
92-16597
Integrating CLIPS Applications into Heterogeneous Distributed
Systems

Richard M. Adler

Symbiotics, Inc.
875 Main Street Cambridge, MA 02139 (617)876-3633

Abstract. SOCIAL is an advanced, object-oriented development tool for integrating intelligent and
conventional applications across heterogeneous hardware and software platforms. SOCIAL defines a family
of "wrapper" objects called Agents, which incorporate predefined capabilities for distributed communication
and control. Developers embed applications within Agents and establish interactions between distributed
Agents via non-intrusive message-based interfaces. This paper describes a predefined SOCIAL Agent that is
specialized for integrating CLIPS-based applications. The Agent's high-level Application Programming
Interface supports bidirectional flow of data, knowledge, and commands to other Agents, enabling CLIPS
applications to initiate interactions autonomously, and respond to requests and results from heterogeneous,
remote systems. The design and operation of CLIPS Agents is illustrated with two distributed applications
that integrate CLIPS-based expert systems with other intelligent systems for isolating and managing
problems in the Space Shuttle Launch Processing System at the NASA Kennedy Space Center.

INTRODUCTION

The central problems of developing heterogeneous distributed systems include:

• communicating across a distributed network of diverse computers and operating
systems in the absence of uniform interprocess communication services;

• specifying and translating information (i.e., data, knowledge, commands), across
applications, programming languages and development shells with incompatible native
representational models, programmatic data and control interfaces;

• coordinating problem-solving across heterogeneous applications, both intelligent and
conventional, that were designed to operate as independent, standalone systems.

• accomplishing these integration tasks non-intrusively, to minimize re-engineering costs
for existing systems and to ensure maintainability and extensibility of new systems.

SOCIAL is an innovative distributed computing tool that provides a unified, object-oriented
solution to these difficult problems (Adler 1991). SOCIAL provides a family of "wrapper" objects
called Agents, which supply predefined capabilities for distributed communication, control, and
information management. Developers embed applications in Agents, using high-level, message-
based interfaces to specify interactions between programs, their embedding Agents, and other
application Agents. These message-based Application Programming Interfaces (APIs) conceal low-
level complexities of distributed computing, such as network protocols and platform-specific
interprocess communication models (e.g., remote procedure calls, pipes, streams). This means
that distributed systems can be developed by programmers who lack expertise in system-level
communications (e.g., Remote Procedure Calls, TCP/IP, ports and sockets, platform-specific data
architectures). Equally important, SOCIAL'S high-level APIs enforce a clear separation between

308

application-specific functionality and generic distributed communication and control capabilities.
This partitioning promotes modularity, maintainability, extensibility, and portability.

This paper describes a particular element of the SOCIAL development framework called a
CLIPS Knowledge Gateway Agent. Knowledge Gateways are SOCIAL Agents that are
specialized for integrating intelligent systems implemented using standardized AI development
shells such as CLIPS and KEE. Knowledge Gateways exploit object-oriented inheritance to
isolate and abstract a shell- and application-independent model for distributed communication and
control. Particular subclasses of Knowledge Gateway Agents, such as the CLIPS Gateway, add a
dedicated high-level API for transporting information and commands across the given shell's data
model and data and control interfaces. To integrate a CLIPS application, a developer simply (a)
creates a subclass of the CLIPS Gateway Agent class, and (b) specializes it using the high-level
CLIPS Gateway API to define the desired message-based interactions between the program, its
embedding Gateway, and other application Agents.

The remainder of the paper is divided into three major parts. The first section provides an
overview of SOCIAL, emphasizing the lower-level distributed computing building blocks
underlying Gateway Agents. The second section describes the architecture and functionality of
Knowledge Gateway Agents. Structures and behaviors specific to the CLIPS Gateway are used
for illustration. The third section presents two examples of SOCIAL applications that integrate
CLDPS-based expert systems with other intelligent systems for isolating and managing problems in
the Space Shuttle Launch Processing System at the NASA Kennedy Space Center.

OVERVIEW OF SOCIAL

SOCIAL consists of a unified collection of object-oriented tools for distributed computing,
depicted below in Figure 1. Briefly, SOCIAL'S predefined distributed processing functions are
bundled together in objects called Agents. Agents represent the active computational processes
within a distributed system. Developers assemble distributed systems by (a) selecting Agents with
suitable integration behaviors from SOCIAL'S library of predefined Agent classes, and (b) using
dedicated APIs to embed individual application elements within Agents and to establish the desired
distributed interactions among their embedded applications. A separate interface allows developers
to create entirely new Agent classes by combining (or extending) lower-level SOCIAL elements to
satisfy unique application requirements (e.g., supporting a custom, in-house development tool).
These new Agent types can be incorporated into SOCIAL'S Agent library for subsequent reuse or
adaptation. The following subsections review SOCIAL'S major subsystems.

