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Abstract: Object-oriented techniques have generated considerable interest in the A1 community in 
recent years. This paper discusses an approwh for representing expert system knowledge using classes, 
objects, and message passing. The implementation is in version 4.3 of NASA's CLIPS, an expert system 
tool that does not provide direct support for object-oriented design. The method uses programmer-imposed 
conventions and keywords to structure facts, and rules to provide object+riented capabilities. 

1. INTRODUCTION 

A typical expert system consists of a rules, facts, and an inference engine. Although many types 
of problems can be addressed using this knowledge representation model, others may require 
features afforded by logical, network, or frame based models (Mylopoulos and Levesque, 83). 
Recent interest in object-oriented design has suggested an object-based view of knowledge 
representation, combining elements of several of these mechanisms (Leung and Wong, 90). 

Object-oriented design elements, such as classes, objects, and messages, can be 
implemented in an expert system that does not directly support these capabilities by using facts 
containing object-oriented keywords and using rules to manipulate these facts. A fact with an 
object-oriented keyword will be referred to as a "structured fact". The use of facts that contain 
keywords in certain fields bears similarity to the use of an IS-A or A-KIND-OF link in a semantic 
network. The object-oriented keyword technique is used by (Assal and Meyer, 1990) in the 
implementation of a frame-based knowledge representation mechanism. Before proceeding further 
with the details of this approach, it may be useful to clarify the terminology, adapted from (Meyer, 
88), that will be used in the remainder of this paper. 

A class is a structure defined prior to run-time that identifies data and procedural 
characteristics of a program entity. Classes can be implemented in an expert system using a set of 
strucrured facts that describe f e a m s  that characterize the class. An object is a run-time instance 
of a class. An object can be represented in an expert system by a structured fact that uniquely 
identifies the object. Additional structured facts can be used to store the current feature values of 
the object. A feature is a data characteristic associated with a class. Features can be of any data 
type, such as integer, real, character, or string. A method is a procedural characteristic associated 
with a class. In an exprt system, methods can be implemented using rules. A message is a 
structured fact that contains either a request for the current value of an object's feature, or a request 
to initiate a method associated with an object. The use of messages is one of the distinguishing 
characteristics of the object-oriented methodology. 

2. IMPLEMENTING CLASS AND OBJECT STRUCTURES 

2.1 Class Definition Using Facts 



A class is &fined by asserting one or more facts of the form 

(CLASS <class-name> <parent-class>) 

This declaration indicates that <class-name> is a subclass of <parent-class>. By 
convention, in the first CLASS declaration for a class, the identifiers used for <class-name> and 
<parent-class> should be the same. This is required by the syntax of the rule used to instantiate 
objects from class declarations. Note that multiple inheritance is accomplished by allowing 
multiple class declarations, as in the following: 

(CLASS 
(CLASS 
(CLASS 

A class feature is specified as such 

(HAS-FEATURE <class-name> <feature-name> 
[default-feature-value(s)] ) 

where [default-feature-value(s)] consist of one or more data items that comprise the &fault 
values of this feature. 

A class method is specified using a fact such as 

(HAS-METHOD <class-name> unethod-name>) 

The actual implementation of the method is not specified here, nor is any parameter 
information given at this time. 

The following example, employing the CLIPS deffacts fact structuring construct, illustrates 
a typical class declaration. The length and width fields have been assigned arbitrary &fault values. 

(deffacts rectangle-class 
(CLASS rectangle rectangle) 
(HAS-FEATURE rectangle length 
(HAS-FEATURE rectangle width 

2) 

(HAS-FEATURE rectangle am3 
5 )  
10) 

(HAS-METHOD rectangle rectangle-area)) 

2.2 Object Instantiation Using Facts 

An object is created by declaring the existence of the object and its features. The instantiation is 
accomplished by asserting a fact of the following form 

(INSTANCE <object-id> <class-name>) 

where cobject-id> is a unique identifier associated with this object, and <class-name> is 
the name of a parent class. 



The features of the object are automatically asserted with appropriate default values by a 
rule in the expert system that tests for the presence of a newly instantiated object. The rule asserts 
facts that make the connection between this particular object and its features. For each feature, a 
fact of the following form is asserted. 

(HAS-FEATURE <object-id> <feature> 
[default-value(s)]) 

Similarly, methods associated with an object can be declared by asserting facts such as: 

(HAS-METHOD <object-id> <method-name>) 

The following example, taken from the rectangle class presented earlier, illustrates a typical 
object instantiation. 

(INSTANCE a-box =tangle) 
(HAS-FEATURE a-box length 
(HAS-FEATURE a-box width 

2) 
5 )  

(HAS-FEATURE a-box area 
(HAS-METHOD a-box rectangle-area) 

10) 

3. MANAGING OBJECTS 

3.1 Top Level Object Management Facts 

While these conventions provide a way to structure classes and objects, it is also useful to provide 
some "system functions" to manage objects. Some typical operations might include getting and 
setting object feature values, and creating and destroying objects. To get an object's values, a fact 
of the following form is asserted. 

