
USING A CLIPS EXPERT SYSTEM TO AUTOMLlhTICAILEY
MANAGE TCP/IP NETWORKS AND THEIR COMPONENTS

Ben M. F a u l

TRW Systems Engineering & Development Division
Carson, California

Abstract. This paper describes an expert system that can directly
manage networks components on a TCP/IP network. Previous expert
systems for managing networks have focused on managing network
faults after they occur. However this proactive expert system can
monitor and control network components in near real time. The
ability to manage directly network elements from CLIPS is
accomplished by the integration of the Simple Network Management
Protocol (SNMP) and an Abstract Syntax Notation (ASN) parser into
the CLIPS artificial intelligence language.

INTRODUCTION

Networking is one of the fastest growing segments of the computer market.
Networks can be as simple as several PCs on a LAN to a corporate-wide area
network composed of hundreds of machines to a global network comprised of
hundreds of local area networks and hundreds of thousands of machines.

The emergence of network-based applications and even operating systems demands
the network components operate as efficiently and effectively as possible.

Managing a network can be an arduous task, as there are numerous components that
comprise the network, originationg from many vendors. In addition, the components
are usually dispersed over a large geographic area. But, even if the network
components were co-located, most of the network devices don't even have an
operator's console.

All of these factors add up to a nightmare when things go wrong in the network,
Traditional system operation concepts deal with problems as they arise. In a
network, just locating a downed component can be a major task, All the while,
applications and users are idle while technicians scour the campus looking for
the problem. Several CLIPS applications have been described previously that aid
in the isolation and diagnosis of problems [Leigh A.] by using a question and
answer session with a human,

The next logical step in managing a network, is to look for, and solve, problems
under expert system control. This is a natural application for an expert system
like CLIPS. However, to utilize CLIPS as a solution, the expert system shell must
incorporate several new features it does not currently have.

4 1 155(dr~
PKCEDiNG PAGE RJCX F!L%EB

NEW CLIPS FEATURES TO FACILITATE NETWORK MANAGEMENT

The US Government and commercial vendors recognized the need for developing a
v e n d ~ r - i n d e ~ e n d e n t m e c h a n i s ~ n for managing networkcomponents, largely because of
the network management chaos that erupted after networking became so prevalent.

Typical automated network management systems rely. on a specific vendor's
diagnostic hardware. One has even been written in CLIPS. [Hansen & Flores].
However, vendor-dependent network management solutions have only limited
application in a network comprised of elements from different vendors.

To answer this need for vendor-independent networkmanagement the US Government's
Network Working Group developed the Simple Network Management Protocol or, SNMP
[Case, Fedor, Schoffstall, & Davin].

By integrating SNMP into the CLIPS language, expert systems can then be built
that can take direct control of network elements; thus obviating the need for
most human interaction.

SNMP Architectural Model

Implied in the SNMP architecture is a collection of network management stations
and network elements. The network management station executes the applications
that monitor and control network elements. Network elements are devices on the
network such as hosts, routers, gateways, terminal concentrators, PCs, etc. that
communicate on the network, The SNMP is used to communicate the management
information to the network elements. The CLIPS program will be the manager for
the network. The various hardware components on the network will be the network
elements that CLIPS will manage.

The first goal of the SNMP integrated into CLIPS is to explicitly minimize the
number and complexity of functions used by the manager program. This will result
in the reduction of new language constructs in CLIPS; hence maintaining the
portability and integrity of the language.

Another goal of the SNMP/CLIPS integration is to provide a paradigm for monitor
and control that can accommodate unanticipated aspects of network management. As
time and network products progress, the CLIPS manager will be extendible at the
expert system shell level. This will tend to eliminate further extensions to the
language itself .
The third and most important goal is that the resultant system will be
independent of the architecture and mechanisms of the particular network
elements. Achievement of this goal allows the CLIPS network manager to control
network elements from any vendor.

Representation of Management Information

The information communicated using SNMP is represented using the ASN.1 language
[IS0 Standard 88241. Use of the ASN.1 language internal to SNMP is key to its
machine independence and eventual conformance with GOSIP mandates.

The information communicated using ASN.1 is called the management information
base (MIB). There is a standard MIB, that all the conforming network products

recognize,

An example ASN.l variable in the MIB is represented in Table 1.

