
DECISION BLOCKS: A TOOL FOR AUTOMATING DECISION
MAKING IN CLIPS

Christoph F. Eick
Department of Computer Science
University of Houston
Houston, TX 77204-3475
e-mail: ceick@cs.uh.edu

Nikhil N. Mehta
GE Government Services
1050 Bay Area Boulevard
Houston, TX 77058
e-mail: nmehta@ 146.154.10.168

Abstract. The human capability of making complex decision is one of the most fascinating facets of
human intelligence, especially if vague, judgmental, default or uncertain knowledge is involved.
Unfortunately, most existing rule-based forward-chaining languages are not very suitable to simulate this
aspect of human intelligence, because of their lack of support for approximate reasoning techniques needed
for this task, and due to the lack of specific constructs to facilitate the coding of frequently reoccurring
activities in decision making processes. The paper advocates to extend CLIPS by a new component called
decision block to provide better support for the design and implementation of rule-based decision support
systems. A language called BIRBAL~, which is defined on the top of CLIPS, for the specification of
decision blocks is introduced. Empirical experiments involving the comparison of the length of CLIPS-
program with the corresponding BIRBAL-program for three different applications are surveyed. The results
of these experiments suggest that for decision making intensive applications a CLIPS-program tends to be
about three times longer than the corresponding BIRBAL-program.

I. INTRODUCTION

Very often in human life we are forced to make guesses in order to decide where certain objects are
located, for reconstructing events that happened in the past, or for building plans in order to
achieve a certain goal. The human capability of making complex decisions is one of the most
fascinating facets of human intelligence. Usually, decision making involves multiple knowledge
sources from which the expert extracts different clues by frequently using a set of fuzzy rules,
which encode the expert's general and domain-specific knowledge. Finally, the expert comes up
with a decision by combining the evidence received from the individual clues.

The problem of how to design and implement larger systems that rely on these approaches
has widely been ignored by current research (some exceptions to this point will be discussed
below). There is a lack of programming languages that integrate these approaches of the rule-based
expert system shells that support reasoning involving imperfect knowledge adequately, and of
knowledge engineering methodologies that can cope with large amounts of imperfect knowledge.
Programming involving imperfect knowledge, will be referred to as fuzzy programming in the
following sections, still seems to be quite far away for commercial applications. Experimental

t Birbal was a famous minista in the 16th century India, who served as an advisor to king Akbar.

systems that do support reasoning involving imperfect knowledge such as PROSPECTOR([14]),
or MYCIN([lO]), mostly use "single-valued approaches" for reasoning under uncertainty; that is,
they assign a probability-like value to each predicate of interest. However, single-valued
approaches have problems coping with ignorance and with different degrees of reliability in
different knowledge sources. Two-valued approaches that intend to overcome these problems have
been advocated in the literature; most of these approaches use Dempster/Shaferts theory of
evidence as the underlying knowledge representation framework ([I], [24], [28]) or they assign
priorities to rules and use these priorities in a pragmatic way when combining evidence [36]. These
approaches are capable of assigning --- in addition to probabilities --- reliabilities to predicates and
rules and have no difficulties with representing ignorance, which makes them very attractive for
automating human decision making in uncertain environments. The RUM-system([7]) advocates
the use of a 3-layered reasoning strategy, which distinguishes between representation, inference,
and control, which is defined on the top of a two-valued approach. Two other experimental
systems, INFERN0([27]) and ARIES ([I]), that rely on two-valued approaches have been
described in the literature. Finally, some efforts have been made to integrate approximate reasoning
methods with Prolog ([4], [2 11).

The main topic of this paper is the discussion of techniques and concepts that facilitate the
implementation of rule-based decision support systems that have to cope with imperfect
knowledge. A language construct, called decision block, that facilitates the automation of decision
making is proposed, and its features and its integration with rule-based forward chaining languages
are discussed in some detail. The paper is organized as follows: Section 2 introduces decision
blocks and a language BIRBAL that supports decision blocks. Section 3 discusses the
implementation of BIRBAL.

11. DECISION BLOCKS

In this section we are going to provide the programmer with a language construct, called decision
block. This construct eases the automation of the more general aspects of decision making by
reducing the number of rules as well as the complexity of individual rules. Decision Blocks rely on
the technique called decision making by evidence combination @BE) that can be characterized as:

(1) Rules in a rule-set are assumed to be independent, providing positive or negative
evidence for or against making a certain decision in a certain situation. Rules approximate
the basic principles of a particular domain.
(2) Smooth decision making is supported. If the left hand side (LHS) of a rule is only
partially true the amount of evidence provided by the rule will be decreased.
(3) After the rules of a rule-set have been processed completely, the evidence provided for
different decisions is combined and the best decision is selected That is, a two-layered
inference strategy is used that separates decision making h m decision execution.