(GET <object-id> <feature>) 

An object's feature is set using a fact such as 

These facts are used to trigger the GET and SET rules (see 3.2) that bring about the 
appropriate functionality by reading or updating the feature of the object. 

To create an object, a fact of this form is asserted 

(CREATE <object-id> <class>) 

An object is destroyed by asserting a fact of the following form 

(DESTROY <object-id>) 

These facts trigger the CREATE-INSTANCE and DESTROY-INSTANCE rules that 
instantiate or remove the object and its associated features. 

It is also useful to provide other functions to return cwent information about a given 
object. Listing the f e a m s  of an object may be accomplished by asserting the following fact 

(SHOW-FEATURES <object-id>) 



Similarly, listing the parent class or classes of an object may be accomplished by asserting 
a fact such as this. 

(SHOW-CLASS <object-id>) 

These facts cause the SHOW-FEATURES and SHOW-CLASS rules to display the desired 
information. 

It should be noted that these are top level functions for the benefit of the programmer. 
Analogues to the top level GET and SET functions are provided at the object level by the messages 
RETURN-VALUE, REQUEST, and APPLY-METHOD, discussed in further detail below. 

3.2 Top Level Object Management Rules 

The fact structuring conventions described so far do not provide the functionality needed, although 
they can be used to trigger rules that do. In the following discussion of the implementation of 
these rules, it is necessary to introduce the syntax of the CLIPS expert system. A complete 
presentation of the CLIPS language may be found in (Giarratano, 89) and in (Giarratano and 
Riley, 89). 

The GET rule is used to obtain the current value of a feature of a particular object. It is 
implemented as follows. 

(defrule GET 
(GET ?object-id ?feature) 
(INSTANCE ?object-id ?class) 
(HAS-FEATURE ?object-id ?feature $?values) 

=> 
(printout t ?object-id " has feature " ?feature) 
(printout t " with value " $?values crlf)) 

The SET rule is similar, however, it contains additional code to manage the retraction of the 
old HAS-FEATURE and the assertion of a new HAS-FEATURE fact. 

(defrule SET 
(INSTANCE ?object-id ?class) 
?x c- (SET ?object-id ?feature $?new-values) 
?y c- (HAS-FEATURE ?object-id ?feature $?values) 

=> 
(retract ?x ?y) 
(assert (HAS-FEATURE ?object-id ?feature $?new-values))) 

Object instantiation is accomplished using a two-step process. First, CREATE- 
INSTANCE recursively traverses the inheritance chain, asserting facts that declare this object to be 
an instance of each of its ancestor classes. In the second phase, CREATE-FEATURES asserts 
facts to declare this object's features, and CREATE-METHODS asserts facts to declare this 
object's methods. 

(defh.de CREATE-INSTANCE 
(CREATE ?object-id ?class) 
(CLASS ?class ?parent-class) 

=> 
(assert (INSTANCE ?object-id ?parent-class))) 



(defrule CREATE-FEATURES 
(INSTANCE ?object-id ?class) 
(HAS-FEATURE ?class 

?feahm $?&fault-values) 
=> 

(assert 
(HAS-FEATURE ?object-id ?feature $?&fault-values))) 

(defrule CREATE-METHODS 
(INSTANCE ?object-id ?class) 
(HAS-METHOD ?class ?method-name) 

=> 
(assert (HAS-IWZTHOD ?object-id ?method-name))) 

Object deletion is accomplished similarly. Instances of an object and any features and 
methods of the object must be removed. DESTROY-INSTANCE handles the former, and 
DESTROY-FEATURES and DESTROY-METHODS the latter. 

(defrule DESTROY-INSTANCE 
(DESTROY ?objec t-id) 
?x <- (INSTANCE ?object-id ?class) 

=> 
(retract ?x)) 

(defiule DESTROY-FEATURES 
(DESTROY ?object-id) 
?x c- (HAS-FEATURE ?object-id ?feature $?values) 

=> 
(retract ?x)) 

(defiule DESTROY-METHODS 
(DESTROY ?object-id) 
?x c- (HAS-METHOD ?object-id ?method-name) 

=> 
(retract ?x)) 

The SHOW-FEATURES rule displays all the features of a particular object. It is 
implemented as follows: 

(defiule SHOW-FEATURES 
(SHOW-FEATURES ?object-id) 
(INSTANCE ?object-id ?class) 
(HAS-FEATURE ?object-id ?feature $?values) 

=> 
(printout t ?feature " with value " $?values crlf)) 

The SHOW-CLASS rule, listing the parent class or classes of an object, is similar. 

