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1.0 PSAM PROJECT OVERVIEW

1.1 Introduction

This Annual Report summarizes the work completed during the third year of
technical effort on the referenced contract. Principal developments continue
to focus on the Probabilistic Finite Element Method (PFEM) which has been
under development for three years. Essentially all of the linear capabilities
within the PFEM code are in place (Section 2.0); most have been validated
(Section 6.0). Major progress in the application or verification phase has
been achieved for the PFEM and is reported in Section 7.0.

Additionally, the EXPERT module architecture has been designed and
partially implemented, as reported in Section 4.0. EXPERT is a user interface
module which incorporates an expert system shell for the implementation of a
rule-based interface utilizing the .experience and expertise of the user
community. EXPERT has been substantially modified from the Second Annual
Report to incorporate a C-language expert system shell, CLIPS, written at NASA
Johnson Space Center. The use of the C-language allows for an effective
interface to a variety of needed Fortran utility subroutines. These
subroutines perform a variety of operations on data sets used in the input and
control of the PFEM and other modules that form the bulk of the user
interface.

The Fast Probability Integration (FPI) algorithm continues to demonstrate
outstanding performance characteristics for the integration of probability
density functions for multiple variables (Section 3.0). Several minor
enhancements to the algorithm are reported. Additionally, an enhanced Monte
Carlo simulation algorithm has been developed at the University of Arizona
under Professor Wirsching’s direction. A variety of numerical strategies were
investigated in the process and are detailed in Appendix C.

1.2 Probabilistic Finite Element Method (PFEM)

The finite element algorithms are broadly classed in terms of the
standard displacement method and as a mixed method with iteration for nodal
equilibrium. Within each method the user has access to a variety of element
types, as developed in the first two years of the contract effort. '

During the past year the PSAM project has implemented two new element
types within the PFEM module. The MARC team, under the leadership of Drs. Joop
Nagtegaal, S. Nakazawa, and Mr. Joao Dias, has implemented an advanced
shell/plate element with the ability to handle through-thickness gradients.
The element is an eight-noded solid elemént_with assumed strain freedoms.
Shell/plate behavior has been achieved in terms of a large aspect ratio
capability for the element by the proper selection and tuning of the assumed
strain terms.



The second new element is the sixteen-node hybrid (assumed stress)
element developed under the direction of Dr. Satya Atluri and his staff at the
Georgia Institute of Technology. Again, the element has surface nodes and is
capable of aspect ratios approaching shell/plate requirements.

1.3 Probabilistic Boundarv Elements (PBEM)

The focus during the past year has been on the development of a proper
formulation strategy to permit the extension of an existing boundary element
code to the probabilistic context. The selected BEM code for that development
is the BEST3D code developed under NASA HOST funding in an effort directed by
Drs. Banerjee and Wilson; much of that coding was accomplished by Dr.
Raveendra, now working on the PBEM implementation.

The PFEM strategy is to compute structural solutions for perturbed states
of the random variables using an iteration algorithm. In this algorithm, the
perturbed variables are shifted to the right-hand side of the system
‘equations, and the perturbed solution obtained by iterating with the reduced
stiffness matrix serving as a pre-conditioning matrix.

The PBEM investigation has reviewed the strategies availabie for the
generation of perturbed solutions. Since the BEM formulation is in te.~s of
surface variables, it was at first most natural to think of ‘a direct means of
computing geometry perturbations in analytical rather than numerical terms.
While technically feasible, the analytical approach appears to involve
substantially more cost of implementation than the numerical approach; thus
the latter approach was selected.

The use of BEM formulations for high temperature gradient problems in
turbomachinery requires a treatment of volume terms associated with non-steady
thermal strains, inhomogeneous material properties, and plastic strains. The
usual treatment of these terms is through volume integrals requiring
discretization of the body volume. Recent research in the BEM community has
identified the potential use of surface-based interpolation functions for
these volume integrals. The PBEM formulation has been based on the use of such
surface interpolators. Perturbations are then performed in terms of surface
data, even for internal variables, by this strategy.

1.4 Code Validation and Verification Studies

Code validation and verification are critical elemeéts in the PSAM
effort. Code validation is a task to establish the ability of the integrated
analysis and probabilistic modules to generate the "exact" solution to simple
. problems, amenable to independent analysis. Code verification is to
demonstrate the ability of the PSAM codes to generate meaningful probabilistic



analysis results for each of four SSME component analyses. The verification
analyses, therefore, generally involve large modeling problems and loading
conditions that preclude comparison to analytical results.

The validation studies have made significant progreés‘in the past year in
terms of the number and diversity of the‘problems that have been solved. A
standard format for the validacioh‘problems has been established that will
facilitate the evaluation and replication of these results by other users.

‘The validation results have identified code errors and shortcomings that
have been resolved. More importantly,  these problems have given significant
insight into the operation of the PSAM codes for various types of modeling
problems. These insights are being used to develop rules in EXPERT that will
ease the user burden for these classes of problems.

Additionally, the validation problems have provided critical technical
insight into the nature of probabilistic analysis results. In particular, the
results have all shown that, while the deterministic modeling answer my be off
from the known solution,.the distribution of the probabilistic solution is
highly accurate. Thus, by calibrating the model at the deterministic solution
point, the PSAM algorithm is able to correctly predict the distribution of the
results relative to the deterministic solution. This derives from the
observation that the PSAM algorithm is based on the use of sensitivity data
from the perturbation algorithm; sensitivity data is sean to be quite accurate
so long as the physics of the problems has been properly modeled.

The first major verification problem is nearly complete; The PSAM
algorithms have been.applied to a turbopump blade analysis. The random
variables include geometry and material properties for the static analysis.
Current work is applying random loading conditions and analyzing the dymamic
response characteristics of the blade.

Dr. Rajagopal of Rocketdyne has made major contributions to the PSAM
effort in the verification task. He has identified numerous code problems
which have been fixed as well as developing effective graphics interfaces for
the PSAM results which facilitate the interpretation of the data.

1.5 Planned FY88 Technical Effort

Two major new tasks are underway in the current Fiscal Year (the fourth
year of the project). The first is the implementation of 'Probabilistic
Approximate Structural Analysis Methods (PASAM) for selected components. The
PASAM algorithms have been defined for each of the four components. The PASAM
algorithms will be based on the observation made from the validation examples
that the distribution of the solution can be accurate to within a
deterministic calibration value, if the physics of the random variables are



properly accounted for. Thus, each of the four problem formulations will focus
on the definition of critical response variables, and on the definition of the
role of each of the random variables.

Simplified mechanics models will be generated to estimate the required
solution variable dependence on the random variables. It is expected that the
deterministic solution will be crude and in error. It is assumed that a
calibration analysis or an experimental result exists for defining an accurate
deterministic solution. PASAM will generate distributional results, normalized
to the deterministic solution. Thus, the analyst will be able to rapidly
determine the sensitivity of the response variable to the random variables, as
well as to predict the overall uncertainty in the design response variable. It
is likely that this version of the PSAM capability could be PC-based.

The second new task is the development of a Level III probabilistic
material behavior model. The goal is to predict random stress-strain curves
that derive from considerations of basic material mechanism behavior or
appropriate phenomenological models from zero load to ultimate load.
Consideration will be giﬁen to basic probabilistic variables for describing
materials (grain sizes, defect structures, orientations, temperatures, etc.)
such that the simulations can show the dependency of the response
stress-strain curve character to the independent random variables.
Interactions between mechanisms and dependencies between certain random
variables is to be included.



2.0 NESSUS FINITE ELEMENT CODE DEVELOPMENT

2.7 Introduction

The NESSUS‘Finite element code is being déveloped by MARC anzlysis
Research Corporation as part cf the probabilistic structural arilysis (PSaM)
effort, coordinated by-Souchwest'Research Institute for the NASA-Lawis
Research Center. The objective ofithis effort is to provide an advanced
analysis capability by combining the versatility of a modern finite element
code with the latest developments in the area of probabilistic modeiing and
structural reliability. Special attention was devoted to the efficiency and
generality of the algorithms adopted in order to. make the cod= usable for the
analysis of realistic engineering problems which are representative of typical
SSME applications. '

2.1.1 Status at End of FY '86.

During FY '86 the NESSUS finite element code gradually evolved

from a purely deterministic finite element code into a basic probabilistic
analysis code. Version 1.1 of the NESSUS ccce was released to all members of
the PSAM team in March '8¢ and was being extensively exercised at all sites by
the end of FY '86. NESSUS 1.1 allowed linear elastic and eigervalue analysis
of structures with uncertain geometry, material properties and boundary
conditions, subjected to a random mechanical and thermal loading
environment. Probabilistic analysis with this version of the code was limited
to a single increment of elastostatic or dynamic eigenvalue anziysis, using
the displacement formuiation, and with ro initial strain and/or stiress
effects.

Initial experience with NESSUS 1.1 by the PSAM team members indicated the
need for several enhancements to be provided with the second year code. The

desired enharcements included:
A faster =quation solver using profile storage.

: [ 4
: The ability to update an existing perturcation dactabase with results
obtained in multiple runs.

perturbation algorithm, able to bypass most

. A4 "smarter" elastos c
e y computations.

i
redundant or unnec r

(ks
R
S§$332

The ability to reformulzte tn2 unperturted soiution 2t a coint other tazn
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ne mean.
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A more flexible set of integration schemes for strain recovery zand
projection, accommodating collzpsec 2lement configurations.

More user-friendly input of material properties for certain classes of
anisotropic materials, allowing these parameters to bte random.

: The ﬂeod for an erhanced 3D continuum element whlcn could be degenerated

<

to a high aspect ratio to model plate and shell-like struccures.
An algorithm for defining surface pressures on a nodal basis.

: Per{ormance lmprovements on tne subspace iteration aigorithm used for
modal analysis.

: The explicit addition of the second tensor invariant for strains and
stresses in the perturbation database.

All of the above were being addressed in the development versicn of
NESSUS by the end of FY '86, and were to be included in NESSUS 1.5 anc 2.0,
released to the members of the PSAM team on December '86 and February '87,
respectively.

&n important feature lacking in these earlier versisns of NESSUS was the
ability to introduce random initial strain and/or stress effects in the
analysis. These can be rather significant in probabilistic analysis of
rotating machinery when stress stiffening effects, due to larger centrifugal
loads dominate the response. The solution strategy invoived carrying initial
stress terms for each perturbed problem across two increments in a consistent
manner, and had been demonstrated in a special version of NESSUS in October
'86. However, the-general multi-increment perturbed problem capability was
not available as a standard feature of NESSUS until the release of version 2.5
in September '87.

The planned extension of the perturbation algorithms in NESSUS to multi-
increment, inelastic problems raised some important issues involving the
internal data representation and the cnoice of a solution strategy. In
particular, a decision had to be made regarding whether to pursue: (a) a pure
displacement-based formulation ailowing the internal storage of the element
stresses and strzins on an integration goint basis, or (b) an MHEOST-type
mized-iterative fcrmulaticn allowing the stofage of z2ll stresses and strains

on a purely nodal basis. By the end of £FY '86, a decision had besn made to

o}

pursue the latter.



Although it necessarily involves the adoption of a less mature finits
slement technology, the cecision to pursue tne mixed-iterative approacnh
allowed the use of z ncdally-based strain recovery scheme as defined oy the
NASA Stateﬁent of Work. This ;pproach also lends itself to a more elégant
implementation of the inelastic perturbation analysis algorithms and z cleaner
interface to the external perturbation database. By eliminating the need to
remember the stress/strain history at the element integration points, the
amount of data stored in the perturbation database is reduced, which helps
keep the database files within a manageable size. The adoption of a mixed-
iterative strategy allowed large portions of FORTRAN code to be shared between
the NESSUS and MHOST codes. facilitating the cross-transfer of new technology
between these two codes. Nevertheless, due to the computational economy
achievable with the displabement formulation in linear elastostatics, the
option of invoking the displacement method for perturbation analysis of linear
problems will be retained in the NESSUS finite element code.

2.2 Code Deliveries During FY '87

NESSUS 1.5 was reieased to SwRI,'Rocketdyne and CIT in December
'86. The objective of this limited release was to allow these subcontractors
to exercise the code in order to identify any outstanding problems that needed
to be addressed prior to the scheduled delivery of the second year code in
February '87. This version of NESSUS addressed most of the needs identified
while exercising NESSUS 1.1 on representative engineering problems. NESSUS
1.5 also provided for the first time the ability to conduct perturbation
analysis on problems, based on a mixed-iterative formulation, altnougn it
lacked the fine‘coﬁtrol over iteration tolerances that would be desirable for
the effective use of this strategy.

The second year ccde, identified as NESSUS 2.0, was delivered to
all members of the PSAM team in February '87. The main feature introduced.
with this version was an enhanced 3D continuum element based on an assumed
strain field formulation and cesigned for improved accufacy in bending
problems. This element can be degensrated to a high aspect ratio in order to
reproduce thick plate and shell-type situations, and provides for surface
pressure definition and strain rscevsry on a nodal basis, as dafined in the

NASA Statement of Work..



NESSUS 2.5 was releases o the members cf zthe PSAM team in
September '87. MNew features introduced with this version include the abiiity
to carry berturbation resuits across multiple load increments, f{iner ccntrol
over iteration tolefancss for use with mixed-iterative and eigenvalue
problems, and a full library of assumed strain continuum elements with
enhanced bending behavier. This version can accommodate rancom initial strain
and stress fields, in order to capture the uncertainties in the stress
stiffening effects governing the response of Eotating machinery subjected to

‘large centrifugal stresses.

2.3 ‘Extension of NESSUS/FEM to Mixed Method and Incremental Analvsis

The objectives of the PSAM effort include the cevelopment of
probabilistic finite element methods for handling not only linear problems but
also problems involving nonlinear material and gecmetric response. A
successful strategy for achieving these goals will require: (a} the
development of the means for tracking'several perturbed soiution paths across

multiple increments, and (b) the ability to compute accurate response

)

sensitivities for problems which have not been or cannot be iterated to very
high accuracy. Both issues were addressed during the past year as part of a
strategy for extending NESSUS/FEM to the mixed method and incramental
elastostatic analysis. These extensions involve data manipulétions which are
very similar to those needed for mildly nonlinear prdblems, and this
development may be regarded as the first step towards the extension of
NESSUS/FEM to material and geometry nonlinear situations.

As stated above, tne desire to rely on a purely nodal data representation
for stress and strain for inelastic problems naturally led to the adoption of
a mized finite element formulation [1] expressed in terms of nodal
displacement, stress and strain. A practical approach for the solution of the
mixed problem was developed under the. auspices of the HOST program at ‘ '
NASA/LeRC and implemented in the MHOST code. The MHCST impiementation relies
on an iterative strategy to recovar the mixed solution,’using the displacsment
method solution as the iteration preconditioner. With this approach, the
introduction of stresses and strzins as mixed variables does not significantly
increase the problem size, since only a matrix with the size of the numser of

displacement degress of fresdom needs to be [lactorized.



In the analysis of inelastic prcdb:ems, the mixed methed can be usad
effectively by comoining the nonlirear iteraticn with the recovery of the
mixed solution in the same iterative loop. Since in typical nonlinear
problems the residuais are rot iterated to within machine accuracy (the
residual load correction term automatically carries it forward into .the nex:
increment), the mixed-iterative zpproach does not require a number of
iterations that is significantly different from that used with th
displacement method.

That is not the case in” the aralysis of linear elastic problems, since
the direct solution of the displacement equations will yield a residual force
vector that merely reflects machine round-of{ in the multiple iterations, even
for a linear problem, in order to recover the mixed sclution from the
displacement result.' It should be noted, however, that the greatest
improvements in the strain and stress solutions obtained with the mixed method
occur in the first few iterations. Hence, for many oroolems, it is rather
uneconomical to attempt to iterate the "mized residual” to a very low value.

Initial experiments with the use of the elastostatic perturbation
algorithms using an MHOST-type mixed-iterative formulation have demonstrated
the feasibility of the approach. However, prcblems will arise whenever the
magnitude of the imposed perturbations result in a change in residuals that is
smaller than the residual carried over from the unperturbed problem. It
should be noted that a similar situation will be encountered when perturbing a
nonlinear analysis performec with the displacement formulation, since in
nonlinear problems the residuals are not usually iterated to a very small
value (just as with the mized-iterative formulation).

The solution involves separating the residuzl load component induced by
the perturbation from the residuzl load vector carried over from the '
unperturbed problem. This strategy has been described as an "equilidbrium
shift” and amounts to computing the displacemant update for the perturbed

problem using ’

-

dn+1

:d“+x"(f-j BQ" - r) (2.1
Q



where a carat is used to denote the perturbed quantities and r th

uniterated residual load w2ectcr from the unperturbed problem. This zppreach

[ %]
D

provicdes an effective metnod for ccmputing the sensitivity of a solution whicn
y

[

residua

(o)

has not been iterated to a very smal

The basic mechanism used to perform "eguilibrium shift" is implementad in~
NESSUS 2.5. In order to use "equilibrium shift" eifsctively, it is necessary
to maﬁipulate the iteration ccntrols differently for the unperturbed and
perturbed solutions. The recommended approach invclves the generation of a
mixzed unperturbed solution in which the iteration tolerances are relaxed in
order to achieve convergence with only a few steps of mixzed strain recovery.
This represents a relatively inexpensive way of improving the smoothness of
the stress and strain solutions. Al1l subsequent pefturbation prcblems are
then iterated to a finer tolerance, which is imposed only on the component of
the residual load induced by small deviations of the random variables from
their unperturbed values. - The net effect is to prevent the response
sensitivity calculation from being lost in the noise present in the
unperturbed solution. When used in this way, the efficiency of the
perturbation algorithm using the mized-iterative formulation can be made to
approach that cf the displacement method, while retaining all th cesirable
features associated with tne mixed formulation.

The extension of NESSUS/FEM to incremental analysis involved the
development of a mechanism for tracking several perturbed solution paths
across multiple increments. In generzl, this will include the ability to
recover the total displacements, stresses, elastic and plastic strains, and
any other state variables from the converged solution for the currenc
perturbation at the previous increment. By Eelying on a mixed-iterative
formulation with all state variables defined on a nedal basis, it is possible
to use the current s:tructure of the perturbation database to store and recover
these quantities. The same holds for linear elastic analysis using the
displacement formulation, even if multiple load increments are pr2sent. The
data structure currently implemented in the perturbation database wculd not te
“adequate for the use of tae displacement formulation for inelastic preblems.
since thnat would recuire the availability of any history-depencent state
varizbles (e.g., plastic strains) on an element integration point basis. Tnis
is one reascon wny the displacemernt netﬁcd i3 not being pursued {or inelastic

problems within the PSaM 2rZor:z.
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he simplest type of anaiysis irveiving 2 consistent tracking of

perturted solutions across multipie increments is related to the introducticn
I s

o
'..a
Q.
7]

“of random initial stress and strain {i tress effects account
for the change in lateral ceflection and ratural freguencies when a turbine
blade is subjected to large cenfrifugé- loads. 1If there are uncartaintiss in
the rotation speed, geometry, materizl properties, etc., these will introducs
uncertainties in the initial stress fiéld, which can be estimated by 2
perturbed elastostatic analysis.  In the following increment, each perturbed
initial stress field cbtzined in the previous increment is used to compute the
stress stiffening effects for the corresponding perturbaticn. It is important
that the bookkeeping is done correctly, sc that the change in initial stress
resulting from perturbing a given random variable is accounted for when the
same variable is pefturbed again in the following increment. In a similar
manner, it is possible to include the effect of a random initial stress field
computed in a probabilistic elastostatic problem on a subsequent random
eigenvalue analysis. Random initial strain fields (induced, for instance, by
a random temperature field) are handled in exactly the same way.

As described above, in order to minimize in-core data storage
requirements, NESSUS/FEM utilizes the perturbation database for temporary
storage of the perturbed initial strain and stress fields. Hence. for
analyses involving stress stiffening effects, the perturbation datzbase size
may have to be expanded in order to accommodate the generalized initial stress
field. However, in order to keep the dztabase size as small as possibdble,
these additional quantities will not be stored unless it is clear that they
are needed for the type of analysis in progress. It should te noted that
earlier versions of the ENCODE and DECODE utilities ({rom NESSUS 2.0) remain
compatible with the current format of the perturbation database. The same
holds true for the perturbation database interface to NESSUS/EPI.

2.4 Advances in Element Formulation

Within the past vear, several memters of the PSAM team nhave expresssad z
desire to develope advanced element technology tailored to zddress specific
SSME applications in a more effective manner. Many of the componernts
addressed with this effort can be characterized either zs 3 slender continuum

o

or as & very thick, variable thickness shell using current finite element

-~

eiements. Hoviever, the modeling of slender shell-like compenents zs 2 33

11



continuum requires a very fine mesh and involves considerable computational

o
§

and modeling effort. This zporoach is often too expensive for standard design
g , { g
2.1).

practice (see Eigure On tne other nand, if shell elsments are used, the
computational effort is recuced oy some degree of accuracy and resolutioé is
often sacrificed. This is oftan the case if the stiructure exnibits strong
curvature (of radius less than five times the thickness of the shell), large
thickness variations or very localized thermo-mechanical loading. Also, tne
stresses in the neighborhocd of shell intersections and connections are not
accurately calculated. - ‘

Many heuristic rules nave been developed for the use of shell elements in
similar problems. Tnis is frequently done by selecting an "effective"
thickness near the discontinuity or by coupling the intersections in speclal
ways. Nevertheless, it would be useful to have 3D elements with which such
problems could be modeled effectively and accurately. In principls, continuum
theory should always be able to represent the "exact" solution.

However, regular continuum elements often lack the appropriatsa
deformation modes to model shell-like structures in a satisfactory way. This
was first observed by Ahmad and Zienkiewicz (3] in the development of th2
classical 8-node thick shell element. The problem was partially overcome by
using a reduced integration formulation. Similar ideas were used later on in
the development cf thick shell elements. These elements frequently resort to
the use of special interpolations for the transverse shear terms in order to
retain the ability to accurately mcdel the bending behavior of shells. These
include the Heterosis element of Hughes and Tezduyar [4] and tHe 8- and §-node
thickness element proposed by Hinton and Huarg [5]. It can be argued that
similar interpolations could be used for the strain and/or stress field within
continuum ‘elements. Hence, one should be able to design continuum-like
elements that perform well when degenerated in one direction to model shell-
like structures.

There are several known strategiss for constructing centinuum elemants
with enhanced bending behavior (see Figure 2.2). One of the first attemp:s
employed the use of selective integraticn [6]. The originzl element was very
successful in the rectangular configuration when aligned with the glcbal
coordinate system, but 5ehaved poorly otherwise. Tnhne formulation of Kavanagn
and Key (7] cured the prcbtlem by Iniroducing a local cartesian e

coordinate system and thus making the she2ar term invariant Witn resgeet ¢ 2
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2.1 Localized Thermal and Mechanical Effects Crucizl to the

Analysis of Components Such as This Blister Specimen
Model Cannot be Adequately Captured Using Simplified
Shell Models . 13 '



ALl

The Taig Quadrilateral Selective Reduced Integration Full Reduced Integration
Taig and Kerr (1964) Kavanagh and Key (1972) ~ With Hourglass Control
: : Kolsoff and Frazier (1978)
n 4 Flannagan and Belytschko (1981)
= | SCKIE RORMULATICNS
g 3 SCHMZEI FCRMILATICNS
(1-n Ja;g VIZLZ ZCQUIVALENT
ETLEMENT STIFFNZISSES
Incompatible Modes
Wilson (1973) Five Independent

Assumed 'Stress Hybrids
Pian and Swnihara (1984)

Taylor and Wilson (1976) Strain Parameters

Figure 2.2 The Evolution of Low-order Continuum-type Elements Towards
Improved Accuracy in Bending Problems’
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change of the global coordinazz cusicm. This formulation is not easily
extended to anisctropic probiz2ms. in which the shear terms may be coupled with
the direct scress comporents. A related approach involves the use of full
reduced integration with the addition of nourglass controi modes wrnich are
designed to enhance bending benavior. Examples include che.formula;ion of
Kosloff and Frazier [8] and the elements advocated by Flannagan and Bely:schko
[9]. These elements lend themselves to very efficient implemehtation and nave
become quite pdpular for certain applications. The original library of
continuum elements implemented in NESSUS/FEM (element Types 3, 7, 10 and i)
are based on a similar formulation. Another early attempt by Wilson [10]
resorted to the addition of two incompatible quadratic "bubble" modes in an
effort to reproduce the quadratic displacement field corresponding to "pure
bendirg." However, when the element assumed the form of an arbitrary
quadrilateral, it was found to behave erratically and failed the patch test.

A cure for the problem Qas prooosed by Taylor and Wilson {11] which is basec
on the evaluation of the "bubble" function derivatives at the centroid of the
element. The resulting element was found to pass the patch test for arbitrary
configuration, and is currently implemented in a number of commercial codes.
However, these elements are us2d primarily for linear elastic analysis, since
it is not readily apparent how the strains associated with the "bubble" moces
should be handled in elastoplastic situations. Recently, Pian and Sumihars
[12] have proposed a new element which exhibits excellent bending behavior
even for somewhati distorted cbnfigurations. The element is an assumed stress
hybrid, based on the use of five independent stress parameters to define the
state of stress at tne interior of the element. The assumed stress approach
offers some problems regarcding the implementation of plasticity algorithms.
This is due to the fact that the most successful plasticity algorithms tc date
have been strain-driven, and not étress-driven. In particular, the
implementation of 2 stress-driven plasticity algorithm (in itself a major
coding task) cannot easily accommodate the perfectly plastic case in the
absence of work-hardening effects. '

The approach pursued at MARC was aimed at the cevelopment of 2 family of
cchtinuum-type elements with ennanced bending benavior and retaining good
nerformance wnen deganeratied o 2 nign aspect ratio. Of course, tnare are
limits as to nhow far one can carry such 3 degeneration. Ffor 2lements o:

isngtn 1 anc thickness t, the Szniinz stifiness is of order 0(
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membrane and- transverse shear stiffness are of order ((t), and the direct
transverse stiffness (change of thickness) is of order 0(12/t). Hence, for
numerical reasons, it coes not appear desirable to degererate these elements
to an aspect ratio t/i ¢ 0.01{ which would cause the loss of more than eight
digits accuracy. This should not present a major problem, since the primary
application of these elements would be for thick shell-type situations, in
which an element aspect ratio £/1 < 0.1 should be adeguzte. The elements were
constructed using an assumed strain formulation. The basic strategy involves
the identification of a set of independent stress modes represanting the
desired element behavior, followed by the construction of a corresponding set
of strain models which, under appropriate conditions (for any isotropic
material or particular orthotropic material orientation), will yield the
desirzble stress modes. This allows the formulation of an element whicn is
based on 2 strain-driven constitutive algorithm, and can be readily
implemented within the existing coce framework. The strain modes are used to
interpolate .the strains within the e€isment and are related to the displacement
gradients by a weak variational form. All assumed strain modes are expressed
in terms of a local element cartesian coordinate system obtained by polar
decomposition of the isoparametric mapping at the centroid of the element.
This strategy not only simplifies the derivation of the assumed strain modes,
but also- is expected to enhance the robustness of the element in distorted
configurations. The stretch tensor obtained in the polar decompositidn is
used for computing scale factors to make the element computation
dimensionless. This was observed to be particularly us2ful for reducing
round-of f for very high element slenderness ratios. Although the cost of
forming the B-métrix for the assumed strain elements can be as high as 2-3
times that of a standard isoparametric element, the increase in cost per
element is freguently offset by the ability to use a much coarssr mssh in
bendiﬁg-dominated problems.

The library of assumed strain elements implementec in NESSUS/FIM incluces
UY-ncde quadrilaterals for plane sirain, plane stress and axlsymmetrid
problems, and an 8-node solic element for modeling three-dimensicna
continua. The current implemertation can be used with eithsr Cthe displacement
or the mixed formulation and supoorts different integrafion ruies £
projéction and residual reccvery. However, due to the uncenventionzl nature

of the eiement formulation, th2 integracion ruie for the 2ismsnt stiffness
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ccmputacion is fixeﬁ. Trese elements can be collapsed into triangless, wedges
and tetrahedra, in accordance with Ine ruiss implementsd for other continuum
elements. » ’

In addition, an-algorithm has besn develcped to allow the nodal
definition of pressure loading on 2D and 3D continuum meshes (se2 Figure
2.3). The aglorithm is based on a nodal assembiy of tributary areas at each
node in such a way that a unigue outward boundary normai vector is defined at
each surface node. These normals define the effective surface orientiation
and the direction of the applied pressure at the node. The basic concept is

depicted in Figure 2.3 and involves the following steps:

1. Apply unit pressures to all faces of each elem?nt.

2. Compute the corresponding nodal loads.

3. Assemble the element force vectors.

4._ The assemble vectors cancel-out at all internal nodes.

5. The actual nodal forces are obtained by multiplying the outward boundary
vector by the negative of the nodal pressure value.

For small deformation problems, this operation is carried out only once,

during the first element assembly loop, and the resulting boundary normals are

‘used to compute consistent pressure loads throughcut the analysis.

In probabilistic finite element prodlems with uncertain geometry and
nodal pressure definition, the boundary normals are recomputed for the
perturted configuration at every geometry perturbation. Hence, if a geometry
perturbation resuits in an increase of the surface area exposed to pressure
loading, the corresgonding increase in equivalent nodal forces is
automatically accounted for in the algorithm. Likewise, in finite deformaticn
broblems using an updated Lagrangian formulation, the recomputation-of the
boundary normals can easily account for the follower pressure 2ffects on tne
applied loading vector.

2.5 Develooment of Deterministic Finite Deformation pigorichms

Tre ability of conduct elastoplastic deterministic finite deformation
analysis using a mixed-iterative formulation was introduced in NZSSUS/¢EM
within the time period covered in this'progress report. The basic formulatio
employs a Lagrangian mesh description, with ths ecuations of motion 2valuated

at the current (deformed) configuration. Often descrived as an "updatad
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Lagrangian" formulation [13], this apcroach offers considerable cempuzaticnal
-simplicity since, by continually upcating the mesh geometry to the current
configuration, all matrix expressions can te made to assume the same fcrm as
in small deformation theory. The only additional.matrices involve deformation
gradients and rotation tensbrs, along with the matrices associated with
follower forces. ' '

The follower force components are evaluated using body force and surface
traction values at the end of the current increment. The follcwing force 4
matrices associated with change of volume or area are symmetric and easily
included in tﬂe stiffness reformulation. However, unsymmetric matrices are
associated with the rotation of follower forces. In keeping with the
philosophy of the mized-iterative approach, any contributions from unsymmetric
matrices are accounted for in the residual load correction term, and recovered
by the iterative process. This avoids all the problems associated with the
introduction of an unsymmetric stiffness matrix. ‘

Using the mixed formulation, concentrated nodal follower forces enjoy the
advantage of having the necessary rotation tensors readily available on a
nodal basis as an integral part of the formulation. These nodal rotation
tensors are easily obtained by poiar decomposition of the nodal deformation
gradients.

The constitutive equations for elastoplastic finite deformation ’
computations are based on tre use of the Green-Naghdi rate of Cauchy stress
and rate of deformation [14]. This rate was chosen for its computational
efficienéy, and its ability to avoid non-physical oscillatory siress response
when used in conjunction with kinematic hardening [15]. The specific rate
form for Cauchy stress used in this implementation can be expressed as

. T .
o7 -5+ oRR -RRG - (2.2)

14

where R is the rotation tensor obtained by polar decomposition of the nodal

deformation gradients. The resulting constitutive equation

-

c+cRR -RRc=Dd ' (2.3)
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where d is the rate of darformaticn tensor. can be transformed using the

" rotation tenscr to the equivaient.form

D.d : N €3

IR 7 YRR
where

. T

0R=«R oR .

D - R'DR

R ]
T

dp = R'dR

For the continuum elements, the constitutive laws are expressed in the
global coordinats system, and the above transformations can be utilized
directly. Thus, the evaluation of the constitutive equation involves
transforming its components from the global to the rotated coordinate system,
with the actual evaluation being form-identical to the small deformation case.

By contrast, the constitutive equation for the shell element is expressad
in terms of a local Cartesian coordinate system, defined by averaging the
normal vectors for all shell elements connected at the node. In finite
deformation computations, the local system is continuously recomputed during
the geometry update process. This results in a nodal coordinate system which
remains normal to the shell surface as the model deforms. Therefore, the
local coordinate system in whnich the constitutive equations are expressed will
rotate with the structure.
| The finite deformation algorithm implemented for the shell element takes
advantage of this fact to avoid additional calculations involving
transformations to the constitutive equation. Tais effgc:ively replaces the
rotation tensor in the equations above with a continuously updated global-to-
local transformation tensor.

A similar transformation was implemented for the beam element.

20



2.6 Enhancements to Databzse Manipulzation

‘The perturbation datazase {ormat implemented in MESSUS provides
considerable flexibility for management perturdation data obtained in tne
course of multiple analyses with MESSUS/FzZM and NESSUS/E21. Ezriier versions
of NESSUS fell short of utilizing cthe full extent of capabilities provided for
in ﬁhe databass design. Tne development of new features for database access
and data management in rec2an: versions of NESSUS/FEM effectively opened up the
use of the datzbase to perform more sophisticated types of analysis.

" The perturbation database resides in a binary (unformatted) direct-access
file, and is structured as a two-way ordered linked list. This type of data
structure allows the insertion, deleticn and replacement of individual entries
without the need to move large blocks of data. It is, therefore, pcssible to
maintain and expand an existing database with results obtained in multiple
runs of NESSUS/FEM. These capabilities are accessed with the use of the
RECORD option, allowing the user to add or replace individual perturbed
solution sets. This obtion makes efficient use of the data structures already
implemented in the perturbation database, and performs updates by relocating
points within the linked list.

An example of the data manipulations performed with the RECORD option is
schematically depicted in Figure 2.4. An initial run of NESSUS/FEM is
performed for three increments of static anélysis with two perturbations c¢n
each of the first two increments. If all data sets are recorded, the
resulting perturbation database will look as shown on the left in the
figure. Further investigztion of these might indicate the lack of 2
satisfactory result (for instance, lack of a converged sclution) for
perturbation 1 of increment @. In addition, it becomes apparent that three
additional random variables should have been included in the analysis for
increment @. Hence, a second run of MESSUS/FEM is performed for increment 9,
recording only the new values for perturbation i {thereby superseding the-
earlier results) and perturbations 3 through 5 (corresgpnding to a
perturbation of each of the three added random variables). Any computations
not needed for the calculation of tne modified or added perturbaticns can be.
skipped on the second run. The perturbation database, ugcatad aiter the

second run, will be structured as shown to the right in Fi
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degree of Tlexibility allows very efficient use of ths pert
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Figure 2.4 -The Perturbation Database is Used to Maintain a Permanent
Record of the Analysis History for a Given Model
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for realistic problems whicn may rsguire several test runs to obtain a2 good
lccal representation of the response sensitivity.

For prociems in which praliminary results indicate that the limit state
iies well heyond trne rangs of the pertufbations used to'de:ermine the response
sensitivity, it would be desirable to provide a way to reformulate the:
perturbation problem at a point closer to the limit state. Thais would allow
the computation of accurate point probability estimates in the tails of the
distribution, even thcugh the response characteristics at the tails may be
consicderably different from what is observed near the means. Tais is possible
with the use of the MOVE option, which fedefinés a new deterministic
(unperturbed) state 2t a point other than the mean (see Figure 2.5).

In a way, the MOVE option represents the probabilistic counterpart of a
well-known deterministic design practice. An experienced engineer will of'ten
choose to base his design on an analysis involving an extreme loading '
combination (worst loading case) acting upon a weak structure (with nominal
material properties somewnat below the mean values). Using a reliability-type
formulation, the location of the "design point" will provide the most likely
combination of rancom variables that will result in the limit state being
exceeded. Based on this information, it is possible to use the MOVE ogtion to
manipulate the random variables in order to reproduce the structure most
likely to exceed a given limit state.

A print-out of the new unperturbed problem'at the redefined deterministic
state is included in the output from NESSUS/FEM. This provides a convenient
way of cnecking for input errors in random variable definitions. In addition,
‘since a complete resclution of the problem is performed at the redefined
deterministic state, the MOVE option also provides a (somewhat expensive) wzy
of checking the results cbtained with the perturtation algorithms.

As indicated above, the perturbation database resides on an unformattied
(binary) direct-access file which cannot be displayed or edited with a text
editor. However, for small problsms, it weculd be desir§ble to be able to
generate a formatted translation which could be displayed at a console or sent
to a line printer. Tnis can be done by using the DECODE utility provided with
MESSUS (see Figure 2.6). Tnis utility.is a2 stand-alone program which provides
a formatted translation of a binary perturbation database generated by
NESSUS/FEM. Tne original binary database file can de regenerated Irom its

formatted translation by using th=2 EMNCODZ utilizy, z_s3 provicad witn
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Figure 2.5 Improved Reliability Estimates are Obtainable by Redefining
the Deterministic State at a Point Away from the Mean
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Figure 2.6 DECODE and ENCODE Utilities Enhance the Portability
' of the Perturbation Database
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NESSUS.' A small loss of accuracy is -incurred in the process, since the
fcrmatted translation only carries five digit accuracy in order tec fit the
"data from the .largest record within one 132 character line. In soxca of the
shorter precision, the formauteﬂ translation files Stlll occupy more memory

than the (more compact) binary files, so that it may not be practical to
obtain formatted translations of very large détabase files.

Unlike the binary direct-access files, whicn have machine dependent
format, the formatted translation can easily be'ported between different
computers. and operating systéms. Hence, the availability of ENCODE and DECODE
utilities on different machines allows the exchange of database files
generated by NESSUS/FEM. With the emergence of smarter network software, such
as NFS, the need to physically move database files between computers may no
'iohger be as important. However, until these smarter networks ccme into
widespread use, the formatted database translation will continue. tc provide a
standard format for the exchange of database files..

2.7 Other Enhancements and Improvements

Several other enhancements and improvements were introduced in NESSUS/FEM
in the course of the past years. These enhancements reflect needs that were
“identified by -exercising NESSUS on a variety of realistic engineering problems
and across a broad spectrum of computing equipment and cperating systems.

Wnat follows is merely a list of some of the most visible enhancements
implemented in this pericd.

Early attempts to use existing finite element meshes for provabilistic
analysis with NESSUS/FEM identified the need to allow for collapsed
configurations of the standard continuum elements. This raised some conflicts
with the nodal strain projection algorithm used in NESSUS, since the use cf
nodal Juadrature requires a well-defined Jaccbian for the isoparametric
mapping at each node. This problem was avoided by allowing the use of row-sum
lumping to form the "lumped volume" matrix used in the strain projection
algorithm. Although the use of row-sum lumging is not &4s accurate as with
nodal quadrature, this strategy allcwed the degeneration of continuum elements
to form triangles, wedges and tetrahedra in orcer to preserve the topology of
existing meshes. Due to its superior performance, the use of nodal quadrature
is still recommended for most regular meshes without collapsad elements.
additional efforts to improve th2 performance of row-sum lumping are planned

for the coming y=2ar.
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The existing forﬁat for the input of anisotropic material properties was
found to be inconvenieht for the input of simple types of/anisotropid
materials wnicn are being investigataed for use in SSME .components. The
materials in question are single-crystallalloys exhibiting cubic. symmetry
(such as PW1480) and amenable to a three-parameter material description.
Furthermore, it was desirable to allow all three parameters to be random,
which could not easily be done using the input format for general
anisotropy. As a result, a special extension to the isotropic material
properties input reader was implemented to allow the specification of a three
random'parameter material model. This feature has been used extensively in
the anaiysis of an SSHME HPEFTP turbine blade model at Rocketdyne.

During the eigenvalue analysis of some structural problems using subspace
iteration, the matrices on the reduce eigenproblem were found to differ by
several orders of magnitude, resulting in a very poorly conditioned problem.
This often resulted in overflow problems during Jacobi iteration on machines
that use a large mantissa with small expcnent (such as the D-float format on
VAX). The problem was cured by using a épectral transformation to improve
conditioning of the problem in the subspace. A better algorithm for selecting
the trail vectors also helpea improve the performance of the algorithm.

The eigenvalue perturbation algorithm currently implemented in NESSUS was
subjected to a very extensive cleanup in order to remove a number of existing
bugs, streamline the code and improve its reliability. In addition, the
convergence criteria used to stop the recursive algorithm have been modified
significantly. If an elastostatic analysis is used to obtain the initial
stresses prior to the dynamic mode extraction, it is now possible to change
the convergence criteria for the eigenvalue problem from the values used in
the static perturbation analysis.

A new option to extract the deformation modes present in the assemble

stiffness matrix is available in MESSUS/FEM. This option involves the
solution of the standard eigenvalue droblem. '
(K-x21)x=0 (2.5)

The resulting eigenvalues represent allcwable cdeformaticen modes for the
assemcle stiffness, and th2 corresponding eigenvaiuves indicate tne strain
o]

energy asscciated witn the moca2. This information is very useful for tre



development of new element formuiations and To obtain stability estimates for
problems involving perturdations to the stiffness matrix. '
A new MONITOR facility was introduced to provide a convenient way to

~

monitor the tehavior of critical response variables in the course of -
iteration. A summary cf the current values for all monitored variables is
printed on the log files at esvery iteratibnt Puring interactive execution,
the log file is displayed on the terminal screen; allowing the user to track
these gquantities while the iteration is in progresé.,

Until recently, the transient dynamics capability using direct
integration of the (deterministic) equations of motion was not active in the
NESSUS code. Following a major cleanUb of this analysis driver performed
under the éuspices of the MHOST project, this option has been reactivated and
tested in NESSUS/FEM. | |

A single-step direct time integration scheme based on the Mewmark-3
family of algorithms is used. Individual schemes within this family of
algorithms may be obtained by sélecting the control parameters for the Newark
algorithm as follows:

Y 8 INTEGRATION SCHEME
1/2 0 Central Explicit
3/2 . 1. Baékwérd Difference
1/2 1/10 Linear Acceleration
3/2 h/5 Galerkin
1)2- 1/12-  Fox-Goodwin
1/2 /4 Average Acceleration

The "average acceleration” scheme is tne system default: with the stress and
strain recovery at the end of each time step. Only Rayleigh-type damping may
be used in this type of analysis. 1In addition tc all the mechanical loadings
available for static analysis, 2 general periodic loading or displacement
constraint can be used, #€ith period and ampiitude both specified on a nocdal
hasis. MNodal displacements. velocity or acceieration may be specified as pzart

of trie initial conditions for the cdynamic protlanm
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Finally, the MENTAT compatibie post-file writer in MESSUS was extended to
include mode snapes for vibration, buckling and deformation mode analysis.
The output for eigenvalues and eigenvectors follcws the former MARC K.1 pos:t-
file format and is fully supportead by the current commercial version of
MENTAT. As with the static problem, only the unperturbed eigenvalue solution
is written to the post-file. .

2.8 Random Vibration for Uncertain Structures

The code used to perform random vibration analysis (PSD) in NESSUS was
the object of extensive clean-up as a first step towards extending the current
capabilities to include uncertain structures as well. A strategy for the
implementation of random vibration analysis of uncertain structures is
curﬁently being laid-out. The proposed implementation is based on the use of
the apbroximate natural frequencies and mode shapes for the perturbed
structure, obtained with the eigenvalue perturbation algerithm, to provide
_ information on the sensitivity of the RMS stress and displacement to small
fluctuations of the random variables.

A more sophisticated capability will involve the introduction of the PSD
level itself as a random variable. The PSD level will have to be nandled as a
special type of random variable since it is irreievant to the perturbed
eigenvalue computation and will onlyAaffec; the computations carried out in
the frequency domain. The introduction of uncertainty in the PSD level may
provide a systematic alternatiQe to the more conservative practice of
constructing an envelope to the PDS function.

2.9 Future Effort: Nonlinear and Transient Probléms

The iterative perturbation approach adopted in NESSUS/FEM appears
suitable for extending the existing formulation to situations involving at
least mild nonlinearities. The basic solution strategy will amount to
tracking multiple perturbed time-histories, using the soluticn to the
unperturbed problem as the iteration preconcitioner for all perturbed problems
at a given time step or lcad increment. Difficulties will arﬁse if some of
the perturbed problems drift too far from the -unperturbed state in the course
of an analysis. The probiem may be aggravated by the presence of constraint
eguations, which arise naturally from the formulation for deviatoric rate-

independent plasticizcy.
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Other problems are expected in situations -invoiving repeated cyclic
ioading, since the response for intermediate perturbaticns is not necessarily
bounded at all times by the response correspondihg to the largest
perturbations. This problem has been observed in works by other researchers
dealing with transient dynamics, in which the variance of the response appears
to vanish at several points in time [16,17]. No solution has been offered feor
this problem: |

Yet another problem involves the emergence of secular terms in the.
response for the perturbed system, which may grow unbounded in time and
invalidate the solution for large times. This pathology is well known to
researchers working on nonlinear oscillations of ccmplex dynamical systems and
there is extensive literature on the subject. This problem has been discussed
by Liu and Belytschko [17],vand appropriate secularity filtering strategies
have been Suggested.

Perhaps the most intractable problem in probabilistic nonlinear mechanics
involves the presence of bifurcations, in whichrvery small perturbations of
the deterministic problem can lead down very different solution paths. With
present finite element technology, these.problems can become extremeiy complex
even for deterministic analysis. However, the problem of detecting the
presence of a nearby bifurcation point represents a much simple problem,

involving the solution of a stochastic eigenvalue problem.
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3.0 NESSUS PROBABILITY ALGORITHM DEVELOPMENT

3.1 Introduction

Tnis chapter summarizes- the probabitity algorithms'developed for. the
NESSUS code. Two methods of pfobabiliiy modeling are to be included. The
first of these is the Fast Probability Integration (FPI) method [1,2]. The
second method is the Monte Carlo method. Both methods use the same structura:
sensitivity data, wnich is generated by NESSUS. Confidence levels will be
estimated for the response variables distributions that are calculated.

The development of the Monte Carlo methods, performed at the University
of Arizona, is completed. & summary of the Monte Carlo methods is included in
Section 3.2. Among the four methods investigated, the Harbitz methcd is
considered the best method, therefore, it will be integrated into the NESSUS
code. , _

. Section 3.3 describes the on-going development of the method for
estimating the probabilistic solution for the entire struccture using limited
perturbation solutions at selected noces.

Section 3.4 discusses a strategy for integrating the FPI and the Mont
Carlo codes. The issue of defining the proper perturbation ranges is
addressed.

Section 3.5 defines a code-structure that extends the NESSUS/PRE
capability from normal to non-normal correlated random variables. Tne
development of the FORTRAN routires for performing the variable
transformations is complete. In the future, minoﬁ modifications of the PRE
and FEM modules will be reguired to integrate the codes.

Section 3.6 describes two enhanced FPI iteration algerithms. One
algorithm is for solving a response vaiue given a specified probability
value. The other algoritnm is for solving a probability value given a
specified response value. &s demonstrated by an example, these algorithms
provide very efficient sclutions. .

Section 3.7 demonstrates, using one of the vaiidation probiems, the
confidence bound estimation procedur2. The procedure is consistent with the
NESSUS/FPI solution algorithms
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3.2 Fast-Monte Carlo Metnhods

Consider the random variable Z as a function of the random vector

g = (K Koy X))

[\

h(X) (3.1)

The distribution of each Xi is known. It is assumed that all Xi are mutually
independent.

A4 fundamental problem of probabilistic mechanics and design is to compute

a_poiﬁt probability,

For example, p‘could represent the probability of exceedance of a deflection
or perhaps the probability of failure.
Another problem is the extension of the first to the construction of a

cumulative distribution function.
F,(z) = P(n(X)<z] (3.3)

Clearly, the two problems are identical, but optimal strategies for analysis
may differ. For example, to construct the CDF, one option would be to obtain
point estimates of F, at selected values of z, then fit a curve through the
points. A second opticn would be to construct an empirical distribution
function from a large sample of Z;. There are a number of Monte Cario
pechniques which can be employed to estimate p and/or F,.
' Monte Carlo traditionally has been considered to be a "last resort"
method for solving a probability or statistics problem because of nigh cost
relative to accuracy of the results. However, in recent times a combination
of the deveiopmeht of new efficient numerical techniqués and new digital
computing hardware have made Monte Carlo more zttractive.

Appendix C presents descriptions of the following Monte Carlo programs

dedicated to probabilistic structural analysis.
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1. "Conventional®™ Monte Carlo: For conventicnal Monte Carlo, a rzandem
sample of X is obtaired. I[n turn, a rancom samplz of Z is computed using
Eq. (3.1).  &n empirical distribution function of Z is constructed.

2. Variance Reduction Using Antithetic Variates: Given a sample of X, a
negatively correlated "mirror image" X' is computed. The variance of

pcint probability estimates is reduced by averaging the estimates-made
by X and K'.

3. Mean Value Method with Stratified Sampling: This method directly
evaluates a multiple integral expression for point probabilities.

4, The Harbitz Method: Th}s is a scheme for reducing the sample space

for X thereby, in theory, producing efficient point probability

estimates.

Results of the performance study are summarized in Figure 3.1 where CYBER
175 CPU time is plotted as a function of probability level 8 and number of
variables, n. It is important to note that 8 is related to the tail

probability level p by~
p = (-3) (3.4)

where ¢ is the standard normal CDF. Computer time for each method depends on
factors other than probability level and number of variables. Tre
distribution type for each factor and the form of the response function
influence computation time. Therefore, the curves of Figure 3.1 must be
interpreted as characterizing the relationships for purposes of comparison.

Several general conclusions can be made regarding the results presented
in Figure 3.1.

1. Fast probability integration (e.g., the Wu/FPI method) is far more
efficient than Monte Carlo. :

2. Variance reduction does not appear to be competitive witn the other
methods.

3. For small numbers of variables, tne mean value and tHarbitz methods are

very efficient with the Harbitz method having a slight edge.

4, Computing time for both the mean value and Harbitz methods increzses
sharply as thne number of variables increases.

5. For small numbers of variables, converntional Monte Carlo is not

efficient. But the increase in computing time increases linearly with
the number of variables. Baczuse these curves are flatter than the mean
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value or Harbitz curves, conventional Monte Carlo actually becomes more
efficient relative to each of these methods above a given n.

ON

Conventlonal Monte Carlo g2t
decreases. Note that Vk 3

¢S

very expensive as the probability level
4 curve is off of the chart.

7. One feature of conventional Monte Carlo is that a full sample of the
response variacle can be generated. Therefore, the entire CDF of the
response variable can be generated. On the other hand, several
probability points have to be computed using the other methods. And the
accuracy will be bpetter for larger probability levels and worse for
smaller p.

In summary, a general conclusion is that the Harbitz method seeems to be
the preferred apprcach. Note, however, as the probability level p gets larger
(and 8 smaller), the Harbitz method approaches conventional Monte Carlo.

3.3 The PPObaDlllSyLC Field Problem

Probabilistic snructura1 ana‘y51s using the NESSUS code reguires
constructing response func*Lon surface for each response variable. Such
response surfaces can be constructed using curve fitting schemes. The NESSUS
probabilistic solution stbategy is to use only low-degree (i.e., first- and
second-degree) polynomial surfaces because higher-degree surfaces are
difficult and impractical to construct using the NESSUS generated response
solutions. For such low-degree surfaces to be useful for generating accurate
probability information, it is necessary to make a good selection of the
response solution points for response surface approximations.

In the current NESSUS technology, the selection of the solution points or
regions is based on the "most probable point" (or design point) concept [2-
4]. The validation studies (see Section 6.0) indicate that the above strategy
works well. However, for the solution to be accurate, the methcd requires, in
addition to the mean-based perturbation, the deterministic re-computation/
correction of the response value at the most probable points. For further
improvements, more perturbations may be required around the most probable
points (see Section 3.6). In general, these most prooable points are
different fof each response variable in the structure. 'For example, the most
probable points for the stress at node 1 may not be the same as for the stress
at node 10. ‘

In probabilistic structural analysis, it may be necessary to generate
probability-based solutions for the entire structure undsr anzlysis. One

reason is that the sub-critical zrezs identified from the conventional
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deterministic solution may become critical, from the probabilistic point of

view, if the zreas are subjected to more uncertainties in loads, materizl

" properties, geometries, etc.).

A useful probabilistic solution, in contrast to the deterministic
solution, is the respcnses (e.g., stresses) at all nodes at selected
probability of excesdance levels. To generate the field soiutions, it may be
extremely time-consuming to perform "full™ NESSUS probabilistic analysis for
"every" response variable because each response variable requires its cwn
perturbation. Therefore, it is important to develop a strategy to obtain

approximate probabilistic response field without having to solve each response

' variable independently.

To solve the above field problem, work has teen initiated to formulate an
estimation strategy based on the most-probable-point-locus concept [4]. A
preliminary solution for the field problem will be discussed in the following
paragraphs. More detailed study of the field problem is in progress. &
computer program has been written to study and test several strategies. The
goal is to investigate strategies and make recommendations for the code
implementation.

As a first approximation, the field's response can be made using the mean
value first order (MVFO) database at the mean solution. This technique may be
used to identify regions of greatest concern (high probability of exceedance)
in the structure. However, high accuracy for the probability of exceedance
throughout the entire field cannot be obtained for highly-nonlinear respense
surfaces using only the MVFO database.

However, if the response variables are statistically correlated within
the regions of concern, it may be possible to predict or estimate the regions'
field response based on a small number of accurate solutions for the
"eritical" response variables. ‘

A sample demonstration was selected to study the response field
problem. The example consisted of a "fiz-free" bar is.subjected to an axial
force. The bar has two elements with Young's modulus E, and E2,
respectively. If we assume that Ey and E5 are mutually independent rancom
variables, the longitudinal defleétions constitute a response field that is
nonlinear in the random variables. Based on a detailed FPI study of this

example, the following preliminary ccnclusions were reached:
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(a) The correlation between any two response variables, measured by the
correlation coefficient (ranging from - 1 tc .+ 1), can be estimated using
the mean-value solutions.

(b) Reasonably good probadbilistic solutions’'can be predicted f{rom the
solution of one response variable to the other, provided that the
response variables are reasonably well-correlated (e g., correlation
coefficient > 0.7 or < -0.7).

(c) The quality of the estimates depend on which response variable is used as
a reference or "master'" variable. This master response will provide the
common computation points for the computations of the master as well as
the other "slave" response variables. Because the selected points are.
the most probable points for the master, naturally the master response
has the highest accuracy. The accuracies of the slaves depends on the
correlation coefficients. In general, the accuracy will decrease as the"
magnitude of the correlation coefficient beccmes smaller. This suggests
that it is important to select a good reference point. In general, a
master may be selected, based on the MVFO solution, as the critical
response (e.g. maximum stress) at a selected prcbability level.

(d) When the correlaticn coefficients become far frcm unity (plus or minds)
between a master and a slave, then a new reference point may be
required. In gen=ral, several reference points may be selected after thne
mean value perturbations.

