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Abstract. The human capability of making complex decision is one of the most fascinating facets of 
human intelligence, especially if vague, judgmental, default or uncertain knowledge is involved. 
Unfortunately, most existing rule-based forward-chaining languages are not very suitable to simulate this 
aspect of human intelligence, because of their lack of support for approximate reasoning techniques needed 
for this task, and due to the lack of specific constructs to facilitate the coding of frequently reoccurring 
activities in decision making processes. The paper advocates to extend CLIPS by a new component called 
decision block to provide better support for the design and implementation of rule-based decision support 
systems. A language called BIRBAL~, which is defined on the top of CLIPS, for the specification of 
decision blocks is introduced. Empirical experiments involving the comparison of the length of CLIPS- 
program with the corresponding BIRBAL-program for three different applications are surveyed. The results 
of these experiments suggest that for decision making intensive applications a CLIPS-program tends to be 
about three times longer than the corresponding BIRBAL-program. 

I. INTRODUCTION 

Very often in human life we are forced to make guesses in order to decide where certain objects are 
located, for reconstructing events that happened in the past, or for building plans in order to 
achieve a certain goal. The human capability of making complex decisions is one of the most 
fascinating facets of human intelligence. Usually, decision making involves multiple knowledge 
sources from which the expert extracts different clues by frequently using a set of fuzzy rules, 
which encode the expert's general and domain-specific knowledge. Finally, the expert comes up 
with a decision by combining the evidence received from the individual clues. 

The problem of how to design and implement larger systems that rely on these approaches 
has widely been ignored by current research (some exceptions to this point will be discussed 
below). There is a lack of programming languages that integrate these approaches of the rule-based 
expert system shells that support reasoning involving imperfect knowledge adequately, and of 
knowledge engineering methodologies that can cope with large amounts of imperfect knowledge. 
Programming involving imperfect knowledge, will be referred to as fuzzy programming in the 
following sections, still seems to be quite far away for commercial applications. Experimental 

t Birbal was a famous minista in the 16th century India, who served as an advisor to king Akbar. 



systems that do support reasoning involving imperfect knowledge such as PROSPECTOR([14]), 
or MYCIN([lO]), mostly use "single-valued approaches" for reasoning under uncertainty; that is, 
they assign a probability-like value to each predicate of interest. However, single-valued 
approaches have problems coping with ignorance and with different degrees of reliability in 
different knowledge sources. Two-valued approaches that intend to overcome these problems have 
been advocated in the literature; most of these approaches use Dempster/Shaferts theory of 
evidence as the underlying knowledge representation framework ([I], [24], [28]) or they assign 
priorities to rules and use these priorities in a pragmatic way when combining evidence [36]. These 
approaches are capable of assigning --- in addition to probabilities --- reliabilities to predicates and 
rules and have no difficulties with representing ignorance, which makes them very attractive for 
automating human decision making in uncertain environments. The RUM-system([7]) advocates 
the use of a 3-layered reasoning strategy, which distinguishes between representation, inference, 
and control, which is defined on the top of a two-valued approach. Two other experimental 
systems, INFERN0([27]) and ARIES ([I]), that rely on two-valued approaches have been 
described in the literature. Finally, some efforts have been made to integrate approximate reasoning 
methods with Prolog ([4], [2 11). 

The main topic of this paper is the discussion of techniques and concepts that facilitate the 
implementation of rule-based decision support systems that have to cope with imperfect 
knowledge. A language construct, called decision block, that facilitates the automation of decision 
making is proposed, and its features and its integration with rule-based forward chaining languages 
are discussed in some detail. The paper is organized as follows: Section 2 introduces decision 
blocks and a language BIRBAL that supports decision blocks. Section 3 discusses the 
implementation of BIRBAL. 

11. DECISION BLOCKS 

In this section we are going to provide the programmer with a language construct, called decision 
block. This construct eases the automation of the more general aspects of decision making by 
reducing the number of rules as well as the complexity of individual rules. Decision Blocks rely on 
the technique called decision making by evidence combination @BE) that can be characterized as: 

(1) Rules in a rule-set are assumed to be independent, providing positive or negative 
evidence for or against making a certain decision in a certain situation. Rules approximate 
the basic principles of a particular domain. 
(2) Smooth decision making is supported. If the left hand side (LHS) of a rule is only 
partially true the amount of evidence provided by the rule will be decreased. 
(3) After the rules of a rule-set have been processed completely, the evidence provided for 
different decisions is combined and the best decision is selected That is, a two-layered 
inference strategy is used that separates decision making h m  decision execution. 