(defiu,le SHOW-CLASS 
(SHOW-CLASS ?object-id) 
(INSTANCE ?object-id ?class) 

=> 
(printout t ?object " is instance of class " ?class crlf)) 



4. MESSAGE PASSING 

A message can be either a request for data or the initiation of a procedural action. Both types of 
messages can be implemented using structured facts and rules. 

4.1 Feature Extraction Using Facts 

In 3.2, the GET rule was used to print the value of a feature. It is also useful to extract an object's 
feature value and make the information available for use by other objects. Such a request for data 
can be made by asserting a fact of the following form: 

(REQUEST <calling-object-id> 
<target-object-id> <feature>) 

The <calling-object-id> identifies the object that initiated the request, the <target-object-id> 
shows which object is being queried, and <feature> indicates the feature of interest in the target 
object. The REQUEST fact is detected by a general "request manager" (see 4.3) rule that removes 
the REQUEST fact, polls the target object for the requested value, and creates a reply to the 
message by asserting a fact of the following form: 

(RETURN-VALUE <calling-object-id> <feature> <value>) 

4.2 Method Invocation Using Facts 

A request to invoke a method is accomplished by asserting a fact such as 

(APPLY-METHOD <calling-object-id> <target-object-id> 
<method> [optional parameters]) 

Again, the <calling-object-id> identifies the object that requested the invocation, the 
<target-object-id> shows which object is being queried, and <method> indicates the method of 
interest in the target object. In some method invocations, it may be necessary to pass one or more 
parameters. Unlike the generalized REQUEST operation above, where a single rule can handle all 
requests by all objects, each method requires a separate rule. The rule performs the necessary 
computation, and creates a reply to the message by asserting a fact of the following form: 

(RETURN-VALUE <calling-object-id> <feature> <value>) 

4.3 A Rule to Implement Feature Extraction 

The rule that manages REQUEST messages is as follows: 

(&frule REQUEST-MANAGER 
?x <- (REQUEST ?caller-id 

?target-id ?feature) 
(HAS-FEATURE ?target-id ?feature $?value) 
(INSTANCE ?target-id ?target-class) 

=> 
(retract ?x) 
(assert 

(RETURN-VALUE ?caller-id ?feature $?value))) 



The rule requires the following: a REQUEST fact must exist, the requested feature must be 
declared as a feature of the target object, and the target object must have been previously 
instantiated. The (retract ?x) statement removes the REQUEST fact. 

4.4 Rules to Implement Method Invocation 

Each method defined in a class must be accompanied by an appropriate rule to implement the 
method. A uniform naming convention, such as the concatenation of the class name, a hyphen, 
and the method name, can be very useful. The following rule is an example of a method to 
compute the area of a rectangle. 

(defrule rectangle-area 
?x <- (APPLY -METHOD ?caller-id ?target-id 

rectangle-area) 
(HAS-FEATURE ?target-id length ?length) 
(HAS-FEATURE ?target-id width ?width) 
(INSTANCE ?target-id rectangle) 

=> 
(retract ?x) 
(assert 
(RETURN-VALUE ?caller-id area =(* ?length ?width)))) 

This rule requires the following: a request to apply the "area" method must exist, the target 
object must have a length and width feature, and the target object must have been previously 
instantiated. The RETURN-VALUE fact contains the desired arithmetic result, where the =(* 
?length ?width) statement is used to calculate the result of the expression and store the value as a 
field of a fact. The (retract ?x) statement removes the APPLY-METHOD fact. 

4.5 Message Cleanup 

In the featwe extraction rule (4.3) and the method invocation rule (4.4), statements were explicitly 
included to remove the message fact that caused the rule to fue. It is useful to consider a general 
purpose message cleanup method, similar to the "garbage collection" operation performed by most 
symbolic computation implementations. A low priority rule can be used to remove all messages 
and interim results after each message processing cycle. This ensures that old messages or return 
value facts arr: not accidentally reused or misused at a later time. 

In order to simplify the implementation of the garbage collection rule, a fact containing each 
object-oriented command keyword is used. As command keywords are expected to occur in the 
first field of a structured fact, any fact containing a command keyword in its fvst field at the end of 
a message processing cycle can be assumed to be eligible for garbage collection. 

A simple garbage collection rule can be implemented as follows. The list of commands is 
stored in the COMMAND-LIST fact, and the garbage collection rule tests to ensure that the selected 
fact contains a command. 