3.4 The Integrated NESSUS/FPI/Monte Carlo Algorithm
In the NESSUS analysis, the FPI algorithm is being appl ed at two

levels. At the first level, the NESSUS/FPI code generates probabilistic

output using the established response function established based on the NESSUS
database. At this level, NESSUS/FPI is accurate relative to the accuracy of
the response function. At the second level, which is most critical to the
NESSUS accuracy, the FPI algorithm Ai;ects the FEM module to "move" to other
perturbation centers (the most probable points generated from NESSUS/FPI).

The first level is always efficient because the response function is
éxplicitly defined. At the second level, however, finite element solutions
are required to define the response function (i.e., the response function is
implicitly defined), and the computation time becomes dominant.

The NESSUS Monte Carlo algorithm is applied as an alternative to uhe
NESSUS/FPI only at the first level. The major reason is, based on tne result
of the studies of the Monte Carlo methods (Section 3.2), it appears that it is
practically impossible to perform Monte Carlo simulation by actually
generating a "sufficient" number (e.g., thousands or more) of FEM solutions.
The advantage of including a2 Monte Carlo module is that Monte Carlo

simulation has the capability =f providing exact solutions (as the numder of
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samples becomes larger) and involves less potential numerical/convargence
croblems than the MESSUS/FPI algorithm. Therefore, the Monte Carlo module can
be used for independently checking the NESSUS/FPI results.

‘ It -is planned that the Mconte Carlo module will be independent in the
NESSUS system and that this module will be controlled by the PFEM module. The
users will have the options of seiecting the Monte Carlo or the NESSUS/FP!
solution type. _

Because Monte Carlo simulation will not be applied to generate the FEM
solutions, the accuracy of the NESSUS will rely on the FPI algorithm (applied
at the second level). To avoid gross error, a stratsgy is described in the
following paragraphs which suggest that "large" perturbation solutions can be
‘generated to fit a response surface. ‘

In applying the FPI algorithm, there is a possibility that the
established (up to second-degree polynomials) response surface do not
represent very well the actual response surface. Originally, the FPI
algorithm required only good fit of the response surface in the neighborhocd
of the most probable point. In other words, only "small" perturbations are
required. However, it is not impossible that the response surface may require
higher than a second-degree model for its accurate description, or that more
than one local most probable point exists for the surface. Please note that
this is based on theoretical considerations. It has been demonstrated that
FPI provides high accuracy for all the validation problems performed, even
with. only linear surface approximations.

To provide the analysts with more confidence, ''large'" perturbation
solutions éan be generated so that the solution points cover a "wide" range.
If there are no significant differences in the solutions, then there is more
confidence that the solution, based on the lower-order response surface, is
correct. If the results show significant differences, indicating that thne
response surface cannot be modeled adequately by a second-degree surface, then
a more detailed analysis must be considered. & possible sclution is to
generate a higher-degree respons2 surface and then use the Monte Carlo
program. Note that after the reguiar MESSUS analysis, some probability
information is already:available; therefore, the higher-order effect nesds to

be considered only for those significant random variables.
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3.5 MNon-normal Random Variables - NESSUS/PKE

The NESSUS/PRE mccdule was originally designed to solve problems invoiving
- statistically correlated normal rancom variables. The PRE module generates 2
transformation matrix, [T], using the covariances of the ccrrelated variables,

such that
(Y] = [T)(Z] (3.5)
where -

a statistically correlated normal vector, and

=<
n

a vector of un-correlated normal

—
~N

—
1]

The distributional input data requires only mean and standard deviation. The
output of the NESSUS/PRE code includes the [T] matrix, which is required for
the NESSUS/FEM input data. The PRE module has been tested successfully in a
number of validation problems (see Section 6.0). |

For a correlated normal vector of random variables, the NESSUS solution
" procedure is straight-forward mainly because PRE is a totally independent
module. The extension of the correlated normzl model to the correlated non-
normal model is based on a methcdology developed for the PSAM project [2].
The procedure is more involved and requires additional input and subroutines
in the PRE and FEM modules. During the last year, several strategies,
including the use of the MNESSUS/EXPERT, have been investigated. The final
structure has been defined and will be implemented in the next year code.

Let [X] be a vector of correlated, non-normal variables. The input of
the PRE module will be modified to include several distributional types
(lognormal, Weibull, etec.). A subroutiné will be added to tne PRE module to

transform (X] to (Y] using a transformation (2] abobreviated as
z = £(y) : (3.6)

where % and y are the elements of [X) and [Y], respectively. An "equivalent”

covariznce matrix for (Y] will be zenerated and then used to generate {T].
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In the FEM moduls, for a perturbation in z (element of ([Z]), [Y] is
computed using (3.5). &An additicral subroutine will be added to transform 1
to X using (3.6).

3.6 NESSUS Probabilistic Solution iteration Algcrithms .

The basic probabilistic analysis algorithm for.the NESSUS has been
.developed [2] and validated using a number of problems (Section 6.0}. For
constructing the entire cumulative distribution functién (CDF), the algorithm
has proven to be effective. However, the current procedure is not
satisfactory if the analysts, need only one or a few points on the CDF curve.

To optimize the iteration procedure, two algorithms, one for specified
probability levels, and the other for specified response laevels, have been
formulated to be used in the PFEM module. The first algorithm (for user-
'specified probability level) is illustrated in Figure 3.2 using validation
Case '3 (see Section 6.Q - beam natural frequency). The procedure is as

follows:
(a) Select a pfobability level.
(b) Compute the most probable point using the MVFO method.

(c) Recompute the response at the most probable point. (Note: the solution
is called the advanced MVFO, or AMVFQO solution)

(d) Conduct NESSUS perturbation around the most probable point. (Iteration
around the most probable point)

(e) Co to (b) and repeat the process until response value convergs

o=

To implement the above procedure, the NESSUS/FPI code has been modified
to solve the above stzp (b) for any user-specified probability level. The
entire solution requires the PFEM module to interface the FPI and the FEM
modules. It is expected that the solution should converge in a fast rate. In
the present example, an accurate solution is obtained with the AMYt0O method,
i.e., no iteration is required. . '

The second aigorithm {for user-specified response devel) is illustrated
in Figure 3.3 using the same validation case. The procedufé is somewhat
complicated but is highly efficient in minimizing the NESSUS/FEM
computations. The procedure is as follows:

(2) Using the MVFO method, construct CDF curve using tne NESSUS/EFPI code to
get the intercept and the slope at the 50% probabiiity level.
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(b) Select a response value (e.g., frequenby = 320 Hz).

(c) Compute the corresponding po’nt on the MVFO solution curve (i.e., point i
' in Flcure 3.3) and compute the most probable point using the MJ“O method.

(d) Recompute the response at the most probable point (i.e., locaue point 2
© in Figure 3.3).

(e) Use point 2 and the information from step (a) to fit a quadratic curve.
' Use this curve to predict the probability level at the spec&fled response
level (i.e., locate point 3 in Figure 3.3) )

(f) Compute the corresponding MVFO response for point 3 (i.e., find point 4
in Figure 3.3).

(g) Compute the most probable point at point 4 and use this point as a
starting point for iteration. :

- (n) Start iterations about target response value. Iteration stébs when the
probability level converges.

The implementation of the above procedure requires thé use of the PFEM
module to integrate FPI and FEM modules. Because of the quadratic curve
fitting scheme, it is expected that the solution should converge quickly. In
the present example, the curve-fitting solution point (point 3) falls almost
exactly on the AMVFO curve indicating the effectiveness of the duadratic
fit. Note that point 3 in Figure 3.3 requires only mean-perturbation and an
additional FEM deterministic solution.

3.7 Confidence (Error) Bounds Estimation

The NESSUS probability estimation algorithm described in Section 3.5 has

assumed that the statistical distributions of the random variables are

known. When the distributions are not certain because of the limited samples,
the PSAM approach is to model the distribution parameters (mean, m, and
standard deviation, s) as random variables, and then establish the
distribution of the response CDF for specified response values. [2]

_ Consider an input random variable X. m and s are modeled as normally
distributed and logrnormally distributed variables, respgctively. Given a

sample with size n, the COVs (coefficient of variaticn = standard

deviation/mean) for m and s are [2]: Y
Co = C,// n (3.7)
Cg = 1// 2 (n-1) | (3.8)
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‘Where Cx is the COV of the input. random variabie X, Cm and Cs.are the
COVs of m and s, respectively.

The NESSUS/FPI cocde has an op:ion to compute confidence bouhds. The
extra input are Cm and CS for each X. The output are the upper and lower '
bounds that contain 90% and 95% of the probability. The method fer computing
the bounds is a combination of the FPI method and the Monte Carlo4
simulation. More specifically, the response CDF (now becomes a random )
variéble) is computed using FPI method for every randomly generated m and s
sets [2]. - . ‘

A validation problem was solved using validatioh case 5 - Rotating Beam
First Modal Frequency (see Section 6.0). The COV data are listed in Tablie 3.1
where n = 20 was assumed for all five input variables. Figure 3.4 shcws

solutions at three frequencies using the AMVFO method.

Table 3.1

Data for Confidence Bounds Example
(n=20; simulation sample size = 5,000)

- —— - —————— - ———— - - - - — - — - - A " S = = - — - D P = . - -

X m S
Young's Modulus 0.10 0.02236 6.1622
Length 0.05 0.01118 0.1622
Thickness 0.05 0.01118 0.1622
Width 0.05 0.01118 0.1622
Density 0.05 0.01118 0.1622

45
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Figure 3.4 Example of NESSUS Confidence Bounds Estimation
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4.0 NESSUS/EXPERT. SYSTEM CODE DEVELOPMENT

4.1. Summary

4.1.1.VChénze of Approach ‘ ‘

' As stated in last year's annual feport,<the type of knowledge that
must be embodied in NESSUS/EXPERT fits, in a fairly straightforward manner,
the productioh rule knowledge representation technique. This is convenient.
since most expert system building tools support this type of knowledge
representatibn scheme. " The main brob;em, at the sgart of this effort, was the
lack of such tools that could integrate/communicate extensively with a syétem
outside of its own environment. NESSUS/EXPERT requires integration with
FORTRAN, so some time was spent searching for an expert system building tool
written in FORTRAN. Considefation was even given to developing one for this
project. However, due .to the limitations of standard FORTRAN-77, especially
the lack of recursion, the undertaking would not be trivial if a truly useful
tool was to be developed. Thus, the tool called OPS5 was selected because of
its ability to at least access.the Lisp environment, and because it ran on a
DEC VAX. '

Near the end of the 1986 calendar year, DEC began to market a
version of OPSS written in Bliss that could access the non-Lisp environments
on the VAX (including FORTRAN). Since that time, vendors have progressed
towards offering scme tools that can access non-Lisp environments, mainly
because the tool is not written in Lisp, but a more conventional programming
‘language - usually C. One such tool is CLIPS.

As a result of the emergence of such tools, some time at the
beginning of the 1987 calendar year was spent analyzing the effects of
changing ‘tools in the middle of the project. A port from the public domain
version of OPS5 to the DEC OPS5 was made so that the interface to FORTRAN
" could be assessed. At the same time, a re-assessment of NESSUS/EXPERT was
made and its fﬁnctionality Wwas divided into areas that should use rule-based
vs. FORTRAN-based methods of implementation. The division was based not only
on requiréd functionality, but also on efficiency issues with the result being
that the rule-based portion would perform all of the higher-level decision
making and consistency checking between keywords while FORTRAN would do all of
the lower-level checking required on the parameters and data associated with a

single keyword.
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Such a division of capabilities required an_éxtensive ability to
pass information back and fofth between the rule-based portion of the system
and the FORTRAN code. This amount of integration was not handled easily or
efficiently in DEC OPS5, so .CLIPS was examined more closely.

- At the ;amé time, the flow of control and menu interface

implemented in NESSUS/EXPERT were examined in detail to determine their
. validity énd appropriateness. A&s a result of this analysis, it was decided
that certain improvements could be made. The main improvement required soﬁe
redesign of how the menus worked and what choices should show up on them.

| Due to the fact that NESSUS/EXPERT was undergoing a major change
in design, that CLIPS is public domain, portable, and readily accessible from
NASA, and that CLIPS could fairly easily and efficiently handle the
integration issues, it was decided in Maréh 1987 to reimplement NESSUS/EXPERT
in CLIPS and FORTRAN. .Though this design philosophy has required an eztensive
amount of FORTRAN coding, thus slowing dévelopment considerably, it has
created a highly modular, efficient, and robust user interface to the NESSUS
code. _

L. 1.2 The CLIPS Language

CLIPS is a production rule-based, forward chaining, expert system

building tool written in C by a group of individuals at Johnson Space Center
(1]. It was developed to meet the needs of systems like NESSUS/EXPERT wnere
speed and integration issues are key to the success of the system. It is the
only tool we are aware of that can so compietely integrate with other
programming environments, including FORTRAN - the programming environment of
interest in this effort. |

In many ways, CLIPS Eesembles the expert system building tool usec
previously in this effort, OPS5. Both use production rules (IF-THEN
statements) as their primary means of knowledgé representation. Both are
forward chaining. That is, they start by gatnering data and then make
inferences based on this data rather than starting with an inference and
trying to find data about the problem that will support that inference. They
both use the Rete algorithm for efficient encoding and searching of the
production rules in the knowledge base:

In other ways CLIPS differs from OPS5, both in power and
functionality. CLIPS provides a much less powerful way of representing data

about the domain. It works simply on pattern matching sequences while OPS5
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has an actual, though limited, frame representation capability. CLIPS
pérforms conflict resolution using programmer-defined salience facters while
OPS5 provides a very nice, implicit method for doing this. On the other hand,
CLIPS allows a means of completely 'integrating the FORTRAN ccde with the CLIPS
rules. In the end, this functional cépability out-weighed the disadvéntages
with respect to powe"‘ '
4.1.3. The CLLPS/FORTRAV Interface
AAs stated earlier, the division of work between CLIPS and FORTRAN

resulted in separating the higher-level decisions and checks between sets of
keywords from the lower-level checks and verifications of parameters and data
within a single keyword. CLIPS rules were to be used on the former while
FORTRAN routines were to be used to implement the latter. To properly handlie
- each keyword, NESSUS/EXPERT reguires a set of FORTRAN routines, C-interface
routines, and CLIPS rules.

The integration of CLIPS. and FORTRAN can be implemented with -
either CLIPS or FORTRAN as the "main" program. Development of the system so
far has been done with CLIPS as the main program. This arrangement allows for
- CLIPS to be run in interactive mode, thus providing easier access to CLIPS
debugging tools. The main program can easily be changed to FORTRAN if it
becomss desirable to do so. Control .and communication between CLIPS and
FORTRAN is implemented via direct calls to FORTRAN routines or calls to o
interface routines which, in turn, invoke the desired FORTRAN routine. The
latter is necessary only if parameters are to be passea from CLIPS to
FORTRAN. The process of passing parameters to FORTRAN from CLIPS requires the
following steps: '

1. A C interface routine must be written for each FORTRAN routine that is
' called with parameters from CLIPS. These C interface routines are
simple, the length varying according to the number of parameters being

passed. They convert the parameters passed from CLIPS into the C format
and then invoke the desired FORTRAN routine.

2. A line of code must be added to a CLIPS routine called USRFUNCS for each
C and FORTRAN function called. This line is simply a call to a function
called DEFINEFUNCTION with the function name as one of its parameters.

3.v To receive the parameters passed from CLIPS into the FORTRAN routine, the

parameters must be converted to FORTRAN data types via a call to a CLIPS
function called LOADC.
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To create objects in the CLIPS world from within a FORTRAN routine, (i.=s.,
passing parameters from FORTRAN back to CLIPS) the data must first be
COnyerted to a CLIPS data tType and then given to CLIPS.: This is accomplished
via calis to two CLIPS functions, STGRezC and ASSERT.

4.1.3.1 The FORTRAN Side of the Interface

FORTRAN is used to read-in data files or information
provided 5y the user interactively from the keyboard. Based on the keyword
that the~data is associated with, the FORTRAN routines'check for the

: appropriété number and type of.data in each position on each line. Much of
this knowledge was acquired from the MHOST Users' Manual [2]. Approximately
seven FORTRAN routines must be written for each keyword. '

For example, suppose that the user wisnes to input data
associated with the keyword *ELEMENTS. A top-level FORTRAN rcutine is used to
initiate getting the data, either from a file or directly from the user.

Based on where the data is coming from, one of three other routines is then
used to actually read-in the data and check it for consiétency with respect to
the requirements of the keyword in questién. Little checking is required for
‘'system file input because it is assumed to be correct, having been generated
by NESSUS/EXPERT at some previous point. However, user file input or manual
entry would require certain verifications. In the case of #*ELEMENTS, checks
should be made to ensure that the first parameter is a legal element type, and
that the subsequent lines of data start with an integer element number
followed by thne correct number of node numbers for that element type.
Formatting restrictions, such as the maximum number of nodes that can occur on
a single line (15 in the case of *ELEMENTS) is not checked for here. Rather,
the FORTRAN routine that uses this data to create the data deck contains such
knowledge.

Salient features of the data are then asserted by FORTRAN
into the CLIPS environment via an assert routine. Other routines are heedéd
to get information back from CLIPS, to invoke a help file related to the use
of the keyword, and to write the data to a temporary system file
and to a NESSUS-readable data deck.

Thus, FORTRAN is used to do all of the complex type
checking on all data entered into the system relatéd to a single keyword.
CLIPS is not capable of doing certain kinds of type checking, such as integer

vs. real, and is much slower at reading large amounts of data into memory.
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Though coding such routines in FORTRAN requires more time and effort, cnce
~coded the resulting routines are more efficient anc effective in this
situation.

“ 4.1.3.2 The CLIPS Side of the Interface

Though FORTRAN reads all of the data into memory; none of

this information is available to CLIPS without an explicit assertion by the
FCRTRAN code into the CLIPS environment and a set of CLIPS rules to accept the
assertions. Thus, for each keyword there is a2 set of CLIPS rules that takes
‘the data in from FORTRAN and- enters the values into CLIPS data structures.
* This helps CLIPS keep track of what NESSUS/EXPERT does and does not know about
the current problem so far. It also provides the system with the needed
information to continue guiding the session (discussed in Section 4.1.&).
Thus, for example, wnhen data about the element types
through *ELEMENTS are read-in by FORTRAN, FORTRAN asserts into CLIPS only the
total number of nodes for each element type. CLIPS then takes this data and
stores it for use during consistency checking between keywords. Other
information about the elements may need to be brought into CLIPS at a later
time to support certain consistency checking. This will depend on the type of
consistency checking that is required and will have to be determined on &
cése—by—case basis. The goal is to minimize the amount of data that must be
passed into CLIPS since if most of the data ends up getting passed, then all
of it might as well be read-in, thus slowing the system down.
4.1.4 NESSUS/FEM Interface

"The NESSUS/FEM module is a complex finite element code geared
toward sclving problems with probabilistic data uncertainties. The code uses
a newly developed, mixed type formulation, resulting in a new, different
computational technology. In order to make this new technology accessible to
the users unfamiliar with the code and its theoretical foundations, NESSUS/FEM
must be interfaced with an additional code. The role of this new code will be
to simplify the use of NESSUS/FEM and to accumulate knoyledge on the
appropriate usage of thne code for various types of problems.

"The:NESSUS/EXPERT module will serve as an interface to NESSUS/FEM
for deterministic analysis. In the complete probabilistic analysis conducted
with the aid of NESSUS/FPI, a new module (PFEM) will be used. Its role will
be to carry out the algorithms of the probabilistic finite element method and

to assure proper information exchange between NESSUS/FEM and NESSUS/FPI. The
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PFEM module will be discussed in Section 4.1.6. The new design concept of
NESSUS/EXPERT is described in the following subsections. '

4.1.4.1 The Mew Design Concept

The new design concept for the NESSUS/EXPERT system’
centers around the role of problem détabase and uses a structured _
interrogative-interactive mode of operation. The problem database stores all
the information about structural problems to be solved, finite element model
to be used, random variables to be accounted for, as well as the logistical
information about the status of the probiem solution process, i.e., if the.
basic finite element model has been defined, or if any NE3SUS/FEM analyses
have been run, etc. The information saved in a form of various status
indicators, switches and options in the problem database lets NESSUS/EXPERT
‘guide the system user through the solution process by presenéing him/with menu
selections suitable for a given stage of solution process. For .example,
probabilistic descript of a problém is not necessary until the determinsite
part of a problem is completed, consequently, the user is not asked to provide
probabilistic problem description until it is really needed. |

The advantage of this approach lies in the systematic,
orderly way the problem is solved. This leads to simplifications in the way-
the user has to interact with the system (he/she always faces menus that are
relevant to the stage of solution at hand, not those that have-already been
used or those that are not important yet. The new approach markedly
simplifies the process of utilization of accumulated knowledée. The
information aSout suitable problem dependent option and parameter selections
(determined by accumulated experience) can be convéyed to the user at the most
appropriate time, and it can be triggered only as necessary, without
overloading the user with excess information.

| Also, this step-like approach simplifies internal
operations of the system, like model consistency checking, input of user data
or preparation of NESSUS/FEM input decks. In this new structured
interrogative-interactive approach, NESSUS/EXPERT is always in better control
of operations, it does not need to be directed as to what to do next or what
data to expect, but it governs the solution process, with the attendant
decrease of code complexity and the decrease of need for all encompassing
consistency data, parameter and cption checking of totally unstructured

interaction operation, relying only on user input for control of the solution.
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4.1.4.2 An Example Interaction

The prototype version of NESSUﬁ/EKPFRT does not have any
finite element generation facility. It is assumed that the basic model is
normally generated using one of many avallable general purpose finite elemen
‘preprocessors (PATRAN, MENTAT, GIETS,{etc.) and the- gorups of data such as
nodal cobrdinates, element connectivities, bodndary conditions, etc., are
sﬁoéed in eeparate ASCII files. The proess of building NESSUS/FEM input deck
using NESSUS/EXPERT then takes on a form of the following dialog betweent he
suer and the program. - . ' .

| The first choice presented to the user by NESSUS/EXPERT
is that of starting anewejob or resﬁming one of the existing ones, whose names
are listed by the system. If a new job is selected, the user is prompted for
a Joblname.and then for the input of the basic model. The basic model
definition can be input by providing names of files containing descriptions of
nodal coordinates, element connectivities, etec., or by specifying tﬁose
quantities explicitly. This part of the process is performed in interrogative
mode, the system asking specific question and the user providing explicit
information (e.g., file name with coordinates.or a string of nodal
coordinates, etc.). The structural analysis type to be performed is lnout as
part of the basic model description.

As soon as the basic model is defined, the user may input
other elements of the problem description, such as material data, loadings,
additional elements of the model depending on analysis type, solution control
parameters, ete. The mode of the input will be identical as for basic model
data. For every category of the input data, the user will be ihterrogated
only for information relevant for the problem at hand. Also, certain
guidelines regarding the parameter selection will be presented to the user.
The help information will be available onmost menu entries. The "exit/return
to main menu" capability will exist in all themenus of the system, allowing
the user for an orderly completion of the interactive NESSUS/EXPERT session.
The status of the computational model preparation is recorded in the problem
database, giving the user a possibility to resume operation from the same
stage of the process, at which it was stopped earlier.

Once the full computational medel is defined, the
NESSUS/FEM input deck is submitted for execution (in batch mode) and the

session is completed. The results of analysis are accessible to NESSUS/EXPERT
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through PDB file. Upon inspection of the deterministic model results. the
user can introduce modificaticns to the model {for example, to improve
accuracy, correct errors, etc.) or he may proceed to define the proradiliscic
part of the model, and resutmit the modified deck. Thevprocess can ke
repeated until the user is satisfied with the resuits of deterministic and
perturbation analyses, whereupbq a full probabilistic analysis using PFEM
module may be initiated. »

4.1,5. Geometry Perturbation Module

The geometry perturbation module has been developed for generation
of perturbations of node coordinates for a typical turbine blade finite
element model. The module is oriented for processing turbine blade models
built with NESSUS 8-noded solid elements.

4.1.5.1 Perturbation Degrees of Freedom

The perturbation degrees of freedcm have been identified
baéed on fhe vastlﬁractical experience of Rocketdyne in the area of SSME
turbine blade manufacturing. The identified practically impor:tant degrees of
freedom are: volume changes (Figure 4.1) translations. and rotations of parts
of a blade. All the above perturbation degrees of freedom have been
implemented in the module. .

The operation of volume change is performed in tne global
coordinate system (the coordinate system of the finite element model).
Translations and rotations can be performed either in the global ccordinate
system or in any Cartesian local coordinate system specified by the user.

Changes in nodal coorclnates, resulting from operzations
performed upon a model, are accumulated until the user decides to cancel
them. This, combined with the capability of storing coordinates of a
perturbed model at any time of prccessing, gives the user maximum flexibility
in creating different perturbed versions of an original mocel.

4.1.5.2 Numerical Implementation

Perturbations of a finite element model are generated in
[
three major stages:

1. The input of coordinates and connectivities of a medel from NESSUS deck
and the input of model subregion definiticn from the user. The data from
the NESSUS input deck zre cu"rcntlv read in a fixed format (upon
integration with NESSUS/E(?"RT ne data wWill be retrieved from the
problem database). The mcde! subregicn definition tc be provided by the

user consists of the number of rszions in the model, their narmes, and thre
r evary region. :

C.(

n 3

=
A -
v

first and last element aumoe: s
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2. The preparation of the auxziliary geometrical database with such
information as node numbers of every region of the model, numbers of
surface nodes and walls, and numbers of surface walls attached to every
surface node. The operation starts with selecting numbers of nodes
associated with every region. Next, the surface walls of elements are
identified for the entire model. It is done by checking if a wall
belongs to more than one element. If the number of elements ccntaining
the wall is equal to one, it means that the wall lies on surface.’

Later, all surface walls are sorted by the numbers of regions to which
" they belong. At last, the number of surface walls attached to every
surface node is calculated.

3. The user data input and the execution of requested operations (volume
change, translation, rotation, erase changes, save chances)

Actual changes in nodal coordinates are calculated at this stage.

Despite the significant amount of computations required for some of the

perturbations (volume change), the response time of the module is still

in a reasonable range of up to few seconds, even for the models of large

scale (1500 elements, 2500 nodes). This good computational efficiency

has been achieved by a careful design of the auxiliary database and the

use of such entities as element walls and edges in the surface

identification and normal calculation algorithms.

The concept of dynamic storage dimensioning is used in the
entire code, making it easy for the analyst to change maximum dimensions
allowed inside the code, (it requires changing of appropriate parameters in
the main module of the code). The entire code has been written in FORTRAN
7.
4.1.5.3 Mode of Operation

The code is designed to be run interactively. All the

necessary information about required input is given to the user through
prompts.
The volume change operation requires the following input from

the user:
1. region number to which the operation is applied,

2. amount of volume change, measured by the length of a vector normal to the
blade surface (+ volume increase, .- volume decrease),

3. coordinates of two points defining an auxiliary axis (Figure 4.2),used
for defining the surfaces subjected to coordinate changes.
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. the value of the minimum angle allowed between the auxiliary axis and any
of the element normals, (if the angle between an element normal and the
the axis is smaller then the minimum angle, then the nodes cf the element
are not allowed to move in the normal direction). .

The operation of translation requires the following input
from the user:

1. region number to which the operation is applied,

2. coordinate system in which the operation is performed (if a local

coordinate system is selected then the coordinates of three points
defining the system are to be input),

3. the values of translations in X, Y and Z directions of the selected
coordinate system.

Tne operation of rotation requires the following input from

the user:
1. region number to wnich the operation is applied,
2. coordinate system in which the operation is performed (if a local

coordinate system is selected then the coordlnates of threes points
defining the system are to be input,

3. ' the axis number of the coordinate system, abtout which the rotation is to
be performed,

4. the value of the rotation angle (in degrees)

b.1.6 NESSUS/PFEM Module
A The NESSUS/PFEM module has been designed as a batch mode-
program for the Probabilistic Finite Element Method (PFEM). The principal

function of the program is to perform éomplete probabilistic analysis of the
problem using both the NESSUS/FEM and the NESSUS/FPI modules. The function is
accomplished by repeated alternate executions of both modules, accounting for
various types of probabilistic analysis and/or possible numerical problems
‘with perturbation analysis. - The batch mode of operation has been selebted'
because of long run times of NESSUS/EXE module for computational models of
practical size. The input data for the NESSUS/PFEM module is prepared during
an interactive session with NESSUS/EXPERT.
Detailed descriptions of the NESSUS/PFEM module follow.
4.1.6.1 Tyoes of Probabilistic Analvsis

There are two basic types of probabilistic analysis available

in the PFEM module. The first one, named globzl, evaluates the global
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response of a performance function (stress at a point, at various levels of

probability). In other wofds, it gives an overall variation of the

(Y

probability versus the performance function levels, over the range o
.prac;ically attainable performanc function values.

The sécqnd type of analysis is named local, since it is
concerned with more "local” behavibr of the performance function. There are
two kinds of local probabilistic analysis: where the performance function
‘level is éalbulated for a given probaility level, and where the probability
level is calculated_for a épecified value of performance function.

. The global anélyéis is performed in two basic steps. The
first step consists of,globél mean-value-first-order (MVFO) analysis using the
NESSUS/FPI code and the FEM perturbation data. In this step, design peint
coordinates are Calculated at 9 :13 probability levels covering the range of
practical interest (0.00001 < p < 0.99999). In the second step, the
NESSUS/FEM code is used to calculate the performance function values for
design point coofdinates calculated in the first step. It is assumed that the
probability levels corresponding to design points are accurate and tne
performance function values calculated in the second step constitute a final
solution (Figure 4.3). No iteration perturbations are performed at the final
probability performance funciton levels. Practical experience showed that the
improvement of the solution is small in such situations so that' the more
accurate, but also more expensive, iterative approach is used only for local
analyses.

The local analysis for specified probability levai utilizes
the newly developed FPI code capability of calculation of performance functicn
and design point values for a given probability value. The algoritnm for this
type of énalysis starts with MFVO FPI run to determine the design point
coordinates and performance function value for specified péobability level,
The subsequent.recomputations of performance function and perturbation ‘
analysis around the design point in NESSUS/FEM is used to iterate for accurate .
value of performance function (Figure 4.U4).

The local analysis for specified performance function value
is more complex. The first step of the algoritam evaiuates a crude
approximation to the probability level and design point coordinates
corresponding to specified performénce function value, using thne MVFO FPI

run. A more refined approximation to tne probability level and design point
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coordinates is obtained by recalculating the performance function (NESSUS/FEM)
at a previous level of probability and using quadratic interpolation. Once a
gobd approximation to the design point coordinates is found, iterations using
perturbation (FEM) data about that point are used to locate the final solution
(Figure 4.5). | A

In the prototype version of the PFEM mocule only the global
analysis is.currently implemented. '

4.1.6.2 Transfer of Inforﬁation Between FEM and FPI Modules

‘ There is a-significant transfer of information between the
FEM and FPI modules of NESSUS in the process of probailistic analysis. The
NESSUS/FEM module provides the values of performances function: stress, strain,
. displacement frequency, etc., for specified fixed values of random variables
(geometry, material, loading parameters). Also, the FEM module provides
information about success or lack thereof in the solution process, which
information is later used in appropriate corrective actions. The NESSUS/FPI
module provides the values of design point coordinates (values of random
variables) and their corresponding probability levels, along with their
estimated performance function values. _

The above information is transferred between the modules in
form of files. The output from NESSUS/FEM is stored in the perturbation
“database (file PDB). The NESSUS/FPI output is passed to the PFEM mocule
executive through a coded file with extension FPO. All of the files passed
within PFEM have a common first part of filename and are treated as a part of
Problem Database.

4.1.6.3 Interaction with Database

The PFEM module is designed in such a fashion that it
receives very little data directly from the NESSUS/EXPERT code. The data
passed to PFEM is limited to a few control parameters, defining type of
anlaysis, identifying random variables and performance functions, etec. The
bulk of input to PFEM is contained in the Problem Database. The information
stored here is used to assemble both NESSUS/FEM and NESSUS/FPI input decks.
On the other hand, all the intermediate problem data used by PFEM, as well as
the final results, are alsc stored in -the Problem Database. This arrangement
makes it possible for NESSUS/EXPERT to access the status and tne results of

the analysis and present them to the user.
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The interaction of the PFEM moduie with ?roblem Database is
very extensive. The complete description of the finite element model ziong
with random variable definitions are used in PFEM to build various perturbed
variable models for NESSUS/FEM. Results of the FPI analyses, in tarms of
design point coordinates (and corresponding precbabiiity levels) are Storedvin
Problem Database for later reuse in more accurate estimates of performance
function values. Generally, all the information obtained in the course of
analysis that is important from the point of view of further analysis
(essential intermediate resu}ts and experience gathering (computational
process efficiency measures), is saved in the Problem Database for later
access. ' '

4.1.7 NESSUS/FPI Interface
Nothing has been done on this portion of NESSUS/EXPERT to date.
4.2 Current Efforts on NESSUS/EXPERT )
| At the end of FY87, the initial NESSUS/FEM interface in NESSUS/EXPERT was

nearing completion. Another month of effort will result in a prototype
syétem ready for evaluation. The system will know about approximately 60
keywords used to run NESSUS/FEM and will have a small amount of knowledge
acquired through the experience of running NESSUS/FEM. The experiential
knowledge will grow for the duration of the project. This will involve
ﬁaintaining records or experience gained from using NESSUS/FEM and embodying
as much of the experience as possible into CLIPS rules.

After completion of this initial NESSUS/EXPERT for deterministic
analysis, efforts will turn to the deveiopment of the interface for the
probabilistic portion. A basic design concept should be agreed upon before
implementation begins. The plan is to have a completed version of the
probabilistic portion of NESSUS/EXPERT during the third quarter of FY88. The
Sys;ew will then be distributed for evaluation as will be done with the

deterministic portion.
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5.0 NESSUS BOUNDARY ELEMENT CODE DEVELOPMENT
5.1 Summarv

This section describes -the development of a boundary element method (BEM)
formulation for probabilistic stress analysis. The BEM contrasts with domain
methods such as finite element method for linear problems by the fact that the
governing integral equations‘(called the Boundary Integral Equation or BIE)
are expresséd over the béundary of the body [1-3]. The essential feature of
the boundary element method is the availability of singular (fundamental)
solutions of the governing equilibrium equation. In principle, the
probabilistic boundary element formulation requires the solution of stochastic
equilibrium equations, which does not appear to be available for a general
case. The approach used herein is to extract the probabilistic results from
the deterministic solution. '

For problems with body forces such as thermoelastic and transient
loading problems, a direct transformation of the equilibrium equations to
integral equations over the surface of the body is generally not possible. The
inhomogeneous part of the governing equations will appear as a particular
integral over the domain of the body. Further, to obtain the probabilistic
solutions, the deterministic problem is solved repéatedly for each
 perturbation of random variable. Therefore, efficient deterministic BEM
formulations are sought for the current analysis. One of the major features of
the current analysis is that the domain integrals are transformed through
certain approximations such that the resulting BIE is expressed over the
boundary of the domain only.

Further, the probabilistic results are obtained from the deterministic
solutions through perturbation of random variables. Efficient algorithms for
the determination of perturbed solution variables are also discussed.

5.2 Probablistic BEM Formulation

The governing equilibrium equation can be transformed through the use of
the fundamental solution to integral equations over the surface for
homogeneous, elastic, isotropic bodies in the absence of body forces. For
nonlinear and general body force problems, such a surface transformationm, in
general, is not possible. The resulting integral equation will consist of a
particular integral over the domain of nonlinearity or inhomogeneity.
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5.2.1 Governing Equations

Consider the equilibrium of an element of a body under
thermoelastic transient loading conditions. Using D’Alembert’s principle, the
equilibrium equation can be expressed as '

. 011.j+bi—pal=o : ' - : (51)
where, o,, is the stress tensor, b, is the body forces vector, u,, is the
displacement vector, s, is the density, and superior dot indicates derivative

with respect to time. The stresses are related to strains through the
thermoelastic constitutive relationship [4] as

Gii=Diikl(6kl—€:1) - (5.2)

‘where D, is the (temperature dependent) elastic constitutive matrix given in
terms of shear modulus, #, and Poisson’s ratio, v, as

2v | | (5.3)
D= m’éuéu"' /-1(6ik‘5;i+ 6,‘::6):1)

The total strain, e,, and thermal strain, e¢,, are given by

(5.4)

€ =ab,0 | (5.5)

where, a, is the temperature dependent coefficient of thermal expansion, and,
6, is the change in temperature from unstressed state.

Let us define u! such that

e 17 @ ) (5.6)
€= i(ui.i*'“: )
and » _ '
a,=u,-u; , (5.7)
The stress-strain relationship can then be written as
0y=Dixle. (5.8)
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Consider an auxiliary field with homogeneous material properties z , ¥ and
corresponding constitutive matrix D,. . The fundamental solution, u’, due to
unit point force, e, for the field is well known and is evaluated from

D uf j=6e; - : . : (.5-.9)
where 6 is the Dirac delta. Let us define an ‘initial stress’, a;, , as

ol=0l-0, - | ‘ B | (5.10)
where,_ )

05 =Dynly - _ (5.11)

Then equation (5.8) can be expressed as
1

0, =Dl ' A . : (5.12)

g.=a,-u' (5.13)

{ i ok}
and ui is given by

ij

0‘:'=Dijklu;c.l » o (5.14)

Using the relationship (5.12), the'governing equilibrium equation can be
expressed as

Dijx Ty j=-b;+pl, ' (5.15)

Let us define a stress field ¢/ corresponding to displacement field u«/ that
satisfies the inertial part of stresses. i.e.

ol = pi, | (5.16)

and

0l =Dinus, (5.17)

i

The governing equilibrium equation can then be expressed as

or,.H=—b

(5.18)

69



G, =Dl | | - (5.19)

a _ S (5.20)

5.2.2 BIE Formulation

The classical direct boundary integral equation is obtained by
applying divergence theorem to the product of the equilibrium equation (5.18)

and v’ within the domain n as

- | | 5.21
| cii,i.ufd0=—fb‘-.ufdﬂ | (>-21)
n n ’

v

which reduces to

- - - (5.22)
u;+ T“-uidf- Ui,t‘-df= b,-Ui,dQ

r r . n :
where I is the surface of the domain, ¢, and T, are displacement and traction
point force solutions, I, is given by

Po=t -t | (5.23)
e gdp , (5.24)

and n, is the normal vector at the surface.

, The above integral equation (5.22) still contains the domain
integrél of the body force vector. Other than thermal, inertial and
inhomogeneity body forces, which have been taken into account already in the
analysis, the only other body force considered in the present analysis is the
centrifugal loading. The centrifugal body force again can be treated by the
proceduré described earlier. However, the domain intégral due to body forces
with potential such as the centrifugal load can be converted to surface

integrals as described in the next section.
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5.2.3 Bodv Force with Potential

The domain integral due to body forces is given by

(5.25)
B,=[ U,bidQ
n

The body force vector due to the rotation of the body about an axis through
the origin of coordinates with an angular velocity w, can be expressed as

bi=RinXm _ (5.26)
where x. is any point within the domain,

Rim=-pe([kw]éklmwlt : (5.27)
and e, is the permutation tensor.

Further, the fundamental solution can be expressed in terms of Galerkin
vector, G,. as

1 (5.28)
Uij = Gij.kk——z(—l_T)Gik..kj
co= 1 5, V (5.29)
i 8nyu 4 ‘ ’

where r is the distance between source and field points.

- By substituting equations (5,26) and (5.28) into (5.29) and integrating by
parts, we have

&=fPﬂF
r

where P, is given in Appendix D (equation D-1). The transformation procedure

(5.30)

described in this section follows previous works given in [5-7].

5.2.4 Numerical Imvlementétion

The boundary integral equation corresponding to (5.22) at the
surface can be derived by treating the resulting singular integrals
appropriately [1-3]. To solve these equations, the body is divided into
arbitrary boundary elements over which the geometry as well as field variables
are approximated by interpolation functions. Upon the evaluation of the
discretized integrals, the equations can be assembled to form a system of
equations, expressed in matrix form as
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(5.31)

Ut=Tu+b
or
Ut-Tu=Ut-Tu"+b (5.32)
where
ul=ul+ui+uf - ' - (5.33)
10 g ' (5.34)
t 3 -
The solution to the above equations requires knowledge of u! and «. These

terms are evaluated by solving previously defined equations as described in
the following section. '

5.3 Bodv Force Interpolation Algorithm

As described in the previous section, the body forces due to thermal and
transient loadings are transformed to the surface through particular solutions
of the displacement fields of the inhomogeneous equations. The success of the
procedure depends on the feasibility of obtaining particular solutions to the
governing equations.

5.3.1 Thermal Bodv Force Analvsis

A particular solution to u! can be determined by the solutions of
equations (5.5) and (5.6). i.e.,

(5.35)
—é’U,»_ v+u;’.',.) = aéue

Since the solution requires the knowledge of the temperature
field, an assumption is made regarding the temperature distribution. A
convenient way is to represent the temperature field by a function of the form

B(P)=a(P)O(P)=K(P.Qn)8°(Qn) (5-36)

14

where k(P.Q.) is an assumed. function, ¢'Q.) is an unknown coefficient associated
with point Q., and summation is implied over subscript m. A solution for the
displacement is obtained by satisfying equation (5.35) as

u(PY=C2(P.Q.)6°(Qn) (5.37)
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where expressions for X and ¢! are given in Appendix D (equations D-2 & D-3).

The accuracy of the procedure qepends on how well the temperature
field is approximated by equation (5.36). The temperature distribution for the
problemé considered in the current project will have a high thermal gradient
at the surface of -the body. The giobal'approximation described above ﬁay-noc
adequately represent this variation unless a large number of sampling points
are selected near the surface, which makes the procedure inefficient. One way
to enhance the procedure is to use a different scheme for the near surface
temperature analysis. Let the temperature field be decomposed into two parts,

g=0"4+g?

(5.38)

where ¢ is a one-dimensional. field varying exponentially normal to the
surface of the body as

ae(’)=6°e-%? _ (5f39)

In equation (5.39), ¢ is the normal distance (referred to a local coordinate
system constructed at the boundary point) and, L is the distance over which
this exponential temperature variation is assumed to occur. A displacement
field satisfying this conditions can be derived in terms of a displacement
potential, v, as '

1 . -
ul=yp (5.40)
where v is given in Appendix D (equation D-4). The overall displacement
solution is then obtained as

ul=uM ey @ (5.41)

where uf! is obtained from equation (5.35) by replacing 6 by e-o"'.

5.3.2 Temperature Dependent Material Properties Analvsis

The Inhomogeneity arising from temperature dependent material
properties may be analyzed by a similar procedure. A displacement solution
due to material inhomogeneity can be determined from equation (5.14). Assuming
that o, may be interpolated by a generalized function, the corresponding
displacement solution is evaluated as A

ol (PY=K(P.Qn)8:(Qn) (5.42)
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/

w(P)=Gi(P.Qalel(Qn) ©(5.43)

where ¢, is given in Appendix D (equation D-3).

5.3.3 Transient Analysis

Transient problems may also be anal?zed by the above procedure. In
this report we consider free vibration analysis only and a displacement
solution can be determined from equations (5.16) and (5.17); i.e.

pu; . (5.44)

d = -
Dy = -w

where «» is the natural frequency. Representing pu, by a generalized function,
a displacement solution that satisfies the above equation can be determined.

v (P)=p(PYu,(P)=K(P,Q.)0%(Qn)  (5.45)
u(P)=w?GH(P,Q.)0¢(Qn) (5.46)

Using kinematic and constitutive relationship, the corresponding traction
solution can be evaluated as

(P =w?H (P, Qa6 (Qn) - (5.47)

where ¢, and 4§ are given in Appendix D (equation D-6 and D-7). A similar
procedure for problems with constant material density is given in [8,9].

5.3.4 Deterministic Solution Algorithm

The boundary values of displacements and tractions are obtained
by solving equation (5.32) satisfying prescribed boundary loading.
Substituting the particular solutions for displacements and tractions we have

Ut-Tu=Ulw?A%*]-T[(c°¢"+p)+C'¢'+w?c s ]+b (5.48) 7
where the unknown coefficients ¢'. ¢. and ¢‘ are related to temperature, initial
stress, and displacement fields by equations (5.36), (5.42), and (5.45). The
straight forward approach for determining the unknown coefficients is to
choose Q. to coincide with the boundary nodes. Matrices corresponding to these
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equations can be made square By collocating at the same number of points as
the boundary nodes. The equations can then be inverted to obtain the following

relationships:
-8 . e
$'=F'c' ‘ : (5.50)
oy | - 6sY

where £'. £ , and £* are deflned in Appendix D (equations D-8, D-9 and D-10).
The system equation is then reduced to

Ax-f=w?(A%x-f*)+T9+T'a'+b | (5.52)
. where x is the-vector of unknown boundary displacement and tractioms, { is the
vector due to applied mechanical loading, & is the vector due to centrifugal

body forces , and 4. 4‘, ', T' are obtained from matrix manipulation.

Mechanical and Centrifugal Loading Solution Algorithm

For mechanical and rotational'loading cases, equation (5.52) can be
reduced to '

Ax

|r'

=f+b : (5.53)
and the solution to this equation is straightforward.

Thermal loading Solution Algorithm

For thermal loading, equation (5.52) can be reduced to

z’g+z"o". (5.54)

A:

|r<

The initial stress in the above equation can be evaluated from

o€i=(Diikl—Diikl)Eu , ) (5.55)

where

- 6 , : )
€Exi =€~ €y . (5.56)

The displacement gradient can be obtained from the derivatives of equation
(5.22). Since the evaluation of displacement gradients requires complete
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knowledge of boundary displacements and tractions, some form of iterative
procedure is necessary for coupling the solutions of equations (5.54) and
(5.59). '

Free Vibration Solutibﬁ'Algorithm.

"For free vibration analysis, equation (5.52) is reduced to

[d-wzdd]£=g" . | (5.57)

- Using eigenvalue extraction routines, the above equation can be solved.

5.3.5 Perturbation Solution Algorithm

The boundary element formulation and solution procedures described
in the previous sections pertain to deterministic syscéms. The probabilistic
structural response is determined by applying FPI to the sensitivities of
response variables. The evaluation of the sensitivities requiresrepeéted
calculation of response parameters due to the perturbation of random
variables. Since the substantial portion of the computational effort is spent
for these evaluations, an efficient algorithm is essential for the method to
be used as a practical solution tool.

The boundary integral equations derived earlier are for the
unperturbed system. The system equation (5.52) can be expressed as a function
of random variables vector yx. For quasi-static loading, the perturbed system'
equation can be expressed as

d(Ax)-df=db+d(T°0)+d(T's") - (5.58)

Loading Perturbations

The randomness of applied mechanical and centrifugal loading will reduce
equation (5.58) to

Adx=4f+4b (5.59) .
‘ The perturbation solution of the response variable is then obtained by
solving a system of equations with the same matrix as the one in the
determined case. In the presence of thermal loading, equation (5.58) is
redu;ed to

Adx=T"49+T 'Ag’ | (5.60)

and equation (5.55) is reduced to
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dg'=-4DE+(D-D)de - (5.61)

where 4¢ can be determined from the perturbed displacement gradient’equafion
corresponding to (5.22). A '

Geometrv Perturbations

The system equatiohé corresponding to geometric perturbations can be
deduced from equation (5.58) as
Adx=Af+4b+dAx+AT°9+4T'g'+T'dg’ (5.62)

Since the same matrix as-before is solved, the solution can be evaluated
efficiently, provided 4f, 4b, 44, 4I', and 4T' can be computed effectively.

Material Properties Perturbations

- The change in stress due to changes in the material properties can be
conceived as a form of initial stress (¢3). We can define such an initisal
stress as ‘ '

UT:(D;’;H" Sk{)gkl (5.63)

)

where D5, is the constitutive matrix corresponding to the perturbed matarial
properties and '

z = —em . 5.64
€Exi =€~ €Eny G )

A system equation can be formed following the procedures described for
thermal inhomogeneities as

Ax=T"ag™ (5.65)

The perturbed equation for the material properties can be deduced from
the above equation as

Adx=T"Ag™ _ ' ‘ (5.66)

where 4¢™ may be evaluated from appropriate derivatives of equations (5.22)
and constitutive equation (5.63). Again, as with the temperature dependent
material properties solution algorithm, an iterative procedure is necessary.
For homogeneous bodies, the perturbation algorithm for the material properties
may be simplified such that neither interior displacement derivative solution
nor an iterative procedure is necessary.
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5.4 Status and Future Plans

The effort in the reportlng perlod mostly concerned with the theorectical
development of a boundary element formulation for probabilistic stress
analysis. The computer code for general stress analysis including eigenvalue
analysis was developed from BEST3D code. A limited number of simple test
problems were run using this code. The computer program is yet to be developed
for thermal analysis that includes temperature dependent material properties.

A perturbation solution algorithm lS also not ‘incorporated in the computer
- code.

- The next year effort will mostly cover the completion of the programmlng
of the algorithms discussed so far and to continue the development of BEM"
formulation. For the isotropic deterministic case, the BEM formulation is
mostly complete. An efficient way to evaluate perturbed eigenvalue extraction
is yet to be developed. Further, additional investigation is needed for
efficient geometric perturbation analysis. Some of the analyses may be
simplified considerably for homogeneous bodies. An investigation into using a
simplified pfocédure for some specific cases will be completed during the next
year.

Only linear problems have been considered in this report. Once the linear
' analysis is completed, the computer code will be validated using a nuwmber of
sample problems. The code will then be included in the NESSUS framework.
Further, 'a data base consistent with NESSUS/FEM will be developed for
subsequent statistical analysis. Interface for NESSUS/EXPERT will also be

~ developed. »

Even though the BEM formulation developed here is for isotropic
materials, the formulation for most part can be used for anisotropic
materials. However, a closed form solution for the single crystal anisotropic
‘material used in this project is not available. To use the algorithm developed
for the isotropic material to anisotropic case, some form of approximate
solutions needs to be developed. The next year effort will also focus on such
development. In addition, approximate nonlinear modeling strategies will be
investigated. ' A ’
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6.0 NESSUS CODE VALIDATION STUDIES

6.1 Overview of Code Validation Efforts

A plan for validating the NESSUS probabilistic finite element coce was
included in the PSAM First Year Annual Report (Voi. III, Section 4). -The
original plan consisted of nine validatién hroblems. During the last year,
the number of the probiems has increased to fourteen (see Tabie 6.1) to test
other capabilities of the NESSUS code. ' | _ '

Exact solutions, in terms of probability distributions or the prcbability
of'eXCeedance, have been obtained for validation probiems numbers 1 to 7, 9
and 10. NESSUS validations were successfully completed for this problsm set
except for problems 4 and 5. A s@mmary of the validation problems compieted
in FY '87 and the problems to be completed in FY '88 is listed in Table 6.1.
Note that, except for problem 3, problems to Be addressed in the next year are
those which could not be solved using the NESSUS version 2.0. The recently
released NESSUS 2.5 version will be capable of solving problems 4 and 5
(rotating beam and rotating plate). . '

The results for the completed validation studies are presented in the
following sections. More detailed summaries of the validation cases are
documented in Appendix A using a "standard format." The standard format was
designed to include all the required input data and information. In addition
“to validating the code, a new user can use these problems to gain confidence
that he is using the code correctly.

When closed-form probability solutions are not available, exact solutions
were obtained by using Monte Carlo simulation. The "exact" solutions were
éompared with NESSUS results to validate the code as well as the solution
algorithm.

For each problem, several levels of accuracy were obtained by using the
MESSUS code and the FPI algoritam. As a first step, a mean-based perturbation-
database was generated to generate a linear response surface. The result is
called the mean-value-first-order (MVFO) solution. ’

In-the second step, one or several probability levels were selected. For
each prcbability level, the MVFO solution was then improved by replacing the
.center of perturbation (the "deterministic state" in the NESSUS/FEM module) by
the most-probable points (cesign points) generated using thz previously
‘established linear response surface. The replacement of the deterministic

value was accomplished by using the "MOVE" keyword in the NESSUS 2.0 code.
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Table 6.1

© STATUS OF PSAN VALIDATION CASES

ANALYSIS TYPE

CASE DESCRIPTION STATUS - SCAEDULE
1 Cantilever Beaa atic Solution conpleie * Coapiete
' " Corralated loading {Prograzs Report 87-3)
2 Cantilever Plata  Static Solution ccaplete A Conpleté
Corralated loading {(Progress Report 87-10)
3 Cantilever Beaa ' Natural freguency Solution coaplete Cosplete
{Progress Report 87-7)
4 Rotating Beaa Cantrifugal leading Analytical solution coaplete IFY88
+ Stress stiffening {See 2nd Annual Report)
) NESSUS solution raquired
5 Rotating Plate- Centrifugal loading Solution coaplete Coapleté
: + Stress stifiening (Progress Report 88-1) o
& Twisted Cantilever Natural frequency Sclution coaplete Coaplete
Plate {Progress Report §6-1)
-1 Plate Correlated loading Solution coaplete Coaplete
{Hultiple zones) (Progress Report 88-1)
§ Shell Static finalytical solution required Oct. 1597
NESSUS solution requirad
9 Cylindrical Shell Static Solution coeplete Coaplete
{Progress Repert 87-13)
10 Hotched Plate Stress Concentration Soiution coaplete Ccopleted
{Progress Report 87-11}
i1 Shell Buckling Soluticn complete IFYE8
' ' NESSUS solution required
12 Bean Randoa vibratien Analytical solution required = $FYE3
{See baok by ELISHAKCFF) NESSUS soluticn required
13 Cylindrical Shell Randoa vibratian. Analytical solution raquired IF783
Probles same as #12, except  NESSUS solution required
for cylindrical chell, -
(See paper by ELISHAKCFF,
VAN TANTEN and CRANDALL)
14 Plate Randoa pressure fieid ' fnalytical solution required JFYEE

(See paper by DYER)

NESES solution required

~ SMOTE: Problea No. 4,11-14 not colvable using HESSUS versioa 2.0 (July 1987)
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The "new" deterministic soiution was then paired with the "old" MVFO
probability estimates to form the Advanced MVFO (AMVFO) solutions.

The probability estimates were further improved by.using the perturbation
.solutiohs around the updated point. This prccedure is calied the "first
iteration." The solution can be further improved by using additicnzl
iterations until the solution (prbbability level, response value, or most
probable point) converges. However, in all the validation problems studied,
it was found that, from a practical point of view, the first iteration
solutions were sufficiently accurace. In fact, it was found that even the
AMVFO solutions provided good accuracy for most cases. Therefore, additional
 iterations were not conducted. The NESSUS probabilistic analysis algorithm
are described in Refs. [2-4].
| In solving the validation problems, user invoivement was necessary to
integrate the NESSUS/PRE, the NESSUS/FEM and the NESSUS/FPI modules. This
slowed down considerably the solution process. However, based on the
experience gained through the valicdation studies, an automated procedure has
now teing defined to be included in the PFEM module (see Chapter #4.0). It is
anticipated that the user interactions in finding the probability solutions
will be reduced considerably. The validation experience also nas helped to
design potentially more effective iteration algorithms as described in Chapter
3.0.
6.2 Validation Results Completed in FY '87

6.2.1 Static Analvsis of Cantilever Beam (Case 1)

The exact solution for the validation problem 1 was included in
the First Year Annual Report. The problem addressed is a cantilever beam
subjected to static, statistically correlated point loads (see Figure A-1 in
Appendix A). Other random variables include Young's modules, lengtn,
thickness, width, base spring and yield strength. The response function
tested was the tip displacement.

