
DISTRIBUTED SEMANTIC NETWORKS AND CLIPS

James Snyder and Tony Rodriguez

CAD Research Unit, Design Institute
California Polytechnic State University, San Luis Obispo

Abstract. Semantic networks of frames are commonly used as a method of organizing and
reasoning in many types of problems. In most of these applications the semantic network exists
as a single entity in a single process environment. Advances in workstation hardware provide
support for more sophisticated applications involving multiple processes, interacting in a
distributed environment. In these applications the semantic network may well be distributed over
several concurrently executing tasks.

This paper describes the design and implementation of a frame-based, distributed semantic network
in which frames are accessed both through CLIPS expert systems and procedural C + + language
programs. The application area is a knowledge-based, cooperative decision making model
utilizing both rule-based and procedural experts.

INTRODUCTION

Currently, the CAD Research Unit is developing an Intelligent Computer Aided Design System
(ICADS). The purpose of ICADS is to provide an intelligent environment for cooperative
computer-based problem solving under the explicit control of the user using architectural design
as a test environment. ICADS allows a group of distributed, intelligent agents to converse about
a problem larger than any single agent's domain of expertise or knowledge, and provides advice
and suggestions to the user as to the state and compliance of the current problem solution.

From a high-level point of view, ICADS is composed of three major pieces: a
blackboard, a group of procedural and CLIPS-based expert systems referred to as Intelligent
Design Tools (IDTs), and a semantic network of frames. The ICADS components run as
distributed processes in a computer network.

To facilitate distributed expert system execution, a communication framework was
developed which allows CLIPS expert systems to assert facts to another expert system under the
control of a blackboard (Taylor 1990, Taylor and Myers 1990). In addition to controlling the
IDT communication, the blackboard has a conflict resolver which arbitrates between IDTs. The
conflict resolver establishes the system accepted values by evaluating suggestions made by IDTs
and is written in CLIPS. The current working model of ICADS has six CLIPS based expert-
systems. Each expert is controlled by the blackboard using the communication framework
described above and are in the following architectural domains: cost, access, lighting, thermal,
acoustics, and structure (Pohl 1989).

To allow C+ + programs to participate in the current problem solution, they have to
communicate with the blackboard and have access to the semantic network of frames at the same

level of representation as the CLIPS experts. The remainder of this paper will describe the
implementation of the distributed semantic network in the CLIPS and C+ + environments and
illustrate sample uses of the C+ + implementation used in conjunction with CLIPS-based
experts.

THE CLIPS FRAME REPRESENTATION

Within the CLIPS environment, the frame-based representation used in ICADS is implemented
as a set of CLIPS facts. A frame is a collection of information about a class or object. The
information is represented in CLIPS with a frame header fact and any number of slot facts.
Slots can define a particular value of the class or identify a relation to another class. In terms
of a node-link data structure, the frame is a node and a relation is a link (Barr and Feigenbaum
1981). It is important to note that this representation does not require any modifications to
CLIPS--it uses only CLIPS facts (Assal and Myers 1990). Unlike procedural paradigms, it is
not necessary to locate an entire frame when a piece of information is needed. Only the
pertinent slots are necessary and are accessed directly through CLIPS pattern matching. A frame
is represented by a set of facts that have one or more common fields to connect them together.
Each fact has a keyword in the first field to indicate the type of information it represents. The
keywords are: FRAME, RELATION, VALUE. The second field has the class name which is
used to connect all the instances of this class or establish a relation with another class.

CLIPS Frame Definition

CLIPS Value Slot Definition

Figure 1 illustrates the CLIPS fact format of
a frame header. The class field defines the
class to which the frame belongs. The in-

(FRAME < class > < instance >)

stance field uniquely identifies the frame. Figure 1 - Frame Fact Format
Having the frame header in a CLIPS left-
hand-side pattern is not always necessary, but it is useful in performing operations on the whole
frame; displaying and deleting are example operations.