(deffacts COMMAND-LIST 
(COMMAND-LIST 

RETURN-VALUE 
CREATE DESTROY 
SET GET 
SHOW-ATIIIIBUTE SHOW-CLASS)) 



(defrule garbagecollec tion 
(salience -5) 
(COMMAND-LIST $?and-set) 
?x <- (?cmd&:(member ?cmd $?and-set) $?cmd-tail) 

=> 
(retract ?x)) 

5. USING OBJECT-ORIENTED KNOWLEDGE REPRESENTATION 

The techniques described in this problem were used as the basis for an object-oriented knowledge 
base that was incorporated in the software prototype of a satellite metatdata information system. 
This domain is typified by very large quantities of data, suggesting a fundamental need for 
intelligent query and browse features. More thorough treatments of satellite information systems 
can be had in (Corey and Carnahan, 90) and (Roeloffs and Campbell, 90). 

The project constraints dictated that the expert system component had to be portable, 
extensible, flexible, and robust. In addition, it had to be developed rapidly, and interface readily 
with existing C and C++ software on UNIXl platforms. The NASA CLIPS tool was virtually 
ideal for this task, although it lacked support for object-oriented modelling. 

One of the lessons learned from this experience was that an object-oriented knowledge base 
can be fairly easy to integrate with traditional software. The object-oriented approach allowed the 
existing C programs to be minimally affected The expert system functioned transparently to the C 
code, providing services through the use of the assert() and run() function calls. 

The expert system software architecture was based on a "state-machine" model, with 
control states similar in some respects to the "read evaluate print garbage-collect" cycle of a LISP 
interpreter. The expert system, once initialized, entered a "read" state, where it waited for requests 
for information. Messages, in the form of facts asserted into the knowledge base by procedural 
C/C++ code, would either supply information about the constraints of the current query, or cause 
the system to enter an "evaluation" state. 

In the "evaluation" state, the expert system applied rules to find information meeting the 
criteria dictated by messages. The derived information, typically tokens in the knowledge base that 
matched the left-hand-side (LHS) of a rule, would be processed on the right-hand-side (RHS) of 
the rule as parameters to a user defined C function that appended the information to a globally 
available linked list structure. 

After a given request was satisfied, the expert system entered a "garbage-collection" state. 
All messages, commands, and intermediate facts were eliminated, and the system then returned to 
the initial "read" state to wait for additional messages. 

The application program that invoked the expert system handled the "print" phase. 
Information was taken from the linked list structure generated by the expert system and used by the 
C program. 

This method made the interfaces between the C/C++ code and the expert system very 
straightforward. The C programs made use of the expert system by including the <clips.h> 

UNIX is a trademark of AT&T Bell Laboratories. 



headers, loading and initializing selected rule and fact files, declaring a global linked list of strings 
to hold query results, and proceeding with the application processing. 

When information was needed from the expert system, a character string containing a 
syntactically valid data request (typically in the form of a constraint or a command) was assembled 
and "asserted" into the expert system. When all requests were in place, a call to the run(-1) 
function was made, activating the expert system rules. When the expert system had finished, the 
results of the query were available in a linked list. The C program could proceed at this point with 
its processing, which typically involved presenting the information onto an X Windows2 dialog 
box. 

6. CRITICAL ASSESSMENT AND PERFORMANCE ISSUES 

The use of structured facts and rules as suggested in this work is no different than the use of other 
fact structuring conventions, such as the Object Attribute Value (OAV) triple or the IS-A or AKO 
(A-Kind-Of) links in semantic networks. The approach offers more functionality than the OAV 
model, since procedural and data elements can be associated with an object. 

The method may offer certain performance advantages over more sophisticated systems, 
since expert systems are optimized to process rules and facts, rather than objects and messages. 
The method is reasonably portable, although rules may need to be recoded in order to 
accommodate the particular syntax of the tool being used. 

Perhaps the greatest advantage of this method is its high degree of flexibility. While a 
number of expert system shells incorporate object oriented extensions, few if any allow the user to 
completely redefine the syntax of the object manipulation language at will. 

A detrimental performance aspect of this method is that using facts to implement inheritance 
can cause a great many facts to be asserted when objects are instantiated If deep inheritance chains 
are modeled, multiple instantiations of an object far down the chain may begin to pose memory and 
speed problems on the expert system inference engine. 

Other, more subtle problems also exist. The method does not account for feature 
inconsistencies, hence it is possible for an object to inherit the same feature name from different 
parent classes if the default values are different. This will result in an inconsistency, since the 
object will manifest two features with the same name yet different values. Other object-oriented 
concerns, such as selective inheritance, or precedence of local features or methods over inherited 
features or methods are not addressed. 

7. CONCLUSIONS 

This paper has introduced a method for defining classes, objects, and messages in an expert 
system. The method can be implemented using conventional hardware and very straightforward 
expert system tools, and does not require a sophisticated run-time object or message manager. It 
requires some programmer-imposed conventions on facts and rules, and calls for the use of 
structured facts containing object-oriented keywords. Promising results have been obtained by 
incorporating an expert system using object-oriented knowledge representation with traditional C 
code. 

The X Window System is a trademark of the Massachusetts Institute of Technology. 
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