shell element. 

	

ERSTIF	
: element stiffness matrix 

	

EL1RHS	
: element force vector ; it is set to zero now 

10) HYSTSS 

This subroutine is to calculate the s t ress, strain, and plastic strain. 

EP5i total	 plastic strain 
SIC :	 stress	 in	 iteration	 i-i SIGTT stress	 in	 i t eration	 i 
STRN2 

DD5TRN
:	 strain came	 form strain-stress	 re lations :	 incremental	 strain 

ZETA 

DEPSI
total	 interal	 time parameter 
incremental	 plastic strain 

DZETA incremental	 interal	 time parameter

11) LSNODE 

This subroutine is to calculate nodal values of stress, strain, plastic 
strain and internal time parameter. 

12) PLADtIT
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time parameter ZETA. 

SYT	 : radius of yield surface 
FP	 : strain hardening coefficient 
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SUMMARY OF LOGIC FOR SUBROUTINE HYSTSS 

The Gaussian point had previously, yielded. Now 

check to see if 
cJL> CJL(,.) where Q is the 

effective stress of iteration 1.,	 *- )is the '.. 
radius of yield surface of iteratio

,,
n SI-i. 

NO	 - •_;.	 .--

The Gaussian point is unloading	 j	 The Gaussian point had yielded 

elastically . Calculate	 C	 previously and the stress is sti 

and return	 increasing. Calculate	 •.'-
 Where  

-r)	 j'• 

S rr	 - - 

-
: 
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SUMMARY OF LOGIC FOR SUBROUTINE HYSTSS 

(continue) 

The Gaussian point had not previously yielded. 
Now check to see if> 

NO	 -	 YES 

The Gaussian point is still 	 The Gaussian point has yielded 
elastic. Calculate 4E L	 during the iteration. The portion 
and return	 of the stress greater than the 

yield value must be reduced to the 
yield surface. The reduction - 
factor R is given from fig, below 
to be R	 AB/AC . Then use 
conventional displcement based 
plastic scheme to calculate the 
overshot portion of 4qand 
corresponding	 . 
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1.0 INTRODUCTION 

1.1 Introductory Remarks 

Monte Carlo traditionally has been considered to be a "last resort" 

method for solving a probability or statistics problem because of high 

cost relative to accuracy of the results. However, in recent times a 

combination of the development of new efficient numerical techniques 

and new digital computing hardware have made Monte Carlo more attractive. 

Presented in this report are descriptions of the following Monte 

Carlo programs dedicated to probabilistic structural analysis. 

1. "Conventional" Monte Carlo 

2. Variance reduction using antithetic variates 

3. Direct evaluation of the probability integral 

4. The Harbitz method 

Provided in the following sections are descriptions of how each method 

works as well as a comprehensive study of the performance of each. 

1.2 The Basic Problems 

Consider the random variable Z as a function of the random vector 

X = (X12 X2 , . . X)

Z = hQ)	 (1.1) 

The distribution of each X. is known. It is assumed that all X. 1 are 

mutually independent. 

One problem of probabilistic mechanics and design is to compute a 

point probability,

p = P [ h ( X )	 h j	
(1.2) 

0 

253



For example, p could represent the :obability of exceedance of a deflec-

tion or perhaps the probability of failure. 

The second problem is the extension of the	first to the cons:ructior 

of a cumulative distribution function. 

F-(Z) = P[hQ)
	

(1.3) 

Clearly the two problems are 

may differ. For exam p le, to 

obtain point estimates of F., 

through the points. A secon 

distribution function from a

identical, but o ptimal strategies for analysis 

construct the CDF, one option would be to 

at selected values of z, then fit a curve 

option would be to construct an emr:a. 

large sample of Z. (See Sec. 2.4). 

1.3. Random Samples 

The basis for Monte Carlo simulation is a standard unifo	 dis:ribu- 

tion random number generator. Methods of generating unfc'rm va ares are 

g enerall y based on recursive calculations of residues of modulus m from a 

linear transformation [ 1). Most large computers have such a generator 

as a library function. 

A variety of methods can be employed to generate variates from the 

distributions. Presented in Appendix A are algorithms used for the program 

presented herein.
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2.0 "CONVENTIONAL" MONTE CARLO 

2.1 Point Probability Estimates by Conventional Monte Carlo Using the 

Bernoulli Parameter 

Consider a function, h( , ), where X is a vector of random variables, 

all having known distributions. it is required to compute, 

p = P [ h (,)	 hI	 (2.1) 

The problem can be reformulated as 

p = P[g()	 01	 (2.2) 

where g(), called the "performance function," is 
1.

g(X)	 h(X) -h	 (2.3) 0 

In a direct Monte Carlo scheme, a sequence of K random vectors, 

X., can be sampled, and in turn, a sequence of g.; i = 1, K computed. Define 

< 
.=rl if a -0 y 1 I

if g 
i
>0

Thus, Y. has a Bernoulli distribution 1	
P(Y. = 1) = p

(2.4) 

(2.5) 

P(Y. = 0) = 1 - p 

where the Bernoulli parameter p is the same p as in Eq. 2.1. 

The maximum likelihood estimate (MLE) of p is [ 5 ]', 

K 

i=l
(2.6) 
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But ly . is just the total number oE g. 	 0, denoted as N. Thus, p is 

just the fraction of the g.'s less than zero 

N 
= _2.	 (2.7) 

N 

A flow diagram of conventional Monte Carlo is given in Fig. 2.1. 

A listing of a computer program for conventional Monte Carlo employing 

the Bernoulli parameter is provided in Appendix B and an examle of the 

output is shown in Fig. 2.2. 

2.2 Confidence Intervals on the Bernoulli Parameter, p 

The MLE of p is p. Because of sampling error, p is only an estimate, 

and the key question is how close is p to p. Confidence intervals are 

described below. Note that these confidence intervals refer to 

sampling error of the Monte Carlo process, not uncertainties associated 

with the parameters of X.,. 

Consider P.

K Y .	
1	 (2.8) 

i=1 

The mean and variance of p are [ 5] 

1(p) = p	 (2.9) 

V(;) =
	 K	

(2.10) 

By the central limit theorem, p will approach a normal distribution as 

K - . Confidence intervals for p are constructed using normal distribution 

mathematics,
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Define: 

(a) g() 

(b) Distribution, and 

o) for all X. 

Obtain random sample 
(2)	 xi 	 (Xi , X2 , . . . X ) 

	

II	 n 

Compute g(X.) 

Repeat (2) and (3) to obtain 

(4)	 sample of (); i = 1, K 

POINT PROBABILITY
	

CONSTRUCT CDF 

ESTIMATE
	

Sort g(x) to define 

[Count fraction
	 empirical CDF 

	

of gQ)	 0

Plot CDF 

Fig. 2.1 Flow diagram of conventional Monte Carlo 
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MONTE CARLO SOLUTION 

LIMIT STATE FUNCTION : RS 

SAMPLE SIZE, K=	 IZØ 

NUMBER OF RANDOM VARIABLES, N 2 

RANDOM VARIABLES 

VARIABLE DISTRIBUTION	 MEAN 

R	 WEIBULL	 .200E+02 

S	 EVD	 .10000E+02'

STD DEV 

.20000E+01  

• 2OøE+O1 

STATISTICS OF Y	 Note that Y is the same as g(X); 

these are the statistics on the 

MEAN	 =	 • 118E+2	 limit state function. 

STD DEV =	 •27499E+1 

MEDIAN = 

CDV	 =	 • 2745E+O

This is p 

NUMBER OF NEG V VALUES
	 PERCENT OF TRIALS= .000000 

Fig. 2.2 Output of conventional Nont .e Carlo program. (No sorting requested) 

Performance function; g(R,S) = R - S 
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___	
/;=

1K 

-	 _  

p - z12	
K	

-	 + cz/2 / 	
(2.11) 

where ; is substituted for p in the variance. The probability that p will 

be bounded by the lower and uppper limit is 1-ct, where a is the confidence 

coefficient. z	 is the standard normal variate corresponding to a!2. 

Commonly used values

	

a	 z 
-	 a/2 

.10 1.64 

.05 1.96 

.01 2.58

The confidence interval of Eq. 2.11 relies on the central limit theorem 

and must be considered as only an approximation for finite K. In general, 

the approximation is considered "valid" if Kp > 5 [ 51. 

Eq. 2.11 can be written as, 

(1 - y)	 p	 p(l + y)	 (2.12) 

where,

Z/2 /;1 - p) 
1=	 /	 K 

p

(2.13) 

Eq. 2.13 is displayed in Figs. 2.3 and 2.4 for 90% and 95% confidence 

intervals respectively. These figures show the sample size requirements 

for confidence intervals of a given width and level. For example, if the 

point probability is expected to be about 10 , and it is required to have 

P within ± 10% of p with a confidence of 90%, then it is necessary to have 

a sample of size K > 200,000.
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2.3	 pter CPU Time on the CYBER±2 

The conventional Monte Carlo program of Appendix B was exercised on 

several problems using all five of the available distributions. CPU time 

was recorded for each program. It is assumed that this conventional Monte 

Carlo program will provide an upper bound to CPU time relative to other, 

and more efficient, Monte Carlo schemes. The CYBER 175 is the mainframe. 

computer at the University of Arizona, and all results relate to this machine. 

Recorded CPU time for several examples was consistent. Compilation and 

loading time for all cases are shown in Table 2.1. These are average values, 

but there was little variation. 

Execution CPU time essentially depends only upon the number of variables 

and not on distributional forms or performance functions. Fig. 2.5 illustrate 

the CPU execution time per variate as a function of sample size K. Total CPU 

time is obtained by adding compilation and loading time to execution time. 

A sample program was run on both the CYBER 175 and the VAX 111780 for 

a time comparison. The results shown in Table 2.2, reaffirm the fact that 

the VAX is too slow for production Monte Carlo. 

To get an idea of computer charges for running Monte Carlo, Fig. 2.6


is provided. This is the commercial rate of the UA CYBER 175 for low priority 

jobs.
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Table 2.1 

Compilation and Loadin g CPU Time for Conventional 

Monte Carlo Program on CYBER 175 

CPU Time (sec) 

Compile	 1.0 

Load	 0.25 

Table 2.2 

Comparison of CPU time Between CYBER 175 and VAX 11/780 

* 
for one Example Problem

Time (sec) 

CYBER 175	 VAX 11/780 

Compile	 1.0	 14 

Link	 0.25	 5 

ExecutiOn1	 7.5	 30 

TOTAL	 1	 8.75
	

49.0 

*
There were 2 variables; K = 30,000. 
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10 	
10 3
	

10	 10 

10.0 

1.0 

0.1

SAMPLE SIZE, K 

Fig. 2.5 CPU execution time per variate on CYBER 175 as a 

function of sample size K. 
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MINUTES

 

Fig. 2.6 Cost in dollars ($), D, as a function of time for 

the UA CYBER 175; lowest priority. 

265



2.4 compirison of Monte Carlo to Wu/FPI 

Computational efficiency was the motivation for the development of the 

Wu/FPI program. It is generally known that Monte Carlo is inefficient 

relative to a fast ,probability integration method. Because the cost of 

conventional Monte Carlo depends upon the accuracy and probability level 

required, a general direct comparison can't be made. However, an example 

presented in the following clearly demonstrates the high cost of Monte 

Carlo. 

Suppose that it is required to provide a Monte Carlo solution such 

that the 95% CI for p is within ± 10% of p. The CPU execution time for the 

CYBER 175 can be computed from Figs. 2.3 and 2.5 for a given probability 

level, p. This CPU time is shown in Fig. 2.7 as a function of the number of 

variables in g() for	 2 and 3 ( p = (-)). At these levels Monte Carlo i 

two to three orders of magnitude more expensive than FPI. And the FPI 

solution is likely to be more accurate. Moreover, for smaller tail proba-

bilities EPI gets no more expensive while Monte Carlo will break the bank. 

2.5 Estimating the CDF of a Random Function 

2.5.1 The Empirical CDF 

Conventional Monte Carlo provides capability for estimating the complete 

distribution function of a function of random variables. Define the random 

variable Z, as a function of the random vector X. IV 

z = Z()	
(2.14)

 

266
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I

10 

0.1 

1co

Fig. 2.7 A Comparison of CPU Execution Time on the CYBER 175 Between 

Conventional Monte Carlo and Fast Probability Integration 

NUER OF VARIABLES 
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A random sample of X.; j = 1, K is used to generate a random sample of 

Z.; i = 1, K. In turn, an empirical distribution function of Z can be 

constructed using methods of probability plotting. The empirical CDF, 

denoted as F., will be an estimate of the CDF of Z, Fz(z). 

Various forms of F. have been proposed [ 3, 4, 6 ]. The values of 

	

F. below correspond to Z (i)	 (i) 

	

where Z	 is the ith smallest value of the 
1  

random vector Z. Thus, F. E F.(Z	 ). 
1	 1 (i ) 

I - 
1. Hazen; F. = 1	

K 1/2
 

2. Cumbel; F. =	 1

i - 0.3 
3. Median ranks, F.1 	 fl =	 + 0.4 

Through prior experience on extensive Monte Carlo simulation, this author 

has found that the Hazen formula consistently provides "good estimates" 

of F7. 

2.5.2 The Sort Routine 

To construct the empirical CDF it is required to sort the random 

sample Z to obtain an ordered sample Z .10. Let 
Z(i 

.) denote the ith smallest 

value. 

The routine used in this Monte Carlo code is program QUIcKSORT which 

is considered to be the fastest available [ 71. A description of QUICKSOP'T is 

given in Appendix C. The Fortran statements for this code are provided 

in the program listing in Appendix B 

CPU time requirements for the sort routine can be relatively large for 

large samples. Fig. 2.8 shown CPU execution times as a function of the 

size of the Z vector.
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1.0 

0.1

SAMPLE SIZE, K 

Fig. 2.8 CPU sort time (execution)as a function of sample 

size for the CYBER 175. 
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2.5.3 An Example. 

Shown in Fig. 2.9 is a table of the sorted vector Z (i) 
. and the corres- 

ponding F. for the example of Fig. 2.1. This is the data required for 

plotting. The empirical CDF of Fig. 2.10 was done by hand, but in general 

such graphs can be automated using a computer graphics package. 
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SORTED VALUES OF Z AND THE EMPIRICAL CDF 

1 
6 

11 
16 
21 
4-

31 
36 
41 
46 
51 
56 
61 
66 
71 
76 
81 
86 
91 
96 

1 
6 

11 
16 
21 
26 
31 
36 
41 
46 
51 
56 
61 
66 
71 
76 
81 
86 
91 
96

• 32159E+1 
• 48457E+1 
• 59944E+1 
• 69827E+ø1 
• 76156E+el 
• 8734E+1 
• 9619E+1 
.92816E+01  
• 958ó2E+1 
• 1ø54E±2 
• 1ø376E+2 
1712E-s-2 

.10856E+02 

.11191E+02 
• 1173E+2 
• 12122E-s-2 
• 12667E+2 
• 12893E+2 
.13273E+02 
• 13943E+2 

• 5E-2 
• 55øOE-1 
.10500E+00  
• 155øE-s-ø 
.20500E+00  
• 255OE+O 
•35øE+ 
• 355øE+øø 
.40500E+00  
• 455zE+oe 
.50500E+00  
.55500E+00  
• 
.65500E+00  
• 7ø5ãE+O 
• 75zeE+eo 
.80500E+00  
• 855øE+ 
• 9ø5E±ø 
.95500E+00

• 40876E+O1 
• 48984E+ø1 
.60426E+01 
.70597E+01  
• 79653E+1 
• 8779E+O1 
• 9971E+1 
• 92823E+1 
• 95993E+Z1 
• 10115E+02 
• 1O581E+2 
• 10771E+02 
• 1874E+Z2 
• 11246E-*-02 
.11760E+02 
• 1214E+ø2 
• 1283E+@2 
• 12963E+2 
• 13297E+2 
• 14797E+2 

• 15øøE-1 
• 65øE- 1 
• 115E+O 
• 165øOEi-ø 
• 215OOE+O 
• 265OE+ 
315E+ø 
.36500E+00  
.41500E+00  
• 465E+ø 
.51500E+00  
.56500E+00 
• 615E+O 
• 665E+O 
• 715E+ø 
• 765OE+øO 
• 815øE+Oø 
.86500E+00  
.91500E+00  
• 965eøE+eø

• 42831E+ø1 
• 5586E+1 
• 662ø2E+1 
• 76S5E+ø1 
• 8386 1E+1 
• 87964E-s-1 
• 914Z4E+1 
• 93259E+ø1 
• 9638E+1 
• 1O137E+2 
167E+ø2 

• 1773E+O2 
• 1O958E-s-2 
.11344E+02 
• 118 0 2 E + 021  
• 12284E+2 
• 12844E+2 
• 1342E+2 
.13361E+02 
• 14983E+02 

• 25øøE- 1 
• 75OøøE- 1 
• 125øE+ø 
• 175OE+@ø 
• 225OøE+ 
• 27500E-s-00 
• 325øE+ø 

.371500E+00  
• 425øOE+ø 
.47500E+00  
• 525OøE+ø 
• 575øE+ø 
• 62500E+øø 
• 675øE+øø 
• 725øE+øø 
• 775E-s-ø 
• 825OE+øO 
• 87500E+øø 
• 925OE+ø 
.97500E+00

• 44764E+O1 
• 5615øE+1 
• 685E+ø1 
• 778øE+1 
• 84534E+O 1 
• 8885E+O1 
• 92372E+1 
• 9577E+-1 
• 98157E+ø1 
• 1256E+2 
• 1631E+2 
.1Ø791E+2 
.11125E+02  
• 1149E+2 
• 11912E+02 
• 12413E-s-2 
• 12867E+02 
• 1313 1E+02 
• 13638E+02 
• 15123E+02 

• 35øE- 1 
• 85øOE-ø 1 
.13-500E+00  
185OE+øO 

• 235OE+øO 
• 285OøE+O 
• 335OE+ø 
• 38500E+øø 
• 435øE+ø 
• 485OE+øO 
• 535OE+Oø 
• 58500E+øO 
• 
• 685E+ø 
• 735OE+ø 
• 785E+øO 
• 835E+ø 

• 935øE+ø 
• 983øE+O

• 45626E+1 
• 5912E+ø1 
• 6921E+1 
• 714E+1 
• B472E+O1 
• 89137E+1 
• 92557E+ø1 
• 95829E+O1 
• 98782E+1 
• 137E+ø2 
• 1644E+ø2 
• 1846E+ø2 
• 11 162E+02 
.11616E+021 
.11933E+0 21 

• 12573E+2 
• 12873E+02 
• 13142E+02 
• 1379E+82 
• 153ø5E+2 

.45000E-01  
• 95OøE- t 
• 145øiE+ø 
• 195øE+øO 
• 245OE+ø 
.29500E+00  
• 345E+ 
• 395øE+ø 
• 445øE+ø 
.49500E+00 
.54500E+00 
• 595E+ø 
• 645E+Oø 
• 695øE+C 
.74500E-rOO 
• 795E+ 
• 
• 895OE+O 
.94500E+00  
.99500E+00 

2.9 Sorted Z. and corresponding empirical CDF for the example of Fig. 2.1 
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3.0 THE VARIANCE REDUCTION METHOD 

3.1 Preliminary Remarks 

The variance of Monte Carlo estimators can be reduced, relative to 

straightforward sampling of Chapt. 2.0, by appropriate operations with 

negatively correlated samples. Ang and Tang [1] present several examples 

which demonstrate dramatic improvements in efficiency realized by variance 

reduction methods.	 - 

A variance reduction computer program, tailored for structural 

mechanics analysis by providing point probability estimates of functions of 

random variables has been developed. The listing is given in Appendix D. 

To assess performance the program has been exercised on several examples. 

Results presented in Section 3.6 show dramatic improvement of variance 

reduction over conventional Monte Carlo in some cases. In other cases, 

the improvement is only modest. Some general conclusions are presented 

in Section 3.7. For the most part however, for a given problem it is dif-

ficult to predict how much improvement one can expect with variance reduc-

tion. 

3.2 The Essence of Variance Reduction 

The goal of analysis is to estimate 

p = P [ h () < h
IV 	 0 ] (3.1) 

Suppose	 and	 are two unbiased estimates of p. (The method for obtaining 

a point estimate of p is described in Sec. 3.4 below.) The two estimators 

may be combined to form another estimator 

= 46 + ')	 ( 3.2) 
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The expected value ofp is, 

E(p) = 4[E	 + E(')] = p	 (3.3) 

which means that p is an unbiased estimator. 

The corresponding variance is 

V() =	 [V() + V ( p ') + 2 Coy ( p , p ') 1 	 (3.4) 

If p and p' are statistically independent, for example, based on two seoarate 

and independent sets of random numbers, 

V(P) = .- [V() + V(')J 	 (36) 

Thus, the accuracy of the estimator p can be improved over that of the 

independent case if p and p' are ne gatively correlated. Ang and Tang cite 

several examples (no structural analysis) where variance reduction can 

provide a dramatic improvement in efficiency of probability estimation (I 

An estimate of p is obtained by several samples, p .; i = l,K. 

PE K	 pi 
=	 (3.7) 

all p are independent. Note that p 1 will approach normality as K - 

as a consequence of the central limit theorem. 

The mean and variance of p are, 

E(p1) = p	 (3.8) 

V(p1 ) = cj2 /K	 (3.9) 
p 

where a 
2 

is estimated as, 
p

K 
21	 -	 2 

= K-i	 - PE)	 (3.10) 
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= 2u -x. 1	 1 (3.11) 

3.3 How to Obtain Negativel y Correlated Samples 

Suppose that the uniformly distributed variate u. is used to generate 

a number x. from a given distribution (See Appendix A). Then the uniform 

variate u ='l - u. will produce an x such that x and x will be negatively 

correlated. The u are called "antithetic" variates 1 
And in general, if u 1 , u2 , . . . u is used to generate p , and 1 - 

1 - u 2 , . . . 1 - u is used to generate p ', then p and p' will be nega- n	 - 

tively correlated. 

Such a procedure works well when the integral transform is used, e.g., 

Weibull, EVD. One uniform variate u. is used to generate one x.. But 
1	 1 

where Box-Muller is used to generate normal variates, two u are chosen 

(See Appendix A). While the resulting x. and x will be negatively correlated, 

the correlation coefficient will not be -1.0. An imDrovetnent can be made 

by choosing x as a "mirror image" of x. in the distributions. This can 

be done by

where p is the mean of X. 

3.4 How to Obtain Point Probability Estimates 

3.4.1 The Two Variable Case 

The structural reliability problem in which p is the probability of 

failure will be used to illustrate how- and '' are obtained. Consider 

the design case where the two variables are R (strength) and S (stress). 

Estimate p, where

p = P [ R - S	 (3.12) 
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Both R and S are random variables whose density functions are shown 

in Fig. 3.1. First S, having been identified as the variable having the 

largest variance, is the "reference" A random variate R. is sampled from 

the other factor, R. An estimate of p is 

/	 p. = P(S > R.) 

= 1 - F(R.)
	

(3.13) 

where F5 is the CDF of S. 

It should now be apparent why sampling is done on the smallest vari-

ance term.	 is a "good" estimate of p if the distribution is narrow, and 

is exact as a	 0. 

Now the antithetic variate R is sampled as described above. Because 
1 

it is negatively correlated to R., its position relative to R. will be as 

shown in Fig. 3.2. Then,

= P(S > R) 
1	 1 

F
S
 (R') (3.14) 

and the ith estimate of p is

= 4	 +	 ( 3.15) 

As a second example, consider again the case where R and S are the basic 

variables, but now where a < a S,In this case, R would be the reference 

variable. Random points Si and the antithetic variate S are sampled from 

S. The estimates now are,

= F (S)	 (3.16) 
1	 R i 

= 1 - 

P ] = FR(S!) 
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'p 

The "Reference" Variable. 

PDF of S, f (maximum 

variance variable)

R. 1

- --	 = P(S > R.) 

Fig. 3.1 Estimate of p using one point sampled from the minimum 

variance variable.
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PDF of S,

J 

R. 6 R

p. = P(S > R.)	 -	 = P(S > R) 

Fig. 3.2 Estimates of p using a point R. sampled from R and the 

antithetic variate of R., denoted as 1 
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Thus, it is seen that the variable type (stress or strength) must be identi-

fied to obtain the proper form for computing estimates. 

Fig . 3.2 shows why negatively correlated variables tend to provide 

good estimates. Being on both sides of a distribution, R. and R 1 combine to 

produce an "average" estimate of p. 

3.4.2 The General Case 

In general, the performance function, g() 	 h(X) - h is a non-linear 

function of several variables. The method of obtaining a point estimate of 

p is an extension of the scheme for two variables. 

The reference variable is defined, not as the one having the maximum 

variance, but rather the one having the maximum impact. For example, if 

g = 5R - S
	

(3.17) 

and a =Cr /l2, clearly the random variable,	 = 5R will have a larger vari- 

ance than S. Thus, we say that R is the maximum impact variable. 

In general, the maximum impact variable can be found by estimating 

gIX. for each X.,. The maximum impact variable, denoted as X, is that 

X. for which lg/Xl is the largest. 

The sign of 3g/3X, identifies variable type; stress if (±) and strength 

if (-). As indicated above, the "type" of 	 must be known to choose the 

appropriate form for estimating p (e.g., Eqs. 3.13 and 3.16). 

