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Abstract. The verification process for a major software subsystem was partially automated as part of a 
feasibility demonstration. The methods employed are generally useful and applicable to other types of 
subsystems. The effort resulted in substantial savings in test engineer analysis time and offers a method 
for inclusion of automatic verification as part of regression testing. 

INTRODUCTION 

One area of interest for the application of new software technologies is the automation of labor 
intensive functions performed as part of the overall testing process. A specific problem area is 
analysis of the results from test runs to verify correctness of software under test. Currently, 
most analysis of data resulting from test runs is performed manually. Data from one test run 
can take up to 60 hours to analyze. Hence, this is a candidate problem area for machine-aided 
or automatic analysis. The work, described below, was performed as a proof of concept 
experiment to demonstrate the feasibility and usefulness of rapid prototyping and production 
system programming techniques in the solution of this recurrent class of test problem. The 
expected benefits are to conserve test resources and improve the quality and thoroughness of test 
analysis. 

The software selected for this proof of concept experiment was the Data Monitor and 
Display (DMD) subsystem (Figure- 1 .), 
which is part of the new Space Flight 
Operations Center (SFOC) under 
development at JPL. The SFOC is a 
multi-mission ground data system. The 
DMD is an end-point in the Ground Data 
System telemetry data flow and provides 
visibility into the data processing. It's 
major input is channelized telemetry data 
(TLM). It's major outputs are displays of 
the data in human readable form, 
including a hard-copy dump called the 
Latest Available Data (LAD). The DMD 
makes use of several tables, contained 
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Channel Conversion Language (CCL) files. 
The raw telemetry data (TLM) are in Data Number @N) units. Data numbers are 

converted to Engineering Units 0') by means of a table lookup or polynomial computation. 
Conversion tables and polynomial coefficients are contained in the COEF file. 

The CPT contains, for each channel, tRe data type (integer, unsigned integer, floating 
point, status, ASCII, digital data, etc.), the subsystem where it originated (usually a spacecraft 
subsystem) and any limit tests that are to be performed. 

CCL is a language that specifies processing for each channel. Some examples would 
include channels derived by (1) averaging three other channels, or (2) taking the arc-cosine of 
a channel and adding a constant factor or (3) multiplying a channel by a constant to convert from 
radians to degrees. 

The LAD contains a dump of raw telemetry (input) DN, DMD computed EU values and 
alarm states based on DN and information contained in the CPT, COEF and CCL files. This 
information is provided over a time window established by the test engineer in the data collection 
process. 

To verify that the DMD correctly computed an EU value for a given channel, the CCL 
listing must be examined to determine if any processing has been applied. Relevant information 
from the COEF listing is used to manually compute the EU value so it can be compared with 
the DMD computed value contained in the LAD listing. Similarly, the alarm state indicators 
in the LAD data must be verified by manually applying the alarm limit criteria found in the CPT 
listing. The problem of verifying the approximately 3400 data channels, for just one mission 
(Magellan), becomes apparent. 

Manual analysis of test results is usually a straight-forward but laborious task. We would 
like to have a computer program that does what the test engineer (TE) does. That is, stand in 
the place of the TE and do the analysis. We would expect it to perform, in minutes, what the 
TE would do in days and the results would be more accurate and of higher quality. It would 
be economically feasible to systematically analyze all the data channels, for every software 
delivery throughout the software lifecycle, instead of using a sampling technique. 

A program like that needs the TE's knowledge about all of the various elements that he 
checks when he analyzes data channels. In the DMD, for example, the analysis program must 
be able to read the electronic versions of the various listings, determine how to convert digital 
numbers @N) to engineering units (EU) and, given an EU, how to determine the alarm state. 
With this knowledge and supporting facts about alarm limit types and values and coefficients or 
tables to be used in the DN to EU computations, the program should be able to examine output 
from DMD, channel by channel, determine what DMD thinks the EU and alarm states are, 
decide if the TE would agree with the answer produced by DMD and signal the results of this 
analysis somehow. 

PROGRAMMENG TOOLS 

The programming tools used in this work were AWK, CLIPS and UNM. AWK (Aho, et al. 
1988) is a programming language that is well suited for exploratory programming. AWK syntax 
is close to C and provides simplified program control, 110, character string functions, and 
regular expressions, which make AWK very useful for low-level data filter operations and report 
generation. 



