
Application of Software Technology to Automatic Test Data Analysis

J.R. Stagner

Jet Propulsion Laboratory
California Institute of Technology

Abstract. The verification process for a major software subsystem was partially automated as part of a
feasibility demonstration. The methods employed are generally useful and applicable to other types of
subsystems. The effort resulted in substantial savings in test engineer analysis time and offers a method
for inclusion of automatic verification as part of regression testing.

INTRODUCTION

One area of interest for the application of new software technologies is the automation of labor
intensive functions performed as part of the overall testing process. A specific problem area is
analysis of the results from test runs to verify correctness of software under test. Currently,
most analysis of data resulting from test runs is performed manually. Data from one test run
can take up to 60 hours to analyze. Hence, this is a candidate problem area for machine-aided
or automatic analysis. The work, described below, was performed as a proof of concept
experiment to demonstrate the feasibility and usefulness of rapid prototyping and production
system programming techniques in the solution of this recurrent class of test problem. The
expected benefits are to conserve test resources and improve the quality and thoroughness of test
analysis.

The software selected for this proof of concept experiment was the Data Monitor and
Display (DMD) subsystem (Figure- 1 .),
which is part of the new Space Flight
Operations Center (SFOC) under
development at JPL. The SFOC is a
multi-mission ground data system. The
DMD is an end-point in the Ground Data
System telemetry data flow and provides
visibility into the data processing. It's
major input is channelized telemetry data
(TLM). It's major outputs are displays of
the data in human readable form,
including a hard-copy dump called the
Latest Available Data (LAD). The DMD
makes use of several tables, contained

the Parameter Figure 1. DMD Test Run Data Flow
(CPT), coefficient table (COEF), and

TLM I

CPT I '
COEF

CCL I-'

* -

DMD

-

--LAD
-

Channel Conversion Language (CCL) files.
The raw telemetry data (TLM) are in Data Number @N) units. Data numbers are

converted to Engineering Units 0') by means of a table lookup or polynomial computation.
Conversion tables and polynomial coefficients are contained in the COEF file.

The CPT contains, for each channel, tRe data type (integer, unsigned integer, floating
point, status, ASCII, digital data, etc.), the subsystem where it originated (usually a spacecraft
subsystem) and any limit tests that are to be performed.

CCL is a language that specifies processing for each channel. Some examples would
include channels derived by (1) averaging three other channels, or (2) taking the arc-cosine of
a channel and adding a constant factor or (3) multiplying a channel by a constant to convert from
radians to degrees.

The LAD contains a dump of raw telemetry (input) DN, DMD computed EU values and
alarm states based on DN and information contained in the CPT, COEF and CCL files. This
information is provided over a time window established by the test engineer in the data collection
process.

To verify that the DMD correctly computed an EU value for a given channel, the CCL
listing must be examined to determine if any processing has been applied. Relevant information
from the COEF listing is used to manually compute the EU value so it can be compared with
the DMD computed value contained in the LAD listing. Similarly, the alarm state indicators
in the LAD data must be verified by manually applying the alarm limit criteria found in the CPT
listing. The problem of verifying the approximately 3400 data channels, for just one mission
(Magellan), becomes apparent.

Manual analysis of test results is usually a straight-forward but laborious task. We would
like to have a computer program that does what the test engineer (TE) does. That is, stand in
the place of the TE and do the analysis. We would expect it to perform, in minutes, what the
TE would do in days and the results would be more accurate and of higher quality. It would
be economically feasible to systematically analyze all the data channels, for every software
delivery throughout the software lifecycle, instead of using a sampling technique.

A program like that needs the TE's knowledge about all of the various elements that he
checks when he analyzes data channels. In the DMD, for example, the analysis program must
be able to read the electronic versions of the various listings, determine how to convert digital
numbers @N) to engineering units (EU) and, given an EU, how to determine the alarm state.
With this knowledge and supporting facts about alarm limit types and values and coefficients or
tables to be used in the DN to EU computations, the program should be able to examine output
from DMD, channel by channel, determine what DMD thinks the EU and alarm states are,
decide if the TE would agree with the answer produced by DMD and signal the results of this
analysis somehow.