Application
Agent(s)

SOCIAL

Network,
Processor, and

Software Platform

Application

Interface

Agent Library
(Managers, Gateways)

^ Agettt "\
Development I

^ Interface j
Data Management

Distributed Communications

Figure 1. Architecture of SOCIAL

309

Distributed Communication

SOCIAL'S distributed computing utilities are organized in layers, enabling complex
functions to be built up from simpler ones. The base or substrate layer of SOCIAL is the
MetaCourier tool, which provides a high-level, modular distributed communications capability for
passing information between applications based on heterogeneous languages, platforms, operating
systems, networks, and network protocols (Symbiotics 1990). The basic Agent objects that
integrate software programs or information resources are defined at SOCIAL'S MetaCourier level.
Developers use the MetaCourier API to pass messages between applications and their embedding
Agents, as well as among application Agents. Messages typically consist of (a) commands that an
Agent passes directly into its embedded application, such as database queries or calls to execute
signal processing programs; (b) data arguments to program commands that an Agent might call to
invoke its embedded application; or (c) symbolic flags or keywords that signal the Agent to invoke
one or another fully preprogrammed interactions with its embedded application.

For example, a high-level MetaCourier API call issued from a local LISP-based application
Agent such as (Tell :agent 'sensor-monitor :sys 'Symbl '(poll measurement-Z)) transports the
message contents, in this case a command to poll measurement-Z, from the calling program to the
Agent sensor-monitor resident on platform Symbl. The Tell function initiates a message
transaction based on an asynchronous communication model; once the message is issued, the
application Agent can immediately move on to other processing tasks. The MetaCourier API also
provides a synchronous "Tell-and-Block" message function for "wait-and-see" processing models.

Agents contain two procedural methods that control the processing of messages, called rin-
filters and rout-filters. In-filters parse incoming messages, based on a contents structure that is
specified when the Agent is defined. After parsing a message, an :in-filter typically either invokes
the Agent's embedded application, or passes the message (which it may modify) on to another
Agent The MetaCourier semantic model entails a directed acyclic computational graph of passed
messages. When no further passes are required, the :in-filter of the terminal Agent runs to
completion. This Agent's :out-filter method is then executed to prepare a message reply, which is
automatically returned (and possibly modified) through the rout-filters of intermediate Agents back
to the originating Agent Developers specify the logic of rin-filters and rout-filters to meet their
particular requirements for application interactions.

A MetaCourier runtime kernel resides on each application host The kernel provides (a) a
uniform message-passing interface across network platforms; and (b) a scheduler for managing
messages and Agent processes (i.e., executing rfilter methods). Each Agent contains two
attributes (slots) that specify associated Host and Environment objects. These MetaCourier objects
define particular hardware and software execution contexts for Agents, including the host
processor type, operating system, network type and address, language compiler, linker, and
editor. The MetaCourier kernel uses the Host and Environment associations to manage die
hardware and software platform specific dependencies that arise in transporting messages between
heterogeneous, distributed Agents (cf. Figure 2).

Agent-A Env-A Host-A Host-B Env-B

^Application-A

iOut-iiter

Messages

Agent-B
ut ,* **i

4*^ Application- B

:0uMtl

Figure 2. Operational Model of MetaCourier Message-Passing

310

MetaCourier's high-level message-based API is basically identical across different
languages such as C, C++, and Lisp. Equally important, MetaCourier's communication model is
also symmetrical or "peer-to-peer." In contrast, client-server computing, a popular alternative
model for distributed communication, is asymmetric: clients are active (i.e., only clients can
initiate communication) while servers are passive. Moreover, while multiple clients can interact
with a particular server, a specific client process can only interact with a single (hardwired) server.
MetaCourier's communication model eliminates these restrictions on interprocess interactions.

Data Specification and Translation

A major difficulty in getting heterogeneous applications and information resources to
interact with one another is the basic incompatibility of their underlying models for representing
data, knowledge, and commands. These problems are compounded when applications are
distributed across heterogeneous computing platforms with different data architectures (e.g.,
opposing byte ordering conventions).