When using this approach, no artificial dependencies between rules need to be introduced, 
and errors in a rule-set can be more easily detected, because each rule-set returns a ranking of the 
available decisions and no longer only the chosen decision. Using the above approach rule-sets that 
encode decision making processes look as follows: 

(R1 (if A) (then provide evidence for Dl with amount al)) 
(R2 (if C) (then provide evidence for Dl with amount a2)) 
(Rg (if B) (then provide evidence for D;! with amount a3)) 
(% (if "truen) (then provide evidence for Dg with amount a4)) 



In general, assuming that the decision with the highest amount of positive evidence is 
chosen, a pdcular  selection a1 ,...,a4 is correct, as long as it satisfies the following equations: 

The symbol (3 refers to the operator that combines evidence received from different rules in 
the context of the underlying method for approximate reasoning. For example, the first equation 
expresses that the result of combining the amount of evidence a1 and a2 has to be greater than the 
amount a3, reflecting that if both A and C are present Dl  and not D2 should be selected. Or, to 
give another example, a3 has to be greater than a2, because D2 is preferred if B and C, but not A 
are observed. 

So far, our discussion abstracted from the underlying approach for approximate reasoning. 
We consider a method M to automate approximate reasoning to be a pair M=(O, T) that consists of 
a set of Operators 0 operating on the type T. In order to be suitable for decision making by 
evidence combination, we require that 0 provides at least the following operators: 

A E T x T  + Tiscalledtheand-operam 
v E T x T  + Tiscalledthem-operator 
not E T + T is called the not-operator 
- E T x T + T is called the modus-ponens-tor 
$ E T x T + T iscalled thecombinationsperator 
r E T x T + BOOLEAN. Furthemore, r; has to be an order relation: 

it has to be reflexive, anti-symmetrical, and transitive. 

T represents the type used by the underlying methodology to measure the truth of imperfect 
knowledge. In a Bayesian system T would be set to [0 11, in the case of MYCIN certainty factors 
T would be [-I 11, and in the case of two-valued interval approach T would be: 

{(x,y) E 3 I O S x S y S  I); where3 is a set of real numbers. 

In general, various abstract data-types have been proposed in the literature, e.g. ([I], [6], [7], 
[lo], [27]), that are suitable for decision making by evidence combination. In the following we 
assume that the above operators are applied in infix-form. For example, if the following rule R 

(R (if (A and (B or not (C))) then (provide evidence for D amount x)) 

is processed, its amount of evidence for D would be computed as follows: 
(a A (b v (not(c))) -+ x 

in which a, b, c, x E T, describes the belief associated with A, B, C, and with the rule R 
respectively. Or, in our original example D2 is considered to be better than D 1 if: 

(a -+ al) 6B (C --) a2) s (b -+ a3) 

In summary, when automating decision making relying on the above framework, we will 
first apply the operators to process the LHS of a rule, then we will use the operator --+ to 
compute the evidence provided by a particular rule, and then we will combine the evidence inferred 
by different rules for the same predicate using the operator 6~ for each decision candidate. Finally, 
the order relation s is used to select the best decision candidate(s). 

Decision blocks enable programmers of decision support systems to identify independent 
units of decision making. More specifically, a decision block consists of (see Figure 1): 



Decision Block 

-------- 

Figure 1. Components of a Decision Block 

(1) A decision specification that enumerates decision candidates from which the best 
decision(s) has (have) to be selected, and which associates an action with each decision 
candidate which will be executed in the case that a particular decision is chosen. 
(2) An environment which consists of a set of context variables that describe the context in 
which a particular decision has to be made. 
(3) A rule-set, whose members provide positive and/or negative evidence for or against 
the particular decision candidate. Rule-sets are further subdivided into disjoint ruleclusters 
that represent rules that are related to the same knowledge source. Evidence provided by 
rules from belonging to different ruleclusters is considered to be independent evidence, 
whereas rules belonging to the same rulecluster are assumed to provide dependent 
evidence. Furthermore, exceptions can be associated with rules. Exceptions are 
represented by augmenting production rules by an exception LHS and an alternate right 
hand side (RHS). In the case that the rule's LHS and the exception's LHS are satisfied, 
the corresponding alternate RHS is executed. 
(4) A decision making policy that encodes the decision procedure for selecting a decision or 
a set of decisions after all clues relevant for the decision making have been analyzed. 