Table 1 , An ASN.1 Definition

The example in Table 1 will be referenced in the following paragraphs to
illustrate CLIPS network management via the SNMP.

Protocol Operations

The SNMP functions integrated into CLIPS operate as inspections or modifications
of variables that correspond to entries in the MIB. The manager specifies the MIB
variable to view or alter, and the managee (also called "agent") does the
appropriate get variable or set variable action. Notice in the above example that
the variable is read-onlx. Thus the manager may view, but may not modify this
variable.

Usingthe MIB, the variables become accessible in amachine-independent form. The
CLIPS manager does not care what the network element's internal representation
is of the variable or how it is derived and maintained.

Primarily, the CLIPS manager works by polling the network element agents for the
appropriate information.

There are no imperative commands in the protocol. The manager merely sets a MIB
variable to some value. The network element agent then decides what to do with
the value, The example given in Request for Comments (RFC) 1157 [Case, Fedor,
Schoffstall, & Davin] is that of a "reboot command". Rather than explicitly
implementing a REBOOT command, this action might be invoked by simply setting a
parameter indicating the number of seconds until the system reboots.

Identification of Object Instances

The variables (or names) of all object types in the MIB are defined explicitly
in the Internet-standard MIB [Rose M. 1, known as the MIB-I1 of RFC 1158. The
entries in this standardized MIB make it possible for CLIPS to manage TCP/IP
network elements in a vendor-independent fashion. Referencing RFC 1158, the CLIPS
developer can access any of the defined variables on any network element that
supports the SNMP.

Each instance of any object type defined in the MIB is identified with a variable
name. The MIB is organized in a hierarchical fashion, thus making it easy to
"walk the MIB" to obtain aggregate information. An example of walking a portion

of the MIB is to obtain all the information under the variable name "system",

In SNMP the objects are identified with fully qualified variable names in "x,y"
format, where "x" is the name of a non-aggregate object defined in the MIB and
"y" is the object identifier that is specific to the desired instance. This
naming strategy admits exploitation of contiguous lexicographic retrieval of
related variables, which makes MIB walking possible.

For example, the fully qualified ASN.1 name that represents how long a network
element has been up and running, "upTime", is:

The numbers underneath the definition show the integer representation that
defines the variable, The CLIPS programmer references variables by the text ASN.l
name, the ASN.l parser converts the name into the array of integers that
correspond to the name for actual transmission over the SNMP. Notice from Table
1 the last statement was the assignment : := {system 2). Working backwards one can
see that "mib : := { mgmt 1)", "mgmt : := {internet 2)", and so on,

It is possible to obtain the system up time from a remote network element by
asking for this variable, Alternatively, all system variables could be retrieved
from the network element by requesting "iso.org.dod.internet.mgmt.mib.system".

As a short cut, all the variables are presumed to be preceded with
"iso.org.dod.internet.mgrnt.mib". Thus a request for system uptime merely becomes
"system. sysUpTime, 0".

There are about one hundred variables defined in the MIB. For purposes of example
in this paper, and to eliminate confusion, only a portion of the internet MIB and
variables are presented. The MIB variables used in the code fragments presented
in this paper are defined in Table 2.

The variables defined implement self-explanatory functions, with the possible
exception of ip. ipInDiscards.0, This variable is a counter in the network element
that tallies network packets that were destroyed because the network element
couldn't process them. Usually this means that there wasn't enough buffer space
to process the message. Obviously, if the number of discards goes up, the more
problematic the operatiorl of the network will become. It is this variable,
ip.ipInDiscards, that will be examined in the further examples.

INTEGRATION OF SNMP WITH CLIPS

The SNMP protocol and an ASN.1 parser have to be built in order to access the MIB
in the remote network entities. Fortunately, neither the SNMP protocol nor the
ASN.1 parser are particularly hard to come by in the "C" language. There are two
public sources of SNMP, one is from Carnegie Mellon University, and the other is
from the Massachusetts Institute of Technology, Both are distributed without
charge, if you follow their liberal licensing agreement.

The Carnegie Mellon University SNMP was chosen because of the author's
familiarity with other CMU efforts and was thus comfortable with their code.