SOCIAL applies a uniform "plug compatible" approach to these issues. This approach
consists of two elements, a design methodology and a set of tools to support that methodology.
SOCIAL defines a uniform application-independent information model. In the case of Knowledge
Gateways, the information model defines a set of common data elements commonly used in
intelligent systems, including facts, fact-groups, frames/objects, and rules. SOCIAL'S Data
Management Subsystem (DMS) provides tools (a) for defining canonical structures to represent
these data types, and (b) for accessing and manipulating application-specific examples of these
structures. These tools are essentially uniform across programming languages. Equally important,
DMS tools encode and decode basic data types transparently across different machine architectures
(e.g., character, integer, float).

Developers use SOCIAL'S DMS tools to construct intermediate-level APIs for the Gateway
Agent class that integrates particular applications. This API establishes mappings between
SOCIAL'S "neutral exchange" structures and the native representational model for the target
application or application shell. For example, the API for the CLIPS Knowledge Gateway Agent
translates between DMS frames and CLIPS deftemplates or fact-groups (e.g., Make-CLIPS-fact-
group-from-frame Frame-x). Similarly, the KEE Gateway API transparently converts DMS
frames to KEE units and KEE units back into frames. If necessary, new DMS data types and
supporting API enhancements can be defined to extend SOCIAL'S neutral exchange model. This
uniform mapping approach simplifies the problem of interconnecting N disparate systems from
O(N*N) to O(N), as illustrated in Figure 3.

SOCIAL integrates DMS with MetaCourier to obtain transparent distributed communication
of complex data structures across heterogeneous computer platforms as well as across disparate
applications: developers embed DMS API function calls within the :in-filter and :out-filter
methods of interacting Agents, using MetaCourier messages to transport DMS data structures
across applications residing on distributed hosts. DMS API functions decode and encode message
contents, mapping information to and from the native representational models of source and target
applications and DMS objects. SOCIAL thereby separates distributed communication from data
specification and translation, and cleanly partitions both kinds of generic functionality from
application-specific processing.

311

Ajgeut j Application 1

CoiivertNafiye f I Convert SOCIAL
to SOCIAL li t&N«ive

Agent
I Application 2

Convert ttfarive f j Convert SOCIAL
to SOCIAL 1* toNMve

MetaCourier messages composed of data,
knowledge, queries, commands in neutral exchange format

Convert!1

toSOCXA

Awjnf

4ative 4j Convert SOCIAL
1* |<| to Native

DBMS
database

Convert Is
toSOOA

Agent

Fadve * j Qmveit SOCIAL
L H to Native

AI Shell
intelligent system

Figure 3. SOCIAL'S Plug-Compatible Approach to Managing Heterogeneous Data

Distributed Control (Specialized Agents and Agent APIs)

SOCIAL'S third layer of object-oriented tools establishes a library of predefined Agents
classes and associated high-level API interfaces that are specialized for particular integration or
coordination functionality. MetaCourier and DMS API functions are used to construct Agent API
data and control interfaces. These high-level Agent APIs largely conceal lower-level MetaCourier
and DMS interfaces from SOCIAL users. Thus, developers typically use specialized Agent classes
as the primary building blocks for constructing distributed systems, accessing the functionality of
each such Agent type through its dedicated high-level API. If necessary, developers can define
new Agent classes and APIs by specializing (e.g., modifying or extending) existing ones.

Currently, SOCIAL'S library defines Gateway and Manager Agent classes. Gateways, as
noted earlier, simplify the integration of applications based on development tools such as AI
shells, DBMSs, CASE tools, 4GLs, and so on. Manager Agents are specialized to coordinate
application Agents to work together cooperatively. The HDC-Manager (for Hierarchical
Distributed Control) functions much like a human manager, mediating interactions among
"subordinate" application Agents and between subordinates and the outside world. The Manager
acts as an intelligent router of task requests, based on a directory knowledge base that identifies
available services (e.g., data, problem-solving skills) and the application Agents that support them.
The Manager also provides a global, shared-memory "bulletin-board." Application Agents are only
required to know the names of services within the Manager's scope and the high-level API for
interacting with the Manager; they do not need to know about the functionality, structure, location,
or even the existence of particular application Agents. The Manager establishes a layer of control
abstraction, decoupling applications from one another. This directory-driven approach to Agent
interaction promotes maintainability and extensibility, and is particularly valuable in complex
distributed systems that evolve as applications are enhanced or added over an extended lifecycle.

