
Extensions to the Parallel Real-time Artificial Intelligence System
(PRAIS) for Fault-tolerant Heterogeneous Cycle-stealing Reasoning

David Goldstein
Faculty Associate
goldstn@cse.uta.edu

University of Texas, Arlington
Automation and Robotics Research Institute
7300 Jack Newell Blvd S.
Ft Worth, Texas 76118
USA

Abstract. Extensions to an architecture for real-time, distributed (parallel) knowledge-based systems
called the Parallel Real-time Artificial Intelligence System (PRAIS) are discussed. PRAIS strives for
transparently parallelizing production (rule-based) systems, even under real-time constraints. PRAIS
accomplished these goals (presented at the first annual CLIPS conference) by incorporating a dynamic task
scheduler, operating system extensions for fact handling, and message-passing among multiple copies of
CLIPS executing on a virtual blackboard. This distributed knowledge-based system tool uses the
portability of CLIPS and common message-passing protocols to operate over a heterogeneous network of
processors. Results using the original PRAIS architecture over a network of Sun 3's, Sun 4's and VAX's
are presented. Mechanisms using the producer-consumer model to extend the architecture for fault-tolerance
and distributed truth maintenance initiation are also discussed. Also, recently designed approaches and
extensions, including improvements to RETE and an entirely new pattern matching algorithm to meet hard-
real-time deadlines are discussed.

This paper is deliberately presented at a high-level, discussing the real-time, fault-tolerance, and distributed
nature of the architecture as more detailed descriptions of the work are available elsewhere
[Gol90][GT91][Gol91].

0.0 Introduction

Real time artificial intelligence (AI) is an ideal application for parallel processing. Many problems
including those in vision, natural language understanding, and multi-sensor fusion entail
numerically and symbolically manipulating huge amounts of sensor data. Real time reasoning in
these domains is often accomplished via specialized computing resources which are often (1) very
difficult to use, (2) very costly to purchase (as in the $250,000 - $2,000,000 PIM [GL]), and (3)
guarantee only fast- not real time - performance.

This paper extends some of the ideas behind PRAIS, the Parallel Real-time Artificial
Intelligence System, a cost-effective approach real-time computing combining the 'C Language
Integrated Production System, TCP/DP and some novel concepts in pattern matching and real-time
control to provide a flexible development environment for distributed knowledge-based systems.
The goals of the system are to simplify parallelization, increase portability, and maintain a
consistent knowledge representation throughout the system. The system accomplishes these goals
by providing transparent scalability of fielded CLIPS applications and by cycle-stealing small
amounts of resources over large networks of existing processors.

287

PRECEDING PAGE BLANK NOT FILMED

1.0 Original Blackboard Architectures

The blackboard architecture [Nii86] has probably been the most successful architecture for
addressing complex problems where control structures were not well-defined. KBS's using this
architecture feature multiple, independent knowledge sources (KS) each of which reasons about a
portion of the domain. Knowledge sources share a global data structure (the metaphorical
"blackboard") to share information, in an analogy to experts examining data and hypothesizing
solutions on an actual blackboard

Parallel versions of blackboards provide several advantages. First, each knowledge source
may have its own knowledge-base (KB - a database of knowledge driving reasoning), thereby
partitioning the system's knowledge and reducing rule interactions. This simplification generally
making the system easier to understand and more predictable. Blackboards also facilitate intuitive,
hierarchical problem-solving; results from lower level knowledge sources can be used to drive the
reasoning processes of higher level knowledge sources. The hierarchical development of
hypotheses is very useful, especially useful for problems where disparate data is encountered from
multiple sources (e.g. vision, multi-sensor fusion).

An illustration of a real time blackboard system for music generation is depicted in Figure
1. At any given time the system might receive a variety of auditory inputs. These inputs are
examined by signal processing resources to extract and place on the blackboard primitives such as
frequencies, pulse widths and pulse intervals. These primitives are then used by other processors
to determine notes, "instruments", pauses, and durations, which are in turn combined to ascertain
tempos, progressions, chords. At the highest levels of processing these deductions are combined
with music styles, artistic profiles, scores and music theory to predict future sensor inputs and
generate appropriate auditory output.