When using this approach, no artificial dependencies between rules need to be introduced,
and errors in a rule-set can be more easily detected, because each rule-set returns a ranking of the
available decisions and no longer only the chosen decision. Using the above approach rule-sets that
encode decision making processes look as follows:

(R1 (if A) (then provide evidence for Dl with amount al))
(R2 (if C) (then provide evidence for Dl with amount a2))
(Rg (if B) (then provide evidence for D;! with amount a3))
(% (if "truen) (then provide evidence for Dg with amount a4))

In general, assuming that the decision with the highest amount of positive evidence is
chosen, a pdcular selection a1 ,...,a4 is correct, as long as it satisfies the following equations:

The symbol (3 refers to the operator that combines evidence received from different rules in
the context of the underlying method for approximate reasoning. For example, the first equation
expresses that the result of combining the amount of evidence a1 and a2 has to be greater than the
amount a3, reflecting that if both A and C are present Dl and not D2 should be selected. Or, to
give another example, a3 has to be greater than a2, because D2 is preferred if B and C, but not A
are observed.

So far, our discussion abstracted from the underlying approach for approximate reasoning.
We consider a method M to automate approximate reasoning to be a pair M=(O, T) that consists of
a set of Operators 0 operating on the type T. In order to be suitable for decision making by
evidence combination, we require that 0 provides at least the following operators:

A E T x T + Tiscalledtheand-operam
v E T x T + Tiscalledthem-operator
not E T + T is called the not-operator
- E T x T + T is called the modus-ponens-tor
$ E T x T + T iscalled thecombinationsperator
r E T x T + BOOLEAN. Furthemore, r; has to be an order relation:

it has to be reflexive, anti-symmetrical, and transitive.

T represents the type used by the underlying methodology to measure the truth of imperfect
knowledge. In a Bayesian system T would be set to [0 11, in the case of MYCIN certainty factors
T would be [-I 11, and in the case of two-valued interval approach T would be:

{(x,y) E 3 I O S x S y S I); where3 is a set of real numbers.

In general, various abstract data-types have been proposed in the literature, e.g. ([I], [6], [7],
[lo], [27]), that are suitable for decision making by evidence combination. In the following we
assume that the above operators are applied in infix-form. For example, if the following rule R

(R (if (A and (B or not (C))) then (provide evidence for D amount x))

is processed, its amount of evidence for D would be computed as follows:
(a A (b v (not(c))) -+ x

in which a, b, c, x E T, describes the belief associated with A, B, C, and with the rule R
respectively. Or, in our original example D2 is considered to be better than D 1 if:

(a -+ al) 6B (C --) a2) s (b -+ a3)

In summary, when automating decision making relying on the above framework, we will
first apply the operators to process the LHS of a rule, then we will use the operator --+ to
compute the evidence provided by a particular rule, and then we will combine the evidence inferred
by different rules for the same predicate using the operator 6~ for each decision candidate. Finally,
the order relation s is used to select the best decision candidate(s).

Decision blocks enable programmers of decision support systems to identify independent
units of decision making. More specifically, a decision block consists of (see Figure 1):

Decision Block

Figure 1. Components of a Decision Block

(1) A decision specification that enumerates decision candidates from which the best
decision(s) has (have) to be selected, and which associates an action with each decision
candidate which will be executed in the case that a particular decision is chosen.
(2) An environment which consists of a set of context variables that describe the context in
which a particular decision has to be made.
(3) A rule-set, whose members provide positive and/or negative evidence for or against
the particular decision candidate. Rule-sets are further subdivided into disjoint ruleclusters
that represent rules that are related to the same knowledge source. Evidence provided by
rules from belonging to different ruleclusters is considered to be independent evidence,
whereas rules belonging to the same rulecluster are assumed to provide dependent
evidence. Furthermore, exceptions can be associated with rules. Exceptions are
represented by augmenting production rules by an exception LHS and an alternate right
hand side (RHS). In the case that the rule's LHS and the exception's LHS are satisfied,
the corresponding alternate RHS is executed.
(4) A decision making policy that encodes the decision procedure for selecting a decision or
a set of decisions after all clues relevant for the decision making have been analyzed.