Figure 2 shows the CLIPS fact
format of a value slot. This slot (VALUE <class > <attribute > <instance > < values > 1
provides the values for particular
attributes of a frame. It is impor- Figure 2 - Value Slot Fact Format
tant to note that these values are
multifield values and can contain mixed types of data. Note also that the instance of the frame
in contained within the value slot fact. This allows for direct pattern matching of the frame
attribute values.

CLIPS Relation Slot Definition

Figure 3 illustrates the CLIPS
fact format of a relation slot.
This relation slot represents a I I
has-a relationship. The class1 Figure 3 - Relation Slot Fact Format
and instance1 fields indicate
the owning class. The class2 and instance2 fields represent the frame instance which is pointed
to.

An Example CLIPS Frame

An example architectural object is a room or
space. Figure 4 contains an example space
frame with several values and relations. The
relations in the example indicate that the
LOBBY space has four walls. If a wall of a
particular space is to be referenced by a rule,
a pattern similar to the example would be
used.

(FRAME space 15)
(VALUE space name 15 LOBBY)
(VALUE space perimeter 1 5 108)
(RELATION space wall 1 5 1)
(RELATION space wall 15 2)
(RELATION space wall 15 3)
(RELATION space wall 15 4)

Figure 4 - An Example Architectural ~ r a h e
An Example Rule Using a CLIPS Frame

C + + IMPLEMENTATION OF FRAMES

Suppose the building code states that the area
of all bathrooms must be greater than or
equal to twenty square feet. The rule in
Figure to see if the area of a bath-
room is less than twenty square feet. If the
area of the space is too small an error riles-

sage is printed. This simple example illus-
trates how values slots can be used. Relation

The purpose of the frame classes is to provide an object-oriented representation for the frame
facts that are used by the CLIPS IDTs. In order to allow C+ + programs to work with the
current semantic network that is represented in CLIPS, a representation paralleling the CLIPS
frame data structures was implemented using C + + objects. Using the class method interface,
frames can be built explicitly and then added to the network; the user is responsible for creating
any necessary objects to insert into the frame--relations and values are examples. After the
frame has been built correctly it is then entered into the semantic network using net class

(defn.de building-code-check
(FRAME space ?id)
(VALUE space name ?id BATHROOM)
(VALUE space area)id)x&:(<)x 20))

=,
(printout t "The bathroom is too small" crlf)

slots are used in a simpler manner; the type Figure 5 - An Example Rule Using a Frame
of relation is included in the left-hand-side
pattern and can be used to reason about groups of objects at the same time. For example, a rule
could specify a pattern which references all the walls which belong to the BATHROOM space.

methods. The following sections explain the structure of the C+ + classes used to represent a
semantic network of frames.

The Net Class

The net class is basically a container class I I
that represents the entir; semantic network.
It is composed of frame objects. The net
class provides several methods for the addi-
tion, removal, and modification of frames, as
well as, query methods that allow questions
to be asked about the network. Figure 6
shows the class structure of the net class.
The frames data member is a dictionary of
frame objects. A dictionary is an associative

Net DlGtionaty

array where a name is to an actual kigure 6 - The Net Class Structure
I

instance of an object. In this case, the frame
instance name is7mapped to a frame instance
C + + object.

The Frame Class

The frame class is the central component of I 1
the semantic network. A frame is uniquely
identified by its name and instance number
and contains value and relation slots illustrat-
ed by Figure 7. The frame class has several
methods that permit the addition, and deletion
of value and relation slots, in addition to
methods that return information about the
frame itself.

1 Fnme Ust

f Name: \ hnnm,-~wn,, ... J
Instance:
Ownen: / Dictionary

The Slot Class

I I

Figure 7 - The Frame Class Structure

owner-name:
owner-Instance:

The slot class is an abstract class and is used
to derive new classes. This provides a stan-
dard interface for all the slot classes. With
this class the network can always make cer-
tain assumptions about the methods it can call
in any derived slot class. As Figure 8 shows
there are no actual data members present in
this class--this is why it is abstract.