The " C" Language Production System (CLIPS-4.3) (Giarantino 1989) was developed by 
Johnson Space Center (JSC) and is the expert system shell used for this task. It provides a 
forward-chaining inference engine and interactive development environment in support of the 
prototyping, execution and debugging of knowledge bases. CLIPS syntax is similar to other 
production systems (e.g. OPS5, OPS83, ART). Interactive production system programming 
techniques supported by CLIPS encourage the acquisition of knowledge about the analyses and 
sub-problems in manageable units which are encoded in the form of rules. Each rule is easily 
modifiable, immediately executable and its effects on the analysis can be quickly evaluated. The 
turn-around time from concept to evaluation is quite rapid. Since rules execute opportunistically, 
control is hidden and knowledge is explicit. Therefore, rules are generally easier to understand 
than an equivalent "C" program where program control must also be made explicit within the 
code. 

A significant benefit of both AWK and CLIPS is portability between PC's and UNIX 
work-stations. Much development was performed on a PCIAT (MSDOS 3.3). The AWX 
scripts and CLIPS knowledge bases were subsequently ported to the host computer. For some 
general guidelines on the types of problems suitable for solution using a production system, see 
(Brownston, et al. 1986) pp 19-29. 

The UNIX Cshell (Sobell 1985) was used to integrate all of the AWK data filter and 
CLIPS analysis functions to define the end-to-end processing task (Figure-3). Cshell provides 
an impressively simple, high-level and flexible mechanism for integrating CLIPS into a 
traditional programming environment to perform an analysis task. It also provides many other 
useful services, in a simplified fashion compared to an equivalent C program. For example, 
tests were performed to verify that the input files physically exist before the analysis is started. 
Timing information is displayed for performance measurements. The DN-EU and alarm-limits 
analyses are forked as separate sub-processes to run in parallel and take advantage of 
inputloutput overlap. The entire analysis process can be run in the background, thus clearing the 
terminal for other work. 

APPROACH 

Problem Definition 

Initially, the problem was ill-defined. The number of analyses was fured at two, but the number 
of sub-problems was unknown. This characteristic points to an evolutionary programming 
approach. Knowledge acquisition was performed by means of an interview, prototype and 
evaluate cycle. Incremental improvements in the analysis capabilities were made at each cycle. 
This process quickly produced an end-to-end analysis capability, for a large subset of data types. 

The DMD TE was interviewed to gain an understanding of the contents and format of 
the data to be analyzed and the steps he uses in verifying that the results are correct. A 
prototype was developed using the AWK and CLIPS programming languages (described below) 
to create a set of functions that perform the analyses so that the TE could see some results. This 
initial prototype was built around the CLIPS expert system shell. Thus the initial prototype 
clarified functional issues and was highly interactive and programmer-oriented. 



From this initial prototype, it was learned that the TE really wanted a UNIX command- 
line function that could be used to analyze multiple sets of input files. Therefore, the final 
prototype addressed encapsulation issues and became user-oriented, taking into account how the 
TE wanted to perform actual work. That is, operational details were hidden in order to simplify 
the user interface. 

Merged Data Base 

- 
The merged database product proved not only to be useful for gaining insight into the 

analysis process, but it also provided a dramatic improvement in manual analysis productivity. 
It is estimated that the manual analysis of 1000 channels previously took 20 man-hours. Using 
this reformatted data set, manual analysis could be performed in about Chours. Improvement 

In order to help the test engineer 
articulate the steps he performs during 
manual analysis of data, a tool was 
written (Figure-2) which merged all of the 
information for each of the given channels 
from the diverse inputs. The goal of this 
tool was to provide a displayable database 
with information clustering and minimal 
filtering. 

The merged database product is 
probably the best way to begin the 
knowledge acquisition process for this 
kind of problem. Bringing all of the 

in productivity was achieved by consoiidation of information behueen the four different listings 
and the clustering of information distributed within the listings. 
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relevant information together at a figure 2. Tool Assisted Test Results Analysis  ad 
point is requisite for any kind of analysis ~l~~ 
program. It also helped the test engineer 
organize his thinking about how he 
analyzes channels and avoids references to four separate stacks of printout, a time consuming 
process. All of the relevant information is collected together in a single display. This minimally 
filtered product facilitated the discovery process of ways to partition the overall analysis problem 
into sub-problems and their associated analysis technique. We were able to map these analysis 
sub-problems into software modules implemented either by AWK programs or CLIPS rule bases. 