Phase 1 Phase2 Phase3 Phase 4

Figure 2. Phases of a Decision Block

Evidence Germation

Rules and Wir associated
exceptions are evaluated
giving preference to the

, most specZic exception.

Decision blocks automate rule-based decision making by using a four layered inference
strategy, as depicted in Figure 2. First, rules and their associated exceptions are evaluated, giving
priority to the most specific exception which is applicable for the rule. Second, dependent
evidence within each rulecluster, and independent evidence associated with different ruleclusters is
combined. For combining dependent evidence a second evidence combination function was
provided, which is given in Appendix 1, and whose properties are discussed in more detail in
([15]). Third, a set of decisions is selected according to the strategy outlined in the decision
block's policy. Decision making policies supported by decision blocks, which are evaluated with
respect to the operator s include: select the best decision, select the best n decisions, select all
decisions, or the best n decisions better than a threshold value a (0 s a s 1). Fourth, the selected
decisions are carried out, executing the actions associated with the selected decisions.

Evidence Combination

Evidence received from
dierent rules is combined.

Decision Selection

A set of decisions is selected
depending on the decision
making policy.

Decision Execution

The selected decisions are
carried out by executing
their associated actions.

Figure 3. gives an example (for detailed explanation of different examples see [25]) of a
typical decision block, nmed scholmhigs, which encodes the awarding of scholarships to the
students on the basis of their academic performance, experience as teaching assistant and age.

(environment (?univ))

((qual-of ?ssno ?univ) with (?lb ?ub))

(student (ssno ?ssno) (univ ?univ) (cgpa ?cgpa) (ogpa ?ogpa))
(%curr-perform ?cgpa)
(%overall-perform ?ogpa)
(test (and (between ?cgpa 0.0 4.0) (between ?ogpa 0.0 4.0)))

([fbexpas-TA ?expTA)

(student (ssno ?ssno) (univ ?univ) (fin-need ?fneed))
(%financial-need ?fneed)

(infer (qual-of ?ssno ?univ) with (0.75 1.0)))

(student (ssno ?ssno) (univ ?univ) (age ?age))

Figure 3. Example of a Decision Block: scholarships

Before a decision block can be used, all fuzzy functions (that is, functions that return
intervals as results) with it's arity (i.e., number of arguments) have to be identified. The action-
specifications of the decision block enumerates the decision candidates, which are represented as
LHS patterns

((qualsf ?ssno ?univ) with (?lb ?ub)),

and RHS gives the action($ which has(have) to be performed, if the corresponding decision is
selected. For example, if a student from the university of Houston with ?ssno equal to 123456789
is selected depending upon the decision making policy then "Qualified Student is 123456789
Houston" is printed out. The environment definition defines the context variables used by the
decision block. These variables have to be initialized by the call of the decision-block. These
variables are local to the decision-block and need to be passed (in this case ?univ) whenever the
decision-block is invoked. The decision making policy specifies what decisions need to be selected
from the set of decisions taken, here the decision making policy applied is specified as

"(select ALL decisions with mv > 0.8)"

i.e. the combined evidence received from each of the rules from the rule-set should have the mean-
value greater than 0.8.

Now let's see what each rule in the rule-set expresses. First we will see intuitively what is
being signified by intervals specified (interested reader should refer to the Appendix 1) with the
Twevalued approach we have taken. We can express the fact that we know nothing about certain
proposition P by assigning interval [0 11, i.e., unknown can be directly expressed in the interval
approach. Also the usage of classical probability becomes the special case of Twevalued approach
because we can express single probability values by assigning same lower and upper bounds,
e.g., [0.4 0.41, where uncertainty is 0 and reliability is 1, and we are sure about the proposition.
Intuitively speaking if the difference between the lower and upper bound increases the uncertainty
of the proposition increases and if the difference between them decreases certainty about the
proposition increases. Also the evidence provided for the proposition is considered as negative if
the mean-value of the interval is less than 0.5.

The LHS of any rule could be any valid CLIPS LHS pattern plus the fuzzy function(s) (C
functions), if any, identified by '%' followed by the arguments of the functions. Let's take the
frrst rule scl which provides the evidence towards the qualification of the student depending on
the academic performance of the student, i.e.,. student's current GPA and overall GPA. The
performance of the student depending on GPA is difficult to quantify since the student having
overall GPA of 3.75 and other having 3.80 lies in the same category. Also same can be said for
current GPA , but the combined performance might differ extensively since the current GPA will
affect the overall GPA drastically depending upon the value. Hence the combined performance is
fuzzy. The infer statement in the fmt rule suggests that it has higher contributing power towards
the final decision since the interval applied to it is [0.9 1.01. The second rule sc2 will contribute
towards the final decision depending upon the experience as teaching assistant but the rule has
lower contributing power than the first one since the interval applied to it is 10.8 1.01. Similarly
other rules will contribute towards the final decision.