The finite element mod2l consisted of 20 Timoshenko beam elements.
The NESSUS "mezn" solutions of the tip displacement (0.3969 inches) agreed
with the theory (0.4032 inchas) within 1.5 percent. In this problem, the
random variables were correlated. Therefore, the first step reguired that the
NESSUS/PRE module be used to transform tnhe correlated loads to uncorrelated

random variables.
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In solving tnis problem, it was found that the perturbation range
for the length of the beam must be very small to avoid convergence
instability. The perturcations used were 0.001-standarcd deviation fdr the
length, and 0.1 standard deviations for the remaining variables. -

| The probability solution was checked by selecting three points in
the right tail of the distribution (i.e., cumulative prdbability > 50%). Th
~ MVFO, the AMVFO, and the first iterafion solutions are shown in Figure a-2 in
Appendix A. The "exact" distribution shown in the figure was generated using
Monte Carlo simulations with a sample size of 100,000. 4

Because there is a difference between the NESSUS/FEM solution and
the theoretical solution, a "calibrated" or "adjusted" distribution curve was
also established by matching the two (NESSUS and theoretical) solutions'at the
mean solutions. The adjusﬁed'curve provides a more reasonable reference to
judge the accuracy of the NESSUS probabilistic solution.

By comparing the FPI solution with the adjusted solution shown in
Figure V1-3, it can be concluded that the AMVFO and the first iteration
solutions provide excellent probability estimates.

The result of this validation problem also suggests that the
"small" numeriéal’inaccuracy in the finite element solution (1.5% in the
probleh) may result in significant differences in the probability estimates.
These differences may exceed the errors introduced by neglecting the second-
order terms in the FPI algofithm. In other words, the first-order (i.e.,
using the response surface linearized about the design point) FPI method may
be sufficient for practical applications. Nevertheless, the NESSUS coce has_.
the capability of dealing with second-order effect by generating more
perturbation solutions and using quadratic response surfaces.

6.2.2 Static Analysis of Cantilever Plate (Case 2)

This validation problem is similar to case 1 except that the

cantilever beam is changed to cantilever plate. To produce a reasonable
model, the thickness of the beam as well as the magnituge of thne loads were
reduced. The response functions considered are the bending‘stress at the base
and the tip displacement.

The finite element model consisted of 20 shell elements with 42
nodes as shown in Figure A-3 in Appendix 4. The NESSUS "mean'" soiutions were
0.76U48 inches for the displacement and 3657 psi for the stress. Thase values
agreed with theory - 0.7692 inches ard 3600 psi, respectively. The
differences are 0.5% for the displacement and 1.6% for the stress.
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For either the displacement or the stress, the probavilistic
solutions were cnecked by selecting two points in the right tail of the
distribution (i.e., cumulative probability > 50%).

In eolving the oroblem, it was found that Ehe perturbaticn range
for the length and the width of the cantilever plete must be small (0.01
sﬁandard deviations for the length and the width, and 0.1 standard deviations
for the remaining variables) to avoid convergence instability.

The MVFO, the AMVFO, and the first iteration solutions for the
displacement and the stress, respectively, are shown in Figures a-4 and A-5 in
Appendix A. The "exact" solution shown in the figures was generated by
applying‘Monte Carlo simulation (sample size =-100,000) to the theoretical
solutions. . ’

. Because the "small" difference in the stress values between NESSUS
and the theoretical solution resulted in significantly different probability
estimates, a "calibrated" stress distribution curve was established for
judging the FPI solution algorithm. By comparing the NESSUS solutions with
the adjusted solutions, it can be.concluded that the AMVFO and the first
iteration solutions provide excellent probability estimates.

6.2.3 Eigenvalue Analysis of Cantilever Beam (Case 3)

The goal of the validation problem 3 was to validate the NESSUS
eigenvalue solution algorithms. The problem consisted of a cantilever beam.
The response functions of interest were the first three bernding frequencies. in
each of the two lateral directions. Exact CDF solutions are available for
this problem (see PSAM 2nd Annual Report).

The random variables selected were: modulus, density, length,
width and thickness. The mean thickness (0.98 in.) and the mean width (1 in.)
wWwere chosen to be approximately equal to test the ability of the code for
identifying closely spaced eigenvalues.

The finite element model consisted of 20 beam elements (NESSUS
element Type 98). The NESSUS "mean" solutions of the Qirst six vibration
modes were found to be in good agreement with the theory (neglecting the
effects of rotary inertia and shearing deformations), with differences ranging
from 0.2% to 2.2%. The accuracy of the perturbation results was judged by
computing the sensitivities of the fregquencies with respect to the perturbed
random variabies. "It was found that the maximum error in sensitivities was
6.3% (for width perturbation}. A summary of the NESSUS perturpation anzlysis
is given in Table A-1 of Appendix A.
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In solving the problem, it was found that the perturbation rangs2

 for the length of the beam must de very small (0.001 standard deviation for

" the length and 0.1 standard deviation for the remaining variables) to avoid

convergence instability. ' ‘
Probability analysis results were generated for the first-mode’_

solution only. However,‘the‘resulis for other modes are expected to have the

similar accuracy based on tne fact that the NESSUS génerated sehsitivities are

accurate. Figure A-7 in Appendix A shows excellent agreement between th

exact and the NESSUS solutions.

6.2.4 Eigenvalue Analysis of Rotating Beam (Case 5)

-

Validation problem 5 considers a rotating beam as illustrated in
Figure A-8. There are five random variables: mass density, length, Young's
modulus,.thickness‘and widtﬁ. Tnis problem tests the centrifugal loading and
stress stiffening capabilities in the NESSUS beam element. The response
functions consider the tip axial displacement and the first bending
frequency. The approximate frequency solution was derived by assuming a
bending mode shape. a _

In the original test plan,'the beam was fixed at the center of
rotation. To represent a turbine blade configuration more closely, the inner
radius (measured from the center of rotation to the "fixed" end of the beam)
wés_defined to be 4.237 inchnes. Analytical solutions were revised and used te
generate exact solutions using Monte Carlo simulation (sample size 500,000).

In solving the problem, it was found that the perturbation ranges
for the length of the beam must be very "small" (0.001 standard deviation for
the length) to obtain the correct perturbation soluticn. When the
perturbation range was 1.0 standard deviation, there was no solution
(convergence instability problem) and when the range was 0.1 standard
deviation the generated perturbation result was incorrect, the freguency
increased as the length increased. This perturbétion problem is being
investigated. All the key paramsters for the eigenvalue perturbation are
included in Appendix A for further testing. -

Using the "small" perturbation range for the length, the
probability analysis results were generated. Figures A-9 and A-10 in Appendix
A show very good agreement between the "adjusted exact"” solutions and the
NESSUS AMVFQ solutioms.
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6.2.5 Eigenvalue Anzlvsis of Twisted Plate (Case 6)

Tne problém definitions and tine solution are summarized in
" Appendix A. The geometry of the twisted plate was selected the same way as
one of the test samples dnscriﬁé in- the paper by Macbain, Kielb and- Le‘ss¢
entitled, "Vlbrat;ons of Twi sged Cantilever Plates - Experimental
Investigation." The selected responae functions were the first bending anc the
first torSLOn ;requency _

A total of 192 shell elements (Type 75 - fcur node shell) were
used. The deterministic NESSUS solutions for the selected freouenCLe agreed
well with the experlmental results (about 4% dlfference).: However, because
the general theoretical solution for the twisted plate is unavailable for
bending, torsion and mixed vibration modes, the validation of the
probabilisﬁic solution isvonly partially completed.

The "exact" solution for the first bending mode was based on the
flat plate solution. For the selécted geometry, this solution is reasonable
based on the experimental.resulﬁs which suggests that the analytical solution
can be used to prédict, Wwith good accuracy, the frequencies for different
thicknesses. The pfobabilistic analysis solution using the advanced mean-
value-first-order method (AMVFO) as shown in Figure A-13 agrees very well with
the calibrated exact solution (adjusted so that tﬁe mean value FEM solution
equals the experimental data). For the torsional mode, it was found that the
flat plate solution cannot be used reliably to predict the results of the
experiment. However, the probabilistic solution was obtained (Figure A-14)
and can be used to compare with the theoretical solution should it become
available. -

6.2.6 Static Analysis Flat Plate (Case 7)

' The problem definitions and the solution are summarized in
Appendix A. Tne special feature of this problem is fhat the loads are applied
to multiple "zones" as illustrated in Figure A-15. In each zone, the loads
are either independent, partially correlated, or fully gorrelated.

The MVFO,'AMVFO, and the first iteration solutions for the

displacement are shown in Figure A-16 in Appendix A. The "exact" solution

shown in the figure was generated by applying the Monte Carlo simulations
(sample size = 500,000) to the tneoretical solutions.
An adjusted exact stress distribution curve was establisked for

jucging the accurzcy of the NE:SUS uti 3y comparing the NESSUS
ging K p g
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solutions with the adjusted solutions, it can be concluded that the &MVEO anc
the first iteration solutions provide excellent probability estimates.

..6.2.7 Static Analvsis of Cvlindrical Shell (Case 9)

) This problém'is‘a cylindrical shell subjected to axisymmetric ring
loéds{ Seveﬁ random variables consisting of Yodng’s modulus, inside radius,
and five correlated lcads were selected. The fiﬁité element used was NESSUS
element Type 153 - a four-node assumed strain éxisymmetric‘element. The
finite element model Had a total of 50 elements, ancd the element mesh is shown
in Figure A-17. - - _

| The "exzact" pfobabilistic solution was solved by using Monte Carlo
simulation (sample size 500,000) with the theoretical solution taken from
Timoshenko's "Theory of Plates and Shells." The difference between the
deterministic (based on mean values) NESSUS and Timoshenko solution waé 2.2 -
percent for radial displacement under the load. ‘

Validation results for both the NESSUS/FEM code anc the
probabilistic analysis algorithm (FPI) were obtained (see Figures 4-18 and A-
19). Note that the validation of the NESSUS/FEM code was based cn the FEM
solution,'and the validation of the FPI algorithm was based on the Timoshenko
solution. The probabilistic analysis procedure, however, is identical for
both solutions.

The perturbation range was chosen as 0.1 standard deviation for
each random variable. It was found that the.NESSUS/FEM solution required very
tight convergence limits for generating accurate Young's modulus seﬁsitivity
data. Also, it was found that this convergence problem can be solvec by
increasing the perturbation range to 0.5 standard.deviations.

Figure A-18 and Figure A-19 present the MVFO and the AMVEO
solutions. If required, accuracy can be improved by applying the iteration
procedure. However, Figure A-19 indicates that the AMVFO solution is
sufficiently accurate for this oroblem. Therefore, no iteration solution was
obtained for NESSUS/FEM. : . ’

For the NESSUS/FEM solution (Figure A-18), a calibrated "exact"
solution was again used to compare with the NESSUS/FEM solution. rigure A-19
shows that NESSUS solutions and adjusted solutions are very close, thus, |

indicating that the AMVFO solution provides very gcod probability estimates.
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6.2.8 Analvsis for Stress Concentration Factor (Case 10)

The response function considered was the maximum stress at the
notch of an axially loaded sheet in Figure A4-201. Tﬁe_radius of the notch is
defined as the random vériable which has a lognormal or truricated-normal
distribution. The problem definitions and the solutions are summarized in
Appendix A. The radius is not a standard input in NESSUS/FEM, however, this
validation case shows tﬁat the user can define a geometry barameter as a
random variable by providing proper perturbed coordinate data in the
NESSUS/FEM random variables setting. - ‘

Because the response is a function of one random vériable, it can
be shown that,. theoretically, the advanced MVFO mefhod should yield the exact
CDF soluticn. Therefore, the difference between the NESSUS solution and the
exact solution (Figure A4-21) is due to the error in the finite element
solution. However, the error is small (about 1% in stress). Note that, for
the case where the radius has a truncated distribution, the resulting NESSUS
prcbability.distribution is also truncated (Figure A-22), as expected.

6.3 Validation Plans for FY '83
6.3.1 Summary of FY '88 Effort
The validation cases planned are listed in Table 6.1. The

emphasis will be on dynamic problems and response to random loading.
Descriptions of the planned validation problems follow.

6.3.2 Eigenvalue Analysis of Rotating Beam (Case 4)

Validation case I is the same as case 5 except that the finite
elements are Timoshenko beam elements.
6.3.3 Static Analvsis of Shell (Case 8)

Validation case 8 is a static problem. The main goal is te
validate the general two-dimensional shell (non-azisymmetric) element in the
NESSUS library. .

6.3.4 Buckling Analysis of Cvlindrical Shell (Case 11)

The random variables will be shell thickness and the appiied
pressure. Tais problem has been solved using the "move" option. Hcwever, the
solution using the NESSUS perturbation scheme has not been obtained using the
NESSUS 2.0 code.

6.3.5 Random Vibraticn Analysis of Beam (Czse 12)

Tnis problem was described in detail in [1]. A concentrated

random loading defined using a power spectral density function is zppiied tc a
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simply-supported beam. The response of intersst is the displacement. and
approximate solutions for zhe mezn znd standard deviation of the response ars

available.

'6.3.6 Random Vibration fnalysis of Cylindrical Shell (Cases i3)
This problem is similar to case 11. The structure is a
cylindrical shell subjected to a rancdom uniform ring loading at a section of
the shell [5].

6.3.7 Random Pressure Loads on Plate (Case 14)

The goal of this validation case is to validate NESSUS' capability
to solve random pressure field problems. In this validation case, a plate is

subjected to a random pressure f{ield (6].
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7.0 NESSUS CODE VERIFICATION STUDY

7.1 Scope of Verification Problems

The:purpose of the verification efforts is to apply the Probasilistic
Structural Analysis Methods (PSAM) to the anélysis of actual typical aerospace
prépulsion system components. Four components, typicaliof the hardware found

in rocket propulsion engine systems have been chosen for this .application.

>They are turbine blade, high pressure duct, LOX post and transfer tube

liner. These éomponents are subject to environments with many'random
variables. Detailed discussioﬁ of the énvironments, failure modes and the
deterministic analysis techniques were reported as part of the first annuai
repdrt. ‘

A wide range of probabilistic spructﬁral analysis tools will be or have
al}eady been implemented in the NESSUS/FEM code. The verification studies have
been tailored such that different areas of structural mechanics are emphasized
on each of the components. This has been done consistant with the primary
design requirement for each component.

. The turbine blade analysis concentrates on linear static and modal
frequency extraction analysis. The duct application emphasizes the random
vibration capabilities within the linear dynamics domain. The LOX post
application involves the use of nonlinear material analysis. The transfer
tube liner application involves material and geometric nonlinear analySis. All
the efforts on the above components analyse various response variables in the
probabilistic domain. _

Initial verification efforts concentrated on the accuracy, robustness,
and efficiency of the methodologies implemented in the NESSUS/FEM code.
Several test cases were run using NESSUS/FEM and the results were compared
with results from commercial codes such as ANSYS. The initial studies pointed
the way to improvements in user interface, analysis tools, and element
formulation. Some of the details of these studies can be found in the earlier
annual and monthly reports. '

7.2 Turbine Blade Random Variables

A high performance, high pressure.fuel turbopump second stage blade was
considered for this study. The blade is made of single crystal PW1480

material which has directional properties. The following variables have been
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identified as random and will be considered for the probabilistic linear

static analysis.

1. Material axis orientation

2. Siﬁgle crystal material elastic cohsﬁants
3.  Geometry

4. Centrifugal load

5. Température load

6. Pressure load

The initial study considering the first three items is reported herein. Thre
random load variables will be included in the subsequent effort; the
contribution of loading can be analysed by adding the NESSUS/FEM results to
the existing database." : -

Statistical data for material axis orientation were obtained from a set
of approximately one hundred blades. For these single crystal blades the
primary material axis was controlled but not the secondary axis orientation.
The statistical analysis of the data indicated a standard deviation of 3.387
degrees for the primary axis orientation. Further, there was no correlation
observed between the primary and secondary axis data. The new blades that will
be manufactured and tested will have both the primary and secondary material
axis controlled. This study considers the material axis orientations, both
primary and secondary, as independent random variables each having a standard
deviation similar to that observed in the set of one hundred blades discussed
above. Analysis of data from a small sample of blades where primary and
secondary axes were controlled indicate similar standard deviations. For the
burposes of this study, a normal distribution was assumed.

The elastic material constants were assumed to be functions of
temperature and were introduced Ehrough the use of user subroutines in
NESSUS/FEM. The material propertiés used is reported im the Table 7.1. The
variations in elastic constants in single crystal materials is considered to
be small. A coefficient of variation of 0.025 was used for all the elastic
constants; The standard deviation was assumed to be the same at all

temperatures.
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Table 7.1

Material Properties for the Turbine Blade Model

- - - = - - A - — TP > = W - —— . T D = - - — S R . . - —— S W W W G T W W - e - — - W -

TEMP £ NU G ALPHA
RANKINE PSI PSI INCH/INCH/R
60 19.9586  0.376. © 20.50E6 2.30E-6

360 18.82E6 . 0.382 19.30E6 3.80E-6

530 18.38E6-  0.386 18.63E6 4.65E-6

660  17.61E6  0.389  18.00E6 5.29E-6
1860 14,7986 - 0.395 15.27E6 7.76E-6

2060 13.91E6  0.401 14.60E6 8.07E-6

- - — - —— - — - ——— - - - — - - ———— - - - . = =- . - — - - -

Mass density = 0.805E-3 1bf.sec’/in."

The nature of the geometrical variations in a turbine blade shape is a
function of the manufacturing methods. Procedures have been implemented in

the NESSUS/EXPERT system to introduce many types of geometric perturbations to

' the finite element model. These include uniform volume increase or decrease,

geometrical translation and/or rotations aboqt some arbitrary set of axes.

For cast and then machined blades such as the one being analysed in this
study, actual measured data indicate that the majcrity of geometrical
differences from blade to blade occur as rigid body shift and/or rotation
about the stacking axis. Thus, geometrical perturbations as rigid body shifts
of lean, tilt and twist angles have been introduced in this study. That is,
the relative change of the center of mass (CG) with Eeferenée to stacking axis
is more critical to stress analysis than the minor profile variation from
blade to blade. Consequently, the lean, tilt, and twist angles have been
treated as random variables (Figure 7.1). The data from a similar set of LOX
blades was used to determine the standard deviations of these geometric

angles. These three geometric angles were converted, through a preprocessor,

into equivalent nodal coordinates and were then input to NESSUS.

In summary, a total of nine random variables were introduced in this
first set of verification study. They are listed in Table 7.2. The study
will be extended in the next phase to include the.load random variables of
speed; pressure and centfrifugal load.
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Table 7.2

Random Variable Data for Blade Verification Study

Random  Description ‘Mean Value Std. Deviation  Distribution
Variable ' ’
Number
1T Mat. orien. +0.05236 (rad) 0.067544(rad) Normal
Theta Z _ A '
2 Mat. orien. -0.034907(rad) 0.06754L(rad) ~ Normal
' Theta Y
3 ‘Mat. orien. ~ +0.082766(rac) 0.0675k4(rad) Normal
' Theta X ’
y - E - Temp.Dependent 0.45G96E61bs/sqg.inch Normal
5 NU Temp.Dependent 0.00965 ~ Normal
6 G Temp.Dependent 0.46575E6lbs/sq.inch Normal
7 Geom.Lean 0.0 (degree) 0.1L (deg) © Normal
8 Geom.Tilt 0.0 (degree) 0.14 (deg) Normal
9 Geom.Twist 0.0 (degree) 0.30 (deg) Normal

- —— - ———— - - —— " = " - ——— —— > WD =P WP > W WP - A = ———— - P " " - " " = = -

7.3 Turbiné Blade Verification Studv Results A

The finite element model used in this study is shown in Figure 7.2. The
blade is subjected to complex pressure and temperature profiles shown in
Figure 7.3 and Figure 7.4, respectively.

The probabilistic analysis results, considering the nine random variables
discussed earlier, are presented below. The mean-value, first-order (MVFO)
solution consists of cne deterministic analysis (at the mean value state)
followed by nine perturbation analyses, one for each random variable. = The
perturbation setting of 0.1 times the standard deviatidn was used to compute
the gradients near the mean values. A NESSUS/POST FORTRAN interface program
is available that will convert the geometry, displacements, stresses and -
strains availzble in the perturbation database into PATRAMN readable, neutral
Vand results files. The NESSUS/FPI module was modified to write the FPI
results data into a PATRAN readable results file. Further, the NESSUS/FPI
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module was modified to process the entire model (2519 nodes) for a given
response variable for the mean-value, first-order method. The results are
presented in the form of grapnical contour plots. These graphical plots aid in
an effective interpretation of deterministic, perturbation as well as
probabilistic analysis results.

Effective stress is considered as one the important stress response
variables. The mean value of the effective stress for the entire model is
shown in Figure 7.5. This particular blade, because of the coolant flow from
the disk, has steep thermal gradients at the trailing edge of the shank root
and at the shank - platform trailing edge intersection (Figure 7.4). Further,
the trailing edge of the airfoil root has a high critical effective stress.
Three nodes at their critical locations (node 2470, node 2518 and node 817)
(Figure 7.4) were chosen for additional study using the advanced mean-valiue
first-order method (ADMVFO), in‘which the design points are shifted.

Based on the MVFO method, the standard deviation and coefficient of
variation for the entire finite element model were calculated for the
effective stress and are shown in Figure 7.6 and Figure 7.7. Some of the
larger coefficient of variations occurred in the lower stress regions away
from the critical areas and inside the blade. . The inaccuracy of the nodal
stresses computed using the displacement approach near the free edges is also
noted.

One of the important results of the NESSUS/FPI program is the relative
sensitivity information of each random variable among all the random variables
considered in that particular analysis. This information, called the
sensitivity factor, can be plotted on the model for each random variable as
shown in Figure 7.8 through Figure 7.16. This sensitivity factor, more
appropriately called the probabilistic sensitivity factor, is a combination of
physical sensitivity and uncertainty of the random variable measured by the
standard deviation. In other words, a random variable with high physical
sensitivity but with low standard deviation will have a low probabilistic
sensitivity and vice-versa. This provides valuable information regarding the
importance of each random variable for the response variable being
considered. It might also be noted that the influence of the random variables
differs in various regions of the blade.

In addition to the sensitivity information using tnhe NESSUS/FPI and MVYFO

methods, one can map the probability of exceedence for the response variable
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for many different levels with one single run of NESSUS/FPI. This is
illustrated in Figure 7.17 through 7.19 where the probability of exceedence of
effective stress is plotted. This can be used to quickly identify critical
areas of high stress and identify probable nonlinear maﬁerial benavior
regions.

After initial processing of the entire model for the =ffective stress,
three nodes in the critical regions were selected for further processing.
They are node 2470 and node 2518 in the shank root region and node 817 in the
airfoil root region (Figure 7.4). The cumulative probability distribution
functions based on MVFO method are shown in Figure 7.20 through Figure 7.22.

The probabilities for the effective stress are also represented in a
different form in Figure 7.23 through Figure 7.25. For the advanced mean-
value, first-order method, the finite element analysis was again run
corresponding to three different levels of probability for the response
variable: 1-sigma, 2-sigma, and 3-sigma from the mean. For each level, the
deterministic solution was moved to the design point as calculated by
NESSUS/FPI. The NESSUS/FPI was again used to successfully process this new
deterministic data at the respective design points but using old perturbation
data obtained around the mean values. The results are shown in Figure 7.23
through Figure 7.25 under the legend "ADMVFO" method. It is seen that for the
nodes 2518 and 2470, the difference between the two methods is rather small
indicating the linearity of the response function. However, at node 817, the
differences between the two methods were significant enough to further process
the results. At thé 3-sigma level of the design point, perturbations were
again calculated at node 817 for the effective stress and the new
probabilities obtained is reported in Figure 7.25 as ADMVFO with new
perturbations. .

Next, the results of radial displacement (x-component) response variable
are presented. Tnhe mean value of the response varizble is presented in the
form of contour plots Figure 7.26. The standard deviation of the radial
displacement is displayed in the form of contour plots shown in Figure 7.27.
Though the magnitudes of the standard deviations are small, the trailing edge
of the airfoil shows the lafgest deviation (Figure 7.27). Sensitivity factors
of thé radial displacement to the random variabies considered are shown in the
form of contour plots in Figure 7.28 through Figure 7.36. Tne sensitivities

point out that the radial probabilistic displacement at the trailing edge of
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the airfoil is primarily affected by the elastic modulus and the primary
material axes orientation random variables.

‘A node having the maximum radial tip displacement (node 14) was chosan
for further processing. . The cumulative distribution function for the tip
displacement based"onfthe MVFO method is shown in Figure 7.37. The | _
cumulaﬁive 'probabilities are plotted in a different fofm in Figure 7.38. The

response variable was further processed using advanced fast probability method

in which the design points were successively moved to -1 sigma, -2 sigma, and

-3 sigma values. NESSUS/FPI was used again to calculate the new probabilities
but with old perturbation data. The results are reported in Figure 7.38 as
the advanced mean-value, first-order method. Further comparison between the

resuits for the blade verification analysis and validation cases will be mace

.in the future.

7.4 NESSUS/FEM and NESSUS/FPI Computational Experience

The NESSUS/FEM code has been executed in a variety of computers during

the verification, validation and check out phases. As computational cost is
of much interest to the end user some of the computational statistics are
reported in Table 7.3. The details of the blade finite element model used in

the verification efforts are shown in Figure 7.2.
Table 7.3

Blade Verification Study Run Time Statistics

- . - - - — ———— - ——— - “> — v W n A . . - Am S Wh = W . e e = e e e e

CRAY XMP1-4 IBM 3090 - CDC 990 CDC 860 ALLIANT FX-8 1-CU
CGos . MvS NOS-VE NOS-VE UNIX
A £/B A/B B A
185 280/364 370/460 ) 2890 2uu5
A = Vectorized B = Non-Vectorized

NESSUS/EPI 2519 NODES - MVFO METHOD - 330 SECS (Cdb990 NOS-VE)

It has been observed that, for this verification problem, the
computational solution times for element formulation, equation soiution and
stress recovery phases in MESSUS are comparable to the commercial codes such

as ANSYS. However, the band width optimizer module is inefficient and takes
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an inordinate percentage of the total solution time. For the case of blace
verification, nearly 40% of the computational time for the deterministic
analysis was spent dn bandwidth optimization modules. Without specifically
tuning tne FORTRAN code for any specific compiler on'a‘particulap machine, a
20% to 25% increase in computational speed is obtained by vectorizing. For
the blade verification problem, ezch pérturbation sclution took about two to
three iterations to converge. Computation time for each converged
perturbation solution was approximately 50% of the corresponding deterministic
solution. Improvements in this ratio can be expected when the node optimizer
module is improved.

While all the verification studies conducted so far used the strict
isoparametric Type 7 elements, the newly developed element Type 154 was also
exercised on the blade verification model for selected cases. The results
indicated for the Type 154 element the stiffness formulation times were
approximately 2 times that of element Type 7. The stress recovery and
perturbation iteration phases were approximatly 2.5 times more time-consuming
compared to'element Type 7. Wnile element Type 154 provided improved results,
improvements in the computational speed for Type 154 modules is recommended.
As part of the preliminary verification process, the mixed iteration technique
was also exercised. It was found that a combination .of mixed iteration and
multiple perturbation solutions for the size of the blade verification problem
was considered excessive CPU time-consuming and, therefoﬁe, was not used. Thne
standard displécement solution was used throughout the verification scudieé.

Minor modifications to the NESSUS/FPI code allowed the processing of all
nodes in the verification model for a given response variable for the MVFO
method.A The cost of the solution which allows to process the entire model
using MVFO method is equivalent to a single deterministic FEM solution. Based
on the current experience for the size of models considered under tne bladce
verification study, it is unrealistic to expect to process the entire model
using the ADMVFO method for different probability levels. This is because of
the continuous shift of the design points to obtain new deterministic
solutions and the new gradients around the design point for each probability
level and node point. However, new techniques and strategies using iterative
solutions to obtain values corresponding to new design points might be worth
pursuing to reduce the computational cost. It is feasible now tc process

selected critical nodes using ADMVEO method for many proobability levels.
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7.5 Fiscal Year 1983 Effor:

Blade verification s:udies'w;ll continue during FY 88. The loac
variables of pressure, Eemperature and speed will be treated as rancem. The
method of treatment of these load variables for the blade has been obtained
from the-compésite load spédtra contract. The perturbation results frqm'the
load variables will be added to the existing database to reanalyze the
response variable presented in this report.

Initial verification studies éonddcted on a simplistic model pointed out
the shortcoming and errors in deterministic frequency extraction as well as in
the method of freguency extraction for the perturbed structure. The new
NESSUS 2.5/FEM release whicn has enhancements and bugs removed for this phase
of analysis will be used. for probabilistic analysis of frequencies in turbine
blades. The additional random variable to be considered for this phase would
include mass density. A method for considering support stiffness variations
will be studied. _ '

The verification efforts for the duct component will begin. The primary
analysis will be random vibration analysis with vibration levels, the
structure properties, and geometry considered és random. Initizl verification
efforts will define the enhancements if any needed in NESSUS/FEM followed by

the full verification analysis.
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8.0 A STRESS-BASED HYBRID FINITE ELEMENT METHOD FOR ELASTO-PLASTIC
ANALYSIS USING THE ENDOCHRONIC THEORY

§.1 Introduction

1V]

In this chapter, a three dimensional 16-node stress-based hybrigd finit
element for shell structural analysis will be formulated, using the
endochronic elasto-plastic constitutive theory. The iterative scheme for the
solution of the nonlinear system of equations that results will be presented,
with the mid—point radial return algorithm being used to improve the accuraéy
of the integrations. -

The mctivation for the stress-based element is predicated on the
observation that the assumed-stress hybrid model has been demonstrated to give
more accurate displacements and stress solutions than the conventicnal
displacement model [1]. In general, for shell analysis the degenerated shell
element is often used. ‘However, in such an element the nature of stresses,
sctrains, ahd displacements is limited to a linear variation througnh the
thickness, which may not be the situation in complicated problems of
loading. On the other hand, conventional displacement-based three dimensional
solid element can present well, all of the physical fields in the in-plane
directions as well as in the through thickness direction, but can not tolerate’
higher aspect ratios (i.e. the case wnen the thickness, compared with otner
two dimensions, is too small). In a recent study [2], it is shown that the
stress-based hybrid element, in addition to providing better stresses, can
also sustain much more severe distortions than the displacement element.
Furthermore, due to the more accurate stress solution, the use of the hybrid
stress model for nonlinear problems, where the nonlinearity arises from the
coupling of material behavior to the stress field, should result in a faster
rate of éonvergence.

8.2 Stress-Based Hybrid Finite Element coraulztion

8.2.1 Assumptions for the Hvbrid Formulation

Here, it is assumed that tne loads and/or displacements are
applied incrementally, and one must satisfy the following equations within the

volume of the element:
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Linear Mcmentum Balance;

Angular Momentum Balance;

Ao, . = b0,
ij ji

Strain ~ Displacement Relation;

de, . = (Au, ., + Au

i
ij 2 ij Jj,i

Constitutive Relation;

Beis = Sire A%

Traction Boundary Condition;

Ao, .n, = AT,
1375 i

Displacement Boundary condition;

"
=g
=

Au.,
1

Inter-slement Boundary Conditions;

traction reciprocity

-+ -
g. .Nn. + Ao, .n,
ij 1 13 )

A

displacement

In the abcve, Sois defined to be

in Vm : (SL1)
in V‘ : (3.2)
in V_ " | (8.3)

(8.1)
at S_ | (8.5)
at S (8.9)
at S (517)
at S (8.8)

on the boundary cf the interfzace of tuc

slements with the total boundary of zn 2lament defined as
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S = sp Uus_Us, ' (8.9)

Relaxing the requirement that the stress field within the element

. satisfy the equilibrium equation a priori, the stress field will be selected .

to satisfy the angular momentum balance, Aoij = Aaji; cniy. Likewise, assume
that the change in strain can be related to the change in stress through:

Ae =S (8.10)

15 7 2igke *%a

Note that in what folleows Si'k

ke was assumed to be composed of an elastic part

and a plastié part witn

Asij = Asi§ + Asig' ‘ (8.11)

Asij = Si?kl Acklv+ S?jkl Aokl (8.12)
where

5 jka ? 6i§ijl eI (8.13)

5ifks = (2i)?éf1) (8.14)

8.2.2 Weak Form

Based on the

-~

Qa

priori conditions and the enforcement of

equilibrium condition, compatibility condition, traction bouncary condition
and traction reciprocity, the wezk form of this stress-based hybrid

formulation can expressed as:

1 Vi
[ {(Sijkzdokl -3 (Aul’j +du ;) 8oy v
mV '
m
+ | Ao, .n, - &T. ) &u.GS + dc. .n . 8u. dS (8.15)
é ( JJ 1) 1 3 )33
a G
r { Yoo
+ waao, . .o+ A0, du. o o=
i/ 11,J - -
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"Wnich after applying Green's theorem reduces to:-

LA AT, . ! \ww, . 8o, . -dV + du. .,dg, . 4V

z I Sljkl 929 5 v+ 8 i, ij I i,5°%;

m v P Y] . ,
m m ol (8.1¢)

+ [ AT.éu, dS + [ Af, 6u, dV =0
3 il v i i~
a m

8.2.3 Discrete Weak Form

The stresses within an element were represented as a summation cf

polynomial stress modes, with undetermined parameters Asm'

?

Aijm'

boy g = By gy 88y ‘ ' . (8.17)
Refer to Appendix B fof the exact form of the polynomials used to formulate
the hybrid element. To enforce compatibility in a weak form, one may use a
test function of the same class as the function for stress. Define aoi. as
the test function in terms of the same polynomial stress moces, Aijm* with the

arbitrary parameters .

dog.. = A 88 (8.18)

ij ijm m

The displacements were interpolated from the nodal

values, Aqk, and the standard isoparametric shape functions, Uiy @St

bu; = by, 8Q, (8.19)

The trial functions for the displacements and the stresses were 2xpressed in

terms of the parameters ABm and Aq, . Cefine

su, = g, 8 8.20
i ° Yikt% ( )
as the test function in terms of the snape functions used in tne interpolation
of the displacements. Tre parzmeters, éqk, will te arbitrary except cn the

porticn of the boundary whers Ine cisplacements are prescribed, in which czas

[§}]

they #wWill be zero.
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Substitution of the discrete form for the test and trizl {unctions
(£q. 8.17-8.20) expressed the combined weak form in terms of 23 and &g, =0

o'. -4
give:

T { 888; S5 kePren®Ph dv «+ f 8q, b, D JAlJmGSmdS +
m Vo (8.21)
f 28R ol v;,80,dS « { - AT;;,80,dS = 0
S S
g
m
Defining the matrix
H = 5 Aijm sijkl Agpn GV (8.22)
and the matrix
G = g by ny Aijm s (6.23)

One may express the combined weak form in matrix form as

L AST H 8 + Agl T A ATT §a + AFT 8a (8.24a)

— — -— —_— -—

no

O
s8]
+

o
[{a}

ne
w
1

= [ aT v, dS ; oF = [ af, v, dv (8.2Ub)

The global stiffness matrix may be assembled with Ag'and Y|
retained as unknowns. The number of unknowns at the global level may pe
reduced by eliminating the stress parameters wnich arz ?ssumed only within the
domain of the element, with no coupling between elements. For arbitrary &3

one must satisfy

-Has5+CGag=0 ' (8.25)

or

Thus, a8 may o2 supressed in terms of the dispiacsment of the eiemen!
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For arbitrary &g, then cne must nave at the .gicoal lavel
T - - ra agay
£ G a3 = AT + AF (8.27z)
m
cr
T -1 . -
I G H G ag = AT + AF (8.279)
m :

8.2.4 Ccnstitutive Medeling

While, until a few years back, simple stitutive relations such
as isotropic hardening or linear kinematic hardening plasticity were tne
mainstay of computer programs, currently there is a widespread interest in the
constitutive moceling of experimentally observed behavior of materials
involving plastic and creep deformations under monotonic and cyclic loadin

The generzl theory of internal varizbles has played & key role in
the development of more and more realistic constitutive models to characzerizs
inelastic material beravior. Typical internal variables that are wicely
employed include: i) the so-called 'back-stress' (the tensor lecatin
center of the yield surface in stress space), ii) the parameters that

characterize the expansion of the yield surface, iii) the parameter

wn
(@)
o)
m
l

characterize the cou"darj -surfzce’ in multi-yield-surface thecries
plasticity (3-7], and iv) the 'drag-stres' usec to characterize the creep
surface.

~

Here, the concent of intrinsic time dependent on plastic strain Iis

"y
1y

used for the derivation of the &i rentizl or incremental form of the

..4.

integral relation of stress and strain for piasticity. This derivation

presents the endochronic theory in a structure tnat is similar to that of
classical plasticity, thus, leading to a stiffrsss type finite finite element
fermulation.

While the endocaronic relaticn as csva2icped by Watanabe & Atl

{81 is similar in its structurs to tnzt of classical plasticity, there ars
savarzl novel advantages preseni In {h2 encechrsonic tneory not presant n In2
classical pliascicitv theory. Tnz 25il. Ly to mecdsl tast datz for zein
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monotonic or cyclic piasticity as accurately as possible, wiih a minimal
number of material parzmeters makes the 2ndochronic theory a simpls theery <o
implement in z finite element code. '

following, is a summarized table of the rate form cf thz

endochronic-theory. The detail of the derivation will be shown in Appendix B.

Table 8.1

Summary of the Internai-Time Tneory of Plasticity

Endochronic Theorv:

do,, = (2u+31]) ¢

ol
KK

(¢)

€
kk
Where u, \ are lame constants

f(z) = 1 + 3¢ (linear); or

£f(z) = a + (1-2)e” Y% (exponential)

. 0
(§—g):§* Sv (df/dz)

c = 1 + 01[0] + e +
Sy £7(z) 2y
G
Sy :_2uoO
. -alz
p(z) = oo§(2) +o(2) (=20, ¢ )
: % %01 CRE
i i i eH T
Rate of Kinematic Hardening:
(i) 0 aig(l) B 943
de 2y Py G - (og :de)°
(no sum on i) for i = 1,2.....
(i)
. o a.e '
da = I dg(l) = Qu P4 ce” - ¢ L (CEP di?]z

i
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Tanle 8.

—

Summary of the Internal-Time Theory of Plasticity
(Continuec)
Rate of Isotropic Hardening:

"(linear f)

0 1
ds = S. 3 (def : cef)2

y ~ -~
(exponential f)

P

8.2.5 Residual Calculation and Itsration Scheme’

Assuming that the material zt state n+1 involves plastic process,
then the resulting stress field will not be in equilibrium; hcwever, one may
compute the out-of-balance loads needed to produce an equilibrated stress

field at that state. For equilibrium at state n+1, cne should have:

c.?+1 + .n+1 =0 (8.28z2)
13,1 1

Weighing the above with the test furction aui will give after application of

Green's theorem:

n+1 . . : .
R & = G.'. v, . &g, ¢V (£.29)
CL qk g ij ik, j ke -
) m
r
The cut-of-balance loads will be:
QB pre ™y as e [y ey o 2(E) (6.30)
k ik ’ ix G,,
or the points where tne elastlically zpplied stress 2rceeded Tne yizld stress,
th2 oreceess should b2 2iastic. Tng stiffness matrix may be usdzItas o r=flec:
che olasiic oroecess znd z_lowW the out-3ti-balzance lcads to Jolliec.d Ias nizstic



iress-strain path. This will give =z correction to the displacsments as wslil

as the stress. However, wn2n the strain is com?uted from the stress tarou
the constitutive reiations, there will be error in compatiéility.

To.enforée this condition, a weighting function of the same class-

as the function for the stress field may be used. The foliowing résidual lozd

due to thé error in compatibility is obtained:

n+i . . o ' a A
(ui,j -+ uj,i) } o g, . C¥ (u._)1).

Y

Bsag = { {Eij -

m -
Application of the above residual to the system will give diéplacemen:s that
are éompatible with the strains obtained from the stress field. T
scme redistribution of the stress when the strain residua: isvapplied, sut for
the most part, the displacements will change more durihg each iteration than
the stress. One may agply both 50 and 35 at the same time, and continue the
iteration process until the norm of the displacement coes not change
significantly. .

8.2.6 Consistency Condition

With the above nyobric method, unless the stress/strain increments

are very small, there will be errors in the consistency condition.

. (cn+1

-~ ~

2 .
Fn+1 - (9n+1 _ an+1] n+1) - R 0 (5.32)

tH
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4 mid-point rule is used for the integration of the strzins <o
reduce the errors. Considering the finite change of 4g, the plastic strzin
may be ccmputed as:

. -
0 « N 40
de” = N Sy §.33
=N e (6.33)
whers,
n D EURY

« ((o" + 8ag) - (" + 822)]) ,
Moo= (3.34)

v

H(gn + SAg) - [g + 363}3

o

Likawise, the change in strain for 2 piastic process may be approxim

. NN Az
Az = (1= A 3~ r - = (e 1=y
T 2w (33-22)2: ' Z Toal Co (S, 3T
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. o

Using the mid-point rule will leac to compatibility errors. FHowever, tns

zpolication of tihe residual 3} will correct the errors that accumulate cug o

compatibility.

1Y

The final system of eguaticns that resuit when toth R_ and 2_ ar

[}

applied during the iteration process will have the form

4 & T - R } |
( T - . = N ' (8.36)
¢ ¥ gt al o+ AT + af

([}

Here, the matriz G is constant and only neec be evaluated once. The matrix
depends on the materisl behavior, and must be evaluated for each iteration.
As each iteration, i, is carried out, the stress and displacement

are updated as:

. n+1 n i ~
o =g + AG“B + I Ao (€.372)
-~ -~ ~n . -~
i
n+1 n i ——
a =g + 06a+ L Ag (8.37b)
i

The strain mus: be computed in two parts with the elastic part given by

(D

AEAB = § ASAB (8.38)

and the plastic part by

s® ast .+ 8P . agt (8.39)
= 5T o+ . Ag
AEBC = U= H its 39
’
8.2.7 Imclementation of the 16-Node Stress-Based Hvorid Element in
NESSUS

1

. The stresses within an element were representad as e summation cf

equilibrated pclyncmizl stress medes, &i:T, with undeterminsd parameters a2_;
. Jus ot
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g

= { . o L:-
do. . AS,n _ (6.L0

=

)

..
§=

Coan

Following tne guidance and suggestions from Punch and Atluri [2], k2 stress
modes were selected. The details of the derivation and the exact form of the
polynomials used are presented in Appendix B. To enforce compatibility, the
test functions acij chosen are of the same class as in the trial functions feor
stress. A '

Tne displacements are interpolated from the nodal values, and the
standard isopafametric shape functions are used. The exact form of snzape
functions is shown in Appendix B.

Once the trizl and test functions for stresses and displacements
are determined, the needed matrices H, G, 4T, and oF can be evaluated. flow
chart is presented in Appendix B to show the complete procedure.

8.2.8 Validation Problems

1. Linear Case

Introduction

A standard test oroblem for finite elements applied to the field of shell
analysis is the pinched cylinder proclem. It was carried out by Cantin and
Clough [9] with a special displacement based cylindrically curved element.
Henshell et al. [10] used an assumed stress hybrid element with both
cenforming and non-conforming versions. Later Ashwell and Sabir [11] analyzed
this problem by using a cylindrical shell element ‘wihich is based on
independent strain functions. Various mesh sizes were used by these works and
convergence results were reported elsewhere.

Results

The dimensions of this pinched cyvlinder are shown in Figure 8.1. Due to.
the symmetric behavior of the gecmetry and loading, oniy one eighth of the
domain is mcdelad. Two thickness values (0.09%4 in. and 0.01548 in.) zre used
to simulate thick and thin shell structure respectivelﬁ. '

For the thick cylinder (t=0.09%4 in), an inextensional thesory was used ty
Timoshenko and Woinowsky-Krieger (12} and the deflection of 0.108% in. wes

regorted which is known to be tco low. <antin and Clough [13] obtal

3

i

value of 0.1128 in. oy dividing the cotant of .the cylindar into thrae 2

longitudinally znd 49 circumfars  ~li..v. with 1200 czgress of fre2dom.
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Figure 8.1 . :.ched Cvliader Problem

L = 10.35 in., r = 4.953 in.
E = 10.5x10E6 15£/in.2, v = 0.3125
P = 100 1bf

Thickness = 0.09% in. (thick), 0.01548 in. (thin).
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Henshell et al. [10] usad the assumed stress nyorid el
Srom 1x1 up to 6xd and reached a convergad disp
present 16-node stress-tasec hybrid element, twe meshes (1x& and 1:8) were
used and the displacement of 0.118 in. was obtainec {rcm both meshss as shown
in Table 8.2.

For the thin cylindar (£=0.015% in.), ;he approximated analytical
solution 0.2439 in. was compared witn the present hybrid'element. with three
different mesn sizes (1x#4, 1x8, and 2x8), as snown in Table 8.2. Also-listed
in Table 8.3 is theAdisplacement sclution obtained by Ashwell and Sabir {1}
with the cylindrical shell element based on strain functions.

It'ié clear that the solution based on the present i6-nods siress-tased
hybrid element converges for both thick and thin shell problems, anc agrees
well witn other numerical solutions.

2. Non-linear Case

fntroduction

-

One of the popular problems in the field of elasto-plastic structural
analysis is that of a perforated plate under tension loading. Extensive works
have been carried out in prior literature by uéing experimental testing and
finite element technigues. Theocaris and Marketos {13] handled this probliem
experimentally by using photo-elastic coating technigues. Total stirzins and
plastic strains were.reported as well as stresses which are estimated by
Prandtl-Reuss incremental plasticity relations. Finite element metnods were
used by many researchers, among them Marcal and Kirg (1L); Yamada, Yoshimura,
and Sakurai [15]; Zienkiewicz, Vallippan, .and Kidg {i6); and Bartelds [17].
Though the problem was znalyzed by researchers for both cases of plasticity
Wwith and without strain rardening, only the case with s:irain hardening is
studied here.

Results

The perforated plate problem considers a plate with a center role undsr
uniform tension as .shown in Figure 8.2. Due to the sy;pe:ric characteristics

of the geometry and loading, only one eighth of the plat

M

is modelied.
Increments of load egual to 0.! of the load at first yield w

e
Tne plastic zones at these2 loading sieps are presentad in Figure 3.3, which
s

are in good agreement with resuits 9Jdtained oy Zisnxiewicz el al., wWno us=z
constant scrain triangle with an "inizial ite 2l2ment agpprozern.
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P 5.2

Deflection uncder Cne Lizi 1. Jnick Pinched Cylincder Problem
~ (t=0.094 in.) -

Cantin & Clough

Fresent Henshell et al
mesh disp. (in.) " mesh disp. (in.) “mesh disp. (in.)
i 1 X4 0.11840 1 X1 0.1166 1 X3 0.0297
3 108 0.11813 2 X2 0.1111 215 0.0780
% 3%3 0.1049 KT 0.0987
b xu 0.1170 2 L7 0.1002
| 5 X5 0.1173 3 %49 0.1128
i 6 X6 0.1174
§ Table 8.3

Deflection Under One Load ror Tnin Pinched Cylinder Problem
(t=0.01546 in.)

dnalytical Present Asnwell & Szbir
disp. (in.) mesn disp. (in.) mesh disp. (in.)
0.02439 [ 0.02351%6 1 X4 0.02403
i x 8 0.02L891 128 0.02406
2 x 8 0.02u3f5 2z U4 0.02409
2 X8 0.02414
3'x 4 0.02414
3 x8 0.02418
) 8 x8  0.02U31
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3émnm

20mm

Aluminum alloy 57S

E

Figure 8.2

7000 kg/mm
0.2

24.3 kg/mm

s%2u = (/2 3 )iz

y 3y
3 401291073

3 70y o Lodo
2 F 0> so de°

.Y )
11.28983

Perforated Tension Strip
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Load Factor u

g
mean

g,
y

P L ]
|
1
!

2 8.3 Ti-ite Eler~nt Mech and Plastiec Zones at Load

Factorsu = 0.6 :

»0.7,0.8,0.9,1.0
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The calculated total s:irains are compared with the experimental resul:ls
from Theokaris and Marketos [13]
shown in Figure 8.4. It can be seen that the soluticns from presant methcd
agree well with others.

8.2.9 Consideration of Low to Zero Strain Hardering Problem

The present stress-based nybrid formulation provides a more
accurate representation of the stress and the strain than the displacement
based method, yet the formulation breaks down for certain classes of materisl
benavior. Ffor elastic perfectly plastic-material, or for a non-linear
hardening miterial where the-tangent modulus beccmes very small, the stress
based method, in the present variational formulation, is incapable of
correctly modeling the solid. Likewise, for elastically incompressible
materials, the stress based methecd, in the present form, breaks down.

' The magnituce of plastic strain in the endochronic theory was

expressed in terms of the strain increment as
1 . \
Et : de (8-4])

To express the magnitude of plastic strain in terms of the stress increment,

one may, through, a simple substitution, note

s
| ds .
oy .=, S8 ,
=c¥iare (8.43)
or
1 . ~ .
i = e— |N : &5 ron
S (T (¥ : a3) (8.14)

which gives the plastic strain as
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Figure 8.4 Development of Maximum Strain Point of First Yield
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¥ :dS =0 | o (8.46)

Tn the limit as C tands to 1.0, the hybrid finite elsment formulation will not

be feasible due to the inability of a computer to numerically evaluate the

limit of

Ni.dSii ' , :

Lim —A—= . : (8.47)
(C-1) :

C-+o

For values of C that are close to 1.0, as is the case when a material is in
the range of strain hardening where the rate of hardening is such that the
stress strain curve is nearly rorizontal, numerical difficulties will occur.
' In order to avoid numerical difficulties when C is approximately
1.0, the variational statement should be reforrmulated by introducing a new
field variable for the magnitUCe of plastic strain, dg. The magniﬁude of

plastic strain is related to the deviatoric stress increment through

S S ' ya
dc = C-1)2n N :dS (8.48)

The total strain is given by

., e

de = de  + dgps de” + dgN (8.49)
where the increment of plastic strain is expressed in terms of a normal to the
_yield surface with magnitude dg. Expressed this way, the compatibility

equation becomes, assuming that the constitutive equation is 'satisfied a

priori,
ds \
1 :'—.' _—— o A\ . f\.r- =
dLi,j 2 T (31 + 2u)eyn (dg:D)1 + dg ¥ (3.502)
or
Cui,j = Sijkl dckl + dg wij (3.50b)
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dg(C-1) 2u = (M : cS) - (8.51%)

-~

(N : ca)

hen C=1.0, the stress increment must be orthogonal to the yield surface, anc
<he magnitude of'plastic strain is no longer coupled to the trace of the
stress increment with tre normal to the yield surface. Instead, the magnitucs
of plastic strzin is determined from the compatibility condition. The
magnitude of plastic strain will become an undetermined paramster to be
resolved at the global level.

8.2.10 Weak Form

vy

For the incremental formulation, the finite change in magnitucde o
plastic strain, a¢ must be considered. Tne weak form for the magnitude of
plastic strain is expressed by using a weighting function ah of the same class

as 4z. The weak form becomes:

[ T {ag (C-1)2u - ¥ : 8} dz dV = 0 (8.52)
mV

m
The compatibility condition may still be expressed in weak form through the
use of the weighting function aoij. Tne weak form of the compatibility
condition becomes:
e ‘ Ty

Ac + T At Ni. - AU, .} §c.. dV =0 . (8.53)

{Sijkl k2 3 1j 1]

<t

L

m
m

Applying Green's theorem, th2 combined weak form may be expressed by comdining

the weak form for compatibility and plastic strain with the wezk form for

equilibrium (8.16), and traction boundary condition (8.5,8.7) as:

F=1
t [ -5sS. bc,.60..6Y + [ au, . éc,. Q¥
o v ijk2- K2 i v i, 71j
ol 0l
- M ! I U oL 0 AT 3 g 8 s
I 6z dij Gcij dav + | éui,iAoij dv LT (8.54)
v v ~ S
m m g
+ f éf{ éui av + ! AC((C'1)2U - Nliéoij) d; 4 = 9
Vm
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3.2.11 Discrets Weak fcrm

"

In the stress-based method, the stress increment, as, ., Was
.g2fined tnrough & szt of pclynomizal basis functicn, A, ., and &ndetermined
stress parameters ésn. fikewise, the change in magnitude to plastic
strain az, was defined through'a ~set of polyhomial bases functions,Ak, and
undetermined parameters Adk. The test funétion, ég, may be defined through
the same basis functions.
_AC = dakﬂk

8¢ = Sa A,
¢ k 'k
Using the same basis functions for The stress and displacsment, as
was used in the hybrid method, & three field variational statement was

formulated. After substitution of

Ag = AakAk’ Aaij = AijnABn’ Aun = wnzéqz (8.50)
8¢ = oakAk, Gcij = Aijncsn’ 6un = wnléql
and defining the matrices
- ] 14 —rr .
=33 Iv Mismoijxe Pren dv (8.572)
m
= NLAL 8.57d)
gas IV T kllj ijn (8.575)
m
Ho, = Iv A2u(C-1) T a4, di (8.57¢)
m
c=J cy (8.574d)
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The combined wezk form may be eupressed as:

- ¢ 3 5 - &8 - ; =
§8 :330_ + 68 gdg 38 QQBAG sa guaAE + (8.59)
. T R T.. T
saTH_jas + 28'Gég = T 6g + AF 6g

The following system of algebraic equations results for arbitrary éc, 8§85

and &g.
“2ag “Ha ¢ 48 Q
-H ' 0 ba = 0 (8.60)
—al8 zaa = - -
¢’ o 0 sa eT + of

As in the stress-based hybrid method, the parameters &c and A3 may be
eliminated at the element level. This reducticn is possible because the
parameters for stress znd magnitude of plastic strain were defined in such a
way that no coupling occurred between elements. Wnen Eaa is non-singular cre
may express e in terms of 43 as

Ae = E H AR (8.61)

Substitution then allows 48 to te expressed in terms of the displacement as

-1

(-538 - 5&8 Eaa gas) a8 + §A9 =2 _ ’ (8.62)
‘0['
4 83+ Goeg=0 (5.63)
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For non-singular H the usuai hydrig
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(o]
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s
assembled and solved as a system of zlzeb

N P - ) . ’ a -
LG H G ag o= el + A : . (B.5U)
tE R % .

Wnen the matcerial is in the full: lastic ranze, th2 orthogonallil;
= 1 2

(8

constraint prevents the inversion of 15 cue to its singulzar form. .

In the event that H o is singular, 82 is retaired as a global

variable and solved for as an unknown parzmeters at the global level. Wnile
for a single element ﬁaa may be singular, the global system of egquations will
pe non-singular if proper boundary conditions are applied. - The number of

stress parameters at the global level may still be reduced provided H”a is
o

non-singular.