The estimates- and ' proceed as follows. Sample all variables but 

Let g()	 0, and solve for x (this is done by the secant method 

in the program).

xM = h( , )	 (3.18) 

where	 is the vector of sampled minus X. 
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The estimate of p is, 	 J 

= F(x) if X. is a strength variable
	

(3.19) 

1 - F(xM) if KM is a stress variable 

To obtain p', the antithetic vector	 of x is used in Eq. 3.19. 

3.5 Confidence Intervals on p 

Noting that •E is normally distributed, approximate 1 -a confidence intei 

vals on p can be constructed as [ 51, 

	

z	 S	 z	 S 
a/2 p	 a/2 p 

P -	 <p< p +	 (3.20) 

Er	 •E 

or,

< p < p(l + y)	 (3.21) 

where,
z, = standard normal variate (absolute value) at 

probability level a/2. 

	

z	 C 
a/2	 p	 (3.22) 

/T 
C	 SP/PE	

(3.23) 

The UA variance reduction program chooses K to produce a specific 

confidence interval. For example, if you want to sample until the 952.'


	

confidence intervals are	 10% of PEV 

I	 0.10	 = 1.64	 (3.24) 
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and solving Eq. 3.22 for K,

2 

K	
/2	

= 269 C	 (3.25) 

To find C, an initial sample of K = 1000 is chosen and an estimate 

of C is obtained. Then if K < 1000 in Eq. 3.25, the process is terminated 

with narrower confidence intervals than requested. If K > 1000, the program 

will continue to sample to that value. 

3.6 The Variance Reduction Monte Carlo Program 

A flow diagram which outlines the logic of the variance reduction 

program is provided in Fig. 3.3. Sample output of the program is shown 

in Fig . 3.4 with some commentary. 

Two versions of the program have been developed. An interactive version 

(IVARED) runs on the IBM PC/XT. Program VARED runs on the VX or CYBER 175. 

A listing of VAR.ED is given in Appendix D. 

3.7 Examples of the Performance of VARED 

Twelve examples of the use of VARED to produce point probability estimate 

are provided in Tables 3.1 through 3.12. Point estimates by VARED are compared 

to the exact solution (closed form or POFAIL) if available. The exact 

solution, provided by program POFAIL, is employed for performance functions 

involving two variables. For larger problems, Wu/FPI is used. For the 

VARED solutions, 95% confidence intervals (ct = 5%) are specified along 

with y = 0.10. 

To compare variance reduction with conventional Monte Carlo, sample 

size requirements and CPU time for the latter are extracted from Figs. 2.4 and 

2.5 and are presented in the tables.
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Define

(a) g(X) 

(b) Distribution, and (, a) for all X. 

(1)
	

(c) 1 - a; confidence level 

(d) y; width of confidence bound 

(e) K, the initial sample size 

(2) Identify maximum impact variable, XM 

Sample a random vector X. 

(all variables except XQ 

(4) Compute p 

(5) Obtain the antithetic vector 

(6) Compute p1 

(7) Compute p.

(8) Repeat steps (3) through (7); i 	 l,K 

47. 

(9) Compute p and l- a confidence bounds. 

Are confidence bounds with p(l 

YES	 NO 

Print Results	 Compute K, the additional samples 

(10) K required to bring 1 - a confidence 

bounds within	 - y) 

(11) Repeat steps (2) through (7) for i = 1, 

- 

Fynhesize data collected in (8) and 

(12) and print results 

Fig. 3.3 An outline of the variance reduction Monte Carlo program 
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Fig. 3.4 An example of the output of the variance reduction Monte Carlo 

Program with commentary 

MONTE CARLO SOLUTION 

LIMIT STATE FUNCTION	 6R_DSQRT(300.*P**2+1.92*T**2) 

SAMPLE SIZE = 

NUMBER OF RANDOM VARIABLES = 3

This value is arbitrary; 

it is the size of the 

first sample used to 

estimate the' total 

required sample size, K 

CONFIDENCE INTERVAL = 95.00 '	 Ensures that 95% confidence intervals 

GAMMA =	 on p will be within ± 10% of the 

estimator, 

MAX. IMPACT VARIABLE 	 X( 1) 

VARIABLE TYPE IS STRENGTH 

RANDOM VARIABLES 

VARIABLE DISTRIBUTION 	 MEAN 

R	 WEIBULL	 .48OOE+2 

P	 LOG	 .98700E+00 

T	 EVD	 .2000E+O2

STD DEV 

.30000E+0 1  

• 1OøE+O 

• 2øøøE+1 

ESTIMATE OF P =	 .1043E-02
	

1 This is the first estimate of p I-
95.0	 CONFIDENCE INTERVALS ARE 

PL =	 •11725E-02	 PU =	 .2030E-02
	 .Note that 95% confidence 

intervals exceed	 10%.


Thus, a larger K is 

required. (See below) 

STATISTICS OF P 

MEAN	 =	 • 1643E—ø2	 283



STD DEV 

MEDIAN 

coy	 =

• 69462E-02 

• 36004E03 

• 43422E+01 

K FOR GAMMA 	 .10 IS	 7244

Based on the first sample of K = iC 

this is the total K required for tl 

desired confidence intervals. K is 

computed from Eq. 3.25 which requix 

C. This is why the first sample c 

1000 is taken. 

ESTIMATE OF P =	 .18030E-02 

95.00 7. CONFIDENCE INTERVALS ARE 

PL =	 •15509E-02	 PU

fNote that the confidence intervals do not qui 

meet the specifications. This is because the 

original estimate of C
p	

4.34 was small rela 

to the improved estimate of C = 6.24 

STATISTICS OF P 

MEAN	 = .18348E-02 

STD DEV = •11456E-01 

MEDIAN	 = .29017E-03 

COV	 = .	 .62436E+01

YOU HAVE ANOTHER DATA SET ?(Y/N) 

Note: The size of the sample required K depends upon C (Eq. 3.25). 

In this problem C is relatively large implying that a relatively 

large K is required. This same problem is presented in Table 3.7. 
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Table 3.1 Example of the Performance of a Variance Reduction Monte Carlo 

Program; EXAMPLE 1 

DEMONSTRATING THE PERFORMANCE OF THE UA VARIANCE REDUCTION MONTE CARLO PROGRAM 

EXAXPLE	 1 

PERFORMANCE FUNCTION: g = R - S 

Variable	 j Type Mean/Median Std. Dev./ COV 

R N 50 •.	 5 

12 S N 20 

RESULTS: 

I Probability Total	 I Sample 

1
of Failure CPUTime(b) Size, 

(a) 
Exact

1.051E-2 
Wu/FPI  

Monte Carlo 
Variance 1.118E-2 2.04 160 

Reduction(d)  

Monte Carlo 
Conventional 11.2 5E4 
(Bernoulli 
parameter)(e)

Notes: 

(a) Exact value using POFAIL if two variables. If more than two, 

Wu/FPI is used; the exact should be within 5% of this value. 

(b) CY'BER 175 

(c) The number of p . for variance reduction and the number of Z 1 for 

conventional. The values are not directly comparable. 

(d) 95% confidence intervals within ± 10% of 

(e) Same confidence interval as variance reduction. 
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Table 3.2 Example of the Performance of a Variance Reduction Monte Carlo 

Program; EXAMPLE 2 

DEMONSTRATING THE PERFORMANCE OF THE UA VARIANCE REDUCTION MONTE CARLO PROGRA 

EXAMPLE	 2 

PERFORMANCE FUNCTION: g = R - S 

Variable Type Mean/Median	 : Std.	 Dev./ COV 

R LN 50	 * •.	 0.2	 * 

S LN 20	 * 0.2	 * 

RESULTS: 

Probability Total Sample 

of Failure CPUTime Size, 

(a) 
Exact 5.347E-4  
Wu/ F? 

Monte Carlo 
Variance 5.072E-4 13.78 11589 

Reduction( d)  
Monte Carlo 
Conventional 
(Bernoulli 238.9 1.122E6 

parameter)(

Notes: 

(a) Exact value using POFAIL if two variables. If more than two, 

Wu/FPI is used; the exact should be withth 5% of this value. 

(b) CYBER 175 

(c) The number of p . for variance reduction and the number of Z. for 

conventional. The values are not directly comparable. 

(d) 95% confidence intervals within ± 10% of p E 

(e) Same confidence interval as variance reduction. 
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Table 3.3 Example of the Performance of a Variance Reduction Monte Carlo 

Program; EXAMPLE 3 

DEMONSTRATING THE PERFORMANCE OF THE UA VARIANCE REDUCTION MONTE CARLO PROGRAM 

EXANPLE	 3 

PERFOR-MANCE FUNCTION: g = R - S 

Variable Type Mean/Median Std.	 Dev./ COV. 

R WEI 4.5 0.45 

S FRE 3.0 0.30 

RESULTS: 

•
Probability Total 

CPiJTime(b)
Sample 
Size,	 K(c) of Failure 

(a) 
Exact 1.0933E-2

><>< Wu/FPI 

Monte Carlo 
Variance 1.0914E2 4.066 2535 

Reduction(d)  

Monte Carlo 
Conventional 9.634 35481 

(Bernoulli 
parameter)(e)

Notes: 

(a) Exact value using POFAIL if two variables. If more than two, 

Wu/FPI is used; the exact should be within 5% of this value. 

(b) CYBER 175 

(c) The number of p . for variance reduction and the number of Z. for 

conventional. The values are not directly comparable. 

(d) 95% confidence intervals within ± 10% of 

(e) Same confidence interval as variance reduction. 

287 



Table 3.4 Exampleof the Performance of a Variance Reduction Monte Carlo 

Program; EXAMPLE 4 

DEMONSTRATING THE PERFORMANCE OF THE UA VARIANCE REDUCTION MONTE CARLO PROGRJ 

EXANThE	 4 

PERFORMANCE FUNCTION: g = R - S2 

Variable Type Mean/Median Std. Dev./ COV 

R WEI 20 4.0 

S FRE 3 0.6 

RESULTS: 

I Probability	 I Total 
CPUTime(b)

Sample 

of Failure Size, K(^ 

Exact (a) 4.272E-2 
Wu/FPI  

Monte Carlo 
Variance 4.0511E-2 3.568 1864 

Reduction(d)  

Monte Carlo 
Conventional 3.689 9441 
(Bernoulli 
parameter)(

Notes: 

(a) Exact value using POFAIL if two variables. If more than two, 

Wu/FPI is used; the exact should be within 5% of this value. 

(b) CYBER 175 

(c) The number of p . for variance reduction and the number of Z. for 

conventional. The values are not directly comparable. 

(d) 95% confidence intervals within ± 10% of 

(e) Same confidence interval as variance reduction. 
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Table 3.5 Example of the Performance of a Variance Reduction Monte Carlo 

Program; EXAMPLE 5 

DEMONSTRATING THE PERFORMANCE OF THE UA VARIANCE REDUCTION MONTE CARLO PROGRAM 

EXAMPLE	 5 

PERFORMANCE FUNCTION: g = R - S
4. 

Variable Type Mean/Median Std. Dev./ COV 

R WEI 20 2.0 

S EVD 10 2.0 

RESULTS:

Probability	 Total	 Sample 

of Failure	 I GPUTime() Size, 

Exact (a) 
Wu/ FP I

 2.8573E-3   

Monte Carlo 
Variance 179E- 10.881 11362 

Reduction(d)  

Monte Carlo 
Conventional 36.157 152230 
(Bernoulli 
Darameter) (e)

Notes: 

(a) Exact value using POFAIL if two variables. If more than two, 

Wu/FPI is used; the exact should be within 5% of this value. 

(b) CYBER 175 

(c) The number of P.for variance reduction and the number of 2. for 

conventional. The values are not directly comparable. 

(d) 95% confidence intervals within ± 10% of 

(e) Same confidence interval as variance reduction. 
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Table 3.6 Example of the Performance of a Variance Reduction Monte Carlo 

Program; EXAMPLE 6 

DEMONSTRATING THE PERFORMANCE OF THE UA VARIANCE REDUCTION MONTE CARLO PROGRA 

EXAXPI.E	 6 

PERFORMANCE FUNCTION: g = AA - Ts + AA
	 - 6.3E8 

BO	 B 0.2779	 * 

Variable Type mean/Median	 : Std. iJev.i WV 

LN 1.0* 0.3* 

A WEI 4.3Eg 0.5* 

B LN 0.9*
I	

0.25*

RESULTS:

Probability	 Total	 Sample 

of Failure	 CPUTime(	 Size, 

Exact (a) 
Wu/FPI 

Monte Carlo 
Variance 
Reduction(d) 
Monte Carlo 
Conventional 
(Bernoulli 
arameter) (e)

1. 901E-3 

1. 7958E-3	 3.643	 1437 

	

68.3616	 199526 

Notes: 

(a) Exact value using POFAIL if two variables. If more than two, 

Wu/FPI is used; the exact should be within 5% of this value. 

(b) CYBER 175 

(c) The number of p . for variance reduction and the number of Z. for 

conventional. The values are not directly comparable. 

(d) 95% confidence intervals within ± 10% of 

(e) Same confidence interval as variance reduction. 
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Table 3.7 Example of the Perfqrmance of a Variance Reduction Monte Carlo 

Program; EXAMPLE 7 

DEMONSTRATING THE PERFORMANCE OF THE UA VARIANCE REDUCTION MONTE CARLO PROGRAM 

EXAXPLE	 7 

PERFORMANCE FUNCTION: g = R - 4O P 2 + 1.92 T2
-S. 

Variable Type Mean/Median	 : Std. Dev./ COV 

R WEI 48.0 3.0 

P LN 0.987* 0.16* 

T EVD 20.0 2.0

RESULTS: 

Exact (a) 
Wu/FPI 

Monte Carlo 
Variance 
Reduction(d)

 Monte Carlo 
Conventional 
(Bernoulli 
ararneter) (e)

Probability	 Total	 Sample 

of Failure	 CPUTime(.	 Size, 

0.0018	
r:zz:::I::I:IIIIIIIIIIIII 

0.0018208	 I	 16.375	 12734 

	

74.4186	 211349 

Notes: 

(a) Exact value using POFAIL if two variables. If more than two, 

Wu/FPI is used; the exact should be within 5% of this value. 

(b) CYBER 175 

(c) The number of p. for variance reduction and the number of Z. for 
1 

conventional. The values are not directly comparable. 

(d) 95% confidence intervals within ± 10% of 

(e) Same confidence interval as variance reduction. 
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Table 3.8 Example of the Performance of a Variance Reduction Monte Carlo 

Program; EXAMPLE 8 

DEMONSTRATING THE PERFORMANCE OF THE UA VARIANCE REDUCTION MONTE CARLO PROGRfi. 

EXAMPLE	 8 

PERFORMANCE FUNCTION: g 	 - 1000

f	 1- f 
pp	 pp 

-1.71 
G(Y	 H(Y • 

Variable Type Mean/Median* Std.	 DeV./	 LUVX 

0

LN
* 

1.0
* 

0.3 

f N 0.7 0.07 

pp. 

C LN 0.222* 0.4* 

T LN
* 

1.0
* 

0.15 

AE O
EVD 0.0005 0.00008 

H LN
* 

1.673
* 

0.4 

RESULTS:

Probability	 Total	 Sample 

of Failure	 CPUTime(b)	 Size, 

Exact (a) 
Wu/FPI  

1.002E-2 

Monte Carlo 
Variance 9.8814E-3 14.822 4401 

Reduction(d)  
Monte Carlo 
Conventional 30.7564 39810 
(Bernoulli 
parameter)(

Notes: 

(a) Exact value using POFAIL if two variable. If more than two, 

Wu/FPI is used; the exact should be within 5% of this value. 

(b) CYBER 175 

(c) The number of p. 
1 

for variance reduction and the number .of Z. for  1 

conventional. The values are not directly comparable. 

(d) 95% confidence intervals within ± 10% of 

(e) Same confidence interval as variance reduction. 
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Table 3.9 Example of the Performance of a Variance Reduction Monte Carlo 

Program; EXAMPLE 9a 

DEMONSTRATING THE PERFORMANCE OF THE iJA VARIANCE REDUCTION MONTE CARLO PROGRAM 

EXAMPLE	 9a 

PERFORMANCE FUNCTION: g = R - S 

Variable Type Mean/Median Std. Dev./ COV 

R LN
* 

20.0
* 

0.2 

S LN
* 

10.0
* 

0.2 

RESULTS: 

Probability Total	 Sample 
CPUTime(b)	 Size, K(c) of Failure 

(a) 
Exact 6.6642E-3 -zT JIIIIT Wu/FPI  

Monte Carlo 
Variance 6.4159E3 4.75 2831 

Reduction(d)  

Monte Carlo 
Conventional 15.7724 59566 
(Bernoulli 
parameter)(

Notes: 

(a) Exact value using POFAIL if two variables. If more than two, 

Wu/FPI is used; the exact should be within 5% of this value. 

(b) CYBER 175 

(c) The number of p. for variance reduction and the number of Z for 

conventional. The values are not .directly comparable. 

(d) 95% confidence intervals within ± 10% of 

(e) Same confidence interval as variance reduction. 
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Table 3.10 Example of the Performance of a Variance Reduction Monte Carlo 

Program; EXAMPLE 9b 

DEMONSTRATING THE PERFORMANCE OF THE UA VARIANCE REDUCTION MONTE CARLO PROGRA' 

EXAMPLE	 9b 

PERFORMANCE FUNCTION: g = R - S 

Variable Type Mean/Median	 : Std. Dev.I COy 

R LN
* 

22.5
* 

0.2 

S LN
* 

10.0
* 

0.2 

H 

RESULTS: 

Probability	 I
Total Sample 

of Failure CPU-Time Size, 

(a) 
Exact I 1.89338E-3 
Wu/FPI  

Monte Carlo 
Variance

I 
I	 1.7434E-3 8.075 6068 

Reduction 
Monte Carlo

51.44 218776 
Conventional 
(Bernoulli 
parameter)

Notes: 

(a) Exact value using POFAIL if two variables. If more than two, 

Wu/FPI is used; the exact should be within 5% of this value. 

(b) CYBER 175 

(c) The number of. for variance reduction and the number of Z. for 
1 

conventional. The values are not directly comparable. 

(d) 95% confidence intervals within ± 10% of 

(e) Same confidence interval as variance reduction. 
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Table 3.11 Example of the Performance of a Variance Reduction Monte Carlo 

Program; EXAMPLE 9c 

DEMONSTRATING THE PERFORMANCE OF THE UA VARIANCE REDUCTION MONTE CARLO PROGRAM 

EXA'tLE	 2 
PERFORMANCE FUNCTION: g = R - S 

Variable Type Mean/Median Std.	 De:./ COy 

R LN 25.0 0.2 

S LN
* 

10.0
* 

0.2 

RESULTS: 

I Probability Total	 I Sample 

of Failure CPUTime(b) Size, 

(a) 
Exact	 I 5.347E-4 T<Z 
Wu/FPI 

Monte Carlo I 

Variance I	 5.072E-4 13.681 11589 
Reduction(d)  
Monte Carlo 
Conventional 164.70 767361 

(Bernoulli 
paraeter)(e)

Notes: 

(a) Exact value using POFAIL if two variables. If more than two, 

Wu/FPI is used; the exact should be within 5% of this value. 

(b) CYBER 175 

(c) The number of p. for variance reduction and the number of Z for 

conventional. The values are not-directly comparable. 

(d) 95% confidence intervals within ± 10% of 

(e) Same confidence interval as variance reduction. 
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Table 3.12 Example of the Performance of a Variance Reduction Monte Carlo 

Program; EXAMPLE 9d 

DEMONSTRATING THE PERFORMANCE OF THE IJA VARIANCE REDUCTION MONTE CARLO PROGRA 

EXANPLE	 9d 

PERFORMANCE FUNCTION: g = R - S
4. 

Variable Type Mean/Median	 : Std. Dev.f COV 

S LN 10.0 0.2 

RESULTS: 

Probability Total Sample 

of Failure CPUTime(b) Size, 

(a) 
Exact 1.952665E-4 
Wu/FPI  

_ 

Monte Carlo I 
Variance i	 2.0296E4 20.27 17977 

Reduction(d)  

Monte Carlo 
Conventional 388.93 1840772 
(Bernoulli 
parameter) (e)

Notes: 

(a) Exact value using POFAIL if two variables. If more than two, 

Wu/FPI is used; th'exact should be within 5% of this value. 

(b) C1BER 175 

(c) The number of p. for variance reduction and the number of Z. for 

conventional. The values are not directly comparable. 

(d) 95% confidence intervals within ± 10% of 

(e) Same confidence interval as variance reduction. 
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3.8 Comparison of Computer Costs of Variance Reduction and Conventional 

Monte Carlo 

Example 9a, b, c, and d was designed to illustrate how computer costs 

increase as point probabilities become smaller, providing estimates at the 

same level of confidence. Figs. 3.5 and 3.6 show the relationship between 

CYBER 175 CPU execution time and the probability level for the conventional 

"Bernoulli" and the variance reduction estimates, respectively, for Example 9. 

Then Fig. 3.7 demonstrates how much more efficient is variance reduction 

for this problem. It should be noted that Figs. 3.5 through 3.7 relate 

only to Example 9 and cannot be presented as being characteristic of the 

relative behavior of the two methods. 

3.9 Conclusions on Variance Reduction 

Some general conclusions based on experiences exercising VARED are, 

1. Variance reduction seems to outperform conventional Monte Carlo 

consistently. However, in some cases the improvement is dramatic, in some 

cases it is modest. 

2. Related to item 1, it is difficult to predict computer costs. 

At a given confidence level, CPU time depends strongly upon the form of 

the performance function, the distribution of the variables, as well as 

the probability level. 

3. To construct a CDF, it is necessary to obtain several point proba-

bility estimates, as it is using FPI. Thus, the variance reduction Monte 

Carlo method is not particularly effective when it is required to construct 

a distribution function of a response variable. 
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1000.0 
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PROBABILITY OF FAILURE 

Fig. 3.5 CPU execution time for CYBER 175 for conventional Bernoulli 

point probability estimate; Example 9; a = 5%, y = 10% 
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Fig. 3.6 CPU execution time for CYBER 175 for variance reduction 

point probability estimate; Example 9; a = 5%, y = 10% 
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Fig. 3.7 Ratio of Bernoulli to variance reduction CPU execution time 

for CYBER 175 for point probability estimate; Example 9 

95% C.i. y = 10%
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J 
I = E Ax. 

1 
f(x.) 1 

i=l
(4.3) 

4.0 DIRECT EVALUATION OF THE PROBABILITY OF FAILURE INTEGRAL 

4.1 Preliminary Remarks 

Consider the multidimensional integral for Pf 

P 	 f f X (X)dx	 (4.1) 

where X is a vector of n random variables and Q is region of failure in X-space. 
Ilu 

Standard methods of numerical integration (e.g., Simpson's rule) are 

efficient for a one and two dimensional integral. But when n exceeds two, these 

methods are much more difficult to apply. Monte Carlo integration becomes 

more attractive for n > 2. 

4.2 The Mean Value Method Used for a Single Random Variable 

Consider the random variable X. Let 

P f = P [ X - a]	 (4.2) 

p  I =f f(x)dx 

The density function f(x) is shown in Fig. 4.1. But upon dividing the interval 

(0, a) into J equal increments, Ax., the integral can be approximated as 

This summation can be approximated by a Monte Carlb approach. Define 

a sampling interval (c, d). In the example of Fig. 4.1, (c, d) could be 

chosen as (0, a). But in general, c should be chosen so that the area below 

is "very small." And d should be chosen such that d	 a. 
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f(x.)

k.	 d 

4L 
Fig. 4.1 Density functions of X and U 

- LI.! 

-Kci +Ka

d 
C

Fig. 4.2 Density function for Example 
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Consider a random sample of u. of uniform variates 

u. " U(c, d)	 i = 1, N	 (44) 

The density function of u is shown in Fig. 4.1. 

Let

L=d - c 

Note that

LX . = - 
1 N 

And it follows that,

N
6. f(x.) 

N 1	 1 
1=1

(4.5) 

(4.6) 

(4.7) 

where

6. = U	 if	 u. > a	 (4.8) 
1	 1 

1	 if	 u.- a 
1 

Example: Compute P[X	 0.70] where X ".' N (1.0, 0.10) b y Monte Carlo using 

the mean value scheme. The interval (c, d) is defined as shown in Fig. 4.2. 

a is the standard deviation. Here K = 4.5. The reason for not choosing d = a 

here (which would be more reasonable) is that the scheme of selecting an inter-

val for the integration boundary must be applied in 'the multidimensional case 

so it is employed here as well. 

First, N was set to 1000. An estimate of I, denoted as I, was computed. 

The process was repeated 10 times. Results are given in Table 4.1. Each of 

the 10 values of I are given along with the sample mean and standard devia-

tion of I. The process was repeated for N = 10,000 and the results are given 

in Table 4.2.
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Table 4.1 Monte Carlo Estimate of the Integral of Example 

N = 1,000
	 I 

I - 2274425EO3 
1 lS76076E-03 
1 4003 4é,4E-03 
1.3360464E-03 
i. 1O5437E-O3 
1.. 17t1633E-03 
1. .71832E.-O3 
I 4165S 7/  

I 445890SE-03 
1.22413473E-03 

Mean of I = 1.301E-3 

Exact value of I = 1.350E-3 

Std. Dev. of I	 0.129E-3 

Assuming that I is normal, 90% confidence intervals on I are estimated 

as (1.089, 1.513)E-3 . Thus, this is the C. I. on I associated with a 

sample of size 10,000.
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Table 4.2 Monte Carlo Estimate of the Integral of Example 

N10,000	 I 

T. 22E0CE-O3 
1.3-768753E-03 
1. 391 1 4E-03 
1.3669265E-03 
1. 42;'50146E-03 
12714810E-03 
1. 2380 19 IE-03 
1 4196800E-03 
1 39.13E-03 
1. 40387CE-o3 

Mean of I = 1.349E-3 

Exact value of I = 1.350E-3 

Std. Dev. of I = 0.075E-3 

Assumin g that I is normal, 90% confidence intervals on I are estimated 

as (1.226, 1.472)E-3. This is the C. I. on I associated with a sample of 

100,000.
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4.3 Extension to the Multidimensional Integral 

The mean value method can be extended to the multidimensional case. As 

an example, the two-dimensional problem will be considered because it is easy 

to describe the problem. Extrapolation of the concepts to higher dimensions 

is

Shown in Fig. 4.3 is design parameter space for the two random parameter. 