PROGRAMMENG TOOLS

The programming tools used in this work were AWK, CLIPS and UNM. AWK (Aho, et al.
1988) is a programming language that is well suited for exploratory programming. AWK syntax
is close to C and provides simplified program control, 110, character string functions, and
regular expressions, which make AWK very useful for low-level data filter operations and report
generation.

The " C" Language Production System (CLIPS-4.3) (Giarantino 1989) was developed by
Johnson Space Center (JSC) and is the expert system shell used for this task. It provides a
forward-chaining inference engine and interactive development environment in support of the
prototyping, execution and debugging of knowledge bases. CLIPS syntax is similar to other
production systems (e.g. OPS5, OPS83, ART). Interactive production system programming
techniques supported by CLIPS encourage the acquisition of knowledge about the analyses and
sub-problems in manageable units which are encoded in the form of rules. Each rule is easily
modifiable, immediately executable and its effects on the analysis can be quickly evaluated. The
turn-around time from concept to evaluation is quite rapid. Since rules execute opportunistically,
control is hidden and knowledge is explicit. Therefore, rules are generally easier to understand
than an equivalent "C" program where program control must also be made explicit within the
code.

A significant benefit of both AWK and CLIPS is portability between PC's and UNIX
work-stations. Much development was performed on a PCIAT (MSDOS 3.3). The AWX
scripts and CLIPS knowledge bases were subsequently ported to the host computer. For some
general guidelines on the types of problems suitable for solution using a production system, see
(Brownston, et al. 1986) pp 19-29.

The UNIX Cshell (Sobell 1985) was used to integrate all of the AWK data filter and
CLIPS analysis functions to define the end-to-end processing task (Figure-3). Cshell provides
an impressively simple, high-level and flexible mechanism for integrating CLIPS into a
traditional programming environment to perform an analysis task. It also provides many other
useful services, in a simplified fashion compared to an equivalent C program. For example,
tests were performed to verify that the input files physically exist before the analysis is started.
Timing information is displayed for performance measurements. The DN-EU and alarm-limits
analyses are forked as separate sub-processes to run in parallel and take advantage of
inputloutput overlap. The entire analysis process can be run in the background, thus clearing the
terminal for other work.

APPROACH

Problem Definition

Initially, the problem was ill-defined. The number of analyses was fured at two, but the number
of sub-problems was unknown. This characteristic points to an evolutionary programming
approach. Knowledge acquisition was performed by means of an interview, prototype and
evaluate cycle. Incremental improvements in the analysis capabilities were made at each cycle.
This process quickly produced an end-to-end analysis capability, for a large subset of data types.

The DMD TE was interviewed to gain an understanding of the contents and format of
the data to be analyzed and the steps he uses in verifying that the results are correct. A
prototype was developed using the AWK and CLIPS programming languages (described below)
to create a set of functions that perform the analyses so that the TE could see some results. This
initial prototype was built around the CLIPS expert system shell. Thus the initial prototype
clarified functional issues and was highly interactive and programmer-oriented.

From this initial prototype, it was learned that the TE really wanted a UNIX command-
line function that could be used to analyze multiple sets of input files. Therefore, the final
prototype addressed encapsulation issues and became user-oriented, taking into account how the
TE wanted to perform actual work. That is, operational details were hidden in order to simplify
the user interface.

Merged Data Base

-
The merged database product proved not only to be useful for gaining insight into the

analysis process, but it also provided a dramatic improvement in manual analysis productivity.
It is estimated that the manual analysis of 1000 channels previously took 20 man-hours. Using
this reformatted data set, manual analysis could be performed in about Chours. Improvement

In order to help the test engineer
articulate the steps he performs during
manual analysis of data, a tool was
written (Figure-2) which merged all of the
information for each of the given channels
from the diverse inputs. The goal of this
tool was to provide a displayable database
with information clustering and minimal
filtering.

The merged database product is
probably the best way to begin the
knowledge acquisition process for this
kind of problem. Bringing all of the

in productivity was achieved by consoiidation of information behueen the four different listings
and the clustering of information distributed within the listings.

-
BROWSE

= E M : : ; : D
-
LAD BASE

(=#I)

Analysis Data Flow

relevant information together at a figure 2. Tool Assisted Test Results Analysis ad
point is requisite for any kind of analysis ~l~~
program. It also helped the test engineer
organize his thinking about how he
analyzes channels and avoids references to four separate stacks of printout, a time consuming
process. All of the relevant information is collected together in a single display. This minimally
filtered product facilitated the discovery process of ways to partition the overall analysis problem
into sub-problems and their associated analysis technique. We were able to map these analysis
sub-problems into software modules implemented either by AWK programs or CLIPS rule bases.