Figure3 shows a Data Flow Diagram for the final analysis prototype. Although the DMD data 
listings are human readable, the formatting did not allow for easy detection of problems by 
humans. It is easy to miss problems buried in many pages of printout. Embedded character 
strings add clutter which make it even more difficult to notice anomalies in large volume 
P M ~ U ~ .  



The filter program was designed to 
automatically sense the type of input and 
format the relevant data from the CEYT 
and COEF files as CLIPS-world data 
structures (fact-lists) . The relevant LAD 
data are output as ordinary lines of data to 
be read by CLIPS, one at a time, and 
analyzed. 

The number of CLIPS-world 
records are counted for comparison with 
a count of input COEF, CPT and LAD 
records. This provides a check to verify 
that no data were lost in the filtering 
process. The CPT fact-list and alarm 
knowledge base are input to CLIPS as 
part of the initialization procedure for an 
alarm analysis. Similarly for the COEF 
fact-list and DN-EU knowledge base. 
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Filtering 

Data filtering is a necessary part of the overall problem solution. Too little filtering allows too 
much bad or irrelevant material to pass and requires more analysis (human or otherwise) to 
validate the results. Too much flltering can obscure some valid results. The task of filter 
programs is similar to their electronic counter-parts, that is, to eliminate irrelevant information 
such as page headings, blank lines, unwanted keyword-like character strings, new-page 
characters, etc. They also convert multi-line records to a single line format in order to further 
simplify subsequent processing. 

The format structures for CPT, COEFF and LAD data, were similar since they were 
computer generated. That is, single or multiple-line records with interspersed page headings, 
footers, and short, blank or null lines. The fields within records sometimes consisted of 
character string data identifiers, like "RED" for red-alarms and "HI" for the upper alarm limit 
etc., followed by an equal sign and the data-item itself. Some data items are given as a list, 
where the list items are separated by a comma or white space delimiters. It should be noted that 
the test engineer has considerable flexibility in formatting these outputs. For example, he can 
choose the data-item mnemonic, spelling and case, or none at all. 

The filters described below were "tuned" for the particular printout formatting employed 
by the DMD test engineer. Regular expressions were adequate for filtering these data. A better 
solution might have been to employ the inferencing capabilities of CLIPS to provide more 
flexible data-item specification and/or location and extraction. 

The CCL specifies all data channel definitions and processing in a FORTRAN-like 
programming language. The optimum way to extract relevant information from this file is to 
use a parser. The author decided to avoid building a parser, as part of this initial effort, by 
focusing on non-derived data channels for which regular expressions could be used to extract 
the relevant information for analysis purposes. But parsing is a well understood type of 
knowledge and should be implementable in CLIPS. It is not clear (to the author) that a parser 



could have been developed faster with CLIPS than using the UNIX utilities lex and yacc. A 
parser implemented with CLIPS would probably be easier to maintain and would avoid having 
to use yet another language dialect to implement analysis related processing. 

Knowledge Bases 

The CLIPS knowledge bases contain the TE's knowledge about the various ways to compute EU 
from a knowledge of DN and how to determine the different types of alarm states. With this 
knowledge and supporting facts about actual alarm limit values and tables to be used in the DN 
to EU computations, the CLIPS analysis functions examine output from DMD, channel by 
channel, to determine what DMD thinks the EU and alarm states are and if the TE would agree 
that DMD produced the right answer. 

This latter decision was implemented in a straight-forward mathematical way. CLIPS 
computed values are assumed to be correct. DMD and CLIPS computed values must agree to 
a certain level of precision in order to be acceptable. This rule takes into account differences in 
precision between printouts and the CLIPS internal representation of numbers. The great 
majority of channels tested were determined to be correct, but this precision criteria was good 
enough to catch the anomalies described below. If such an anomaly is found, a highly visible 
flag is set in the white space of the printout to catch the TE's attention should he decide to 
browse the output. 

A post-process AWK function extracts those cases that have been flagged as described 
above and presents not only the analyzed output but also the corresponding information from the 
original CPT, LAD, and COEF input files. Although simple and unorthodox in implementation, 
this feature is a kind of explanation facility common to most expert systems. The TE has, in 
one convenient place, without having to flip through many pages of output, all of the supporting 
information as to why the test analysis tool thinks there is a problem. Now the TE can be the 
final authority, as to whether the anomaly is real and decide what action might be required. 