The SNMP code from CMU implements an ASCII database of MIB variables for SNMP,
an ~sN.1 parser, the SNMP protocol over TCP/IP, and a set of applications
programs that allow one to access the MIB variables on the network elements, The
SNMP system is designed to run under the UNIX operating system. For the
management station, the CLIPS system was built on an Everex 80386 system running
the SCO Open Desktop (UNIX System v . 3 2) operating system.

The first step in the process was to build the application programs and use them
to access the MIB variables of network elements.

There were two germane applications: "snmpget" and "snmpwalk". The snmpget allows
one to get a variable from the network element. The syntax is "snmpget <host-
name> <access-control) Casn.1 name>. The access control parameter is the
"password" that allows one to access the variables. For read-only purposes
"public" will do. Table 3 shows what the snmpget command will return if issued
against a network element named "gandalf".

T a b l e 3 . The SNMPGET Command

However, there was no "snmpsett' provided so one was coded using the CMU
snmp1ib.a application library. Then it was possible to both view and modify the
variables (if allowed), In Table 3, the system contact name on the remote element
will be viewed, then changed.

T a b l e 4 . View Then Set a Variable

From now on, any one requesting the system contact name of element gandalf will
get the new contact name "Ben Faul".

Once familiar with the application programs and the SNMP library, integration
with the CLIPS expert system was an easy process. The three application programs
were then modifiedto be incorporated into CLIPS. The UNIX syntax was preserved
in the language to allow the application programs' documentation to be used with
CLI PS .
Using standard CLIPS implementation methodologies the language was extended to
include the following new constructs: (snmp-get), (snmp-getnext), (snmpset).

Surprisingly, these are the only new constructs required in the language to
facilitate SNMP access.

Get An Instance Variable

To get the value of a variable on the network element, the (snmp-get) command is
used. The form of the command is:

(snmp-get <host> <variable-name> <access>)

The <host> parameter defines the symbolic name of the element being queried. The
<variable-name> is the ASN.l name of the variable. The <access> parameter is used
for authenticating privilege to view or modify the variable. Usually for this
command the <access> variable is set to "public".

The snmp-get returns a multi-field variable, The first field is the return code.
The second field is the type (integer or string), which is used to field the
returned variable in the third field (if integer) or fourth field (if string).
~f an error occurs a -1 is returned in the type field, with an error string
contained in the fourth field.

Get The Next Instance Variable

For getting contiguous variables in the MIB, the snmp-get-next command is
provided. The form of the command is:

(snmp-get-next <host> <variable-name> <access>).

The <host> parameter defines the symbolic name of the element being queried. The
<variable-name> is the ASN.1 name of the variable fragment. The <access>
parameter is used for authenticating privilege to view or modify the variable.
Usually for this command the <access> variable is set to "public",

The snmp-get-next returns a multi-field variable, The first field is the return
code. The second field is the type (integer or string), which is used to field
the returned variable in the third field (if integer) or fourth field (if
string), The fifth field is a string that identifies the fully qualified name
being returned. If an error occurs a -1 is returned in the type field, with an
error string contained in the fourth field.

Each successive call to the snmp-get-next returns the next variable that was
contiguous with the previous variable, until the MIB variables in that fragment
is exhausted. In this manner one may examine the MIB by "walking down the
branches". Indeed, the entire MIB may be returned by successive calls using the
ASN.1 variable: "iso.org.dod.internet.mgmt.mib"

Set An Instance Variable

To set a variable in a network element, the (snmp-set) command is used, assuming
that one has authority to do so. The form of the command is:

(snmp-set <host> <variable-name> <access> <new-value)).

The <host> parameter defines the symbolic name of the element being queried. The

<variable-name> is the ASN.l name of the variable. The <access> parameter is used
for authenticating privilege to view or modify the variable. Usually for this
command the <access> variable is set to "private".

The snmp-set returns a multi-field variable, The first field is the return code.
~f the code is 1 then the replacement was successful. Otherwise, 0 indicates an
error occurred with the third field containing an applicable error string.

The architecture of the SNMP/CLIPS integration, and how it is applied to manage
a sample network is described in Figure 1.