The evidence provided by the LHS fuzzy predicates such as performance, experience,
financial-need and age will be used in computations using logical connectives (A, v, not) which in
our case is A, and modus ponen functions (-+) and new evidence interval will be computed. This
new value will be contributed by each rule towards the final decision, i.e., qualification of the
student for receiving a scholarship. Each rule can either provide positive or negative evidence.
Next the evidence provided by each rule is combined repeatedly using the operator @ until the
evidence provided by each rule towards the final decision is combined. In the third phase
depending upon the decision making policy the decision regarding the qualification is made from
the set of competing candidates and in the last phase the action specified by action-specifications is
taken, in our case it's simply printing out all the candidates whose mean-value of the interval is
greater than 0.8. In general the action-specifications can be used to sort the candidates in the
ascending order of mean-values or could involve further computations for the final selection or
could invoke another decision-block or simply prints the first 10 candidates called for the interview
putting other candidates on the waiting list, etc. We can see from the previous discussion how
smooth the entire process is and how simple it is to code the decision-block. We will see in the
next section implementation of the decision-block, that if we need to do all that is specified in the

previous discussion using pure CLIPS how much extensive coding is required and burdensome
for the programmer which is not the case with the decision block since the compiler takes away that
burden from the programmer.

111. IMPLEMENTATION OF DECISION BLOCKS

In this section, we will discuss the implementation of a rule-based language that supports decision
blocks, and will report on some empirical results concerning the benefits of decision blocks.
More specifically, we will report on the integration of decision blocks into a rule-based forward
chaining language called CLIPS([19]), which was developed by NASA. The extended language is
called BIRBAL. A BIRBAL-programmer can in addition to CLIPS rules define decision blocks
and call these decision blocks within a CLIPS-program.

BIRBAL
Prosrclm

CLIPS
Pragram

Figure 4. Implementation of Decision-Blocks

Decision
Blocks

CLIPS
Rules

A precompiler has been provided, as a part of a Master's thesis ([25]), that maps a
BIRBAL-program that consists of decision blocks and CLIPS rules into a program that uses pure
CLIPS (see Figure 4). The precompiler is written in C has about 1400 lines of symbolic code. It
was developed using the UNM-compiler generating tools lex and yacc. The developed
precompiler relies on a rule-mapping that maps BIRBAL-rules into CLIPS rules; that is, every rule
defined within a decision block is transformed into a single CLIPS-rule that simulates its behavior.
However, the generated CLIPS rules are much larger in size, which can be attributed to:

-

Special
Rules

-a

General

CLIPS which does not support reasoning under uncertainty. This means that
computations involving operators for approximate reasoning have to be provided
manually for each rule.

CLIPS does not support context variables, which implies that they have to be stored as
assertions in the CLIPS working memory. The variable management is further complicated
by the fact that there could be multiple active decision blocks, which use equally named
variables,

Exceptions are not supported; therefore they have to be programmed out by the
programmer.

It has to be made sure that evidence providing rules are only fired in phase 1 of the
execution of a decision block; or, in more general terms, the context under which
evidence-providing rules are allowed to fire has to be expressed by adding additional LHS
conditions to the generated CLIPS-rule.

Rules

In order to make the above comments more transparent and to give the reader a better feeling what
a programmer has to do if no decision blocks are provided, let us see how our precompiler maps
the rule (refer to Figure 5).

In CLIPS'S syntax a rule's LHS and RHS are separated by => symbol, and all condition
elements that appear in a rule's EHS are assumed to be connected by 'and'. Furthermore, in
CLIPS match-variables are prefixed by I?. The above rule starts with two control assertions
(active-db- scholarships) and (status- scholarships phase 1) that make sure that the generated rule
is only fired when the decision block scholarships is active and in phase 1. The rule scl refers to
one context-variable. Context variables are represented in the U P S environment by assertions of
the form (v a ~ <db-name> <var-name> <var-value>); e.g., (var- scholarships univ Houston),
expresses that variable 'univ' of decision block scholarships has the value Houston. The values of
the context variables have to be retrieved by adding one LHS condition to the rule. Furthermore,
the LHS conditions of the BIRBAL-rules have to be simulated. Non fuzzy-conditions do not pose
any particular problem; they are simply copied into the generated CLIPS-rule. In this particular
case, it is the test pattern which checks whether the GPA of the student is within the valid range or
not. The implementation of the fuzzy conditions is much more complicated. First we assume that
the C-functions that implement the definition of curr-perform and overall-perform has been
provided by the user.