Phase 1 Phase2 Phase3 Phase 4 

Figure 2. Phases of a Decision Block 

Evidence Germation 

Rules and Wir associated 
exceptions are evaluated 
giving preference to the 

, most specZic exception. 

Decision blocks automate rule-based decision making by using a four layered inference 
strategy, as depicted in Figure 2. First, rules and their associated exceptions are evaluated, giving 
priority to the most specific exception which is applicable for the rule. Second, dependent 
evidence within each rulecluster, and independent evidence associated with different ruleclusters is 
combined. For combining dependent evidence a second evidence combination function was 
provided, which is given in Appendix 1, and whose properties are discussed in more detail in 
([15]). Third, a set of decisions is selected according to the strategy outlined in the decision 
block's policy. Decision making policies supported by decision blocks, which are evaluated with 
respect to the operator s include: select the best decision, select the best n decisions, select all 
decisions, or the best n decisions better than a threshold value a (0 s a s 1). Fourth, the selected 
decisions are carried out, executing the actions associated with the selected decisions. 

Evidence Combination 

Evidence received from 
dierent rules is combined. 

Decision Selection 

A set of decisions is selected 
depending on the decision 
making policy. 

Decision Execution 

The selected decisions are 
carried out by executing 
their associated actions. 



Figure 3. gives an example (for detailed explanation of different examples see [25])  of a 
typical decision block, nmed scholmhigs, which encodes the awarding of scholarships to the 
students on the basis of their academic performance, experience as teaching assistant and age. 

(environment (?univ)) 

((qual-of ?ssno ?univ) with (?lb ?ub)) 

(student (ssno ?ssno) (univ ?univ) (cgpa ?cgpa) (ogpa ?ogpa)) 
(%curr-perform ?cgpa) 
(%overall-perform ?ogpa) 
(test (and (between ?cgpa 0.0 4.0) (between ?ogpa 0.0 4.0))) 

([fbexpas-TA ?expTA) 

(student (ssno ?ssno) (univ ?univ) (fin-need ?fneed)) 
(%financial-need ?fneed) 

(infer (qual-of ?ssno ?univ) with (0.75 1.0))) 

(student (ssno ?ssno) (univ ?univ) (age ?age)) 

Figure 3. Example of a Decision Block: scholarships 

Before a decision block can be used, all fuzzy functions (that is, functions that return 
intervals as results) with it's arity (i.e., number of arguments) have to be identified. The action- 
specifications of the decision block enumerates the decision candidates, which are represented as 
LHS patterns 

((qualsf ?ssno ?univ) with (?lb ?ub)), 



and RHS gives the action($ which has(have) to be performed, if the corresponding decision is 
selected. For example, if a student from the university of Houston with ?ssno equal to 123456789 
is selected depending upon the decision making policy then "Qualified Student is 123456789 
Houston" is printed out. The environment definition defines the context variables used by the 
decision block. These variables have to be initialized by the call of the decision-block. These 
variables are local to the decision-block and need to be passed (in this case ?univ) whenever the 
decision-block is invoked. The decision making policy specifies what decisions need to be selected 
from the set of decisions taken, here the decision making policy applied is specified as 

"(select ALL decisions with mv > 0.8)" 

i.e. the combined evidence received from each of the rules from the rule-set should have the mean- 
value greater than 0.8. 

Now let's see what each rule in the rule-set expresses. First we will see intuitively what is 
being signified by intervals specified (interested reader should refer to the Appendix 1) with the 
Twevalued approach we have taken. We can express the fact that we know nothing about certain 
proposition P by assigning interval [0 11, i.e., unknown can be directly expressed in the interval 
approach. Also the usage of classical probability becomes the special case of Twevalued approach 
because we can express single probability values by assigning same lower and upper bounds, 
e.g., [0.4 0.41, where uncertainty is 0 and reliability is 1, and we are sure about the proposition. 
Intuitively speaking if the difference between the lower and upper bound increases the uncertainty 
of the proposition increases and if the difference between them decreases certainty about the 
proposition increases. Also the evidence provided for the proposition is considered as negative if 
the mean-value of the interval is less than 0.5. 