NOTE
KS

INPUT

INPUT

INPUT

^.SIGNAL
PROCESSOR^

»» SIGNAL
PROCESSOR

». SIGNAL,
PROCESSOR

LEVEL 1
HYPOTHESES

FREQUENCIES

PULSE
INTERVALS

PULSE
WIDTHS

LEVEL2
HYPOTHESES

SORTED
INSTRUMENTS

FEEDBACK

MUSIC
THEORY

KS

V RESPONSE
GENERATOR

KS

Figure 1. Hierarchical Blackboard Processing

2.0 Directed Blackboards

Directed blackboards is an architecture explicitly designed for forward-chaining production
systems to accommodate real-time processing over a heterogeneous network of processors derived
from examining numerous investigations into blackboard processing. Like many architectures

288

derived from blackboards, directed blackboards attempt to improve the basic blackboard model by
improving the control mechanisms, reducing the event scheduling required, and minimizing the
amount of information that must be distributed (via the blackboard).

3.0 Message Flow and Control

Message-passing among knowledge sources in this architecture is facilitated by associating a goal
to each knowledge source. Each goal is managed by a Dijkstra-like guard which administers the
actual communications of messages via a single-entry, single-exit point for all information.
Messages flow from producing knowledge-sources (as per the producer-consumer model), to the
information guards, to consuming knowledge-sources. This model assumes that each information
guard knows the recipients of its information; this assumption is fulfilled by analysis of an
application's productions to associate knowledge-sources which might use information (which
satisfies a given patterns to goals represented by the pattern), see Figure 2: Message Traffic.
Further, the information guards administer fault-tolerance algorithms and initiate distributed truth-
maintenance algorithms for fault-recovery, essentially isolating these aspects of the knowledge-
based system in the communications functions. Finally, although control resides almost solely in
the information guards, each processor in the system shares in the distributed control of not only
message traffic, but also information focus, in some fashion.

The information guards presented here can act as backing stores of the data transmitted-
without the overhead of reasoning upon facts as performed in true backing processors - while the
goals are currently being processed. Further, once goals are no longer being currently processed,
transaction management can be performed to save the state of the system prior to operating upon
new goals. This procedure treats the state-saving algorithms associated to forward-chaining as a
nested transaction, with each goal change as a child transaction.

Heterogeneous networks of processors are easily accommodated in this architecture by
using standard communications protocols over internet (TCP/IP). In keeping with the philosophy
of the underlying inference engine, the 'C Language Integrated Production System (CLIPS),
many of the communications parameters - such as message packet size, packet destinations, etc. -
are stored as facts and can be inferenced upon. Because communications functions are isolated in
the information guards, evolving communications standards can easily be accommodated. The
information contained in and the resources (such as processors) used by real-world systems can be
easily accommodated and interfaced with via the same communications mechanisms; the
information guards care not whether the producer or consumer of information is a knowledge-
based system or a military simulation, as long as communication proceeds using an established
protocol.

4.0 Concurrent Processing

The use of network resources to facilitate concurrent processing is straightforward at a coarse level
of granularity; placing individual knowledge sources on their own processors in a multi-processing
environment is intuitive and has been incorporated in many systems. The next step in increasing
concurrency requires partitioning individual knowledge sources. Many message-based systems
strive for "rule-level" parallelism, but such parallelism can be trivially accomplished via placing one
rule in each knowledge source and running one or more processes containing knowledge sources
on each processors. Several other types of parallel processing that are currently being explored
include "greedy processing" where multiple rule firings occur internal to a processor before
dispersing the information to other processors, based upon a mathematical estimate of the
usefulness of the information to other processors, "rule-level" parallelism - but with slept threads
instead of processes, and MTMD transputer matching algorithms. Several new match algorithms
have already been internally developed for handling real-time processing and to better the
performance of RETE, and the parallelization of these algorithms is under investigation.