(X, Y). The probability of failure is the volume under the joint pdf in 

the failed region. The general strategy for estimating that integral, I, 

will be as follows. 

1. Locate the design point as a reference for the sampling region. 

Because its "exact" location is not critical, and because computer time is 

minimized, a crude and fast method (MVFOSM as described in Sec. 4.4) is 

employed.

2. A sampling region (integration boundary) is defined as shown in 

Fig. 4.3. The choice of K 1 , K2 , K 3 , and K4 is arbitrary. It is important to 

include all of the probability mass within P. As shown in Sec. 4.5, reason-

able results are obtained where all K. E K = 5. 
1 

3. Uniformly distributed variates u and v are sampled. The distribu-

tions are shown in Fig. 4.4 along with the region of integration. 

4. g(u, v) is computed to establish whether or not the point lies in 2. 

5. By subdividing region 0 into incremental areas, AA., the integral 

I can be approximated as 

I = Jx . f dx dy .1Xi f Yi 
A. 
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1<4 a  

1<3

Contours of the joint 

PDF of X.and Y	 Integration boundary 

L=	
Kiox	 1<2°x 

Fig. 4.3 Design parameter space and the region of integration 
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f

e 

f(v) 

u " 1J(e, f) 

Contours of the joint PDF 

of X and Y 

Fig. 4.4 Region of integration and contours of the integrand 
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where f Xi	 Yi 
and f . are the pdf's of X and Y respectively at A.. The integral 

is estimated by sampling (u., v i ); i1, N, and making the following computa-

tion.

IE 6. f	 (u	 i) f	 (v)	 (4.9) 
N.	 1X	 i	 Y  

1=1 

where,

6. = [1	 if	 g(u. ) vi	 0	 (4.10) 

if	 g(u
i
, v i ) > 0 

L  
In this expression for I, M i is approximated by A/N. 

Exactly the same approach is employed for higher dimensional integrals. 

It can be seen why the Monte Carlo approach is so convenient for evaluation 

of multidimensional integrals. Employing a straightforward integration 

scheme, say the trapezoidal rule, computer logic and program statements 

associated with negotiating the boundaries can become extremely complex. 

For Monte Carlo, the only operation to define a boundary is the computation 

of g(u) where u is the vector of uniform variates. 

The "bad news" of Monte Carlo is that large sample sizes are required 

to reduce confidence intervals on estates of I to reasonable levels. 

4.4 Location of the Design Point 

Consider the performance function g(). It is required to locate the 

design point (see Figs. 4.3 and 4.4). Note that the design point will depend 

upon the method used. The Wu/FPI and the Rackwitz-Fiessler methods are ex-

pected to produce a "high quality" result. But the Hasofer-Lind method can 

be employed as well. And a design point can be established using the mean 
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value first order second moment method (MVFOSM) originally developed for 

computation of the safety index. This method was found to be fast, but 

it was lacer discovered to produce unsatisfactory results for larger prob-

lems. The method used in Program SELSAN is the Rackwitz-Fiessler algorithm 

which was found to ,produce consistently good results. 

4.5 Confidence Intervals: The Efficienc y of the Mean Value Method 

To run a Monte Carlo integration program, one must first choose (a) the 

sample size, N, and (b) the region of integration defined by K 1 , K 2 , K3, 

and K4 . For the examples considered in this study, all of the K's were 

assumed to be the same and equal to K. In all cases, M = 10 repetitions 

of the evaluation of I were performed for a given N = 10,000 and K. This 

was done to estimate the distribution of I for the purpose of constructing 

a confidence interval. 

To illustrate the results of the analysis, Table 4.3 shows the estimated 

value of the integral for each of M = 10 repetitions for the first example. 

N = 10,000 points were used for each estimate I. Therefore, the sample mean 

of I, namely 5.22E-4, is then the best estimate of I and is based on a total 

sample of 100,000. 

The purpose of repeating the integral evaluation (e.g., Table 4.3) is to 

estimate the variance of the estimator and then construct confidence intervals 

Consider a vector of estimates of I 

= '1'	 2'
	 (4.11) 

310



Table 4.3 Example of a Detailed Summary of the Results for a Single Value 

of K and N. 

Performance Function, g 	 R - S 

R %LN (50., 0.20)1

Median and COV 
S 'LN (20., 0.20)J 

Sample Size, N	 10,000 

Region of Integration, K = 5.0 

MVFOSM Analyses:	 B = 2.79	 Design Point 

R* = 25.14 

S = 24.53 

I B = -	 (I) CPU Seconds 

1 4.55E-4 3.32 2.25 

2 5.22 3.28 2.30 

3 4.82 3.30 2.31 

4 5.39 3.27 2.27 

5 5.08 3.29 2.28 

6 5.11 3.28 2.25 

7 5.53 3.26 2.28 

8 5.09 3.29 2.31 

9 5.46 3.27 2.30 

10 5.94 3.24 2.33 
Total CPU Execution Time = 22.9 seconds 

Sample Mean of I = 5.22E-4 

Exact Value of I = 5.35E-4 

Estimated 
Bias = = 0.98 

Exact 

Sample Standard Deviation of I = 0.39E-4 

Coefficient of Variation of I 7.3%
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The sample mean and variance are, 

=	 z I.	 (4.12) 

	

M.	 1 i=l

M 

= :ii- • E	 ( I - I)	 (4.13) 

i=l 

Let M = 10. The 95% confidence interval on I using an individual estimate is 

I - 2.23 s 1	 I	 I + 2.33 s	 (4.14) 

The number 2.33 is the student's t variate for n = 10 at a level of 2.5%. 

The 95% confidence intervals based on the mean of the estimates is 

	

2.33 S I: <	 <	 2.33 S1 

I------	 -1-1+	 (4.15) 

Example: From the data of Table 4.3, 95% confidence intervals for I are, 

(in terms of 10),

 5.22 - 2.33(.39) < I < 5.22 + 2.33(.39) 	 (4.16)
 3.16	 3.16 

Or,

P = (4.93 < 1< 5.51) = 0.95
	

(4.17) 

Suppose it is desired to establish the sample size requirement for a 

given accuracy. For example, find the minimum N to ensure that the value 

of I will be within	 10% of I with a confidence of 95%. Assuming that I 

will be normally distributed with a mean of I and standard deviation of 

it follows that 95% confidence intervals on I are, 

	

1.96 C 1	 1.96 C 

(i	 1 -	 Ii	 ;	 I 1 
+	

I 1	 (4.18) viJJ 
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where C 1 = s 1 /I. For	 10%, let

1.96 C1 
0.10 =	 (4.19) 

VIT 

Therefore, the requirement on N is 

M	 384 C	 (4.20) 

Unfortunately, one does not know C 1 in advance. However, after analyzing 

several check cases, an approximate relationship between C 1 and n is given in 

Fig. 4.5. These figures are actually more applicable to the stratified 

sampling version of the mean value method described in Sec. 4.7 below. 

Using Fig. 4.5, Eq. 4.20 and Fig. 2.5, one can pre-estimate the sample 

size requirement and cost. For example, if the response function has 10 

random variables, then C 1 = 0.80 from Fig. 4.5. The number of blocks of 

10,000 is given by Eq. 4.20 as M	 246. Thus, the total sample size require-

ment is 246 x 10 or 2.46 million evaluations of the integrand. From Fig. 2.5, 

the total CPU execution time on the CYBER 175 would be about 344 seconds. 

This is for 95% confidence for I to be within ± 10% of I. 

4.6 Examples of the Mean Value Method 

Other examples of the performance of the mean value method are given 

in Tables 4.4 through 4.7. 

The mean value method seems to perform better than the direct (conven-

tional or variance reduction methods. But the literature promises that 

efficiency of the mean value method will be improved by stratified sampling, 

i.e., sampling with a higher density of points in the region where f X is the 

largest. This is also called group sampling, or selective sampling, and is 

essentially what is often referred to as "importance sampling." In short, 

more samples are taken in the more important regions. 
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Table 4.4 

Example 1; Monte 

Performance 

R " LN 

S ". LN 

Exact

Carlo Integration 

Function	 g = R - S 

(R 	 = LN (50., 0.20) 

('h, C) = LN (20., 0.20) 

= 5.35E-4 

Sample 
Size 

N

Region of 
Integr-ation 

K

coy of 
I	 (%)

Bias* CPU 
Time

Execution 
(sec)** 

1000 3.5 28 .77 2.5 

4.5 28 .84 2.3 

5.0 30 .85 2.3 

5000 5.0 8.3 .94 11.4 

10,000 3.5 7.2 .87 24.5 

4.5 7.5 .96 23.3 

5.0 7.5 .98 22.1 

*Bias = Estimated I/Exact I; Estimated I is the average of 10 

repetitions of I,	 each having a 

sample size of N.

**BER 175
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Table 4.5 

Example 2 

Performance Function	 g = R - S 

R '	 WEI (20.,	 2.0)	 Mean and Standard Deviation 

S	 E	 (10., 2.0) 

Exact I 2.86E-3 

Sample Region of 
Size Integration COy of Bias* CPU Execution 

N K I	 (%) Time (sec)** 

1000 3.5 9.29 .88 1.71 

4.5 12.03 .95 1.71 

5.0 13.64 .96 1.71 

10,000 3.5 2.17 .91 17.0 

4.5 2.76 .98 17.0 

5.0 3.05 1.00 17.0

*Bias = Estimated I/Exact I 

**CYBER 175

316 



Sample	 Region of 
Size	 Integration 

N	 K
COy of 
I (%) 

10.5 

11.3 

12.6 

2.17 

2.48 

3.02 

Bias* CPU Execution 
Time (sec)** 

.88 2.0 

.93 2.0 

.93 1.9 

.92 20.5 

.96 19.4 

.98 19.3

	

1000
	

3.5 

4.5 

5.0 

	

10,000
	

3.5 

4.5 

5.0 

Table 4.6 

Example 3; Monte Carlo Integration 

Performance Function	 g = R - 

R nu WEI (20., 4.0) 

S " FRE (3., 0.6) 

Exact I E p  = 4.27E-2 

*Bias = Estimated I/Exact I 

**CYBER 175
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Table 4.7 

Example 4; Monte Carlo Integration 

/300P2 T2 Performance Function g = R -	 + 1.92 

R "-. WEI (48.,	 3.0)	 Mean and Standard Deviation 

P ".' LN	 (1.0, 0.16) 

T '	 EVD (20.,	 2.0) 

Exact I E Pf = 1.80E-3 

Sample Region of 
Size Integration COy of Bias* CPU Execution 

N K I	 ( Time (sec)** 

1000 3.5 5.3 .86 3.4 

4.5 9.1 .94 3.3 

5.0 10.1 .96 3.3 

5000 5.0 6.5 1.00 16.4 

10,000 3.5 3.7 .88 32.2 

4.5 4.8 .97 32.4 

5.0 5.1 I .99 32.5

*Bias = Estimated I/Exact I 

**CYBER 175
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Fig. 4.6 
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4.7 Stratified Sampling; Extension of the Mean Value Method 

Fig. 4.3 illustrated for two dimensions, the joint probability density 

function (pdf), the limit state, and the region of failure, 0. Shown is a 

"reference point,." (in this case a design point which could be obtained by 

MVFOSM or any of the fast probability integration methods) which is "close" 

to the peak of the pdf. This reference point is used to define the sampling 

region. 

A summary of the stratified sampling scheme is shown in Fig. 4.6. First, 

the reference point is established. In program SELSAN, it is defined by a 

Hasofer-Lind or Rackwitz-Fiessler design point (user's option). Then the use 

must decide 

1. The number of boxes 

2. The size of each box 

3. The total number of points; i.e., the sample size 

4. The number of points in each box, i.e., how the sample is stratified 

Because f will have its peak close to the teference c'oint, it is antici 

that the density of points in Box #3 should be high. Fewer points should be 

in Box #2 and still fewer in Box ill. Then, if the user wants to estimate 

confidence intervals on his point probability estimate, the sample should be 

repeated. 

Studies on how to select the parameters above to minimize the sample sizE 

for a given confidence interval have been inconclusive. But for some sample 

problems, the parameters as given in 'Table 4.8 have performed well. 
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4.8 Program SELSAM 

Program SELSAM performs, by Monte Carlo, numerical integration of the 

probability of failure integral using stratified sampling. When only one 

box is chosen, (no stratified sampling) the program algorithm is the mean 

value method. 

A listing of Program SELSAN is given in Appendix D. 

Examples of Program SELSAM are given in Tables 4.9 and 4.10. The example 

of Table 4.9 has only one box and is therefore the mean value method. In the 

second example of Table 4.10, the formula for defining stratified sampling 

as given by Table 4.8 was employed. 

The program has been exercised on several example problems. The perform-

ance of the program is measured by its accuracy in making point probability 

calculation and its corresponding CPU execution time. 
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TABLE 4.8 Preliminary RecouimendaiOn for Defining the Parameters for 

Stratified Sampling 

• Number of Boxes
	 4 

o	 Size of Each Bo 

Number of standard deviations 

+ 
- from the reference point 

Box 5 

Box 3 

Box 2 

Box 1 

•	 Total Number of Points in 
one sample 10,000 

•	 Points in Each Box 

Box 1 500 

Box 2 1000 

Box 2000 

Box 4 6500 

•	 Number of Samples 10 

(Note that this is the value which 

is being used for the purpose of 

estimating confidence intervals 

associated with the sampling.)
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TABLE 4.9 

EXALE 1: Evaluation of the Probability Integral by the Mean Value Method 

(Sampling in only one block) 

Response function: 

g = R -	 0op 2 - 1.92T2

	

IMean	 Std. Dev. 

R	 Weibull	
J 

48.	 3. 

P	 lognormal	 1.0*	 0.16* 

T	 EVD	 20.	 2. 

*The median and COV are	 0.9874 and C, = 0.16 

• Use only one box, ISTRIP = 1 

• Box (sampling region) is 	 5a in all directions 

• Take IBOX = 10,000 points 

• Repeat process NT K = 10 times. 

This is the input for this problem. 

0,10,3 
1 
5.110000 
R 
1,48. ,3. 
P 
4, .987440632, .16 
T 
3,20. ,2. 
0. 

The output is on the next page.

U 
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VARIABLE DIST.
	 MEAN	 STD. DEV 

R	 WEIBULL 4.8000E+01 3. 0000E+00 

P	 LOG N.	 9.8744E-01 1. 6000E-01 

T	 EVO
	

2. 0000E+01 2. 0000E+00 

K=	 10 

SAMPLE (POINTS) = 10000 

STRIP (SIGMA) =	 5.00 

INITIAL STARTING POINT (REDUCED VARIATES) 
-2.564 1.783 1.945

ESTIMATE OF I BETA CPU SEC 

1.6759E-03 2.933 3.03 

1.7456E-03 2.921 3.04 

1.9782E-03 2.882 3.04 

1.7872E-03 2.913 3.05 

1.6600E-03 2.936 2.95 

1.8472E-03 2.903 3.02 

1.8751E-03 2.898 2.98 

1.7543E-03 2.919 3.04 

1.7949E-03 2.912 3.03 

1.6824E-03 2.932 3.08 

AVG. OF ESTIMATION = 1.7801E-03 

STANDARD DEVIATION = 9.9832E-05

[1

WAV 



TABLE 4.10 

EXAMPLE 2: Evaluation of the Probabilit
y Integral by Stratified Sampling 

(An extension of the mean value method) 

Response function:
- 7 

g = R - v'
/
300P

2 - 1.92C

	

Mean	 I Std. Dcv. 

Weibull	 43.	 3. 

r -	 lo;:icrmal	 l.0	 O.16 

T	 EVD	 20.	 2. 

*The median and COV are 	 0.9874 and C	 0.16 

• Use four boxes, ISTRIP = 4 

• Boxes are respectively (± 5, ± 3, ± 2, 	 1) a in all directions 

• Samples in each box are respectively (500, 1000, 2000, 6500) 

• Repeat process NT K = 10 times 

This is the input for this problem. 

0,10,3 
4 
5.,500 
3. , 1000 
2.)2000 
1.)6500 
R 
1,48. ,3. 
P 
4, .987440632, .16 
T 
3,20.)2. 
0. 

The output is on the next page.
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VARIABLE DIST.
	 MEAN	 STD. DEV 

R	 WEIBULL 4.8000E+01 3 .0000E+00 

P	 LOON.	 9.8744E-01 1.6000E-01 

T	 EVD
	

2. 0000E+01 2. 0000E+00 

K=' 10 

SAMPLE (POINTS) = 500 1000 2000 6500 

STRIP (SIGMA) =	 5.00	 3.00	 2.00	 1.00 

INITIAL STARTING POINT (REDUCED VARIATES) 
-2.564 1.783 1.945

ESTIMATE OF I BETA CPU SEC 

1.6086E-03 2.946 3.14 

1.8204E-03 2.908 3.11 

1.9675E-03 2.883 3.10 

1.7617E-03 2.918 3.11 

1.7030E-03 2.929 3.09 

1.7820E-03 2.914 3.09 

1.8696E-03 2.899 3.08 

1.6840E-03 2.932 3.12 

1.7000E-03 2.929 3.12 

1.8449E-03 2.904 3.12 

AVG. OF ESTIMATION = 1.7742E-03 

STANDARD DEVIATION = 1.0538E-04
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5.0 THE HARBITZ ALGORITHM 

5.1 Preliminary Remarks 

In a 1986 issue of Structural Safety , Alf Harbitz presented a Monte 

Carlo method which estimates point probabilities [8 ]. The algorithm is 

presented as an "efficient." method. The decision was made by the UA team 

to develop the method and compare its performance to ocher available Monte 

Carlo schemes.	 - 

The performance function is given as g() where X is a vector of 

random variables. The goal of analysis is to compute 

= P[gf%X 
\1 	 0]
	

(5.1) 

Consider X as a two-dimensional vector. Fig. 5.1 shows the region 	 where g	 0. 

From probability theory, p can be evaluated by, 

p = 
f^2 

f• () d
	

(5.2) 

But the integral is difficult to evaluate for higher order vectors. The 

Harbicz method provides an estimate of p. 

While the method is described in detail in Ref. 8 , a summar y is 

provided as follows. Aldo described are modifications to the .ethcd to 

improve its perfromance relative to the original Harbicz algorithm. 

5.2 Expression for Point Probability 

The basic variables X can be transformed to standard normal variates 
'1 

using the relationship, 

F. (X.)	 x.)	 (5.3) 

75 
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The lower case x. 1 denotes the transformed variables. 
4) is the standard 

normal distribution function (cdf) and F. is the cdf of X.. Using the 

transformation, the performance function can be written in terms of x. 

This function g
1
 (x) when set equal to zero becomes the limit 'state. 

	

Fig. 5.2 shows the region where g 1	 0 in the space of standard normal 

variates. 

The minimum distance from the origin to g 1 is given as . In a first 

order reliability method (FORM), a provides a first approximation to p, 

i.e.,

	

p =
	 (5.4) 

But an exact exression can be formulated for p. Note that because 

x is standard normal, the probability that x will be.in the "B-sphere will 

be

	

1<	 2< 

	

P[Ixi -	 =	
-	

= F	
(2)	

(5.5)

a 

where r is the chi-square cdf with a degrees of freedom. n is the size of 
n 

the vector X. Earbitz uses this fact and shows, using elementary probabilit: 

operations, that

pP[gO] 

= P Eg < O Ix	 . ( 1 - Fn (32.)]
	

(5.6) 

Evaluation cf p requires application of a ccmbinacion of reliability methods. 

5.3 Computation of ; Basic Considerations 

Numerical FORM can be employed to compute B. One method is the 

Rackwitz-Fiessler algorithm. The second term of Eq. 5.6 is easily calculated 

Monte Carlo is used to estimate the first term of Eq. 5.6. For conveni-

ence, we will let this probability be denoted as p1 . The scheme for extimati 

p1 is as follows:
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x 

Fig. 5.2 Region Where g	 0 
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1. Sample	 outside the $-sphere 

2. Transform to basic variables, 

3. Compute g() 

4. Repeat process K times 

Then

p1	 P [g < 01 lxi > I '\..	 = p1	 (5.7) 

where,
K = (-)  

Pi	 K	
(5.8) 

and where K () is the number of samples for which 	 < 0. p1 is the 

extimacor of p1 

5.4 A Note About Efficiency 

The reason why this method promises to be efficient is illustrated in 

Fig. 5.3. The random points outside the s-s phere are as illustrated. Note 

that a relatively high percentage will fall in the region where g - 0. In 

practice p 1 will typically fall in the range (0.05, 0.25) . For the special 

case where g is linear in normal X, g 1 will be a straight line and p 1	 0.10 
Av  

The point is that confidence intervals on p 1 , for a given K, are relatively 

large if p1 is very small. But if p 1 is in the range as indicated, narrow 

condifence intervals can be obtained with relatively small sample sizes, K. 

Example . . . For large K, p 1 will be approximately normal, and it can 

be shown that,

p1
	

P i
 (l+	 1 -	 (5.9) 

where,

Y=z 
a / 2	 Pi 

rp^K^

(5.10) 
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s-sphere. 

Fig. 5.3 Example of Sampling Outside the 8-sphere (2-D representation) 
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Compute the required K for 95/ confidence intervals within - +  10% of p1. 

Y = 0.10	 and	 z 
a/2

= 1.96 

Then,	 = 384 (1 - p1) 
K (5.11) 

For p = 0.10, K	 3500. For p 1 = 0.001, K	 384,000. 

This exercise clearly demonstrates why it is efficient to formulate the 

problem so as to avoid low probability levels. 

5.5 How to Sample	 Outside the B-Sphere I •> 

Harbitz proposes the following as an efficient sampling procedure. The 

first step is to transform the standard normal variates x to polar coordinate 

- (R,	 )	 (5.12) 

where 0 = (0 , 0 , . . . 0	 ) defines the direction of x and R defines the 
1	 2	 n-i 

length of x. R and 0 are independent. Now it is required to obtain a random 

sample of R and 0. 

2	 2 
R will have an x distribution with n degrees of freedom. 

(r )	
1 2 

	

(n/2) - 1	
r 

R	

(5.13) 

	

2	 =	
2n/2 F(n/2) 

where F( . ) is the gamma function. R can be sampled from this distribution 

is sampled as described below. The jth random vector of	 can be sam pled a 

x, =	 . R.	 (5.14) 
%J	 q.1 

where,

i	 I  

zi 

	
(5.15) 
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and where Y. is the ich sample of a vector of Y. ".' NO, 1), • = 1, n. Thus, 

ki 
is a random direction unit vector in xI space. This corresponds to sampling 

a random 0. 

But we want to sample so that x. lies outside the 8-sphere, i.e., R > 8. 

The well known "rejection technique" will be employed [8]. See Fig. 5.4. 

Define the sampling domain as [r 1 , r 2 ] where r1 = 8 and r2 > B. Experience 

has shown that accurate results are obtained when r 2 > 3 + S. To imp rove the 

efficiency, perform a transformation 

U = exp(- - R 2 )
	

(5.16) 

where a	 2 is a constant whose optimal value depends upon S (see Sec. 5.6). 

The sampling domain for U then is,

	

[[u e
,cp ( 1.r)
	

1 2\
. u ]	 .	 - —	 , ex 	 - - r	 (5.17)


	

2	 (a lJ 

Given that R is x. 2 (n), the density function of u, denoted as h(u) is 

proportional to,

(n/2)-1 (a/2-1 
h(u) = H Zn (u)]	 u	 (5.18) 

A typical function h(u) is plotted in Fig. 5.5. Comparison of Fig. 5.4 and 

5.5 provides the motivation for making the transformation of Eq. 5.16. 

The process of sampling points, as demonstrated in Fig. 5.5, continues 

until we have u. 
1 ; 

i = 1, K. Then the sample of R 1 
. is obtained from Ea. 5.16. 

	

R. = I - a In	 j = l,K	 ,	 (5.19) 
3	 3 

5.7 How to Find a 

The one detail missing from the above discussion is how to specify a. 

We would like to select a so that the rejection area, as illustrated in Fig. 

5.5 is minimized. S. J. Lee has developed a simple program which, for a 
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In the rejection method, a pair of uniformly distributed points 

(v, w) are sampled as shown. 

f
R

(v, w).	 This point rejected 

Typical x2 form of the density 

/	 function 

This point accept:d.A Sample 

(v, 2 
S. 

2

V 

f
V 

Note that for the form of the distribution, many points are rejected. 

Fig. 5.4 The Rejection Technique 
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rejected 

Pairs of uniformly distributed variates (v, w) are sampled as shown.

V 

U. U2 

f
V.