(~ 1
(student (ssno ?ssno) (univ ?univ) (cgpa ?cgpa) (ogpa ?ogpa))
(%cum-perform ?cgpa)
(%overall-perform ?ogpa)
(test (and (between ?cgpa 0.0 4.0) (between ?ogpa 0.0 4.0)))
=>
(infer (qual-of ?ssno ?univ) with (0.9 1.0)))

The above rule scl is transformed into the following CLIPS-rule:
(defiule scl-phase1

(declare (salience 555))
(active-db- ?db-namee&schoWps)
(status- ?&name- phase ?phase-&l)
(v a ~ ?db-name univ ?univ)
(student (ssno ?ssno) (univ ?univ) (cgpa ?cgpa) (ogpa ?ogpa))
(test (and (between ?cgpa 0.0 4.0) (between ?ogpa 0.0 4.0)))
=>
(bind ?ll-ul- (curr-perform ?cgpa))
(bind ?11- (nth 1 (strexplode ?ll-ulJ))
(bind ?ul- (nth 2 (str-explode ?ll-ulJ))
(bind ?l2-u2_ (overall-perform ?ow))
(bind ?l2- (nth 1 (strexplode ?l2-&)))
(bind ?u2_ (nth 2 (str-explode ?l2-a_)))
(bind ?yl- (* ?11- ?12_))
(bind ?y2- (* ?ul- ?&J)
(if (and (!= ?yl- 0) (>= (+ ?yl- 0.9) 1) (>= (+ ?y2_ 1.0) 1)) then

(bind ?lb- (/ (- (+ 0.9 ?ylJ 1) ?ylJ)
(bind ?ub- u (- (+ 1.0 9 2 3 1) ?y23)
(assert (scl ?db-name 2 qual-of ?ssno ?univ with ?lb- ?ubJ)))

Figure 5. Rule Transfmation from Decision Block d e to CLIPS rule.

Each of these functions returns an interval, measuring the performance of the student for
which it were called. Second, the approximate reasoning methods described in section 11, have to
be used to compute the rule's evidence for the qualification of the students. In this particular case
two fuzzy conditions are used, which means that the belief in the rule's LHS can be equated to the
academic performance of a particular student, if the test conditions for GPAs are satisfied. The fust
eight RHS actions call the C-functions curr-perform and overall-perform, bind the returned
intervals, and bind the lower and upper bounds to variables ?yl- and ?y2- after applying logical
connectives (see Appendix 1) to the returned intervals. The rest of the rule's RHS simulates the
operator ' -+I and computes the rule's amount of evidence. In case that the amount of positive
evidence is [0 11 then the rule does nothing; otherwise it asserts an assertion specifying the amount
of evidence provided for the decision candidate. For example, if the rule scl provides a positive
evidence of [0.75 1.01, the following pattern

"(scl scholarships 2 qual-of 123456789 Houston with 0.75 1.0) "

would be asserted. These assertions are used later in phase 2 to combine the different pieces of
evidence associated with the same student. It is also important to note that the generated code
would become much more complicated in case that the LHS of the rule references more than two
fuzzy conditions connected by different logical connectives and with the presence of exception
conditions (see [25]). In that case, it would be necessary to add code that simulates the
com bination of v, a and not operators.

In general, the example demonstrates that implementing the approximate reasoning methods
by hand is highly complicated and time consuming, if no methods for approximate reasoning
have been integrated into a rule-based language. Even worse, these computations have to be
provided for every rule of a rule-set, even if the computations are similar or the same.

Moreover, the precompiler transforms a decision block's decision making policy into a
rule that generates assertions, parameterizing the computations of general rules that simulate the
selected decision making policy. Also the decision blocks decision specification is transformed
into rules, whose right hand sides consists of the actions associated with a decision candidate,
whereas the LHS of the generated rule checks for assertions that state that the corresponding
decision has been selected by the decision making policy. Additionally to the rules that are
generated specifically for a particular decision block, our implementation relies on a set of general
rules that perform general tasks such as evidence combination, switching between the phases of
the implementation of a decision block, management of calls of decision blocks, and removal of
trash (see Figure 6).