289

Knowledge Source 4

Knowledge Source 1

(assert (POSITION MISSILE 5379))

Knowledge Source 2
IF
(MISSILE ?num)
(POSITION MISSILE ?num ?x ?y ?
(POSITION ?us ?us_x ?us_y ?us_z)

THEN
(ASSERT

(DISTANCE MISSILE ?NUM
(SQRT (+ (?us_x - ?x) * (?us_x - ?x)

(?us_y-?y)* (?us_y-?y)
(?us z - ?z) * (?us_z - ?z)

Producer
Knowledge Source 5

I
Guardian

Knowledge Source 3
IF
(MISSILE ?num)

•(POSITION MISSILE ?num ?x ?y ?z)

THEN
(ASSERT
(HOSTILE-AREA MISSILE 7NUM)
(CORRIDR MISSILE ?NUM 7COR))

Consumer Consumer

Figure 2. Message Traffic

5.0 Real Time Control Mechanisms

Our original approach for real-time control features dynamically prioritizing tasks based upon
criticality and timeliness; each task has a time-varying salience function which accounts for how
critical its decision is to die overall system in its current state. The salience of a task is initially
low, and increases as the task becomes more important until it become mandatory. Untimely tasks
or those of lesser importance can be dropped by the system. Tasks are scheduled for execution
based upon a hypothesis of the task's usefulness and likelihood to complete. This algorithm
employs resource estimates of the task derived via directed acyclic graphs generated during
preprocessing and user guidelines as to the task's importance for generating and using the time-
varying salience function (see Figure 3). This approach is in stark contrast to the typical - and
computationally expensive - approach of scheduling tasks such that their hard-real-time constraints
(deadlines) are met via meta-reasoning. The author feels that planning is a very expensive process,
especially for large numbers of tasks, by far exceeds the time frames of executing' ladder-logic"
that many real-time applications actually use (such as robotic control). Since the publication of this
technique, other parties interested in real-time control, such as Boeing, have investigated similar
measures [EB91].

Finally, an "anytime algorithm" extension to RETE is currently under investigation. Such
an algorithm should ideally provide an answer from a knowledge-based system regardless of how
little time the system is given for reasoning, with the accuracy of the answer proportional to the
time allotted for reasoning. Combined with the interruptable reasoning features that have already
been placed in PRAIS, this should permit a system to take the best course of action at any time,
regardless of system demands.

290

Salience

Task
Scheduled

User-Specified
Task Criticality

Output
Useful

Output
Required

Directed
Acyclic
Graph

(resource estimation)

P(Task will Complete)
(ad-hoc estimate)

Output Task

Critical Executed
or No Longer

Germane

Instantaneous Salience

Figure 3. Time-Varying Salience for Task Scheduling

6.0 Knowledge Representation

The knowledge representation used and reasoning processes permitted are virtually identical to
those already used by CLIPS. The rule format is depicted in Figure 4: Production Format.
Assertions and retractions are handled exactly as there are normally in any serial version of CLIPS,
but if the information change should have some affect on some global goal, the goal must be
specified.

(rule {rule-name}
(salience {priorities})
(importance {mandatory/optional/dropable})
(goal {goal_name})

({pattern 1 to be matched as a tuple})

=>

• ({left-hand-side patterns})
*

({pattern n to be matched as a tuple})

({action 1})

({right-hand-side action n})

Figure 4. Production Format

291

7.0 An Example Application

Presented below is a rale (Figure 5: Rules) pertaining to an image processing application. The
$WHERE fact determines where future messages (facts) are to be passed. For fairness, the
application partitions the work according to tasks to be performed, and not the data; many
experimenters use image processing to demonstrate concurrent processing because image
processing parallelizes very easily (by assigning equal size rectangles in the image to each
processor). Each processor in this experiment must operate over all the image data, and pass its
results to some other processor for further processing.