This shows why the transformation of Eq. 5.16 was made. For this form of 

h(v), very few points are rejected. 

Fig. 5.5 How U. is Sampled
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given U1 , u, and n, minimizes the rejection area. This is a feature in the 

UA/Harbitz program. 

5.7 The Etiinateof 

Finally, a sample of x,; j = 1, K can be made from Eq. 5.14. As 

indicated in Sec.. 5.3, fromis computed, . . . then gQ9. Fin ally, p1 

is computed by Eq. 5.8, and the point probability estimate is 

=	
El - r (2)]
	 (5.20) 

5.8 The UA/Harbitz Program 

The listing of the UA/Harbitz program for computing point probabilities 

is given in Appendix F along with a description of the input. 

An example is presented in Tables 5.1 and 5.2. A definition of the 

problem and an example of the input file is provided in Table 5.1. Attached 

the output, given in Table 5.2, are notes which describe some of the terms. 

5.9 Efficiency of the Harbitz Method 

The Harbitz algorithm for point probability estimation by Monte Carlo 

looks promixing as an independent check on FPI in NESSUS. But the efficiency 

of the Harbitz method depends strongly upon the number of independent random 

design factors as well as the probability level. Harbitz efficiency decreases 

substantially with increasing numbers of random variables in the response 

function. Also, efficiency decreases as the probability levels become lower, 

but the loss of efficiency is far less than with conventional Monte Carlo. 

In the following, the efficiency of the Harbitz method is quantified and com-

pared to direct Monte Carlo.
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Table 5.1 Example Problem for }Iarbitz ethod 

r 2 
g() = R - /3031' + 1.927 

li p =l•o 

= 3	 OP= 0.16	 a  = 2 

R%WEI	 T"EVD 

This is an example of the input file 

THIS IS EXAMPLE 7 
1. D-4, 3, 10000 , 0. 
R 
1.148.)3. 
P 
4., .987440632, .16 * 
T 
3.,20.,2. 

*Note that P is lognormal; thus the median 

=	 + c 

is entered.

MIN



Table 5.2 Output of Harbitz Program For Example Problem 

DESIGN VARIABLES 

VARIABLE	 DISTRIBUTION	 AN/MEDIAN	 STD/COY 

R	 EIBULL	 4.8000E+01	 3.0000E+O0 

P	 LOG	 9.8744E-01	 1.6000E-01 

T	 EYD	 2.0000E+O1	 2.0000E+00


(NOTE: THE MEDIAN AND COY USED FOR LN) 

BETA (SPHERE) = 3.O85— First order reliability analysis (R-F) 

NUMBER OF VARIABLES = 3 

AREA RATIO, AR	 .9934	 t> 99.34% of points sampled will be accepted 

ALPHA = 2.1880	 value of a corresponding to the area ratio 


NUMBER OF SAMPLES = 10000-- value of K 

TOTAL NUER OF G < 0 = 782	 value of K() 

Actually had to sample 10,089 poi 
TOTAL NUR OF POINTS SAMPLED = 10089-4>- 	 were

PROBABILITY OUTSIDE BETA SPEERE = 2.3l8E-2--------- 1 - 

PROBABILITY OF FAILURE = 1.81274E-03 	 The central result; Eq. 5.20 

BETA = 2.90905 

95 CONFIDENCE INTERVAL ON PF 

LOWER =	 1.69075E-03	 Eq. 5.9 

UPPER = 1.93472E-03 

CPU EXECUTION TIME (SEC.) = 	 4.17 
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-.	 K(_)


= K
(5.23) 

Consider the response function Z = Z() where k is a vector of n independ-
ent random variables (X1 , . . . Xe). To evaluate the CDF of Z at point Z let 

g() = Z(X) - Z.	 (5.21) 

The CDF0f Zat Z 0 
is 

F(Z) = P(Z(X) - Z I 0 

= P [ g ()	 0]

(5.22) 

By conventional or direct Monte Carlo, a random sample of size K is 

obtained, and the CDF of Z at Z 
0 

is estimated as 

where K () is the number of samples for which g	 0. Thus, p 1 is an 

estimate of p = F(Z). 

1 - c confidence intervals on p = F(Z) are given (for large K) as, 

P [ p 1 (1 - y )	 p1 (1 + y)J = 1 -	 (5.24) 

where

Y=z 
c/2

/ 
/ - ./ p 1 K

(5.25) 

The efficiency of the method is described by the number of samples 

(K) required so that p 1 is within ± 10% of F(Z) with a confidence of 95%. 

Thus,

I = 0.10	 z	 = 1.96 

And the relationship of K with p1 is given as 

384 (1 - 

K =	 -	 (5.26) 

Pi 

339



Eq. 5.26 is shown in Fig. 5.6 as the R = 1 curve. Clearly efficiency i 

very poor at lower probability levels. 

To get an idea of sampling costs, the following approximations 

were observed on the UA CYBER 175. 

CPU Execution Time, (seconds) 

I = (1.4E-4) Kn	 (5.27) 

K = sample size 

n = number of variables 

Computer charges at $130Ihr; cost C in $) 

C = 0.036T	 (5.28) 

For example, a response function having n = 5 variables, requiring a sample oi 

K	 lOs , would run for approximately T 	 70 seconds (1.2 minutes) and cost 

C = $2.50 on the .CYEER 175. 

The Harbitz method is a scheme of selective sampling (coule be considere 

as a form of importance sampling). The point estimate of p = F(Z) can be 

written form Eq. 5.20 as

= l R

	
(5.29) 

where R is the reduction factor, defined as 

R = 1 - F( 2 ; n)	 (5.30) 

0< R-l. 

R is the probability that X sampled at random will fall outside a sphere in 

n-dimensional u-space (space of transformed standard normals) of radius B. 

Plotted in Fig. 5.7 is R as a function of n and S. 

The value of the Harbitz method can be seen upon considering Eq. 5.29 and 

Fi g . 5.6. Clearly as R gets smaller, the sample size K required becomes small 
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•	 I NUMBER OF SAMPLES (K) FOR 95% CONFICENCE INTERVALS 

ii

 

WITHIN -+ 

Fig. 5.6 Efficiency as a Function of Probability Level and Reduction Factor 
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o.00J_-- 

Fig. 5.7 Reduction Factor R as a Function of Beta and the Number of Variables. 
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and the scheme becomes more efficient. However, Fig. 5.6 does not tell the whole 

story with regard to Harbitz. Some extra computer time is required to run the 

Rachwitz-FieSSler analysis; and the sampling process ma y take more time as well. 

As we now examine Fig. 5.7 in light of Fig. 5.6, we note that large R (poor 

efficiency) is associated with larger n and smaller S. In the latter case, as 

demonstrated in the example below, the loss of efficiency in small S (large R) 

is partially offset by higher probability levels (see Fig. 5.6). 

In summary, the Harbitz method will always require a smaller sample rela-

tive to direct Monte Carlo. However, it is likely that direct Monte Carlo would 

require less running time for points with probability levels, say between 

0.10 and 0.90. Location of these transition points are not known at this time, 

but they are not critical. But what is important is that Harbitz can be em-

ployed effectively for the tail regions of the distribution. The exarnle 

illustrates why. 

Example. An example which contrasts sample sizes by direct Monte Carlo 

with Harbitz is given in Table 5.1. The response function Z(X) is assumed to. 

be a linear function of ,. There are n = 5 variables and all X. 
1 

are assumed 

to be normal. 

Required sample sizes K for estimates p1 which are within ± 10% of p 

with a confidence of 95% are shown in Table 5.1 for both the Harbitz and 

direct Monte Carlo methods. Clearly, Harbitz does much better at the lower 

levels of p. 

But note how the number of factors a affect the requirement on K. At 

the point where B = 4.4, K must be 60,000 for n = 5. But for n = 10, K	 106, 

and for n	 20, K	 2 x 10. 

In summary, Harbitz becomes impractical for large n. This is an undesir-

able characteristic that it shares with all of the other Monte Carlo schemes. 
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EXAMPLE 

TABLE 5.1 Number of Samples Required for Harbitz Compared to Conventional 
Monte Carlo for Different Probability Levels 

Random Design Factors: n 5 

Respone Function: Linear with normal variates 

* 
K 

BETA ()	 R	 p Harbitz Direct Monte Carlo 

4.4 .001 5.5E-6 60,000 6 x 

3.7 .01 J1.OE-4 40,000 4	 io6 

3.0 0.10 11.4E-3 25,000 200,000 

2.0 10.50 2.3E-2 10,000 20,000

This is the approximate minimum sample size required for an estimate 

to be within +- 10% of p with a confidence of 95%. 
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6.0 SUMMARY: A COMPARISON OF THE PERFROMANCE OF MONTE CARLO METHODS FOR 

PROBABILITY ESTIMATES 

6.1 The Methods Studied 

Computer programs were developed for the following Monte Carlo methods: 

1. Conventional Monte Carlo 

2. Variance reduction 

3. Mean value method with stratified sampling 

4. The Harbitz method 

Each program was verified using several example problems. The performance 

of each method was studied. Specifically, computer CPU time to produce a point 

probability estimate within ± 10% of the exact value with 95% confidence is 

measured. 

6.2 A Sm'.mmary of the Performance of Each Method 

Results of the performance study are summarized in Fig. 6.1 where 

CYBER 175 CPU time is plotted as a function of probability level B and number 

of variables, n. It is important to note that B is related to the tail prob-

ability level p by

p =	 (-8)
	

(6.1) 

where	 is the standard normal CDF. Computer time for each method depends 

on factors other than probability level and number of variables. The dis-

tribution type for each factor and the form of the response function 

influence computation time. Therefore, the curves of'Fig. 6.1 must be 

interpreted as characterizing the relationships for purposes of comparison. 
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6.3 Commentary on the Implications of Fig. 6.1 

Several general conclusions can be made regarding the results presented 

in Fig. 6.1. 

1. Fast probability integration (e.g., the Wu/FPI method) is far 

more efficient than Monte Carlo. 

2. Variance reduction does not appear to be competitive with the 

other methods. 

3. For small numbers of variables, the mean value and Harbitz methods 

are very efficient with the Harbitz method having a slight edge. 

4. Computing time for both the mean value and Harbitz methods increases 

sharply as the number of variables increase. 

5. For small numbers of variables, conventional Monte Carlo is not 

efficient. But the increase in computing time increases linearly with the 

number of variables. Because these curves are flatter than the mean value 

or PLarbitz curves, conventional Monte Carlo actually becomes more efficient 

relative to each of these methods above a given n. 

6. Conventional Monte Carlo gets very expensive as the probability 

level decreases. Note that the B = 4 curve is off of the chart. 

7. One feature of conventional Monte Carlo is that a full sample of 

the response variable is generated. Therefore, the entire CDF of the 

response variable can be generated. On the other hand, several probability 

points have to be computed using the other methods. And the accuracy will 

be better for larger probability levels and worse for smallerp. 

In summary, a general conclusion is that the Harbitz method seems to 

be the preferred approach. Note however, as the probability level p gets 

larger (and B smaller), the Harbitz method approaches conventional Monte 

Carlo. This can be seen from Fig. 5.7 in which R - 1 as B - 0. 
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Fig. 6.1 A Summary of Efficiencies of Four Monte Carlo Methods for Computing 

Point Probabilities (for Monte Carlo -10% accuracy with a confidence 

of 95%).
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APPENDIX A. RANDOM SAMPLES FROM GIVEN DISTRIBUTIONS 

Following are the algorithms used to generate random variates from 

the normal, lognormal, Weibull, extreme value (Type I), and the Frechet 

distributions. The computer, using a congruential algorithm, samples 

random numbers u from a uniform distribution U(O,l). Forms given below 

transform uniform variates to variates X. of other models. 

Antithetic variates x (defined as having a negative correlation to 

x.) are generated as shown. These antithetic variates are used in the 1 

variance reduction method described in Section 3.0. 

A. Normal distribution, N(, a); sample two uniform variates, u. 

and u	 Use the Box-Muller algorithm [ 1, 21. 

x. [/_2 n(7 cos(2 u. 1 )J a + 

x = 
1	

-x + 21 
1 

	

B. Lognormal distribution, LN(X, Cx	 sample two uniform variates, 

u. and u 1 . Use the Box-Muller algorithm [ 1, 2 ]. 

n (1 +C) 

l.ix=zn 

x.	 [exp(/_2 Zn(u.) cos (2r u.^1)] 
a + 

x = exp(-x. + 2 

C. Weibull distribution 

Fx(x) = 1 - exp ( - (i))	 u	 u[0,1] 

1 - u = exp ())	 U[O,l] 

- in (1 - u)) 

Thus,

xi 	 (- Zn (1 - u.)
1 Ia 

1	 1 

x t = $(- in (u ))l'a 
i	 i	 349



D. EVD distribution 

Fx(x) = exp (-exp(--a(X - B)) = u ".. U[0,1) 

exp (-a(x - B)) = - in u 

- ci(x - B) = in (- In u) 

Thus,

X. = B -	 in(- Ln(uj) 

= B - i in(- in (1 - u)) 

E. Frechet distribution 

F(x) = exp	 = U	 c[O,1J 

-1 =	 in (u) 
\x / 

Thus,

1

= v C- mCi - 
1
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APPENDIX B. LISTING OF CONVENTIONAL MONTE CARLO PROGRAM (COMOC) 

This version runs on the VAX and the CYBER 175. It is not interactive. 

The performance function is introduced in subroutine LSFMC as XA. 

See listing. 

Card 1	 Limit state function (not used in program; only printed on output) 

Card 2	 Number of trials; number of variables (free format) 

Card 3	 PLOT and ISTD type 

PLOT: Y.'s are sorted to construct empirical CDF 

0 = no sort 

1 = y 's are sorted 
1 

ISTD; option to enter standard deviations or coefficients of 

deviations or coefficients of variation of each variable 

(if lognormal, always use COy). 

0=COV 

1 = Std. dev. 

Now enter each variable, its distribution type, and its moments. 

Card 4	 Variable name. 

Card 5	 Distribution, mean, and standard deviation 

1 = WEI (Weibull) 

2 NORM (Normal 

3 = EVD (Extreme value distribution) 

4 = IN (Lognormal; always use median and COV) 

5 = FRE (Frechet) 

Then repeat 4 and 5 for all of the other variables. 
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PROGRAM UML(INUI ,UUII'Ul, lA-'l.b1NrUI, Artb=UuIrUI) 
IMPLICIT DOUBLE PRECISION (A-H2O-Z) 

DIMENSION INAME (20) ,XMEAN (20) ,XSTD (20) , DIST (20) , DTRANS (20) , X (20) 
DIMENSION Y(10000) ,F(5) ,AL(20) ,BE(20) 

COMMON /TWO/ PI,P12,SPI2 
CHARACTER*80 CRS,FIN,FOUT,AA*7,BBs6,CC*3,DD*3,EE*7 
CHARACTER*7 INAME, DTRANS 
DATA AA/'WEIBULL'/ 
DATA BB/'NORMAL'/ 
DATA CC/'EVD'/ 
DATA DD/'LOG'/ 
DATA EE/'FRECHET'/ 
CALL RANSET(0) FOR CYBER 
CALL RANSET(0) 

8004
	

CONTINUE 
READ (5, '(A) ' ) END=8888) ORS 
READ(5,*) K,N 
READ (5,	 PLOT, ISTD 
READ (5, 	 ISEED FOR VAX 
DO 7901 I=1)N 
READ (5 ) '(A)') INAME(I) 
READ (5, *) DIST (I) , XMEAN (I) ,XSTD (I) 

7901

	

	
CONTINUE 
IF(ISTD.E(.0) THEN 
DO 913 I=1,N 
IF(DIST(I).EQ.4.) GO TO 913 
XSTD (I) =XMEAN (I) *XSTD (I) 
CONTINUE 
END IF 

IF(K.GT.10000) K=10000 

1234

DO 1234 I=1,N 
AL (I) =O. DO 
BE(I)=O.D0 
CONTINUE 
P1=4 . DOsDATAN (1 DO) 
P12=PI+PI 
SPI2=1 . D0/DSQRT (P12)

(COMOC): 
VAX 

DO 1 I=1,N 
IF(DIST(I) .EQ.1.) DTRANS(I)=AA 
IF(DIST(I) .EQ.2.) DTRANS(I)=BB 
IF(DIST(I).EQ.3.) DTRANS(I)=CC 
IF(DIST(I).EQ.4.) DTRANS(I)=DD 
IF(DIST(I) .EQ.5.) DTRANS(I)=EE 

IF(DIST(I) .E.1.) CALL WEI(XMEAN(I),XSTD(I),AL(I) ,BE(I)) 
IF(DIST(I) .Eq.3.) CALL EVD(XMEAN(I) ,XSTD(I) ,AL(I) ,BE(I) ,PI) 
IF(DIST(I) .EQ.5.) CALL FRE(XMEAN(I) ,XSTD(I) ,AL(I) ,BE(I)) 

CONTINUE 

Cs THE DATA IS PRINTED OUT. 

WRITE(6,11) CRS,K,N 
WRITE(6,12) 
WRITE(6,13) (INAME(I) ,DTRANS(I) ,XMEAN(I),XSTD(I) ,I=1,N) 

C.	 GENERATE RANDOM j AND CORRESPONDING RANDOM VARIABLE 

NUM--O 
D041=1,K 
DO 3 J=1,N 
CALL GENX(DIST(J) ) AL(J) ,BE(J) ,X(J) ,XMEAN(J) ,XSTD(J) ,ISEED) 
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CONTINUE 
CALL LSFMC(Y(I),N,X) 
IF(Y(I) .LE.O.D0) NUM=NUM+1 

CONTINUE 

SORT Y 

CALL STAT(Y,K,YMEAN,YSTD,YMED,YCOV) 
WRITE(6, 15)YMEAN,YSTD,YMED,YCOV 

ROUTINE TO ACCUMULATE NUMBER OF TRIALS WITH NEGATIVE Y(I) 
VALUES AND PRINT OUT RESULTS 

RATIO = DBLE(NUM)/DBLE(K) 
WRITE(6,9) NUM,RATIO 
FORMAT(/,10X,'NUMBER OF NEC Y VALUES=',15,'.',4X, 

+'PERCENT OF TRIALS=' ,F9.6) 
IF(PLOT.EQ.0.) GO TO 3456 
CALL QSORT(Y,K) 

I}IE SORTED VALUE OF Y AND THE EMPIRICAL CDF ARE PRINTED. 

WRITE (6, 1017) 
FORMAT(////,14X,'SORTED VALUES OF Y AND THE EMPIRICAL CDF',/) 
J1=1 
J2=5 
WRITE(6 ..1003) Ji, (Y(I) ,I=J1,J2) 
FORMAT(1X,'I = ',15)5E13.5) 
J1=J1+5 
J2=J2+5 
IF(J1.GT.K) GO TO 3031 
IF(J2.CT.K) THEN 
J2=K 
CO TO 3030 
END IF 
CO TO 3030 
CONTINUE 
WRITE(6)67) 
FORMAT(/) 
J=0 
J1=1 
DO 1009 I=1,K 
J=J+1 
F (J) = (DBLE (I) -.5) /DBLE (K) 
IF(J.EQ.5.OR.I.EQ.K) THEN 
WRITE(6,1003) Ji, (F(L) )L=1,J) 
J=0 
J1=J1+5 
END IF 
CONTINUE 
CONTINUE 

)RMAT(5(/) ,30X, 'MONTE CARLO SOLUTION' ,5(/) ,1OX, 
:IMIT STATE FUNCTION : ',A,5(/),10X, 

AMPLE SIZE, K=',I7//1OX,'NUMBER OF RANDOM VARIABLES, N&,13///) 
)RMAT(26X, 'RANDOM VARIABLES' ,//1OX, 'VARIABLE' ,2X, 
)ISTRIB(JTION',8X, 'MEAN',12X, 'STD DEV') 
IRMAT(/11X,A7,5X,A7,5X, E12.5 ) 5X, E12.5) 
ftMAl(/J///10X,'SIAII5fICS OF I :'//lOX,'MEAN	 =',E13.5//10X, 
;TD DEV =' ) E13.5//10X,'MEDIAN =' .,E13.5//10X,'COV	 =', 
3.5,4(/))	
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17 FORMAT (1H1,2(/),14X, 
19 FORMAT((5E13.5)) 

GO TO 8004 

88	 CONTINUE 
125 STOP 

END

'SORTED VALUES OF Y AND THE EMPIRICAL CDF') 

SUBROUTINE STAT(U,M,XM,STD,XMED, COV) 

THIS SUBROUTINE CALCULATES THE STATISTICS (MEAN,STD DEV,MEDIAN,COV) 

OF Y FUNCTION. 

IMPLICIT DOUBLE PRECISION (A-H2O-Z) 

DIMENSION U(M) 
XK=M 
XM=0. 
DO 63 I=1,M 
X1=XM+U (I) 

63 CONTINUE 
XM=XM/XK 
STD--O. 
DO 64 I=1,M 
STD=STD+ (U(I)-XM) **2 

64 CONTINUE 
STD=STD/ (XK-1 DO) 
STD=DSQRT (STD) 
COV=STD/XM 
XMED=XM/DSqRT(1 . DO+COV**2) 

RETURN 
END 
SUBROUTINE CENX(DIST,ALPHA,BETA)X,XMEAN,XSTD,ISEED) 

IMPLICIT DOUBLE PRECISION (A-H)O-Z) 

COMMON /1*0/ PI,P12,SPI2

F

X obtains 

dom samples 

m distributions 
IDIST=INT(DIST+ .1) 
AA=RAN (ISEED) FOR VAX 
AA=RANF () 
GO TO (1,2,3,4,5), IDIST 
X=BETA* (-DLOG (AA)) * * (1 . DO/ALPHA) 

RETURN 
BB=RAN(ISEED) FOR VAX 
BB=RANF() 
E=DSQRT(-2.DOsDLOG(AA)) 
X=E*DCOS (P12*BB) XSTD+XMEAN 

RETURN 
X=BETA-DLDG (-DLDC (AA)) /ALPHA 
RETURN 
BB=RAN(ISEED) FOR VAX 
BB=RANF() 
SDX=DSQRT (DLOC (1 . DO+XSTDt *2)) 
UX=DLOC (XMEAN) 
E=DSQRT (-2. DODL0G (AA)) 
X=DEXP (E*DCOS (P12*BB) *SDX+UX) 

RE11JRN 
X=BETAs (-DLOG (AA)) ** (-1 . DO/ALPHA) 

RETURN 
END 
SUBROUTINE BISECT(COV, ISIGN,ALPHA) 
IMPLICIT DOUBLE PRECISION (A-H2O-Z) 
ISIGN = 1; WEIBULL DIST. 