We also made some experiments comparing the length of a decision block with the length
of the generated CLIPS program that implements the decision block. These experiments included
a slightly more complex version of the scholarships decision block, the decision blocks that
simulate the assignment of scholarships at a university, and a larger decision block for a problem
of medical parasitology. The results are summarized in Table 1. We claim that these numbers give
a good indication of the benefits of decision blocks with respect to a programmeis productivity in
decision making intensive applications, such as those analyzed in the benchmark. A pair (a, b) in
the Table 1 indicates that the corresponding program has 'a' lines and 'b' characters.

In general, the experiment suggests that the generated CLIPS program is about 4 times
longer than the corresponding decision block if DBE is implemented, which makes it quite
apparent why the conventional approach has been used quite frequently in practice, and not
decision making by evidence combination @BE). Due to the lack of supportive constructs in
commercial forward-chaining languages the received programs tend to be very long, if DBE is
used. However, if higher order constructs such as decision blocks are integrated into a rule-based
languages, this remark is no longer true. We even go further and claim --- that programs
developed using decision blocks tend to be significantly shorter than programs that were
developed using the conventional approach. Moreover, the development of a precompiler was not
very complex, which demonstrates that decision blocks can be provided at a low cost on the top of

rule-based languages such as CLIPS([191), OPS([18]), or ART([2]), and that decision blocks can
be easily integrated into forward chaining systems. In summary, the availability of decision blocks
or similar constructs is an important prerequisite to develop decision support systems at reasonable
cost that rely on decision making by evidence combination.

u - Action-Executing Rules

:

Rule-Selection

Library of General Rules h Y
* Phase-Switching Rules

Evidence-Combination Rules

%'
Policy-Simulating Rules

Call-Managing Rules

Figure 6. Mapping Decision Blocks to a Rule-Based Language

I CLIPS 1 (174.5'743) I (701,22486) I (180,4720) I
-

Table 1. Comparison of the Complexity of CLIPS and BIRBAL

T

Scholarship
Awarding

Exampk Opening-bid
in the game
of Bridge

Medical
Parasitology

IV. CONCLUSION

This paper studied the problem of designing and implementing complex decision support systems.
Computerized decision making that treats decision making as a problem of evidence combination
was introduced A language construct called decision block that facilitates the implementation has
been proposed. A language called BIRBAL that integrates decision blocks with CLIPS has been
provided. Decision blocks offers several advantages over classical rule-based languages such as
ART, CLIPS and OPS for automating complex decision making processes. First, the availability
of exception handling facilities and evidence combination techniques enables one to program close
to the expert level, which is very important for explaining the system's behavior and for system
validation. Second, our approach supports smooth decision making. Minor changes will only
slightly affect the final ranking of the decision candidates. Third, decision blocks provide
encapsulation and allow to modularize complex decision making processes. Fourth, we claim that
decision blocks increase a programmer's productivity significantly because the precompiler takes
care of many tasks such as reasoning under uncertainty, combination of evidence, removal of
trash, ranking of decision candidates, or execution of decisions, which no longer have to be coded
by a BIRBAL-programmer. Finally, we showed that decision blocks can be provided at a low cost
on the top of existing rule-based programming languages, such as CLIPS.

REFERENCES

[l] L. Appelbaum, and ERuspini, "ARIES An Approximate Reasoning Inference Engine," in [18], pp. 745-765.
[2] Inference Corporation, ART Reference Manuai. Los Angeles Inference Corporation, 1986.
[3] J.F. Baldwin, and N. Gould, "Feasible Algorithms for Approximate Reasoning using Fuzzy Logic," Fuzzy Set

Systems, vol. 3, pp. 225-251, 1980.
[4] J.F. Baldwin, "Evidential Support Logic Programming," Fuzzy Sets and System, Vol. 24, pp. 1-26, 1987.
[5l V. Barker, and D. O'Comor, "Expert Systems for Configuration at Digital XCON and Beyond," CACM, Vol.

32, NO. 3, pp. 298-318, 1989.
[q A. Basu, and A. Dutta, "Reasoning with Imprecise Knowledge to Enhance Intelligent Decision Support," IEEE

Transactions on Systems, Man and Cybernetics, Vol. 19, No. 4, pp.756-770, 1989.
171 P. Bonissone, S. Gans, and K. Decker, "RUM A Layered Architecture for Reasoning in Uncertainty," in Proc.