(defrule connect4 "determines if a point is 4-connected"
(pt ?x ?y)
(pt ?x =(- ?y 1))
(pt ?x =(+ ?y 1))
(pt =(+ ?x 1) ?y)
(pt =(- ?x 1) ?y)

=s>
(assert ($WHERE csr)

(connected4 ?x ?y))
)

Figure 5. Rules

Performance characteristics (with respect to speedup) vary widely from one application to
another (because of complexity of the RETE net, size of the factbase, number of facts sent per
message, etc) and network resources employed (such as processor types, operating systems and
network transmission media). Each of these drives a variety of underlying computational
concerns; network and factbase sizes can cause disk swapping while operating systems and
processor types can require different conversion strategies at the byte (bit) level.

The current implementation requires approximately one and one-half times as long to
receive a transmitted fact via internet as it takes to deduce the fact itself and over seven times the
time to send the same fact via internet. Therefore, if decidedly different tasks are worked upon
concurrently - perhaps using "island driving" techniques - concurrent processing could yield
almost linear speedup. However, with small rule networks (as experimented with here) and
geographically separated resources (twenty miles apart) the speedup was not nearly linear.

8.0 Status

The Parallel Real-time Artificial Intelligence System (PRAIS) has been implemented to provide
coarse-grained parallel processing over a heterogeneous network of machines, including Sun 3's,
Sun 4's, Transputers and DEC VAX's. At the time of this writing the knowledge-based system
shell has been modified to accommodate real time processing. The communications algorithms
(with an accompanying partially ordered indexing system) have already been implemented. A
large number of operating systems issues are currently being addressed, as well as fault-tolerance
algorithms and the aforementioned pattern-matching algorithms. Past, current and anticipated
PRAIS application areas include real-time sensor-fusion, distributed simulations, robotic control at
the workstation level, and parallel planning. Larger rulebases and fault-tolerance/distributed

292

control experiments will be presented in future papers as more and larger research projects use the
system.

9.0 Conclusions

PRAIS already offers a variety of advantages such as:

• heterogeneous hardware capability,

• uniform data flow through the system,

• real time control via dynamic scheduling,

• data - as opposed to algorithm - driven requirements, and

• the use of standard programming practices.

Future capabilities to be incorporated include fault-tolerance, automatically scalable applications,
and distributed truth maintenance. This system strives to permit serial code to be converted into a
parallel, real time KBS by incorporating many desirable features and functions at low levels of
processing.

10.0 References

[CG88] C. Culbert and J. Giarrantano, CLIPS Reference Manual Version 4.2.
Artificial Intelligence Section Lyndon B. Johnson Space Center, Houston, Texas, April 1988.

[EB91] W. Erickson and L. Baum, "Real-Time Erasmus", in Proc. of Blackboard Systems
Workshop Notes from the Ninth National Conference on Artificial Intelligence, American
Association for Artificial Intelligence, Anneheim, CA, July, 1991.

[Gol90] D. Goldstein, "PRAIS: Parallel Real-time Artificial Intelligence System",.
Fourth International Parallel Processing Symposium, PTPc??dMlgs,i Volume "3, Piillertnnr fA,
USA, 1990.

[Gol91] D. Goldstein, "Integrating Knowledge-bases into Heterogeneous Networks
of Processors for Real-World, Real-time Systems", in Proc. of the International Joint Conference
on Artificial Intelligence's Integrating Knowledge-bases into Real-world Systems Workshop,
Sydney, Australia, USA, 1990.

[GT91] D. Goldstein and J. Tieman, "Heterogeneous Distributed Knowledge-based
Systems", in Proc. of the American Association for Artificial Intelligence 1991 Conference's
Workshop on Heterogeneous Systems, Anneheim, California, July, 1991.

[NU86] P. Nii, "Blackboard Systems: The Blackboard Model of Problem Solving and the
Evolution of Blackboard Architectures", The AI Magazine. Summer 1986, pp. 38 - 53.

293