Figure 8 - The Slot Class Structure

Slot

The Value Class

The value class is the C+ + representation of
the CLIPS value fact and is derived from the
slot abstract class. This class holds multifield
values in the form of strings, integers, and
floating points and provides methods for the
manipulation of these multifield items. The
structure represented in Figure 9 shows the
slot class abstract members as well as some
additional members--this is an example of
inheritance in C + + .

The Relation Class

The relation class, like the value class, is also
a direct representation of a CLIPS fact--the
relation fact; it is also derived from the slot
class. This relation represents a "has-a"
relationship, and when this object is inserted
as a slot in a frame object, it defines the
relationship between two frames. In addition,
when a relation is created, the frame pointed
to by the relation is notified that a relation-
ship has been established. This allows a
frame to know what frames have relations
pointing to it. Figure 10 shows the structure
of the relation class.

The Val Class

The val class is used to represent all the types
of data that could be used in a value class
(i.e. strings, integers, floating points).
Instances of this class are used by the value
class to store values for value facts; the value
class has a list of val objects as one of its
data items. Figure 11 depicts the structure of
the val class.

1 1 Name: 1 I

1 1

Figure 9 - The Value Class Structure

Screen:
Display:
value-list.

Relation -

Ust
-I vaLval.v al....

h a :

Owner:
Owner-name:
Owner-instance:

\ ,'
Figure 10 - The Relation Class Structure

Val Union

type-tag:
val:

Figure 11 - The Val Class Structure

TRE FRAME PARSER

An alternative to using class methods for constructing a network is the frame parser. The frame
parser was designed to accept an input language that specifies CLIPS facts in the same format
as the CLIPS representation uses and is listed in Appendix A. Using the frame parser relieves
the user from having to create new frame class instances, reducing the complexity of the coding
effort. This language does not provide queries about the network structure; the user must rely
on the class methods.

In addition to the fact information, an action is prepended to the fact to indicate what
action is to be taken with the fact. There are three supported actions: ADD, MODIFY, and
DELETE. For example, the keyword ADD is used to add a new frame to the semantic network.

EXAMPLE USES OF THE C+ + FRAME CLASSES
Several applications have been written which use the C+ + frames in a procedural environment.
The applications are suited to an environment such as C+ + much more than an expert system
shell like CLIPS; these types of programs are not easily expressed using CLIPS.

The Design Interface

One of the primary objectives of the Design Interface was to view changes in the semantic
network as they occurred; the user should be able to specify the desired slots to view, and the
Design Interface would automatically update the display as values change.

As facts come from the blackboard, they are parsed using the frame parser, described
previously, and are stored in the semantic network of the Design Interface. In addition, a
module in the Design Interface tries to match the incoming fact with a user-specified set of slots.
If there is a match, the values are then displayed or updated, which ever case is appropriate.

The Pre-Design Module

Within the ICADS model the Pre-Design Module (PDM) is used to construct a building design
starting with collections of objects that represent the spaces that are to be included in the final
building structure as denoted by the Project Design Object Frames (PDO). The PDOs are
loaded into the PDM via the frame parser which was described above.

Once the PDO frames are loaded into the system the PDM can now make queries about
these frames. The spaces frames (PDO frames that represent spaces) are displayed as circles
on the screen that the user can select and position as desired. Criteria are then specified by the
user to assist the PDM in choosing a central space for the layout of the structure.

After the layout is agreed upon by user the building layout is sent to a CAD system as
draw commands for display. A geometry interpreter notices these draw commands and sends
messages, that are basically equivalent to the grammar specified by the frame parser, to a
blackboard. Once these statements are received by the blackboard and a representation of the
semantic network is built in CLIPS, the same messages are sent to any IDTs that require them.

This technique allows IDTs to be written in either C++ or CLIPS. In the case of
CLIPS the messages sent from the blackboard are placed in the fact list and the CLIPS rules will

fire accordingly. If C + + is used the messages are handled by the frame parser which will build
the same semantic network structure using the frame classes. These frame classes can then be
used by functions written in C + +.

CONCLUSIONS

Executing expert systems in a distributed environment has allowed for an increased level of
complexity to be introduced. By having multiple representations, both procedural and expert
system, available to programmers, the appropriate strengths of each paradigm can be used for
a particular application.