The LHS of any rule could be any valid CLIPS LHS pattern plus the fuzzy function(s) (C 
functions), if any, identified by '%' followed by the arguments of the functions. Let's take the 
frrst rule scl which provides the evidence towards the qualification of the student depending on 
the academic performance of the student, i.e.,. student's current GPA and overall GPA. The 
performance of the student depending on GPA is difficult to quantify since the student having 
overall GPA of 3.75 and other having 3.80 lies in the same category. Also same can be said for 
current GPA , but the combined performance might differ extensively since the current GPA will 
affect the overall GPA drastically depending upon the value. Hence the combined performance is 
fuzzy. The infer statement in the fmt rule suggests that it has higher contributing power towards 
the final decision since the interval applied to it is [0.9 1.01. The second rule sc2 will contribute 
towards the final decision depending upon the experience as teaching assistant but the rule has 
lower contributing power than the first one since the interval applied to it is 10.8 1.01. Similarly 
other rules will contribute towards the final decision. 

The evidence provided by the LHS fuzzy predicates such as performance, experience, 
financial-need and age will be used in computations using logical connectives (A, v, not) which in 
our case is A, and modus ponen functions (-+) and new evidence interval will be computed. This 
new value will be contributed by each rule towards the final decision, i.e., qualification of the 
student for receiving a scholarship. Each rule can either provide positive or negative evidence. 
Next the evidence provided by each rule is combined repeatedly using the operator @ until the 
evidence provided by each rule towards the final decision is combined. In the third phase 
depending upon the decision making policy the decision regarding the qualification is made from 
the set of competing candidates and in the last phase the action specified by action-specifications is 
taken, in our case it's simply printing out all the candidates whose mean-value of the interval is 
greater than 0.8. In general the action-specifications can be used to sort the candidates in the 
ascending order of mean-values or could involve further computations for the final selection or 
could invoke another decision-block or simply prints the first 10 candidates called for the interview 
putting other candidates on the waiting list, etc. We can see from the previous discussion how 
smooth the entire process is and how simple it is to code the decision-block. We will see in the 
next section implementation of the decision-block, that if we need to do all that is specified in the 



previous discussion using pure CLIPS how much extensive coding is required and burdensome 
for the programmer which is not the case with the decision block since the compiler takes away that 
burden from the programmer. 

111. IMPLEMENTATION OF DECISION BLOCKS 

In this section, we will discuss the implementation of a rule-based language that supports decision 
blocks, and will report on some empirical results concerning the benefits of decision blocks. 
More specifically, we will report on the integration of decision blocks into a rule-based forward 
chaining language called CLIPS([19]), which was developed by NASA. The extended language is 
called BIRBAL. A BIRBAL-programmer can in addition to CLIPS rules define decision blocks 
and call these decision blocks within a CLIPS-program. 

BIRBAL 
Prosrclm 

CLIPS 
Pragram 

Figure 4. Implementation of Decision-Blocks 

Decision 
Blocks 

CLIPS 
Rules 

A precompiler has been provided, as a part of a Master's thesis ([25]), that maps a 
BIRBAL-program that consists of decision blocks and CLIPS rules into a program that uses pure 
CLIPS (see Figure 4). The precompiler is written in C has about 1400 lines of symbolic code. It 
was developed using the UNM-compiler generating tools lex and yacc. The developed 
precompiler relies on a rule-mapping that maps BIRBAL-rules into CLIPS rules; that is, every rule 
defined within a decision block is transformed into a single CLIPS-rule that simulates its behavior. 
However, the generated CLIPS rules are much larger in size, which can be attributed to: 

- 

Special 
Rules 

-a 

General 

CLIPS which does not support reasoning under uncertainty. This means that 
computations involving operators for approximate reasoning have to be provided 
manually for each rule. 

CLIPS does not support context variables, which implies that they have to be stored as 
assertions in the CLIPS working memory. The variable management is further complicated 
by the fact that there could be multiple active decision blocks, which use equally named 
variables, 

Exceptions are not supported; therefore they have to be programmed out by the 
programmer. 

It has to be made sure that evidence providing rules are only fired in phase 1 of the 
execution of a decision block; or, in more general terms, the context under which 
evidence-providing rules are allowed to fire has to be expressed by adding additional LHS 
conditions to the generated CLIPS-rule. 