KNOWLEDGE GATEWAY AGENTS

Knowledge Gateway Agents combine several important SOCIAL tools and design concepts:

• MetaCourier's high-level, message-based distributed communication capabilities for
remote interactions across disparate hardware and software environments;

• DMS data modeling and mapping facilities for transparently moving data, knowledge,
and control structures across disparate applications and shells;

312

• a modular object-oriented architecture that defines a uniform partitioning of integration
functionality;

• a non-intrusive design methodology for programming specific, discrete interactions
between the application being integrated, its embedding Gateway Agent, and other
application Agents;

• extensibility to encompass generalized hooks for security, error management, and
session management utilities.

Gateway functional capabilities are distributed across the class hierarchy of Gateways to
exploit object-oriented inheritance of behaviors of common utility across Agent subclasses. The
partitioning and inheritance of behaviors are summarized below in Figure 4.

Knowledge Gate Way Agent Root Class

CLIPS Gateway
Agent subclass ***

KEE Gateway
Agent subclass

CLIPS CLIPS
Appl-1 Appl-2

Gateway Gateway

KEE
Appl-1

Gateway

Custom Application
Gateway Agent

subclass

Functionality
Standard

message format
control behavior

Shell-specific
data mapping
data & Ctrl VFs

Appl-specific behavior
request processing
response processing

Figure 4. Inheritance of SOCIAL Knowledge Gateway Agent Behaviors

The root Knowledge Gateway Agent, KNOWL-GW, defines the overall structure and
functional behavior of all Agent subclasses that are developed to integrate shell-based (or custom)
intelligent applications. In particular, KNOWL-GW establishes:

• the uniform MetaCourier/DMS message format structure for communicating with
all Knowledge Gateway Agents;

• the Agent :in-filter method for parsing and managing incoming messages;

• the Agent :out-filter method for post-processing results;

• default (stub) API methods that are overridden at the Gateway Agent subclass level.

Knowledge-based systems, like most conventional systems, typically function as servers,
responding to programmatic (or user) queries or commands. In a server configuration, data and
control flow in, while data (results) alone flows out. However, intelligent systems can also initiate
control activities autonomously, in response to dynamic, data-driven reasoning. This active
(client) role entails "derived" requirements for capabilities to process results returned in response to
previous outgoing messages. Since intelligent systems can be configured to act as clients, servers,
or play both roles within die same distributed application, any generalized integration technology
such as Knowledge Gateways must support bidirectional flow of data and control.

313

Accordingly, the generic :in-filter method handles two cases (a) a MetaCourier message
coming in from some external application Agent to be handled by the Knowledge Gateway's
embedded application, and (b) a message from the embedded application that is to be passed via the
Knowledge Gateway Agent to some external application Agent The KNOWL-GW distinguishes
the two cases automatically, based on the message's target Agent. Similarly, the generic :out-filter
method handles two cases (a) dispatching the embedded application's reply via the Knowledge
Gateway Agent to the external requesting Agent, and (b) processing the response from an external
application Agent to a message passed by the Gateway from its embedded application and injecting
it back into the embedded application via the shell. This simple dual logic in the .-filter methods
enables Gateway Agents to function as clients or servers, as required by particular messages.

KNOWL-GW also establishes (a) a uniform, top-level Gateway API; and (b) a uniform
model for applying or invoking this API in the filter methods. Specifically, the KNOWL-GW
Agent class establishes stub versions of the top-level Gateway API methods. Gateway Agent
subclasses for specific development shells override the stubs with method definitions tailored to the
corresponding knowledge model,and data and control interfaces. The top-level API consists of the
following five methods:

• :extract-data;

• :inject-data;

• rinitialize-shell;

• :process-request;

• :process-response.

The first three top-level API methods are defined for each Gateway Agent subclass in
terms of intermediate-level DMS API functions, which differ in reflection of variations in shell
architectures. However, each subclass API contains elements from the following categories:

• external interface functions;

• data interface functions (for data and knowledge access control);

• shell control functions.

The first API category encompasses shell-specific functions for passing data and
commands from an application out to the Knowledge Gateway. Depending on the shell in
question, the Gateway API may be more or less elaborate. For example, the Gateway for CLIPS
V4.3 defines a single external API function to initiate interactions between rules in a CLIPS
application and its embedding Agent, which hides MetaCourier and DMS API functions
completely. The CLIPS Gateway API will be extended to reflect the procedural and object-
oriented programming extensions in CLIPS Version 5.