Since the incompressibility constraint arose as a limit condition,
all elements would not be exbected to behave in an incompressible manner. A
substantial savings can be made if the decision to reduce or retain the
parameters for the magnitude of plastic strain is made for each element. The
criteria used to determine if an element should be reduced may oe based upon
the value of C at each Gauss point in the element.

By setting up the element variational statement for zn element, as
in equation (8.60), the matrix may be partitioned into recducible degrees of
freedom and non-recucible degrees of freedom. Employing a standard
substructure algorithm (18,19] allows one to reduce the unnecessary parametars
while mapping the required parameters and recuced stiffness terms to glcbal.
Likewise, once tne global parameters have been determined, the back
substitution to find the reduced degbees of freedom may be implemented tarouzh
a standard substructure algorithm.

8.2.12 Considerations for Finite Deformation

Rigorous and consistent formulations for numerica:
elastic-plastic lérge strain problems have become necessary due to the
increased importance in recent years of anzlyzing problems such zs metzl

g processes, ductile fracture initiztion and stable crack growth in
crzcked bodies, etc. Inceed saveral such formulation

S
the same, nave appeared in recent literature. Amcng these can cs cized the
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formulation; Meedleman and Tvergzard [21,22] and Hutchinscn [23], who.also uss
a2 TL formulation using convected coordinates; Yamada et al. [24] who us2 zn

updated Lagrangean (UL) formulation; Casias (25], wno uses an UL scheme which,

due to the us2 of an elastic-plastic rate constitutive law that cces .nct admit
to & potential, leads tc non-symmetric stiffnesses through a Czlerkin scheme

McMeeking and Rice [26], who also use an UL scheme, which through the use of a
rate consblcutxve law with a potential leads to sym“ etric stiffnesses; and
Nemat-Nasser and Taya [27]), wnose formulation represents a modification of
that in Ref. [26] to improve.the accuracy in the case of large deformaticn of
compressible materials. All of these rate formulations [20-27] are based on
the principle of virtual work, or its variant, a variational principle due to
Hiil [28]. Thus, all the above wWworks are based on assumed displacement type
finite element metnods.

A stress-based hybrid formulation for the anzlysis of finite
deformation problems was presented by Atluri [29] at early 1970's. Later a
series of research works on using hyorid formulation basec-on complementary
energy principle or its rate form were cone by Atluri and nis colleagues [30-
63]. The problem of determining suitable stress modes for hybrid or mized
formulations in the finite"strain analysis has also been investigated by
Atluri etc., and guidances and recommendations to choose those stress modes
which will result in stable, invariant and least order elements were reportec
[64-67]. The endochronic theory whicn has its. suoerlor constitutive moda2ling
capability, in cress-hardening, cyclic hardening and initial strain problznms,
over the classical theory- has been éuccessfully impiemented into hybrid finite
‘element method for fi.ite deformation analysis by Atluri et al. [€8-77].

For finite deformation analysis, a rate form stress-bzs

s
ormulation can be found in [37]. This formulation, based on the Hellingsr-

L)

Reissnar principle with total Lagrang=an approach, can be impizmentad Into any
existing finite element program.
Tne weak form of this stress-based hybrid formulation czn oe

represanted as:
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where
Sij : second Kitchhoff stress
ASij : incremental second Kirchhoff stress
N - s e o r2
Yij : Green-Lagrangz strain tensor at state N (8.608)
Eij : deformation gradient tensor
bj : body force per unit mass
The incremental second Xirchhoff stresses within an element were
represented as a summation of polyncmial stress modes, Aijw‘ with uncetermined
3]
paramefers A48 ;
811
aS. . = A, . 8 (8.67)
ij ijm "m
The displacemencs were interpolated from the nodal values, ag, . 2nC fe
. o
standard isoparame:iric shape functions, by, as: '
- " A Py flin}
du, = ¥, 8q, (8.¢€c)
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Substitute these discrete forms into tne weak form (8.065) and rearrange

‘terms, the following matrix form can be obtained,
B T, L Ta T -
- 3" Hé8 +ac. K a3 + 83 G Ac + 37 G Sag
(8.69)
:«Sé(_::r §a+6§T Bc+6 AgT aQ
where
i = 5 Cijeafismiean &
X = f S av
= v ik j2,k in,1
= - El Y. 4 ) ! 8
G ‘g“ljr("k, * Vit Oy iV, y) @Y (8.70)
R =[S, F. o, .dJ
ey ik kiK1
[ N N NN
=J’[Yt-.-l(‘u +u + uu, )AL eV
—C v ij 2 i,] j,1 YK K,] ijm
1
80 = [ o N+l voodv o+ N+'t_b.h ds
- v o J IS J J<
. a
For arbitrary &3, one must sztisly
- E B8+ Gog =R | : (8.71)
Thus, 3 may be expressad in tzarms of displac2ment for the element zs
. -1 P
3 =H (Gag-R) (8.72)
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For arbitrary sag, then one must have at glodbal lsvel
£ (X ag + G'3) = £ (B, + 3Q) (8.73)
u - - oy} = ) - ' -
or
174 T '1 T L'-“' ~
£t (X +G H G)oag =1t (G H Bc + B 0+ aQ) (8.74%)
m - m -

Then the final solutions can.be obtained by the similar iterative scheme used
for the elasto-plastic analysis presented in previcus sections.

8.2.13 Considerations for Tnerma! Loading

In general, for structural analy

1
the thermal effect is important and can not be ignored. The stress-based

hybrid formulation presented in previous seccions includes mechanicazl loading
only. However, tanis formulation can easily be extended to account for thermal
loading as well. Tne necessary modifications for the consideration of thermal
loading are present as follows.

With the consideration of thermal loading, the total strain

components can be separated into tnree parts,

e _t p _
Eij = Eij * g5y + Eij (8.75)

e . D tactin amd nlac . .
where Eij and Eij are elastic and oplastic strain ccmponents due to mechanical
= r
loacding respectively and €, are thermal strains whicn can be snown &s
¢ T -T.) 8.7¢)
;ij = GiJK( - o (u.?c;

f The m

o]

temperature.
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Tren the new modified wezk form is

. 1 £
| S A - = : . ae, ) 6o, .} @\
! ((Sg jyqtopy = 30y = duy y) = iy) S0yt @
m . : -
« [ (Aciinj - 4T )eudsS + | doyynyduy S : (8.77)
S X ~ . 5 S .
fal a
+ [ (8o, ,+ of. )éu, dVv =0
v DR 15 -

After substitutions of the discreted form of the trial and test functicns as

those used in section 8.2, one may express the new malirix form as:

» T
z- 087 Hes+ 0T Gaa+og Gog oz AEC a8 + aT eg + AE' 6g  (8.78)
o = = z
where
t t .
AF” = | de,; A, dV .78
= €55 Piim (8.79)
v
For arbitrary &8, we can get the form
- H 88 + G ag = oE7 (8.80)
Thus, A3 may be expressed in terms of Ag as
a3 = H'(Gag - 8E%) (8.81)
For arditrary &g, the finzl global form can be obtained as
T ' 8
G a3 = AT + oF (£.82)
or
Ty-1 o I B :a
¢'HT' G ag = GTET e+ 8D - af (5.83)
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VALIDATION CASE 1
TITLE: Static Analysis of Cantilever EBeam

PROBLEM: A cantilever beam is subjected to correlated point loads.
Determine the probabilistic distributions of the tip
displacement. .

TYPE : Static, correlated loading

RESPONSES: Tip displacement(

FEM MODEL: NESSUS element type 98 - Two-node Timoshenko beam‘element

. Number of elements = 20

Number of nodes = 21 (& degrees-of-freedom per node)
Boundary conditions: Two base springs

Figure Vi-1

ANALYTICAL MODEL :
Analyticaf Solution:

Tip displacement = Sum {2 % Fi x Likx2 % (3xL - Li) + Pi x Li % L /7 K}
(i = 1 to 5)
where Pi = ith load
E = Young's modulus
L = Total Length
Li = Distance from the fixed end to Fi
K = Base spring constant

Reference: FPSAM 1ist Annual Report, Vol. III, 1985
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VALIDATION CASE 1 (Continued)

DEFINITION OF RANDOM/DETERMINISTIC VARIABLES
Number of Random Variables = 10

.Correlated Loads, . _ :
F1 to P5x Normal 20 1b (mean) - 10%

Young's Modulus Lognormal . 10E+04& psi ' 3%
Length ' . Lognormal 20 in 5%
Thickness Lognormal 0.98 in 5%
Width - Lognormal 1.0 in S%
Base Spring LLognormal 1E+QS lb—-in/rad YA

iNote: Correlation coefficients = exp{-Distance between loads/20}

NESSUS CONVERGENCE/PERTURBATION SETTINGS
1. Convergence Limit: :

Max. number of iterations allowed: : 25

Max. allowable rel. error in the residuals: 0.001
Max. allowable abs. error in the residuals: Inactive,
Max. allowable rel. error in the r.m.s. of displacement: Inactive

Max. allowable rel. error in the r.m.s of strain energy: Inactive
2. Perturbation Range:

+0.001 standard deviation for length.

+0.1 standard deviations for the remaining independent random var:

SOLUTION COMPARISON:
1. Deterministic solution using mean values of random variables:
(node 21, component 3) ’

Theary 0.4032 in
NESSUS 0.3969 in
Difference 1.3%
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VALIDATION CASE 1 (Continued)

2. Erobabilistic solutions at selected probabilistic levels:
Theory: Monte Carlo solution (sample size = 100,000)
NESSUS: Mean-Value-First-Order (MVFO) solution
Advanced MVFO solution
First iteration solution
(See Figure 2)

REMARKS :

1. The perturbation range for the length must be small enough, otherwise the
perturbation solutions may diverge. ' '

2. For the probabilistic solution, a calibrated ‘exact’ solution is derived
by dividing the theoretical displacement by a factor of 1.0157. This
factor is the ratio of the theoretical solution to the NESSUS solution,
both computed at the mean values. '

3. The output of the NESSUS code does not include stresses (moments are -
the standard output). The validation of the root stress is included.-
in validation case 2 which employs plate element.

Figure V1-2

TIP DISPLACEMENT (CASE 1)

99.997%
A i

99.865%— :
£
3 )
Q !
2 N i
m H
o
@
[s%
w 97.725%—
b
-
3
3 -
=
D
(&

84.1347%

: ’
- MVFQ: Meagn Value First Order
Calibrated Displacement = Exact/1.0157
.50.000% T T L T T T T
0.4 0.5 " 0.6 0.7 0.8
Displacement (in.)
A "EXACT” &  MVFO A ADV. MVFO
X 1ST [TERATION —B cauBRATED ExACT
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VALIDATION CASE 2
TITLE: A Static Analysis of Cantilever Plate
PROBLEM: A cantilever plate is subjected to correlated point loads.

Determine the probabilistic distributions of the tip
displacement and the rooct stress. :

TYPE: . Static, correlated loading
RESPONSES: Tip disélacement and root stress
FEM MODEL: NESSUS element type 75 — Four-—-node shell element
Number of elements = 20

. Number of nodes = 42 (& degrees-of-freedom per node)
Boundary conditions: Two base springs

Figure V2—-1

ANALYTICAL MODEL:
Analytical Solution:

Tip displacement = Sum {2 ¥ Fi X Li¥%2 ¥ (3xL - Li) + Pi x Li x L / 1}
(1 = 1 to 3)

Fi = ith load.(loads are partially correlated)
E Young's modulus

L = Total Length
L
¥

i = Distance from the fixed end to Fi
. = Base spring constant

"Reference: FSAM 1st Annual Report, Vol. III, 1985
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VALIDATION CASE 2 (Continued)

DEFINITIDN OF RANDOM/DETERMINISTIC VARIABLES

Number of Random Variables

10

Correlated Loads.
F1 to FS5x

Young 's Modulus
Lenagth

Thickness

Width

Base Spring

XNote:

- Normal

Lognormal
Lognormal
Lognormal
Lognormal
Lognormal

Correlation ceoefficients

NESSUS CONVERGENCE/PERTURBATION SETTINGS

1. Convergence Limit:

Max. number of iterations

Max. allowable rel. error

Max. allowable abs. error

Max. allowable rel. error

Max. allowable rel. error
2. Ferturbation Range:

+0.01 standard deviations

+0.1

SOLUTION COMPARISON:

standard deviations

allowed:
residuals:
residuals:

in
in
in
in

the
the
the
the

FfeMeS.
re.m.s

0.1 1b (mean)
10E+06 psi
20 in
.1 in
1.0 in .
1E+0OS 1b-in/rad

= expi{-Distance between

of displacement:
of strain energy:

for the length and the width.
for the remaining independent random variables.

10%
3%
S%
S%

. 9%
%

loads/207%

8

Q.0Q01
Inactive.
Inactive
Inactive

1. Deterministic solution using mean values of random variables:

(node 21,

component

3)
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VALIDATION CASE 2 (Continued)

2. Frobabilistic solutions at selected probabilistic levels:
Theory: Monte Carlo solution (sample size = 100,000)
NESSUS: Mean-Value—-First—-0Order (MVFO) solution
" Advanced MVFO solution ’
First iteration solution
(See Figures 2 and 3 for comparison)

REMARKS :

1. The perturbation range for the length and the width must be small
enough, otherwise the perturbation solutions may diverge.

2. For the probabilistic solution of stress (see Figure 3), a ‘calibrs
evact’ solution was derived by dividing the theoretical stresses by a
of 0.982. This factor is the ratio of the theoretical solution to the

NESSUS solution, both computed at the mean values.
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CUMULATIVE PROBABILITY

CUMULATIVE PROBABILITY

'VALIDATION CASE 2 (Continued)
Figure V2-2

Tip Displacement

99.997%
= =
99.8657%
97.725%
84.1347
MVFO: Mean Value First Orcer
50.00C7%— " T . T - - : . N - .
0.7 0.9 1.1 1.3 1.5 1.7
Displacement (in.)
Monte Cario(100000) o  MVFO
& ADV. MVFO X 1ST ITERATION
Figqure V2-3
Root Stress
99.997%
99.8657%
97.725%
84.1347%
- _ ’ MVFO: Mean Yalue First Order
' ' Colibrated Strass = Exact/0.982
50.000% ] ) \ ' i | 1] i ] 1 i 1] 1 ' '
3.4 3.8 4.2 4.6 S 5.4 5.8 6.2 6.6
(Thousands)
A Stress (psi.) )
Monte Cario(100000) o  MVFO A ADY. MVFO
X 1ST ITERATION - CALIBRATED EXACT
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VALIDATION CASE 3
TITLE: Eigenvalue Analysis of Cantilever BReam

1‘ PROBLEM: Determine the probabilistic distribution of the
natural frequency :

TYPE: Natural Frequency

RESPONSES: First three modal frequencies in two directions
FEM MODEL: NESSUS element type 98 - Two—-node Timoshenko beam element

Number of elements = 20
Number of nodes = 21 (6 degrees-of-freedom per node)

Boundary conditions: Cantilever

Figure V3—1.A FEM model

ANALYTICAL SOLUTION:
Frequencies (for both Z and X d;rections)
| = Ci ¥ SORT {EXI/(rXwXtXLXX4j-

modulus

moment of inertia = wXtXx3/12
mass density (per unit volume)
width '
thickness

length

mode number

1 = .52, C2 = 22.4, C3 = 61.7

where

O T Y+ m

Reference: Harris & Crede (Editors), Shock and Vibration Handbook, i
FSAM 1st Annual Report, Vol. III, 1985
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VALIDATION CASE 3 (Continued)

DEFINITION OF RANDOM/DETERMINISTIC VARIABLES 2

Number of Random Variables = S

Variables Distribution Median Coef. of Variation
Young'’'s Modulus Lognormal 10E+06 psi 3%

Length ' lLognormal 20 in sv
Thicknessx Lognormal .98 in S%

Widthx Lognormal 1.0 in ' A
Density Lognormal 2.5E-4 lb-sec=/in= S%

XNote: See Figure V3-1-
NESSUS CONVERGENCE/PERTURBATION SETTINGS
1. Convergence Limit:
Max. number of iterations allowed: 20
Max. allowable rel. error: ’ 0.01
2. Perturbation Range:
+0.001 standard deviation for length.
+0.1 standard deviations for the remaining random variables.

SOLUTION COMPARISON:
1. Deterministic solution using mean values of random variables:

Mode Theory NESSUS 7% Difference Comments
1 497 .9 49&65.7 0.2 l1st mode in Z Dir.
2 S08.1 5046.8 0.2 lst mode in X Dir.
3 2168.5 2099.8 2.2 2nd mode in Z Dir.
4 3233.2 3161.3 2.2 2nd mode in X Dir.
3 8727.5 8640.9 1.0 3rd mode in Z Dir.
) 8905.6 8807.6 1.1 3rd mode in X Dir.
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VALIDATION CASE 3 (Continued)

2. Perturbation Solutions (about mean values) 2

Vib. Perturbed E L t LI Freg.;F Bradient {dF/dX) Percent

Node Variable I ‘Theory NESSUS Theory  NESSUS Diff.
1 Mean 1.000E+407  20.000 0.9800 1.000 2.500E-04  497.9  494.7
1 € 1.003E+07 « 498.7  497.4  2,56-05  2.5E-05 0.3
t L 20.001 497.9 496,46  -5,0E401 -4.8E+01 2.9
1t 0.9849 300.4 4991 S.1E+02  5.1E+02 0.3
1 x 1.005 497.9  496.7  0.0E+00  0.0E+00 0.0
1 r 2303804 496.7 4954 -9.9E405 ~9.9E+05 0.0
2 MNean 1.000E+07  20.000 0.9800 1.000 2.500E-04  508.1  504.8
2t 1.003E+07 ) 308.8  507.5  2.5€-05 2.5€-05 0.2
2 L 20,001 508,00 506.7  -S5.1EH0L -5.0£+01 0.9
2t 0.9849 908.1  306.8  0.0£400 0.0E+00 0.0
2 1.003 10,6 509.3  S5.1E+02 .. 5.1E+02 0.4
2 r 2.513E-04  506.8  505.5 -1.0E+06 -1.0E406  -0.0
3 Mean 1.000€+07  20.000 0.9800 1.000 2.500E-04 3148.5 3099.8
3 E 1.003E407 373.2 31044 {,6E-04  1.5E-04 2.2
I L 20.001 - 3168.2  3099.5  -3.2£402 -3.0£+02 3.8
I ot 0.9849 o 31843 311500 J.ZE403 3LL1EH03 1.2
I w 1,005 3168.5  3099.8  0.0E+00  0.0E+00 0.0
I oor 2513864 3160.6  3092.0  -6.3E+06 -b.2E+406 1.9
4 Mean 1.000E+07  20.000 0.9800 1.000 2.500E-04 3233.2 3141.5
it 1.003E407 . J238.0  3188.3  1.6E-04  1,bE-04 2.3
i L 20,001 3232.8  3181.2  -3.2E402 -3.1£+402 3.4
{1 t 0.9849 3233.2  3J161.5  0.0E+00° 0.0E+00 0.0
i x 1.005 3249.3  3177.0  3.26403  3.1E+03 4.3
o 2.5138-04  3225.1  3153.6  -4.4E+06 -~b.3E+0b 2.0
5 Mean 1.000E407  20.000 0.9800 1.000 2.5006-04 8727.5 8440.9
5 E 1,003E+07 8740.6  B653.9  A.4E-04  4.3E-04 1.0
oL 20,001 B726.6 8440.1 -B.7E+02 -8.4E+02 3.9
50t 0.9849 B771.2  B&8L.9  B.9E+03  B.4EH3 6.0
3 om- 1.005 8727.5 BA40.9  0.0E+00  0.0E+00 0.0
S or 2,913E-04  8705.8. B419.3 -1.7E407 -1.7E+07 0.7
6 HNean 1.000€+07  20.000 0.9800 1.000 2.500€-04 8905.5 8807.5
6 E 1.003E407 8919.0 8820.8  4.4E-04 4. 4E-04 1.1
6 L 20,001 B904.7 BB06.7 -8.9E402 -8.5E+02 4.4
6t 0.9849 8905.6 8807.6  0.0E+00  0.0E+00 0.0
b w 1.005 8950.2 8849.3  B.9E+03  B.3E403 6.3
b r 2.513E-04 B883.4  B785.56 -1.BE+07 -1.8E+07 0.9




VALIDATION CASE 3 {Continued)

Z. Frobabilistic solutions for the first mode frequency at selected
probabilistic levels: ) :
Theory: Exact CDF based on analytical solution
Simulation: Monte Carlo (sample size = 5,000)
NESSUS: Mean-Value-First-Order (MVFO) solution
Advanced MVFO solution
First iteration solution
(See Figure V3I-2)

REMARKS :

1. The perturbation range for the width must be very small, otherwise the
perturbation solutiaons may diverge.

2. The median width (1.0 in) and thickness (0.98 in) were deliberately

chosen to be slightly different to validate the NESSUS's capability to
identify near roots in eigenvalue analysis.

Figure VI-2 CDF of First Mode Natural Frequency
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A First lteration
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TITLE:

PROBLEM:

TYPE:

RESPONSES :

FEM MODEL:

VALIDATION CASE 5
Rotating Beam (plate elements)
Determine the probabilistic distributions of the
first bending natural frequency and the tlp displacement
of a rotatlng beam
Centrifugal loading and stress stiffening effects
First bending frequency and tip displacenent
NESSUS element type 75 — Four—-node shell element
Number of elements = 40
Number of nodes = 5% (6 degrees-of-freedom per node)

Boundary condition: cantilevered

Figure VS-1. Sketch and FEM model

ANALYTICAL SOLUTION:

Assumed'first bending mode shape: (x¥XX4 —4XLX¥xXX3 + OXLXX2KxXX2)/LXX:

Frequency

= SERT { 1.0384 x E X t¥x2 / (rxLx¥x4) + (1.173+6.6/L) x t¥

Tip displacement = r ¥ (f¥x2) x (1%%3) x (1 + Ri/L) / (3.XE)

where

modulus
mass density
width
thickness
length
rotating frequency = 400 rad/sec
inside radius = 4.237 in.
186
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VALIDATION CASE S5 (Continued)

DEFINITION OF RANDOM/DETERMINISTIC VARIABLES
Number of Random Variables = S

Varlables Distribution Median Coef. of Variation
Young’'s Modulus Lognormal 29E+06 psi 107

Length . Lognormal 3.844 in . 5%
-Thickness - Lognormal 0.04146 in S%

Width ‘ Lognormal 1.424 1in : 5%
Density Lognarmal FE—-4 lb—sec2/in=< 5%
Rotating Frequency Fixed 400 rad/sec

Radius Rix -‘Fixed . 4.237

NESSUS CONVERGENCE/PERTURBATION SETTINGS (NESSUS 2.95)
1. Modal extraction:

XMODAL 3 ¢ 1
2. Convergence crlterla

Increment Q:

XITER Q S
20 1.E-04

Increment 1:

XITER 0 S
20 ' 1.£-06

4

Ferturbation Settings:
+0.00) standard deviation for length.
+0.1 standard deviations for the remaining random variables.

SOLUTION COMPARISON:
1. Deterministic solutions using the mean values of random variables:

Table V5-1 Comparisons of the deterministic solutions

q._—._..._._-.--.....-_-_----._.——._....-_._.....---.-...._..——._.--........--..-...-...—.—_--,—..--......—-...——-.._._.._..-......._....._..........._._._._.,.._

Theory NESSUS NESSUS/Theory
Frequency 853.0 862.4 1.01
Tip dlsplacement 2.4945€E-4 2.4797E-4 0.994
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VALIDATION CASE S5 (Continued)

2. FProbabilistic solutions for the frequency and the displacement
at selected probabilistic levels:
' Simulation: Monte Carlo (sample size = S5S00,000)
NESSUS: Mean-Value-First—-Order (MVFO) solution
Advanced MVFO solution
: First iteration solution
(See Figures VS-2 and V5-3)

REMARKS : Date: 10/16/87 NESSUS 2.9

1. The selection of the perturbation range for the length is very cri-.
as illustrated in the following table:

Perturbation range Results

+1.0 std. . No solution (instability)
+0.1 std. i Incorrect solution (frequency decreas:
+0.001 std. Correct solution

e e e s — o — T —— — ———— — — " . T S A — . T — — A — — —— —— — G T T —— — . —— —— —— W o — — T o T o - —

The NESSUS eigenvalue perturbation algorithm needs to be reviewed.

n

The ‘adjusted’ exact curves in Figures V5-2 and V5-3 are defined uw
the ratios of the NESSUS mean solutions to the theoretical mean
solutions. (see Table V5-1)
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VALIDATION CASE S (Continued)

Figure VS-2 First Bending Frequency
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TITLE:

PROBLEM: -

TYPE :

'RESPONSES :

FEM MODEL:

VALIDATION CASE &
Eigenvalue Analysis of Twisted Cantilever Flate

Determine the probabilistic distribution of the
natural frequencies

Natural Frequency

First bending and torsional modal frequencies

4

NESSUS element type 75 — Four—-node shell element
Number of elements = 192 .

Number of nodes = 225 (é degrees—of-freedom per node)
Boundary conditions: Cantilever

Figure 1. Sketch and FEM model.
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"VALIDATION CASE 5 (Continueq)

Figure 2. First bending and torsion mode

|

I
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VALIDATION CASE & (Continued)
ANALYTICAL SOLUTION:
First bending frequency (use flat plate solution)

= 3.31 x SGRT {EXhX*Z/(lE*L*X4*r*(l*v**2)}

where E = modulus '
r = mass density (per unit volume) -
h = thickness
’ L = length
v = Poisson’'s ratio

First torsional frequency: not'available

Experimental results: see Reference

Reference: Macbain, J. C.; Kielb, R. E. & Leissa, A. W., "Vibrations
Twisted Cantilevered Plates - Experimental Investigation"

29th International Gas Turbine Conference, Amsterdam, The
Netherland, 1984. ASME paper 84-GT-9646

DEFINITION OF RANDOM/DETERMINISTIC VARIABLES

Number of Random Variables = 3

Variables Distribution Median Coef. aof Vari.
Young's Modulus Lognormal 10.34E+06 psi 37
Thickness Lognormal 0.1 in Q%4
Density Lognormal Z2.61E-4 lb-secz/in+ S%
Twisted Angle Deterministic 45 degrees -
Length Deterministic & in - -
Width Deterministic 2.0 in -
Foisson’'s ratio Deterministic 0.3 -

NESSUS CONVERGENCE/PERTURBATION SETTINGS
1. Convergence Limit: .
Max. number of iterations allowed: 30
Max. allowable rel. error: 0.001
2. Ferturbation Range: ' .
+0.1 standard deviations for all the random variables.

192



Cumulative Probablilty

Cumulotive Probablilty

VALIDATION CASE &6 (Continued)
~ Figure =

1st Bending Frequency

50%
167
2%
0.1%-
Adjusted 'Exoct
0.000 ¥ T T T T T T T T T T
440 460 480 S00 520 S40 560 580
FREQUENCY (RAD/SEC)
¢  NESSUS MYFO X NESSUS Adv. MYFO
Figure 4
13t Torsian Frequency
S0% ,
'Exoct scjution availkcble only at the mean values
- (4718 Hz ot 50 R prob. level)
16X
r'_ r
0.1%
0.0003% T T T T T T T T
4.1 4.3 4.5 4.7 4.9
(Thousands)
, FREQUENCY (RAD/SEC)
0 NESSUS MVFO X  NESSUS Adv. MVFO
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VALIDATION CASE &6 (Continued)

"SOLUTION COMPARISON:

1. Deterministic solution using mean values of random variables:

Mode Experiment NESSUS 7 Difference
Bending 55%.8 572.4 7.3
Torsion 4718.2 C 4933, 4.8

T e e e e e e e e e e e e e e e e e > = —— . " — - 2 e e o e

2. Probabilistic solutions for the flrst bending frequency at selecte:
probabilistic levels:
Theory: Exact CDF based on analytical solution .
NESSUS: Mean—-Value-First-Order (MVFO) solution
Advanced MVFO solution

-

(See Figure I for comparison)

Frobabilistic solutions for the first torsior ‘requency at selecte(
probablllstlc levels:

Exact: Only 30 % probablllty level experiment result avalla
NESSUS: Mean—Value-First-0Order (MVF0O) solution

Advanced MVFO solution '
(See Figure 4)

REMARKS :

1. The analytical solution for the first bending mode was based on the
flat plate solution, therefore should be considered as approximate so.
only. However, based on experimental investigation (see Ref. )« the
analytical solution predicts well for different thickness.

2. For the first bending mode, a calibrated (or adjusted) ‘exact’
probabilistic solution was derived by multiplying the experimental res
by a factor of 1.03Z3. This factor is the ratio of the FEM solution, ¢
at the mean values to the experimental result.

Z. For the first torsional mode, the aralytical solution for the flat

can not be used as an approximation because the experimental results
do not follow the analytical solution.
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VALIDATION CASE 7
TITLE : - Static Analysis of Simply Supported Flate
PROBLEM: A simply supported-rectangular plate is éubjected to point
loads. Determine the probabilistic distribution of the maximum
(center) displacement.
TYPE : 'Static, correlated loading (Multiple zones)
RESPONSES: Maximum displacement
FEM MODEL: NESSUS element type 75 - Four—-node shell element'
Number of elements= 100 . ‘
Number of nodes= 121 (é degrees-of-freedom per node)

Boundary conditions: Simply supported

Figure 1. FEM Model

i

ANALYTICAL SOLUTION: '
Mast . displacement = 48 %X (1-vXX2) / (piXxx4 X E X txxI3 XxLxx2)
X[1374x(PL+P2) + 2373%P3 + 676.6%F4 + 207.7%P6 + 16917%P71
modulus of elasticity
Poisson’s ratio . -

thickness
Length

where

E
v
t
L

Reference: Timoshenko and wbinowsky—Krieger, Theory of Flates and Shells,
2nd ed., pilil
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"VALIDATION CASE 7 (Continued)

DEFINITION OF RANDOM/DETERMINISTIC VARIABLES
Number of Random Variables (a) = 25

Variables Distribution Mean Coef. of Var

Correlated Loads, .
Pi(c) EVD(b) 15 1b 10%

F2(c) EVD 15 1b 10%
P3 to P6 (d) , Narmal 10 1b 10%
P7 to P22 (e) Lognormal 2 1b 10%
Young’'s Modulus Weibull 10.53E+06 psi 3%
Poisson’'s ratio Lognormal 0.25 3%
Thickness Lognormal 0.1 in S%
Width Deterministic 10 in -
Notes:

(a) Number of independent random variables
(b) Type I extreme value distribution
(c) Independent
(d) Partially correlated with

correlation coefficients = exp{-Distance between locads/%}
(e) Fully correlated

i
[
(@]

NESSUS CONVERGENCE/PERTURBATION SETTINGS
1. Convergence Limit:

Max. number of iterations allowed: 100
Max. allowable rel. error in the residuals: ~0.015
. Max. allowable abs. error in the residuals: 15.0

Max. allowable rel. error in the r.m.s. of displacement: 0.002
Max. allowable rel. error in the r.m.s of strain energy: 0.002

2. Perturbation Range: ,
+0.1 standard deviations for all the independent random variables

SOLUTION COMPARISON:
1. Deterministic solution using mean values of random variables:
(node &1; component 3)

Theory 0.03297 1in
‘NESSUS 0.05493 in
Difference 3.7%

e - — ——— . i o s Sk i S S — o — — — " — . —
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VALIDATION CASE 7 (Continued)
2. Probabilistic solutions at selected probabilistic levels:

Exact: Monte Carlo simulation (sample size= 500,000)

based on analytical solution '
NESSUS: Mean—-Value—-First-0Order (MVF0O) solution

. Advanced MVFO solution

First iteration solution

(See Figures 2 for comparison)

REMARKS :

1. For the probabilistic solution of displacement (Figure 2). a ‘calibrated-
or adjusted ‘exact’ solution is derived by multiplying the theoretical ’
displacement by a factor of 1.036. This factor is the ratio of the
theoretical solution to the NESSUS solution, both computed at the mean
‘values of the random variables.

Figure 2.

99.997X
99.865%
3
& 97.725% -
w
2
b .
2
3
84.1 34X
~ MVFQO: Mecn Vcalue First Order
Cclibrated Displocermnent = 'Exxact'®1.036
50.000% T T T 7T I a—
£0 70 90 110
(Thousandths)
¢ Displocement (in.)
1—-— MONTE (Size—500,000) ¢ NESSUS MVFO A NESSUS Adv. MVFO
X NESSUS 1ST MER. L 2-— 'CALIB.' MONTE
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VALIDATION CASE 9
TITLE: Static Analysis of Cylindrical Shell
PROBLEM: A cylindrical shell is subjected to correlated point loads
Determine the probabilistic distribution of the maximum
displacement.
- TYPE: Static, correlated loading
RESPONSES: Displacement

FEM MODEL: NESSUS element type 153 Four—-node assumed strain axisymmet

Number of elements = 50 )

Number of nodes = 102 (2 degrees—-of-freedom per node)

Boundary condition : constrined z—direction displacement &
26 and 77

Figure V9 - 1

i %

Y

j Cr T T Il

-
——4
—
—
f—i
-_—
-

il EENEEn

ANALYTICAL MODEL:

Analytical Solution: See Reference
Reference: Timoshenko and Woinaowsky-Krieger, Theory of Plates and Sht
2nd ed., plill
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VALIDATION CASE @9 (Continued)

DEFINITION OF RANDOM/DETERMINISTIC VARIABLES
* Number of Random Variables = 8

Correlated Loads,

F1 to P3X%x - . " Normal 1000 1b 10%
Young’'s Modulus Lognormal 29E+06 psi zY
Thickness Lognormal 0.1 in 5%
Mean Radius Lognormal 2.3 in S%
Foisson’s ratio Deterministic 0.3 , 0%

D.25

¥*Note: Correlation coefficients = exp{-Distance between loads/0O.2>

NESSUS CONVERGENCE/PERTURBATION SETTINGS
1. Convergence Limit:

Max. number of iterations allowed: 20
Max. allowable rel. error in the residuals: 0.02
Max. allowable abs. error in the residuals: 20
Max. allowable rel. error in the r.m.s. of displacement: 0.01
Ma. allowable rel. error in the r.m.s of strain energy: ©.05%

2. Ferturbation Range:
+0.1 standard deviations for all the independent random variables.

SOLUTION COMPARISON: .
1. Deterministic solution using mean values of random variables:

Theory 0.00797 1in.
NESSUS 0.008145 in
Difference 2.2 %

2. Frobabilistic solutions at selected probabilistic levels:
Theory: Monte Carlo solution (sample size = 200 ,000)
NESSUS: Mean—-Value-First-Order (MVFO) solution
Advanced MVFO solution '
. First iteration solution
(See Figure V9-2
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VALIDATION CASE 9 (Continued)
REMARKS :

1. The perturbation range was chosen as 0.1 standard deviation for
each random variables. It was found that NESSUS/FEM solution required
very tight convergence limits for generating accurate Young’'s modulus
censitivity data. Also, it was found that this convergence problem ca
be solved by increasing. the perturbation range to 0.3 standard
deviation.

4

-

2. For the probabilistic solution (see Figure V9-2), a calibrated ‘exea

solution was derived by multiplying the thearetical solution by a fact
of 1.02. This factor is the ratio of the NESSUS solution to the
theoretical solution, both computed at the mean values.

%. Because thickness is not a standard input, it is necessary to provi
thickness information in terms of the coordinates (i.e., inside and ou
radius). Also, the perturbation solution for the thickness must be obt
by perturbing simultaneously the inside and the outside radius.
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CUMWUATIVE PROBABILITY

CUMULATIVE PROBABIUITY

VALIDATION CASE 9 (Continued)

Figure V9-2

NESSUS Validation

Bowed on FEM Solution

99.997%
99.865X
97.720%~
84.134%
1 MVFO: Meon Volue First Order
Coiibrated Displocement = Exoct*1.0215
8o. T T T T T T T T
0.8 0.9 . 1.1 1.2
(Tho umandtha)
Dimplacement (in.)
— BXACT ¢ MWD

& ADVANCED MVFO

——— CAUBRATED EAXCT

Figure V9-3 FPI Validation

BASED ON "EXACT EQUATION

99.99
99.865X
97.7 26X
84.1 34X
MVFO: Meon Yalue First Order
50. T T T T ™ T T T
0.8 0.9 1 1.1 1.2
(Tho usondths)
Displocement (in.) _
MONTE (Sixe=600,000) o  WYFO

A ADV. MVFQ

X 1ST TERATION
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VALIDATION CASE 10
TITLE: ~ Stress Concentration Analysis

PROBLEM: Two U notches in a member of rectangular section. Determii
the probabilistic distribution of the maximum stress.

TYPE: Static loading

RESPONSES : Maximum‘stress

FEM MODEL: NESSUS element type 3 - Four—node plane .stress element
Number of elements = 117 )
Number of nodes = 140 (2 degrees-of-freedom per node)
Symmetry conditions along longitudinal axis of the member
Symmetry conditions across the center of the member
(one quarter of the member modeled)
Constant tensile stress applied at the y = max. boundary

Figure V10-1

! STM. :

ANALYTICAL MODEL:
Analytical Solution: See Reference

Reference: R. J. Roark and W. C. Young, Formulas for Stress and Stra:

age 590
Pag 202



VALIDATION CASE 10 (Continued)

DEFINITION OF RANDOM/DETERMINISTIC VAQIABLES
Number of Random Variables = 1

Radius Case A. Lognormal 2. : 2 %
Case B. Truncated Normalx 2.4 2

Load Deterministic 8000 1b

thickness Deterministic 0.1 in

NESSUS CONVERGENCE/PERTURBATION SETfINGS

1. Convergence Limit:
Max. number of iterations allowed: ' 30
Max. allowable rel. error in the residuals: 0.03
Max. allowable abs. error in the residuals: 0.0
Max. allowable rel. error in the r.m.s. of displacement: 0.03
Max. allowable rel. error in the r.m.s of strain energy: 0.035

2. Perturbation Range:
+0.1 standard deviation

SOLUTION COMPARISON:

1. Deterministic solution using mean value of radius:

Stress
Theory  3545.6 psi
NESSUS 0 3562.2 psi
Difference o.st

2. FProbabilistic solutions ét selected probabilistic levels:

Theory: °‘Exact’ CDF based on analytical solution
NESSUS: Mean-Value-First-Order (MVF0O) solution
Advanced MVFO solution

-

(See Figures 2 and 3 for comparison)
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VALIDATION CASE 10 (Continued)

REMARKS :

1. For the probabilistic solution of stress (see Figures 2 and 3), a
‘calibrated exact’ saolution was derived by multiplying the theoretica.
stresses by a factor of 1.003. This factor is the ratio of the
theoretical solution to the NESSUS solution, both computed at the mear
values.

2. This validation problem involves only one random variableé. In such
case, the advanced MVFO solution will yield exact solution. Therefore
the difference between the NESSUS solution and the exact solution is ¢
to the finite element solution. However, the error is small {(about 1%
stress). .

3. Figure 3 is the result for the case where the radius has a truncate

distribution. This is the reason the resulting probability distributic
also is truncated.
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Cumulative Probablilty

Cumulative Probablilty

VALIDATION CASE 10 (Continued)
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Figure V10-2 Case A (Lognormal)
CDF OF STRESS
99.9968%
99.865%
97.72X-
84.13X%X
50.0% T T T T T T
3.5 ’ 3.6 37 3.8
(Thousands)
STRESS (psi)
FEM ¢ FEM MVFO X  Calib. Exact(1.005)
Figure V10-3 Case B (Truncated Normal)
CDF OF STRESS
99.9968%
99.865%
97.72>%
84.13%
50.0% T T — - - T
3.5 3.8 3.7 3.8
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A STRESS-BASED HYBRID FINITE ELEMENT METHOD FOR
COMPUTATIONAL ELASTO-PLASTIC ANALYSIS, USING AN ENDOCHRONIC THEORY

INTRODUCTION

In this section, the hybrid stress finite element wil] pe formulated using
the endochronic theory. The {iterative scheme for the solution of the nonlinear

The motivation for the Stress based element g predicated on the
observation that the assumed-stress hybrid model has been demonstrated to glve
more accurate displacements and stress solutions than the conventional .
displacement model (R.1]. Due to the more accurate stress solution, the use of
the hybrid stress model for nonlinear problems, where the nonlinearity arises
from the coupling of material behavior to the stress field, should result in_a
faster convergence. :

The use of the classical models of plasticity in a tangent stiffness
approach have been reported by Yamada et al [{R.-2] and Luk {B-31. Neyssen and
Beckers (R.41] reported an increased rate of convergence for a hybrid stress
finite element using the classical plasticity theory.

ASSUMPTIONS FOR THE HYBRID FORMULATION

As in the displacement based method, one may assume that the loads and/or
displacements are applied incrementally. One must satisfy the following
equations within the volume of the element:

Linear Momentum Balance;

A é}? + A«)-'-‘i =0 . in Vn (3.
Angular Momentum Balance; ,

A d;j = A 6;1 m VQ\ \ 13
Strain - displacement relation;

8 Fs = ?/ (2 Uiy + 8 ch,z) / n L ool
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Constitutive relation;

ATiy = Siae 86, (3-4)

Traction Boundary condition;

AdA~}~W9'=A:F;' at S, (B-5)

Displacement Boundary condition;

s U, = a U, o Sy (3.6)

Inter-element Boundary conditions:

traction reciprocity

24.. 7. + Aoj‘é MN. = o0 ot - S, (8.7)
L& A A v
displacement
+ - -
U, = Uz ok S, : (3. 8)

In the above, S, 1is defined to be on the boundary of the interface of two
elements with the total boundary of an element defined as

S=Sp U S U, : (3.9)

For the derivation of the element stiffness matrix one may assume the
following conditions hold a priori. For now, neglect body force, and assume a
stress field Ad;-which 1s selected to satisfy the angular momentum balance,
Adi; = p8:: , and the linear momentum balance ,/)o’;,',a':o . Likewise, assume that
the change in strain can be related to the change in stress through:

3 ; .= <.l A
L5505 Sins A4S, (8.10)

~ Note that in what follows Sia'faﬁ was assumed to be composed of an elastic part
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and a plastic part with

e P
Ai‘f: AE;J- +A£;}- (B.11)
8 r
a i;a' = Slj‘(l a dﬁg + S;a‘;'g a 6&2 (B.12)
where
s M o S.. 8 (B.13)
et 2p L Garamyap O Al
5SS, g = L e
ik (20 (c=1) | (B-/4)
WEAK FORM

The following relations must be enforced through the variational statement:

1) compatibility

/ .. . 5
A{;a‘—; —i—(du,_)a + Au?,L) (B )
2) traction reciprocity
* i B-16)
(o d‘é n:) o+ ( A&L-a- n:) =0 on S‘:w_ (B

3) traction boundary condition

Ad"é ne = a7, omn Sdm (B.17)
4) displacement boundary condition
sl = AU ok Su , (B.18)

Defining Sd to be a test function (weighting functlon) for the

compatibility equation (eq. R.15), the weigh:ed form of the compatibility
relation becomes:

55 (o¢ _-1,-(.4(/([,3‘ +ods ) §4; dv = o0 (B.19)
Vo
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To enforce the traction boundary condition one may use a test function of the
same class as the displacemants. Let §u; be the welghting function for the
enforcement of the traction boundary condition. Weighting the traction boundary
condition with the test function gives:

z (a8, n; —AT;) Uz dv =0 - (8. 20)
Raa% S‘ ‘3 3 -

To enforce the traction reciprocity in weak form, one may use the welighting
functin 5“; to get

+ -
} (Ad,;a«‘ni +A€13"ﬂ3~> S ug ds-? (B.21)
5
+ -
Here Ad;a' T4 represents the traction on one face of an element and A&:’\ 'Y‘-j
represents the traction of the corresponding face of an adjacent element. When-
summed over all elements, the above reduced to the single term

§ S% oo’i%. %3. Ju; dSs = 0 (&.22)

Assuming that the constitutive relations are satisfied a priori, one may write
the weak form of the compatibility condition (R-21) as:

= f f3(aUsy + 20Uy ) - Sige 2% ) g‘{*’j dv =0  (8.23)
 “v

Choosing the stress polynomials in such a way that the equilibrium equatlon was
satisfied by the test function allowed one to rewrite the combined weak form as

S8 nyaur + j 24, ms S Uy

£ §, Sqe 2% S T J SV 0

ERAN

_js 2T, §U; 85 = 0 (8.24)
b

DISCRETE WEAK FORM

The stresses within an element were represented as a summation of equilibrate
polynomial stress modes, A, with undetermined parameters A ;

A Spn = A[.;w\ 4(5-. ' (3.-25)
Refer to Appendix B for the exact form of the polynomials used to formulate the
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hybrid element. To enforce compatibility in a weak form, one may use a test
function of the same class ‘as the function for stress. Define §< as the test
function in terms of the same polynomial stress modes, A['mv with the arbltrary
parameters ' d

gcf;a. = A;a'm 3 g.. (B.26)

The displacements were interpolated from the nodal values, A%Fz’ and the
standard isoparametric shape functions, f\;«_&, as:

AU = Ay 2% | ' (g.27)

The trial functions for the displacemen-ts and the stresses were expressed in
terms of the parameters Ap and A_"'g_- Define

Sus = {\il',:{g ‘g%h - (3-28)

as the test function in terms of the shape functions used in the interpolatton
of the displacements. The parameters,d%, will be arbitrary except on the
portion of the boundary where the displacements are prescribed, in which case

they will be zero.

Substitution of the discrete form for the test and trial functlions
(Eq- 8-25—8-28) expressed the combined weak form in terms of 43 and 4§ to give:

E jvm i A"EM Sia"hi A&lr\. 5(5“ oV _ * ,2 A%FL ,\}L‘.h fir) A‘é“ 5(;‘"65 +

Ss 2B A;jm?’\}' Vit 5%& ds + j - AT A#‘_h 56%‘” — o

OS¢,
(3.29)
Defining the matrix '
H= j\, Ai;‘m Szg‘m Agn dv (8.39)
and the matrix ' : ,
. Q: 2 (\}:'{z ’Y\.‘;A,:a‘m JS »(5_3[)

One may express the combined weak form in matrix form as

z »A_G_:cs.ﬁ_-l-aigé‘_é_f&%_g A_(}._: fs—l—‘_.,%,)_h Cg?f—h (B.32)
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The global stiffness matrix may be assembled with 2% and @3 retained as
unknowns. The number of unknowns at the global level may be reduced by
eliminating the stress parameters are assumed only within the domain of the
element, with no coupling between elements. For arbitrary § # one must satlisfy

—Hop +2% G =29 (8.33)

‘Thus, o3 may be expressed in terms of the displacement of the element as

-1
2= H

o

“X » (8- 34)

For arbitrary 2%, then one must have at the global level

I oGob = [ Tiy,d5 > I GHGAE- ) T oS
- = y Py e S,
(.35 a,b)

From the global stiffness matrix that results, 49 is obtained, with stress
parameters computed from equation (B-34). -

Relaxing the requirement that the stress field withinthe element satisfy
the equilibrium equation a priori allows omne to introduce a prescribed body
force, f; - If the linear momentum balance condlitlons are relaxed and
expressed in weak form through the weighting function §u; the weak form
becomes:

M

5 (Ao’ij'a' +A§;) Su; dv = O (3.36)

Raod

One has by adding to the combined weak form:

1

/ , .
+ (Aé,a AR '_ AaT:) Su; oIS +f< Ad‘:é . é‘u[ds

SS J 8

A+5v,,\(“£g,5 +2f:) Susdv = 0

Which after applying Green's theorem reduces to:

= ,(, ine © Ot $6, + 54&({;’,5 §doy dv + [ Suiy 26, dv
-+ . urs d -+ C. §u.dvy = 0
] L‘ aT: § S fv“.oy SU (535 )
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After substitution of the discrete form of the trial and test function one may
express the combined weak form as:

L ABHIB + 85680 + 65628 = ATSg + af 5§ (3.370)

Jso

where AT = 547’; “Aé dsS ; A_F = faf‘. ’%‘k dv (3.39b)

Note that the above formulation, while possessing the same number of unknowns as
the weak form where the stress was equilibrated (Eq. 3.39),was substantially
less costly to implement numerically. The saving came from the volumetric
integration to formulate the matrix G. Performing a volumetric integration
allowed for the evaluation of the C matrix at the same time as the volumetri{c
integration for the matrix H. This means the same Gauss polints may be used for

-—-————_—-____..________...___—_——_—-.__-__-...

The tangent stiffness matrix expressed in equation (R.35) allowed one to
compute the change in stress and the change in displacement based on the
material parameters at state n being approximately constant over the increment.
Due to the linearization of the material behavior, the actual state of stress
and the actual displacements at state n deviated from the nonlinear path that
material should have followed.

In addition to the errors introduced in the linearization of the material
parameters, other errors are generated. For example, 1f one assumes that the
behavior was plastic (perhaps the last load increment caused plastic
deformation) but , the next loading increment unloaded the polnt from the yield
surface, then the wrong tangent to the stress-strain relation would have been
taken. Likewise, 1f the material was near the yield point, and the next loading
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stress into -two parts, applying the first part as an elastic process, then all
the second part to be applied in the residual calculation. .

To illustrate the part elastic-part plastic case, assume that at sate n,
no plastic strain has occured. Let the next load increment be such that only a
part of the stress increment may be applied elastically. For a given change in
body forces and change in surface tractions assume that the corresponding
change in stress predicted by the elastic stiffness formulation is such that

» , Rad V4

’ n 2
F-_—‘(é;-rag—o():(Q_’A-r"IAé—g()—,Q)O (B.-40)

i.e. the stress point, if elastic material behavior is assumed, would fall to

the outside of the yield surface. At a point, assume that the stress S, lles o
the inside of the yleld surface. Let g be the point on the yleld surface wher
the trajectory of d,+s6 intersects the yield surface. The point of intersection
‘may be computed as

o
®

=d, +rad (B-41)

where

Go = ( da+29)

Only the portion of 566 that is required to move the stress point to the yiel
surface is applied, with the rest of the stress that would occur during the
plastic material behavior neglected for now. The resulting stress field will
not be in equilibrium; however, one may compute the out-of-balance loads neede
to produce an equilibrated stress field at state n+l. For equilibrium at n+1l
one should have:

-t —C*r\-v(

é ;j,j + Jo = 0 (B.é‘B a)
~ ' nrt ‘ )

dx(;‘ nyo= T (B.43b)

Weighting the above with the test function Jdiwill give after application of
Green's theorem: -

Ry S%u=§ Sy Yy € FudV (8.4 )

b aad

The out-of-balance loads will be:

= [T 95 [ f g 9V - R, (8.45).

h .
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For the points where the elastically applied stress exceeded the yleld stress,
the process should be plastic. The stiffness matrix may be updated to reflect
the plastic process and allow the out-of-balance loads to follow the plastic
stress-strain path. This will give a correction to the displacements as

L

s4 = gHge" (.46

oy

and a correction to the stress of

~ . - -l

Ad;;- = A,;jmé(g:-\. ) A@;: g :/ "‘j): (3.47 a,b)

with the stress at n+l being given by:

. 4t 1 ad, o+ zag” (5.48 )

= ~ AB

One may compute the strain at n+l from the stress using the constitutive -
relation as:

\

nr .y e ? .
T :?,+§(AO’AB +A§3C)'+§ a8, (8. 49)

The displacements at n+l will be given as

el L

4 = 4 +oey s T2y (5. 59)

A

Due to the above approach of splitting the stress into two parts, there will be
errors in compatibility. At state n+l one should have

nel / n+1i
Eia' T (Ui 2 i) = 0 (B-5/)
- .where Zz;is computed from the stress through the constitutive relation.
d
To enforce this condition, a weighting function of the same class as the

function for the stress field may. be used. The following load due to the error
in compatibility is obtained: ’

_‘ n- l o o n+i : )
R dp = J‘/m{iié. - 7 (U +—} Us i) } 56,3 dv (8.52)

Application of the above residual to the system will give displacements that
are compatible with the strains obtained from the stress field. There will be
some redistribution of the stress when the strain residual is applied, but for
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the most part, the displacements will change more during each fteration than -
the stress. One may apply both Z?‘and R_at the same time, and continue the
iteration process until the norm of the displacement does not change

significantly.

| . CONSISTENCY CONDITION

; With the above hybrid method, unless the stress/strain increments are ver
| small, there will be errors in the consistency condition.

n+ ne nt n i 2
F |-“—__ (d 'l_d|).‘(6ﬂ—-(i( )-R £ 0 (5.5-3)

~

The errors may be reduced by using a .mid-point rule for the integration of
the strains. the plastic strain may be computed from the stress as:

nel

o P f‘ n:dé -
st = - N 2 U (c-1) (B.54) ‘

For the finite change Agione may use the approximation

»

P * N al
s = N ;Vu(c-l) (B.55)
where
e ((gpag) (g pax)) (5.56)
g [(g7+p28)- (g +(p2x)] &

Likewise, the change in strain for a plastic process may be approximated as:

2 P 3 .
ad A -A /\/;Ag/
At = =~ . 7+ = v 7

Using the mid-point rule will lead to compatibility errors. However, the
application of the residual Rk will correct the errors that accumulate due to

compatibility.

The final system of equations that result when both f?g and f?g are applle
during the iteration process will have the form

3 [
-H G ap Re
- = x = (8-55)
!k G 0 ' A‘k Eé#—d:}: -,,J—Af
= . = 7 -
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Bere, the matrix‘g is constant and only need be evaluated-once. The matrix H
depends on the material behavior, and must be evaluated for each iteration.

As each {teration, i, is carried out, the stress and displacement {s
updated as: :

~

§"= 8"+ adu + zag o (e51)
net n A ¢
& = s + Ai + iz t (Béo)

The strain must be computed in two parts with the elastic part "given by

e
ACas = S 48, _ (B.61)

and the plastic part by

A%ge =S a6 + S' 5§ ad (B-€2)

The equations used to characterize the behavior of ‘a material and its
reaction to applied loads are called constitutive equations, since they
describe the macroscopic behavior resulting from the internal constitution
of the material. The objective of a constitutive relation is to provide a
" good description of the relationship between stress and strain for a given
material. The problem is complicated by the fact that different classes of
materials exhibit different characteristics. The goal of well-formulated
constitutive theory is to allow for all of the different observed phenomena
to be described by the same mathematical formulation.

The mathematical model governing the elastic-plastic behavior of solids,
in particular, should have the following key ingredients: i) a relationship
between stress and strain to describe the behavior under elastic conditions;
11) a criterion which will indicate the level of stress at which plastic
strains will occur;: 1ii) laws governing the growth of plastic strains as
the material s stressed/strained beyond the elastic range: iv) laws governing

the change in elastic limfit as plasticity develops (strain harding, Baushinger
effect, strain softening).

The general theory of internal var{ables has played a key role in the
development of more and more realistic constitutive models to characterize
inelastic material behavior. Typical internal variables that are widely
employed include 1) the so-called 'back-stress’ (the tensor locating the
center of the yield surface in stress-space),11) the parameters that
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characterize the expansion of the yield surface, 1il) the parameters that
characterize the ‘bounding-surface’ in multi-yield-surface theories of
plasticity (R 4-B-91, iv) the "drag-stress’ used to characterize the creep
surface.