Mainframe
TCPllP 8

MACINTOSH
TCPnP 6 SNMP

UNlX Workstation with
CUPS/SNMP Expert System

TCPiIP 8
SNMP

I INTERNAL \

VIEW
\

/ \

/ RULES J
CUPS ENGINE t

I

ASN.1 PARSER NETWORK DATA

NETWORK

Figure 1, SNMP/CLIPS Integrated Architecture

The network elements, such as the gateway, terminal concentrator, and host
interface are all controlled, automatically from the host running the CLIPS
expert system. The expert system gathers SNMP data from the network elements and
stores it in the data file. The data file is used as feedback to the expert
system to change the network element parameters based on trend analysis and
knowledge contained within the expert system.

EXAMPLE CLIPS NETWORK WAGEMEW SYSTEM

The previous sections dealt with building the infrastructure in CLIPS to enable
it to do the work of network management. The concepts of proactive network
management will be discussed in this section and displayed in the code fragment
in Table 5, below.

Network Initialization

The network manager expert system must obtain the element names of the various
network entities to be managed on the network. These are simply stored in an
ASCII database from which the expert system reads upon initialization,

A more flexible approach would be to utilize a database for the network elements,
but that would complicate the design for example purposes.

Network Status Information

The network manager expert system polls the network elements for various
performance parameters. The information returned is stored in an ASCII flat file
for future reference.

Problem Detection

Problem detection is accomplished by applying rules against the ASCII flat file
that holds network status information. Upon finding a potential problem, the
expert system asserts the facts determined by the current and historical status
as determined from analyzing the ASCII file.

Problem Correction

The network manager expert system's problemcorrection rules attempt to solve the
problem by class of failure. In the case of overloaded gateways, routing tables
may be adjusted to alleviate traffic in this element. In the case of an interface
card reporting many transmission errors, a diagnostic printout showing the
location of the unit and the type of error condition may be printed.

ILLUSTRATIVE EXAMPLE

To see how well SNMP and CLIPS work together, consider the CLIPS code fragment
presented in Table 5 .

Table 5. CLIPS/SNMP Sample Code

As can be seen in Table 5, the addition of the SNMP capability to CLIPS does not
greatly influence the character and flavor of the language. However, the addition
of the SNMP access allows the full power of the language to be used to influence
the performance of a network of SNMP compliant commercial products.

CONCLUSIONS

The application of CLIPS to SNMP has proved to be quite successful. The network
manager expert system is capable of detecting faults and does a credible job of
proactive management.

To enhance the proactive management capabilities, the expert system should
utilize an SQL database to store the polled data. This would permit more
extensive trend analysis to be done,

The SNMP library from CMU utilizes a synchronous network connection. This means
that the (snmp-get) hangs until the message is returned to CLIPS or the read

times o u t , To manage a v e r y l a r g e number o f e lements e f f i c i e n t l y w i t h i n CLIPS,
non-synchronous network 1/0 w i l l be requ i red .

The u s e r i n t e r f a c e of t h e network manager is a s imple X Window System/MOTIF GUI
t h a t u s e s v e r y s imple i cons t o r e p r e s e n t t h e d i f f e r e n t e n t i t i e s , A f u l l f e a t u r e d
X Window System i n t e r f a c e t h a t is t r u l y o b j e c t - o r i e n t e d is a must f o r b u i l d i n g
a s e r i o u s network management product .

REFERENCES

Case, J . , Fedor, M. , S c h o f f s t a l l , M . , Davin M. (1990) A Simple Network Management
P r o t o c o l , DARPA RFC 11 57.

Hansen, R.F., F l o r e s , L.M., (1990) JESNET Exper t A s s i s t a n t , First CLIPS
Conference Proceedings, Houston, pp.140-146 .

IS0 S tandard 8824 (19871, " S p e c i f i c a t i o n o f A b s t r a c t Syntax Nota t ion One (ASN.l),
International Organization for Standardization

Leigh, A.B. (1990) The Network Management Exper t System Pro to type f o r Sun
Works ta t ions . First CLIPS Conference Proceedings, Houston, pp , 148-154.

Rose, M . (e d) (1990) Management In format ionBase f o r NetworkManagement of TCP/IP
based I n t e r n e t s : MIB-11, DARPA RFC 1158