Functions in the second category combine (a) the DMS API, which maps data and
knowledge between SOCIAL'S canonical DMS structures and the representational model native to
a specific shell with (b) the shell-specific programmatic data interface used to generate, modify,
and access data and knowledge structures in the native representational format Examples include
asserting and retracting structures, sending object-oriented messages, and modifying object
attributes. For example, Make-CLIPS-fact-from-fact converts a DMS fact into a string, which is
automatically inserted into the current CLIPS facts-list using the CLIPS assert function. The third

314

category encompasses shell-specific control interface capabilities such as start, clear, run, reset,
exit, and saving and loading code and/or knowledge base files.

The top-level :extract-data and :inject-data Gateway methods consolidate the intermediate-
level data interface API functions. Typically, :inject-data and :extract-data consist of program
Case statements that invoke conversion functions for translating between different types defined in
the native information model for a given shell and structures in the SOCIAL/DMS model. For
example, :inject-data may call a DMS-level API function to map and insert a DMS frame structure
as a fact-group into a CLIPS knowledge base and another to insert a DMS fact. Access direction
(reading or writing) is implicitly reflected in the developer's choice of Extract (read) or Inject
(write). Both methods are preprogrammed to dispatch automatically on data type, with options to
override defaults (e.g., to map a DMS frame into a CLIPS fact-group instead of a deftemplate).
Similarly, the rinitialize-shell method represents the locus for control interface functions. Behavior
is again classified by case and dependent on the target tool or program. For example, CLIPS
employs different API functions to load textual and compiled knowledge bases.

The remaining pair of top-level Knowledge Gateway API methods, :process-request and
rprocess-response, are application-specific. A shell-based application is integrated into a
distributed system by specializing the Gateway Agent subclass for the relevant shell.
Specialization here consists of overriding the stub versions of Process-request and process-
response inherited from KNOWL-GW and defining the required integration behaviors.
Developers redefine these two methods by employing the generic API functions :extract-data,
:inject-data, and :initialize-shell to pass information and control into and out of the target application
via its associated shell.

The Gateway model is particularly powerful for integrating shell-based appb'cations, in that
the shell-specific methods (viz., :inject-data, :extract-data, :initialize-shell), are defined only once,
namely in a KNOWL-GW subclass for the given shell. Application developers do not have to
modify these API elements unless API extensions are necessary. Any application based on that
shell can be embedded in a Gateway that is a subclass of the shell-specific Gateway Agent. The
application Gateway inherits the generic tool-specific API interface, which means that the
developer only has to program the methods :process-request (for server behaviors) and :process-
response (for client behaviors). Individual interactions with the shell are specified using the
inherited API to extract or inject particular data and to control the shell.

For custom applications, all five API methods are defined in one and the same Gateway
Agent, namely the KNOWL-GW Agent subclass level. Therefore, inheritance does not play as
powerful a role in assisting the application integrator as it does for multiple programs based on a
common shell interface. Nevertheless, the generic :in-filter and rout-filter methods are inherited,
providing the standardized message control model for peer-to-peer interactions. Moreover the
Gateway model is useful as a methodological template in that it prescribes a uniform and intuitive
partitioning of interface functionality: specific interactions between an application, its Gateway,
and external systems are isolated in :process-request and rprocess-response, which invoke the
utility API functions such as :inject-data as appropriate.

CLIPS Knowledge Gateway

CLIPS-GW is a subclass of the KNOWL-GW Agent class. As with all other Knowledge
Gateway Agent subclasses, it inherits the KNOWL-GW message structure, :in-filter and :out-filter,
and stub API methods. CLIPS-GW defines custom :inject-data, :extract-data, and :initialize-shell
methods tailored to the CLIPS knowledge model, data and control interfaces. These custom
methods are built up from a set of intermediate level API functions, which are summarized in Table
1. Specifically, :inject-data is based on Load-CLIPS-Data, which depends on CLIPS-Dispatch,
and Load-CLIPS-Files. :extract-data relies on the function gw-return. :initialize-shell invokes the

315

basic shell control API functions, based on keyword symbols specified in incoming messages.
Analogous APIs are defined for Knowledge Gateways for other AI shells, such as KEE.