Of the constitutive relations proposed for inelasticity, the “internal-
time' (endochronic) theory of Valanis(R.lo), Watanabe and Atluri (B.{1], The
Multi-yield-surface theories of Morz (R-5: B &, Dafalias & Popov [(R-7» R -3,
Kreig (R-91, and the internal variable theories of Onat (B.1y g3 B 141>
Fardshishen & Onat (R-151, Onat & Fardshisheh (R |61, Chaboche (R-.I72»
Chaboche & Rousselier [R.}®] all appear on the surface to be unrelated to
each other and to be based on totally diverse concepts. The work of Watanabe
& Atluri [R.193 places all the relations in perspective by showing that the
"internal-time' theory [R.losR-{I] is general enough to encompass all other
relations reported in the literature as special cases. Likewise, [B. [J] shows
that their internal time theory as expressed in differential form is no more
difficult to implement numerical than the classical Prager-Zliegler kinematic
harding theory.

The ‘Endochronic Theory' was presented by Valanis (B.20,B-2]] in 1971

‘and held out the prospect of explaining the experimentally observed phenomena

of cross-hardening, cyclic hardening, and initial strain problems. While the
initial version of the theory was subject to much criticism tB.-223, certain’
features of the theory allow for constitutive laws that are better in modeling
observed phenomena in cyclic plasticity of metals than the classical elasto-
plastic constitutive relations.

The new intrinsic time model presented by Valanis [B.IBJ in 1980 rectiflie
some.of the shortcomings of the earlier theory. The work of Valanis and Fan
tR.24) presented an {ncremental or differential form of the integral relation
of stress and strain for plasticity (B.23). The computational implementatlon
of the differential relation in (R-241 is not in a standard "tangent stiffness

. format, thus, a finite element formulation in thetraditional sense is not

possible. Watanabe & Atluri {(B.lllpresent an alternative derivation of the
differential stress-strain relation using the concept of intrinsic time
dependent on plastic strain (R.23). This alternative derivation presents
the endochronic theory in a structure that (s similar to that of classical
plasticity, thus, leading to a stiffness type finite element formulation.

While the endochronic relation as developed by Watanabe &Atlurdi (R-113
{s similar in its structure to that of classical plasticity, there are
several novel ,advantages present in the endochronic theory not present in the
classical plasticity theory. The ability to model test data for both monotonic
or cyclic plasticity as accurately as possible, with a minimal number of
material parameters makes the endochronic theory a simple theory to implement
in a finite element code- ' '

Summary of the Endochronic theory

/
The deviatoric stress, & » ls related to the mean stress, dwﬂ by

= R ' A =. .. (Bg
g .. c(a a;&} S, 3)
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with .
S = 8y S4/5 (864 )

The back-stress, %, {s defined as the center of the yield surfsce in
deviatoric stress space. One may, for the Infinitesimal stratin problem,
let the differential strain tensor,d§, be composed of elastic and. plastic
components, -

dg: d€e4-d£P . . (Eé§)

For metals, the assumption of plastic strains being only deviatoric in
nature allows one to write the differential of strain as:

€
d e (B-64)
3 .

e P
- . +de..
Jf,a de*a d 5

where de’ is the deviatoric component of strain.

+ 5ii

Following Watanabe and Atluri (R-111, one may define at a material point
» an intrinsic time measure, ' , related to the magnitude of plastic strain
that has accumulated at that point as: ’

%
7 P\ .
dy =(de :de’) _ (B- 67)
As in the classical theories of plasticity, the isotropic expansion of the
yleld surface is asumed to be a function of the magnitude of plastic strain.
The isotropic expansion is introduced though the non-negative function

£(g) with £(0) = 1. (B-6%)

A differential intrinsic time,

dz = j(j_;_ (8- 69 )

Is defined from the magnitude of plastic strain and the function describing
the growth of the yield surface. From Valanis (B.]0), and modified by
Watanabe and Atluri (R.\l], let the deviatoric stress be related to the
plastic strain through

z P
ms = ap ( pcaany 28 (8-70)

4
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In order to recover a yleld surface, allow the kernal, p(z), to be of the
singular form:

@ - P @ - f)

(B-T1
where, & (z) is a Dirac delta function and f,(z) is a non-singular function,
Substitution of (33“) into (Bfu» results in the deviatoric stress being
related through the equation as

?
5= 2p 0 S5 4 a(2) (BT
~ dz
with

z 'y 28 y
“(z)= 24 ) p(z-2 327 dz , (B-13 "
to glve
dgf 5 - ¢«
(dg': 48y 2p 0 F(3)

(8-74)

Q
Let SY==2}l€,be the initial radius of a yield surface, and let be the radius
of the yleld surface as plasticity develops.

In order to distinguish an elastic process from a plastic process,
one may look at the conditions required for d7

to be non-zero. From the
definition of the differential intrinsic time measure the magnitude of
plastic strain is expressed as: ’
(&%)
by definition

During plastic flow, from the definition of the direction of plastic strain,
one has,

P P
d & i .

~ . -~ _____/
dz dz

| (B-T6)
or o . ‘
S - X S- -y
£(3) <[ 305, (B-77)
or
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(s-«]:(s-27=Rr(3) (B- 13 )

Equation (R.78) may be viewed as the equivalent of the classical Von Mises
yleld criterion. Thus, if plastic flow occurred during an increment of
stress/strain, the above equations (B-76-8-78) should be satisfied throughout,
and at the end of the increment.

The direction of plastic strain is given by

P
dg S -«
—_—= N = | ——
dz - s, £(5) - B
where
(S-<) -
def = dz —_— (8-80)
~ Se §(3) °

which may be expressed as

pe=ry
—~
~

In equation (R.&}), the tensor A s analogous to the normal to the
classical yield surface. From the definition of 65', for admissible plastic
flow, gz must be non-negative.

d35 > 0 plastic flow admissible

, (B-80
dzg ¢ 0 plastic flow not admissible

Taking the trace of both sides of Eq. (B-81) with the differential of
plastic strain, d‘if » glves the requirement of admissible plastic flow
in terms of the normal to the yleld surface and the plastic strain.

defe N =dz 5o (B-33)

~
’

Equation (§-¥3) is not a convenient condition to apply within a finite
element codes, since the finite element code will return directly d¢ not
dgg- Therefore, the admissible flow condition is best expressed in terms
of the differential of total strain, dg.’

To express d 1in terms of d € directly requires differentiation of

equations (B.Q0) with respect to dsg.
This gives:
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zf : r
d & dg / [ dS du
——e +_.;_ = . ~ - ~
451_)((5) dz jCCl)’) _5’: (TQ —d§ (B'Xﬁ
The rate of deviatoric stress with respect to the magnitude of plastic

strain,dggg, may be obtained by noting that the plastic strain is

expressed as

P ¢ ds
d :di— = . }
£ =de’-—7 | (B-8;
which may be expressed as
4 y
dt  d£ ds
43 ds = 2ud3 (8-86)
or
ds d’il dip
—= s g (==

dz Jd3 d5 (R-8D

The tensor, ¥, which is analogous to the center of the yield surface in
stress space is expressed by the integral

z odet
o:=g}x§° ?,(z-z)c,;l dz (B-B%)

Recall that Leibnitz's rule allows one to differentiate under an integral
as

8 B
d , , af(x. b 26
z £ £ = —_— dt + x,B) —
= 5;\ f(x,4) dt L — Jx,8) ==

(8-89)
— Lex,p 22
ox

One may express the rate of change of the center of the yleld surface
with respect to the magnitude of plastic strain as

o P
de A €
— = 2 u ( = +0(0) 3 ) (%-90)
where ’ ‘
» 2 ; P ,
_A{ — 3(.(2-2) dg iz (B,ql)
~ . 22 dz’
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Substitution of (B®.87) and (B-?O) into (3-849 glves after rearrangement:

de =dg (irpce) +i*%u(—5—)-] +—§— dz

(®-92)
R AR PSP
+ < =
S} dg* f
Taking trace of both sides with normal.cy, gives
.('/() et 2 p
N ° .
dg':/\/:dg[l-f'\o,(o)-{'-_si;_-{-h“" +S d ¢ Q/f] (B?S)
- s f idgt 7
Note th;t since
e’ . 4’ s
dz ' dg B
it follows that -
2 f P 2 p :
It : JE = dgz N = 0 (RIH
d 3% dg. ds

The magnituge of plastic strain

expressed in terms of the total strain and
the normal to the yield surface is given by:

JEY 4. ®-34)
¢
where
) f/ h'x N
rn S, 5 (%) n N
C=[’*6(°)+ . : ] (97

For an increment in total strain dg,

the criterion for establishing whether
Oor not a process leads to an admissible plastic strain is expressed now in
terms of J¢ instead of dép.

To summarize, for plastic strain to be admissible, the following must
hold: ‘

(s-=):(S-«) =g

—~

(8-93)
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and

de/: N >0 9D

2

(S-o)t (S§-) <R (R-}00
or 2

(s-«): (§-%) =R
and ' ' : (& (o)

de': N <O

Here & is viewed as the back stress, or in the geometric description of

the yield surface, as the center of the yield surface in deviatoric stress:-
space. R is viewed as the radius of the yleld surface. Note that when a
monotonically increasing load 1s applied, the stress and the back stress are
co-axial, and the simple picture of the yleld cylinder moving Iin stress space
is possible. However, in the general case of non-proportional loading, the
back stress and the yielding stress are not co-axial and the geometric picture
cannot be drawn. In the case where édand % are not coaxial, the back stress
does not reduce to three principal directlions in stress space. Instead, it

is composed of six components. One may still get an idea of how the yield
surface is translating, if one plots a projection of the yield surface.

An incremental (or rate or differential) form of the stress-strain
relation in the presence of plastic deformation is required for formulation
of the computational scheme in a variational sense: Recall that the total
differential strain is assumed to be made up of an elastic part plus an
inelastic part. From Eq. 1.23 the plastic strain s expressed in terms of
the total strain and the deviatoric stress as:

¢

P _d2 | (B-1o2)
‘Ji’fdf'z}x (B-lo

The plastic strain may be expressed in terms of the magnitude of
plastic .strain, d% , and the normal to the yleld surface,# . Using Equation
(RQ0o), (Bﬂ(.,) in (B-te2), the deviatoric stress is expressed in terms of
"the deviatoric strain:

(B- 1o

1l

l.,
ds=2p (d8 - d5 N

s

1\
R
R

=7/udg—=/*

O
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or

.’ S—o()({'?f)'df
JE = 2}* d,.i_,— J%C( ~soz 7(‘_(§)2 : (B'\Vﬁ)

¢

The total differential of stress becomes:

2u(S-)(s5-%):dg _
c syt feg)r (®-105)

dg = 2pdf+ 1 (1:dg) 1~

where

($-2): k" Sy 55
S;f(é) 2

C = ’+e|(°)+

: P
h"___ jz 2h (z- 2°) dg dZ/ (B 100
~ ° d; dz, . )

with the rate form for back stress exXpressed as:

h r.
dot = 2#6’-“”2“”"&? (487 4¢")" ® 1o
p)

Defining the correct form for @ (z) and £(Z), allows the vield surface
expansion and translation of the yleld surface to be prescribed in any
manner that one wishes.

The most convenient form for 6(2) Is expressed as a sum of exponential
terms, such as

-

g(z2) = ’25_ o e (R -e%)

"By proper choice of the constants f,;and Q;, the rate of kinematic
hardening may be controlled by the form of £(g). For linear isotropic
hardening, one may use:

)= I+¢3 ® 1o

where P ls the rate of isotropic expansion of the yield surface. For
non-linear lsotropic hardening, Watanabe and Atlury have suggested the
form
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-z .
()= a +(1-aje | (B-10)

where Y and a are chosen to fit a given material.

For the exact procedure used to select the constants f: » O and @
(or Y, and a) refer to Appendix A where the incremental form for the case
of uniaxial tension is expressed in terms of ¢, and ¢, - While all that is
required for determining the constants is the uniaxial tension test, the
test must be perfqrmed over several cycles of load so that the hysteresis
loops of stress/strain are available. This cycling is needed to separate
the Baushinger effect from the isotropic expansion.

With £ (z) expressed as an exponential form as in (B.|od), the rate form
of the endochronic theory so described reduces to

Ad;a- = Eza-/ex dfh,z ‘ B-1H
with
2 .
Ecjpe = 2H din S + > 6y B - Z Nig M [0 e
and
S;. - o,
Mo = ey B

with /’=1 if the increment in strain results in a plastic process or [7=0

if the increment is an elastic process. Here N may be viewed as the normal
to a yield surface in stress space as in classlical plasticity. The rate

of growth of the back stress is given by

_a(zz) df ,

- 2 -a; d
de = f*j E iz °F (B 1140

or

dx = Z d«x d = 22, dE — o a - (- (%
~ £ o~ v ~ \ ~ ~ 7(;)

with the plastic strain given by

dzr'sz'/v(fjid'f) - ®-1p

Note that the endochronic theory departs from the classical plasticity
theory in the sense that the back stress is an assumed quantity in the
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classical development. Whereas in the endochronic theory, the evolution
of the back stress arises from the assumption of the stress being related
to an intrinsic tlme measure. The rate form of the endochronic thecry is

summarized in the table below:

Table 1 : Summary of the Internal-Time Theory of Plasticity

Endochronic Theory
Jdkhz (2}}*’-3)\) d&ur (?_—)
where 1 , X are lame constants
5('§)= H-@’é ' (linear); or

-f(?;) a+(g-a)ejrs (exponentia}l)

I

M o df
C=1+0¢(2) + (f'g‘);b + 23 ( a2
Sy £7(3) 2 Y

¢
~-a;2
€Cz) = ¢, 86(2) +3(2) + & 9.¢€
<
(&) . x () . a: (<)
=20 5 h=3xh =g-22 g4
~ ~ A . A 1},& -~
Rate of Kinematic Harding: (o)
. L |}
() P Q. & P P, 4
g ¢ =2/LL€,£<{§_-—£:'-—-(AE:JE)
3 .
(™o Sum  on [ ) gor Lor 1, 2
(<)

' () P ar < P
do = Zdet' = 2p9; de - T == (4dg:dg
Rate of Isotropic Hardening: ‘

(linear f) 0 o
S = Sfé[crf :‘JE}"
tial f
(exponential f) -vg S

=Y§§;—5; ca+(i-aje ]}(JEP: de ] ”
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The form of the endochronic theory needed to produce the classical

forms of plasticity is presented in Table 1.2.

Table 1.2 Comparison of The Classical Theories of
Plasticity with the Endochronic Theorties.

Classical Theories of Plasticity:

i) Isotropic Hardening(Prandlt and Reuss)
, - .
-7
H=‘J‘5/c'£ - rate of harding

¢ - equivalent stress

! ¢f-

<56“(: (24 + 3 X) d e

3w S (S:de)
g e 1+ (A4 mH
Endochronic Theory

?,(Z): }\:(Z) = % = 0 5
f(g)= 1+ (3*4) H's

eq. plastic strain

CJE,: 2/“, dgl_

11) Linear Kinematic Harding (Prager (R231)

Jd{qk_—_-(l}i4-3l)c’£k'<

’ L(v(.z
ch:I’. di"‘ " (g—o()
AR T F2pu) (8" T~ -
dot = C“dg'f, -

~

Endochronic Theory

1i1) Non-linear Kinematic Harding

(Mroz-Shrivastava-Dubey R4 )
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(Eisenberg and Phillips (B2]D ) .

da=c(s) d<f= (s iy

iv) Combined Isotropic and Kinematic Hardening
(Chaboche and Rousselier (RI31)

Kinematic Harding:

; (£) )
I d« = Zda(); dot = C;Jgr— P x dg

(: and P, are constants;

: Isotropic Hardening:

b3 s
= - ; 4 - -
S} R(1-e ) 4; 'b(e S})

b, Q are constants

v) Perfect Plasticity

/

ds=apde - (s-x)(

~

The presence of unwanted kinematic mechanism modes in the stress-based
element is a primary concern when selecting the ‘polynomial basis functions
used to interpolate the stress fleld within an stress-based hybrid element.
The kinematic mechanism modes that may arise due to a poor cholce of stress
polynomials are not unlike the mechanisms that may result when a displacement
based element is subjected to reduced integration.

The criteria for the stability and convergence of discrete variational
problems with Lagrange multipliers was the focus of the fundamental work of
Ladyzhenskaya, Babuska and Brezzi (LBB) {B.3301. The LBB condition may be
used as an a posteriori check of a formulation. While the work of LBB was
limited to a variational statement with only one parameter, the multi-fleld
case was the focus of the work of Xue and Atluri (B.-3|]. While the
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satisfaction of the LBB condition will guarantee the convergence and
stability of the formulation, it does not specify how the condition should
be met. The work of Punch (B.32) and Punch and Atluri {B.33], addressed the
problem of establishing criteria for the selection of stress polynomials
such that the resulting element will be stable, invariant and least order.

In general, for a stress-based hybrid formulation, if the number of
stress parameters (8 for an element is s, then the matrix H should be a
(sxs) positive definite symmetric matrix. The element stiffness matrix
EK=GH Q should have a rank of (d-r) where d is the number of generalized
nodal displacement and r is the number of rigid body modes. Thus, the
matrix G,associating the assumed stress and displacement fields, is the most
critical component of the formulation - the (sxd) homogeneous equation

G -0 | (B.117)

should have, as its nontrivial solutions, only the r rigid body modes q . By

virtue of the divergence theorem and the equilibrated stress field d;é y this
expression can be written as
Pe % = fs”z’ o di d5 = [ Iy Ly (W dv (B.118)
where the following relation holds,
R ’ =0 for ~igid bod} mod
Iij i (uy) v "3

Vim > 0 J—(ol" (d,,«) modes .

With Zfé (L(k)=0 for r rigid modes q,, the rank of G and consequently the
overall rank of K, which it determines, is the minimum of (s,d-r) at best.

For a formulation free of spurious energy modes, the minimum rank must be (d-r)
and the number of chosen stress modes must therefore satisfy

Sv,d—r' . (B,&)a

Noting that each extra term adds more stiffness (R324], least-order selections

(s = d-r) are considered to be best and are, of course, optimal with respect

to compute resources.
The G matrix not only governs the existence, but is also central to the

determination of convergence and stability through the LBB condition [ 3,2%91].

This convergence condition of functional analysis features G on a domain

and states that, if there exists a p:>0 such that

SuP «Z:lﬁl'hd‘.a‘ i‘e(u&) dV
Vﬁg ebH,<.'2,,: i 6;3- L R(9)

> p 13,0 L.
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then the finite element problem has a unique solution. (k-“T) and (k. |3)) are

necessary and sufficient conditions for stability, respectively. When 5 is
fndependent of mesh parameter h, convergence is then established. However,

this theory only provides an posteriori check on a particular finite element

formulation since the value and mesh dependence of ?’must be ascertained
numerically in each case.

In addition to accomadating all reasonable load distributions, the
chosen stress modes must be nonorthongal to the strain field in order to

eliminate spurious zero energy modes and guarantee convergence. One possible

approach to the eradication of mechanisms lies in the painstaking assembly
of the G matrix from complete equilibrated polynomial Stress, and strain
tensors derived from the element displacement field. The rank of G may be
computed by Gaussian elimination and stresses added or removed until the
desired (d-r) value s reached. This rudimentary procedure, nevertheless,
falls to address the requirement of coordinate invariance in the overall

stress interpolation, as a result of which further criteria must be applied.

Coordinate invariance entails certain Symmetry relations between the

coordinates, relations which are governed by symmetry group theory. Although
this theory applies exactly to perfect squares and cubes only, it nontheless
provides a very effective approximation for distorted elements and generates
a convenient sparse quasi-diagonal G matrix from which stress selections can

easily be made. The mathematical foundation appears fully in ( 8, 33 1, and

the complete derivation for plane elements, as well as three-dimensional
bricks, can be found in (B32,RB.33].

Considerable success has been achieved in approaches where the equilibrium

constralnts are relaxed on some (R3335) or all stress terms (R.14) by means of

displacement field Lagrange multipliers. Taking advantage of the variation of

natural coordinates in curvilinear elements, the stress tensor is expected
as an unequilibrated summation of natural coordinate polynomials Aijr~ with
unknown @*ﬂ,

Define

Gig = Ju. A‘i"‘ %ﬁ)}' d,v (R,

where ﬁkh.is interpolation functions for nodal displacement. With matrix G
in this form, the derivation of stress modes for this hybrid stress
formulation with a posteriori equilibrated local stress field can follow
the procedures used by the formulation with a priori equilibrated stress
stress fleld. The foregoing least-drder stress polynomial selections in
natural coordinate variable % are introduced into /A:Jf\, but this do not
necessarily form stable, irreducible, invariant interpolations. However, it
has been demonstrated in (B.22,R.171 that. for the curvilinear elements {f the

14

stress mode is chosen to be of the same polynomial form as that of the stress

mode which is derived by using group theory for squares and cubes, then the

rank oélg:ls maintained to be (d-r) even for very severely distorted elements.

Further, it has been clearly demonstrated (B.352,3.73) that the least-order,
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invariant, lsoparametric curvilinear hybrid elements are less distortion-
-sensitive and- lead to more accurate results compared to the standard
displacement elements in a variety of examples.

For the present l6-node isoparametric hybrid element, 42 stress component
( = 48-6) should be chosen to form the least-order, stable, invariant element.
The following stress polynomial selection was made based upon the suggestions
provided in (8§ 1.

86 = B+ (X T B+ fay o+ Bsy + pexy tPrYy +s 73
+BrXYYy + G Y ¥ (B \s4c

86, = Bu+QBnxt B * Gy + (35 zz+(3.‘z'} tlayy iy

M CER LA A (R.id4
2= B EaT Bt - (Pt fudy * Bu X +BaY Hparxd
T P 'y + Bse x Y’ V (2.134

= ' : 3 )
2= Bt BT Gt t Gud - 9T - Py Xy oL pri-dge
/ 2 f
Tl ey (B i
2
(R. 1

S8 = fue * PasX + Puy—(Co+ ) 7+ Brg ¥ +pus X - g "3'2

I~
~
N

INTERPOLATION FUNCTIONS FOR DISPLACEMENT

Standard isoparametric shape functions were chosen for this 16-node
stress-based hybrid element. The local coordinates and nodal numbering
are shown in Fig. B‘. and the 16 shape functions are presented as following:
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- Definition of element nodal numbering and natural coordinate.
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-NODE STRESS-BASED HYBRID ELEMENT

FLOW CHART FOR THE IMPLEMENTATION OF 16
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USER MANUAL ‘ .

There are two keywords and some modifications in the parameter data sectlion
of. NESSUS input data file. '

» ELEMENTS
There 1ls one more element type

50 : l6-node hybrid shell element. None of the five element properties are
effected.

«
7
’7 13 14 13
B[ i 12
L TS O 'Q f
I Ay e A4
> ~ .
\~\.ﬂ ;
8 -
| 7 2

= HYBR

This option enables the hybrid shell element. One parameter {s required

parameter 1 : "427 , NSTSFN , number of stress function parameters-

%+ ENDO

This keyword invokes the endochronic theory. no parameter is required.

NOTE : When % HYBR is flagged , * BFGS can not be used.

There are two new keywords in the model data section of NESSUS input data
file.

« HYPR

This data segment is used to specify the material properties of the hybrid
shell element. Five real numbers are required. These are (1) thickness (dummy
(2) Young's modulus., (3) Poisson’'s ratio, (4) t{nitial yteld stress, and (5)

—

== A4 strain hardening coefficient.

T

‘I£%, ENDO is flagged, the last two property data are lignored.
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% ENDO

This data segment is used to specify the endochronic theory properties of the
hybrid shell element. A maximum of ten property data can be specifled.

In the linear strain hardening case, the first data Is = S5 . G ,
/, — mem——
the second data 1s He: __l_OC?Q_' , and the others are dummy. ° 24 YEM
yag
» PROP

If % HYPR Ls flagged, %= PROP is lgnored.
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SUMMARY OF TAPES

 There are eight new data flles in the hybrid shell element portion of NESSU!

(1) EYBR.DAT (Tape 3)

-{
This filef contains H and G for each element. G s calculated at the
begining. H is calculated at each iteration. -~

(2) STRES.DAT (Tape 2)

This files contains the stress vector of each Gaussian point.

(3) RES.DAT (Tape 7)

This file contains residual forces arising from enforcing the compatibility

condition. )
R

<R S { < < \ ( 4 Ly \ L
_ - — 9. - ! \ : \/

Rk - ) nAy,~“-‘< S Z . LS SR R B a

These residual forces are used to calculate , the stress parameter

increment.

(4) EPIND.DAT (Tape 10)

This file contalns an index of each Gaussian point indicating whether it is
elastic or plastic. .

(5) STRAN.DAT (Tape 13)

This file contains the strain vector of each Gaussian point . These strain
vector are calculated from £~ relatlions.
. -~ -~
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IMPORTANT SUBROUTINES AND VARIABLES

1) CAZETA

This subroutine i{s to calculate the incremental internal time parameter

DEPL ¢ Incremental plastic strain
DZETA : Incremental internal time parameter
2) D3D1léN

This subroutine is to calculate the shape function derivative for the 16-n¢
shell element. All the variables are the same as the other similiar subroutir
3) FORMAM

This subroutine is to set up the A matrix in each Gaussian point.

G, H, and Q : natural coordinate of the gaussian poidts

D : A matrix :
XINVER : base vectors of the centrial curvilinear coordinate
NSTSFN : number of stress function been used, 42

4) FORMBV

This subroutine is to calculate incremental Stress parameter

BETAIN ¢ Incremental stress parameter

DISWRK : displacement increment

ELEM1 : H matrix

ELEM?2 : G matrix

RSTRAN : residual force arised from compatibility
4) FORMCM

This subroutine is to set up the elastic strain-stress relation matrix, C, at

each CGaussian point.

CMATRX : C matrix

CHAR : elastlic material property at Gaussian points
5) FORMGM

This subroutine is to set up the G matrix. It is called only once for each
element.

" GMATRX : GC matrix
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(6) EPSN.DAT (Tape 22)

This file contains the total plastic strain vector and the incremental plastic
strain vector of each Gaussian point.

(7) ZETA.DAT (Tape 14)

This file contains the total internal time parameter and the incremental
internal time parameter 5; of each Gaussian point.

(8) VALGLO.DAT (Tape 30)

o
<

This file contains the accumulated nodal values of g v €, €, and ?; - These
values must be divided by the number of elements which contain the node to get
the average values at the node.
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This subroutine 1s to set up the plastic stress-strain relation matrix, D

DMATRX : D matrix
HYSIG : stress vector
ENCHAR : endochronic theory property
STEMP : stress deviator :
13) PLASTC

t

This subroutine is to set up the plastic strain-stress relation matrix, C.

CMATRX : C matrix

14) RESID

This subroutine is to set up the residual forces arised from equilibrium a
compatibility.

DISTOT : total displacement , -
DISINC : total incremental displacement up to iteraton i
RXII : incremental displcaement of i{teration 1
Xp : equilibrium residual force , total residual force later
XPp2 : compatibility residual force
STRN1 : straln ( strain-displacement )
STRNZ : strain ( strain-stress )
15) S3D16éN

This subroutine is to set up the shape functlions of 16-node shell element.A
the variables are the same as the other similiar subroutines.

16) SIGBAR
This subroutlne is to calculate the effective stress and stress deviator.

SIG . stress vector

S : stress deviator
SEQ : effective stress °
17) UPEPSN

This subroutine is to update the total plastic strain and total internal tin
. parameter after each load increment.. )

18) YIEL2?

This subroutine is to calculate the radius of yield surface from internal
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COOR * coordinate of each nodal point in one element

6) FORMEM

This subroutine is to set up the H matrix. It {g called in each {teration for
each element.

HMATRX ! H matrix
EPIND * index of elastic/plastic for each Gaussian point
7) GHOOK

Strain relation matrix, D, at
each Gaussian point.

DMATRX : D matrix

8) HYOUT

This subroutine print out the displacement of the hybrid shell element.

9) HYSTIF

This subroutine is to set up the element stiffness matrix for the hybrid
shell element.

EHSTIF : element stiffness matrix
ELMRHS ¢ element force vector ; it is set to zero now
10) HYSTSS

This subroutine is to calculate the Stress, straln, and plastic strain.

EPSN : total plastic straln

SIG ‘ Stress in iteration 1-1

SIGTT : Stress in {iteration {

STRN2 ! strain came form Strain-stress relations

DDSTRN - ¢ Incremental strain

ZETA ! total interal time parameter

DEPSN ! Incremental plastic strain

DZETA : Incremental interal time parameter ’
11) LsSNODE

This subroutine is to calculate nodal values of stress, strain,

plastic
Strain and internal time parameter.

12) prLaDMT
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time parameter ZETA.

SYT : radius of yield surface
FP strain hardening coefficient
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SUMMARY OF LOGIC FOR SUBROUTINE HYSTSS

The Gaussian point had previously yielded. Now

check to see 1fQLH T

where J_ is the

effective stress of iteration i, & vlr )Ls the
radius of yield surface of Lteration ﬁ

1

NO

The Gaussian point is unloading

elastically. Calculate EL - C A(?L

and return

246

YES

The Gaussian point had ylelded
previously and the stress is sti

increasing. Calculate<5<~. AZT
Where -r N
' . 13‘2_. : ‘.’“ -
4 Ef = -
~ S o A (7Y
- -’J ) (H‘



SUMMARY OF LOGIC FOR SUBROUTINE HYSTSS
(continue)

The Gaussian point had not previously ylelded.
Now check to see LtfQ'y &<
9T (B)

NO - YES
The Gaussian point s still E The Gaussian point has yielded
elastic. Calculate 4 §< - CQ"\,‘.“ ! during the fteration. The portion
and return - =~ : of the stress greater than the

yleld value must be reduced to the
yield surface. The reduction
: factor R {s given from fig. below
. to be R = AB/AC . Then use
: conventional displcement based
plastic scheme to calculate the
overshot portion of 4G“and
corresponding as’ -

A

\\\\ 2

N
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1.0 INTRODUCTION

1.1 Introductory Remarks

Monte Carlo traditionally has been considered to Be a "last resort'
method for solving a prébability or statistics problem because of high
cost relative to accuracy of the results. However, in recent c{mes a
combination of the development of new efficient numerical techniques
and new digital computing hardware have made Monte Carlo more attractive.

Presented in this report are descriptions of the following Monte
Carlo programs dedicated to probabilistic structural analysis.

1. "Conventiomal'' Monte Carlo

2. Variance reduction using antithetic variates

3. Direct evaluation of the probability integral

4. The Harbitz method

Provided in the following sections are descriptions of how each method

works as well as a comprehensive study of the performance of each.

1.2 The Basic Problems

Consider the random variable Z as a function of the random vector

X = (X, X

93 X)

Z = h(X) (r.n

The.distribution of each Xi is known. It is assumed that all Xi are
mutually independent.

One problem of probabilistic mechanics and'design,is to compute a
point probabilic;{

P(h({) = h ] . (1.2)

el
i
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exceegance o7 a2 dellec—

For example, D could represent the
rion or perhaps the probability of Izilure.
The second problem is the extension of the first To the construction

of a cumulative discribution function.

-\ < s
F_(z) = P{n{X) - z] {1.3)
& v
Clearly the two problems are identical, but optimal strategies for anealysis

"

mav differ. For examrle, to comstTuct the CDF, one opntion would be tc
obrain point estimates of I, at selected values of z, then Iit a curve

through the peints. A second option would De teo conmstruct an empirizel

from a2 large samp:ie of Z, (See Sec. 2.4).
5 )

1.3, Random Samplies

‘The basis for Monte Czvlo simulacion is 2 stendard¢ uniform distribu-

-ion randow numbar gsnarztor. Methods oI generaling URIIOTm variates ars
generally basec on recursive caiculations of residues of modulus m ITom &
linear transformacion [ 1}. Most large computers have such & generetor
as a2 librarv function.

1Y

4 varietv of methods can be emploved tc generate variates from

distriburions. Presented in Appendix A are algorithms used for the progream

presented herein.
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2.0

2.1

all

The

""CONVENTIONAL'" MONTE CARLO

Point Probability Estimates by Conventional Monte Carlo Using the

Bernoulli Parameter

Consider a function, h(é), where % is a vector of random variables,

having known distributions. It is required to compute,

p = P(h(D ] 2.

problem can be reformulated as

p = Plg(X) = 0] (2

where g(%), called the 'performance function," is

X.,
V1

g(X) = h(X) - h_ 2.

In a direct Monte Carlo scheme, a sequence of K random vectors,

1)

.2)

3)

can be sampled, and in turn, a sequence of g3 i =1, K computed. Define

Thus, Yi has a Bernoulli distribution

it

P(Yi

1}

P = -
, ‘(Yi 0) 1 )

where the Bermoulli parameter p is the same p as in Eq. 2.1.

The maximum likelihood estimate (MLE) of p is [ 5]3

o
1]
Rl
Il ~1)
<

i=1
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1) =p (2.

.4)

(2.6)



. < ~
But ZYi is just the total number of g ~ 0, denoted as No’ Thus, p is

just the fraction of the gi‘s less than zerto

z

N o
P = N . (2.7)

A flow diagram of conventional Monte Carlo is given in Fig. 2.1.
A listing of a computer program for conventional Monte Carlo employing

the Bernoulli parameter is provided in Appendix B and anexample of the

output is shown in Fig. 2.2.

2.2 Confidence Intervals on the Bernoulli Parameter, p

~

The MLE of p is 5. Because of sgmpling error, p is only an estimate,
and the key question is how close is p to ;. Confidence intervals are
described below. Note that these confidence intervals refer to
sampling error of the Monte Carlo process, not uncertainties aésociated
with the parameters of'Xi. .

Consider ﬁ,

-1 7, / (2.8)
i=1 |
‘The mean and variance of 5 are [ 5]
E() = p (2.9)
) = R (2.10)

By the central limit theorem, p will approach a normal distribution as

K - . Confidence intervals for p are constructed using normal distribution

mathematics,
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(1)

(2)

(3)

(4)

POINT PROBABILITY

ESTIMATE

Define:

(a) g

(b) Distribution, and

(u, o) for all Xi

<

Obtain random sample

X, = (Xl, XZ’

X))

/

Compute g(Xi) ‘-

Y

Repeat (2) and (3) to obtain \

sample of g(%i); i=1,K

Count fraction

<
of g(X;) - 0

CONSTRUCT CDF

Sort g(x) to define

empirical CDF

| o

A

P

a

Plot CDF
-

Fig. 2.1 Flow diagram of conventional Monte Carlo
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MONTE CARLO SOLUTION

LIMIT STATE FUNCTION : R=S

‘

SAMPLE SIZE, K= 100

NUMBER OF RANDOM VARIABLES, N=

2

RANDOM- VARIABLES

VARIABLE DISTRIBUTION MEAN STD DEV
R WE TBULL . 200@0E+02 . 20Q@RE+01
) EVD . 10020E+@2 . 20000E+01

STATISTICS OF Y

MEAN = .10@18E+02
STD DEV =  .27499E+01
MEDIAN =  .966@4E+01
cov =  .274SQE+00
NUMBER OF NEG Y VALUES= Q.

Fig. 2.2 Output of conventional Monte

Per formance function; g(R,S)

258

<}——————— Note that Y is the same as g(X);

these are the statistics on the

limit state function.

r———— This is p
PERCENT OF TRIALS= .0BQ0B0200¢

Carlo program. (No sorting requested)

=R-S



~ / é 1 -~ é < < - o 1 - o .
P = 2ar2 v ( K Yip e Za/2 ES‘E——RL (2.11)

~

where p is substituted for p in the variance. The probability that p will
be bounded by the lower and uppper limit is l-a, where ¢ is the confidence
coefficient. Z./2 is the standard normal variate corresponding to /2.

Commonly used values

- ¢ %a/2
.10 1.64
.05 1.96
.01 2.58

The confidence interval of Eq.2.11 relies on the central limit theorem
and must be considered as only an approximation for finite K. 1In general,
the approximation is considered 'valid" if Kp > 5 [ S].

Eq. 2.11 can be written as,

p (L -Y) : P : p(1 +v) - (2.12)
where,
Za/2 /5(1 - 1)
= ; ; . (2.13)

Eq. 2.13 is displayed in Figs. 2.3 and 2.4 for 907 and 95% confidence
intervals respectively. These figures show the sample size requiremencs
for confidence intervals of a given width and level. For example, if the
point probability is expected to be about 10_3, and it is required to have

+
p within -~ 10% of p with a confidence of 90%, then it is necessary to have

a sample of size K > 200,000.
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2.3 Computer CPU Time on the CYBER 175

The conventional Monte Carlo program of Appendix B was exercised on
several problems using all five of the available distributions. CPU time
was recorded for each program. It is assumed thaé this conventional Monte
Carlo program will provide an upper bound to CPU time relative to other,
and more efficient, Monte Carlo schemes. The CYBER 175 is the mainframe.
computer at the University of Arizona, and all results relate to this machine.
Recorded CPU time for several éxamples was consistent. Compilation and

loading time for all cases are shown in Table 2.1. These are average values,

. hut there was little variation.

Exécution CPU time essentially depends only upon the number of variables
and not on distributional forms or performance functions. Fig. 2.5 illustrate
the CPU execution time per variate as a function of sample size K. Total CPU
time is obtained by adding compilation and loading time to execution time.

A sample prograﬁ was run on both the CYBER 175 and the VAX 11/780 for
a time comparison. The results shown in Table 2.2, reaffirm the fact that
the VAX is too slow for production Monte Carlo.

To get an idea of computer charges for running Monte Carlo, Fig. 2.6

is provided. This is the commercial rate of the UA CYBER 175 for low priority

jobs.
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Table 2.1

Compilation and Loading CPU Time for Conventional

Monte Carlo Program on CYBER 175

CPU Time (sec)

Compile 1.0
Load 0.25
Table 2.2

Comparison of CPU time Between CYBER 175 and VAX 11/780
for one Example Problem

Time (sec)

CYBER 175 VAX 11/780
Compile 1.0 14
Link 0.25 . 5
Execution 7.5 ‘ 30
TOTAL 8.75 49.0

*
There were 2 variables; K = 30,000.
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10.0 p=— CPU EXECUTION TIME PER
— VARIABLE, T

(SEC)

1.0 po= "

T(SEC) = (l.4-x 10'4)x

L/

0.1 p— //

N
(V8]
~
w

10 10 10 10

SAMPLE SIZE, K

Fig. 2.5 CPU execution time per variate on CYBER 175 as a

function of sample size K.
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COST, D

D=0.036T
o

50 100 SECONDS, T_
T R % N I N

, MINUTE
1.0 2.0 INUTES

Fig. 2.6 Cost in dollars ($), D, as a funccion of time for

the UA CYBER 175; lowest priority.

265



2.4 Comparison of Monte Carlo to Wu/FPI

Computational efficiency was the motivation for the development of the
Wu/FPI program. It is generally known that Monte Carlo is inefficient
relative to a fast .probability integration method. Because the cost of
conventional Monte Carlo depends upon the accuracy and probabilicy level
required, a general direct comparison can't be made. However, an example
presented in the following clearly demonstrates the high cost of Monte
Carlo.

Suppose that it is required to provide a Monte Carlo solution such
that the 95% CI for p is within * 10% of 5. The CPU execution time for the
CYBER 175 can be computed from Figs. 2.3 and 2.5 for a given probability
level, ;. This CPU time is shown in Fig. 2.7 as a funcrion of the number of
variables in g(é) for 8 = 2 and 3 (p = ¢(-8)). At these levels Monte Carlo it
two to three orders of magnitude more expensive than FPI. And the FPI
solution is likely to be more accurate. Moreover, for smaller tail proba-

bilities FPI gets no more expensive while Monte Carlo will break the bank.

2.5 Estimating the CDF of a Random Function

N
wm

.1 The Empirical CDF
Conventional Monte Carlo provides capability for estimating the complete
distribution function of a function of random variables. Define the random

variable Z, as a function of the random vector %.

™~
1]

Z(X) (2.14)

v
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Fig. 2.7 A Comparison of CPU Execution Time on the CYBER 175 Between

Conventional Monte Carlo and Fast Probability Integration

—
/

Conventional Monte Carlo

(95% Confidence Intervals Within : 10%)

FORM BY
RACKWITZ-FIESSLER

NUMBER OF VARIABLES
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A random sample of Xi; i = 1, K is used to generate a random sample of

Zi; i 1, K. In turn, a; empirical distribution function of Z can be
constructed using methods of probability plotting. The empirical CDF,
denoted as Fi, will be an estimate of the CDF of Z, Fz(z).

Various formslof F, have been proposed [ 3, &4, 6]. The values of

Fi below correspond to Z(i) where Z(i) is the ith smallest value of the

random vector Z. Thus, Fi H F'(Z(i))°

i
1. Hazen; F, = 1-1/2
i K
2 Gumbel; F, = 1
. 71 K+1
) . 1-20.3
3. Median ranks, Fi S a+ 0.4

Through prior experience on extensive Monte Carlo simulation, this author
tas found that the Hazen formula consistently provides "good estimates"

of F7.

<

2.5.2 The Sort Routine

To construct the empirical CDF it is required to sort the random

sample % to obtain an ordered sample %o' Let Z(i) denote the ith smallest

value.

The routine used in this Monte Carlo code is program QUICKSORT which
is considered to be the fastest available [7]. A description of QUICKSORT it
given in Appendix C. The Fortran statements For this code are provided

in the program listing in Appendix B .

CPU time requirements for the sort routine can be relatively large for

large samples. Fig. 2.8 shown CPU execution times as a function of the

size of the % vector.
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CPU SORT TIME, SEC.

1000

100 —

1.0

SAMPLE SIZE, K

Fig. 2.8 CPU sort time (execution)as a function of sample

size for the CYBER 175.
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2.5.3 An Example.

Shown in Fig. 2.9 is a table of the sorted vector Z(i) and the corres-
ponding Fi for the example of Fig. 2.1. This is the data required for
plotting. The empjrical CDF of Fig. 2.10 was done by hand, but in general

such graphs can be automated using a computer graphics package.

270



nnn

wouwonowonononn

non non

1

<)
11
16
21
26
31
36
41
446
S1
S6
61

&6

71
756
81
86
71
96

1

6
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16
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26
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81
86
71
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SORTED VALUES OF Z AND THE EMPIRICAL CDF
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.48457E+Q@1
.S9944E+QA1
.69827E+01
.76136E+021
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. 10500E£+00
. 155S00E+020@
. 20500E+020
. 255@RQE+00
. 30S@RE+20
. 3550QE+00
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-A47464E+0Q1
.S56150E+0Q1L
. 68500E+31
«7@0780E+0Q!
.84534E+@1
. 888S0E+Q1
. F2372E+01
. 2577QE+Q1
.98157E+01
. 10256E+Q2
. 10631E+02
<10791E+@2
. 11125E+02
- 114Q9E+Q@2
- 11912E+@2
. 12413E+@2
. 12867E+02
.13131E+@2
- 13638E+@2
. 13123E+Q@2

.35000E-01
.850QQE-0Q1
. 13S00E+0Y
. 18500E+00
.2350QE+00
. 28500E+00
. 33S0E+Q0
. 385Q0E+00
.435022E+00
. 48SPQE+00
. SISRRE+Q0
. 585@BE+00
. 6350CE+00
. 48S00E+20
. 735@0E+20
. 785@BE+20
. 835QQE+00
. B8SBRE+00
. 93S@BE+00
. 98500E+00

. 435626E+01
.S7182E+081
-.659210E+Q1
.710Q4E+0Q1
.8472BE+01
.89137E+01
.92557E+01
. 95829E+01
.98782E+01
- 18370E+02
. 104644E+@2
. 10846E+02
- 111862E+02
.11616E+02
. 11933E+02
. 12573E+@2
. 12873E+@2
L 13142E+@2
. 137@89E+@2
. 133@35E+@2

-45200E-21
. 9500BRE-21
. 143500E+00
. 193500E+020
. 243500£+00
. 293500QE+20
- 34500VE+20Q
. 39500E+00
-44500E+00
. 495Q0E+Q00Q
. 34500E+0Q0
- 593500E+00
. 64500E+QQ
. 6935CG0RE+QC
.74500E+Q0Q
. 79500E+00
-84500E+092
. 89580E+00
. 945@0E+Q0Q
. 995S@0E+CQ

2.9 Sorted Z. and corresponding empirical CDF for the example of Fig. 2.1
i
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3.0 THE VARIANCE REDUCTION METHOD

3.1 Preliminarvy Remarks

The variance of Monte Carlo estimators can be redﬁced, relative to
straightforward sampling of Chapt. 2.0, by appropriate operations with
negatively correlated samples. Ang and Tang [ 1] present several examples
which demonstrate dramatic improvements in efficiency realized by variance
reduction methods. -

A variance reduction computer program, tailored for structural
mechanics analyvsis by providing point probability estimates of functions of
random variables has been developed. The listing is given in Appendix D.
To assess performance, the program has been exercised on several examples.
Results preseﬁted in Section 3.6 show dramatic improvement of variance
reduction over conventional Monte Carlo in some cases. In other cases,
the improvement is cnly modest. Some general conclusioﬁs are presented
in Section 3.7.  For the most part however, for a given problem it is dif-~
ficult to predict how much improvement one can expect with variance reduc-

tion.

3.2 The Essence of Variance Reduction

The goal of analysis is to estimate

p = P(h(§) <h] (3.1)

Suppose p and p' are two unbiased estimates of p. (The method for obtaining
a point estimate of p is described in Sec. 3.4 below.) 'The two estimators

may be combined to form another estimator

P2+ (3.2)
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The expected value of p is,
- 1 - y :
E(p) = 5(E(p) + E(pD)] =P (3.3)
which means that E'is an unbiased estimator.
The corresponding variance is

v(p) = FV(p) + V(p') + 2 Cov (p, p')] (3.4)

)=

If p and p' are statistically independent, for example, based on two separate

and independent sets of random numbers,

I

v(p) =+ (V(®) + V(p"] ' (3.6)

Thus, the accuracy of the estimator 5 can be improved over that of the
indepéndent case if p and p' are negatively correlated. Ang aﬁd Tang cite
several examples (no scructﬁral analysis) where variance reduction can
provide a dramatic improvement in efficiency of prﬁbability estimation [1].

An estimate of p is obtained by several samples, Ei; i=1,K.
1 P, . (3.7)

all Ei are independent. Note that Pp will approach normality as K = «
as a consequence of the central limit theorem.

The mean and variance of P are,

E(pE)

=P . (3.8)
: 2
V(pg) = o /K _ (3.9)
P
where oi is estimated as,
K .
2 1 - 2
S5 T Kol iEl(pi - pg) | (3.10)
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3.3 How to Obrain Negatively Correlated Samples

4
Suppose that the uniformly distributed variate uy is used to generate

a number Xi from a given distribution (See Appendix A). Then the uniform
variate ui =1 - uy will produce an xi such that X, and xi will be negatively
correlated. The ui are called "antithetic" variates.

And in general, if Ups Ugy oo un is used to generate ﬁ, and 1 - ul,
1 - Upy o v - 1 - U is used to generate 5', then 5 and p' will be nega-

tively correlated.

Such a procedure works well when the integral‘cransform is used, e.g., .
Weibull, EVD. One uniform variate u; is used to generate one x,. But
where Box—MuIler is used to generate normal variates, two u, are chosen
(See Appendix A). While the resulting g and x£ will be negatively correlated,
the correlation coefficient will not be -1.0. An improvement  can be made
by choosing xi as a '"mirror image'" of X5 in the distributions. This can

be done by

where p is the mean of X.

3.4 How to Obtain Point Probabilitv Estimates

3.4.1 The Two Variable Case

‘The structural reliability problem in which p is the probability of
failure will be used to illustrate how p and p' are obtained. Consider
the design case where the two variables are R (strength) and S (stress).
Estimate p, where

<

p=P[R-5%0] . ‘ (3.12)
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<
Both R and S are random variables whose density functions are shown
in Fig. 3.1. First S, having been identified as the variable having the

largest variance, is the 'reference." A random variate Ri is sampled from

-

the other factor, R. An estimate of p is

/

P, P(S > Ri)

]

1 - FS(Ri) (3.13)

where FS is the CDF of S.

It should now be apparent why sampling is done on the smallest vari-

ance term. p is a ''good" estimate of p if the distribution is narrow, and
is exact as Op 7 0.
Now the antithetic variate Ri is sampled as described above. Because

it is negatively correlated to Ri’ its position relative to Ri vill be as

shown in Fig. 3.2. Then,

“y ,
p; = P(S > R))
= _r 1 . ‘ 3 14
1 fS(Ri) (3.1%)
and the ith estimate of p is
5. == (B, + D) (3.15)
i 2 i i

As a second example, consider again the case where R and S are the basic
variables, but now where OR < OS. In this case, R would be the reference

variable. Random points Si and the antithetic variate Si are sampled from

S. The estimates now are,

el
]

Fo(8)) (3.16)

ol
i

= Fp(8))
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PDF of R, f

R
The '"Reference'" Variable. |
PDF of S, fS (maximum 15///
variance variable)
- | R
. R b
i l
_.__A = P
1 P(S > Ri)

Fig. 3.1 Estimate of p using one point sampled from the minimum

variance variable.
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PDR of Rs fR

// s s
/’;-4/://; .
R, b

XX
o B
‘ B
2 = ) - Al = 1
Py P(S > Ri) P, P(S > Ri)

Fig. 3.2 Estimates of p using a point Ri sampled from R and che

antithetic variate of Ri’ denoted as Ri
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Thus, it is seen that the variable type (stress or strength) must be identi-
fied to obﬁain the proper form for computing estimates. 7

Fig. 3.2 shows why negatively correlated variables tend to provide
good estimates. Being on both sides of a distribution, Ri and Ri combine to

produce an ''average' estimate of p.

3.4.2 The General Case

In general, the performance function, g(X) = h(X) - ho is a non-linear
function of several variables. The method of obtaining a point estimate of
p is an extension of the scheme for two variables.

The reference variable is defined, not as the one having the maxiﬁum

variance, but rather the one having the maximum impact. For example, if

‘g = 53R -S§ (3.17)

and oz = GS/Z, clearly the randomAvariable, Rl = Sé will have a larger vari-
ance than S. Thus, we sav that R is the maximum impact variable.

In general, the maximum impact variable can be found by estimating
ag/BXi for each Xi. The maximgm impact wvariable, denoted as XM’ is that
Xi for which |8g/8Xi| is the largest.

The sign of 3g/3X, identifies variable type; stress if (+) and strength
if (-). As indicated above, the "type" of XM must Se known to choose ;he
_appropriate form for estimating p (e.g., Eqs. 3.13 and 3.16).

The estimates p and 5' proceed as follows. Sample all variables but

(this is done by the secant method

/

XM' Let g(%) = 0, .and solve for Xy

in the-program).
Xy = h‘&o) _ (3.18)

where Xy is the vector of sampled E minus XM.
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The estimate of p is, 2

‘ -~

p = (F (xM) if XM is a strength variable ( (3.19)

1 - F, (XM) ik XM is a stress variable

Y

’

To obtain p', the antithetic vector ﬁé of %q is used in Eq. 3.19.

3.5 Confidence Intervals on p

Noting that P is normally distributed, approximate 1 -a confidence intez

vals on p can be constructed as [5],

z s zZ .8
2P 4 2
pE__ﬁZ___:_<p<pE+_“_/___p (3.20)
Y K ' YK
or,
- 2
~pa(l ) <p <p(1+ Y) : (3.21)
wnere,
z~/? = standard normzl variate (absolute value) at
probabilicty level /2.
z C
2
Y =_a_/_-_.__p (3.22)
¥ K
Cp= sp/p}: ) | (3.23)

The UA variance reduction program chooses K to produce a specific

confidence interval. For example, if you want to sample until the 95%

+
confidence intervals are - 107 of Pg>

- T - 3.24
v = 0.10 2475 1.64 ( )
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and solving Eq. 3.22 for K,

K> —— = 269 C2 (3.25)
Y P

To find Cp’ an inicial sample of K = 1000 is chosen and an estimate
of CP is obtained. Then if K < 1000 in Eq. 3.25, the process is terminated
with narrower confidence intervals than requested. If K > 1000, the program

will continue to sample to that value.

3.6 The Variance Reduction Monte Carlo Program

A flow diagram which outlines the logic of the variance reduction
program is provided iﬁ Fig. 3.3. Sample output of the program is shown
in Fig. 3.4 with some commentary.

Two versions of the program have been developed. An interactive version
(IVARED) runs on the IBM PC/XT. Program VARED runs on the VAX or CYRER 175.

A listing of VARED is given in Appendix D.

3.7 Examples of the Performance of VARED

Twelve examples of the use of VARED to produce point probability estimate
are provided in Tables 3.1 through 3.12. Point estimates by VARED are compared
to the exact solution (closed form or POFAIL) if available. The exact
solution, provided by program POFAIL, is employed for performance functions
involving two variables. For larger problems, Wu/FPI is used. For the
VARED solutions, 957 confidence intervals (o = 5%) are specified along
with vy = 0.10.

To compare variance reduction with conventional Monte Carlo,'sample'

size requirements and CPU time for the latter are extracted from Figs. 2.4 and

2.5 and are presented in the tables.
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(1)

(2)

(3

(4)

(8)

Dgfine
(2) g(X)
(b) Distribution, and (y, o) for all Xi
(c) 1 - a; confidence level
(d) y; width of confidence bound

(e) K, the initial sample size

y

Identify maximum impact variable, XM

i

Sample a random vector %i

(all variables except X%)

Compute pi I

Obtain the antithetic vector §£

Compute p{ i

Compute Py |

Repeat steps (3) through (7); L = 1,X }
|

Y

Conmpute Pr and 1-d confidence bounds.

Are confidence bounds with pr(l h Y)?

YES NO
] ]
Y -Y

' Print Resulrs

Compute Kc’ the addicional samples

i0 i
(20) X required to bring 1 - a confidence

bounds within pE(l -v)

i

(11){ Repeat steps (2) through (7) for i =1, Ko

[

Synthesize data collected in (8) and

(12) (11) aond print results

Fig. 3.3 An outline of cthe variance reduction Monte Carlo program
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Fig. 3.4 An example of the output of the variance reduction Monte Carlo

Program with commentary

MONTE CARLO SOLUTION

LIMIT STATE FUNCTION : G=R-DSQRT (SQ@Q.*P*¥¥2+1.92%T*x%x2)

This value is arbitrary;

it is the size of the

SAMPLE SIZE = 10002 first sample used to
NUMBER OF RANDOM VARIABLES = 3 estimate the tocal
required sample size, K
CONFIDENCE INTERVAL = 95.00 % Ensures that 95% confidence intervals
GAMMA = .10 on p will be within - 10% of cthe
estimator, Pp
MAX. IMPACT VARIABLE = X( 1)
VARIABLE TYPE IS STRENGTH
RANDOM VARIABLES
VARIARBLE DISTRIBUTION MEAN STD DEV
R WEIBULL . 4B0@RE+Q2 .30000E+01
P LOG . 98700E+0Q0Q . 16000E+Q0
T EVD . 20Q0Q00E+0Q2 . 20000E+01
ESTIMATE OF P = . 16042E-@2 This is the first estimate of p
95.00@ 7 CONFIDENCE INTERVALS ARE
PL = .117256-02 PU = . 20360E-02 Note that 95% confidence

<
intervals exceed - 107%.
Thus, a larger K is

required. (See below)

STATISTICS OF P :

MEAN = . 16043E-82 283

P D N TS |



STD DEV = . 6F662E-B2

MEDIAN =  .360R4E-03
cov = .43422E+01
Based on the first sample of K = 1(
this is the total K required for tt
desired confidence intervals. K is
computed from Eq. 3.25 which requir
K FOR GAMMA = .10 1S 7244 Cp. This is why the first sample c
1000 is taken. ’
ESTIMATE OF P = . 1803BE-22

95.0@ % CONFIDENCE INTERVALS ARE

PL = . 15509E-82 PU = . 28550E-02

Note that the confidence intervals do not qui
meet the specifications. This is because the
original estimate of Cp = 4.34 was small rela

to the improved estimate of Cp = 6.24

STATISTICS OF P :

MEAN =  .18348E-02
STD DEV =  .11456E-01
MEDIAN = .29017E-03
cov .