= 2; FRECHET DIST. 	 354
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F(X, COV)=- (1 . D0+COV2) *CAMMA(X) **2+CAMMA(2. *X) 
IF (ISIGN . Eq.].) X1=COV** (1 .08) 
IF(ISICN.EQ.2) X1=COV**(.677)/2.33 
IF(ISICN.EQ.2.AND.X1 .CT. .49D0) X1=.48999999 
IF(ISIGN.Eq.1) F1=F(X1,COV) 
IF(ISICN.Eq.2) F1=F(-X1,COV) 
IF(DABS(F1).LE.1.D-10) CO TO 1 
X2=X1+ .01D0 
IF(ISICN.Eq.1) F2=F(X2,COV) 
IF(ISICN.Eq.2) F2=F(-x2,cOv) 
F12=F1F2 
IF(F12.LT.0.) CO TO 20 
IF (DABS (Fl) .CT.DABS(F2)) X1=X2 
IF(DABS(F1) .LT.DABS(F2)) X1=X1-..01DO 
CO TO 7 
CONTINUE 
X3=(X1+X2)*.5D0	 - 
IF(ISICN.Eq.1) F13=F(X1,COV)*F(X3,COV) 
IF(ISICN.EQ.2) F13=F(-X1,COV)*F(-X3,COV) 
IF(F13.LT.0.) X2=X3 
IF(F13.CT.0.) X1=X3 
DX=DABS (X1-X2) 
IF(DX.CE.1.D-9) CO TO 2 
ALPHA=1 . D0/X1 
RETURN 
END 
SUBROUTINE WEI (XMEAN, XDEV,ALPHA, BETA) 
IMPLICIT DOUBLE PRECISION (A-H2O-Z) 
COV=XDEV/XMEAN 
CALL BISECT(COV, 1, ALPHA) 
AL1=1 . DO/ALPHA 
BETA=X1EAN/CAMMA (AL].) 
RETURN 
END 
SUBROUTINE FRE(XMEAN,XDEV,ALPHA,BETA) 
IMPLICIT DOUBLE PRECISION (A-H2O-Z) 
COV=XDEV/XMEAN 
CALL BISECT(COV, 2,ALPHA) 
AL1=1 . DO/ALPHA 
BETA=X1EAN/GAMMA (-ALl) 
RETURN 
END 
SUBROUTINE EVD (XMEAN, STD,ALPHA, BETA,PI) 
IMPLICIT DOUBLE PRECISION (A-H2O-Z) 
ALPHA=PI/ (STD*DSQRT(6 . DO)) 
BETA=XX4EAN- .57721566490153/ALPHA 
RETURN 
END 

DOUBLE PRECISION FUNCTION GAMMA(Y1) 
IMPLICIT DOUBLE PRECISION (A-H2O-Z) 
COMMON /TWO/ PI,P12,SPI2 
X=Y1+1 .D+0 
z=x 
IF(X.CE.6.OD+O)CO TO 456 
N=INT (X) 
Z=(6.OD+O)-N+X 
Y=1 .D+O/Z*t2 
ALC= (Z- . 5D+O) *DLOC (Z) + . 5D+0*DLOC (P12) - 
Z- (1. D+0/ (12. D+0*Z)) * (((Y/0. 14D+3-1 . 0+0/0. 105D+3) sY+ 
1. D+O/ . 3D+2) s-1 D+0)
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IF(X.CE.6.D+0)00 TO 457 
ITE=6-N 
DO 3 J=i,ITE 
A=X+J-1 .D+O 
ALC=ALC-DLOC(A) 
CONTINUE 
CAMMA=DEXP (ALC) 
RETURN 
END 
SUBROUTINE QSORT(A, N) 
IMPLICIT DOUBLE PRECISION (A-H2O-Z) 
DIMENSION A(N) ,KSL (240) ,KSR (240) 

KS=1 
KSL (1) =1 
KSR(1)=N 
CONTINUE 
L=KSL(KS) 
KR=KSR(KS) 
KS=KS-1 
CONTINUE 
I=L 
J=KR 
LR=(L+KR)/2 
X=A(LR) 
CONTINUE 
IF(A(I).LT.X) THEN 
1=1+1 
CO TO 30 
END IF 
CONTINUE 
IF(X.LT.A(J)) THEN 
J=J-1 
CO TO 40 
END IF 
IF(I.LE.J) THEN 
W=A (I) 
A(I)=A(J) 
A(J)=W 
1=1+1 
J=J-1 
END IF 
IF(I.LE.J) CO TO 30 
IF(I.LT.KR) THEN 
KS=KS+1 
KSL (KS) =1 
KSR(KS)=KR 
END IF 
KR=J 
IF(L.LT.KR) CO TO 20 
IF(KS.NE.0) CO TO 10 
RETURN 
END 
SUBROUTINE LSFMC(XA,N,X) 
IMPLICIT DOUBLE PRECISION (A-H2O-Z) 

DIMENSION X(N) 
XA=X(1) -x (2) 
RETURN 
END

This is the 

sort routine, 

QUICKSORT 

- This is where 

limit state is 

introduced 

356



MONTE CARLO SOLUTION 

LIMIT STATE FUNCTION : R=S 

SAMPLE SIZE, K= 10000 

NUMBER OF RANDOM VARIABLES N= 2 

RANDOM VARIABLES 

VARIABLE DISTRIBUTION	 MEAN 

R	 NORMAL	 50000E+02 

S	 NORMAL	 .20000E+02

STD DEV 

• 50000E+01 

• 12000E+02 

STATISTICS OF Y 

MEAN	 = .30027E+02 

STD DEV = .13060E+02 

MEDIAN	 = .27535E+02 

COy	 = .43493E+00

NUMBER OF NEC Y VALUES= 94. 	 PERCENT OF TRIALS= .009400 
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APPENDIX C. THE SORT ROUTINE: "QUICKSORT" 

QUICKSORT is described in detail in the book by Wirth [7], who describes 

its performance as "spectacular," and claims that it is the best sorting 

method on arrays known so far. The method is based on exchanges and the 

inventor C.A.R.Hoare recognized that sorting becomes most efficient when 

exchanges are made over large distances. 

The table below shows execution times (in milliseconds) consumed by 

several proposed sorting methods as executed by the PASCAL system on a 

CDC 6400 computer. The three columns contain times used to sort the 

already ordered array, a random permutation, and the inversely ordered 

array. The left figure in each column is for 256 items, and right one 

for 512 items. 

In summary, the computational effort needed for QUICKSORT is of the 

order of n log n. 

-	 Ordered	 Random	 Inversely Ordered 

Straight insertion 12 23 366 1444 704 2836 

Binary insertion 56 125 373 1327 662 2490 

Straight selection 489 1907 509 1956 695 2675 

Bubblesort 540 2165 1026 4054 1492 5931 

Bubblesort with flag 5 8 1104 4270 1645 6542 

Shakersort 5 9 961 3642 1619 6520 

Shellsort 58 116 127 349 157 492 

Heapsort 116 253 110 241 104 226 

Quicksort 31 69 60 146 37 79 

Mergesort 99 234 102 242 99 232

Execution Times of Sort Programs. 
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APPENDIX D. LISTING OF THE VARIANCE REDUCTION MONTE CARLO PROGRAM (VARED) 

This version runs on the VAX and the CYBER 175. It is not interactive. 

The performance function is introduced in subroutine LSFMC, then compiled 

and linked to the rest of the program. 

Data Input for the VAX Version Variance Reduction Program 

	

Card 1	 Limit State Function (not used for calculations in the program) 

Ex: g = R - S or R = 5, etc. 

	

Card 2	 Number of Trials (the preliminary value of K); Number of Variables; 

Maximum Error in Secant Method for Solution of Maximum Impact 

Variable (a small number) 

Ex: 1000, 3, 1.D-6 

or 10000,5,1.D-7 

	

Card 3	 Confidence Interval; Gamma; ISTD; 

a. C.I. = 0 to 100 in percent: Ex: 90; implies 90% C.I. 

<	 < 
b. Gamma 0 - y - 1, but typically choose 'y' from 0.05 to 0.20. 

See Eq. 3.21 ff. 

C. ISTD = OPTION to enter standard derivations and coefficients 

of variation of each variable (for LN Dist, always use COy) 

0 = Coy 

1 = Std. dev. 

	

Card 4	 Enter ISEED 

Any integer number between 0 and 262,139 to start the random sampling. 

Ex:	 23, 579, etc. 

	

Card 5	 Enter variable name. (Free format) 
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Card 6	 Enter corresponding distribution, mean, and standard deviation 

(if LN always input median and Coy); Ex: 1, 20, 2 

a. dist. = 1 = Weibull 

2 = Normal 

3 = EVD 

4	 Lognormal (LN) 

5 = Frechet 

Then repeat 5 and 6 for all of the other variables. 
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PROGRAM CMC 
PROGRAM GMC (INPUT, OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT) FOR CYBER 
IMPLICIT DOUBLE PRECISION (A—H2O—Z) 

DIMENSION INAME(20) ,XMEAN(20) ,XSTD(20) ,DIST(20) ,DTRANS(20) ,X(20) 
DIMENSION Y(10000) ,F(5) ,AL(20) ,BE(20) ,XA(20) ,TX(20) ,TS(20) 

COMMON /TWO/PI , SPI2, P12 
CHARACTER*70 CRS,FIN,FOUT,AA*7,BB*6,CC*3,DD*3,EE*7 
CHARACTERs7 INAME,DTRANS 
DATA AA/'WEIBULL'/ 
DATA BB/'NORMAL'/ 
DATA CC/'EVD'/ 
DATA DD/'LOG'/ 
DATA EE/'FRECHET'/ 

READ (5, '(A) ',END=8888) CRS 
READ (5 ) *) K,N,EPS 
READ(5,*) ZAL,GAM,ISTD,PLOT - 
FOR CYBER, CALL RANSET(0) AND SKIP ISEED 
READ(5 ) *) ISEED 
DO .7901 I=1,N 
READ (5,' (A)') INAME(I) 
READ (5, *) DIST (I) , XMEAN (I) , XSTD (I) 
CONTINUE 
CONTINUE 
IF(ISTD.EQ.0) THEN 
DO 913 I=1,N 
IF(DIST(I).E.4.) CO TO 913 
XSTD (I) =XMEAN (I) * XSTD (I) 
CONTINUE 
END IF 

IF(K.CT.10000) K=10000

Program VARED. Monte 

Carlo using variance 

reduction method; runs 

on the VAX or CYBER 175 

DO 1234 I=1,N 
AL(I)=0.D0 
BE(I)=0.D0 
IF(DIST(I) . ER. 4.) THEN 
TX (I) =XMEAN (I) *DSQRT(l . D0+XSTD (I) * *2) 
TS(I)=TX(I) *XSTD(I) 
ELSE 
TX (I) =XMEAN (I) 
TS (I) =XSTD (I) 
END IF 
CONTINUE 
P1=4. D0*DATAN (1 . DO) 
PI2=PI+PI 
SPI2=1 .DO/DSQRT(PI2) 

DO 1 I=1,N 
IF(DIST(I) .EQ.1.) DTRANS(I)=AA 
tF(DIST(I) .EQ.2.) DTRANS(I)=BB 
[F (DIST (I) .EQ.3.) DTRANS(I)=CC 
[F(DIST(I) .Eq.4.) DTRANS(I)=DD 
[F(DIST(I) .Eq.5.) DTRANS(I)=EE 
• IF(DIST(I) .E.1.) CALL WEI(XMEAN(I) ,XSTD(I) ,AL(I) ,BE(I)) 
IF(DIST(I) .Eq.3.) CALL EVD(XMEAN(I) ,XSTD(I) ,AL(I) ,BE(I) ,PI) 

• IF(DIST(I) .Eq.5.) CALL FRE(XMEAN(I) ,XSTD(I) AL(I) ,BE(I)) 

:ONTINUE 

E DATA IS PRINTED OUT.
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MAIN LOOP USING ANTITHETIC VARIANCE REDUCTION METHOD 
FIND MAX. IMPACT VARIABLE 
DC=0.DO 
CALL LSFMC(C,N,TX) 
DO 700 I=1,N 
TX (I) =TX (I) +TS (I) 
CALL LSFMC(DCB,N,TX) 
DCA=DCB-C 
IF(DABS(DCA).LE.DABS(DG)) CO TO 701 
Iv=I 
DC=DCA 

01	 TX (I) =TX (I) -TS (I) 
!00	 CONTINUE 

WRITE(6,11) CRS,K,N 
WRITE(6,96) ZAL,CAM 
FORMAT(10X,'CONFIDENCE INTERVAL = ',F6.2,'  

$ 10X,'CAMMA = ')F6.2,//f) 
WRITE(6,559) IV 

559	 FORMAT(10X,MAX. IMPACT VARIABLE = X(')12,')',/) 
IF(DC.LE.0.D0) WRITE(6)561) 

561

	

	 FORMAT(10X,'VARIABLE TYPE IS STRESS',!!!) 
IF(DC.CT.0.D0) WRITE(6)563) 

563

	

	 FORMAT(10X1'VARIABLE TYPE IS STRENGTH),!!!) 
WRITE(6)12) 
WRITE(6,13) (INAME(I) ) DTRANS(I) ,XMEAN(I) ,XSTD(I) ,I=1,N) 

C	 CALCULATE PROB. OF FAILURE 
K1=1 
K2=K 
ICO=1 

98	 CONTINUE 
DO 702 I=K1,K2 
DO 703 J=11N 
IF(J.EQ.IV) GO TO 703 
CALL CENX(DIST(J) ,AL(J) ,BE(J) ,X(J) ,XA(J) ,XMEAN(J) ,XSTD(J) ,ISEED) 

703	 CONTINUE 
IF(DC.GT.0.D0) A=TX(IV)-3.D0*TS(IV) 
IF(DC.LE.0.D0) A=TX(IV)+2.D0*TS(IV) 
B=A+TS (IV) 
CALL SECA(EPS,A,B,IV)N,X) 
CALL CDFPDF(DIST(IV) ,AL(IV) ,BE(IV) ,X(IV) ,XMEAN(IV) ,XSTD(IV), 

S 1,CDF1,PDF) 
IF(DC.LE.0.D0) CDF1=1 .D0-CDF1 
IF(DC.CT.0.D0) A=TX(IV)-3.D0*TS(IV) 
1F(DG.LE.0.D0) A=TX(IV)+2.D0iTS(IV) 
B.=A+TS(IV) 
CALL SECA(EPS)A,B,IV,N,XA) 
CALL CDFPDF(DIST(IV) ,AL(IV) ,BE(IV) ,XA(IV) ,XMEAN(IV) ,XSTD(IV), 

S 1,CDF2,PDF) 
IF (DC . LE.0. DO) CDF2=1 . D0-CDF2 
Y(I)=(CDF1+CDF2)* .5D0 

702	 CONTINUE 
C

123 CALL STAT(Y,K1)X2,YMEAN,YSTD,YMED,YCOV) 
IF(ICO.EQ.1) THEN 
YM=YMEAN 
YS=YSTD 
YME=YMED 
YC=YCOV 
Y}A1=YM	 363



ELSE 
YM= (K*YM1+ (K2-K) sY}4EAN) /K2 
YS1=YS**2* (K-i) +KYMi*2+YSTD**2* (K2-K-1) + (K2-K) *YMEAN2 
YS2=YS1-K2*YM* *2 
YS=DSQRT(YS2/ (K2-1)) 
YC=YS/YM 
YME=YM/DSQRT(1 .D0+YC**2) 
END IF 
ZAL1=.005D0* (l00.D0+ZAL) 
ZAX=XINV (ZAL1) 
ZX=ZAX*YC/DSQRT (DBLE (K2)) 
PL=YM* (1 . D0-ZX) 
PU=YM* (1 .D0+ZX) 
WRITE(6,176) YM,ZAL,PL,PU 
FORMAT(///,10X,'ESTIMATE OF P = 
1OX ) F5.2,' % CONFIDENCE INTERVALS ARE',!!, 

$ 1OX,'PL = ',E13.5,5X,'PU = ',E13.5,///)

WRITE(6,15) YMEAN,YSTD,YMED,YCOV 

IF(PLOT.E.0.) CO TO 3456 
J1=1 
J2=5 
WRITE(6,1003)	 Ji, (Y(I) )I=J1,J2) 
FORMAT(1X,'I = ',15)5E13.5) 
J1=J1+5 
J2=J2+5 
IF(J1.CT.K2)	 CO TO 3031 
IF(J2.CT.K2) THEN 
J2=K2 
CO TO 3030 
END IF 
CO TO 3030 
CONTINUE 
WRITE(6,67) 
FORMAT(/) 
J=0 
J1=1 
DO 1009 I=1,K2 
J=J+1 
F (J) = (DBLE (I) - .5) /DBLE (K2) 
IF(J.Eq.5.OR.I.E.K2)	 THEN 
WRITE(6,1003)	 J1,(F(L),L=1,J) 
J=0 
J1=J1+5 
END IF 
CONTINUE 
CONTINUE 
K1=K+ 1 
K2=(YCsZAX/CAM) **2+i 
IF(ICO.Eq.1) WRITE(6,99) CAM,K2 
FORMAT(//,10X,'K FOR GAMMA = ' ) F6.2,' IS ',I6) 

ICO=ICO+1 
IF(ICO.Eq.2.AND.K2.CT.K) CO TO 98 

FORMAT(1H1,5(/),30X, 'MONTE CARLO SOLUTION' ,5(/),1OX, 
'LIMIT STATE FUNCTION :	 ',A,5(/),1OX, 
'SAMPLE SIZE =',17//10X,'NUMBER OF RANDOM VARIABLES 
FORMAT(26X, 'RANDOM VARIABLES' ,//1OX, 'VARIABLE' 12X, 
DISTRIBUTION',8X,'MEAN',12X,'STD DEV') 
FORMAT(/11X,A7,5X)A7,5X,E12.5,5X,E12.5) 
ORMAT(/////10X,'STATISTICS OF P :'//lOX,'MEAN

=',13//) 

E13 .5//lOX, 
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+'STD DEV =',E13.5//1OX,'MEDIAN =',E13.5,//1OX,'COV 	
=1 

+E13.5, ////) 
IF(ANS1.EQ.'F'.OR.ANS1.E4.'f') CO TO 8300 
WRITE (6, 8301) 

8301	 FORMAT(' DO YOU HAVE ANOTHER DATA SET ?(Y/N) ',S) 

READ(5,8001) ANS3 
IF(ANS3.EQ. 'Y' .OR.ANS3.EQ. 'y') CO TO 8304 

8888	 CONTINUE 
125 STOP 

END 
SUBROUTINE SECA(EPS,A,B,IV,N,X) 
IMPLICIT DOUBLE PRECISION (A-H2O-Z) 
DIMENSION X(N) 
X(IV)=A 
CALL LSFMC(U,N,X) 
X(IV)=B	

This defined the performance functioi 

CALL LSFMC(V,N,X) 
CONTINUE  
IF(DABS(X(IV)-A) .CE.EPS) THEN 
X(IV)=B-V*(B-A)/(V-U)	

This subroutine determines ti 

A=B	 point at which the CDF is 

B--X(IV) 
u=v	

evaluated for the maximum 

CALL LSFMC(V,N,X)	 impact variable 

GO TO 1 
END IF 
RETURN 
END 
SUBROUTINE CDFPDF(DIST,ALPHA,BETA,X,XMEAN,XDEV,ICDF,CDF,PDF) 

IMPLICIT DOUBLE PRECISION (A-H2O-Z) 
COMMON /TWO/PI,SPI2,PI2 
IDIST=INT (DIST+ .1) 

CO TO (1,2,3,4,5),IDIST 

1 RB=X/BETA Evaluates 
EW=RB**ALPHA  
IF(EW.GT .200.) E200.	 the CDF 

EXPWEI=DEXP(-EW) 
CDF=1.D0-EXPWEI 
IF(ICDF.EQ.1) CO TO 10 
PDF= (ALPHA/BETA) * (EW/RB) *EXPWEI 
CO TO 10 

2 Z= (X-XMEAN) /XDEV 
CDF=CDFNOR(Z) 
IF(ICDF.EQ.1) CO TO 10 
PDF=SPI2*DEXP(_Z**2* 5D0) /XDEV 

COTO1O 
3 EE=ALPHA* (X-BETA) 

IF(EE.CT.200.) EE=200. 
YY=DEXP (-EE) 
IF(YY.CT.200.) YY=200. 
CDF=DEXP (-YY) 
IF(ICDF.EQ.1) CO TO 10 
EY=EE+YY 
IF(EY.CT.200.) EY=200. 
PDF=ALPHAsDEXP (-EY) 
COTO1O 

4 CX21=XDEV**2+1.D0 
YMEAN=DLOC (XMEAN) 
YDEV=DSQRT(DLOC (CX21)) 
Z= (DLOG (X) -YMEAN) /YDEV	 365



CDF=CDFNOR(Z) 
IF(ICDF.EQ.1) Co TO 10 
EZ=_(Z**2)*.5D0 
IF(EZ.LE.-200.) EZ=-200. 
PDF=SPI2.DEXP (EZ) / (YDEV*X) 

CO TO 10 
TEMP=(BETA/X) **ALPHA 
CDF=DEXP (-TEMP) 
IF(ICDF.EQ.1) CO TO 10 
PDF=CDF*TEMP*ALPHA/X 

RETURN 
END 
DOUBLE PRECISION FUNCTION XINV (Z) 

IMPLICIT DOUBLE PRECISION (A-H10-Z) 

F(X, Pi)=P1-CDFNOR (X) 

Y=z	 - 
IF(Z.GT.0.5D0) Y=1.D0-Z 
C0=2.515517D0  
C10.802853D0	 The inverse normal 
C2=0.01032800 
D1=1.432788D0	

using the secant 

D2=0.189269D0	 method 
D3=0.001308D0 

T=(-2.DOsDLOC(Y)) ** .5D0 
DNU=C0+T* (C1+T*C2) 
DNOM=1 . 000+T* (D1+T* (D2+T*D3)) 
X=T- (DNUM/DNOM) 
IF(Z.LT.0.5DO) X=-X 

A=X 
B=X+ .001DO 
V=F(BZ) 
U=F(A,Z) 
XX=B 
CONTINUE 
IF(DABS(XX-A) .CE.1.D-1O) THEN 
XX=B-V* (B-A) / (V-U) 
A=B 
B=XX 
U=V 
V=F(XX,Z) 
CO TO 1 
END IF 
XINV=XX 
RETURN 
END 
DOUBLE PRECISION FUNCTION CDFNOR(Z) 
FUNCTION COMPUTES THE NORMAL CDF. 
IMPLICIT DOUBLE PRECISION (A-H2O-Z) 
COMMON /TWO/PI,SPI2,P12 

DATA A/0.31938153D0/,B/-0.356563782D0/,C/1.781477937D0/, 
0/-1 . 821255978D0/, Eli . 330274429D0/ 
EZ=-(Z**2)*.5D0 
CDFNOR=O .000 
IF(EZ.LE.-200.ODO) CO TO 1 
ZX=5P12*DEXP(EZ) 

IF(DABS(Z) .CT.6.D0) CO TO 2 
r=i. .00/ (1. D0+ (0. 2316419D0*DABS (Z))) 
CDFNOR=ZX*T* (A+T* (B+T* (C+Ta (D+TsE)))) 
COTO1 
Z2=1.D0/(ZxZ)	 366



C 
C* 
C* 
C

CDFNOR=ZXs(1.DO_Z2*(1.DO_3.DO*Z2*(1.50*Z2)))/DABS(Z) 
IF (Z. CT. 0. ODO) CDFNOR=1 . ODO-CDFNOR 
RETURN. 
END 
SUBROUTINE STAT(U,K1,K2,XM,STD,XMED,COV) 

THIS SUBROUTINE CALCULATES THE STATISTICS (MEAN,STD DEV,MEDIAN,COV) 

OF Y FUNCTION. 

2 
C

IMPLICIT DOUBLE PRECISION (A-H2O-Z) 

DIMENSION U(K2) 
XK=K2-K1 +1 
XM=O. 
DO 63 I=K1,K2 
xJ,1=XM+U(I) 

63 CONTINUE 
XM=X}4/XK 
STD--O. 
DO 64 I=K1,K2 
STD=STD+ (U J) -XM) *s2 

64 CONTINUE 
STD=STD/ (XK-1 . DO) 

STD=DSRT (STD) 
COV=STD/XM 
XMED=XM/DSQRT (1 . D0+COV *2) 

RETURN 
END 

SUBROUTINE CENX(DIST,ALPHA,BETA,X,XA,XMEAN,XSTD, ISEED) 
IMPLICIT DOUBLE PRECISION (A-H2O-Z) 
COMMON /ThO/PI,SPI2,P12

3 

4 
C 

5

IDIST=INT (DIST+.1) 
FOR CYBER, AA=RANF() 
AA=RAN (ISEED) 
CO TO (1,2,3,4,5), IDIST 
X=BETA* (-DLOC (AA)) * * (1. . Do/ALPHA) 
XA=BETAs (-DLOC (1 . DO-AA)) * * (1 . Do/ALPHA) 

RETURN 
BB=RAN (ISEED) 
FOR CYBER, BB.=RANF() 
E=DSQRT (-2. DOzDLOC (AA)) 
X=E* DCOS (P12 * BB) zXSTD+XMEAN 
XA=-X+2 . DOXMEAN 
RETURN 
X=BETA-DLOC (-DLOC (AA)) /ALPHA 
XA=BETA-DLOC (-DLOC (1. DO-M)) /ALPHA 
RETURN 
BB=RAN (ISEED) 
FOR CYBER, BB=RANF() 
SDX=DSQRT(DLOG(1 .DO+XSTD**2)) 
UX=DLOC (XMEAN) 
W=DSQRT(_2.DO*DLOG(AA))*DCOS(PI2*BB)*SDX+U< 

X=DEXP(W) 
XA=DEXP (-W+2 . DO*UX) 
RETURN 
X=BETA* (-DLOC (AA)) ** (-1. . DO/ALPHA) 
XA=BETA. (-DLOC (1 . DO-AA)) * (-1 . DO/ALPHA) 

RETURN 
END 
SUBROUTINE SECA1 (COy , ISICN ,ALPHA)

C 

C 

GENX obtains random 

samples from the 

distributions 

RAN is library 

uniform random 

number generator 

for CYBER 175 



IMPLICIT DOUBLE PRECISION (A-H2O-Z) 
ISIGN 1; WEIBULL DIST. 

2; FRECHET DIST. 
F(X,COV)=-(1.D0+COV*s2)*CAMMA(X)**2+GAMMA(2.*X) 
IF(ISIGN.EQ.1) X1=COv**(1 .08) 
IF(ISIGN .E.2) X1=COVs*(.677)/2.33 
IF(ISIGN.EQ.2.AND.X1.CT. .49D0) X1=.48999999 
IF(ISIGN.EQ.l) F1=F(X1,COV) 
IF (ISIGN . E .2) F1=F (-Xl, COV) 
IF(DABS(F1).LE.1.D-10) CO TO 1. 
X2=X1+ . 01D0 
IF(ISIGN.E.1) F2=F(X2,COV) 
IF(ISICN.EQ.2) F2=F(-X2,COV) 
XX=X2 
CONTINUE 
IF(DABS(XX-X1) .CE.1.D-9) THEN 
XX=X2-F2* (X2-X1) / (F2-F1) 
Xl=X2 
X2=XX 
Fl=F2 
IF(ISIGN.E.1) F2=F(XX,COV) 
IF (ISICN. E .2) F2=F (-XX, COV) 
GO TO 10 
END IF 
Xl=XX 
ALPHA=1 . DO/Xi. 
RETURN 
END 
SUBROUTINE WEI (XMEAN , XDEV, ALPHA,BETA) 
IMPLICIT DOUBLE PRECISION (A-H2O-Z) 
COV=XDEV/XMEAN 
CALL SECA1 (COY, 1,ALPHA) 
AL1=1. DO/ALPHA 
BETA=XMEAN/CAMMA (ALl) 
RETURN 
END 
SUBROUTINE FRE (XMEAN, XDEV,ALPHA, BETA) 
IMPLICIT DOUBLE PRECISION (A-H2O-Z) 
COV=XDEV/XMEAN 
CALL SECA1 (COY, 2, ALPHA) 
AL1=1 . DO/ALPHA 
BETA=XMEAN/CAMMA (-ALl) 
RETURN 
END 
SUBROUTINE EVD (XMEAN ,STD ,ALPHA, BETA, P1) 
IMPLICIT DOUBLE PRECISION (A-H2O-Z) 
ALPHA=PI/ (STDDSqRT(6 . DO)) 
BETA=XMEAN- .57721566490153/ALPHA 
RETURN 
END 
DOUBLE PRECISION FUNCTION GAMMA(Y1) 
IMPLICIT DOUBLE PRECISION (A-H2O-Z) 
COMMON /T'WO/PI,SPI2,P12 
X=Y1+1.D+O 
z=X 
IF(X.CE.6.OD+O)CO TO 456 
N=INT(X) 
Z=(6 .OD+O)-N+X 
Y=1 .D+O/Z**2 
ALC=(Z- . 5D+O) *DLOC(Z) + . 5D+O*DLOC (P12) - 
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S Z_(1.D+O/(12.D+O*Z))*(((Y/0.14D+3_1+0t0053)* 

S l.D+O/.3D+2)*Y-1.D+0) 
IF(X.GE.6.D+O)CO TO 457 

ITE=6-N 
DO 3 J=l,ITE 
A=Xi-J-1 .D+O 
ALC=ALC-DLOC(A) 

3	 CONTINUE 

457

	

	 CAMMA=DEXP (ALC) 

RETURN 
END

Note: The performance function must be introduced in subroutine LSFMC. 