Category

Shell Control

Function Behavior

Data Interface

External Interface

CLIPS-Start
CLIPS-Clear
CLIPS-Init

CLIPS-Run-Appl

CLIPS-Load-Appl
CLIPS-Reset
CLIPS-Assert
CLIPS-Retract
CLIPS-Display-Facts
CLEPS-Dispatch

Load-CLIPS-Data

Load-CLIPS-Files

gw-retum

stans CLIPS and sets a global flag
clears all facts from CLIPS fact-list
if flag is set, calls CLIPS-Clear
otherwise calls CLIPS-Start
runs CLIPS rule engine to completion
accepts optional integer to limit # of rule firings
loads a specified rule base file into CLIPS
asserts deffacts facts into CLIPS fact-list
asserts a fact (string) into CLIPS fact-list\
retracts fact (C pointer) from CLIPS fact-list
displays facts to output stream
calls a C dispatch routine to translate DMS structures
and create CLIPS facts, fact-groups, deftemplates,
or rules, as appropriate.
reads DMS data from composite DMS structure
and calls CLIPS-Dispatch on each one (except files)
reads the composite DMS object for file pathname
strings and calls CLIPS-Load-Appl
an external/user function defined to CLIPS for
passing data from rules back to Agent

Table 1. Intermediate Level API for the CLIPS Gateway Agent (Version 4.3)

The CLIPS Gateway API defines an external user function that provides a high-level
interface between a CLIPS application and its embedding Gateway. This function, called gw-
retum, enables CLIPS applications to pass data and/or control information to their Gateway Agents
by stuffing a stream buffer that is unpacked using the top-level :extract-data command, gw-return
function calls appear as consequent clauses, as illustrated in the example rule shown below, gw-
return takes two arguments - a DMS structure type such as a Fact and a string or pointer. The first
item is used to parse the datum and convert it into the specified type of DMS structure. Multiple
gw-return clauses can be placed into the right-hand side of a single rule, Also, multiple rules can
contain gw-return clauses.

(defrule TALK-BACK-TO-GATEWAY
"rule that passes desired result, a fact, that has been asserted
into appl KB back through the Gateway to requesting Agent"

?requestor <- (requestor ?appl-agent)
?answer <- (answer $?result)

=:>

(printout t "Notifying " ?requestor "of result" $?result" crlf)
(gw-retum FACT (str-implode $?result))

Messages to Knowledge Gateway Agents contain five elements, the target Agent,
Environment, Host, data, and command options. In server mode (responding to messages from
other application Agents), the CLIPS-GW :in-filter executes rinitialize-shell for the specified
command options to prepare CLIPS, invokes :process-request for the incoming data, and sets the
results. Typically rprocess-request injects data, which includes loading rule bases, runs the rule
engine, and extracts results. The :out-filter translates the :in-filter results into SOCIAL neutral
exchange format, which constitute the reply that MetaCourier returns to the requesting Agent

316

In client mode, a CLIPS application initiates a message to some external application Agent
via its embedding CLIPS Agent. Here, the :in-filter invokes :extract-data and passes the message
contents and any specified command options to the target application Agent The rout-filter then
invokes rprocess-response to deal with the reply. Typically, cprocess-response invokes :inject-data
to introduce response data into the CLIPS fact-list and restarts the CLIPS rule engine to resume
reasoning.

EXAMPLE APPLICATIONS OF CLIPS GATEWAY AGENTS

This section of the paper describes two demonstration systems that employ CLIPS Gateways to
integrate expert systems for operations support for the Space Shuttle fleet. Processing, testing,
and launching of Shuttle vehicles takes place at facilities dispersed across the Kennedy Space
Center complex. The Launch Processing System (LPS) provides the sole direct, real-time interface
between Shuttle engineers, Orbiter vehicles and pay loads, and associated Ground Support
Equipment to support these activities (Heard 1987). The locus of control for the LPS is the Firing
Room, an integrated network of computers, software, displays, controls, switches, data links and
hardware interface devices. Firing Room computers are configured to perform independent LPS
functions through application software loads. Shuttle engineers use Console computers to monitor
and control specific vehicle and Ground Support systems. These computers are connected to data
buses and telemetry channels that interface with Shuttles and Ground Support Equipment. The
Master Console is a computer that is dedicated to operations support of the Firing Room itself.

Integrating Configuration and Fault Management

The first application illustrates the use of a CLIPS Gateway in a server role to integrate
expert systems that automate configuration and fault management operations support tasks (Adler
1990). X-Switcher is a prototype expert system that supports operators of the Switching
Assembly used to manage computer configurations in Firing Rooms. X-Switcher was
implemented using CLIPS V4.3 on a Sun workstation. OPERA (for Operations Analyst) is an
integrated collection of expert systems that automates critical operations support functions for the
Firing Room (Adler 1989). In essence, OPERA retrofits the Master Console with automated,
intelligent capabilities for detecting, isolating and managing faults in the Firing Room. The system
is implemented in KEE and runs on a Texas Instruments Explorer Lisp Machine. PRACA,
NASA's Problem Reporting and Corrective Action database, was simulated using the Oracle
relational DBMS, again on a Sun workstation.