10th IJCAI-conference, Milan, pp.891-898, 1987.
[8] P. Bonissone, D. Cyrluk, J. Goodwin, and J.Stillrnan, "Uncertainty and Incompleteness Breaking the

Symmetry of Defeasible Reasoningn in 5th Workshop on Uncertainty in AI, pp. 34-45, Detroit, 1989.
[91 L.Browston, R. Farrell, E. Kant, and N.Martin, Programming Expert Systems in OPS5, Reading Addison-

Wesley, 1985.
[lo] B. Buchanan, and E. Shgtliffe, Rule-Based Expert Systems, Reading Addison Wesley, 1984.
[l 11 P. Cheeseman, "Probabilistic versus Fuzzy Reasoning," in L. Kanal, Uncertainty in AI, Amsterdam North

Holland, pp. 85-102, 1986.
[12] P. Cohen, Heuristic Reasoning about Uncertainty An Artificial Intelligence Approach, New York Pitman

Publishing Limited, 1985.
[I31 AP. Dempster, "A Generalization of Bayesian Inference," Jour. Royal Stat. Soc., B, V 30, pp. 205247.1968.
[I41 R. Duda, J. Gaschnig, and P. Hart, "Model Design in the PROSPECTOR Consultant System for Mineral

Exploration," in Michie's Expert Systems in the Micro Electronic Age, Edinburgh University Press, 1979.
[I51 C.F. Eick, 'WnceWty Management for Fuzzy Decision Support Systems," in Proc. 4th Workshop on

Uncertainty in At, StPaul, August 1988, pp. 98-108.
[I61 C.F. Eick et al., "Computer Bridge - A Challenge for AI," in 2. Ras (eds.), Methodologies for Intelligent

Systems, 5. New York North-Holland, pp. 59-67, 1990.
[17] C.F. Eick, Yao and H. Fu, "More FIexible Use of Variables in Rule-Based Programming," in Proc. 2nd Int.

Symposium on Artificial Intelligence, Monterrey, Oct. 1989.
[18] C. Forgy, "OPS83 Report," Technical Report, Dept. of Computer Science, Carnegie-Mellon University, 1983.
[I91 J. Giarxatano, and G. Riley, Expert Systems Principles and Programming, Boston PWS-Kent Pub. Co., 1989.
[20] M. Gupta, A. Kandel, W. Brandlet, and J. Kiszka, Approximate Reasoning in Expert Systems, Amsterdam,

North Holland, 1985.
1211 CJ. Hinde, "Fuzzy Prolog," Int. Journal of Man-Machine Studies, pp. 569-595, 1986.

1221 A, Kandel, Fuzzy Mathematical Techniques with Applications, Read Addison Wesley, 1986.
[23] R. Loui, "Evidential Reasoning in a Network Usage Prediction Testbed," Proc. 4th Workshop on Uncertainty

in AI, St. Paul, 1988, pp. 257-265.
[24] S. Lu, and H. Stephanou, "A set-theoretical framework for the processing of uncertain information," in Proc.

AAAI-conference, Austin, 1984, pp. 216-221.
[25] NN. Mehta, "BIRBAL - A Rule-Based Language for Decision Making," Master's Thesis, University of

Houston, December 1990.
[26] J. Prugh, "A Knowledge-Based Approach to Bridge Defense," Master's Thesis, University of Houston, May

1989.
[27] J. Quinlan, "INFERNO - A Cautious Approach to Uncertain Inference," Computer Jour., Vol. 26, pp. 255-

266, 1983.
[28] G. Shafer, A Marhematical Theory of Evidence. Princeton University Press, 1976.
[29] N. Shirouzu, Norihiko Time for Some Fuzzy Thinking, in TIME September 25, 1989, pp. 79.
[30] E.Soloway, J.Bachant, and K. Jensen, "Accessing the Maintainability of XCON-in-RIME Coping with

Problems of a VERY Large Rule-Base," in Proc. 6th National Conf. on ArtjtScial Intelligence, Seattle, 1987,
pp. 824-829.

1311 H. Stephanou, and A. Sage, Terspectives on Imperfect Information Processing," IEEE Trans. on Systems,
Man, and Cybernetics, Vol. 17, no. 5, pp. 780-798, Sept. 1987.

1321 D. Touretzky, The Mathematics of Inheritance Systems, Los Altos M. Kaufman Pub., 1986.
[33] E. Trillas, and L. Valverde, "On Mode and Implication in Approximate Reasoning," in 1181, pp. 157-166.
[34] C. Tsen, "A Knowledge-Based Approach to Bridge Bidding," Masts's Thesis, University of Houston, June

1988.
[35l D. Vaughan, B. Perrin, R. Yadrick, and P. Holden, "Comparing Expert Systems Built using Different

Uncertain Inference Systems," in Proc. Fjfth Workshop on Uncertainty in AI, Detroit, August 1989, pp. 369-
376.