For an example of subroutine LSFMC, see the last page of Appendix B. 
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Appendix E 

Program SELSAM The Mean Value Method for Evaluating a Multiple Integral, 

and Enhancement by Stratified Sampling 

How the Data is Input 

1. NK, NT, N 

NK = 0; Hasofer-Lind design point for reference 

NK = 1; Rackwitz-Fiessler design point for reference 

NT = Total number of samples 

N = Total number of random variables 

2. ISTRIP 

ISTRIP = Total number of STRIPS (or boxes) for stratified sampling; 

ISTRIP = 1 gives you the "mean value" method 

3. BOX (I), IBOX (I)	 This is repeated for each box. 

BOX (I)	 ith strip length from the reference point (design point) in 

standard deviations. 

IBOX (I)	 trial points in ith strip 

4. VAR (I); this along with the next line will be repeated for each random 

variable 

VAR (I) = ith random variable name 

5. IDIST (I) XNLAN (I), STD (I); this corresponds to VAR (I) 

IDIST (I) = ith random variable distribution 

1 = WEIBULL 

2 = NORMAL 

3 = EVD 

4 = LOGNORMAL 

5 = PRECHET
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XMEAN (I) = ith random variable mean value 

STD (2) = ith random variable standard deviation 

*If nognormal, median and COV instead of mean and std. 

6.
20 constant in performance function; this allows the user to make an 

easy change in the performance function when constructing a CDF 

7. The user should suppl y the LSFRA and G function in the last section of 

program (see example)
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PROGRAM SELSAM(INPUT, OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT) 
IMPLICIT DOUBLE PRECISION (A-H2O-Z) 
DIMENSION XMEAN(20) ,STD(20) ,IDIST(20) ,XR(20) ,AL(20) ,BE(20) 
DIMENSION X(20) ,BOX(20) ,IBOX(20) ,IDIV(20) ,AREA(20) ,ITEST(20) 
DIMENSION IDIV1(20) ,TMEAN(20) ,TSTD(20) ,Z(20) ,UX(20) ,TCOV(20) 

CHARACTER*7 VAR (20) ,AA 
COMMON /TWO/ P11P12,SPI2 
COMMON /RAC/ NK 
CALL RANSET(0) 
PI=4.D0*DATAN(1 .D0) 
PI2=PI+PI 
SPI2=1 D0/DSQRT(P12) 

EPSI = STOP CRITERION IN RACA 

EPSI=1 .D-4 

NK = 0; H-L 
NK = 1; R-F 
NT; NUMBER OF TRIALS 
N; NUMBER OF RANDOM VARIABLES 

READ (5,*) NK, NT, N 

ISTRIP; NUMBER OF STRIPS 

READ (5,*) ISTRIP 

DO 300 I=1,ISTRIP 

BOX; DISTANCE FROM ORIGIN FOR -TH STRIP (MULTIPLIED BY SIGMA) 
IBOX; NUMBER OF POINTS IN i-TH BOX 

READ(5,*) BOX(I) ,IBOX(I) 

CONTINUE 

CALCULATE EACH STRIP AREA 

DO 150 I=1,ISTRIP-1 
AREA(I)=(2.D0*BOX(I))z*N_(2.D0*BOX(I+1))**N 

CONTINUE 
AREA (ISTRIP)=(2.D0*BOX (ISTRIP)) z*N 
WRITE(6,769) 
DO 1 I=1,N 
AL(I)=0.D0 
BE(I)=0.D0 

ENTER VARIABLE NAME 

READ(5,'(A)') VAR(I) 

ENTER DISTRIBUTION, MEAN, AND STANDARD DEVIATION 
IF LN, USE MEDIAN AND COV 

READ(5,*) IDIST(I) ,XMEAN(I) ,STD(I) 

IF(IDIST(I) .EQ.1) AA='WEIBULL' 
IF(IDIST(I) .EQ.2) AA='NORMAL'
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IF(IDIST(I).EQ.3) AA='EVD' 
IF(IDIST(I).E.4) AA='LOG N.' 
IF (IDIST (I) .EQ.5) AA='FRECHET' 
CO TO (101,17,103,17,105) ,IDIST(I) 

101	 CALL WEI(XMEAN(I) ,STD(I) ,AL(I) ,BE(I)) 

CO TO 17 
103	 CALL EVD(XMEAN(I) ,STD(I) ,AL(I) ,BE(I) ,PI) 

CO TO 17 
105	 CALL FRE(XMEAN(I) ,STD(I) ,AL(I) ,BE(I)) 

17	 CONTINUE 
WRITE(6,768) VAR(I) ,AA,XMEAN(I) ,STD(I) 

CONTINUE 
WRITE(6,767) 
WRITE(6,766) NT 
WRITE(6,7661) (IBOX(I) ,I=i,ISTRIP) 
WRITE (6,7662) (BOX (I) , 1=1, ISTRIP) 
DO 7 I=1,N 

IF (IDIST (I) .EQ.4) THEN 
T}EAN(I)=XMEAN (I) DSqRT(1 . D0+STD (I) **2) 
TSTD (I) =TMEAN (I) sSTD (I) 
TCOV (I) =STD (I) 

ELSE 
TMEAN (I) =XMEAN (I) 
TSTD(I) =STD (I) 
TCOV (I) =TMEAN (I) /TSTD (I) 

END IF 

7	 CONTINUE 
DO 665 K1=1,N 
IF(IDIST(K1) .EQ.4) THEN 
T}I4EAN (Ki) =DLOC (TMEAN (Ki)) 
TSTD(K1)=DSqRT(DLOG(1 .D0+TCOV(K1) **2)) 
END IF 

665	 CONTINUE 

C	 ZO = CONSTANT IN LSFRA 

READ(5,*) ZO 

CALL RACA(Z,N,XR,EPSI,TMEAN, IDIST,TSTD,TCOV,AL,BE,BET,Z0) 

WRITE (6,61) 
WRITE(6,63) (XR(KKJ) ,KKJ=1,N) 
DO 666 K1=1,N 
IF(IDIST(K1) .Eq.4) THEN 
Th4EAN(K1)=DEXP(TMEAN(K1)+TSTD(K1)**2* .5) 

TSTD(K1)=TMEAN(K1) *TCOV(K1) 
END IF 

666	 CONTINUE 
333 SUMP--0.D0 

SUMS--0.D0 
WRITE(6,770) 
DO 100 IJ=1,NT 
CALL SECOND(TX1) 
SUM--0.D0 
IDIV1 (1)=IBOX(1) 
DO 15 L=1,ISTRIP 
IDIV (L) =0 
SUMX=0 . DO 
LEFT=0
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TOTAL LENGTH OF L—TH STRIP 

DX=2 . D0*BOX(L) 
DO 3 J=1,IDIV1(L) 
DO 2 I=1,N 
ITEST (I) =0 
XMIN=XR (I) —BOX (L) 
U=RANF() *DX+XMIN 
X (I) 1J*TSTD (I) +TMEAN (I) 
IF(L.EQ.ISTRIP) CO TO 2 
IF(U.CE.XR(I)—BOX(L+1) .AND.U.LE.XR(I)+BOX(L+1)) ITEST(I)=1 

CONTINUE 
IF(L.EQ.ISTRIP) GO TO 230 
ITE=0 
DO 21 I=1,N 
ITE=ITE+ITEST (I) 
CONTINUE 
IF(ITE.E(.N) THEN


LEFT=LEFT+ 1 
ELSE 

IDIV(L)=IDIV(L)+1 
END IF 
IF(ITE.E.N) CO TO 3 
IF(C(X).CT.0.D0) GO TO 3 

SUMX = SUM OF f(xl,x2, . . ,xn) 

SUM1=1 .D0 
DO 5 I=1,N 
SUM1=SUM1*F(IDIST(I) ,XMEAN(I) ,STD(I) ,X(I) ,AL(I) ,BE(I)) 
CONTINUE 
SUMX=SUMX+SU11 
CONTINUE 

SUM2 = PRODUCT OF EACH STD 

SUM2=1 .D0 
DO 6 I=1,N 
SUM2=SUM2TSTD (I) 
CONTINUE 
IF(L.EQ.ISTRIP). IDIV(L)=IDIV1 (L) 
SUMX=SUMX*AREA (L) tSUM2/IDIV (L) 
SUM=SU1+SUMX 
IDIV1 (Ls. 1) =IBOX (L+1) +LEFT 
CONTINUE 
BETA=—XINV (SUM) 
SUMP=SUMP +SUM 
SWS=SUMS+SUA**2 
CALL SECOND (TX2) 
TIME=TX2—TX1 
WRITE(6,771) SUM,BETA,TIME 
CONTINUE 
SUMS=DSQRT((SUMS—SUMP**2/NT)/(NT-1 .D0)) 
SUMP=SUMP/NT 
WRITE(6,772) SUMP 
WRITE(6,773) SUMS 
FORMAT(/,1X,'INITIAL STARTING POINT (REDUCED VARIATES)') 
FORMAT(/,1X,'NEW STARTING POINT (REDUCED VARIATES)') 
FORMAT (5 (1X, F6.3))
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764 
765 
766 
7662 
7661 
767 
768 
769 
770 
771 
772 
773 

4 

5

FORMAT(1X, 'SUM(',12,') = 111PE12.4) 
FORMAT(1X,'CAMMA(',12 J ') = ' , 15) 
FORMAT(1X J 'K = ',15) 
FORMAT(/,1X, 'STRIP (SIGMA) =1,5(1X,F6.2)) 
FORMAT(/,1X, 'SAMPLE (POINTS) =' ,5(1X,15)) 

FORMAT (//) 
FORMAT(2X,A7,2X ) A7,1X,1PE12.4,1PE12.4, /) 

FORMAT(//,1X ) 'VARIABLE',lX,' DIST. ',6X, 'MEAN',8X, 'STD. DEV',/) 

FORMAT(//,1X,'ESTIMATE OF I',4X,'BETA',4X J,'CPU SEC',/) 

FORMAT(2X,1PE12.4)3X,OPF6.3,2X,0PF6.2,/) 
FORMAT(1X,'AVG. OF ESTIMATION = ',1PE12.4,/) 
FORMAT(1X, 'STANDARD DEVIATION = ',1PE12.4,/) 

STOP 
END 

DOUBLE PRECISION FUNCTION F(IDIST,XMEAN,XDEV,X)ALPHA,BETA) 

CACULATE PDF OF EACH VARIABLE 

IMPLICIT DOUBLE PRECISION (A-H2O-Z) 
COMMON /TWO/ PI,PI2,SPI2 
GO TO (1,2)3,4,5),IDIST 
IF(X.LE.1.D-10) THEN 
F=0 . DO 
GO TO 10 
END IF 
RB=X/BETA 
EW=RB* * ALPHA 
IF(EW.CT.200.) EW=200. 
EXPWEI=DEXP (-EW) 
F=(ALPHA/BETA) * (EW/RB) *EXPWEI 

GO TO 10 
2 Z= (X-XMEAN) /XDEV 

F=SPI2*DEXP(-Z**2* .5D0)/XDEV 
GO TO 10 

3 EE=ALPHA* (X-BETA) 
IF(EE.GT.200.) EE=200. 
YY=DEXP (-EE) 
IF(YY.CT.200.) YY=200. 
EY=EE+YY 
IF(EY.CT.200.) EY=200. 
F=ALPHADEXP (-EY) 
GO TO 10 
IF(X.LE.0.D0) THEN 
F=O.DO 
GO TO 10 
END IF 
CX21=XDEV**2+1 .D0 
YMEAN=DLOG (XMEAN) 
YDEV=DSQRT(DLOC (CX21)) 
Z= (DLOC (X) -YMEAN) /YDEV 
EZ=- (Z**2) * . 5D0 
IF(EZ.LE.-200.) EZ=-200. 
F=SPI2DEXP (El) / (YDEV*X) 

COTO1O 
IF(X.LE.0.D0) THEN 
F=O . DO 
CO TO 10 375



END IF 
TEMP= (BETA/X) * *ALPHA 
IF(TEMP.CE.200.) TEMP=200. 
CDF=DEXP (-TEMP) 
F=CDF*TEMP*ALPHA/X 

RETURN 
END 

DOUBLE PRECISION FUNCTION CDFNOR(Z) 
THIS FUNCTION COMPUTES THE NORMAL CDF. 
IMPLICIT DOUBLE PRECISION (A-H2O-Z) 
COMMON /TWO/ PI,P12,SPI2 
DATA A/0.31938153D0/,B/-0.356563782D0/,C/1 .781477937D0/, 

+ D/-1 .82125597800/, Eli . 330274429D0/ 
EZ=-(Z**2) * .SDO 
CDFNOR=0.ODO	 - 
IF(EZ.LE.-200.ODO) CO TO 1 
ZX-_SPI2*DEXP (EZ) 
IF(DABS(Z).CT.6.D0) CO TO 2 
T=]. . DO/Cl . D0+(O. 231641900*DABS (Z))) 
CDFNOR=ZX*T* (A+T* (B+T* (C+T* (D+T*E)))) 
COTO1 
Z2=1.DO/(Z*Z) 
CDFNOR=ZX* (1. D0-Z2* (1 .00-3. DO*Z2* (1 . DO-S. DO*Z2))) /DABS (Z) 
IF (Z . CT .0.000) CDFNOR=i . 000-CDFNOR 
RETURN 
END 

DOUBLE PRECISION FUNCTION XINV (Z) 

INVERSE NORMAL CDF 

IMPLICIT DOUBLE PRECISION (A-H2O-Z) 
F(X,Pi.)=P1-CDFNOR (X) 
Y=z 
IF(Z.CT.0.5D0) Y=1.D0-Z 
C0=2 . 515517D0 
Cl=0.80285300 
C2=0 .01032800 
01=1.43278800 
D2=0. 18926900 
03=0 .00130800 
T=(-2.DO*DLOC(Y))** .SDO 
DNUM=CO+T* (C1+T*C2) 
DNOM=1 .000+T* (Di+T* (D2+T*D3)) 
X=T-(DNUA/DNOM) 
IF(Z.LT.0.5DO) X=-X 
x1=x 
F1=F(Xl ,Z) 
X2=X1+ .00100 
F2=F(X2, Z) 
XX=X2 
CONTINUE 
IF(DABS(XX-Xi) .CE.i.D-10) THEN 
XX=X2-F2* (X2-X1) / (F2-F1) 
X1=X2 
X2=XX
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F1=F2 
F2=F(XX, Z) 
GO TO 10 
END IF 
XINV=XX 
END 

SUBROUTINE SECT1 (COV,ISIGN, ALPHA) 

CALCULATE ALPHA, AND BETA IN WEIBULL OR FRECHET 
IMPLICIT DOUBLE PRECISION (A-H2O-Z) 
COMMON /TWO/ PI,P12,SPI2 

ISICN = 1; WEIBULL DIST. 
= 2; FRECHET DIST. 

F(X,COV)=_(1.DO+COV**2)*CAMMA(X)**2+GAMMA(2.*X) 
IF(ISIGN. EQ. 1) X1=COV** (1. .08) 
IF(ISIGN.EQ.2) X1=COV**(.677)/2.33 
IF(ISIGN.EQ.2.AND.X1.CT. .49D0) X1=.48999999 

7	 IF(ISICN.EQ.1) F1=F(X1,COV) 
IF(ISIGN.EQ.2) F1=F(-X1,COV) 
IF(DABS(F1).LE.1.D-10) CO TO 1 
X2=X1+ . O1DO 
IF(ISIGN.EQ.1) F2=F(X2,COV) 
IF (ISIGN . EQ .2) F2=F (-X2, CDV) 
XX=X2 

10	 CONTINUE 
IF(DABS(XX-X1) .CE.1.D-9) THEN 

XX=X2-F2s (X2-X1) / (F2-F1) 

X1=X2 
X2=XX 
F1=F2 
IF(ISICN.EQ.1) F2=F(XX)COV) 
IF (ISIGN . EQ. 2) F2=F (-XX, CDV) 
CO TO 10 
END IF 
x1=XX 
ALPHA=1.D0/X1 
RETURN 
END 

SUBROUTINE WEI (XMEAN, XDEV, ALPHA ) BETA) 

CALCULATE PARAMETERS (ALPHA AND BETA) 

IMPLICIT DOUBLE PRECISION (A-H2O-Z) 
COV=XDEV/XMEAN 
CALL SECT1 (COV, 1, ALPHA) 
AL1=1 . DO/ALPHA 
BETA=XMEAN/CAMMA (ALl) 
RETURN 
END 

SUBROUTINE FRE (XMEAN, XDEV, ALPHA, BETA) 
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CALCULATE PARAMETERS (ALPHA AND BETA) 

IMPLICIT DOUBLE PRECISION (A-H2O-Z) 
COV=XDEV/XMEAN 
CALL SECT1(COV,2,ALPHA) 
AL1=1 .DO/ALPHA 
BETA=XMEAN/CAMMA (-ALl) 
RETURN 
END 

SUBROUTINE EVD (XMEAN, STD ,ALPHA,BETA,PI) 

CALCULATE PARAMETERS (ALPHA AND BETA) 

IMPLICIT DOUBLE PRECISION (A-H2O-Z) 
ALPHA=PI/ (STD*DSRT(6 . DO)) 	 - 
BETA=XMEAN- .57721566490153/ALPHA 

RETURN 
END 

DOUBLE PRECISION FUNCTION GAMMA(Y1) 

GAMMA FUNCTION 

IMPLICIT DOUBLE PRECISION (A-H2O-Z) 

COMMON /TWO/ PIPI2,SPI2 
X=Yl+1 .0+0 
z=x 
IF(X.CE.6.OD+O)GO TO 456 
N=INT(X) 
Z=(6 .OD+O)-N+X 
Y=1 .D+0/Z**2 
ALC=(Z- .50+0) *DLOC (Z) + . 5D+ODLOG (P12) - 
Z- (1.0+0/ (12. D+O*Z)) (((Y/0 .140+3-1 . D+0/0.1050+3) *Y+ 

1 . 0+0/ .30+2) sY-1 .0+0) 
IF(X.GE.6.D+0)GO TO 457 
ITE=6-N 
DO 3 J=1,ITE 
A=X+J-]. .D+0 
ALC=ALC-DLOG(A) 
CONTINUE 
CAMMA=DEXP (ALO) 
RETURN 
END 

SUBROUTINE RACA(Z,N,XR,EPS,XMEAN,IDIST,XDEV,XCOV,AL,BE,BETA,Z0) 

SUBROUTINE FOR H-L OR R-F 

IMPLICIT DOUBLE PRECISION (A-H2O-Z) 
DIMENSION X(20) ,XR(20) ,BtJFFER(20) ,D(20) ,XMEAN(20) ,XDEV(20), 
IDIST(20) ,XNMEAN(20) ,XNDEV(20) ,AL(20) ,BE(20) ,Z(20) ,XCOV(20) 
COMMON /DIREC/ DG(20) 
COMMON /RACAXX/ ZOl 
COMMON /RAC/ LL
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OPTIMIZATION ROUTINE BEGINS HERE 
Zoi=ZO 

KK=O 
CALL HAZL(Z,N,F,EPS,D,XR,XMEAN,XDEV,IDIST,X,BETh,KIo) 

IF(LL.EQ.0) RETURN 

THIS LOOP CALCULATES THE EQUIVALENT NORMAL DISTRIBUTION 

FOR EACH DESIGN VARIABLE. 

17	 KK=KK+1 
DO 13 J=1,N 
CALL FIND(AL(J) ,BE(J) ,IDIST(J) ,XMEAN(J) ,XDEV(J) ,X(J), 

S XNMEAN(J) ,XNDEV(J)) 
13	 CONTINUE 

ZBETA=BETA 
CALL HAZL(Z,N,F,EPS,D,XR,XNMEAN,XNDEV,IDIST,X,BETA,KK) 

MAX OF 35 ITERATIONS FOR EQUIVALENT NORMAL SEARCH ALGORITHM 

IF(KK.EQ.35) GO TO 19 

21	 IF(ABS(BETA-ZBETA).LE.O.0001) GO TO 19 
GO TO 17 
RETURN 
END 

HASOFER-LIND SAFETY INDEX CALCULATIONS 

SUBROUTINE HAZL(Z,N,F,T,D,XR,XMEAN,XDEV,IDIST,X,BETA,KK) 
IMPLICIT DOUBLE PRECISION (A-H2O-Z) 
DIMENSION X(20) ,XR(20) ,BUFFER(20) ,D(20) ,XMEAN(20) ,XDEV(20) 

IDIST(20) ,Z(20) 
IF(KK.EQ.iO) T=O.1zT 
IF(KK.EQ.20) T=O.iT 
IF(KK.EQ.25) T--0.1T 
IF(KK.EQ.34) T=0.1T 
ININTIAL GUESS XR 
EPSI1 . E-4 
IF(KK.EQ.0) CALL GFN(EPSI,IDIST,XMEAN,XDEV, Z,N,XR,O) 

DO 1 I=2,N 
D(I)=O.1 
CONTINUE 

OPTIMIZATION ROUTINE BEGINS HERE 

CALL FN(Z,N,FJX,XR,XMEAN,XDEV,IDIST) 

BETA=F 
DO 3 N1=2,N 

3 BUFFER(N1)=XR(Ni) 

15	 DO 4 N1=2,N 
DO 5 N4=2,3 
XR (Ni) =XR (Ni) +D (Ni) (-1 .) * *N4 
CALL FN(Z,N,F,X,XR,X}4EAN,XDEV,IDIST) 
IF(F.GE.BETA) GO TO 45 
BUFFER(N1)=XR(N1)	 379 
Mi=O 

25 BETA=F



XR (N1)XR (Ni) +D (Ni) * (-1.) s*N4 
CALL FN(Z,N,F,X,XR,XMEAN,XDEV,IDIST) 
IF(F.LT.BETA) GO TO 35 
XR (Ni) =BUFFER (Ni) 
GO TO 55 
Mi=M1+i 
BUFFER (Ni) =XR (Ni) 
IF(M1.LT.3) CO TO 25 
DO 6 N2=2N 
D(N2)=D(N2)*2. 
CO TO 55 
XR (Ni) =BUFFER (N 1) 
CONTINUE 
CONTINUE 
DO 7 Ni=2N 
D(Ni)=D(N1)*.5 
CONTINUE 
DO 8 I=2,N 
IF(D(I).CE.T) CO TO 15 

CONTINUE 
RETURN 
END 

SUBROUTINE FN(Z,N, F,X,XR,XMEAN,XDEV, IDIST) 

OPTIMIZATION SUBROUTINE 

IMPLICIT DOUBLE PRECISION (A-H2O-Z) 
DIMENSION X(20) ,XR(20) ,XMEAN(20) ,XDEV(20) ,IDIST(20) ,Z(20) 

COMMON /RACAXX/ ZOl 
SUM=O.O 

COMPUTATION OF BASIC VARIABLES FROM GUESS OF REDUCED VARIABLES 

DO 1 I=2,N 
X (I) =XDEV (I) *XR (I) +XMEAN (I) 

CONTINUE 
DO 2 I=2,N 
IF(IDIST(I).NE.4)00 TO 2 

RECOMPUTATION BACK TO BASIC FORM FOR LOG TRANSFORMED VARIABLES 

X (I) =D EXP (X (I)) 
CONTINUE 
CALL LSFRA(N,X,Z,Z01) 

COMPUTATION OF REDUCED VALUE OF DEPENDENT VARIABLE. TRANSFORM IS MADE 

IF SPECIFIED 

IF (IDIST (1) .NE.4)GO TO 15 
IF(X(1) .LE.i.D-20) X(1)=i.D-20 
XR (1) = (DLOC (X (1)) -XMEAN (1)) /XDEV (1) 

CO TO 25 
XR(i)=(X(1)-XMEAN (1)) /XDEV(1) 

CONTINUE 

CALCULATION OF BETA, THE SAFETY INDEX
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DO 3 I=1,N 
IF(XR(I) .GT.27.) XR(I)=27. 
IF(XR(I).LT.-27.) XR(I)=-27 
SUM=SUM+XR (I) * *2 

3 CONTINUE 
F=DSQRT (SUM) 
RETURN 
END 

SUBROUTINE 
IMPLICIT DOUBLE PRECISION (A-H2O-Z) 

COMMON /TWO/ PI,P12,SPI2 
GO TO (1,4,3,4,5),IDIST 

RB=X/BETA 
EW=RB* *ALPHA 
IF(EW.CT.200.) EW=200. 
EXPWEI=DEXP (-EW) 
CDF=1.D0-EXPWEI 
PDF= (ALPHA/BETA) *(EW/RB) EXPWEI 
GO TO 20 

3 EE=ALPHA* (X-BETA) 
IF(EE.CT..200.) EE=200. 
YY=DEXP(-EE) 
IF(YY.CT.200.) YY=200. 
CDF=DEXP(-YY) 
EY=EE+YY 
IF(EY.CT.200.) EY=200. 
PDF=ALPHA*DEXP (-EY) 
GO TO 20 
XNMEAN=XMEAN 
XNDEV=XD EV 
CO TO 10 

5

	

	 TEMP=(BETA/X)**ALPHA 
IF(TEMP.CT.200.) TEMP=200. 
CDF=DEXP (-TEMP) 
PDF=CDF*TEMP ALPHA/X 

C	 R-F TRANSFORMATION 

20

	

	 PDFNOR=SPI2*DEXP (- (XINV (CDF) * *2) * 5E0) 

XNDEV=PDFNOR/PDF 
XNMEAN=X-XINV (CDF) *XNDEV 

10 RETURN 
END 

SUBROUTINE GFN(EPSI1,IDI,XM,5T,Z,N,XR,<) 

FIRST INITIAL GUESS FOR XR 

IMPLICIT DOUBLE PRECISION (A-H2O-Z) 
DIMENSION XM(20) ,STD(20) ,IDI(20) ,XR(20) ,Z(20) ,DIR(20) 

DIMENSION ST(20) ,XT(20) 
COMMON /DIREC/ DG(20) 
DO 10 I=1,N 
XT(I)=XM(I) 
STD(I)=ST(I) 
IF(KK.EQ.0.AND.IDI(I).EQ.4) THEN 
XT(I)=DEXP (XM(I) + .5*ST(I) **2) 
TEMP=DEXP (ST (I) **2) 	 381



510 (I) =DSQRT(DEXP (2. *XM (I)) TEMP (TEMP-i .)) 