A distributed system prototype was constructed with SOCIAL, using appropriate library
Agents to integrate these three applications - a CLIPS Gateway for X-Switcher, a KEE Gateway
for OPERA, and an Oracle Gateway for PRACA. The prototype executes the following scenario.
First, OPERA receives LPS error messages that indicate a failure in a Firing Room computer
subsystem. OPERA then requests a reconfiguration action from X-Switcher via the OPERA KEE
Gateway Agent This request is conveyed via a MetaCourier message to the CLIPS Gateway
Agent. The message contains a DMS fact-group that specifies the observed computer problem, the
pathname for the X-Switcher rule base on the Sun platform, and the current Firing Room
Configuration Table. OPERA models the Configuration Table as a unit, which is KEE's hybrid
frame-object knowledge structure. The OPERA Agent automatically unpacks slot data from the
Table unit and appends it to the DMS fact-group via KEE Gateway API calls.

Upon receiving the KEE Gateway's message, the CLIPS Gateway Agent executes the following
sequence of tasks. First, CLIPS is loaded, if necessary, and initialized. Second, the X-Switcher
expert system rule base is loaded. Third, the DMS OPERA data object from the KEE Gateway
message is translated and asserted as a CLIPS fact-group. Fourth, CLIPS is reset and the rule
engine is run. X-Switcher rules derive a set of candidate replacement CPUs for the failed Firing

317

Room computer and prompt the user to select a CPU. It then displays specific instructions for
reconfiguring the Switching Assembly to connect the designated CPU and prompts the user to
verify successful completion of the switching activity. Finally, X-Switcher interacts with its
CLIPS Gateway to reply to OPERA that reconfiguration of the specified CPU succeeded or failed.
This process is triggered when CLIPS executes an X-Switcher rule containing a consequent clause
of the form (gw-return result). The CLIPS Gateway converts result into a DMS fact, which is
transmitted to the OPERA KEE Gateway. This Agent asserts this fact as an update value in a
subsystem status slot in the Configuration Table KEE unit. Finally, the OPERA Gateway
formulates an error report, which is dispatched in a message to the Oracle Gateway Agent, which
updates the simulated PRACA Problem-Tracking Database.

Configuration Data
& Switching Request

Problem Report
queries/updates

LAN

X" ^^ m ^^^~~
Switching Results i Query results 1

^CUPS Gateway

/^X-Switcher ~"\
^Expert Systeny

'

KEE Gateway1
^^^^^^ •̂̂ ^^^^ •̂̂ ^^^^^^

OPERA)
A DBMS Gateway ^

DB (simulated) \

Figure 5. CLIPS Application configured as a Server

Coordinating Independent Systems to Enhance Fault Diagnosis Capabilities

The second distributed application illustrates the use of a SOCIAL CLIPS Gateway Agent
in a client role (Adler 1991). GPC-X is a prototype expert system for isolating faults in the Shuttle
vehicle's on-board computer systems, or GPCs. GPC-X was implemented using CLIPS V4.3 on
a Sun workstation. One type of memory hardware fault in GPC computers manifests itself during
switchovers of Launch Data Buses. These buses connect GPCs to Firing Room Console
computers until just prior to launch, when communications are transferred to telemetry links.
Unfortunately, the data stream that supplies the GPC-X expert system does not provide any
visibility into the occurrence of Launch Data Bus switchovers (or the health of the GPC Console
Firing Room computer). Thus, GPC-X can propose but not test certain fault hypotheses about
GPC problems, which seriously restricts the expert system's overall diagnostic capabilities.

However, Launch Data Bus switchover events are monitored automatically by the LPS
Operating System, which triggers warning messages that are detected and processed by the
OPERA system discussed above. CLIPS and KEE Gateway Agents were used to integrate GPC-
X and OPERA, as before. A SOCIAL Manager Agent was used to mediates interactions between
these application Gateway Agents to coordinate their independent fault isolation and test activities.