The experiences of the ICADS project have proven both methods of representation to be
useful. The sample applications discussed previously would not be as easily implemented in the
CLIPS environment. Although, the introduction of the object paradigm to CLIPS 5.0 may
remove the need to implement the C+ + frames under certain circumstances. However, CLIPS
5.0 will never completely replace the C + + frame representation; the C + + representation
allows existing applications to interface into the semantic network in an intuitive and direct
manner.

REFERENCES

Assal, H. and L. Myers (1990). An Implementation of a Framebased Representation in CLIPS.
First CLIPS Conference Proceedings, Houston, Texas. pp. 570-580.

Barr, A. and E. Feigenbaum (1981). Frames and Scripts. The Handbook of Artificial
Intelligence. Vol. I., William Kaufmann, Stanford, CA.

Coyne, R. C., M. A. Rosenman, A. D. Radford, M. Balachandran and J.S. Gero (1990).
Knowledge-Based Design Systems. Addison-Wesley, Reading.

Giarratano J., G. Riley (1989). Expert Systems: Principles and Programming. PWS-Kent,
Boston.

Myers, L. and J . Pohl (1 99 1). Computer-Based Intelligent Design Assistance: Concepts and
Strategies. First International Conference on Artificial Intelligence in Design.
Edinburgh, Scotland, U.K.

NASA (1989). CLIPS Reference Manual: Version 4.3 of CLIPS. Artificial Intelligence Section,
Lyndon B. Johnson Space Center. Houston, TX.

Pohl, J., L. Myers, A. Chapman, L. Chirica, J. Snyder, H. Assal, J. Taylor, C. Johnson, D.
Johnson (1990). Knowledge-Based CAAD and the CLIPS &pen System Shell. Technical
Report, CADRU-04-90, CAD Research Unit, Design Institute, Cal Poly, San Luis
Obispo, CA.

Pohl, J., L. Myers, A. Chapman, J. Snyder, H. Chauvet, J. Cotton, C. Johnson, D. Johnson
(1991). ICADS Working Model Version 2 and Future Directions. Technical Report,
CADRU-05-91, CAD Research Unit, Design Institute, Cal Poly, San Luis Obispo, CA.

Pohl, J., L. Myers, A. Chapman, J. Cotton (1989). ICADS: Working Model Version 1.
Technical Report, CADRU-03-89, CAD Research Unit, Design Institute, Cal Poly, San
Luis Obispo, CA.

Taylor, J. (1990). A Framework for Multiple Cooperating Agents in an Intelligent Computer-
Aided Design Environment. (Masters Thesis). School of Architecture and Environmental
Design, Cal Poly , San Luis Obispo, CA.

Taylor, J. and L. Myers (1990). Executing CLIPS Expert Systems in a Distributed Environment.
First CZIPS Conference Proceedings, Houston, Texas. pp. 686-695.

APPENDIX A - Frame Parser Grammar

f a c t :
YaDD a d d a c t i o n s

I YMOD modact ions
I YDEL d e l a c t i o n s
i

a d d a c t i o n s :
YFRAME f r a m e g a r t

I YVALUE v a l u e g a r t
I
I YRELATION r e l a t i o n g a r t
i

modac t ions :
YVALUE v a l u e g a r t

i

d e l a c t i o n s :
YFRAME f r a m e g a r t

I
I YVALUE v a l u e g a r t
I
I YRELATION r e l a t i o n g a r t
i

f r a m e g a r t :
c l a s s i n s t a n c e

i

v a l u e g a r t :
c l a s s a t t r i b u t e i n s t a n c e v a l u e - l i s t

i

r e l a t i o n g a r t :
c l a s s c l a s s i n s t a n c e i n s t a n c e

i

v a l u e - l i s t :
v a l u e

I v a l u e - l i s t v a l u e
i

v a l u e :
YSTR

I Y INT
I YREAL
;

c l a s s :
YSTR

i

i n s t a n c e :
YINT

i

a t t r i b u t e :
YSTR

i