Anomalies Detected 

In exercising the above tools, some anomalies (unexpected behaviors) were detected. Two 
channels had both upper and lower alarm limit thresholds set to zero and their DN values were 
also zero. DMD and the analysis tool gave different alarm state answers for these channels. 
This reflects differences in the way the CLIPS analysis tool and the DMD handle pathological 
cases. Alarm limits were not yet established for some channels in the CPT database. 

Another example is that a certain digital bit channel had an inconect timetag and a wrong 
bit value. Using the merged database tool, it was discovered that this channel was not defined 
in the CCL file, but a value from some old data was present and displayed. At present it is not 
known if this behavior is a bug since the problem can be corrected by defining the channel in 
the CCL database. Thus, the DMD analysis tool caught certain problems which might have 
gone un-noticed. 



CONCLUSIONS 

We believe the methods described above can be extended to a wide range of processors. ~f this 
proves to be the case for all, or even a strategic subset of processors within a system, then we 
can make automatic test data analysis part of regression testing. 

A simple tool to reformat the subsystem inputs and output into a merged display provided 
an unexpected level of productivity enhancement, compared to strictly manual verification. In 
retrospect, the reason is clear. Merging and clustering of information saved the test engineer's 
time in cross-referencing four separate and voluminous printouts. Hence, significant test results 
analysis quality and productivity can be achieved without full automation. In addition, this tool 
proved to be useful during the problem definition and knowledge acquisition phase of program 
development. 

In creating the analysis tool, we did not attempt to explicitly duplicate functionality of 
the software under test. Instead, we tried to emulate operations the test engineer performs when 
he verifies the software. That is, information collection and verification that the various 
computations were done correctly. 

The current analysis tool could have been implemented without an expert system shell. 
This was not known at the outset. However, analysis capability for derived channels has not yet 
been achieved, due to the complexity of language parsing. Parsing is a form of expertise and 
a CLIPS-based inferencing approach may prove to be a simpler solution to this problem than, 
for example, a "C" language lexlyacc solution. 

Mechanisms exist for inclusion of expertise, such as parsing, but the complexity of 
incorporating knowledge of this type is unknown. The scope of the present effort did not allow 
for a reasonable evaluation of this. Encoding test analysis knowledge in the form of rules was 
easier to review and maintain compared to an equivalent "Cn program. 

We have tried to strike a balance between production system programming and 
conventional programming to achieve a useful tool for the automation of test results analysis for 
a particular subsystem. We used CLIPS to encapsulate the analysis particulars, AWK and sort 
for data clustering, sorting and merging and UNIX Cshell for integration. The boundary 
regarding which processing tasks are best done within CLIPS and those best performed by an 
external function is changing, because CLIPS is changing and becoming more powerful with 
each release. 

This work demonstrated the general usefulness of CLIPS and the ease with which expert 
systems or other types of production system applications can be integrated into a traditional 
computing environment. CLIPS applications can be combined with UNIX utilities to perform 
processing tasks. 



ACKNOWLEDGEMENTS 

The author gratefully acknowledges the following individuals for their valuable contributions to 
this effort: D. Klemp, R. Wells, T. Kratz, P. Harmon, H. Avant and D. Hermsen. 

The research described in this paper was carried out by the Jet Propulsion Laboratory, 
California Institute of Technology, under a contract with the National Aeronautics and Space 
Administration. 

Reference herein to any specific commercial product, process or service by trade name, 
trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the 
United States Government or the Jet Propulsion Laboratory, California Institute of Technology. 

Aho, A., Kernighan, B. and Weinberger, P. (1988). The AWK Programming Language, 
Addison- Wesley, Reading. 

Brownston, L., Farrell, R., Kant, E. and Martin, N. (1986). Programming Expert Systems in 
OPS.5: An Introduction to Rule-Based Programming, Addison-Wesley , 1986. 

Giarratano, J. (1989). CLIPS Users Guide, Version 4.3 of CLIPS, Artificial Intelligence Section, 
Lyndon B. Johnson Space Center. 

Sobell, M. (1985). A Practical Guide to UNZX System V, The Benjamin-Cumrnings Publishing 
Co. 