L6243 6E+01

iYOU HAVE ANOTHER DATA SET 7(Y/N)

Note: The size of the sample required K depends upon Cp (Eq. 3.25).
‘In this problem Cp is relatively large implying that a relactively

large K is required. This same problem is pfesented in Table 3.7.
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Table 3.1 Example of the Performance of a Variance Reduction Monte Carlo

Program; EXAMPLE 1

DEMONSTRATING THE PERFORMANCE OF THE UA VARIANCE REDUCTION MONTE CARLO PROGRAM

EXAMPRE 1

PERFORMANCE FUNCTION: g =R - S

* : *
Variable Type . Mean/Median : Std. Dev./ COV
R ' N 50 =5
S N 20 12
RESULTS:
Probability Total Saﬁple \
of Failure CPU-Time(b) size, k(¢
Exacc'® 1.051E-2 ' : -
Wu/FPI ‘ - —
Monte Carlo :
Variance 1.118E-2 2.04 - 160
Reduction(d)
Monte Carlo
Conventional
(Bernoulli 11.2 SE4.

parameter)\®

Notes:

(a)

(b)
()

(d)
(e)

Exact value using POFAIL if two variables. If more than two,
Wu/FPI is used; the exact should be within 5% of this value.
CYBER 175

The number of Si for variance reduction and the number of Zi for
conventional. The values are noc’directly comparable.

95% confidence intervals within %107 of Pg

Same confidence interval as variance reduction.
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Table 3.2 Example of the Performance of a Variance Reduction Monte Carlo

Program; EXAMPLE 2

DEMONSTRATING THE PERFORMANCE OF THE UA VARIANCE REDUCTION MONTE CARLO PROGRA

EXAMPLE 2

PERFORMANCE FUNCTION: g = R = S

' * : ' *
Variable _ Type . Mean/Median . std. Dev./ COV
R : N 50 * . 0.2 %
S LN 20 * 0.2 *
RESULTS:
Probabilicy Total - Sample
of Failure cPU-Time(®) size, x(¢)
(a)
Exact -
Wu/FPI 5.347E-4 o>
Monte Carlo
Variance 5.072E-4 13.78 11589
Reduction(d)
Monte Carlo
Conventional
(Bernoulli 238.9 1.122E6

parameter)\€

Notes:

(a)

(b)
()

(d)
(e)

Exact value using POFAIL if two variables. If more than two,

Wu/FPI is used; the exact should be within 5% of this value.
CYBER 175

The number of Ei for variance reduction and the number of Zi for
conventional. The values are not directly comparable.

95% confidence intervals within * 107 of Pp

Same confidence interval as variance reduction.
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Table 3.3 Example of the Performance of a Variance Reduction Monte Carlo

Program; EXAMPLE 3
DEMONSTRATING THE PERFORMANCE OF THE UA VARIANCE REDUCTION MONTE CARLOlPROGRAM

EXAMPLE 3

PERFORMANCE FUNCTION: g =R - S

* *
Variable Type . Mean/Median Std. Dev./ COV.
R WEI 4.5 0.45
S FRE‘ : 3.0 0.30
RESULTS:
Probability - qual Sample
of Failure CPU-Time(b) size, k(¢)
(a)
Exact
W/ FPI 1.0933E-2
Monte Carlo
Variance 1.0914E-2 4.066 . 2535
Reduction(d)
Monte Carlo
Conventional 9.634 35481
(Bernoulli <

parameter)(e)

Notes:

(a) Exact value using POFAIL if two variables. If more than two,
Wu/FPI is used; the exact should be within 5% of this value.

(b) CYBER 175 '

(¢) The number of 51 for variance reduction and the number of Z; for
conventional. The values are noc‘direccly comparable.

(d) 95% confidence intervals within * 107 of 12

(e) Same confidence interval as variance reduction.
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Table 3.4 Example,of the Performance of a Variance Reduction Monte Carlo

Program; EXAMPLE 4

DEMONSTRATING THE PERFORMANCE OF THE UA VARIANCE REDUCTION MONTE CARLO PROGR!

EXAMPRE 4
PERFORMANCE FUNCTION: g = R - S2
* *
Variable Type Mean/Median std. Dev./ COV
R WEI 20 4.0
S FRE 3 0.6
RESULTS:
Probability Total Sample
of Failure CPU:Time(b) size, K(¢)
(a) p
Exact —
) - > <
Wu/FPI 4.272E-2 —
Monte Carlo
Variance - 4.0511E-2 3.568 1864
Reduction(d)
Monte Carlo
Conventional
(Bernoulli 3.689 9441

parameter) e)

Notes:

(a)

(b)
(c)

(d)
(e)

Exact value using POFAIL if two variables.

if more than two,

Wu/FPI is used; the exact should be within 5% of this value.

CYBER 175

The number of Ei for variance reduction and the number of Zi for

conventional. The values are not directly comparable.

95% confidence intervals within T 10% of Pg

Same confidence interval as variance reduction.
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Table 3.5 Example of the Performance of a Variance Reduction Monte Carlo

Program; EXAMPLE 5
DEMONSTRATING THE PERFORMANCE OF THE UA VARIANCE REDUCTION MONTE CARLO PROGRAM

EXAMPLE 5

PERFORMANCE FUNCTION: g = R - S

* .
Variable Type . Mean/Median . Std. Dev./ cov*
R | WEI 20 ' 2.0
S EVD 10 2.0
RESULTS:
Prdbabilicy Total Sample
of Failure GPU-Time(b) size, k(¢)
Exacc(a)
Wu/ FPI 2.8573E-3
Monte Carlo '
Variance 2.6179E-3 10.881 . 11362
Reduction(d)
Monte Carlo
Conventional

paramecer)(e

Notes:
(a) Exact value using POFAIL if two variables. If more than two,

Wu/FPI is used; the exact should be within 5% of this value.

(b) CYBER 175 | ‘

(¢c) The number of Bi for variance :educcion and the number of Zi for
conventional. The values.are not’ airectl§ comparable.

(d) 95% confiéence intervals within % 10% of Pg

(e) Same confidence interval as variance reduction.
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Table 3.6 Example of the Performance of a Variance Reduction Monte Carlo

Program; EXAMPLE 6

DEMONSTRATING THE PERFORMANCE OF THE UA VARIANCE REDUCTION MONTE CARLO PROGRA

EXAMPRE 6
PERFORMANCE FUNCTION: g = o - T + A - 6.8
B O B 0.2779 N

Variable Type Mean/Median * . std. Dev./ COV

A , LN 1.0% - 0.3%

A g WEL 4.3Eg 0.5%

B LN 0.9% 0.25%*
RESULTS:

Probability Total Sample
of Failure cPU-Time(P) size, k(¢
(@)
Exact 1.901E-3
Wu/FPI L
Monte Carlo
Varlanc':e (d) 1.7958E-3 3.643 ' . 1437
Reduction
Monte Carlo
Conventional
.~ (Bernoulli 68.3616 199526

parameter)(e)

Notes:

(a) Exact value using POFAIL if two variables. If more than two,
Wu/FPI is used; the exact should be within 5% of this value.

(b) CYBER 175

(¢) The number of Ei for variance reduction and the number of Zi for
conventional. The values are not directly comparable.

(&) 95% confidence intervals within t 107 of pé

(e) Same confidence jnterval as variance reduction.
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Table 3.7 Example of the Performance of a Variance Reduction Monte Carlo

Program; EXAMPLE 7

DEMONSTRATING THE PERFORMANCE OF THE UA VARIANCE REDUCTION MONTE CARLO PROGRAM

EXAMPLE 7

PERFORMANCE FUNCTION: g = R - /600 P2 + 1.92

* *
Variable Type Mean/Median Std. Dev./ COV
R WEI 48.0 3.0
P LN 0.987% 0.16%
T EVD 20.0 2.0
RESULTS:
Probability Total Sample
of Failure CPU-Time (D). Size, x(¢)
Exacc(a) : T
Wu/FPL 0.0018 ‘////‘
Monte C;rlo
Variance 0.0018208 16.375 12734
Reduccion(d)
Monte Carlo .
Conventional e
(Bernoulli T 74 .4186 211349

parameter)(e)

fotes:

(a)

(b)
(<)

(d)
(e)

Exact value using POFAIL if two variables.

If more than two,

Wu/FPI is used:; the exact should be within 5% of this value.

CYBER 175

The number of Ei for variance reduction and the number of Zi for

conventional. The values are not directly comparable.

95% confidence intervals wichin T 10% of Pg

Same confidence interval as variance reduction.
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Table 3.8 Example of the Performance of a Variance Reduction Monte Carlo

Program; EXAMPLE 8

DEMONSTRATING THE PERFORMANCE OF THE UA VARIANCE REDUCTION MONTE CARLO PROGRA

EXAMPLE 8
fop -t
' = + pp
PERFORMANCE FUNCTION: g = & - 1000 171 ~1.188
(Y - Bgg) T H(Y - beg)
Variable : Type . Mean/Median * : Std. Dev./ COV*
‘ L * *
A LN 1.0 0.3
£ ' N 0.7 0.07
PP
G LN 0.222% 0.4%
. * : *
T LN 1.0 ‘ ‘ 0.15
Aeg EVD 0.0005 0.00008
* *
H LN 1.673 . 0.4
RESULTS:
Probability Total Sample
of Failure CPU-Time (D) Size, k(c)

(a)
Exact
Wu/FPI 1.002E-2
L - .

"Monte Carlo ‘
Variance 9.8814E-3 14.822 o 4401

Reduction
Monte Carlo
Conventional
.7564 81
(Bernoulli 30.756 39810

parameter) e)

Notes:
(a) Exact value using POFAIL if two variables. If more than two,

Wu/FPI is used; the exact should be within 5% of this value.

(b) CYBER 175 |

(c) The number of Ei for variance reduction-and the number of Z, for
conventional. The values are’n;t directl& comparable.

(d) 95% confiéencé intervals within * 107 of 129

(e) Same confidence interval as variance reduction.
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Table 3.9 Example of the Performance of a Variance Reduction Monte Carlo

Program;

EXAMPLE 9a

DEMONSTRATING THE PERFORMANCE OF THE UA VARTANCE REDUCTION MONTE CARLO PROGRAM

EXAMPLE 9a
PERFORMANCE FUNCTION: g =R - S
* .
Variable Type Mean/Median Scd. Dev./ COV*
* ' *
R LN 20.0 0.2
* *
S LN 10.0 0.2
RESULTS:
Probabilicy Total Sample
of Failure GPU-Time(P) size, k(¢)
(a) ' )
Exact 6.6642E-3 ~
Wu/FPL - ~
Monte Carlo '
Variance 6.4159E-3 4.75 2831
Reduction
Monte Carlo
Conventional c = -
13.7724
(Bernoulli 59366

parameter) \ €

Notes:

(a) Exact value using POFAIL if two variables.

If more than two,

Wu/FPI is used; the exact should be within 5% of this value.

(b) CYBER 175

(¢) The number of Bi for variance reduction and the number of Zi for

conventional. The values are not .directly comparable.

(d) 95% confidence intervals wichin * 10% of Pg

(e) Same confidence interval as variance reduction.
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Table 3.10 Exaﬁplé of the Performance of a Varianée Reduction Monte Carlo

Program; EXAMPLE 9b

DEMONSTRATING THE PERFORMANCE OF THE UA VARIANCE REDUCTION MONTE CARLO PROGRAR

EXAMPLE 9b

PERFORMANCE FUNCTION: g = R - S

* . *
Variable Type . Mean/Median : std. Dev./ COV
, * ' *
R LN 22.5 0.2
. * *
S LN 10.0 0.2
RESULTS:
Probability Total Sample
of Failure CcPU-Time(b) size, k(¢
(a)
Exact
Wu/FPI 1.89338E-3 . -
Monte Carlo :
Variance ' 1.7434E-3 8.075 6068
Reduction
Monte Carlo '
Conventional 51.44 218776
(Bernoulli

parameter)(e)

Notes:

(a) Exact value using POFAIL if two variables. If more than two,

Wwu/FPI is used; the exact should be within 5% of this value.

(b) CYBER 175

(¢) The numbgr of Bi for variance reduction and the number of Zi for
conventional. The valueé are.ﬂoé directly comparable.

(d) 95% confidence intervals within T 10% of Pp

(e) Same confidence interval as variance reduction.
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Table 3.11 Example of the Performance of a Variance Reduction Monte Carlo

Program;

EXAMPLE 9c

DEMONSTRATING THE PERFORMANCE OF THE UA VARIANCE REDUCTION MONTE CARLO PROGRAM

EXAMPDE 9c

PERFORMANCE FUNCTION: g =R-S
' . *
Variable Type Mean/Median Std. Dev./ COV*
* *
R LN 25.0 0.2
* *
S LN 10.0 0.2
RESULTS:
Probability Total Sample
of Failure CPU-Time(b) size, k()
(2) B
Exact 5.347E-4 <
Wu/FPI
Monte Carlo
Variance 5.072E-4 13.681 11589
Reduction(d
Monte Carlo
Conventional 164.70 767361
(Bernoulli

parameter)(e)

Notes:

(a) Exact value using POFAIL if two variables.

I1f more than two,

Wu/FPI is used; the exact should be within 5% of this value.

(b) CYBER 175

(c) The number of Ei for variance reduction and the number of Zi for

conventional. The values are not-directly comparable.

(d) 95% confidence intervals within T 107 of Pp

(e) Same confidence interval as variance reduction.
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Table 3.12 -Example of the Performance of a Variance Reduction Monte Carlo

Program; EXAMPLE 9d

DEMONSTRATING THE PERFORMANCE OF THE UA VARIANCE REDUCTION MONTE CARLO PROGRA

EXAMPLE 94

PERFORMANCE FUNCTION: g = R -S

' * : *
Variable Type . . Mean/Median : std. Dev./ COV .
: P . ~
R ‘ LN 27.0 0.2
* *
S LN 10.0 0.2
RESULTS:
Probability Total Sample
of Failure CPU-Time(b) size, k()

(a) '
Exact <9 _
Wu/FPI 1.952665E-4 . , .

Monte Carlo

Variance 2.0296E-4 : 20.27 17977
Reduction(d)
Monte Carlo
Conventional

2
(Bernoulli 388.93 1840772

parameter)(e) ~

Notes:

(a) Exact value using POFAIL if two variables. If more than two,
Wu/FPI is used; the-exact should be within 5% of this value.

(b) CYBER 175

(¢) The number of Ei for variance reduction and the number of Zi for
conventional. The values are not directly.comparable.

(d) 95% confidence intervals within T 107 of Pp

(e) Same confidence interval as variance reduction.
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3.8 Comparison of Computer Costs of Variance Reduction and Conventional

Monte Carlo

Example 9a, b, ¢, and d was designed to illustrate how computer costs
increase as point ppobabilities become smaller, providing estimates at the
same level of confidence. Figs. 3.5 and 3.6 show the relationship between
CYBER 175 CPU execution time and the probability level for the conventional
"Bernoulli" and the variance reduction estimates, respectively, for Example 9.
Then Fig. 3.7 demonstrates_how much more efficient is variance reduction
for this problem. It should be noted that Figs. 3.5 thréugh 3.7 relate
only to Example 9 and cannot be presented as being characteristic of the
relative behavior of the two methods.

3.9 Conclusions on Variance Reduction

Some general conclusions based on experiences exercising VARED are,

1. Variance reduction seems to outperform conventional Monte Carlo
consistently. However, in some cases the improvement is dramatic, in some
cases it is modest.

2. Related to item 1, it is difficult to predict computer costs.

At a given confidence level, CPU time depends strongly upon the form of
the performance function, the distribution of the variables, as well as
the probability level.

3. To conmstruct a CDF, it is necessary to obtain several point proba-
bility estimates, as it is using FPI. Thus, the variance reduction Monte
Carlo method is not particulérly effective when it is required to comstruct

’

a distribution function of a response variable.
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Fig. 3.5 CPU execution time for CYBER 175 for conventional Bernoulli

point probability estimate; Example 9; a = 5%, y = 10%
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Fig. 3.6 CPU execution time for CYBER 175 for variance reduction

point probability estimate; Example 9; a = 5%, y = 10%
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Fig. 3.7 Ratio of Bernoulli to variance reduction CPU execution time

for CYBER 175 for point probability estimate; Example 93
95% C.I.y = 10%

300



4.0 DIRECT EVALUATION OF THE PROBABILITY OF FAILURE INTEGRAL

4,1 Preliminary Remarks

Consider the multidimensional integral for Pe-

pf =fo(,§)dx (4.1)

x
Q

where X is a vector of n random variables and Q is region of failure in X-space.
Standard methods of numerical integration (e.g., Simpson's rule) are

efficient for a one and two dimensional integral. But when n exceeds two, these

methods are much more difficult to apply. Monte Carlo integration becomes

more attractive for n > 2.

4.2 The Mean Value Method Used for a Single Random Variable

Consider the random variéble X. Let

P = P(X - a] (4.2)
a
p. = I ='f f(x)dx
C

The density function f(x) is shown in Fig. 4.1. But upon dividing the interval

(0, a) into J equal increments, Axi, the integral can be approximated as

I =

. Axi f(xi) : ' (4.3)

1

(U e T &Y

This summation can be approximated by a Monte Carlo approach. Define
a sampling interval (c, d). In the example of Fig. 4.1, (c, d) could be
chosen as (0, a). But in general, c should be chosen so that the area below

is "very small." And d should be chosen such that d - a.
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Fig. 4.1 Density functions of X and U

I
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Fig. 4.2 Density function for Example
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Consider a random sample of u, of uniform variates

u, v U(c, d) i = 1, N (4.4)

The density function of u is shown in Fig. 4.1.

Let
L=d4d~-c (4.5)
Note that
~ L
AXi X (4.6)
And it follows that,
N L
I =.Z N 51 f(xi) (6.7)
i=1
where
- Z,
6i 0 if u, > a (4.8)
<
1 if u, - a
i

Example: Compute P[X < 0.70] where X ~ N (1.0, 0.10) by Monte Carlo using
the mean value scheme. The interval (c, d) is defined as shown in Fig. 4.2.
o is the standard deviacion. Here K = 4.5. The reason for not choosing d = a
here (which would be more reasonable) is that the scheme of selecting an inter-
val for.the integration boundary must be applied in the multidimensional case
so it is employed here as well.

First, N was set to 1000. An estimate of I, denoted as i, was computed.
The process was repeated 10 times. Results are given in Table 4.1. Each of
the 10 values of i are given along wich’ghe sample mean and standard devia-

tion of I. The process was repeated for N = 10,000 and the results are given

in Table 4.2.
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Table 4.1 Monte Carlo Estimate of the Integral of Example

~

N = 1,000 | 1

1.22744235E-03
1. 1E7&D7LE-0O3
1.3003T2LSE-03
1.33604L6%E-03
1.1054387E-03
1.174£1622E-02
1.2718324E-03
1.414587SE-03
1. 335SETCEE-G3
1.2%13472E-03

Mean of I = 1.301E-3
Exact value of I = 1.350C-3

P

Std. Dev. of I = 0.129E-3

-~

Assuming that 1 is normal, 90% confidence intervals on I are estimated

as (1.089, 1.513)E-3. Thus, this is the C. I. on I associated with a

sample of size 10,000.
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Table 4.2 Monte Carlo Estimate of the Integral of Example

-~

N = 10,000 I ' X

1.22B&3CEE-Q3
1.J78B7332E-03
1.3539S114E-03
1.366F2EL5E~0T
1.4250144E-03
1.2714810E-03
1.232801271E-03
1.419&BEDE-0O3
1.25413E5E-03
1.4C0338B78E-0G3

Mean of I = 1.349E-3

<act value of I = 1.350E-3

ta

Std. Dev. of I = 0.075E-3

Assuming that I is normal, 90% confidence intervals on I are estimated
as (1.226, 1.472)E-3. This is the C. I. on I associated with a sample of

100,000.
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4.3 Extension to the Multidimensional Integral

The mean value method can be extended to the multidimensional case. As
an example, the two-dimensional problem will be considered because it is easy

to describe the problem. Extrapolation of the concepts to higher dimensions

is

Shown in Fig. 4.3 is design parameter space for the two random parameter

(X, ¥Y). The probability of failure is the volume under the joint pdf in Q,

the failed region. The general strategy for estimating that integral, I,

will be as follows.

1. Locate the design point as a reference for the sampling region.
Because its "exact" location is not critical, and because computer time is

minimized, a crude and fast method (MVFOSM as described in Sec. 4.4) 1is

emploved.

2 A sampling region (integration boundary) is defined as shown in

L.

Fig. 4.3. The choice of Kl, KZ’ KB’ and K4 is arbitrary. It is important to

include all of the probability mass within Q. As shown in Sec. 4.5, reason-

" able results are obtained where all Ki = K= 5.

3. Uniformly distributed variates u and v are sampled. The distribu-
tions are shown in Fig. 4.4 along with the region of integration.
4. g(u, v) is computed to establish whether or not the point lies in €.

5. By subdividing region @ into incremental areas, AAi, the integrzl

I can be approximated as
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Fig. 4.3 Design parameter space and the region of integration
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Contours of the joint PDF

of X and Y
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Fig. 4.4 Region of integration and contours of the integrand
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where in and in are the pdf's of X and Y respectively at A. . The integral
i

ijs estimated by sampling (ui’ vi); i=1, ¥, and making the following computa-

tion.

ne

Z |
h ™=

§. £ (ui) £ (vi) (4.9)

i
where,

. <
5, = [ if  glu, v;) -0 (4.10)

|O if g(u,, v.) >0
i’ i :

L

In this expression for I, AAi is approximated by A/N.

Exactly the same approach is employed for higher dimensional integrals.‘
It can be seen why the Monte Carlo approach is so convenient for evaluation
of multidimensional integrals. Employving aAstraightforward integration
scheme, say the trapezoidal rule, computer logic and program statements
associated with negotiating the boundaries can become extremely complex.
For Monte Carlo, the only operation to define a Boundary is the computation
of g(%) where u is the vector of uniform variates.

The "bad news' of Monte Carlo is that large sample sizes are required

to reduce confidence intervals on estimates of I to reasonable levels.

4.4 Location of the Design Point

Consider the performance function g(é). It is required to locate the
design point (see Figs. 4.3 and 4.4). YNote that the design point will depend
upon the method used. The Wu/FPI and the Rackwitz-Fiessler methods are ex-

pected to produce a ''high quality" result. But the Hasofer-Lind method can

be employed as well. And a design point can be established using the mean
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value first order second moment method (MVFOSM) originally developed for
computation of the safety index. This method was found to be fast, but

it was later digcovered to produce unsatisfactory results for larger prob-—
lems. The method used in Program SELSAM is the Rackwitz-Fiessler algorithm

which was found to produce consistently good results.

4.5 Confidence Intervals: The Efficiency of the Mean Value Method

To run a Monte Ca;lo integration program, one must first choose (a) the
sample size, N, and (bj the region of integration defined by Kl’ KZ’ K3,
and Ka. For the examples considered in this study, all of the K's were
assumed to be the same and equal to K. In all cases, M = 10 repetitions
of the evaluation of I were performed for a given N = 10,000 and K. This

was done to estimate the distribution of I for the purpose of constructing

a confidence interval.

To illustrate the results of the analysis, Table 4.3 shows the estimated
value of the integral for each of M = 10 reperitions for the first example.
N = 10,000 points were used for each estimate i. Therefore, the sample mean
of i, namely 5.22E-4, is then the best estimate of I and is based on a total
sample of 100,000.

The purpose of repeating the integral evaluation (e.g., Table 4.3) is to

estimate the variance of the estimator and then construct confidence intervals

Consider a vector of estimates of I

- -~

I= (Il, IZ’ e IM) (4.11)
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Table 4.3 Example of a Detailed Summary of the Results for a Single Value

of K and N.

Performance Function, g = R - §

R ~ LN (50., 0.20)
Median and COV

S ~ LN (20., 0.20)
Sample Size, N = 10,000

Region of Integration, K = 5.0

MVFOSM Analyses: 8 =2.79 Design Point
R* = 25.14
S* = 24.53
I B = - o(I) | CPU Seconds

1 4.55E-4 3.32 2.25
2 5.22 3.28 2.30
3 4.82 ~3.30 2.31
4 5.39 3.27 2.27
5 5.08 3.29 2.28
6 5.11 3.28 2.25
7 5.53 3.26 - 2.28
8 5.09 3.29 2.31
9 5.46 3.27 2.30
10 5.94 3.24 2.33

Total CPU Execution Time =22.9 seconds

Sample Mean of I = 5.22E-4

Exact Value of I = 5.35E-4

Bias = Estimacted _ 0.98
Exact

Sample Standard Deviation of I = 0.39E-4

-

Coefficient of Variation of I = 7.3%
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The sample mean and variance are,

= 1 M .
I == 1T I, (4.12)
M. i
i=1
M -
= em— —I 4.
B = N (T - D (4.13)

Let M = 10. The 95% confidence interval on I using an individual estimate is

I1+2.33s (4.16)

The number 2.33 is the student's t variate for n = 10 at a level of 2.5%.
The 95% confidence intervals based on the mean of the estimates 1is

2.33 s

A S0 - I 4 (4.15)
Y10 /10

Example: From the data of Table 4.3, 95% confidence intervals for I are,

'/
(in terms of 10 '),

2.33(.39) 2.33(.39) 4.16
5.22 - —3.16 < I < 5.22 +-———T§TIg— (4.16)

Or,
P = (4.93 < I< 5.51) = 0.95. (4.17)

Suppose it is desired to establish the sample size requirement for a
given accuracy. . For example, find the minimum M to ensure that the value
+ -~ -
of I will be within - 10% of I with a confidence of 95%. Assuming that I

will be normally distributed with a mean of I and standard deviation of

sI//ﬁ_ it follows that 957 confidence intervals on I are,

If1-——= s I |1+

M MM

1.96 C . 1.96 CI
_— (4.18)
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where C, = SI/I.V For = 10%, let

1.96 CI
0.10 = ——m8 (4.19)
M
Therefore, the requirement on M is
M 2 384 Ci (4.20)

Unfortuﬁately, one does not know CI in advance. However, after analyzing
several check cases, an approximate rglationship between Cyp and n is given in
Fig. 4.5. These figures are actually more applicable to the stratified
sampling version of the mean value method described in Sec. 4.7 below.

Using Fig. 4.5, éq. 4.20 and Fig. 2.5, one can pre-—estimate the sample
size requirement and cost. For example, if the response function has 10
random variables, then CI = 0.80 from Fig. 4.5. The number of blocks of
10,000 is given by Eq. 4.20 as M = 246. Thus, the total sample size require-
ment is 246 x 104 or 2.46 million evaluations of the integrand. From Fig. 2.5,

the total CPU execution time on the CYBER 175 would be about 344 secounds.

This is for 95% confidence for I to be within * 10% of I.

4.6 Examples of the Mean Value Method

Other examples of the performance of the mean value method are given

in Tables 4.4 through 4.7.

The mean value method seems to perform better than the direct (conven-
tional or variance reduction methods. But the literature promises that
efficiency of the mean value method will be improved by stratified sampling,
i.e., sampling with a higher density qﬁ points in the region where fX is the

v
largest. This is also called group sampling, or selective sampling, and is

1

essentially what is often referred to as "importance sampling." In short,

more samples are taken in the more important regions.
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Table 4.4

Example 1; Monte Carlo Integration

Performance Function g =R-S
R~ N (K, Cp) = LN (50., 0.20)
s~ LN (3, ¢) = LN (20., 0.20)
‘Exact I = P = 5.35E-4
Sample Region of
Size Integration Cov of Bias* 'CPU Execution
N K I (%) Time (sec)**
1000 .5 28 .77 2.5
4. 28 .84 2.3
5.0 30 .85 2.3
5000 5.0 8.3 .94 11.4
10,000 3.5 7.2 .87 26.5
4.5 7.5 .96 23.3
5.0 | 7.5 .98 22.1
*Bias = Estrimated I/Exact I; Estimated I is the average of 10
repetitions of I, each having a
sample size of N.
**CYBER 175
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Table 4.5

| Example 2
Performance Function g =R-S§
R~ WEi (20., 2.0) Mean and Standard Deviation
S ~ EVD (10., 2.0)
Exact I = P = 2.86E-3
Sample Region of )
.. Size Integration COV of Bias* CPU Execution
N K I (%) Time (sec)**
} 1000 3.5 9.29 .88 1.71
| 4.5 12.03 .95 1.71
| 5.0 13.64 .96 1.71
| 10,000 3.5 2.17 .91 17.0
| 4.5 2.76 .98 17.0
5.0 3.05 1.00 17.0

*Bias = Estimated I/Exact I

*#*CYBER 175
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Table 4.6

Example 3; Monte Carlo Integration

Performance Function g =R - S2
R~ WEI (20., 4.0)
S ~ FRE (3., 0.6)
Exact I = Pe = 4.27E-2
Sample Region of
Size Integration COV of Bias* CPU Execution
N K I | Time (sec)**
1000 3.5 10.5 .88 2.0
4.5 11.3 .93 2.0
5.0 12.6 .93 1.9
10,000 3.5 2.17 .92 20.5
4.5 2.48 .96 19.4
5.0 3.02 .98 19.3

*Bias = Estimated I/Exact 1

*%CYBER 175
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Table 4.7

Example 4; Monte Carlo Integration

Performance Function g = R - /BOOP2 +1.92 T2

R ~ WEI (48., 3.0) Mean and Standard Deviation
P~ LN (1.0, 0.16)
T ~ EVD (20., 2.0)

Exact I = Pe = 1.80E-3

Sample Region of
Size Integration COV of Bias* CPU Execution
N K I (%) Time (sec)**
1000 3.5 5.3 .86 3.4
4.5 9.1 .94 3.3
5.0 10.1 96 3.3
5000 5.0 6.5 1.00 16.4
10,000 3.5 3.7 .88 32.2
4.5 4.8 .97 32.4
5.0 5.1 | .99 32.5

%Bias = Estimated I/Exact I

**CYBER 175
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Fig. 4.6
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4.7 Stratified Sampling; Extension of the Mean Value Method

Fig. 4.3 illustrated for two dimensions, the joint probability density
function (pdf), the limit state, and the region of failure, Q. Shown is a
"reference point,:' (in this case a design poiﬁt which could be obtained by
MVFOSM or any of the fast probability integrationm methods) which is "close"
to the peak of the pdf. This reference point is'used to define the sampling
region.

A summary of the stratified sampling gcheme is shown in Fig. 4.6. First,

the reference point is established. 1In program SELSAM, it is defined by a
Easofer-Lind or Rackwitz-Fiessler design point (user's option). Then the use
must decide

1. The number of boxes

2. The size of each box

3. The total nﬁﬁber of points; 'i.e., the sample size

L. The number of points in each box, i.e., how the sample is stratified

Because fX will have its peak close to the reference point, it is anticity
v
that the density of points in Box #3 should be high. Fewer points should be
in Box #2 and still fewer in Box #1. Then, if che user wants to estimate

confidence intervals on his pointAprobability estimate, the sample should be

repeated.
Studies on how to select the parameters above to minimize the sample size
for a given confidence interval have been inconclusive. But for some sample

problems, the parameters as given in Table 4.8 have performed well.
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4.8 Program SELSAM

Program SELSAM performs, by Monte Carlo, numerical integration of the
probability of failure integral using stratified sampling. When only one
box is chosen, (no strétified sampling) the program algorithm is the mean
value ﬁethod.

A listing of Program SELSAM is given in Appendix D.

Examples of Program SELSAM are given in Tables 4.§ and 4.10. The example
of Table 4.9 has only one box and is fherefore the mean valuelmeihod. In the
second example of Table 4.10, the formula for defining stratified sampling
as given by Table 4.8 was employed.

The program has been exercised on several example problems. The perform-
ance of the program is measured by its accuracy in making point probabiiity

calculation and its corresponding CPU execution time.
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TABLE 4.8 Preliminary Recommendaion for

Stratified Sampling

Defining the Parameters for

Number of Boxes 4
Size of Each Box
Number of standard deviations
+ .
— from the reference polnt
Box 1 5
Box 2 3
Box 3 2
Box &4 1
Total Number of Points in
one sample 10,000
Points in Each Box
Box 1 500
Box 2 1000
Box 3 2000
Box & 6500

Number of Samples

(Note that this is the value wh
is being used for the purpose o
estimating confidence intervals

associated with the sampling.)

ich

f

10
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TABLE 4.9
EXAMPLE 1: Evaluation of the Probability Integral by the Mean Value Method
(Sampling in only one block)

Response function:

g =R - VgOOPZ - 1.92T2
' Mean Std. Dev.
R Weibull 48. 3.
P lognormal 1.0% 0.16%
T EVD 20. - 2.

*The median and COV are % = 0.9874 and CP 5_0.16

® Use only one box, ISTRIP 1

1+

e Box (sampling region) is 5¢ in all directions
® Take IBOX = 10,000 points

® Repeat process NT = K = 10 times.

This is the input for this problem.

0,10,3
1

5.,10000

R

1,48.,3.

P
4,.987440632, .16
T

3,20.,2.

0.

The output is on the next page.
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VARIABLE DIST. MEAN STD. DEV

R
P
T

K =

WEIBULL  4.8000E+01 3.0000E+00
LOG N. 9.8744E-01 1.6000E-01

EVD 2 .0000E+01 2.0000E+00

10

SAMPLE (POINTS) = 10000

STRIP (SIGMA) = 5.00

INITIAL STARTING POINT (REDUCED VARIATES)
-2.564 1.783 1.945

ESTIMATE OF I BETA CPU SEC

1.6759E-03  2.933  3.03
1.7456E-03  2.921  3.04
1.97826-03  2.882  3.04
1.7872E-03  2.913  3.05
1.6600E-03  2.936  2.95
1.8472E-03  2.903  3.02
1.8751E-03  2.898  2.98
1.7543E-03  2.919  3.04
1.79496-03  2.912  3.03
1.6824E-03  2.932  3.08
AVG. OF ESTIMATION =  1.7801E-03
STANDARD DEVIATION =  9.9832E-05
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TABLE 4.10
EXAMPLE 2: Evaluation of the Probability Integral by Stratified Sampling

(An extension of the mean value method)

Response fuaction:

foood? 1937
g = R - /300P - 1.927
Mea2n Std. Dev.
a8 Weidull 48. 3.
T . lozaczmal 1.0= 0.16%
T EVD 20. 2.

£The med<an and COV are P = 0.9874 and C, = 0.16

® (yse four boxes, ISTRIP = 4

+ + .+

. +
® 3poxes are respectively (- 5, 3, 2, = 1) o in all directions
® gSazmples in each box are respectively (500, 1000, 2000, 6500)

® Repeat process NT = K = 10 times

This is the input for this problem.

0,10,3

4

5.,500

3.,1000

2.,2000

1.,6500

R

1,48.,3.

P
4,.987440632,.16
1

3,20.,2

0. ,

The output is on the next page.
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VARIABLE DIST.

R
P
T

K="

WEIBULL

LOG N.

EVD

10

SAMPLE (POINTS) =

STRIP (SIGMA) =

MEAN

STD. DEV

'4.8000E+01 3.0000E+00

9.8744E-01 1.6000E-01

2.0000E+01 2.0000E+00

500 1000 2000 6500

5.00

INITIAL STARTING POINT
-2.564 1.783 1.945

ESTIMATE OF I

1.

1

AVG.

STANDARD DEVIATION

BETA
6086E-03  2.946
.8204E-03  2.908
.9675E-03  2.883
.7617E-03  2.918
.7030E-03  2.929
.7820E-03  2.914
.8696E-03  2.899
6840E-03  2.932
_7000E-03  2.929
_8449E-03  2.904
OF ESTIMATION =

326

3.00

2.00

1.00

(REDUCED VARIATES)

CPU SEC

3

3.

3.

3.

.14

11

.10

11

.09

.09

.08

12

12

12

1.7742E-03

1.0538E-04



5.0 THE HARBITZ ALGORITHM

5.1 Preliminarv Remarks

In a 1986 issue of Structural Safetv, Alf Harbitz presented a Monte
Carlo method which estimates point probabilities [8]. fhe algorithm is
presented as an "efficient" method. The decision was made by the UA team
to develop the method and compare its performance to other available Monte
Carlo schemes. _

The performance function is given as g(g) where X 1s a vector of

random variables. The goal of analysis is to compute
- I'd < . -
p = P[g(X) - 0] (5.1)

. . > . . ’ . . <
Consider X as a two-dimensional vector. Fig. 5.1 shows the region where g - O.

From probability theory, p can be evaluated by,

But the ;ntegral is difficult to evaluate for higher order vectors. The
Harbitz method provides an estimate of p.

Whiie the mechod is described in decail in Ref. 8 , a summarv is
provided as follows. Also described are modifications to the.me;hcd to

improve its perfromance relative to the original Harbitz algorithm.

5.2 Exvoression for Point Probabilicy

The basic variables % can be transfiormed to standard normal variates

X using the relationship,

Fi(xi) = ¢(xi§ _ (5.3)

75

327



The lower case x; denotes the transformed variables. ¢ is the standard
normal distribution funcrion (cdf) and Fi is the cdf of Xi' Using the
transformation, the performance function can be written in terms of X,
This -function gl(ﬁ) when set equal to zero becomes the limi;'statei
Fig. 5.2 shows the region where 81 z 0 in the space of scagdard normal
variates. ,

The minimum distance from the origin to 8, is given as 8. .In a first
order reliability method (FORM), B provides a first_approxﬁmation to p,
i.e.,

p = $(-8). (5.4)
But an exact expression can be formulated for p. WNote that because
x is standard normal, the probability that x will be.in the "B-sphere will

be

(]x| = 8) = Pllxl

where Fn is the chi-square cdf with n degrees of freedom. n is the size of
the vector %. Harbitz uses this fact and shows, using elementary probabilirc:
* operations, that

<.
p=Plg - 0]

= P[

06

<oflgl >8] - (1 -T 91 (5.6

Evaluation cf p requires application of a ccmbination of relizbility methods.

5.3 Computation of p: Basic Considerations

Numerical FORM can be employed to compute 8. One mechod is the
Rackwitz-Fiessler algorithm. The second term of Eq. 5.6 is easily calculated

Monte Carlo is-used to estimate the first term of Eq. 5.6. For conveni-
ence, we will ler this probability be denoted as P The scheme for extimati
is as follows:

Py
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. <
Fig. 5.1 Region where g - 0

Region where g

/////

B-sphere

P
Fig. 5.2 Region Where 8y~ 0
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1. Sample P outside the B-sphere
2. Transform to basic variables, 5
3. Compute g(%)

4. Repeat process K times

Then .
p, = 2lg < Oflxl > 81 ¥ p; (5.7)
where,

-~

and where K(_) is the number of samples for which'g < O. 13 is the

extimator of Py

5.4 A Note About Efficiency

The reason why this method promises to be efficient is illustrated in
Fig. 5.3. The rendom points outside the B-sphere are as illustrated. Note
that a relatively high percentage will fall in the region where g b 0. 1In
practice ;l will typically fall in the range (0.05, 0.25). For the special
case where g is linear in normal %, g1 will be a straight line and Py 2 0.10

The point is that confidence intervals on p for a given K, are relatively

l’

large if 121 is very small. But if Py is in the range as indicated, narrow
condifence intervals can be obtained with relatively small sample sizes, K.
Example . . . For large K, 12 will be approximately normal, and it can

be shown thart,

I A

(o (1 -
Pkpl(l‘ Y)

< . v _
p P 1+MIFL-e (5.9)

where,

(5.10)
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8-sphere +

Points of x selecced

at random outside of
B-sphere. -

Fig. 5.3 Example of Sampling Outside the B-sphere (2-D reﬁresan:acion)
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S

Compute the required K for 95% confidence intervals within s 10% of Py-

0.10 and z

=<
1

«/7 f 1.96

Then, 384 (1 - py)

K = ————— (S-ll)

7

For p, = 0.10, K 2 3500. For p, = 0.001, K = 384,000.
This exercise clearly demonstrates why it is efficient to formulate the

problem so as to avoid low probability levels.

5.5 How to Sample x Outside the B-Spherelx| > B8
X 1%

Harbitz proposes the following as an efficient sampling procedure. The

first step is to transform the standard normal variates X to polar coordinate
¥+ (R, 9 (5.12)

. 0 ) defines the direction of x and R defines the

where Q = (9 0 X

@ 9y - - n-1
length of X. R and Q are independent. Now it is required to obtain a random
sample of R and e.
2 2 . . . ’ -
R” will have an y~ distribution with n degrees of freedom.
2 2) -1 1 2
D " e (- 519

y)
f (r™) = (
R2 2n/2 T(a/2)

w
.—4
(85}
N~

where I'(-) is the gamma function. R can be sampied from this distribution:

% is sampled as described below. The jth random vector of X can be sampled as

X, = L. R, (5.1¢4)
Nj i1
where,
X o
SR o
i
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and where Xi is the ich sample of a vector of Yj ~ N(O, 1), j =1, n. Thus,
éi is a random direction unit vector in X space. This'correSPOHds ta cempling
a random Q.

But we want to sample so that Ej lies outside the B-sphere, i.e., R > B,
The well known "rejection technique' will be emploved [8]. See Fig. 5.4.

Define the sampling domain as [rl, r2] where r, = 8 and r, > 3. Experience
has shown that accurate results are obtained when T, > 3+ 8. To improve the

efficiency, perform a transformation
U= exp(- 2 RY) (5.16)

> . ) ' . s
where o ~ 2 is a constant whose optimal value depends upon 8 (see Sec. 5.6).

The sampling domain for U then is,

7
[ul. uz] [éxp (—a—rz , exp S rl>J (5.17)
. 2. 2 . . - . .
Given that R” is x“(n), the density function of u, deroted as h(u) is
"proportional to,
-1 2)- -
h(u) = [- 2n ()] (/201 (2/2)-1 (5.18)
A typical function h(u) is plotted in Fig. 5.5. Comparison of Fig. 5.4 and
5.5 provides the motivation for making the transformation of Eq. 5.16.
The process of sampling points, as demonstrated in Fig. 5.5, continues
uncil we have u; i = 1, K. Then the sample of R is obcained from Eq. 5.16.
R, = /=« tn uj’: j=1,x ., (5.19)

5.7 How to Find «

The one detail missing from the above discussion is how to specify a.
We would like to select o so thar the rejection area, as illustrated in Fig.

5.5 is minimized. S. J. Lee has developed a simple program which, for a
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In the rejection method, a pair of uniformly distributed points '
(v, w) are sampled as shown. :

7 (v, w)i This point rejected

Typical X2 form of the density
function

/ This point accepted. A sample
point of r from £ 2 is r2 = Vj

R

(v, w)
3

Lo

v

f -

v

Note that for the form of the distribution, many points are rejectead.

Fig. 5.4 The Rejection Technique
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Pairs of uniformly distributed variates (v, w) are sampled as shown.

h(u).
W, Rejection Area (v, w)
o , i
i/// \\ﬁ L .This voint is rejected
7
“
A typical form of h(u)
% < (u, w). This point is
accepted; u = vj
fw u
v
u u,
N f -
v

This shows why the transformation of Eq. 5.16 was made. For this form of
h(v), very few points are rejected.

Fig. 5.5 How Ui is Sampled
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given u Uy, and n, minimizes the rejection area. This is a feature in the

l!

UA/Harbitz program.

5.7 . The Estimate of p

Finally, a sample of §j; j = 1, K can be made from.Eq. 5.14. As
indicated in Sec.. 5.3, from ﬁj'§ is computed, . . . then g(§). Finally, Py

is computed by Eq. 5.8, and the point probability estimate is
p=p, [L-T ) (5.20)
1 n

5.8 The UA/Harbitz Program

The listing of the UA/Harbitz program for computing point probabilities
is given in Appendix F aloﬁg with a description of the input.

An example is presented'in Tables 5.1 and 5.2. A definition of the
problem and an example of the imput file is provided in Table 5.1. Attached t

the output, given in Table 5.2, are notes which describe some of the terms.

5.9 Efficiency of the Harbitz Method

The Harbitz algorithm for point probability estimation by Monte Carlo
looks promixing as an independent check on FPI in NESSUS. But the efficiency
of the Harbitz method depends stroﬁgly upon the number of independent random
design factors as well as the probability level. Harbitz efficiency decreases
substantially with increasing numbers of random variables in the response
function. Also, efficiency decreases as the pfobability levels become lower;
but the loss of efficiency'is far less than with conventional Monte Carlo.

In the following, the efficiency of thé Harbitz method is quancified and com-—

pared to direct Monte Carlo.
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Table 5.1 Example Problem for Harbitz !ethod

71
R - /300p% + 1.9272

g(xX) =
uR = 48 uP =1.0 UT = 20
OR =3 oP = 0.16 oT = 2
R v WEL D A LU T ~ LCVD

This is an example of the input file

THIS IS EXAMPLE 7
.D-4,3,10000,0.

.,48.,3.

1
R
1
P
4.,.987440632,.16 *
T
3

.,20.,2.

*}ote that P is lognormal; thus the median
S
Y 2 .
P=“P//1+CP'

is entered.
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Table 5.2 Output of Harbitz Program For Example Problen

DESIGN VARIABLES

VARIABLE DISTRIBUTION MEAN/MEDIAN STD/COV
R VETBULL 4.8000E+01 3.0000E+00
P © LOG 9.8744E-01 1.6000E-01
T EVD 2.0000E+01 2.0000E+00

(NOTE: THE MEDIAN AND COV USED FOR LN)

BETA (SPHERE) = 3.085—> First order reliability analysis (R-F)
NUMBER OF VARTABLES = 3 |

AREA RATIO, AR = .9934—F> 99.34% of points sampled will be acceptéd
ALPHA = 2.1880—> value of a corresponding to the area ratio

NUMBER OF SAVPLES = 10000 —> value of K

TOTAL NUMBER OF G < 0 = 782—> value of K(_)

TOTAL NUMER OF POINTS SAMPLED = 10089 —> g;t”ally had to sample 10,089 poi
were rejected.

PROBABILITY OUTSIDE BETA SPEERE = 2.318E-2—F> 1 - rn(sz)

'PROBABILITY OF FATILURE = 1.812748-03—> The ceatral result; Eq. 5.20
BETA = 2.90905

65 CONFIDENCE INTERVAL ON PF

LOWER = 1.69075E-03 \  Eq. 5.9
UPPER = 1.93472E-03

)
CPU EXECUTION TIME (SEC.) = 4.17
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Consider the response function Z = Z(X) where X is a vector of n independ-

ent random variables (Xl, . . Xn)' To evaluate the CDF of Z at point Zo let
g({) = Z(X) - ZO- (5.21)

The CDF of Z at Zo is

i
I A

F(Zo) P[Z(%) Zo] (5.22)

]
A

P(g(X) 0]

By conventional or direct Monte Carlo, a random sample of size K is

obtained, and the CDF of Z at Zo is estimated as

- (=) '
P T T (5.23)

where K(_) is the number of samples for which g Zo. Thus, Py is an

estimate. of p = F(ZO).

1 - o confidence intervals on p = F(Zo) are given (for large K) as,
- < -
Plpy 1 - v - p fpL+M]=1-c (5.24)

where

The efficiency of the method is described by the number of samples
- +
(K) required so that Py is within - 10% of F(Zo) with a confidence of 95%.
~ Thus,

y = 0.10 . zm/2 =1.96
And the relationship of K with Py is éiven as

384 (1 - ;l)
K = . » (5.26)
Py
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Eq. 5.26 is shown in Fig. 5.6 as the R = 1 curve. Clearly efficiency i
very poor at lower probability levels.
To get an idea of sampling costs, the following approximations
were observed on the UA CYBER 175.
CPU Execution Time, (seconds)
T = (1.4E-4) K-n (5.27)

K

sample size

n = number of variables
Computer charges at $130/hr; cost C in §)
C = 0.036T - | (5.28)
For example, a response function having n = 5 variables, requiring a sample of

5 .
K = 107, would run for approximately T = 70 seconds (1.2 minutes) and cost

$2.50 on the .CYBER 175.

(@]
]

The Harbitz method is a scheme of selective sampling (coule be considere
as a form of importance sampling). The point estimate of p = F(ZO) can be

written form Eq. 5.20 as

p=p, R (5.29)

where R is the reduction factor, defined as

R =1 - (8% n) ' (5.30)

<
0 <R-1.

R is the probability that z sampled at random will fall outside a sphere in
n-dimensional u-space (space of transformed standard normals) of radius B.
Plotted in Fig. 5.7 is R as a function of n and 8.

The value of the Harbitz method’can be seen upon consideriﬁg Eq. 5.29 and

Fig. 5.6. Clearly as R gets smaller, the sample size K required becomes small
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NUMBER OF SAMPLES (K) FOR 95% CONFICENCE INTERVALS
WITHIN - 10%

10 \ I . . : b I ' ] ’ ' I 2 J . I . 2 $ l
b AP L] ' : :
N \ : '"_ REDUCTION FACTOR

X . \ ,— R = 1 (DIRECT MONTE CARLO)

o | .
T e ot £ VT RS TROEIAE NUREES:
N N\, ) R = 0.10
B X i Hadous 9
10° <\ \\\\\4%{// ;——- e '
J it 9 3P
'E\Qf ﬁ\, AN //47\\ |
- _ oy LS TR
§ o " R s . B

) . iR el
g 10° =0.001 _\ \\ o ol b
o b R A
i ! N ey i ¢ e
: Pl L N L\
! P \ 7L W R N R Y
: 9 v N AV \i

RREERRRERRRRNCRARRN R R R AR RA
Sailte i
/é
1y
///4
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Fig. 5.6 Efficiency as a Function of Probability Level and Reduction Factor
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REDUCTION FACTOR -
R =1 - r(8%n)

0.01 escse . _.,...!‘.. ._...z...-..—
i =
e

0.001 -~

Fig, 5.7 Reduction Factor R as a Function of Beta and the Number of Variables.

342



and the scheme becomes more efficient. However, Fig. 5.6 does not'tell the whole
story with regard to Harbitz. Some extra computer time is required to run the
Rachwitz-Fiessler analysis; and the sampling process may take more time as well.

As we now examine Fig. 5.7 in light of Fig. 5.6, we note that~large R (poor
' éfficiency) is associated with larger n and smaller 8. 1In the latter case, as
demonstrated in the example below, the loss of efficiency in small B8 (large R)
is partially offset by higher probability levels (see Fig. 5.6).

In summary, the Harbitz method will always require a smaller sample rela-
tive to direet Monte Carlo. However, it is likely that direct Monte Carlo would
-require less running time for points with probability levels, say between
0.10 and 0.90. Location of these transition points are not known at this time,
but they are not critical. But what is important is that Ha?bitz can be em-
ployed effectively for the tail regions of the distributioﬁ. The example
illustrates why. ,

Example. An example which contrasts sample sizes by direct Monte Carlo

with Harbitz is given in Table 5.1. The response function Z(%) is assumed to’

be a linear function of é. There are n = 5 variables and all Xi are assumed

to be normal.

-~

; +
Required sample sizes K for estimates Py which are within - 10% of p
with a confidence of 95% are shown in Table 5.1 for both the Harbitz and

direct Monte Carlo methods. Clearly, Harbitz does much better at the lower

levels of p.

But note how the number of factors n affect the requirement on K. At

6

b

1

the point where B8 4.4, K must be 60,000 for n = 5. But for m = 10, K T 10

2 x 107.

ne

and for n = 20, K

In summary, Harbitz becomes impractical for large n. This is an undesir-

able characteristic that it shares with all of the other Monte Carlo schemes.
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| EXAMPLE

TABLE 5.1 Number of Samples Required for Harbitz Compared to Conventional
Monte Carlo for Different Probability Levels

Random Design Factors: n =5

Response Function: Linear with normal variates

§ BETA (B) R P Harbitz Direct Monte Carlo
4.4 .00L |5.5E-6 | 60,000 6 x 10’
3.7 01 |1.0E-4 | 40,000 4 x 10°

3.0 0.10 |1.4E-3 | 25,000 _ 200,000

2.0 |0.50 |2.38-2 | 10,000 | 20,000

-

L
This is the approximate minimum sample size required for an estimate Py

+
to be within - 10% of p with a confidence of 95%.
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6.0 SUMMARY: A COMPARISON OF THE PERFROMANCE OF MONTE CARLO METHODS FOR
PROBABILITY ESTIMATES

6.1 The Methods Studied

Computer programs were developed for the following Monte Carlo.methods:

1. Conventional Monte Carlo

2. Variance reduction

3. Mean value method with stratified sampling

4. The Harbitz method

Each program was verified using several example problems. The performance
of each ﬁethod was stgdied. Specifically, computer CPU time to produce.a point

+
probability estimate within - 10% of the exact value with 957 confidence is

measured.

6.2 A Summmary of the Performance of Each Method

Results of the performance study are summarized in Fig. 6.1 where
CYBER 175 CPU time is plotted as a function of probability level 8 and number
of variables, n. It is important to note that B is related to the tail prob-
ability leQel p by

p =9 (-8) (6.1)

where ¢ is the standard normal CDF. Cowmputer time for each method depends
on factors other than probability level and number of variables. The dis-
tribution type for each factor and the form of the response function
influence computation time. Therefore, the curves of ‘Fig. 6.1 must be

interpreted as characterizing the relationships for purposes of comparison.
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6.3 Commentary on the Impiications of Fig. 6.1

Several general conclusions can be made regarding the results presented
in Fig. 6.1.

1. Fast probability integration (e.g., the Wu/FPI method) is far
more efficient than Monte Carlo.

2. Variance reduction does not appear to be competitive with the
other methods.

3. For small numbers of variables, the mean value énd Harbitz methods
are very efficient with the Harbitz method having a slight edge.

4. Computing time for both the mean value and Harbitz methods iacreases
sharply as the number of variables increase.

5. For small numbers of variables, conventional Monte Carlo is not
efficient. But the increase in computing time increases linearly with the
number of variables. Because these curves are flatter than the mean value
or Harbitz curves, conventiqnal Monte Carlo éctually becomes more efficient
relative to each of these methods above a given n.

6. Conventional Monte Carlo gets very expensive as the probability
level decreases. Note that the B = 4 curve ié off of the chart.