CO TO 10 
END IF 
CONTINUE 
CBAR=C(XT) 
00 2 I=1,N 
EPSI=EPSI1 
IF(STD(I) .LT.1.) EPSI-_STD(I).1.D-4 

XT(I)=XT(I) +EPSI 
CXT=C(XT) 
DC (I) = (GXT-CBAR) /EPSIsSTD (I) 
X1(I) =XT (I)-EPSI 

CONTINUE 
SUM=O .0 
DO 3 I=i,N 
su1=SUA+DC(I)**2  

CONTINUE 
DSUA=DSQRT (SUM) 
DO S I=1,N 
DIR(I) =DC (I) /DSUM 

CONTINUE 
BETA=CBAR/DSt.N 
DO 6 I=1,N 
XR (I) =-DIR (I) *BETA 
CONTINUE 
RETURN 
END 

USER SUPLLIED SUBROUTINES 

SUBROUTINE LSFRA (N, X, Z, ZO) 

SUBROUTINE FOR LIMIT STATE FUNCTION 

REQUIRED BY H-L OR R-F 
USE Z(20),Z0 FOR CONSTANT VALUES 

IMPLICIT DOUBLE PRECISION (A-H2O-Z) 

DIMENSION X(N) ,Z(20) 

LIMIT STATE FUNCTION (X(l)=f(X(2),X(3),.. .,X (N)) 

X(1)=DSQRT(300.*X(2)**2+1.92 s X(3)*2) < 

RETURN  
END  

Response functions for the 
DOUBLE PRECISION FUNCTION C(X)

examples given 
FUNCTION FOR Monte Carlo 

IMPLICIT DOUBLE PRECISION (A-H2O-Z) 

COMMON /TWO/ PIPI2,SPI2 
DIMENSION X(20) 

PERFORMANCE FUNCTION (LESS THAN OR EQAUL TO ZERO TYPE) 

C=X(1)_DSQRT(300.*X(2)**2+1.92*X(3)**2) < 

RETURN	 382 
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Appendix F. Listing .of the Harbitz Program 

This program was developed to run on the VAX and the CYBER 175. The 

listing fiven here is for the CYBER version. The VAX version runs in double 

precision. It is not interactive. 

The performance function g() must be introduced in two subroutines. 
IV 

1) Subroutine HARBIFN. Enter the function g() directly. See the 

listing for an example. 

2) Subroutine LSFFPI. Here the limit state g() = 0 is entered such 

that one variable is a function of the others. See the listing for 

an example. 

The reason that g() must be entered in two places in a different format 

has to do with the calculational procedure. The Rackwitz-Fiessler algorithm 

to perform the first order reliability enelysis uses an optimization routine 

and required that the limit state be entered. A significant improvement to 

the program would result if a R-F routine requiring g(X 
11 

as input be 

itnplimented.
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Data InpuL File 

Card 1 Problem identification in "A" format 

Card 2 EPS, K, N, ZO 

EPS; The stop criterion for FPI 

K; number of random variables 

N; number of trials 

ZO; constant used for constructing cdf, e.g., p = P[h() - ZO] 

Define g() = h() - ZO 

it is most convenient to change ZO through the data than it is 

a Fortran statement. 

Cards 3 and 4 are repeated for each variable. 

Card 3 Variable name in "Z" format 

Card 4 DIST(I), )MEAN(I), STD(I) 

DIST(I) = 1 WEIBULL 

2 NORMAL 

3EVD 

4 LOGNORMAL 

S FRECHET 

XNEAN(I) = mean value; median if lognormal 

STD(I) = standard deviation; COy if lognormal 

384



PROGRAM HARBITZ (INPUT, OUTPUT, TAPES=INPUT, TAPE6=OUTPUT) 
IMPLICIT REAL (A-H2O-Z) 
CHARACTER*80 ANS 
CHARACTER YNAME (20) *5, YDIST (20) *7 

UP TO 20 RANDOM VARIABLES 

DIMENSION X(20) ,XRAN(20) ,ZX(20) ,XR(20) 
DIMENSION DIST(20) ,XMEAN(20) ,XCOV(20) ,STD(20) ,AL(20) ,BE(20) 
COMMON /TWO/ PI,P12,SPI2 
COMMON /ASA/ AX 

EQ. 22 IN RARBITZ'S PAPER 

G (U,XNIJ,ALPHA) (-LOG (U) ) (tJ* . 5E0-1.E0) *U** (. SEO*ALPHk-1 .E0) 

START PROGRAM 
Note that the random process 

is initiated using the clock. 

Program HARBITZ Monte Carlo using 

the Harbitz method. This version 

runs on the CYBER. The VAX ver-

sion is in double precision. 

ISEED=TIME (DUMMY) 
CALL RANSET (ISEED) 

CAGULATE CONSTANT PARAMETERS 

PI=4.EO*ATAN(1 .EO) 
PI2PI+PI 
SPI2=1 . EU/S QRT (P12) 

READ INPUT DATA

READ(5,'(A)') ANS 

ANS IS USED FOR THE PROBLEM IDENTIFICATION 

READ(5,*) EPS,K,N,Z0 

EPS IS USED IN FPI FOR STOP CRITERION 
ISEED IS INITIAL SEED NUMBER FOR EANDOM NUMBER GENERATION 
K IS NUMBER OF RANDOM VARIABLES 
N IS NUMBER OF TRIALS 

DO 610 I=1,K 

DIST (I) = 1.; ViEIBULL 
= 2.; NORMAL 
= 3.; EYD 
= 4.; LOGNORMAL 
= 5.; FRECHET 

READ (5, ' (A) ') VNAME(I) 
READ(5,*) DIST(I) ,XMEAN(I) ,STD(I) 
IF(DIST(I) .EQ.1.) YDIST(I)='WEIBULL' 
IF(DIST(I) .EQ.2.) VDIST(I)='NORMAL' 
IF(DIST(I) .EQ.3.) VDIST(I)='EYD' 
IF(DIST(I) .EQ.4.) YDIST(I)='LOG' 
IF(DIST(I) .EQ.5.) YDIST(I)='FRECKET' 

IF LOGNORMAL, USE MEDIAN, AND COY 

GO TO (601,600,603,604,605), INT(DIST(I)+.1EO) 
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CALCULATE DISTRIBUTION PARAMETERS 

601	 CALL WEI(XMEAN(I) ,STD(I) ,AL(I) ,BE(I)) 
GO TO 600 

03	 CALL EYD tThEAN (I) , STD (I) ,AL (I) ,BE (I) ,PI) 
GO TO 600 

604	 XMEAN(I)=XMEAN(I) *SQRT(1 .E0+STD(I) **2) 
STD (I) =)AN (I) *STD (I) 
GO TO 600 

505	 CALL FRE ()MAN (I) , STD (I) ,AL (I) BE (I)) 
500	 CONTINUE 

XCOV (I) =STD (I) /XMEAN (I) 
610	 CONTINUE 

XNU IS DEGREES OF FREEDOM IN CHI-SQUARED. DISTRIBUTION 

XNU=REAL (K) 

IR=O FOR USING EQ. 25 IN HARBITZ'S PAPER 
IR=1 FOR USING EQ. 26 IN HARBITZ'S PAPER 

-Ije] 

START TO CHECK CPU TIME CONSUMED 

CALL SECOND(TX1) 

CALL XFPI TO CALCULATE BETA 
ZX, AND ZO CAN BE USED FOR CONSTANTS 

CALL XFPI(ZX,K,XR,EPS,XMEAN,DIST,STD,XCOV,AL,BE,BETA,Z0) 

IF K=2, THEN ALPHA IS ALWAYS 2.0, AND AR IS 1.0 

IF(K.EQ.2) THEN 
AR=1 .E0 
ALPRA=2.E0 
GO TO 230 

END IF 

STARTING MIN. ALPHA = 2.0 
STARTING MAX. ALPHA = 10. 

ALMIN1=2.E0 
ALMAX1=10.E0 

IT IS USED FOR MAX. ALPHA IS C.T. 10.0 

H	 IT=0 
220	 CONTINUE 

ALlAIN=AL}AIN1 
ALMAX=ALMAX1 

MORE ACCURACY IS NEEDED, INCREASE ITERATION NUMBER (e.g., 5 OR 6) 

DO 200 1=1,3 

C	 FIND ALPHA FOR MAX. AREA RATIO, AR
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CALL HATEST (ALMIN, ALMAX, BETA, K, ALMI ,ALMA, ALPHA ) AR) 

MAX. ALPHA GOES TO THE RIGHT BAND SIDE (G.T. 20., OR 30.) 

IF(ALPHA.EQ.ALMAX1) THEN 
IT=IT+ 1

Cal 

MAX. ALPHA IS SET TO BE 50. 

IF(IT.EQ.6) GO TO 230 
ALMIN1=REAL (IT) * 10. EU 
ALMAX1=REAL(IT+1) *10.E0 
GO TO 220 

END IF 
ALMIN=ALMI 
ALMAX=ALMA 
CONTINUE 

CONTINUE 

EQ.21 IN HARBITZ'S PAPER 

BETA3=BETA+3 . EU 
U1=EXP (- (BETA3) **2/ALPHA) 
U2=EXP(-BETA* *2/ALPHA) 

CALCULATE CONSTANT PARAMETERS FIRST 

Ui 2=U2 -Ui 

NUM IS TOTAL NUMBER OF G<0 
NR IS TOTAL NUMBER OF RADIUS CALCULATION (EQ. 24, AND 25) 

NUM--O 
NR=O 

EQ.23 IN HARBITZ'S PAPER 

U'(XNIJ.EQ.2.E0) THEN 

ARG IS Umax 

ARG=(U1+U2) * . 5E0 
GARG=: 1 .EO 

ELSE 
ARG=EXP (- (XNU-2 .EO) / (ALPBA-2 .E0)) 
GARG=G(ARG,XNU,ALPHA) 

END IF 

FIND Gmax 

IF(ARG.GE.U1.AND.ARG.LE.U2) THEN 

Umax IS BETWEEN Ui AND U2 

GX=GARG 
IGMAX=0 
ELSE 

Umax IS Ui OR U2 387



CU1=G (Ui , XNU ,ALPHA) 
GU2=G (U2 , XNU ,ALPHA) 
GX=AMAX1 (GUi , GU2) 
IG}LAX=i 
END IF 
DO 1 I=i,N. 

SAMPLE UNTIL G<9 (U) 

UJ=RANFQ*U12+Ui 
GJ=RANFQ*GX 

UJ IS SAMPLED BETWEEN Ui AND U2 
GJ IS SAMPLED BETWEEN 0 AND g (Umax) 

NR=NR+1 
IF(GJ.GE.G(UJ,XNU,ALPUA)) GO TO 10 
IF(IR.EQ.0) THEN 

EQ. 25 IN HARBITZ'S PAPER 

RJ=SQRT (-ALPHA*LOG (IJJ)) 
ELSE 

EQ. 26 IN EARBITZ'S PA.PER 

L1=MOD (K, 2) 
K2=K/2 
IIF(Li.EQ.1) K2=(K-1)/2 

100	 CONTINUE 
NR=NR+i 
SUMR=1.E0 
DO 110 LXY=1,K2 
SUMR=SUMR*RA.NFQ 

110	 CONTINUE 
IF(Li.EQ.0) THEN 

EVEN NUMBER ANDOM VARIABLES (EQ. 26 A) 

RJ=-2 . E0*LOC (SUMR) 
ELSE 

ODD NUMBER RANDOM VARIABLES (EQ. 26b) 

X1=-2 .E0LOG(RANFQ) 
X2=RANFQ*P12 
X3=SQRT (Xi) *COS (X2) 
aJ=--2 .E0*LOG (STJMR) +X3**2 

END IF 
END IF 
SU=0 . EU 

GENERATE STANDARD NORMAL VARIATES 

DO 2 J=i,K 
Xi=-2 .E0*LOG(RANFQ) 
X2=RANF Q *P12 
X(J)=SQRT(X1) *COS (X2)	 388



SUM=SUM+X (J) * * 2 
CONTINUE 
STJM=SQRT (SUM) 

NORMALIZATION OF NORMAL VARIATES (EQ. 27 IN HARBITZ'S PAPER) 

DO 3 J=1,K 
X (J) =X (J) /STJM*FtJ 
CONTINUE 

INYERSE TRANSFORMATION FROM NORMAL VARIATE 

DO 500 J=1,K 
GO TO (501,502,503,504,505), INT(DIST(J)+. lEO) 

WEIBULL DISTRIBUTION

(I.EO/AL 

GO .TO 500 

NORMAL DISTRIBUTION 

XRAN(J)=STD(J)*X(J)+XMEAN(J) 
GO TO 500 

EVD 

IRAN (J) =BE (3) -LOG (-LOG (CDFNOR (X(J)))) /AL (3) 
GO TO 500 

LOGNORMAL DISTRIBUTION 

CX2=1 .E0+XCOV(J) **2 
)EANJ=LOG()MEAN(J)/SQRT(CX2)) 
STDJ=SQRT (LOG (CX2)) 
IRAN (J)=EXP (STDJ*X(J) +EANJ) 
GO TO 500 

FRECRET DISTRIBUTION 

IRAN(J)=BE (3) a (-LOG (CDFNOR (X (J)))) ** (-l. EO/AL (3)) 
CONTINUE 

PERFORMANCE FUNCTION 

CALL HARBIFN(IRAN,K, ALPHA, BETA, Z) 

FIND TOTAL NUMBER OF G < 0 

IF(Z.LT.0.E0) NUM=NUM+1 
CONTINUE 
B2=BETA* *2 

CR11 IS PROBABILITY IN BETA SPHERE 

CRIX=1 E0-CHI (B2 , XNTJ) 

PF IS PROBABILITY OF FAILURE
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PRINT INPUT DATA 

PFZ=REAL (NUM) /REAL (N) 
PF=CUIX*PFZ 
XPF=-XINV (PF) 
CLT=UV(.975)*SQRT(PFZ*(1.EOPFZ)/DBLE(N))/PFZ 
CL=PF*(1.EO-CLT) 
IF(CL.LT.O.EO) CL--0-E0 
UL=PF*(1.EO+CLT). 
CALL SECOND(TX2) 
DTT=TX2-TX1 
WRITE(6,'(///,9X,A)') ANS 
WRITE(6,910) 

10

	

	 FORMAT (I/I, 30X, 'DESIGN VARIABLES' ,// ,9X, 'VARIABLE' )7X, 
+ ' DISTRIBUTION',9X,'}1EAN/MEDIA N ', 8X ,' STD/COV') 

DO 781 I=1,K 
.IF(DIST(I).EQ.4.) THEN 

XMEAN(I)=XMEA.N(I)/SQRT(1 .EO+XCOV(I) **2) 
STD(I)=XCOV(I) 

END IF 
WRITE(6,920) YNAME(I) ,VDIST(I) ,XMEAN(I) ,STD(I) 

20	 FORMAT(/,10X,A5,12X,A7,10X,1PE12.4,7X,1PE12.4) 
781	 CONTINUE 

WRITE(6,'(/,8X,A,/)') ' (NOTE: THE MEDIAN AND COY USED FOR LN)' 
WRITE(6,'(8X,A,F7.3,/)') ' BETA (SPHERE) = ',BETA 
WRITE(6,'(8X,A,13,/)') ' NUMBER OF VARIABLES = 
WRITE(6,'(8X,A,F7.4,/)') ' AREA RATIO, AR = ',AR 
WRITE(6,'(8X,A,F8.4,/)') ' ALPHA= ',ALPHA 
WRITE(6,'(8X,A,15,/)') ' NUMBER OF SAMPLES = 
WRITE(6,'(8X,A,15,/)') ' TOTAL NUMBER OF g < 0 
WRITE(6,'(8X,A,I5,/)') ' TOTAL NUMER OF POINTS SAMPLED 
¶RITE(6,'(8X,A,1PE13.5,/)') ' PROBABILITY IN BETA SPHERE 
WRITE(6,'(8X,A,1PE13.5,/)') ' PROBABILITY OF FAILURE = 
WRITE(6,'(8X,A,F9.5,/)') ' BETA= ', XPF 
WRITE(6,'(8X,A,/)') ' 95 % CONFIDENCE INTERVAL ON PF' 
WRITE(6,'(8X,A 1 1PE13.5,/)') ' LOWER = ', CL 
WRITE(6,'(8X,A,1PE13.5,/)') ' UPPER = ', UL 
WRITE(6,'(/,8X,A,F8.2,/)') ' CPU EXECUTION TIME (SEC.) = 
STOP 
END 

CHI-SQUARED DISTRIBUTION FUNCTION 

REAL FUNCTION CHI(X,XNU) 
IMPLICIT REAL (A-H2O-Z) 
R.EAL*16 DIY,RX 
SUM1=1 .EO 
R=1.EO 
RX=X 
DIY=XNU+2 .EO*R 
CONTINUE 
SUM2=RX/DIV 
SUM1=SUM1+SUM2 
IF(SUM2.LE.1.E-10) GO TO 2 
B.X=RX*X 
R=R+1 .EO 
DIY=DIV* (XNU+2 .EO*R) 
GO TO 1 390
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CONTINUE 
X2=.5E0*X 
XNU2=. 5E0*XNU 
CHI=X2 * *XNU2 *EX (-X2) /GAMMA (XNU2) * SUM1 
RETURN 
END 

GAMMA FUNCTION 

REAL FUNCTION GAMMA(Y1) 
IMPLICIT REAL (A-H2O-Z) 
COMMON /TWO/ PI,P12,SPI2 
X=Y1+1.EO 
z=x 
IF(LGE.6.OEO)GO TO 456 
N=INT (X) 
Z=(6.OEO)-N+X 
Y=1.EO/Z**2 
ALC= (Z- 5E0) *LOG (Z) + 5E0 *LOC (P12) - 
Z_(1.EO/(12.EOsZ))*(((Y/140.EO_1.EO/105.EO)*Y+ 
1.EO/30.EO)*Y-1.EO) 
IF(X.GE.6.EO)GO TO 457 
ITE=6-N 
DO 3 J=1,ITE 
A=X+J-1 .EO 
ALG=ALG-LOG (A) 
CONTINUE 
GAMMA=EX? (ALG) 
RETURN 
END 

STANDARD NORMAL CDF 

REAL FUNCTION CDFNOR(Z) 
THIS FUNCTION COMPUTES THE NORMAL CDF. 
IMPLICIT REAL (A-H2O-Z) 
COMMON /TWO/ PI,P12,SPI2 
DATA A/0.31938153E0/,B/-0.356563782E0/,C/1.781477937E0/, 
D/-1 821255Q78E0/ ,E/1 330274429E0/ 
EZ=-(Z*z2)*.5E0 
CDFNOR=O.OEO 
IF(EZ.LE.-200.OEO) GO TO 1 
ZX=SPI2*EXP (EZ) 
IF(ABS(Z).GT.6.EO) GO TO 2 
T=1 .EO/(1 .EO+(O.2316419E0*ABS(Z))) 
CDFNORZX*T* (A+T* (B+T* (C+T* (D+T*E)))) 
CO TO 1 
Z2=1.EO/(Z*Z) 
CDFNOR=ZXz(1 .EO-Z2* (1 .EO-3 .EO*Z2* (1 .EO-5 .EO*Z2)))/ABS(Z) 
IF (Z GT.O. OEO) CDFNOR=1 . OEO-CDFNOR 

INVERSE NORMAL CDF 

REAL FUNCTION )CLNY (Z) 
IMPLICIT REAL (A-H2O-Z) 
F(X,P1)=P1-CDFNOR(X) 
Y=z	 391



IF(Z.GT.0.5E0) Y=1.E0-Z 
IF(Z.EQ.1.E0) STOP 
C0=2 . 515517E0 
C1=0 . 802853E0 
C2=0. 010328E0 
D1=1 . 432788E0 
D2=0. 189269E0 
D3=0.001308E0 
T=(-2.E0*LOG(Y))**.5E0 
DNUM=C0+T (C1+T*C2) 
DNO}L=1 . OEO+T* (D1+T* (D2+T*D3)) 
X=T-(DNUM/DNOM) 
IF(Z.LT.0.5E0) X=-X 
x1=x 
F1=F(X1,Z) 
X2=X1+ . OC1BO 
F2=F(X2,Z) 
XX=X2 
CONTINUE 
IF(ABS(XX-X1) .GE.1.E-10) THEN 
X=X2-F2* (X2-X1) / (F2-F1) 

X1=X2 
X2=XX 
F1=F2 
F2=F(XX, Z) 
GO TO 10 
END IF 
XINY=XX 
END 

FIND PARAMETERS IN WEIBULL, OR FRECUET 

SUBROUTINE SECT1 (COY,ISIGN,ALPRA) 
IMPLICIT REAL (A-H2O-Z) 
COMMON /TWO/ PI,P12,SPI2 
ISIGN = 1; WEIBULL DIST. 