[36] R. Yager, "Nonmonotonic Reasoning via Possibility Theory," in Proc. 4th Workshop on Uncertainly in AI,
St.Paul, 1988, pp. 368-373.

[371 L.A. Zadeh, 'The Role of Fuzzy Logic in the Management of Uncertainty in Expert Sys.," in 1181, pp. 3-31.

APPENDIX 1. BIRBAL'S UNCERTAINTY MANAGEMENT

This section describes the operators that are supported in BIRBAL for approximate reasoning.
BIRBAL relies on a two-valued interval approach to automate approximate reasoning which
measures the belief that a certain proposition P is true by assigning an interval [a b] to P,
expressing the following semantics:

(1) The probability that P is true is at least a.
The c o ~ m t i o n of P is a: conf[a b] = a

(2) The probability that P is false is at least (1-b).
The disconfinnation of P is (1-b): disconf([a b]) =1-b.

(3) The uncertainty of our belief concerning P is measured by unc([a b]) = b-a.

(4) The mem-value of our belief concerning P is measured by {F}: mv([a b]) = pib} -

For example, if we assign an interval [0.40 0.991 to P we express the following, the confirmation
of P is 40% and the disconfmation of P is 1%. That is, 40% of the probability is assigned to P,
and 1% of the probability is assigned to (not P). It is unknown how the remaining probability
(59%) is distributed we don't know how much of this probability is assigned to P and how much
is assigned to (not P). The uncertainty is 59%, and the mean-value is 69.5%. A special case is the
interval [0 11, which expresses the fact that we know nothing about a proposition P. We used the
following operators for V, A, not, + , @, and r; in the project, whose definitions are as follows:

Let [a b], [C dl, [11 ul] , [I2 1121 be intervals:
[a b] A [C dl := [min(a, c) min(b, d)]
[a b] v [c dl := [rnax(a, c) max(b, d)]
not(la bl) := [l-b 1-a]
(a b) -4 (c d) := if (a it 0 A (c+a 2 1) A (b+d r 1))

[c+;-l b+t- 1 1 then - -
else [O 11

The operators for and-, or-, and negation are identical to those advocated by Fuzzy Logic -- only
generalized in the context of intervals. The modus ponens operator -+ is used as follows to
associate evidence with predicates appearing on the LHS of rules. For example, if we have a rule:

(R (if E) (then (infer H with [c dl))),

and our belief in E is measured by [a b], then the above rule provides evidence for H, whose
amount is measured by: (a b) 4 (c d).

The proposed modus ponens operator generalizes a modus ponens operator given in ([33])
for intervals. The proposed operator supports smooth decision making, as can be seen for the rule
r 1, given below

(rl (if (tall $x)) (then (infer (strong $x) with (0.5 0.9))))

Varying our belief assigned to the tallness of a person, we receive,

Interval for the rl's Positive
Tallness Evidence
[1.0 1.01 [0.500 0.9003
[0.9 0.91 [0.444 0.8891
l0.8 0.81 [0.375 0.8751
10.7 0.71 [0.285 0.8571

Note that the mean-value of the rule's conclusion decreases if the probability of the LHS decreases
means that conclusions based on uncertain knowledge are less reliable and provide less positive
evidence. In the above framework negative evidence is treated as positive evidence for the
negation of the hypothesis of interest, e.g., when processing: (rl (if E) (then not(H) with (0.7 I))), we
will infer an interval that describes the positive evidence for not(H), and convert this interval to
negative evidence for H by applying the negation function, introduced before, to the received
interval. In the example, if E is definitely true [1 11, an interval [0 0.31 will be associated with H.

The operator $, we use for combination of evidence, is Dempster's rule of combination
([13]). Intervals can easily be interpreted as probability assignment functions. If an interval [a b] is
assigned to a predicate P the corresponding probability assignment function would be: m(P) = a,
m(not(P)) = 1-b, m(0) = b-a, and m(0) = 0. By applying Demster's rule of combination the above
formula is obtained. Finally, we use the mean-value of intervals to rank decision candidates,
giving preference to decisions with the highest mean-value for the combined evidence. For
example, if an interval of [0 11 is associated with Dl and an interval of [0.1 0.81 is associated
with D2, Dl is preferred because its mean-value is 0.5, whereas the mean-value associated with
D2 is 0.45, which is less than 0.5.