7. One feature of conventional Monte Carlo is that a full sample of
the response variable is generated. Thereforé, the entire CDF of the
response variable can be generated. On the other hand, several probability
points have to be computed using the other methods. And the accuracy will
be better for larger probability levels and worse for smaller p.

In summary, a general conclusion is that the Harbitz method seems to
be the preferred approach. Note however, as the probability level p gets
larger (and B8 smaller), the Harbitz method appfoaches conventional Monte

Carlo. This can be seen from Fig. 5.7 in which R > 1 as 8 -~ 0.
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Fig. 6.1 A Summary of Efficiencies of Four Monte Carlo Methods for Computing
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Point Probabilicties (for Monte Carlo -10% accuracy with a confidence

of 95%).
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APPENDIX A. RANDOM SAMPLES FROM GIVEN DISTRIEUTIONS'

Following are the algorithms used to generate random variates froﬁ
the normal, lognormal, Weibull, extreme value (Type I), and the Frechet
distributions. The computer, using a congrﬁential algorithm, samples
random numbers u, from a uniform distribution U(0,1). Forms given below
transform uniform variates to variates Xi of other models.

Antichetic variates xi (defined as having a negative correlation to
xi) are generated as shown.” These antithetic variates are used in the
variance reduction method described in Section 3.0.

A. Normal distribution, N(u, o9); sample two uniform variates, u,
i

and Ui Use the Box-Muller algorithm | 1, 2].

x:.L =[¢-2 ln(ui) cos(2mw ui+l)] g+ u

X! = -x, + 2u
i i

N
B. Lognormal distribution, LN(X, CX); sample two uniform variates,

uy and u, Use the Box-Muller algorithm [ 1, 2].

i+l”

/én (1 + Ci)

Q
]

X
= gn ¥
Lx = &n X
b = (V=2 T + .
Xy [exp({ 2 Zn(ui) cos (ZT»ui+l) Oy By

X! = exp(‘Xi + 2 uX)

C. Weibull distribution
a

Fx(x) =1 - exp ( - (%0 ) = un U[0,1] ‘
o
1 - u=exp (g) ) ~ Uf{0,1)
a

gn (1 - u>=§3g-)

"R
[]

B(- 2 (1 - ui)l/“

. _ l/a
X 8(- &n (ui)) 349



D. EVD distribution

Fx(x) = exp (-exp(-a(X - B)) = u ~ U[0,1]
exp (-a(x - B)) = - 2nu

- a(x - B) = n (- n u)

Thus, 2
x. = 8 - < 2a(~ 2n(u,))
i a i
x! =8 - l-zn(—‘ln(l - u,))
i a -’ i

E. Frechet distribution

k
Fx(x) = exp-{<§i) =u~ [[0,1]

1/k

»
"

v (= 2a(u.))”
1

x! v (- ¢n(l - ui))—l/k
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APPENDIX B. LISTING OF CONVENTIONAL MONTE CARLO PROGRAM (COMOC)

This version runs on the VAX and the CYBER 175. It is not interactive.

The performance function is introduced in subroutine LSFMC as XA.

See listing.

Card 1 Limit state function (not used in program; only printed on output)
Card 2 Number of trials; number of variables (free format)
Card 3 PLOT and ISTD type

PLOT: Yi's are sorted to construct empirical CDF

0 no sort

[l

1= Yi's are sorted-
ISTD; option to enter standard deviétions or coefficients of
deviations or coefficients of variation of each variable
(if lognormal, alwavs use COV).
0= CQV

Std. dev.

H
n

Now enter each variable, its distribution type, and its moments.

Card 4 Variable name.
Card 5 Distribution, mean, and standard deviation
1 = WEI (Weibull)

2 = NORM (Normal

3 = EVD (Extreme value distribution)

4 = LN (Lognormal; always use median and COV)
. ‘.

FRE (Frechet)

Then repeat 4 and 5 for all of the other variables.
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PRUOGRAM GMU ANFUL UUIEUL  TAPES=1INFUT , AFEO=UVITTFUL )
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DIMENSION INAME(20) ,XMEAN(20),XSTD(20),DIST(20),DTRANS (20),X(20)
DIMENSION Y(10000),F(5),AL(20),BE(20)
COMMON /TWO/ PI,PI2,SPI2
CHARACTER#80 GRS,FIN,FOUT,AA+7,BB+6,CC+3,DD3,EE*7
CHARACTER«7 INAME,DTRANS
DATA AA/’WEIBULL’/
DATA BB/’ NORMAL’/
DATA CC/’EVD’/
DATA DD/’LOG?/
DATA EE/’FRECHET?/
C CALL RANSET(0) FOR CYBER
CALL RANSET(0)
8004 CONTINUE
| READ (5, ’ (A) ’ ,END=8888) GRS
READ(5,+) K,N
READ (5, ) PLOT,ISTD
C READ(5,=*) ISEED FOR VAX
D0 7901 I=1,N
READ (5, ’ (A)’) INAME(I)
| READ (5,s) DIST(I),XMEAN(I), XSTD(I)
7901 CONTINUE
IF(ISTD.EQ.O) THEN
DO 913 I=1,N
IF(DIST(I).EQ.4.) GO TO 913
XSTD (I)=XMEAN (I)«XSTD(I)
913 CONTINUE
END IF
IF(K.GT.10000) K=10000

jc DO 1234 I=1,N CONVENTIONAL
AL(I)=0.D0 MONTE CARLO
BE(I)=0.D0O .
1234 CONTINUE PROGRAM (COMOC):
PI=4.D0+DATAN(1.DO
PI2=PI+PI ( ) . Runs on the VAX
SPI2=1.D0O/DSQRT (PI2) or CYBER 175
DO 1 I=1,N
IF(DIST(I) .EQ.1.) DTRANS(I)=AA
IF(DIST(I).EQ.2.) DTRANS(I)=BB
IF(DIST(I).EQ.3.) DTRANS(I)=CC
IF(DIST(I).EQ.4.) DTRANS(I)=DD
IF(DIST(I).EQ.5.) DTRANS(I)=EE
IF(DIST(I).EQ.1.) CALL WEI(XMEAN(I),XSTD(I),AL(I),BE(I))
IF(DIST(I).EQ.3.) CALL. EVD(XMEAN(I) , XSTD(I),6AL(I),BE(I),PI)
; IF(DIST(I).EQ.5.) CALL FRE(XMEAN(I),XSTD(I),AL(I),BE(I))
| 1 CONTINUE
C
C« THE DATA IS PRINTED OUT.
C
WRITE(6,11) GRS,K,N
WRITE(6,12)
WRITE(6,13) (INAME(I) ,DTRANS (I) ,XMEAN(I)",XSTD(I),I=1,N)
C. GENERATE RANDOM # AND CORRESPONDING RANDOM VARIABLE
| NUM=0
DO 4 I=1,K
DO 3 J=1,N

CALL GENX(DIST(J),AL(J), BE(J) X (J) , XMEAN (J) , XSTD (J) , ISEED)
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CONTINUE

CALL LSFMC(Y(I),N,X)

IF(Y(I).LE.0.DO) NUM=NUM+1
4 CONTINUE

0RT Y

} CALL STAT(Y,K,YMEAN,YSTD,YMED,YCOV)

| WRITE(6,15)YMEAN,YSTD, YMED, YCOV

ROUTINE TO ACCUMULATE NUMBER OF TRIALS WITH NEGATIVE Y(I)
YALUES AND PRINT OUT RESULTS

RATIO = DBLE(NUM) /DBLE (K)

WRITE(6,9) NUM,RATIO

FORMAT (/,10X, "NUMBER OF NEG Y VALUES=’,Is,’.’,4X,
+’PERCENT OF. TRIALS=’,F9.6)

IF(PLOT.EQ.0.) GO TO 3456 -

CALL QSORT(Y,K)

THE SORTED VALUE OF Y AND THE EMPIRICAL CDF ARE PRINTED.

WRITE(6,1017)
FORMAT(////,14X, ’SORTED VALUES OF Y AND THE EMPIRICAL COF’, /)
Ji=1

J2=5

WRITE(6,1003) J1, (Y(I),I=J1,J2)
FORMAT (1X,’I = ’,I5,5E13.5)
Ji=J1+5

J2=J2+5

IF(J1.GT.K) GO TO 3031
IF(J2.GT.K) THEN

J2=K

G0 TO 3030

END IF

G0 TO 3030

CONTINUE

WRITE(6,67)

FORMAT (/)

J=0

J1=1

D0 1009 I=1,K

J=J+1
F(J)=(DBLE(I)-.5)/DBLE(K)
IF(J.EQ.5.0R.I.EQ.K) THEN
WRITE(6,1003) J1,(F(L),L=1,J)
J1=J1+5

END IF

CONTINUE

CONTINUE

JRMAT (5(/) , 30X, ’MONTE CARLO SOLUTION’,5(/),10X,
_IMIT STATE FUNCTION : ’,A,5(/),10X, -
SAMPLE SIZE, K=,17//10X,’NUMBER OF RANDOM VARIABLES, N=’,13///)
JRMAT (26X, ’RANDOM VARIABLES’, //10X, *VARIABLE’,2X,
)ISTRIBUTION’,8X, "MEAN®, 12X, ’STD DEV’)

IRMAT (/11X,A7,5X,A7,5X,E12.5,5X,E12.5) -

IRMAT (/////10X,’STATISTICS OF Y :’//10X,’MEAN  =’,E13.5//10X,
D DEV =’,E13.5//10X, ’MEDIAN =’,E13.5//10X,’°COV - =
3.5,4(/))

’
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19 FORMAT ((5E13.5))

| G0 TO 8004
88 CONTINUE
125 STOP

END
SUBROUTINE STAT (U,M,XM,STD,XMED,COV)

« OF Y FUNCTION.

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

DIMENSION U(M)

XK=M

XM=0.

DO 63 I=1,M

X=XM+U (I)

63 CONTINUE

XM=XM /XK

STD=0.

DO 64 I=1,M

STD=STD+ (U(I) -X) **2

64 CONTINUE

STD=STD/ (XK-1.D0)

STD=DSQRT (STD)

COV=STD/XM

XMED=XM/DSQRT (1.D0+C0V*#2)

RETURN :

END
SUBROUTINE CENX(DIST,ALPHA,BETA,X,XMEAN,XSTD,ISEED)
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
COMMON /TWO/ PI,PI2,SPI2

IDIST=INT (DIST+.1)

d AA=RAN (ISEED) FOR VAX

| AA=RANF ()

; G0 TO (1,2,3,4,5), IDIST

1 X=BETAs (~DLOG (AA) ) #+ (1.DO/ALPHA)
; RETURN

c2 BB=RAN (ISEED) FOR VAX

2 BB=RANF ()
| E=DSQRT (-2.D0+DLOG (AA))
X=E «DCOS (P12BB) «XSTD+XMEAN

| RETURN

» X=BETA-DLOG (-DLOG (AA)) /ALPHA
| RETURN

c4 BB=RAN(ISEED) FOR VAX

4 BB=RANF ()

SDX=DSQRT (DLOG (1.D0+XSTD##2))
UX=DLOG (XMEAN)
E=DSQRT (~2.D0DLOG (AA))
X=DEXP (E+DCOS (P12+BB) +SDX+UX)
RETURN
5 X=BETA* (-DLOG (AA) ) #* (-1.DO/ALPHA)
RETURN
END :
SUBROUTINE BISECT(COV,ISIGN,ALPHA)
IMPLICIT DOUBLE PRECISION (A-H,0-7)
ISIGN = 1; WEIBULL DIST.
2. FRECHET DIST. 354

IaXa)

17 FORMAT (1H1,2(/),14X, SORTED VALUES OF Y AND THE EMPIRICAL CDF’)

, THIS' SUBROUTINE CALCULATES THE STATISTICS (MEAN,STD DEV,MEDIAN,COV)

GENX obtains
random samples

from distributions

RAN is library
uniform random
number generator

for CYBER 175




F(X,C0V)=- (1.D0+COVs+2) «GAMMA (X) +42+GAMMA (2. «X)

IF(ISIGN.EQ.1) X1=COV=*=+(1.08)
IF(ISIGN.EQ.2) X1=COV++(.677)/2.33
IF(ISIGN.EQ.2.AND.X1.GT..49D0) X1=.48999999
IF(ISIGN.EQ.1) F1=F(X1,COV)
IF(ISIGN.EQ.2) F1=F(-X1,C0V)
IF(DABS(F1) .LE.1.D-10) GO TO 1
X2=X1+.01D0

IF(ISIGN.EQ.1) F2=F(X2, COV)
IF(ISIGN.EQ.2) F2=F(-X2,C0V)
F12=F1sF2

IF(F12.LT.0.) GO TO 20

IF(DABS(F1) .GT.DABS (F2)) X1=X2
IF(DABS(F1) .LT.DABS(F2)) X1=X1-.01D0O
GO TO0 7

CONTINUE

X3=(X1+X2) *.5D0

IF(ISIGN.EQ.1) F13=F(X1, COV)&F(XS cov)
IF(ISIGN.EQ.2) F13=F(-X1,COV)=«F(-X3,C0V)
IF(F13.LT.0.) X2=X3

IF(F13.GT.0.) X1=X3

DX=DABS (X1-X2)

IF(DX.GE.1.D-9) GO TO 2
ALPHA=1.D0/X1

RETURN ‘

END

"SUBROUTINE WEI (XMEAN,XDEV,ALPHA,BETA)
IMPLICIT DOUBLE PRECISION (A-H,0-2)
COV=XDEV/XMEAN

- CALL BISECT(CQOV,1,ALPHA)
AL1=1.DO/ALPHA

BETA=XMEAN/ GAMMA (AL1)

RETURN

END

SUBROUTINE FRE (XMEAN,XDEV,ALPHA BETA)
IMPLICIT DOUBLE PRECISION (A-H,0-2)
COV=XDEV /XMEAN

CALL BISECT(COV,2,ALPHA)
AL1=1.D0/ALPHA

BETA=XMEAN/GAMMA (-AL1)

RETURN

END

SUBROUTINE EVD (XMEAN,STD,ALPHA,BETA,PI)
IMPLICIT DOUBLE PRECISION (A-H,0-2)
ALPHA=PI/ (STD+DSQRT (6.D0))
BETA=XMEAN-.57721566490153 /ALPHA
RETURN '
END

DOUBLE PRECISION FUNCTION GAMMA (Y1)
IMPLICIT DOUBLE PRECISION (A-H,0-2)
COMMON /TWO/ PI,PI2,SPI2

X=Y1+1.D+0

-2=X

IF(X.GE.6.0D+0)G0 TO 456

N=INT (X)

21=(6.0D+0) -N+X

Y=1.D+0/Z#%+2

ALG=(Z-.5D+0) «DLOG(Z) +.5D+0+DLOG (PI2) -

Z-(1.0+0/(12.D+0%Z)) + (((Y/0.14D+3-1.D+0/0.105D+3) «Y+

1.D0+0/.3D+2) »Y-1.D+0) 15

BISECT used to
compute Weibull
and Frechet
shape parameter

(exponent)

Computes
Weibull

parameters

Computes
Frechet

parameters

Computes
EVD

parameters

The gamma

function




457

40

IF(X.GE.6.D+0)GO TO 457
ITE=6-N

D0 3 J=1,ITE
A=X+J-1.D+0
ALG=ALG-DLOG(A)
CONTINUE

GAMMA=DEXP (ALG)
RETURN

END

SUBROUTINE QSORT(A,N)
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DIMENSION A(N),KSL(240),KSR(240)
KS=1

KSL(1)=1

KSR(1)=N

CONTINUE

L=KSL (KS)

KR=KSR (KS)

KS=KS-1

CONTINUE

I=L

J=KR

LR=(L+KR) /2

X=A(LR)

CONTINUE

IF(A(I) .LT.X) THEN
I=I+1 :

GO TO 30

END IF

CONTINUE
IF(X.LT.A(J)) THEN
J=J-1

G0 TO 40

END IF

IF(I.LE.J) THEN

w=A (1)

CA(D)=A)

A(J)=¥

I=I+1

J=J-1

END IF

IF(I.LE.J) GO TO 30
IF(I.LT.KR) THEN

KS=KS+1

KSL(KS)=I

KSR (KS)=KR

END IF

KR=J

IF(L.LT.KR) GO TO 20
IF(KS.NE.O) GO TO 10
RETURN

END

SUBROUTINE LSFMC(XA,N,X)
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DIMENSION X(N)

XA=X (1) -X(2) _

This is the
sort routine,

QUICKSORT

RETURN
END

356

This is where the
limit state is

introduced




MONTE CARLO SOLUTION

LIMIT STATE FUNCTION :

. SAMPLE SIZE, K= 10000

NUMBER OF RANDOM VARIABLES, N= 2

RANDOM VARIABLES

VARIABLE DISTRIBUTION
R NORMAL
S NORMAL

STATISTICS OF Y :

MEAN =  .30027E+02
STD DEV =  .13060E+02
MEDIAN =  .27535E+02
COV = .43493E+00

NUMBER OF NEG Y VALUES=

MEAN STD DEY
.50000E+02 .50000E+01
.20000E+02 .12000E+02.

94. PERCENT OF TRIALS=

357

.009400
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APPENDIX C. THE SORT ROUTINE: “"QUICKSORT"

QUICKSORT is described in detail in the book by Wirth [7], who describes
its performance as "spectacular,' and claims that it is the best sorting
method on arrays known so far. The method is based on exchanges and the
inventor C.A.R.Hoare recognized that sorting becomes most efficient when
exchanges are made over large distances.

_The table below shows execution times (in milliseconds) consumed by
several proposed sorting methods as executed by the PASCAL system on a
CDC 6400 computer. The three columns contain times used to sort the
already ordered array, 2 r;ndom permutation, and the inversely ordered
drray. The left figure in each column is for 256 items, and right one
for 512 items.

In summary, the computational effort needed for QUICKSORT is of the

order of n log n.

Ordered Random Inversely Ordered
Straight insertion 12 23 366 1444 704 2836
Binary insertion 56 125 373 1327 662 2490
Straight selection 489 1907 509 1956 695 2675
Bubblesort 540 2165 1026 4054 1492 5931
Bubblesort with flag 5 8 1104 4270 1645 6542
Shakersort - 5 9 961 3642 1619 6520
Shellsort 58 116 127 349 157 492
Heapsort _ 116 253 110 241 104 226
Quicksort 31 69 60 146 37 79
Mergesort 99 234 102 242 99 232

Execution Times of Sort Programs.
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APPENDIX D. LISTING OF THE VARIANCE REDUCTION MONTE CARLO PROGRAM (VARED)
This version runs on the VAX and the CYBER 175. It is not interactive.

The performance function is introduced in subroutine~LSFMC, then compiled

and linked to the rest of the program.

Data Input for the VAX Version Variance Reduction Program

Card 1 Limit State Function (not used for calculations in the program)
Ex: g = R - Sor R=S§, etc.

Card 2 Number of Trials (the preliminary value of K); Number of Variables;

Maximum Error in Secant Method for Solution of Maximum Impact
Variable (a small number)
Ex: lOOO,.3, 1.D-6
or 10000,5,1.D-7
Card 3 Confidence Interval; Gamma; ISTD;
| a. C.I. =0 to 100 in percent: Ex: 90; implies 90% C.I.
| b. Gamma O b Y 5 1, but typically choose y from 0.05 to 0.20.
See Eq. 3.21 ff.
c. 1ISTD = OPTION to enter standard derivations and coefficients
| | of variation of each variable (for LN Disc, alﬁays use CQV)
| 0 = Cov

Std. dev.

| 1

Card 4 Enter ISEED
Any integer number between 0 and 262,139 to start the random sampling.
Ex: 23, 579, etc. :

Card 5 Enter variable name. (Free format)
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Card 6 "Enter corresponding distribution, mean, and scandafd deviation
(if LN always input median and COV); Ex: 1, 20, 2
a. dist. = 1 = Weibull
2 = Normal
3 = EVD
4 = Lognormal (IN)
5 = Frechet

Then repeat 5 and 6 for all of the other variables.
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PROGRAM GMC
PROGRAM GMC (INPUT,OUTPUT, TAPES=INPUT,TAPE6=0UTPUT) FOR CYBER
IMPLICIT DOUBLE PRECISION (A-H,0-Z)

DIMENSION INAME(20) ,XMEAN (20),XSTD(20),DIST(20),DTRANS(20),X(20)

DIMENSION Y (10000),F(5),AL(20),BE(20),XA(20),TX(20),TS(20)
COMMON /TWO/PI,SPI2,PI2
CHARACTER#70 GRS,FIN,FOUT,AA+7,BBx6,CCx3,DD#3,EE+7
CHARACTER+7 INAME,DTRANS
DATA AA/’WEIBULL®/
DATA BB/’NORMAL’/
DATA CC/?EVD’/
DATA DD/’LOG’/
DATA EE/’FRECHET’/

READ (5, (A) *,END=8888) GRS

READ(5,+) K,N,EPS Program VARED.

READ(5,+) ZAL,GAM,ISTD,PLOT
FOR CYBER, CALL RANSET(0) AND SKIP ISEED

Carlo using variance

READ(5,=) ISEED reduction method; runs

00 .7901 I=1,N
READ(5,?(A)?) INAME(I)

on the VAX or CYBER 175

READ(S,+) DIST(I),XMEAN(I),XSTD(I)
CONTINUE
CONTINUE
IF(ISTD.EQ.0) THEN
D0 913 I=1,N
IF(DIST(I).EQ.4.) GO TO 913
XSTD (I) =XMEAN (I) sXSTD (I)
CONTINUE
END IF
IF (K.GT.10000) K=10000

D0 1234 I=1,N

AL (1)=0.D0

BE (1)=0.D0

IF(DIST(I).EQ.4.) THEN

TX (1) =XMEAN (I) #DSQRT (1.DO+XSTD (I) *+2)
TS (I)=TX(I) *XSTD (I)

ELSE

TX(I)=XMEAN(I)
- TS(I)=XSTD(I)
END IF
CONTINUE
PI=4.DO+DATAN(1.DO)
PI2=PI+PI
SPI2=1.DO/DSQRT (PI2)
00 1 I=1,N
IF(DIST(I).EQ.1.) DTRANS(I)=AA
IF(DIST(I).EQ.2.) DTRANS(I)=BB
[F(DIST(I).EQ.3.) DTRANS(I)=CC
[F(DIST(I).EQ.4.) DTRANS(I)=DD
[F(DIST(I).EQ.5.) DTRANS(I)=EE
" IF(DIST(I).EQ.1.) CALL WEI(XMEAN(I),XSTD(I),AL(I),BE(I))
IF(DIST(I).EQ.3.) CALL EVD(XMEAN(I),6XSTD(I),AL(I),BE(I),PI)
"~ IF(DIST(I) .EQ.5.) CALL FRE(XMEAN(I),XSTD(I),AL(I),BE(I))
-ONTINUE

: DATA IS PRINTED OUT.
. 362



MAIN LOOP USING ANTITHETIC VARIANCE REDUCTIUN METHOD
FIND MAX. IMPACT VARIABLE
DG=0.D0
CALL LSFMC(G,N,TX)
DO 700 I=1,N )
TX (1) =TX (1) +TS(I)
CALL LSFMC(DGB,N,TX)
DGA=DGB-G
IF (DABS (DGA) .LE.DABS (DG)) GO TO 701
Iv=1
DG=DGA
01 TX(I)=TX(I)-TS(I)
700 CONTINUE

WRITE(6,11) GRS,K,N
WRITE(6,96) ZAL,GAM
36 FORMAT (10X, *CONFIDENCE INTERVAL = °’,F6.2,’ %’,//,
$ 10X,’GAMMA = ’,F6.2,//)
WRITE(6 559) IV
559 FORMAT (10X, ’MAX IMPACT VARIABLE = X(’ 12 )7, /)
IF(DG.LE.0.DO) WRITE(6,561)
561 FORMAT (10X, °VARIABLE TYPE IS STRESS’,///)
IF(DG.GT.0.DO) WRITE(6,563)
563 FORMAT (10X, ’YARIABLE TYPE IS STRENGTH’,///)
WRITE(6,12)
WRITE(6,13) (INAME(I) ,DTRANS(I), XMEAN(I) XSTD(1),I=1,N)
C CALCULATE PROB. OF FAILURE
K1=1
K2=K
1C0=1
98 CONTINUE
DO 702 I=K1,K2
D0 703 J=1,N
IF(J.EQ.IV) GO TO 703
CALL GENX(DIST(J),AL(J),BE(J),X(J),XA(J),XMEAN(J),XSTD(J),ISEED)
703 CONTINUE
IF(DG.GT.0.DO) A=TX(IV)-3.DO*TS(IV)
IF(DG.LE.0.DO) A=TX(IV)+2.DO*TS(IV)
B=A+TS (1Y)
CALL SECA(EPS,A,B,IV,N,X)
CALL CDFPDF(DIST(IV),AL(IV),BE(IV),X(IV),XMEAN(IV),XSTD(1Y),
$ 1,CDF1,PDF)
IF(DG.LE.0.DO) CDF1=1.DO-CDF1
IF(DG.GT.0.DO) A=TX(IV)-3.DO+TS(IV)
"IF(DG.LE.0.DO) A=TX(IV)+2.DOsTS(IV)
B=A+TS(IV) .
CALL 'SECA(EPS,A,B,IV,N,XA)
CALL CDFPDF(DIST(1IV),AL(1IV),BE(IV),XA(IV),XMEAN(IV),XSTD(IV),
$ 1,CDF2,PDF)
IF(DG.LE.0.DO) CDF2=1.D0O-CDF2
Y (I)=(CDF1+CDF2)=+.5D0
702 CONTINUE
c .
123 CALL STAT(Y,K1,K2,YMEAN,YSTD, YMED ,YCoy)
IF(IC0.EQ.1) THEN
YM=YMEAN
YS=YSTD
YME=YMED
YC=YCQY

YM1=YM
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“ w

ELSE

YM=(K+YM1+(K2-K) *YMEAN) /K2

YS1=YS##2# (K-1) +K#YM1#+2+YSTD##2# (K2-K-1) + (K2~ K)tYMEANttZ
YS2=YS1-K2*YM*»2

YS=DSQRT (YS2/(K2-1))

YC=YS/YM

YME=YM/DSQRT (1.D0+YC%%2)

END IF

ZAL1=.005D0% (100.D0O+ZAL)

ZAX=XINV (ZAL1)

ZX=ZAX*YC/DSQRT (DBLE (K2))

PL=YMs (1.D0-ZX)

PU=YM= (1.D0+ZX)

WRITE(6,176) YM,ZAL,PL,PU

FORMAT(/// 10X, ’ESTIMATE OF P = ’,E13.5,//,
10X,F5.2,” % CONFIDENCE INTERVALS ARE’ //,
10X,’PL = ’,E13.5,5X,’PU = ’,E13.5 ///)

WRITE(6,15) YMEAN,YSTD,YMED,YCOV
IF(PLOT.EQ.O0.) GO TO 3456

Ji=1

J2=5

WRITE(6,1003) J1,(Y(I),I=J1,J2)

FORMAT (1X,’I = ’,15,5E13.5)

J1=J1+5

J2=J2+5

IF(J1.GT.K2) GO TO 3031

IF(J2.GT.K2) THEN

J2=K2

G0 TO 3030

END IF

GO0 TO 3030
. CONTINUE

WRITE(6,67)

FORMAT (/)

J=0

J1=1

DO 1009 I=1,K2

J=J+1

F(J)=(DBLE(I)-.5) /DBLE(K2)

IF(J.EQ.5.0R.I.EQ.K2) THEN

WRITE(6,1003) J1,(F(L),L=1,J)

J=0

J1=J1+5

END IF

CONTINUE

CONTINUE

Ki=K+1

K2=(YC+ZAX/CGAM) %2+1

IF(IC0.EQ.1) WRITE(6,99) GAM, K2

FORMAT(//,10X,’K FOR GAMMA = ’,F6.2,’ IS ’,16)

IC0=IC0+1

IF(IC0.EQ.2.AND.K2.GT.K) GO TO 98
FORMAT(IHI 5(/),30X, *"MONTE CARLO SOLUTION’,5(/),10X,
LIMIT STATE FUNCTIDN : ?,A,5(/),10X,
’SAMPLE SIZE =’,17//10X, ’NUMBER OF RANDUM VARIABLES =’ I3//)
FORMAT (26X, ’RANDOM VARIABLES’,//10X, ’VARIABLE’,2X,
’DISTRIBUTION’,8X, ’MEAN’, 12X, ’STD DEV’)
TORMAT (/11X,A7, SX A7,5X, E12 5 5X,E12.5)
—ORMAT(/////IOX ’STATISTICS OF P :?//10X,’MEAN - =’,E13.5//10X,
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8301

8888

+’STD DEV =’,E13.5//10X, ’MEDIAN

+E13.5,//11)
TF (ANS1.EQ.’F’.OR.ANS1.EQ.’f’) GO TO 8300

WRITE(6,8301)

FORMAT(’ DO YOU HAVE ANOTHER DATA SET ?(Y/N) ’,$)

READ (5,8001) ANS3

IF (ANS3.EQ.’Y’.OR.ANS3.EQ.’y’) GO TO 8304

CONTINUE

125 STOP

END

=’ E13.5,//10X,’COV

SUBROUTINE SECA(EPS,A,B,IV,N,X)
IMPLICIT DOUBLE PRECISION (A-H,0-2)

DIMENSION X(N)
X (IV)=A

CALL LSFMC(U,N,X)
X (IV)=B

CALL LSFMC(V,N,X)
CONTINUE

IF (DABS (X (IV) -A) .GE.EPS) THEN

X (IV) =B~V (B-A) / (V-U)
A=B

B=X (IV)
U=V
CALL LSFMC(V,N,X)
G0 TO 1
END IF
. RETURN
END

-
2

This defined the performance functio:

This subroutine determines tt
point at which the CDF is
evaluated for the maximum

impact variable

SUBROUTINE CDFPDF (DIST,ALPHA,BETA,X,XMEAN,XDEV, ICDF,CDF,PDF)
IMPLICIT DOUBLE PRECISION (A-H,0-Z)

COMMON /TWO/PI,SPI2,PI2

IDIST=INT(DIST+.1)

G0 TO (1,2,3,4,5),IDIST

RB=X/BETA
EW=RB++ALPHA

IF (EW.GT.200.) EW=200.
EXPWEI=DEXP (-EW)
CDF=1.DO-EXPWEI

IF (ICDF.EQ.1) 60 TO 10
PDF= (ALPHA/BETA) + (E¥/RB) *EXPWET

G0 TO 10
Z=(X-XMEAN) /XDEV

* CDF=CDFNOR(Z)

IF(ICDF.EQ.1) GO TO 10

PDF=SPI2+DEXP (-Z=*2#.5D0) /XDEV

GO0 TO 10

EE=ALPHA=* (X-BETA)
IF(EE.GT.200.) EE=200.
YY=DEXP (-EE)
IF(YY.GT.200.) YY=200.
COF=DEXP (-YY)
IF(ICDF.EQ.1) GO TO 10
EY=EE+YY
IF(EY.GT.200.) EY=200.
PDF=ALPHA+«DEXP (-EY)

GO0 T0 10 A
CX21=XDEV*%2+1.D0
YMEAN=DLOG (XMEAN)
YDEV=DSQRT (DLOG (CX21))
Z=(DLOG (X) -YMEAN) /YDEV
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CDF=CDFNOR (Z)
IF(ICDF.EQ.1) GO TO 10
EZ=-(Z*%2)*.5D0
IF(EZ.LE.-200.) EZ=-200.
PDF-SPIZ*DEXP(EZ)/(YDEV*X)
GO TO 10
TEMP=(BETA/X) »+ALPHA
CDF=DEXP (-TEMP)
IF(ICDF.EQ.1) GO TO 10
PDF=CDF«TEMP+ALPHA /X
RETURN
END
DOUBLE PRECISION FUNCTION XINV (Z)
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
F(X,P1)=P1-CDFNOR(X)
=l -
IF(Z.GT.0.5D0) Y=1.D0-Z
€0=2.515517D0

C1=0.80285300
€2=0.010328D0
D1=1.43278800

D3=0.001308D0

The inverse normal

using the secant
D2=0.189269D0 \ mechod

I

L

T=(-2.00+DLOG(Y) ) »+.5D0
DNUM=CO+T= (C1+T%C2)
DNOM=1.0D0+T*(D1+T* (D2+T»D3))
X=T~ (DNUM/DNOM)
IF(Z.LT.0.5D0) X=-X

A=X

B=X+.001D0

V=F (B, )

U=F(A,Z)

XX=B

CONTINUE

IF (DABS(XX-A) .GE.1.D-10) THEN

XX=B-V=*(B-A) / (V-V)

A=B

B=XX

U=v

V=F(XX,2) .

GO TO 1

END IF

XINV=XX

RETURN

END

DOUBLE PRECISION FUNCTION CDFNOR(Z)
» FUNCTION COMPUTES THE NORMAL CDF.

IMPLICIT DOUBLE PRECISION (A-H,0-2)

COMMON /TWO/PI,SPI2,PI2
DATA A/0.31938153D0/, B/ 0.356563782D0/,C/1. 78147793700/,
D/-1.821255978D0/,E/1.33027442900/
EZ=-(Z+%2)*.5D0
CDFNOR=0.000.
IF(EZ.LE.-200.0D0) GO TO 1
ZX=SPI2+DEXP (EZ)
 IF(DABS(Z) .CT.6.D0) GO TO 2
T=1.D0/(1.D0+(0.2316419D0+DABS(Z)))
CDFNOR=ZX*T#* (A+T# (B+T# (C+T# (D+T=+E))))
., GO TO1

22=1 .DO/ (ZtZ) . 366



CDFNOR=ZX=* (1.D0-Z2+ (1.D0-3.D0+22+(1.D0-5.D0+«Z2))) /DABS (Z)
1 IF(Z.GT.0.0D0) CDFNOR=1.0DO-CDFNOR
RETURN-
END '
SUBROUTINE STAT(U,K1,K2,XM,STD,XMED,COV)
C
C+ THIS SUBROUTINE CALCULATES THE STATISTICS (MEAN,STD DEV,MEDIAN,COV)
C+ OF Y FUNCTION. .
C
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DIMENSION U(K2)
XK=K2-K1+1
XM=0.
DO 63 I=K1,K2
XM=XM+U (I)
63 CONTINUE
XM=XM /XK
STD=0.
DO 64 I=K1,K2
STD=STD+ (U(I)-XM) *+2
64 CONTINUE
STD=STD/ (XK-1.D0)
STD=DSQRT (STD)
COV=STD/XM
XMED=XM/DSQRT (1.D0+COV++2)
RETURN
END
SUBROUTINE GENX (DIST,ALPHA,BETA,X,XA,XMEAN,XSTD, ISEED)
IMPLICIT DOUBLE PRECISION (A-H,0-Z)

GENX obtains random

IDIST=INT (DIST+.1)

COMMON /TWO/PI,SPI2,PI2 -‘ I
C FOR CYBER, AA=RANF () - \

samples from the

AA=RAN (ISEED) distributions |
G0 TO (1,2,3,4,5), IDIST

1 X=BETA+ (-DLOG (AA) ) #+ (1.DO/ALPHA)

XA=BETA= (-DLOG(1.D0-AA)) =+ (1.DO/ALPHA) ‘
RETURN RAN is library

2 BB=RAN (ISEED) : c .

C FOR CYBER, BB=RANF() unitorm randem
E=DSQRT (-2.004«DLOG (AA)) number generator
X=E+DCOS (PI2+BB) +XSTD+XMEAN
XA=-X+2 .DOxXMEAN for CYBER 175

RETURN
3 X=BETA-DLOG (-DLOG (AA)) /ALPHA
XA=BETA-DLOG (-DLOG (1.D0-AA)) /ALPHA
RETURN :
4 BB=RAN (ISEED)
C FOR CYBER, BB=RANF()

SDX=DSQRT (DLOG (1 .DO+XSTD=*#2))
UX=DLOG (XMEAN)
W=DSQRT (-2.D0+DLOG (AA) ) »DCOS (P12+BB) »SDX+UX
X=DEXP (¥) : .
XA=DEXP (-W+2.D0=UX)
RETURN

5 X=BETA# (-DLOG (AA) ) #= (-1.DO/ALPHA)
XA=BETAs= (-DLOG (1.D0-AA) ) #+ (-1 .DO/ALPHA)
RETURN
END

SUBROUTINE SECAL(COV,ISIGN,ALPHA)



IMPLICIT DOUBLE PRECISION (A-H,0-2)
ISIGN = 1; WEIBULL DIST.
= 2; FRECHET DIST.

F(X,C0V)=-(1.D0+COV*%2) +GAMMA (X) *2+GAMMA (2. +X)
IF(ISIGN.EQ.1) X1=COV=**(1.08)

IF(ISIGN.ER.2) X1=COV=*%(.677)/2.33
IF(ISIGN.EQ.2.AND.X1.GT..49D0) X1=.48999999
IF(ISIGN.EQ.1) F1=F(X1,COV)

IF(ISIGN.ER.2) Fi=F(-X1,C0V)

IF(DABS(F1) .LE.1.D-10) GO TO 1.

X2=X1+.01D0

IF (ISIGN.EQ.1) F2=F(X2,C0V)

IF(ISIGN.EQ.2) F2=F(-X2,C0V)

=X2

CONTINUE

IF (DABS (XX-X1) .GE.1.D-9) THEN

XX=X2-F2#* (X2-X1) / (F2-F1) B Secant method for
X1=X2
X2=xXX _
F1=F2 and Frechet exponents
IF(ISIGN.ER.1) F2=F(XX,COV)
IF(ISIGN.EQ.2) F2=F(-XX,C0V)

GO TO 10

END IF

X1=XX

ALPHA=1.D0/X1

RETURN

END

SUBROUTINE WEI (XMEAN,XDEY,ALPHA,BETA)
IMPLICIT DOUBLE PRECISION (A-H,0-2) Computes Weibull
COV=XDEV/XMEAN

CALL SECA1(COV,1,ALPHA) parameters
AL1=1.DO/ALPHA '

BETA=XMEAN/GAMMA (AL1)

RETURN

END

SUBROUTINE FRE(XMEAN,XDEY,ALPHA,BETA)

IMPLICIT DOUBLE PRECISION (A-H,0-2Z) Computes Frechet
COV=XDEV /XMEAN

CALL SECA1(COY,2,ALPHA)

AL1=1.DO/ALPHA

BETA=XMEAN/GAMMA (-AL1)

RETURN

END

SUBROUTINE EVD (XMEAN,STD,ALPHA,BETA,PI)
IMPLICIT DOUBLE PRECISION (A-H,0-Z) Computes EVD
ALPHA=PI/ (STD*DSQRT(6.D0))
BETA=XMEAN-.57721566490153/ALPHA
RETURN - '

END

DOUBLE PRECISION FUNCTION GAMMA(Y1)
IMPLICIT DOUBLE PRECISION (A-H,0-Z) The gamma
COMMON /TWO/PI,SPI2,PI2 '

X=Y1+1.D+0

=X

IF(X.GE.6.0D0+0)G0 TO 456

N=INT (X) :

Z=(6.0D0+0) =-N+X

Y=1.D+0/Z%%2

ALG=(Z-.5D+0)+DLOG(Z) +.5D+0+DLOG (PI2) -

computing Weibull

parameters

parameters

function
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§ Z-(1.0+0/(12.0+042))# (((Y/0.14D+3-1.D+0/0.105D+3) «Y+
$ 1.D+0/.3D+2)+Y-1.D+0)
IF(X.GE.6.D+0)G0 TO 457
ITE=6-N
D0 3 J=1,ITE
A=X+J-1.D+0
ALG=ALG-DLOG (A)
3 CONTINUE
457 GAMMA=DEXP (ALG)
RETURN
END

Note: The performance function must be introduced in subroutine LSEMC.

For an example of subroutine LSFMC, see the last page of Appendix B.

369



Appendix E

Program SELSAM: The Mean Value Method for Evaluating a Multiple Integral,

and Enhancement by Stratified Sampling

How the Data is Input

l'

NK, NT, N

NK = 0; Hasofer-Lind design point for reference

NK = 1; Rackwitz-Fiessler design point for reference

NT = Total number of_s;;ples

N = Total number of random variables

ISTRIP

ISTRIP = Total nugber of STRIPS (or boxes) for stratified sampling;
ISTRIP = 1 gives you the '"mean value' method

BOX (I), IBOX (I) This is repeated for each box.

BOX (I) = ith strip length from the reference point (design point) in

standard deviations.

IBOX (I) = trial points in ith strip

VAR (I); this along with the next line will be repeated for each random
variable

VAR (I) = ith random variable name

IDIST (I) XMEANi(I), STD (I); this corresponds to VAR (I)

IDIST (I) = ith random variable distribution

1 = WEIBULL
2 = NORMAL
3 = EVD

4 = LOGNORMAL

5 = FRECHET
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YMEAN (I) = ith random variable mean value

STD (2) = ith random variable standard deviation

*If nognormal, median and COV instead of mean and std.

720 = constant in performance function; this allows the user to make an
easy change in the performance function when constructing a CDF

The user should supply the LSFRA and G function in the last section of

program (see example)
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PROGRAM SELSAM(INPUT,0UTPUT, TAPES=INPUT, TAPE6=0UTPUT)
IMPLICIT DOUBLE PRECISION (A-H,0-Z)

DIMENSION XMEAN(20),STD(20),IDIST(20),XR(20),AL(20),BE(20)
DIMENSION X(20),B0X(20),IB0X(20),IDIV(20),AREA(20),ITEST (20)
DIMENSION IDIV1(20),TMEAN(20),TSTD(20),Z(20),UX(20),TCOV(20)
CHARACTER+7 VAR(20) ,AA

COMMON /TW0/ PI,PI2,SPI2

COMMON /RAC/ NK

CALL RANSET (0)

PI=4 .DO+DATAN(1.DO)

PI2=PI+PI

SPI2=1.D0/DSQRT (PI2)

EPST = STOP CRITERION IN RACA
EPSI=1.D-4

NK = 0; H-L
NK = 1; R-F

NT;- NUMBER OF TRIALS :
N; NUMBER OF RANDOM VARIABLES

READ(5,+) NK,NT,N
ISTRIP; NUMBER OF STRIPS
READ(5,+) ISTRIP

DO 300 I=1,ISTRIP

BOX; DISTANCE FROM ORIGIN FOR i-TH STRIP (MULTIPLIED BY SIGMA)
IBOX; NUMBER OF POINTS IN i-TH BOX

READ (5,+) BOX(I),IBOX(I)
CONTINUE
CALCULATE EACH STRIP AREA

D0 150 I=1,ISTRIP-1
AREA (1)=(2.D0#B0X (I)) **N-(2.D0*BOX(I+1)) =N
CONTINUE
AREA (ISTRIP)=(2.00*BOX(ISTRIP)) #+N
WRITE(6,769) A
DO 1 I=1,N
AL(I)=0.DO
BE(I)=0.D0O

ENTER VARIABLE NAME
READ (5,7 (A)’) VAR(I)

ENTER DISTRIBUTION, MEAN, AND STANDARD DEVIATION
IF LN, USE MEDIAN AND COV

READ(5,+) IDIST(I),XMEAN(I),STD(I)

IF(IDIST(I).EQ.1) AA="WEIBULL’
IF(IDIST(I).EQ.2) AA=’NORMAL’
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IF (IDIST(I) .EQ.3) AA=’EVD’
 IF(IDIST(I).EQ.4) AA=’LOG N.’
IF(IDIST(I) .EQ.5) AA=’FRECHET’
G0 TO (101,17,103,17,105) ,IDIST(I)
101 CALL WEI (XMEAN(I),STD(I),AL(I),BE(I))

60 TO 17

103 CALL EVD (XMEAN(I),STD(I),AL(I),BE(I),PI)
G0 TO 17

105 CALL FRE(XMEAN(I),STD(I),AL(I),BE(I))

17 CONTINUE
WRITE(6,768) VAR(I),AA,XMEAN(I),STD(I)

1 CONTINUE o
WRITE(6,767)

WRITE(6,766) NT
WRITE(6,7661) (IBOX(I),I=1,ISTRIP)
WRITE(6,7662) (BOX(I),I=1,ISTRIP)
D0 7 I=1,N
IF(IDIST(I).EQ.4) THEN
TMEAN (1) =XMEAN (I) *DSQRT (1.D0+STD (I) ##2)
TSTD (I)=TMEAN (1) #STD (1)
TCOV(I)=STD(I)
ELSE
TMEAN (I) =XMEAN (I)
TSTD(I)=STD (I) .
TCOV (I)=TMEAN(I) /TSTD (I
END IF
7 CONTINUE
DO 665 K1=1,N
IF (IDIST (K1) .EQ.4) THEN
TMEAN (K1) =DLOG (TMEAN (K1))
TSTD (K1) =DSQRT (DLOG (1.D0+TCOV (K1) #2))
END IF .
665 CONTINUE

C 20 = CONSTANT IN LSFRA
READ(5,s) Z0

CALL RACA(Z,N,XR,EPSI,TMEAN,IDIST,TSTD,TCUV,AL,BE,BET,ZO)
WRITE(6,61)
WRITE(6,63) (XR(KKJ),KKJ=1,N)
DO 666 Kil=1,N .
IF (IDIST(K1) .EQ.4) THEN
TMEAN(KI):DEXP(TMEAN(K1)+T$TD(K1)¢*2*.5)
TSTD (K1) =TMEAN (K1) «TCOV (K1)
END IF
666 CONTINUE
333 SUMP=0.D0

SMS=0.D0

WRITE(6,770)

D0 100 IJ=1,NT

CALL SECOND(TX1)

SUM=0.D0

IDIV1(1)=IBOX(1)

DO 15 L=1,ISTRIP

IDIV(L)=0

SUMX=0.D0

LEFT=0
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TOTAL LENGTH OF L-TH STRIP

DX=2.D0«BOX (L)
D0 3 J=1,IDIV1(L)
D0 2 I=1,N
ITEST(I)=0
XMIN=XR (I)-BOX(L)
U=RANF () «DX+XMIN
X(I)=UsTSTD (I) +TMEAN(I)
IF(L.EQ.ISTRIP) GO TO 2
IF (U.GE.XR(I)-BOX(L+1) .AND.U.LE. XR(I)+BOX(L+1)) ITEST(I)=1
CONTINUE
IF(L.EQ.ISTRIP) GO TO 230
ITE=0
Do 21 I=1,N :
ITE=ITE+ITEST(I) ' .
CONTINUE
IF(ITE.EQ.N) THEN
LEFT=LEFT+1

ELSE

" IDIV(L)=IDIV(L)+1
END IF
IF(ITE.EQ.N) GO TO 3
IF(G(X).GT.0.D0) GO TO 3

SUMX = SWM OF f(x1,x2,...,xn)

SUM1=1.DO

D0 5 I=1,N

SUM1=SUM1«F (IDIST(I) ,XMEAN(I),STD(I),X(I),AL(I),BE(I))
CONTINUE

SUMX=SUMX + SUM1

CONTINUE

SUM2 = PRODUCT OF EACH STD

SUM2=1.0D0
D0 6 I=1,N
SUM2=SUM2*TSTD (I)
CONTINUE
IF(L.EQ.ISTRIP). IDIV(L)=IDIV1i(L)
SUMX=SUMX*AREA (L) *SUM2/IDIV (L)
SUM=SUM+SUMX
IDIV1(L+1)=IBOX(L+1)+LEFT
CONTINUE
BETA=-XINV (SUM)
. SUMP=SUMP +SUM
SUMS=SUMS +SUM# «2
CALL SECOND(TX2)
TIME=TX2-TX1
WRITE(6,771) SUM,BETA,TIME
CONTINUE
" SUMS=DSQRT ((SUMS-SUMP %2 /NT) / (NT-1. DO))
SUMP=SUMP /NT
. WRITE(6,772) SUMP
" WRITE(6,773) SUMS
FORMAT (/,1X, INITIAL STARTING POINT (REDUCED VARIATES) )
FORMAT (/,1X, ’NEW STARTING POINT (REDUCED VARIATES)’)
FURMAT(S(IX,F6.3))
374



764 FORMAT (1X, *SUM(?,12,°) = ’,1PE12.4)
765 FORMAT (1X, *GAMMA(*,12,7) = *,1I5)
766 FORMAT (1X, ’K = *,I5)
7662  FORMAT(/,1X,’STRIP (SIGMA) =’,5(1X,F6.2))
7661  FORMAT(/,1X, ’SAMPLE (POINTS) =’,5(1X,I5))
767 FORMAT (//)
768 FORMAT (2X,A7,2X,A7,1X,1PE12.4,1PE12.4, /)
769 FORMAT(//,1X, ’VARIABLE?,1X,” DIST. ’,6X, ’MEAN’,8X,’STD. DEV’,/)
770 FORMAT(//,1X, ESTIMATE OF I’,4X,’BETA’,4X,’CPU SEC’,/)
771 FORMAT(2X,1PE12.4,3X,0PF6.3,2X,0PF6.2, /)
772 FORMAT (1X, ’AVG. OF ESTIMATION = ’,1PE12.4,/)
773 FORMAT (1X, *STANDARD DEVIATION = ’,1PE12.4,/)
STOP , '
END

DOUBLE PRECISION FUNCTION F(IDIST,XMEAN,XDEV,X,ALPHA,BETA)
C CACULATE PDF OF EACH VARIABLE

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
COMMON /TWO/ PI,PI2,SPI2
G0 TO (1,2,3,4,5),IDIST

1 IF(X.LE.1.D-10) THEN
F=0.D0
GO TO 10
END IF .
RB=X/BETA
EW=RB**ALPHA
IF(EW.GT.200.) EW=200.
EXPWEI=DEXP (-EW)
F=(ALPHA/BETA) = (EW/RB) +EXPWEI
GO TO 10

2  Z=(X-XMEAN) /XDEV _
F=SPI2+DEXP (-Z*2*.5D0) /XDEV
G0 TO 10
3  EE=ALPHA« (X-BETA)

IF(EE.GT.200.) EE=200.
YY=DEXP (-EE)
IF(YY.GT.200.) YY=200.
EY=EE+YY
IF(EY.GT.200.) EY=200.
F=ALPHA*DEXP (-EY)
GO TO 10

4 IF(X.LE.0.DO) THEN
F=0.D0 X
GO T0O 10
END IF
CX21=XDEV++2+1.D0
YMEAN=DLOG (XMEAN)
YDEV=DSQRT (DLOG (CX21))
Z=(DLOG (X) ~YMEAN) /YDEV
EZ=-(Z#+2)*.5D0
IF(EZ.LE.-200.) EZ=-200.
F=SPI12+DEXP (EZ) / (YDEV*X)
G0 TO 10 )

5 IF(X.LE.0.DO) THEN
F=0.D0
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END IF
TEMP= (BETA/X) #*ALPHA
IF (TEMP.GE.200.) TEMP=200.
CDF=DEXP (-TEMP)
F=CDFTEMP*ALPHA/X
3 RETURN
END

DOUBLE PRECISION FUNCTION CDFNOR(Z)

THIS FUNCTION COMPUTES THE NORMAL CDF.

IMPLICIT DOUBLE PRECISION (A-H,0-2)

COMMON /TWO/ PI,PI2,SPI2

DATA A/O. 3193815300/ B/-0. 35655378200/ C/1.781477937D0/,
+ D/-1.821255978D0/,E/1.330274429D0/

EZ=-(Z«*2)*.5D0

CDFNOR=0.0DO -

IF(EZ.LE.-200.0D0) GO TO 1

IX=SPI2«DEXP (EZ)

IF(DABS(Z) .GT.6.D0) GO TO 2

T=1.D0/(1.D0+(0.2316419D0*DABS (Z)))

CDFNOR= ZX#T#(A+Tt(B+Tt(C+T*(D+T*E))))

G0 TO 1

72=1.D0/ (Z+Z)

COFNOR=ZX+ (1.D0-Z2+ (1.D0-3.D0+Z2+ (1.D0-5. DO*ZQ)))/DABS(Z)

IF(Z.GT.0.0D0) CDFNOR=1.0DO-CDFNOR

RETURN

END

DOUBLE PRECISION FUNCTION XINV (Z)
INVERSE NORMAL CDF

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
F(X,P1)=P1-CDFNOR (X)
Y=Z

IF(Z.GT.0.5D0) Y=1. DO z
€0=2.515517D0
C1=0.802853D0
€2=0.01032800
D1=1.432788D0

D2=0.189269D0
D3=0.001308D0

T=(-2.D0+DLOG(Y)) **.5D0
DNUM=CO+T=* (C1+T*C2)
DNOM=1. ODO+Tt(Dl+Tt(DQ+TtD3))
X=T- (DNUM /DNOM)
IF(Z.LT.0.5D0) X=-X
X1=X

F1=F(X1,2)

X2=X1+.001D0O

F2=F (X2,2)

XX=X2

CONTINUE

IF (DABS(XX-X1) .GE.1.D-10) THEN

XX=X2-F2#*(X2-X1) / (F2-F1)

X1=X2

X2=XX
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24

10

Fi1=F2
Fo=F (XX, Z)
G0 TO 10
END IF
XINV=XX
END

SUBROUTINE SECT1(COV,ISIGN,ALPHA)

CALCULATE ALPHA, AND BETA IN WEIBULL OR FRECHET
IMPLICIT DOUBLE PRECISION (A-H,0-Z)

COMMON /TWO/ PI,PI2,SPI2

ISIGN = 1; WEIBULL DIST.

2; FRECHET DIST.