Figure3 shows a Data Flow Diagram for the final analysis prototype. Although the DMD data
listings are human readable, the formatting did not allow for easy detection of problems by
humans. It is easy to miss problems buried in many pages of printout. Embedded character
strings add clutter which make it even more difficult to notice anomalies in large volume
P M ~ U ~ .

The filter program was designed to
automatically sense the type of input and
format the relevant data from the CEYT
and COEF files as CLIPS-world data
structures (fact-lists) . The relevant LAD
data are output as ordinary lines of data to
be read by CLIPS, one at a time, and
analyzed.

The number of CLIPS-world
records are counted for comparison with
a count of input COEF, CPT and LAD
records. This provides a check to verify
that no data were lost in the filtering
process. The CPT fact-list and alarm
knowledge base are input to CLIPS as
part of the initialization procedure for an
alarm analysis. Similarly for the COEF
fact-list and DN-EU knowledge base.

1-4 F I L T - 4 ALARMS I 41 SUMMARY I I

I i l (CUPS) I Y (A W I 1

Figure 3. Automatic Test Results Analysis Data
Flow

Filtering

Data filtering is a necessary part of the overall problem solution. Too little filtering allows too
much bad or irrelevant material to pass and requires more analysis (human or otherwise) to
validate the results. Too much flltering can obscure some valid results. The task of filter
programs is similar to their electronic counter-parts, that is, to eliminate irrelevant information
such as page headings, blank lines, unwanted keyword-like character strings, new-page
characters, etc. They also convert multi-line records to a single line format in order to further
simplify subsequent processing.

The format structures for CPT, COEFF and LAD data, were similar since they were
computer generated. That is, single or multiple-line records with interspersed page headings,
footers, and short, blank or null lines. The fields within records sometimes consisted of
character string data identifiers, like "RED" for red-alarms and "HI" for the upper alarm limit
etc., followed by an equal sign and the data-item itself. Some data items are given as a list,
where the list items are separated by a comma or white space delimiters. It should be noted that
the test engineer has considerable flexibility in formatting these outputs. For example, he can
choose the data-item mnemonic, spelling and case, or none at all.

The filters described below were "tuned" for the particular printout formatting employed
by the DMD test engineer. Regular expressions were adequate for filtering these data. A better
solution might have been to employ the inferencing capabilities of CLIPS to provide more
flexible data-item specification and/or location and extraction.

The CCL specifies all data channel definitions and processing in a FORTRAN-like
programming language. The optimum way to extract relevant information from this file is to
use a parser. The author decided to avoid building a parser, as part of this initial effort, by
focusing on non-derived data channels for which regular expressions could be used to extract
the relevant information for analysis purposes. But parsing is a well understood type of
knowledge and should be implementable in CLIPS. It is not clear (to the author) that a parser

could have been developed faster with CLIPS than using the UNIX utilities lex and yacc. A
parser implemented with CLIPS would probably be easier to maintain and would avoid having
to use yet another language dialect to implement analysis related processing.

Knowledge Bases

The CLIPS knowledge bases contain the TE's knowledge about the various ways to compute EU
from a knowledge of DN and how to determine the different types of alarm states. With this
knowledge and supporting facts about actual alarm limit values and tables to be used in the DN
to EU computations, the CLIPS analysis functions examine output from DMD, channel by
channel, to determine what DMD thinks the EU and alarm states are and if the TE would agree
that DMD produced the right answer.

This latter decision was implemented in a straight-forward mathematical way. CLIPS
computed values are assumed to be correct. DMD and CLIPS computed values must agree to
a certain level of precision in order to be acceptable. This rule takes into account differences in
precision between printouts and the CLIPS internal representation of numbers. The great
majority of channels tested were determined to be correct, but this precision criteria was good
enough to catch the anomalies described below. If such an anomaly is found, a highly visible
flag is set in the white space of the printout to catch the TE's attention should he decide to
browse the output.