= 2; FRECHET DIST. 
F(X,COY)=_(1.E0+COY*2)*GAMLk(X)**2+GAA(2.*X) 
IF(ISIGN.EQ. 1) X1=COV** (1.08) 
TF(ISIGN.EQ.2) X1=COYx*(.677)/2.33 
IF(ISIGN.EQ.2.AND.X1.GT..49E0) X1=.48999999 
IF (ISIGN.EQ.1) F1=F (Xl ,COY) 
IF(ISIGN.EQ.2) F1=F(-X1 ,COV) 
IF(ABS(F1).LE.1.E-10) GO TO 1 
X2=X1 + . O1EO 
IF(ISIGN.EQ.1) F2=F(X2,00Y) 
IF (ISIGN EQ.2) F2=F (-X2, COY) 
XX=X2 
CONTINUE 
IF (ABS (XX-X1) . CE. 1 .E-9) THEN 
XX=X2-F2* (X2-X1) / (F2-F1) 
X1=X2 
X2=XX 
F 1=F2 
IF(ISIGN.EQ.1) F2=F(XX,COY) 
IF(ISIGN.EQ.2) F2=F(-fl,COY) 
GOTO1O 
END IF 	 392 
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ALPHA=1 . EO/X1 
RETURN 
END 

PARAMETERS CALCULATION (ALPHA, AND BETA) 

SUBROUTINE WEI(CMEAN, XDEY, P,BETA) 
IMPLICIT REAL (A-H2O-Z) 
COY=XDEVJXMEAN 
CALL SECT1 (COY, 1, ALPHA) 
AL1=1 .EO/ALPHA 
BETA=X}AEAN/GAMMA (AL 1) 
RETURN 
END 

PARAMETERS CALCULATION (ALPHA, AND BETA) 

SUBROUTINE FRE ()EAN , )DEY, ALPHA ,BETA) 
IMPLICIT REAL (A-H2O-Z) 
COV=XDEY/XMEAN 
CALL SECT1 (COY,2,ALPUA) 
AL1=1 .EO/ALPHA 
BETA=XMEAN/GAJA1A (-ALl) 
RETURN 
END 

PARAMETERS CALCULATION (ALPHA, AND BETA) 

SUBROUTINE EVD(XMEAN,STD ,ALPHA,BETA,PI) 
IMPLICIT REAL (A-H2O--Z) 
ALPHA=PI/ (STD*SQRT (6 .EO)) 
BETAXMEAN-. 577215664go153/ALPB.A 

RETURN 
END 

FIND THE ALPHA FOR MAX. AREA RATIO 

SUBROUTINE HATEST (ALMIN, AL, BETA, K, ALMI , ALL'. ALPA ,AR 1) 

IMPLICIT REAL (A-H2O-Z) 
DIMENSION G(21) ,AR(21) 

20 SEGMENTS BETWEEN MIN. ALPHA AND MAX . ALPL 

DAL= (ALMAX-ALMIN) * . 05E0 
BET3=BETA+3 . E0 
XK2=DBLE (K) * -5F,0 
DO 1 fll,21 
ALPHA=ALMIN+DBLE (IX-l) *DAL 
AL2=ALPHA*.5E0 
Ui=EXP (-BET3*2/ALPHA) 
U2=EXP (-BETAs 2/ALPHA) 
DU=(U2-Ul)* .05E0 
U12=Ul+DU*.5E0 
Gniax0.EO 
SUM=O.EO 
DO 2 J=1,20 
U=1J12+ (J-l) *DU 

EQ. 22 IN HARBITZ'S PAPER
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C (J) = (-LOG (U)) ** (XK2-1 .E0) *U ** (AL2-1 . E0) 

IF(G(J) .GE.Ginax) Cmax=G(J) 
SUM=SUM+G(J) 
CONTINUE 
AJt(IX)=SUM/( 20 .E0*Gmax) 

CONTINUE 

FIND MAX. AR 

ARMAX=AR (1) 
DO 10 J=2,21 
IF(ARI{AX. LE. AR (J)) TEEN 

AR){AX=AR (J) 
IJ=J 

END IF 
CONTINUE 
ALMI=ALMIN+DBLE ( (IJ-2)) *DAL 
ALPA=ALMIN+DBLE((IJ-1)) *DAL 
ALMA=ALMIN+DBLE (IJ) *DAL 
AR1=AR(IJ) 
RETURN 
END 

SUBROUTINE )CFPI(ZX,N,XRZ,EPS,EAN,DIST,XDEV,XCOV,1,EE,ZBET,ZO) 
IMPLICIT REAL (A-H2O-Z) 

DIMENSION AL (20) ,BE (20) , ZX(20) , X(20) , DIST1 (20) , XRZ (20) 
DIMENSION XCOV(20) ,TXMEAN(20) ,TXCOV(20) ,XNM.EAN(20) ,XNDEV(20) 
DIMENSION DIST(20) ,DX(20) ,XR(20) ,XMEAN(20) ,XDEV(20) ,TEMPXR(20) 
DIMENSION CI(20) ,AI(20) ,SF(20) ,STOREX(20) ,C(20,2) ,FORM(20) 
COMMON /OP1/ DIST1,DX,XR,XMEAN,XNDEV,CI,AI,SF,C,F0RM,fl,O,1 

COMMON /TWO/ PI,P12,SPI2 
READ NUMBER OF VARIABLES (N), LIMIT STATE DESCRIPTION ('A' FORMAT). 

READ NAME, MEAN (MEDIAN FOR LOGNORMAL VARIABLES) ,COEFF. OF VARIATION, 
AND DISTRIBUTION TYPE (DEFINED IN SUB. CDFPDF) OF EACH VARIABLE. 

ZXO=:ZO 
DO 15 I-1,N 

DIST1 (I) =DIST (I) 
SF(I)=1. 

15 CONTINUE 
KK=0 
11=0 
C0=O. 

AI(1)=0. 
READ ZO VALUE IN THE LIMIT STATE (DEFINED IN SUB. GFUNC): G (X) =Z (X) -ZO 

WRITE(6,121) 
COMPUTE R-F BETA AND THE DESIGN POINT.----II--O LOOP. 

CALL FIT(EPS,ZX,AL,BE,N,EAN,).ZT,,fl) 

RETURN 
END 

SUBROUTINE FIT(EPS,ZX,AL,BE,H,XMEAN,XDEV;BETA,KK,LL) 
C THIS SUB. USES THE R-F ALGORITHM TO FIND THE R-F SAFETY INDEX. IT ALSO 
C CONTROLS THE PROCESS OF CONSTRUCTING THREE PARAMETER EQUIV. NORMALS. 

IMPLICIT REAL (A-H,O-Z) 
DIMENSION DIST(20) ,DX(20) ,XR(20) ,XMEAN(20) ,XDEV(20) ,ZX(20) 
DIMENSION CI (20) ,AI(20) ,SF(20) 1 )2ICEAN(20) ,XNDEY(20) ,EE(20) 
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DIMENSION C(20,2) ,FORM(20) ,AL(20) ,BE(20) 
COMMON /OP1/ DIST,DX,R,XNMEAN,XNDEV,CI,AI,SF,C,FORM,II,ZO,XR1 

COMMON /TWO/ PI,P12,SPI2 
II=LL 
IF(LL.NE.0)GO TO 40 
PUTE MINIMUM DISTANCE (SAFETY INDEX) USING SUBROUTINE OPTM. 
3ET INITIAL DESIGN POINT SEARCH VALUES (JCR(I)) .*z 
)ET CONVERGENCE LIMITS (EE(I)) AND STEP SIZE MULTIPLIER (DD) .** 
DO 30 I=1,N 
XR(I)O.0 
EE(I)=0.0001 
XNMEAN (I) =XMEAN (I) 

I XNDEV (I) =XDEV (I) 
DD=5000. 

•CULATE HASOFER-LIND SAFETY INDEX - FIRST ESTIMATION. 
CALL OPTM(ZX,AL,BE,N,BETA,IOPT,EE,DD,XR,1.OEO) 

LL--O -- RACKWITZ-FIESSLER METHOD.; IF LL=1 -- LEAST-SQUARES METHOD. 
KK=O 
}cK=KI+1 
DO 10 J=1,N 
R-F TRANSFORMATION (LL.EQ.0) 
IF(LL.NE.0) GO TO 50 
IF(DIST(J).NE.2.) GO TO 99 

MEAN (J) =XMEAN (J) 
XNDEV(J)XDEY(J) 
GO TO 10 
CALL CDFPDF(ZX,AL(J) ,BE(J) ,DIST(J) ,DX(J) ,EAN(J) ,XDEY(J), 

0,CDF,PDF) 
U=XINY(CDF) 

STARW=(-(U**2)* .5) 
IF (STARW . LE. -200.) STAR W=-200. 

XNDEY(J)=SPI2*EXP (STARW)/PDF 
XNMEAN(J)=DX(J) -U*XNDEY(J) 
GO TO 10 
LEAST SQUARES METHOD (LL.NE.0) 

CONTINUE 
CONTINUE 
IF(LL.NE.0) GO TO 111 
ZBETA=BETA 
CALL OPTM(ZX,AL,BE,N,BETA,IOPT,EE,DD,XR,1.OEO) 
r MAX. NO. OF ITERATIONS FOR DESIGN POINT SEARCH** 
IF(KK.EQ.100) RETURN 
T STOP CRITERIAS FOR THE CALCULATION OF BETA** 
IF(BETA.LT.4.0) GO TO 20 
ERRPER=100. *ABS (BETA- ZBETA) /ZBETA 
tF(ERRPER.LE.0.1) RETURN 
GO TO 77 
[F (ABS (BETA-ZBETA) . LE . EPS) RETURN 

TO 77 
ETURN 
ND 

;UBROUTINE MINBT(ZX,AL ,BE, N, BETA) 
SUBROUTINE COMPUTES THE MINIMUM DISTANCE. 
IMPLICIT REAL (A-H,O-Z) 

'IMENSION DIST(20) ,X(20) ,XR(20) ,)QdEAN(20) ,XDEV(20) ,ZX(20) 
'IMENSION CI(20) ,AI(20) ,SF(20) ,C(20,2) ,FORM(20) ,AL(20) ,BE(.20) 
OMMON /OP1/ DIST,X,XR,XMEAN,XDEV,CI,AI,SF,C,FORM,II,Z0,XR1 
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SUM=0.O 
,C FOR 11=0 (R-F) LOOP ONLY. 
0 COMPUTE BASIC VALUES FROM THE REDUCED VALUES. 

DO1I=2,N 
X(I)=XDEV(I)*XR(I-1)+XMEAN(I) 

1 IF(X(I) .LE. (O.001*XDEY(I)) .AND.DIST(I) .NE.2.) X(I)=0.001*XDEV(I) 
0 COMPUTE X(1) VALUE. 

CALL LSFFPI(N,X,ZX,ZO) 
C SET LOWER LIMIT OF THE DESIGN POINT VALUE OF X(M) 

XR1=(X(1)-XMEAN(1))/XDEV(l) 
DO.33 I=1,N 
IF(XR(I).CT.27.) XR(I)=27. 
IF(XR(I).LT.-27.) XR(I)=-27. 

33	 CONTINUE 
M=N-1 

DO 3 I=1,M 
3 SUM=SUM+XR(I) **2 

SUM=SUM+XR1**2 
BETA=SQRT (SUM) 
RETURN 
END 

SUBROUTINE CDFPDF(ZX,ALPHA,BETA,DIST,X,XMEAN,XDEV,ICDF,CDF,PDF) 
THIS SUBROUTINE CALCULATES THE CDF AND PDF OF THE FOLLOWING 
DISTRIBUTIONS: 1.=WEIBULL,2.=NORMAL,3.EYD,4.=LOGNORMAL. ,5.=FRECHET 
FOR ADDITIONAL DISTRIBUTIONS, THE CDF AND THE PDF MUST BE EXPRESSED 
IN TERMS OF THE MEAN(MAN) AND THE STANDARD DEVIATION(XDEV). 

IMPLICIT REAL (A-H2O-Z) 
DIMENSION ZX(20) 
COMMON /TWO/ PI,P12,SPI2 

SET LOWER LIMIT FOR NON-NORMAL VARIABLES. 
XL=0.00O01XDEV 
IF(DIST.NE .2. .AND. X.LE.XL) X=XL 
GO TO (1,2,3,4,5),INT(DIST+.1EO) 

1 IF(ABS(X).LE.1.E-10) TEEN 
CDF=0 .E0 
PDF=O.E0 
GO TO 10 
END IF 
RB=X/BETA 
EW=RBs * ALPHA 
IF(EW.GT .200.) EW=200. 
EXPWEI=EXP (-EW) 
CDF=1 . OEO-EXPWEI 
IF(ICDF.EQ.1) GO TO 10 
PDF= (ALPHA/BETA) * (EW/RB) *EXPWEI 
GO TO 10 

2 Z= (X-XMEAN) /XDEV 
CDF=CDFNOR (Z) 
IF(ICDF.EQ.l) GO TO 10 
PDF=SPI2*EXP(-Z**2* .5)/IDEY 
GOTO1O 

3 E1=ALPHA* (X-BETA) 
IF(Ei.GT.200.) E1=200. 
YY=EX? (-El) 
IF(YY.GT .200.) TY=200. 396



CDF=EXP (-11) 
IF(ICDF.EQ.1) GO TO 10 
EY=E1 +YY 
IF(EY.GT .200.) EY=200. 
PDF=ALPHA*EXP (-EY)' 
GO TO 10 
CX21=(XDEV/XMEAN) **2+1. 
YMEA.N=LOG(OLEAN) -LOG (SQRT (CX21)) 
YDEV=SQRT(LOG(CX21)) 
Z= (LOG (X) -YMEAN) /YDEV 
CDF=CDFNOR (Z) 
IF(ICDF.EQ.1) GO TO 10 
EZ=-(Z*z2) .5 
IF(EZ.LE.-200.) EZ=-200. 
PDF=SPI2EXP (EZ) / (YDEV*X) 
GO TO 10 

IF(ABS(X) .LE.1.E-10) THEN 
CDF=O.E0 
PDF=0.E0 
GO TO 10 
END IF 
TEILP=(BETA/X) **ALPHA 
CDF=EXP (-TEMP) 
IF(ICDF.EQ.1) GO TO 10 
PDF=CDFTE}éP*kLPHA/X 

RETURN 
END 

SUBROUTINE OPTM(ZX,AL,BE,NP,EF,NFCC,E,ESCALE,X,OPTMIZ) 

IS THE OPTIMIZATION ROUTINE FOR FINDING THE R-F SAFETY INDEX, 
THE THREE PARAMETERS OF THE EQUIVALENT NORMAL CDF. 
DIMENSION OF W = NO. OF VARIABLES*(NO. OF VARIABLES 3) 

IMPLICIT REAL (A-H2O-Z) 
DIMENSION X(20) ,W(460) ,E(20) ,ZX(20) ,AL(20) ,BE(20) 
DIMENSION DIST(20) ,DX(20) ,XR(20) ,XMEAN(20) ,XDEV(20) ,CI(20) ,AI(20), 
SF(20) ,BB(81) ,CDFNON(81) ,WEIGT(81) ,SQRWGT(81) ,C(20,2) ,FORM(20) 
COMMON /OP1/ DIST,DX,XR,)@AEAN,XDEV,CI,AI,SF,C,FORM,II, Z0,XIR1 
COMMON /OP2/ BB,CDFNON,WEIGT,SQRWGT,DP,NA,NB,PT,5CALE 
R INTERMEDIATE RESULTS SET IPRINT TO A LOWER INTEGER.** 

EPRINT=4 
N=NP-1 
DDMAG=0.1ESCALE 
SCER=O .05/ESCALE 
JJ=N* (N+1) 
TJJ=JJ+N 
(=N+1 
FCC=1 

END=1 
NN=1 
)O 4 I=1,N 
t(I)=ESCA.LE 
'0 4 J=1,N 
'(K) =0. 
F(I-J)4,3,4 
(K) =ABS (E (I)) 
=K+1 
TERC=1 397



ISCRAD=2 
CALL INBT(ZX,AL,BE,NP,F) 
FKEEP=2. *ABS (F) 

5 ITONE=1 
FP=F 
SUIhO. 
IXP=JJ 
DO 6 I=1,N 
ixp=ixP+i 

6 W(M)=X(I) 
IDIRN=N+ 1 
ILINE=1 

7 DMAX=W(flINE) 
DACC=DMAX*SCER 
D}LAG=AMIN1 (DDMAG,0. 1*DMAX) 
D}LAG=AILAX1 (DMAG, 20. *DACC) 
DDAX=10.*DMAG 
IF (ITONE-2) 70, 70,71 

70 DL=O. 
D=DMAG 
FPREV=F 
IS=5 
FA=FPREY 
DA=DL 

8 DD=D-DL 
DL=D 

58 K=IDIRN 
DO 9 I=1,N 
X (I) =X (I) +DD *W (K) 

9 K=K+1 
CALL MINBT(ZX,AL,BE,NP,F) 
NFCC=NFCC+ 1 
GO TO (10,i.1,12,13,14,96),IS 

14 IF (F-PA) 15,16,24 
16 IF(ABS(D)-DMAX) 17,17,18 
17 D=D+D 

GO TO 8 
18 CONTINUE 

WRITE (6, 19) 
19 FORMAT(5X,44EAXIMTJM CHANGE DOES NOT ALTER FUNCTION(OPTM)) 

GO TO 20 
15 FB=F 

DB=D 
GO TO 21 

24 FB=FA 
DB=DA 
FA=F 
DA=D 

21 IF(ISGRAD-1)83,83,23 
23 D=DB+DB-DA 

Is=1 
GO TO 8 

83 D=O. 5* (DA+DB- (FA-FB) / (DA-DB)) 
IS=4 
IF((DA-D)*(D-DB))25,8,8 

25 IS--I 
IF(ABS(D-DB)-DDMAX)8,8,26 

26 D=DB+ SIGN (DDMAX, DB-DA) 
1S1	 398



DDMAX=DDMAX+DDMAX 
DDMAG=DDMAG+DD}LAG 
IF (DDMAG . GE. 1. 0E60) DDMAG1 . 0E60 
IF (DDMAX-DMAX) 8,8,27 
DDMAX=DMAX 
GO TO 8 
IF(F-FA)28,23,23 
FC=FB 
DC=DB 
FB=F 
DB=D 
GO TO 30 
IF(F-FB)28,28,31 
FA=F 
DA=D 
GOTO3O 
IF (F-FB) 32, 10,10 
FA=FB 
DA=DB 
GO TO 29 
DL=1 
DD}LAX=5. 
FA=FP 
DA=-1. 
FBFHOLD 
DB-=0. 
D=1. 
FC=F 
DC=D 
A= (DB-DC) * (FA-FC) 
B= (DC-DA) (FB-FC) 
IF((A+B)*(DA-DC))33,33,34 
FA=FB 
DA=DB 
FB=FC 
DB=DC 
GO TO 26 
D=O. 5 * (A* (DB+DC) +B* (DA+DC) ) / (A+E) 
DI=DB 
FIFB 
IF(FB-FC)44,44,43 
DI=DC 
FI=FC 
EF(ITONE-2)86,86,85 
[TONE--2 
0 TO 45 
F(ABS (D-DI) -DACC) 41,41,93 
EF(ABS(D-DI)-0.03*ABS(D))41,41,45 
EFDA-DC)*(DC-D))47,46,46 
'A=FB 
)A=DB 
'B=FC 
)B--DC 
O TO 25 

F((DB-D)*(D-DC))48,8,8 

O TO 8 
=FI



D=DI-DL 
DD=SQRT,( (DC-DB) (DC-DA) (DA-DB) / (A+B)) 
DO 49 I=1,N 
X(I)=X(I) +D*W(IDIRN) 
W(IDIRN)=DD*W(IDIRN) 

49 IDIRN=IDIRN+1 
W (ILINE) =W (ILINE) /DD 
ILINE=ILINE+ 1 
IF (IPRINT-1) 51,50,51 

50 IF(IFRINT.GE.4) GO TO 53 
WRITE(6,52) ITERC,NFCC,F, (X(I) ,I=1,N) 

52 FOR}LAT(11H ITERATION,13,18,1611 FUNCTION YALtJES,5X,2HF=,E13.6, 
+5(E13.5,2X)) 
IF (IPRINT-1) 51, 51, 53 

51 IF(ITONE-1)55,55,38 
55 IF(FPREV-F-STJ1{)94,95,95 
95 SUM=FPREY-F 

JIL=ILINE 
94 IF(IDIRN-JJ)7,7,84 
84 IF(IND-1)92,92,72 
92 FHOLD=F 

IS=6 
IxP=JJ 
DO 59 I=1,N 

59 W(IXP)=X(I)-W(]IP) 
DD1. 
GO TO 58 

96 ]Y(IND-1)112,112,87 
112 IF(FP-F)37,37,91 
91 D=2 * (FP+F-2. *FHOLD) / (FP-F) * *2 

IF(D* (FP-FHOLD-SUM) *2-SUM) 87,37,37 
87 J=JIL*N+1 

IF(J-JJ) 60, 60, 61 
60 DO 62 I=J,JJ 

K=I-N 
62 W(K)=W(I) 

DO 97 I=JIL,N 
97 W(I-1)=W(I) 
61 IDIRN=IDIRN-N 

ITO NE3 
K=IDIRN 
LJJ 
AAA=0. 
DO 67 I=1,N 
IXP=IXJ+1 
'(K)=W(IXP) 

• IF(AAA-ABS(W(K)/E(I)))66,67,67 
66 AAA=ABS(W(K)7E(I))	 • 
67 K=K+1 

DDMAG=1. 
W(N)=ESCALE/AAA 
ILINE=N 
GOTO7 

37 M=JJ
 A4U=O. 

F=FH OLD 
DO 99 I=1,N 
ixpna'+i

400



The limit state is 

2	 2 g(X) = R - v'300P + 1.92 T 

Note how it is entered into 

the two subroutines. 

'I (I) =X (I) -w (IX?) 
IF (AAA*ABS (E(I) ) -ABS (W(LCP) ) ) 98,99,99 
AAA=ABS (W(IXP) /E (I)) 
CONTINUE 
GO TO 72 
AAA=AAA* (1. +DI) 
IF(IND-1)72,72,106 
IF (IPRIN'r-2) 53,50,50. 
IF(IND-1)109,109,88 
IF(AAA-0.1)20,20,76 
IF (F-FP) 35, 78, 78 
CONTINUE 

WRITE(6,80) 
FORMAT(5X,37HACCURACY LIMITED BY ERRORS IN F(OPTM)) 
GOTO2O 
IND=1 
DDMAG=0 . 4*SQRT (ABS (FP-F)) 
IF (DDMAG . GE. 1. E+30) DDMAG=1 . OE+30 
ISGRAD=l 
ITERC=ITERC+1 
ET MAX. NO. OF ITERATIONS.** 
MAXIT= 100 
IF(ITERC-MAXIT)5,5,81 
CONTINUE 
WRITE(6,82) MAXtT 

FORMAT(15 ; 29H ITERATIONS COMPLETED BY OPTM) 
IF(F-FKEEP)20,20,110 
F=FKEEP 
DO 111 I=1,N 
JJJ=JJJ+ 1 
X(I)=W(JJJ) 
GO TO 20 
IF(AAA-0.1)20,20,107 
EF=F 
GO TO 666 
INN=1 
GO TO 35 
RETURN 
END 

SUBROUTINE RARBIFN(X,K,ALPIIA,BETA, C) 
IMPLICIT REAL (A-H2O-Z) 
DIMENSION X(K) 

G IS PERFORMANCE FUNCTION 
G MUST BE EQUAL TO OR L.T. ZERO TYPE 

G=X(1)-SQRT(3 .E2*X(2) **2+1 . 92E0*X(3) **2) 
RETURN 
END 
SUBROUTINE LSFFPI(N,X,ZX, ZO) 
IMPLICIT REAL (A-H2O-Z) 
DIMENSION 1(20) , ZX(20) 

PERFORMANCE FUNCTION (X(l)=i(X(2),...,X( 

X(1)=SQRT(3 .E2*X (2) **2+1 .92E0*X(3)**2) 
RETURN 
END
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Example Problem 

p

g(;) = R -	 ^ 1.92T2 

= 48	 lip = 1.0 

Cyr = 3	 o 
= 0.16 

RWEI

P .. = 20 
I

= 2 

T " EVD 

This is an example of the input file 

THIS IS EXALE 7 
1. D-4 ) 3, 10000 , 0. 
R 
1. ,48. ,3. 
P 
4,9874-40632,16 .16 * 

T 
3.,20.,2. 

*Note that P is lognormal; thus the median 

=	 c 

is entered.
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THIS IS EXAMPLE 7

DESIGN VARIABLES 

VARIABLE	 DISTRIBUTION	 MEAN/MEDIAN 

R	 WEIBULL	 4.8000E+01 

P	 LOG	 9.8744E-01 

T	 EVD	 -	 2.0000E+01 

(NOTE: THE MEDIAN AND COV USED FOR LN) 

BETA (SPHERE) =	 3.085 

NUMBER OF VARIABLES = 3 

AREA RATIO, AR = 	 .9934 

ALPHA =	 2.1880 

NUMBER OF SAMPLES = 10000 

TOTAL NUMBER OF C < 0 = 798 

TOTAL NUMER OF POINTS SAMPLED = 10060 

PROBABILITY OUTSIDE BETA SPHERE = 2.31808E-02 

PROBABILITY OF FAILURE	 1.84983E-03 

BETA =	 2.90271 

95 CONFIDENCE INTERVAL ON PF 

LOWER =	 1.72671E-03 

UPPER =	 1.97294E-03 

CPU EXECUTION TIME (SEC.) =	 4.28 

/87 UNIV OF ARIZONA	 NOS/BE 1.5 650 87149 

..35.SJ TORNC7U FROM ** 	 07/06/87 

.35.CD 00001015 CARDS, COST =	 $.00 

.35. JOBCARD-TORNG, BN4053342 ,T1500. 

.35.PW, 
•35.FTN5(L0).
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APPENDIX D


Particular Solutions for BEM Body Force 


Dr. S.T. Raveendra


Southwest Research Institute 
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For centrifugal loading. 

Pi = A I [(R l1 x f x k n k + A 2 R Jk x J xk fl ) A 3 R I ,x j x k n k ]	 (D-1) 

where, 

2rrp 

A2_2(lv) 

and
(1-2v) 

A generalized function for K is selected such that it isglobal in nature and 
also the evaluation of the function is computationally efficient. The function 
selected in this analysis is 

K(P.Qm)	
(

(D-2) 
1-	

R0	 ) 

where r(P.Q.j is the distance between P and Q, and R. is a characteristic length 
based on the problem dimensions. The particular solutions presented are based 
on this function. For thermal analysis 

R(	 3r

R0'\



C = —I 4-- ly 

12k	 ) 

The one-dimensional temperature field solution is given by 

	

_	 (D-4) 

= (2L—L2) e

 

where 0, is the surface temperature, and 

(1_+\
a 

I -vi 
The temperature dependent material properties solution is given by 

= (c, +rC 2 )(	 0	 0	

YiYjYk 
 

r 
ô 

where
R0 

Cl=A2) 

and 

C2.=24(+2) 

The vibration analysis particular solutions are given by

(D-5) 
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ij = C 3 (Or + yy , ) + C 4 6 11 r 3 + C5ryy1	 (t 

P[(3C 3 + rC 6 )y,a 1 + ( c 7 + rC 8 )yn, + {(3c 3 + rC6)611 + 2C5}Y n ]	 - 

where

(1-2v)R0 
C3__(1416)_ 

11 - 12v 
C4 

144(1—v) 

Cs=_48(1___ 

5-6v 
C6	

24(1 - v)p 

C	
(1+4v) R 

(7-8v)p 
and

1 —6v 

C8=24( 1 —v)p 

The unknown coefficients are obtained from 

F=K 

Ed = K'

(D 

(D 

(D 
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