F(X,CUV)=—(1.DO+COV¢#2)tGAMMA(X)*t2+GAMMA(2.tX)
IF(ISIGN.EQ.1) X1=COV=*#(1.08)
IF(ISIGN.EQ.2) X1=COV#=*(.677)/2.33
IF(ISIGN.EQ.Q.AND.XI.GT..4900) X1=.48999999
IF(ISIGN.EQ.1) F1=F(X1,C0V)
IF(ISIGN.EQ.2) F1=F (-X1,C0V)
IF(DABS(F1).LE.1.D-10) GO T0 1
X2=X1+.01D0

IF(ISIGN.EQ.1) F2=F(X2,C0V)
IF(ISIGN.EQ.2) F2=F (-X2,C0V)
XX=X2

CONTINUE

IF(DABS(XX-Xl).GE.l.D-g) THEN
XX=X2-F2=* (X2-X1) / (F2-F1)

X1=X2

X2=XX ‘

Fi1=F2 :
IF(ISIGN.EQ.1) F2=F (XX, COV)
IF(ISIGN.EQ.2) F2=F (-XX,C0V)

G0 TO 10

END IF

X1=XX

ALPHA=1.DO/X1

RETURN

END

SUBROUTINE WEI (XMEAN,XDEV,ALPHA,BETA)
CALCULATE PARAMETERS (ALPHA AND BETA)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
COV=XDEV/XMEAN

CALL SECT1(COV,1,ALPHA)
AL1=1.DO/ALPHA
BETA=XMEAN/GAMMA (AL1)

RETURN

END

SUBROUTINE FRE(XMEAN,XDEV,ALPHA, BETA)
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CALCULATE PARAMETERS (ALPHA AND BETA)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
COV=XDEV /XMEAN

CALL SECT1(COV,2,ALPHA)
AL1=1.D0/ALPHA

BETA=XMEAN/GAMMA (-AL1)

RETURN

END

SUBROUTINE EVD (XMEAN,STD,ALPHA,BETA,PI)
CALCULATE PARAMETERS (ALPHA AND BETA)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
ALPHA=PI/ (STD#DSQRT(6.D0)) ~
BETA=XMEAN-. 57721566490153/ALPHA
RETURN

END:

DOUBLE PRECISION FUNCTION GAMMA(Y1)
GAMMA FUNCTION '

IMPLICIT DOUBLE PRECISION (A-H,0-2)
COMMON /TWO/ PI,PI2,SPI2

X=Y1+1.D+0

=X

IF(X.GE.6.0D+0)GO TO 456

N=INT (X)

Z=(6.00+0) -N+X

Y=1.D+0/Z#%2

ALG=(Z~-.5D+0) «DLOG (Z) +.5D+0+DLOG (PI2) -
Z-(1.0+0/(12.D+0+Z)) # (((Y/0.14D+3-1.D+0/0.105D+3) sY+
1.D+0/.3D+2) +Y-1.D+0)

IF(X.GE.6.D+0)G0 TO 457

ITE=6-N

DO 3 J=1,ITE

A=X+J-1.D+0

ALG=ALG-DLOG(A)

CONTINUE

GAMMA=DEXP (ALG)

RETURN

END

SUBROUTINE RACA(Z,N,XR,EPS,XMEAN,IDIST,XDEV,XCOV,AL,BE,BETA,Z0)
SUBROUTINE FOR H-L OR R-F

. IMPLICIT DOUBLE PRECISION (A-H,0-Z)

DIMENSION X(20),XR(20) ,BUFFER (20),D(20) ,XMEAN (20) ,XDEV (20)
IDIST(20) , XNMEAK (20) , XNDEV (20) , AL (20) , BE (20) , 2(20) XCOV (20)
COMMON /DIREC/ DG(20)

COMMON /RACAXX/ Z01

COMMON /RAC/ LL
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OPTIMIZATION ROUTINE BEGINS HERE
201=70

KK=0
CALL HAZL(Z,N,F,EPS,D,XR,XMEAN,XDEV,IDIST,X,BETA,KK)
IF(LL.EQ.0) RETURN

THIS LOOP CALCULATES THE EQUIVALENT NORMAL DISTRIBUTION
FOR EACH DESIGN VARIABLE. X

KK=KK+1

po 13 J=1,N

CALL FIND (AL (J),BE(J),IDIST(J),XMEAN(J),XDEV(J),X(J),
XNMEAN (J) , XNDEV.(J))

CONTINUE

ZBETA=BETA

CALL HAZL(Z,N,F,EPS,D,XR,XNMEAN, XNDEV,IDIST,X,BETA,KK)

MAX OF 35 ITERATIONS FOR EQUIVALENT NORMAL SEARCH ALGORITHM
IF(KK.EQ.35) GO TO 19

IF (ABS (BETA-ZBETA) .LE.0.0001) GO TO 19
60 TO 17

RETURN

END

HASOFER-LIND SAFETY INDEX CALCULATIONS

SUBROUTINE HAZL (Z,N,F,T,D,XR,XMEAN,XDEV, IDIST,X,BETA,KK)
IMPLICIT DOUBLE PRECISION (A-H,0-Z)

DIMENSION X(20),XR(20) ,BUFFER(20),D (20) ,XMEAN(20) ,XDEV (20)
IDIST(20),Z(20)

IF (KK.EQ.10) T=0.1sT

IF(KK.EQ.20) T=0.1sT

IF (KK.EQ.25) T=0.1sT

IF (KK.EQ.34) T=0.1sT

ININTIAL GUESS XR

EPSI=1.E-4

IF (KK.EQ.0) CALL GFN(EPSI,IDIST,XMEAN,XDEV,Z,N,XR,0)

D0 1 I=2,N

D(I)=0.1

CONTINUE

- OPTIMIZATION ROUTINE BEGINS HERE

CALL FN(Z,N,F,X,XR,XMEAN,XDEV, IDIST)
BETA=F

D0 3 N1=2,N

BUFFER (N1)=XR(N1)

D0 4 Ni=2,N

D0 5 N4=2,3
XR(N1)=XR(N1)+D(N1) = (-1.) ==N4

CALL FN(Z,N,F,X,XR,XMEAN,XDEV,IDIST)
IF(F.GE.BETA) GO TO 45

BUFFER (N1)=XR (N1) 379
M1=0 _

BETA=F




XR(Nl):XR(N1)+D(N1)*(-1.)**N4
CALL FN(Z,N,F,X,XR,XMEAN,XDEY ;IDIST)
IF(F.LT.BETA) GO TO 35 '
XR (N1) =BUFFER (N1)

GO TO 55

M1=M1+1 .

BUFFER (N1)=XR (N1)
IF(M1.LT.3) GO TO 25

DO 6 N2=2,N

D (N2)=D (N2) *2.

GO TO 55

XR (N1) =BUFFER (N1)

CONTINUE

CONTINUE

DO 7 N1=2,N
D(N1)=D(N1)=.5

CONTINUE

DO 8 I=2,N

IF(D(I).GE.T) GO TO 15
CONTINUE

RETURN

END

SUBROUTINE FN(Z,N,F,X,XR,XMEAN,XDEV,IDIST)
OPTIMIZATION SUBROUTINE

IMPLICIT DOUBLE PRECISION (A-H,0-7)

DIMENSION X(QO),XR(ZO),XMEAN(ZO),XDEV(QO),IDIST(QO),Z(QO)
COMMON /RACAXX/ Z01

SUM=0.0

COMPUTATION OF BASIC VARIABLES FROM GUESS OF REDUCED VARIABLES

D0 1 I=2,N

X (1) =XDEV (I) *XR (I) +XMEAN(I)
CONTINUE :
D0 2 I=2,N »
IF(IDIST(I).NE.4)GO TO 2

RECOMPUTATION BACK TO BASIC FORM FOR LOG TRANSFORMED VARIABLES

X (I)=DEXP (X (1))
CONTINUE
CALL LSFRA(N,X,Z,Z01)

COMPUTATION OF REDUCED VALUE OF DEPENDENT VARIABLE. TRANSFORM IS MADE
IF SPECIFIED

IF(IDIST(1) .NE.4)G0 TO 15

IF(X(1) .LE.1.D-20) X(1)=1.D-20

XR (1) = (DLOG (X (1)) ~XMEAN (1) ) /XDEV (1)
G0 TO 25

XR (1) = (X (1) -XMEAN (1) ) /XDEV (1)
CONTINUE

CALCULATION OF BETA, THE.SAFETY INDEX
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00 3 I=1,N

IF (XR(I) .GT.27.) XR(I)=27.
IF(XR(I) .LT.-27.) XR(1)=-27.
SUM=SUM+XR (T) **2

- CONTINUE

=DSQRT (SUM)
RETURN
END

SUBROUTINE FIND(ALPHA,BETA,IDIST,XMEAN,XDEV,X,XNMEAN,XNDEV)'
IMPLICIT DOUBLE PRECISION (A-H,0-2)
COMMON /TWO/ PI,PI2,SPI2

G0 TO (1,4,3,4,5),IDIST
RB=X/BETA

EW=RB#*ALPHA

IF (EW.GT.200.) EW=200.
EXPWEI=DEXP (-EW)
CDF=1.DO-EXPWEI :
PDF:(ALPHA/BETA)*(EW/RB)tEXPWEI
G0 TO 20

EE=ALPHA=* (X-BETA)

IF (EE.GT.200.) EE=200.

YY=DEXP (-EE) :
IF(YY.GT.200.) YY=200.

CDF=DEXP (-YY)

EY=EE+YY

IF(EY.GT.200.) EY=200.
PDF=ALPHA*DEXP (-EY)

G0 T0 20

XNMEAN=XMEAN

XNDEV=XDEY

G0 TO 10

TEMP=(BETA/X) *+ALPHA

IF (TEMP.GT.200.) TEMP=200.
CDF=DEXP (-TEMP)
PDF=CDF+«TEMP*ALPHA/X

R-F TRANSFORMATION
PDFNOR:SPIZ&DEXP(-(XINV(CDF):#2):.5E0)
XNDEV=PDFNOR/PDF
XNMEAN=X-XINV (CDF) *XNDEV

RETURN

END

SUBROUTINE GFN(EPSI1,IDI,XM,ST,Z,N,XR,KK)
FIRST INITIAL GUESS FOR XR

IMPLICIT DOUBLE PRECISION (A-H,0-2)

DIMENSION XM(20),STD(20),IDI(20),XR(20),Z(20),DIR(20)
DIMENSION ST(20),XT(20) 3

COMMON /DIREC/ DG(20)

D0 10 I=1,N -

XT (I)=XM (1)

STD (I)=ST (1)

IF (KK.EQ.0.AND.IDI(I) .EQ.4) THEN

XT (I)=DEXP (XM (I) +.5¢ST(I) **2)

TEMP=DEXP (ST (1) #+2) so1



STD (1) =DSQRT (DEXP (2. «XM (I)) «TEMP« (TEWP-1.))
GO0 TO 10

END IF-

CONTINUE

GBAR=G (XT)

p0 2 I=1,N

EPSI=EPSI1

IF(STD(I) .LT.1.) EPSI=STD(I)=1.D-4
XT (1)=XT (I)+EPSI

GXT=0 (XT)

DG (I)=(GXT-GBAR) /EPSI=STD (I)
XT (I)=XT (I)-EPSI :
CONTINUE

SWM=0.0

D0 3 I=1,N

SUM=SUM+DG (I) ==*2

CONTINUE

DSUM=0SQRT (SWM)

p0 5 I=1,N

DIR(I)=0G(I)/0SLM

CONTINUE

BETA=GBAR/DSWM

D0 6 I=1,N
XR(I)=-DIR(I)«BETA

CONTINUE

RETURN

END

USER SUPLLIED SUBROUTINES
SUBROUTINE LSFRA(N,X,Z,Z0)

SUBROUTINE FOR LIMIT STATE FUNCTION

REQUIRED BY H-L OR R-F
USE Z(20),Z0 FOR CONSTANT VALUES

IMPLICIT DOUBLE PRECISION (A-H,0-2)
DIMENSION X(N),Z(20)

LIMIT STATE FUNCTION (X(1)=f(X(2),X(3),...,X(N))

X (1) =DSQRT (300. «X (2) xx2+1.92=X(3) ++2) &

RETURN /
END | /

!

Response functions for che
DOUBLE PRECISION FUNCTION G(X)

examples given

FUNCTION FOR Monte Carlo

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
COMMON /TWO/ PI,PI2,SPI2

DIMENSION X(20)

PERFORMANCE FUNCTION (LESS THAN OR EQAUL'TO ZERO TYPE)

| G=X(1)-DSQRT(300. X (2) ++2+1.92:X(3) #+2) <

RETURN 382
END -



Appendix F. Listing,of the Harbitz Program

This program was developed to run on the VAX and the CYBER 175. The
listing fiven here is for the CYBER version. The VAX VerSionvruns in double
precision. It is not interactive.

The performance function g(%) must be introduced in two subroutines.

1) Subroutine HARBIFN. Enter the function g(%) directly. See the

listing for an example. |

2) Subroutine LSFFPI. Here the limit state‘g(%) = 0 is entered such

that one variable is a function éf the others. See the listing for
an example.

The reason that g(%) must be entered in two places in a different format
has to do witﬁ the calculational procedure. The Rackwitz-Fiessler algorithm
to perform the first order reliability enelysis uses an optimization routine
and required that the limit state be entered. A significant improveménc to
the program would result if a R-F routine requifing g(%) as input be

implimented.
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Data Inﬁut File

Card 1 Problem identification in "A" format
card 2 EPS, K, N, Z0
EPS; The stop criterion for FPI
K; number o{ random variables
N; number of trials
Z0; constant used for constructing cdf, e.g., P = P[h(%) - 20]
Define g(%) = h(%) - 20 |
It is most convenient to change 70 through the data than it is
a Fortran statement.
Cards 3 and &4 are repeated for each variable.
card 3 Variable name in 'Z" format
Card & DIST(I), XMEAN(I), STD(I)
DIST(I) = 1 WEIBULL-
2 NORMAL
3 EVD
4 LOGNORMAL
S5 FRECHET
XMEAN(I) = mean value; median if lognormal

STD(I) = standard deviation; COV if lognormal
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PROGRAM HARBITZ (INPUT,QUTPUT, TAPES=INPUT, TAPE6=0UTPUT)
IMPLICIT REAL (A-H,0-2)

CHARACTER+80 ANS

CHARACTER VNAME (20) +5,VDIST (20) *7

UP TO 20 RANDOM YARIABLES

DIMENSION X(20),XRAN(20),ZX(20),XR(20)

DIMENSION DIST(20),XMEAN(20),XCOV(20),STD(20),AL(20),BE(20)
COMMON /TWO/ PI,PI2,SPI2

COMMON /ASA/ AX

EQ. 22 IN HARBITZ’S PAPER

G (U, XNU, ALPHA) = (-LOG (U) ) # (XU . 5EO-1.EO) +Us + (. SEOxALPHA-1.EO)
START PROGRAM

_ Note that the random process
ISEED=TIME (DUMMY) <&
CALL RANSET (ISEED)

is initiated using the clock.

CACULATE CONSTANT PARAMETERS Program HARBITZ Monte Carlo using

the Harbitz method. This version

g;ié%?;%TAN(l-EO) runs on the CYBER. The VAX ver-

SPI2=1.EQ/SQRT (PI2) sion is in double precision.

READ INPUT DATA
READ(5,’ (A)') ANS

ANS IS USED FOR THE PROBLEM IDENTIFICATION
READ(5,+) EPS,K,N,Z0 '

EPS IS USED IN FPI FOR STOP CRITERION

ISEED IS INITIAL SEED NUMBER FOR EANDOM NUMBER GENERATION
K IS NUMBER OF RANDOM YARIABLES

N IS NUMBER OF TRIALS

D0 610 I=1,K
DIST(I) = 1.; WEIBULL
= 2.; NORMAL
= 3.; EVD
= 4.; LOGNORMAL
= 5.; FRECHET -

READ (5, (A)’) VNAME(I)

READ (5, +) DIST(I),XMEAN(I),STD(I)

IF (DIST(I).EQ.1.) VDIST(I)=’WEIBULL’
IF (DIST(I).EQ.2.) VDIST(I)=’NORMAL’
IF (DIST(I) .EQ.3.) VDIST(I)='EVD’

IF (DIST(I).EQ.4.) VDIST(I)='L0OG’

IF (DIST(I).EQ.5.) VDIST(I)='FRECHET’

IF LOGNORMAL, USE MEDIAN, AND COV

G0 TO (601,600,603,604,605), INT(DIST(I)+.1EO)
385



CALCULATE DISTRIBUTION PARAMETERS

601 CALL WEg(ngAN(I) ,STD(I) ,AL(I),BE(T))

| GO TO 6

.03 CALL EVD (XMEAN(I),STD(I),AL(I),BE(I),PI)

; G0 TO 600

604 YMEAN (I)=XMEAN (I)*SQRT (1.EO+STD (I) *%2)

§ STD (I) =XMEAN (I) «STD (I)

‘ GO TO 600

bOS CALL FRE (XMEAN(I),STD(I),AL(I),BE(I))
CONTINUE

XCOV (1) =STD (T) /XMEAN ()

CONTINUE -

88

—
o

XNU IS DEGREES OF FREEDOM IN CHI-SQUARED. DISTRIBUTION
XNU=REAL (K)

aoa aoaaa aa

IR=0 FOR USING EQ. 25 IN HARBITZ'S PAPER
IR=1 FOR USING EQ. 26 IN HARBITZ’S PAPER

IR=0
START TO CHECK CPU TIME CONSUMED

CALL SECOND (TX1)

aaaao

CALL XFPI TO CALCULATE BETA
ZX, AND ZO CAN BE USED FOR CONSTANTS

CALL XFPI(ZX,K,XR,EPS,XMEAN,DIST,STD,XCOV,AL,BE,BETA,Z0)

aaQa

IF K=2, THEN ALPHA IS ALWAYS 2.0, AND AR IS 1.0

IF (K.EQ.2) THEN
AR=1.EO
ALPHA=2.EO
GO TO 230

END IF

STARTING MIN. ALPHA
STARTING MAX. ALPHA

2.0
10.

Qoo

ALMIN1=2.EO
ALMAX1=10.EO

IT IS USED FOR MAX. ALPHA IS G.T. 10.0

i

QOO

IT=0

220 - CONTINUE
ALMIN=ALMIN1
ALMAX=ALMAX1

c MORE ACCURACY IS NEEDED, INCREASE ITERATION NUMBER (e.g., 5 OR 6)
DO 200 I=1,3

C FIND ALPEA FOR MAX. AREA RATIO, AR
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CALL BATEST (ALMIN,ALMAX BETA,K,ALMI,ALMA,ALPHA, AR)
MAY. ALPHA GOES TO THE RIGHT HAND SIDE (G.T. 20., OR 30.)

IF (ALPHA.EQ.ALMAX1) THEN
IT=IT+1

MAX. ALPHA IS SET TO BE 5O.

IF(IT.EQ.6) GO TO 230
ALMIN1=REAL (IT) «10.EO
ALMAX1=REAL (IT+1)*10.EO
GO TO 220
END IF
ALMIN=ALMT
ALMAX=ALMA -
CONTINUE
CONTINUE

EQ.21 IN HARBITZ’S PAPER
BETA3=BETA+3.EO

U1=EXP (- (BETA3) ++2/ALPHA)

U2=EXP (-BETA*+2/ALPHA)

CALCULATE CONSTANT PARAMETERS FIRST
U12=U2-U1

NUM IS TOTAL NUMBER OF G<O
NR IS TOTAL NUMBER OF RADIUS CALCULATION (EQ. 24, AND 25)

NUM=0
NR=0

EQ.23 IN BARBITZ’S PAPER
IF(XNU.EQ.2.EO) THEN
ARG IS Umax
ARG=(U1+U2) «.5EQ
GARG=1.EO
ELSE
ARG=EXP (- (XNU-2. EQ)/ (ALPHA-2.E0))
GARG=G (ARG, XNU ALPHA)
END IF
FIND Gmax
IF(ARG.GE.UI.AND.ABG.LE.UZ) THEN
Umax IS BETWEEN Ul AND U2
G{=GARG
IGMAX=0
ELSE

Umax IS U1 OR U2 -
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| GU1=G(U1,XNU,ALPHA)
GU2=G (U2, XNU, ALPHA)
GX=AMAX1 (GU1,GU2)
IGMAX=1
END IF
DO 1 I=1,N.

SAMPLE UNTIL G<g(V)

0 UJ=RANF () +U12+U1
| QJ=RANF () *GX

) UJ IS SAMPLED BETWEEN Ul AND U2
! GJ IS SAMPLED BETWEEN O AND g(Umax)

NR=NR+1
IF(GJ.GE.G(UJ,XNU,ALPHA)) GO TO 10
IF(IR.EQ.O0) THEN

EQ. 25 IN HARBITZ’S PAPER

A NAE NA e -

RJ=SQRT (-ALPHA*LOG (UJ))
ELSE

EQ. 26 IN HARBITZ’S PAPER

KA Ca .

L1=M0D (X, 2)
’ =K/2 .

| IF(L1.EQ.1) K2=(X-1)/2
100 CONTINUE
‘ NR=NR+1

SUMR=1.EO

DO 110 IXY=1,K2
| SUMR=SUMR*RANF ()
110 CONTINUE

IF(L1.EQ.0) THEN

EVEN NUMBER ANDOM VARIABLES (EQ. 26 A)

RJ=-2.E0+L0OG (SUMR)
ELSE

ODD NUMBER RANDOM VARIABLES (EQ. 26b)

G

X1=-2.E0«LOG (RANF())
X2=RANF () «PI2
X3=SQRT (X1) «COS (X2)
RJ=-2.EO«LOG (SUMR) +X3*+2
END IF
END IF
SUM=0.EOQ

GENERATE STANDARD NORMAL YARIATES

aaca

D0 2 J=1,K

X1=-2.E0+L0G (RANF ())

X2=RANF () «PI2

X (J)=SQRT (X1) xCOS (X2) 288




SUM=SUM+X (J) +2

CONTINUE '

SUM=SQRT (SUM)

NORMALIZATION OF NORMAL VARTATES (EQ. 27 IN HARBITZ’S PAPER)
DO 3 J=1,K '
X(J)=X(J) /SUM+RJ

CONTINUE

INVERSE TRANSFORMATION FROM NORMAL VARIATE

D0 500 J=1,K
G0 TO (501,502,503,504,505), INT(DIST(J)+.1EO0)

WEIBULL DISTRIBUTION

XRAN (J)=BE (J) * (-LOG(1.EO-CDFNOR (X(J)))) ++ (1.EO/AL(J))
G0 TO 500

NORMAL DISTRIBUTION

XRAN(J)=STD (J) +X (J) +XMEAN(J)
G0 TO 500

EVD

XRAN (J)=BE (J) -LOG (-LOG (CDFNOR (X (J)))) /AL (J)
a0 TO 500

LOGNORMAL DISTRIBUTION
CX2=1.E0+XCOV (J) #+2
YMEANJ=L0G (XMEAN (J) /SQRT (CX2))
STDJ=SQRT (L0OG (CX2))

* XRAN (J)=EXP (STDJ X (J) +XMEANJ)
G0 TO 500

FRECHET DISTRIBUTION

XRAN(J)=BE (J) + (-LOG (CDFNOR (X(J)))) ++ (-1.E0/AL(J))
CONTINUE

PERFORMANCE FUNCTION

CALL BARBIFN(XRAN,K,ALPHA,BETA,Z)
FIND TOTAL NUMBER OF G < O

IF (Z.LT.0.EO) NUM=NUM+1

CONTINUE

B2=BETA**2

CHTX IS PROBABILITY IN BETA SPHERE
CETX=1.E0-CHI (B2, XNU)

PF IS PROBABILITY OF FAILURE
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520
781

IF (DIST(I) .EQ.4.) THEN

PRINT. INPUT DATA

PFZ=REAL (NUM) /REAL (N)
PF=CHIX*PFZ
XPF=-XINV (PF)
CLT=XINV (. 975) +SQRT (PFZ+ (1.E0-PFZ) /DBLE (N)) /PFZ
CL=PF« (1 .E0~CLT)
IF (CL.LT.0.E0) CL=0.EO
UL=PF# (1.E0+CLT) L
CALL SECOND (TX2)
DTT=TX2-TX1
WRITE(6,’(///,9X,A)’) ANS
WRITE(6,910)
FORMAT(///,30X, 'DESIGN VARIABLES’,//,9X,’VARIABLE’,7X,
» DISTRIBUTION’,8X,’MEAN/MEDIAN’,8X,’ STD/COY’)
DO 781 I=1,K
XMEAN (I) =XMEAN (I) /SQRT (1.E0+XCOV (I) %%2)
STD (I)=XCOV (I)
END IF
WRITE (6,920) VNAME(I),VDIST(I),XMEAN(I),STD(I)
FORMAT (/, 10X,A5,12X,A7,10X,1PE12.4,7X,1PE12.4)
CONTINUE
WRITE(S,’(/,8X,A,/)’) ' (NOTE: THE MEDIAN AND COV USED FOR LN)’

WRITE(6,’ (8X,A,F7.3,/)’) ’ BETA (SPHERE) = ’,BETA

WRITE(6,’ (8X,A,I3,/)") * NUMBER OF VARIABLES = ’,K

WRITE (6, (8X,A,F7.4,/)") ’ AREA RATIO, AR = ',AR

WRITE(6,’ (8X,A,F8.4,/)’) ’ ALPHA = ’,ALPHA

WRITE(6,’ (8X,A,I5,/)’) * NUMBER OF SAMPLES = ',N

WRITE (6, ’ (8X,A,I5,/)’) * TOTAL NUMBER OF g < O = ’,NUM
WRITE(S,’ (8X,A,I5,/)’) ' TOTAL NUMER OF POINTS SAMPLED = ’,NR
WRITE(6, ' (8X,A,1PE13.5,/)’) ' PROBABILITY IN BETA SPHERE = ', CHIX
WRITE(6,’ (8X,A,1PE13.5,/)’) ’ PROBABILITY OF FATLURE = ’,PF
WRITE(6,’ (8X,A,F9.5,/)') ’ BETA = ’, XPF

WRITE(6, ' (8X,A,/)’) ' 95 % CONFIDENCE INTERVAL ON PF’
WRITE(6,’ (8X,A,1PE13.5,/)’) ’ LOWER = ', CL
WRITE(6,’(8X,A,1PE13.5,/)’) * UPPER = ’, UL ‘
WRITE(6,’(/,8X,A,F8.2,/)7)" * CPU EXECUTION TIME (SEC.) = ’,DIT
STOP

END

CHI-SQUARED DISTRIBUTION FUNCTION

REAL FUNCTION CHI(X,XNU)

IMPLICIT REAL (A-H,0-Z)

REAL+16 DIV,RX

SUM1=1.EO

R=1.E0

RX=

DIV=XNU+2.EO=*R

CONTINUE

SUM2=RX/DIV
SUM1=SUM1+SUM2
IF(SUM2.LE.1.E-10) GO TC 2

BX=RX*X :
=R+1.EO

DIV=DIV+ (XNU+2.EO+R)

GO TO 1 19



o &

CONTINUE

X2=.5E0+X

XNU2=. SEO+XNU
CHI=X2++XNU2+EXP (~X2) / GAMMA (XNU2) «SUM1
RETURN

END

GAMMA FUNCTION

REAL FUNCTION GAHMA(YI)
IMPLICIT REAL (A-H,0-Z)
COMMON /TWO/ PI, PIZ SPI2
X=Y1+1.EO

Z=X

IF(X.GE.6.0E0)GO TO 456

N=INT (X) it
Z=(6.0E0) -N+X

Y=1.EQ/Z*+2

ALG=(Z-.5E0) «L0G(Z) +.5E0+LOG (PI2) -
Z-(1.E0/(12.E0+Z)) % (((Y/140.E0-1.E0/105. EO)*Y+
1.E0/30.E0)*Y-1.E0)
IF(X.GE.6.E0)GO TO 457
ITE=6-N

D0 3 J=1,ITE

A=X+J-1.EO

ALG=ALG-LOG(A)

CONTINUE

GAMMA=EXP (ALG)

RETURN

END

STANDARD NORMAL CDF

REAL FUNCTION CDFNOR(Z)

THIS FUNCTION COMPUTES THE NGRMAL CDF.

IMPLICIT REAL (A-H,0-Z)

COMMON /TWO/ PI,PI2,SPI2

DATA A/0.31938153E0/,B/-0.356563782E0/,C/1.781477937E0/,
D/-1.821255978E0/,E/1. 330274429EO/

EZ=- (Z*=*2)*.5E0

CDFNOR=0.0EQ

IF(EZ.LE.-200.0E0) GO TO 1

ZX=SPI2+EXP (EZ)

IF (ABS(Z) .GT.6.E0) GO TO 2

T=1.E0/ (1.EO+(0.2316419E0«ABS (Z)))
CDFNOR=ZX*T* (A+T* (B+T* (C+T* (D+T+E))))

GO TO 1

22=1.E0/ (Z*Z) ’
CDFNOR=ZXx (1.E0-7Z2+ (1.E0-3.E0*Z2+(1.E0-5. EO:ZZ)))/ABS(Z)
IF(Z.GT.0.0EO) CDFNOR=1.0EQO-CDFNOR

RETURN :
END

INVERSE NORMAL CDF

REAL FUNCTION XINV (Z)
TMPLICIT REAL (A-H,0-7)

© P(X,P1)=P1-CDFNOR (X)
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IF(Z.GT.0.5E0) Y=1.EO-Z

IF(Z.EQ.1.E0) STOP

C0=2.515517E0

C1=0.802853E0

C2=0.010328E0

D1=1.432788E0

D2=0.188269E0

D3=0.001308E0

T=(-2. EO*LUG(Y))** 5EO

DNUM=C0+T* (C1+TC2)

DNOM=1.0EO+T+ (D1+T# (D2+T+D3))
=T~ (DNUM/DNOX)

IF(Z.LT.0.5E0) X=-X

X1=X

F1=F(X1,Z)

X2=X1+.001E0

F2=F(X2,7)

XX=X2

CONTINUE

IF (ABS (XX-X1) .GE.1.E-10) THEN

XX=X2-F2=* (X2-X1) / (F2-F1)

X1=X2

X2=XX

F1=F2

F2=F (XX, Z)

GO TO 10

END IF

XINV=XX

END

—

FIND PARAMETERS IN WEIBULL, OR FRECHET

SUBROUTINE SECT1(COY,ISIGN,ALPHA)
TMPLICIT REAL (A-H,0-Z)
COMMON /TWO/ PI,PI2,SPI2
ISIGN = 1; WEIBULL DIST.
= 2; FRECHET DIST.
F (X, C0V) == (1.E0+COV++2) +GAMMA (X) *2+CGAMMA (2. +X)
TF (ISIGN.EQ.1) X1=COVx+(1.08)
IF (ISICN.EQ.2) X1=COVxs(.677)/2.33
IF (ISIGN.EQ.2.AND.X1.GT..40E0) X1=.48999999
TF (ISIGN.EQ.1) F1=F(X1,COV)
IF (ISIGN.EQ.2) F1=F(-X1,CO0V)
IF (ABS(F1) .LE.1.E-10) GO TO 1
X2=X1+.01E0
TF (ISIGN.EQ.1) F2=F(X2,COV)
IF (ISIGN.EQ.2) F2=F(-X2,C0V)
XX=X2
CONTINUE
IF (ABS (XX-X1) .GE.1.E-9) THEN
XX=X2-F2+ (X2-X1) / (F2-F1)
X1=X2
X2=XX
F1=F2
IF (ISIGN.EQ.1) F2=F (XX, COV)
IF (ISIGN.EQ.2) F2=F(-XX,C0V)’
G0 TO 10 ’
END IF. 392
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ALPHA=1.E0/X1
RETURN
END

PARAMETERS CALCULATION (ALPHA, AND BETA)

SUBROUTINE WEI (XMEAN,XDEV,ALPHA,BETA
TMPLICIT REAL (A-H,0-Z) .
COV=XDEY /XMEAN

CALL SECT1(COV,1,ALPHA)
AL1=1.EO/ALPHA

BETA=XMEAN/GAMMA (AL1)

RETURN

END

PARAMETERS CALCULATION (ALPHA, AND BETA)

SUBROUTINE FRE (XMEAN,XDEV,ALPHA,BETA)
TMPLICIT REAL (A-H,0-2)

COV=XDEV /XMEAN

CALL SECT1(COV,2,ALPHA)
AL1=1.EO/ALPHA

BETA=XMEAN /GAMMA (-AL1)

RETURN

END

PARAMETERS CALCULATION (ALPHA, AND BETA)

SUBROUTINE EVD (XMEAN,STD,ALPHA,BETA,PI)
TMPLICIT REAL (A-H,0-Z)

ALPHA=PT/ (STD*SQRT (6.E0))
BETA=YMEAN- . 57721566480153/ALPHA
RETURN :

END

FIND THE ALPHA FOR MAX. AREA RATIO

SUBROUTINE HATEST (ALMIN,ALMAX,BETA,K,ALMI,ALY' ALPA,AR1)
TMPLICIT REAL (A-H,0-Z)
DIMENSION G(21),AR(21)

20 SEGMENTS BﬁTWEEN MIN. ALPHA AND MAX. ALPLa

DAL= (ALMAX-ALMIN) +.0SEO
BET3=BETA+3.EO
XX2=DBLE (X) * . SEO

D0 1 IX=1,21
ALPHA=ALMIN+DBLE (IX-1) *DAL
AL2=ALPHA+.5EQ

U1=EXP (-BET3##2/ALPHA)
U2=EXP (-BETA*#2/ALPHA)
DU=(U2-U1) « .OSEQ

.. U12=U1+DU=.5EO

~ Gmax=0.EO

 SUM=0.EO

po 2 J=1,20
U=U12+(J-1) *xDU

EQ. 22 IN HABBITZ’S PAPER
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G(J)=(-L0G (U) ) ** (XK2-1 .EQ) #Ux= (AL2-1.EO)
IF (G(J) .GE.Gmax) Gmax=G @)

SUM=SUM+G (J)

] CONTINUE

AR (IX) =SUM/ (20 . EO+Cmax)

CONTINUE

FIND MAX. AR

TR A A s

ARMAX=AR (1)
| D0 10 J=2,21
| TF (ARMAX.LE.AR(J)) THEN
| ARMAX=AR (J)
| 1J=J
| END IF ..
10 CONTINUE
; ALMI=ALMIN+DBLE ((IJ-2))*DAL
ALPA=ALMIN+DBLE ((IJ-1))+DAL
ALMA=ALMIN+DBLE (1J) +DAL
AR1=AR (1J)
RETURN
END
SUBROUTINE XFPI(ZX,N,XRZ,EPS,XMEAN,DIST,XDEV,XCOV,AL,BE,ZBET, Z0)
IMPLICIT REAL (A-H,0-Z) :
DIMENSION AL(20),BE(20),2ZX(20),X(20),DIST1(20),XRZ(20)
DIMENSION XCOV (20) , TXMEAN (20) , TXCOV (20) , XNMEAN (20) , XNDEY (20)
DIMENSION DIST(20),DX(20),XR(20),XMEAN(20),XDEV(20) , TEMPXR (20)
DIMENSION CI(20),AI(20),SF(20),STOREX(20),C(20,2),FORM(20)
COMMON /OP1/ DIST1,DX,YR,XNMEAN,XNDEV,CI,AT,SF,C,FORM,IT,ZX0,XR1
‘ COMMON /TWO/ PI,PI2,SPI2
C READ NUMBER OF VARIABLES(N), LIMIT STATE DESCRIPTION (’A’ FORMAT).
c
C READ NAME, MEAN (MEDIAN FOR LOGNORMAL VARIABLES),COEFF. OF VARIATION,
C AND DISTRIBUTION TYPE (DEFINED IN SUB. CDFPDF) OF EACH VARIABLE.
ZX0=20
DO 15 I=1,N
DIST1 (I)=DIST(I)
SF(I)=1.
15 CONTINUE
KX=0
11=0
CO=0.
| AT (1)=0.
¢ READ 7O VALUE IN THE LIMIT STATE(DEFINED IN SUB. GFUNC): G(X)=Z(X)-ZO
c WRITE(6,121) :
C COMPUTE R-F BETA AND THE DESIGN POINT.----II=0 LOOP.
| CALL FIT(EPS,ZX,AL,BE,N,XMEAN,XDEV, ZBET,KK, IT)
RETURN :
END

SUBROUTINE FIT(EPS,ZX,AL,BE,N,XHEAN,XDEV,BETA,KK,LL)
C THIS SUB. USES TEE R-F ALGORITEM TO FIND THE R-F SAFETY INDEX. IT ALSO
G CONTROLS THE PROCESS OF CONSTRUCTING THREE PARAMETER EQUIV. NORMALS.
TMPLICIT REAL (A-H,0-2)
DTMENSION DIST(20),DX(20),XR(20) ,XMEAN(20),XDEV(20),ZX(20)
DIMENSION CI(20),AI(20),SF (20),XNMEAN(20),XNDEV(20),EE(20)
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DIMENSION C(20,2),FORM(20),AL(20),BE(20)
COMMON /0P1/ DIST,DX,XR,XNMEAN,XNDEV,CI,AI,SF,C,FORM,II,Z0,XR1
COMMON /TWO/ PI,PI2,SPI2
II=LL
IF(LL.NE.O) GO TO 40
YPUTE MINIMUM DISTANCE (SAFETY INDEX) USING SUBROUTINE OPTM.
SET INITIAL DESIGN POINT SEARCH VALUES (XR(I)).=*=
3ET CONVERGENCE LIMITS (EE(I)) AND STEP SIZE MULTIPLIER (DD). s+
D0 30 I=1,N ,
XR(1)=0.0
EE(I)=0.0001
XNMEAN (I)=XMEAN(I)
) XNDEV (I)=XDEV(I)
DD=5000.
CULATE HASOFER-LIND SAFETY INDEX - FIRST ESTIMATION.
CALL OPTM(ZX,AL,BE,N,BETA,IOPT,EE,DD,XR,1.0E0)
LL=0 -- RACKWITZ-FIESSLER METHOD.; IF LL=1 -- LEAST-SQUARES METHOD.
KK=0
KK=KK+1
DO 10 J=1,N
R-F TRANSFORMATION (LL.EQ.O)
IF(LL.NE.O) GO TO 50
IF(DIST(J).NE.2.) GO TO 99
XNMEAN (J) =XMEAN (J)
XNDEV (J)=XDEV (J)
GO T0 10
CALL CDFPDF(ZX,AL(J),BE(J),DIST(J),DX(J),XMEAN(J),XDEV(J),
+ ~0,CDF,PDF)
U=XINV (CDF)
STARW=(-(Ux%2)*.5)
IF (STARW.LE.-200.) STARW=-200.
XNDEV (J)=SPI2*EXP (STARW) /PDF
XNMEAN (J)=DX(J) -U*XNDEV (J)
GO TO 10
LEAST SQUARES METHOD (LL.NE.O)
CONTINUE
CONTINUE
IF(LL.NE.O) GO TO 111 .
ZBETA=BETA '
CALL OPTM(ZX,AL,BE,N,BETA,IOPT,EE,DD,XR,1.0EO)
T MAX. NO. OF ITERATIONS FOR DESIGN POINT SEARCH==*
IF(KX.EQ.100) RETURN
T STOP CRITERIAS FOR THE CALCULATION OF BETA+=
IF(BETA.LT.4.0) GO TO 20
ERRPER=100. *ABS (BETA-ZBETA) /ZBETA
IF (ERRPER.LE.O0.1) RETURN
80 TO 77
[F (ABS (BETA-ZBETA) .LE.EPS) RETURN
30 TO 77
1ETURN
iND

jUBROUTINE MINBT(ZX,AL,BE,N,BETA)

SUBROUTINE COMPUTES THE MINIMUM DISTANCE.

TMPLICIT REAL (A-H,0-2)
TMENSION DIST(20),X(20),XR(20),XMEAN(20),XDEV(20),ZX (20)
IMENSION CI(20),AI(20),SF(20),C(20,2),FORM(20),AL(20),BE(20)
OMMON /OP1/ DIST,X,XR,XMEAN,XDEV,CI,AI,SF,C,FORM,II,Z0,XR1
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| SUM=0.0
C FOR II=0 (R-F) LOOP ONLY.
C COMPUTE BASIC YALUES FROM THE REDUCED VALUES
i Do 1 I=2,N
| X(I)-XDEV(I)*XR(I -1) +XMEAN(T)
| 1 IF(X(I) .LE. (0.001*XDEV(I)) .AND. DIST(I) NE.2.) X(I)=0.001+XDEV(I)
C COMPUTE X(1) VALUE.
CALL LSFFPI(N,X,ZX,Z0)
C SET LOWER LIMIT OF THE DESIGN POINT VALUE OF X(X)
| XR1=(X(1)-XMEAN(1)) /XDEV(1)
i D0 33 I=1,
| IF(XR(I).GT.Z?.) XR(1)=27.
§ IF(XR(I).LT.-27.) XR(I)=-27.
33 CONTINUE
M=N-1

DO 3 I=1,X
3 SUM=SUM+XR (I)**2

- SUM=SUM+XR1*%2
BETA=SQRT (SUM)
RETURN

§ END

SUBROUTINE CDFPDF(ZX ALPHA,BETA,DIST,X,XMEAN,XDEY, ICDF,CDF,PDF)
‘C THIS SUBROUTINE CALCULATES THE CDF AND PDF OF THE FOLLOWING
C DISTRIBUTIONS: 1.=WEIBULL,2.=NORMAL,3.=EVD,4.=LOGNORMAL.,5.=FRECHET
C FOR ADDITIONAL DISTRIBUTIONS THE CDF AND THE PDF MUST BE EXPRESSED
C IN TERMS OF THE MEAN(XMEAN) AND THE STANDARD DEVIATION (XDEY).
| IMPLICIT REAL (A-H,0-Z)
DIMENSION ZX(20)
| COMMON /TWO/ PI,PIZ2,SPI2
C SET LOWER LIMIT FOR NON NURHAL YARTABLES.
| XL=0.00001+XDEY
‘ IF (DIST.NE.2. .AND. X.LE.XL) X=XL
G0 TO (1,2,3,4,5),INT(DIST+.1E0)
1 IF(ABS(X).LE.1.E- 10) THEN
CDF=0.EO
PDF=0.EO
GO TO 10
END TF
RB=X/BETA
EW=RB*+ALPEA
IF (EW.GT.200.) EW=200.
EXPWEI=EXP (-EV)
CDF=1.0E0-EXPWEI
IF (ICDF.EQ.1) GO TO 10
PDF=(ALPHA/BETA) » (EW/RB) +EXPWEL
GO TO 10
2 Z=(X-XMEAN) /XDEV
CDF=CDFNOR (Z)
IF (ICDF.EQ.1) GO TO 10
PDF=SPI2+EXP (~Z**2x*. 5)/XDEV
GO TO 10
3 E1=ALPHAs (X-BETA)
IF (E1.GT.200.) E1=200.
YY=EXP (-E1)

IF (YY.GT.200.) YY=200.
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CDF=EXP (-YY) -
IF (ICDF.EQ.1) GO TO 10
EY=E1+YY
IF(EY.GT.200.) EY=200.
PDF=ALPHA*EXP (-EY)
GO TO 10
t CX21=(XDEV/XMEAN) #*2+1.
YMEAN=LOG (XMEAN) -L0OG (SQRT (CX21))
YDEV=SQRT (LOG (CX21))
Z=(L0G (X) -YMEAN) /YDEV
CDF=CDFNOR (Z)
IF (ICDF.EQ.1) GO TO 10
EZ=-(Z**2)*.5
IF (EZ.LE.-200.) EZ=-200.
PDF=SPI2+EXP (EZ) / (YDEV*X)
GO TO 10 -
IF (ABS(X) .LE.1.E-10) THEN
CDF=0.EO
PDF=0.EOQ
GO TO 10
END IF
TEMP=(BETA/X) «++*ALPHA
CDF=EXP (-TEMP)
IF(ICDF.EQ.1) GO TO 10 °
PDF=CDF+TEMP*ALPHA/X |
RETURN
END

SUBROUTINE OPTM(ZX,AL,BE,NP,EF,NFCC,E,ESCALE,X,0PTMIZ)

i IS THE OPTIMIZATION ROUTINE FOR FINDING THE R-F SAFETY INDEX,
THE THREE PARAMETERS OF THE EQUIVALENT NORMAL CDF.
DIMENSION OF W = NO. OF VARIABLES+(NO. OF VARIABLES + 3)
IMPLICIT REAL (A-H,0-Z)
DIMENSION X(20),¥(460),E(20),2X(20),AL(20),BE(20)
DIMENSION DIST(20),DX(QO),XR(QO),XMEAN(ZO),XDEV(QO),CI(20),AI(20),
SF(20),BB(81),CDFNUN(Sl),WEIGT(Sl),SQRWGT(SI),C(?O,Z),FORM(QO)
COMMON /0P1/ DIST,DX,XR,XMEAN,XDEV,CI,AT,SF,C,FORY,IT,Z0,XR1
COMMON /0P2/ BB, CDFNON, WEIGT,SQR¥GT,DP,NA,NB,PT,SCALE
R INTERMEDIATE RESULTS SET IPRINT TO A LOWER INTEGER.=*=*
TPRINT=4
N=NP-1
ODMAG=0.1+ESCALE
3CER=0.05/ESCALE
JJ=N=* (N+1)
J1JJ=JJ+N
(=N+1
{FCC=1
IND=1
‘NN=1
10 4 I=1,N
I(I)=ESCALE
Q 4 J=1,N
"(X)=0.
F(I-J)4,3,4
(K)=ABS (E(T))
=K+1
TERC=1
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70

58

14
16
17
18
19

15

24

21
23

83

25

26

ISGRAD=2
CALL MINBT(ZX,AL,BE,NP,F)
FKEEP=2.*ABS(F)
ITONE=1
FP=F
SUM=0.
XP=JJ
Do 6 I=1,N
DP=1XP+1
W(IXP)=X(I)
IDIRN=N+1
JLINE=1
DMAX=Y (ILINE)
DACC=DMAX+SCER
DMAG=AMIN1 (DDMAG, 0. 1*xDMAX)
DMAG=AMAX1 (DMAG, 20. *DACC)
DDMAX=10. xDMAG
IF (ITONE-2)70,70,71
DL=0.
D=DMAG
FPREV=F
IS=5
FA=FPREV
DA=DL
DD=D-DL
DL=D

=IDIRN
D0 9 I=1,N
X(I)—X(I)+DD*W(K)
K=K+1
CALL MINBT(ZX,AL,BE,NP,F)
NFCC=NFCC+1
G0 TO (10,11,12,13,14,96),1S
IF(F-FA)15,16,24
IF (ABS(D) -DMAX) 17,17,18
D=D+D
GO TO 8
CONTINUE

WRITE(6,19)
FORMAT (5X, 44EMAXTMUM CHANGE DOES NUT ALTER FUNCTION(OPTX))
GO TO 20
FB=F
DB=D
G0 TO 21
FB=FA
DB=DA
FA=F
DA=D -
IF (ISGRAD-1)83,83,23
D=DB+DB-DA
Is=1
GO TO 8
D=0.5#* (DA+DB- (FA-FB) / (DA-DB))
IS=4
IF ((DA-D) = (D-DB))25,8,8
IS=1
IF (ABS (D-DB) -DDMAX) 8,8,26
D=DB+SIGN (DDMAX,DB-DA)
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DDMAX=DDMAX+DDMAX
DDMAG=DDMAG+DDMAG

IF (DDMAG.GE.1.0E60) DDMAG=1.0E60
IF (DDMAX-DMAX)8,8,27
DDMAX=DMAX

GO TO 8

IF (F-FA)28,23,23

FC=FB

DC=DB

FB=F

DB=D

GO TO 30

IF(F-FB)28,28,31

FA=F

DA=D

GO TO 30

IF(F-FB)32,10,10

FA=FB

DA=DB

GO TO 29

DL=1

DDMAX=5.

FA=FP

DA=-1.

FB=FHOLD

DB=0.

D=1.

FC=F

DC=D

A=(DB-DC) * (FA-FC)
B=(DC-DA) * (FB-FC)

IF ((A+B)*(DA-DC))33,33,34
FA=FB

DA=DB

FB=FC

DB=DC

GO TO 26 i
D=0.5=+ (A+x (DB+DC) +Bx (DA+DC) ) / (A+B)
DI=DB

FI=FB

IF (FB-FC) 44, 44, 43

DI=DC

FI=FC

[F (ITONE-2) 86, 86, 85
[TONE=2

30 TO 45

(F (ABS(D-DI)-DACC)41,41,93
(F (ABS(D-DI)-0.03+«ABS(D))41,41,45
(F ((DA-DC) = (DC-D) ) 47,46,46
'A=FB

)A=DB

'‘B=FC

1B=DC

0 TO 25 -

S=2
F((DB-D)+(D-DC))48,8,8 .
S=3 -

0TO 8
=FI
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D=DI-DL
DD=SQRT ((DC-DB) * (DC-DA) * (DA~ DB)/(A+B))
DO 49 I=1,N
X(I)—X(I)+D*W(IDIRN)
¥ (IDIRN)=DD+W (IDIRN)
49 IDIRN=IDIRN+1
¥ (ILINE)=W(ILINE) /DD
TLINE=ILINE+1
IF (IPRINT-1)51,50,51
50 IF (IPRINT.GE.4) GO TO 53
WRITE(6,52) ITERC,NFCC,F, (X(I),I=1,N)
52 FORMAT(11H ITERATION IB 18, 16H FUNCTION YALUES, 5X, 2HF=,E13.6,
+5(E13.5,2X)) ,
IF (IPRINT-1)51,51, 53
51 IF(ITONE-1)55,55,38
55 IF (FPREY-F- SUM)94 95, 95 ' ’
95 SUM=FPREV-F
JIL=ILINE
94 IF(IDIRN-JJ)7,7,84
84 JTF(IND-1)92,82,72
82 -FHOLD=F
IS=6
IXP=JJ
DO 59 I=1,N
IXP=IXP+1
59 W(IXP)=X(I)-W(IXP)
DD=1.
GO TO 58
6 IF(IND-1)112,112,87
112 IF(FP-F)37,37,91
91 D=2.* (FP+F-2.+FHOLD) / (FP-F) %2
TF (D« (FP-FHOLD-SUK) ++2-SUM) 87,37,37
87 J=JILx*N+1
IF (J-JJ)60,60,61
60 DO 62 I=J,JJ
K=I-N
62 W(K)=W(I)
D0 97 I=JIL,N
87 W(I-1)=W(I)
61 IDIRN=IDIRN-N
ITONE=3
K=IDIRN
IXP=JJ
AAA=O.
D0 67 I=1,N
IP=IXP+1
W (K)=¥(IXP)
. IF(AAA-ABS(W(K)/E(I)))SB 67, 67
66 AAA=ABS(W(K)/E(I))
67 K=K+1
DDMAG=1.
W (N)=ESCALE/AAA
JLINE=N
GO T0 7
37 DP=JJ
' AAA=D.
F=FHOLD
D0 99 I=1,N
IXP=IXP+1
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X(I)=X(I)-¥(IXP)

IF (AAA=ABS (E (1)) -ABS (W(IXP)))©8,99,99
AAA=ABS (W(IXP) /E(I))

CONTINUE

GO TO 72

. AAA=AAAx (1.+DI)

IF (IND-1)72,72,106

- IF (IPRINT-2) 53,50, 50,

IF (IND-1)108,109, 88
IF (AAA-0.1)20,20,76
IF (F-FP)35,78,78
CONTINUE
WRITE(6,80)
FORMAT (5X,37HACCURACY LIMITED BY ERRORS IN F(OPTM))
G0 TO 20 ]
IND=1
DDMAG=0. 4+SQRT (ABS (FP-F))
TF (DDMAG.GE.1.E+30) DDMAG=1.0E+30
ISGRAD=1
ITERC=ITERC+1
ET MAX. NO. OF ITERATIONS.*s
MAXIT=100
IF (ITERC-¥AXIT)5, 5, 81
CONTINUE
WRITE(6,82) MAXIT
FORMAT (I5,29H ITERATIONS COMPLETED BY OPTX)
IF (F-FKEEP) 20, 20,110
F=FKEEP
DO 111 I=1,N
JJI=JJJ+1

CX(D)=W(IID)

GO TO 20

IF (AAA-0.1) 20, 20,107
EF=F

G0 TO 666

SUBROUTINE HARBIFN(X,K,ALPHA,BETA,G)
DMPLICIT REAL (A-H,0-Z)
DIMENSION X(K)

G IS PERFORMANCE FUNCTION
G MUST BE EQUAL TO OR L.T. ZERO TYPE

G=X(1)-SQRT (3.E2+X(2) *+2+1.92E0+X(3) *+2)
RETURN

END

SUBROUTINE LSFFPI(N,X,ZX,Z0)

TMPLICIT REAL (A-H,0-2)

DIMENSION X(20),ZX(20)

PERFORMANCE FUNCTION (X(1)=f(X(2),...,X(N)))

pal

The limit state is

7/ 2
g(X) = R - v/300P" + 1.92 T

2

Note how it is entered into

the two subroutines.

X(1)=SQRT(3.E2+X(2) «+2+1.92E0+X(3) +%2)
RETURN
END

-3
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Example Problem

g(X) = R - ¢égop‘ +1.927°

A
pR = 4§ UP = 1.0 .. = 20
OR =3 UP = 0.16 OT = 2

R WEL P A LU T ~ EVD

This is an example of the input file

THIS IS EXAMPLE 7
.D-4,3,10000,0.

.,48.,3.

1
R
1
P
4.,.987440632,.16 *
T
3

.,20.,2.

#Note that P is lognormal; thus the median
n / 2
P = uP/ 1+ CP

is entered.
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THIS IS EXAMPLE 7

DESIGN VARIABLES

VARIABLE DISTRIBUTION MEAN/MEDIAN STD/COV
R WEIBULL 4.8000E+01 - 3.0000E+00
P LOG 9.8744E-01 1.6000E-01
T EVD - 2 .0000E+01 2 .0000E+00

(NOTE: THE MEDIAN AND COV USED FOR LN)
BETA (SPHERE) = 3.085

NUMBER OF VARIABLES = 3

AREA RATIO, AR =  .9934

ALPHA = 2.1880

NUMBER OF SAMPLES = 10000

TOTAL NUMBER OF G < O = 798

TOTAL NUMER OF POINTS SAMPLED = 10060
PROBABILITY OUTSIDE BETA SPHERE =  2.31808E-02
PROBABILITY OF FAILURE =  1.84983E-03
BETA =  2.90271

95  CONFIDENCE INTERVAL ON PF

LOWER =  1.72671E-03
UPPER =  1.97294E-03
CPU EXECUTION TIME (SEC.) =  4.28

/87 UNIV OF ARIZONA  NOS/BE 1.5 650 87149
'35 51 TORNG7U FROM xs  07/06/87
35.CD 00001015 CARDS, COST = $.00
'35, JOBCARD-TORNG, BN4053342 ,T1500.
.35.PW,
'35.FTN5(L=0) .
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APPENDIX D
Particular Solutions for BEM Body Force
Dr. S.T. Raveendra

Southwest Research Institute
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For centrifugal loading,

P.—"’/1|[(Rijxixknk+A‘zR;‘kxjxkni)"'AJRilxixknk] ‘ ‘ (p-1)

where,

1

A:
¥ &7

!

4277500 -
and

_ __(l—2v)

A3 (1-2v)

A generalized function for K is selected such that it is élobal in nature and
also the evaluation of the function is computationally efficienc. The function
selected in this analysis is

d(r0n)-r 115220 (0-2)

where r{f.0.) is the distance between P and Qa, and R, is a characteristic length
based on the problem dimensions. The particular solutions presented are based
on this function. For thermal analysis

R, 3 .
G?=l—§(4—'§r_)yl' ) (2-3)

The one-dimensional temperature field solution is given by

_Bo.(L-8) - | | (D-4)
(208-1L7) | .

where 6, is the surface temperature, and

_(l~+v)
p= l-v @

The temperature dependent material properties solution is given by

i JiYiVk =
Gux=(C1*fch)(ényf+6uy,+6Uﬂ)+C2——;L—- (D-5)
where
C,= Re

OIS (A+2p)
and
C DR

2T 24(A+2u)

The vibration analysis particular solutions are given by
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G;ji= C3(6«'ir2+yiyi)+c4‘5u‘r3*CSFY."‘/,-

T$=p[(3C3+ng)yﬂy+(C,+rcshhﬁ,+{(3cg+rcy)ml+2Csz?g}yknk}

where
(1-2v)R,
> (14-16v)u
11 -12v
- 144(1-v)pu
1
Cemmm——
S 48(l~-v)pu
S -
Cé_—_.—.._._’“év_
24(l-v)u
_(1+4v)
(7-8v)u °

7

and
_ 1 -6v
2401 -v)pu

The unknown coefficients are obtained from

Foe g
E_i’—'&-l
Feo g
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