A post-process AWK function extracts those cases that have been flagged as described
above and presents not only the analyzed output but also the corresponding information from the
original CPT, LAD, and COEF input files. Although simple and unorthodox in implementation,
this feature is a kind of explanation facility common to most expert systems. The TE has, in
one convenient place, without having to flip through many pages of output, all of the supporting
information as to why the test analysis tool thinks there is a problem. Now the TE can be the
final authority, as to whether the anomaly is real and decide what action might be required.

Anomalies Detected

In exercising the above tools, some anomalies (unexpected behaviors) were detected. Two
channels had both upper and lower alarm limit thresholds set to zero and their DN values were
also zero. DMD and the analysis tool gave different alarm state answers for these channels.
This reflects differences in the way the CLIPS analysis tool and the DMD handle pathological
cases. Alarm limits were not yet established for some channels in the CPT database.

Another example is that a certain digital bit channel had an inconect timetag and a wrong
bit value. Using the merged database tool, it was discovered that this channel was not defined
in the CCL file, but a value from some old data was present and displayed. At present it is not
known if this behavior is a bug since the problem can be corrected by defining the channel in
the CCL database. Thus, the DMD analysis tool caught certain problems which might have
gone un-noticed.

CONCLUSIONS

We believe the methods described above can be extended to a wide range of processors. ~f this
proves to be the case for all, or even a strategic subset of processors within a system, then we
can make automatic test data analysis part of regression testing.

A simple tool to reformat the subsystem inputs and output into a merged display provided
an unexpected level of productivity enhancement, compared to strictly manual verification. In
retrospect, the reason is clear. Merging and clustering of information saved the test engineer's
time in cross-referencing four separate and voluminous printouts. Hence, significant test results
analysis quality and productivity can be achieved without full automation. In addition, this tool
proved to be useful during the problem definition and knowledge acquisition phase of program
development.

In creating the analysis tool, we did not attempt to explicitly duplicate functionality of
the software under test. Instead, we tried to emulate operations the test engineer performs when
he verifies the software. That is, information collection and verification that the various
computations were done correctly.

The current analysis tool could have been implemented without an expert system shell.
This was not known at the outset. However, analysis capability for derived channels has not yet
been achieved, due to the complexity of language parsing. Parsing is a form of expertise and
a CLIPS-based inferencing approach may prove to be a simpler solution to this problem than,
for example, a "C" language lexlyacc solution.

Mechanisms exist for inclusion of expertise, such as parsing, but the complexity of
incorporating knowledge of this type is unknown. The scope of the present effort did not allow
for a reasonable evaluation of this. Encoding test analysis knowledge in the form of rules was
easier to review and maintain compared to an equivalent "Cn program.

We have tried to strike a balance between production system programming and
conventional programming to achieve a useful tool for the automation of test results analysis for
a particular subsystem. We used CLIPS to encapsulate the analysis particulars, AWK and sort
for data clustering, sorting and merging and UNIX Cshell for integration. The boundary
regarding which processing tasks are best done within CLIPS and those best performed by an
external function is changing, because CLIPS is changing and becoming more powerful with
each release.

This work demonstrated the general usefulness of CLIPS and the ease with which expert
systems or other types of production system applications can be integrated into a traditional
computing environment. CLIPS applications can be combined with UNIX utilities to perform
processing tasks.

ACKNOWLEDGEMENTS

The author gratefully acknowledges the following individuals for their valuable contributions to
this effort: D. Klemp, R. Wells, T. Kratz, P. Harmon, H. Avant and D. Hermsen.

The research described in this paper was carried out by the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National Aeronautics and Space
Administration.

Reference herein to any specific commercial product, process or service by trade name,
trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the
United States Government or the Jet Propulsion Laboratory, California Institute of Technology.

Aho, A., Kernighan, B. and Weinberger, P. (1988). The AWK Programming Language,
Addison- Wesley, Reading.

Brownston, L., Farrell, R., Kant, E. and Martin, N. (1986). Programming Expert Systems in
OPS.5: An Introduction to Rule-Based Programming, Addison-Wesley , 1986.

Giarratano, J. (1989). CLIPS Users Guide, Version 4.3 of CLIPS, Artificial Intelligence Section,
Lyndon B. Johnson Space Center.

Sobell, M. (1985). A Practical Guide to UNZX System V, The Benjamin-Cumrnings Publishing
Co.