Rules 



In order to make the above comments more transparent and to give the reader a better feeling what 
a programmer has to do if no decision blocks are provided, let us see how our precompiler maps 
the rule (refer to Figure 5). 

In CLIPS'S syntax a rule's LHS and RHS are separated by => symbol, and all condition 
elements that appear in a rule's EHS are assumed to be connected by 'and'. Furthermore, in 
CLIPS match-variables are prefixed by I?. The above rule starts with two control assertions 
(active-db- scholarships) and (status- scholarships phase 1) that make sure that the generated rule 
is only fired when the decision block scholarships is active and in phase 1. The rule scl refers to 
one context-variable. Context variables are represented in the U P S  environment by assertions of 
the form ( v a ~  <db-name> <var-name> <var-value>); e.g., (var- scholarships univ Houston), 
expresses that variable 'univ' of decision block scholarships has the value Houston. The values of 
the context variables have to be retrieved by adding one LHS condition to the rule. Furthermore, 
the LHS conditions of the BIRBAL-rules have to be simulated. Non fuzzy-conditions do not pose 
any particular problem; they are simply copied into the generated CLIPS-rule. In this particular 
case, it is the test pattern which checks whether the GPA of the student is within the valid range or 
not. The implementation of the fuzzy conditions is much more complicated. First we assume that 
the C-functions that implement the definition of curr-perform and overall-perform has been 
provided by the user. 

( ~ 1  
(student (ssno ?ssno) (univ ?univ) (cgpa ?cgpa) (ogpa ?ogpa)) 
(%cum-perform ?cgpa) 
(%overall-perform ?ogpa) 
(test (and (between ?cgpa 0.0 4.0) (between ?ogpa 0.0 4.0))) 
=> 
(infer (qual-of ?ssno ?univ) with (0.9 1.0))) 

The above rule scl is transformed into the following CLIPS-rule: 
(defiule scl-phase1 

(declare (salience 555)) 
(active-db- ?db-namee&schoWps) 
(status- ?&name- phase ?phase-&l) 
( v a ~  ?db-name univ ?univ) 
(student (ssno ?ssno) (univ ?univ) (cgpa ?cgpa) (ogpa ?ogpa)) 
(test (and (between ?cgpa 0.0 4.0) (between ?ogpa 0.0 4.0))) 
=> 
(bind ?ll-ul- (curr-perform ?cgpa)) 
(bind ?11- (nth 1 (strexplode ?ll-ulJ)) 
(bind ?ul- (nth 2 (str-explode ?ll-ulJ)) 
(bind ?l2-u2_ (overall-perform ?ow)) 
(bind ?l2- (nth 1 (strexplode ?l2-&))) 
(bind ?u2_ (nth 2 (str-explode ?l2-a_))) 
(bind ?yl- (* ?11- ?12_)) 
(bind ?y2- (* ?ul- ?&J) 
(if (and (!= ?yl- 0) (>= (+ ?yl- 0.9) 1) (>= (+ ?y2_ 1.0) 1)) then 

(bind ?lb- (/ (- (+ 0.9 ?ylJ 1) ?ylJ) 
(bind ?ub- u (- (+ 1.0 9 2 3  1) ?y23) 
(assert (scl ?db-name 2 qual-of ?ssno ?univ with ?lb- ?ubJ))) 

Figure 5. Rule Transfmation from Decision Block d e  to CLIPS rule. 



Each of these functions returns an interval, measuring the performance of the student for 
which it were called. Second, the approximate reasoning methods described in section 11, have to 
be used to compute the rule's evidence for the qualification of the students. In this particular case 
two fuzzy conditions are used, which means that the belief in the rule's LHS can be equated to the 
academic performance of a particular student, if the test conditions for GPAs are satisfied. The fust 
eight RHS actions call the C-functions curr-perform and overall-perform, bind the returned 
intervals, and bind the lower and upper bounds to variables ?yl- and ?y2- after applying logical 
connectives (see Appendix 1) to the returned intervals. The rest of the rule's RHS simulates the 
operator ' -+I  and computes the rule's amount of evidence. In case that the amount of positive 
evidence is [0 11 then the rule does nothing; otherwise it asserts an assertion specifying the amount 
of evidence provided for the decision candidate. For example, if the rule scl provides a positive 
evidence of [0.75 1.01, the following pattern 

"(scl scholarships 2 qual-of 123456789 Houston with 0.75 1.0) " 

would be asserted. These assertions are used later in phase 2 to combine the different pieces of 
evidence associated with the same student. It is also important to note that the generated code 
would become much more complicated in case that the LHS of the rule references more than two 
fuzzy conditions connected by different logical connectives and with the presence of exception 
conditions (see [25]). In that case, it would be necessary to add code that simulates the 
com bination of v, a and not operators. 

In general, the example demonstrates that implementing the approximate reasoning methods 
by hand is highly complicated and time consuming, if no methods for approximate reasoning 
have been integrated into a rule-based language. Even worse, these computations have to be 
provided for every rule of a rule-set, even if the computations are similar or the same. 

Moreover, the precompiler transforms a decision block's decision making policy into a 
rule that generates assertions, parameterizing the computations of general rules that simulate the 
selected decision making policy. Also the decision blocks decision specification is transformed 
into rules, whose right hand sides consists of the actions associated with a decision candidate, 
whereas the LHS of the generated rule checks for assertions that state that the corresponding 
decision has been selected by the decision making policy. Additionally to the rules that are 
generated specifically for a particular decision block, our implementation relies on a set of general 
rules that perform general tasks such as evidence combination, switching between the phases of 
the implementation of a decision block, management of calls of decision blocks, and removal of 
trash (see Figure 6). 

We also made some experiments comparing the length of a decision block with the length 
of the generated CLIPS program that implements the decision block. These experiments included 
a slightly more complex version of the scholarships decision block, the decision blocks that 
simulate the assignment of scholarships at a university, and a larger decision block for a problem 
of medical parasitology. The results are summarized in Table 1. We claim that these numbers give 
a good indication of the benefits of decision blocks with respect to a programmeis productivity in 
decision making intensive applications, such as those analyzed in the benchmark. A pair (a, b) in 
the Table 1 indicates that the corresponding program has 'a' lines and 'b' characters. 

In general, the experiment suggests that the generated CLIPS program is about 4 times 
longer than the corresponding decision block if DBE is implemented, which makes it quite 
apparent why the conventional approach has been used quite frequently in practice, and not 
decision making by evidence combination @BE). Due to the lack of supportive constructs in 
commercial forward-chaining languages the received programs tend to be very long, if DBE is 
used. However, if higher order constructs such as decision blocks are integrated into a rule-based 
languages, this remark is no longer true. We even go further and claim --- that programs 
developed using decision blocks tend to be significantly shorter than programs that were 
developed using the conventional approach. Moreover, the development of a precompiler was not 
very complex, which demonstrates that decision blocks can be provided at a low cost on the top of 



rule-based languages such as CLIPS([191), OPS([18]), or ART([2]), and that decision blocks can 
be easily integrated into forward chaining systems. In summary, the availability of decision blocks 
or similar constructs is an important prerequisite to develop decision support systems at reasonable 
cost that rely on decision making by evidence combination. 

u - Action-Executing Rules 

: 

Rule-Selection 

Library of General Rules h Y 
* Phase-Switching Rules 

Evidence-Combination Rules 

%' 
Policy-Simulating Rules 

Call-Managing Rules 

Figure 6. Mapping Decision Blocks to a Rule-Based Language 
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IV. CONCLUSION 

This paper studied the problem of designing and implementing complex decision support systems. 
Computerized decision making that treats decision making as a problem of evidence combination 
was introduced A language construct called decision block that facilitates the implementation has 
been proposed. A language called BIRBAL that integrates decision blocks with CLIPS has been 
provided. Decision blocks offers several advantages over classical rule-based languages such as 
ART, CLIPS and OPS for automating complex decision making processes. First, the availability 
of exception handling facilities and evidence combination techniques enables one to program close 
to the expert level, which is very important for explaining the system's behavior and for system 
validation. Second, our approach supports smooth decision making. Minor changes will only 
slightly affect the final ranking of the decision candidates. Third, decision blocks provide 
encapsulation and allow to modularize complex decision making processes. Fourth, we claim that 
decision blocks increase a programmer's productivity significantly because the precompiler takes 
care of many tasks such as reasoning under uncertainty, combination of evidence, removal of 
trash, ranking of decision candidates, or execution of decisions, which no longer have to be coded 
by a BIRBAL-programmer. Finally, we showed that decision blocks can be provided at a low cost 
on the top of existing rule-based programming languages, such as CLIPS. 
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APPENDIX 1. BIRBAL'S UNCERTAINTY MANAGEMENT 

This section describes the operators that are supported in BIRBAL for approximate reasoning. 
BIRBAL relies on a two-valued interval approach to automate approximate reasoning which 
measures the belief that a certain proposition P is true by assigning an interval [a b] to P, 
expressing the following semantics: 

(1) The probability that P is true is at least a. 
The c o ~ m t i o n  of P is a: conf[a b] = a 

(2) The probability that P is false is at least (1-b). 
The disconfinnation of P is (1-b): disconf([a b]) =1-b. 

(3) The uncertainty of our belief concerning P is measured by unc([a b]) = b-a. 

(4) The mem-value of our belief concerning P is measured by {F}: mv([a b]) = pib} - 

For example, if we assign an interval [0.40 0.991 to P we express the following, the confirmation 
of P is 40% and the disconfmation of P is 1%. That is, 40% of the probability is assigned to P, 
and 1% of the probability is assigned to (not P). It is unknown how the remaining probability 
(59%) is distributed we don't know how much of this probability is assigned to P and how much 
is assigned to (not P). The uncertainty is 59%, and the mean-value is 69.5%. A special case is the 
interval [0 11, which expresses the fact that we know nothing about a proposition P. We used the 
following operators for V, A, not, + , @, and r; in the project, whose definitions are as follows: 



Let [a b], [C dl, [11 ul] , [I2 1121 be intervals: 
[a b] A [C dl := [min(a, c) min(b, d)] 
[a b] v [c dl := [rnax(a, c) max(b, d)] 
not(la bl) := [l-b 1-a] 
(a b) -4 (c d) := if (a it 0 A (c+a 2 1) A (b+d r 1)) 

[c+;-l b+t- 1 1  then - - 
else [O 11 

The operators for and-, or-, and negation are identical to those advocated by Fuzzy Logic -- only 
generalized in the context of intervals. The modus ponens operator -+ is used as follows to 
associate evidence with predicates appearing on the LHS of rules. For example, if we have a rule: 

(R (if E) (then (infer H with [c dl))), 

and our belief in E is measured by [a b], then the above rule provides evidence for H, whose 
amount is measured by: (a b) 4 (c d). 

The proposed modus ponens operator generalizes a modus ponens operator given in ([33]) 
for intervals. The proposed operator supports smooth decision making, as can be seen for the rule 
r 1, given below 

(rl (if (tall $x)) (then (infer (strong $x) with (0.5 0.9)))) 

Varying our belief assigned to the tallness of a person, we receive, 

Interval for the rl's Positive 
Tallness Evidence 
[1.0 1.01 [0.500 0.9003 
[0.9 0.91 [0.444 0.8891 
l0.8 0.81 [0.375 0.8751 
10.7 0.71 [0.285 0.8571 

Note that the mean-value of the rule's conclusion decreases if the probability of the LHS decreases 
means that conclusions based on uncertain knowledge are less reliable and provide less positive 
evidence. In the above framework negative evidence is treated as positive evidence for the 
negation of the hypothesis of interest, e.g., when processing: (rl (if E) (then not(H) with (0.7 I))), we 
will infer an interval that describes the positive evidence for not(H), and convert this interval to 
negative evidence for H by applying the negation function, introduced before, to the received 
interval. In the example, if E is definitely true [1 11, an interval [0 0.31 will be associated with H. 

The operator $, we use for combination of evidence, is Dempster's rule of combination 
([13]). Intervals can easily be interpreted as probability assignment functions. If an interval [a b] is 
assigned to a predicate P the corresponding probability assignment function would be: m(P) = a, 
m(not(P)) = 1-b, m(0) = b-a, and m(0) = 0. By applying Demster's rule of combination the above 
formula is obtained. Finally, we use the mean-value of intervals to rank decision candidates, 
giving preference to decisions with the highest mean-value for the combined evidence. For 
example, if an interval of [0 11 is associated with Dl and an interval of [0.1 0.81 is associated 
with D2, Dl is preferred because its mean-value is 0.5, whereas the mean-value associated with 
D2 is 0.45, which is less than 0.5. 