Specifically, GPC-X, at the appropriate point in its rule-based fault isolation activities,
issues a request via its embedding Agent to check for Launch Data Bus switchovers to the
Manager. The request is initiated by a gw-retum consequent clause in the CLIPS rule that
proposes the memory fault hypothesis. When this rule fires, CLIPS executes the gw-return
function, which sends a message to the GPC-X CLIPS Gateway Agent. This Agent formulates a
message to the Manager which contains a Manager API task request for the LDB-Switchover-
Check service.

318

The Manager searches its directory for an appropriate server Agent for LDB-Switchover-
Check, reformulates the task data into a suitable DMS-based message, and passes it to the OPERA
KEE Gateway Agent The rprocess-request method for this application Agent performs a search of
the knowledge base used by OPERA to store interpreted LPS Operating System error messages.
The objective is to locate error messages, represented as KEE units, indicative of LDB switchover
events. The OPERA Gateway :out-filter uses the Manager API to translate search results into a
suitable DMS structure, which is posted back to the Manager. In this situation, the OPERA
Gateway Agent contains all of the request processing logic: OPERA itself is a passive participant
that continues its monitoring and fault isolation activities without significant interruption.

Next, the Manager returns the results of the LDB-Switchover-Oheck request back to GPC-
X's CLIPS Gateway Agent. The Agent :in-filter executes the :process-response method, which
transparently converts the Manager DMS object into a CLIPS fact that is asserted into the GPC-X
fact base. Finally, the GPC-X Agent re-activates the CLIPS rule engine to complete GPC fault
diagnosis. Obviously, new rules had to be added to GPC-X to exploit the newly available
hypothesis test data. However, all of the basic integration and coordination logic is supplied by the
embedding GPC-X Gateway Agent or the HDC-Manager.

Manager Agent
Agent/Services Directory

Intelligent Router

LAN

1

(D > '
request for LDB data

LDB data request response

i ©
task results

^ 1
LDB data search task -±

CLIPS Gateway
GPC-X

Expert System

KEE Gateway

(OPERA

Figure 6. CLIPS Gateway configured as a client

This SOCIAL prototype demonstrates non-intrusive system-level coordination of
distributed applications that solve problems at the subsystem level. Neither application is capable
of full diagnosis individually. GPC-X can generate GPC fault candidates, but lacks data
concerning other LPS subsystems that is necessary for testing these hypotheses. OPERA
automatically detects LPS error messages that are relevant to GPC-X's candidate test requirements.
However, it lacks the contextual knowledge about GPC computers, and awareness of GPC-X's
capabilities and current activities, to recognize the potential significance of specific LPS data as a
test for GPC-X fault hypotheses. Gateway Agents integrate the two systems, supplying
communication and data mapping capabilities. The Manager establishes the logical connections
required to combine and utilize the fragmented subsystem-specific knowledge of the two
applications to enhance diagnostic capabilities. This coordination architecture is non-intrusive in
that neither system was modified to include direct knowledge of the other, its interfaces,
knowledge model, or platform. The Manager directory and routing capabilities introduce an
isolating layer of abstraction, enhancing the "plug-compatible character of the integration
architecture.

319

RELATED WORK

The most closely related research to SOCIAL CLIPS Gateway Agents is the AI Bus (Schultz
1990), a framework for integrating rule-based CLIPS applications in a distributed environment.
SOCIAL and AI Bus both rely on modular message-based communications. AI Bus uses a client-
server model based on remote procedural calls that is currently restricted to Unix hosts. SOCIAL'S
MetaCourier layer supports a fully peer-to-peer model that is transparent across diverse platforms.
SOCIAL and AI Bus integrate applications using Agents, whose API functionality are roughly
comparable. Each Agent has a dedicated message control module and can communicate directly
with one another. Indirect interactions are mediated by a dedicated organizational Agent, the
SOCIAL Manager or the AI Bus Blackboard. It appears that AI Bus Agents are currently restricted
primarily to CLIPS-based knowledge sources, while SOCIAL Gateways provide broader support
for KEE, CLIPS, and other tool-based and custom applications.

Other tools for developing heterogeneous distributed intelligent systems include GBB
(Corkill 1986), ERASMUS (Jagannathan 1988), MACE (Gasser 1987), and ABE (Hayes-Roth
1988). These systems lack SOCIAL'S modular, layered, architecture, and are considerably less
extensible below the top-level developer interfaces. GBB and ERASMUS impose a blackboard
control architecture for integrating distributed applications. ABE allows multiple kinds of
interaction models (e.g., transaction, data flow, blackboard), but it is not clear how easily these
can be combined within a single system. MACE provides few organizational building blocks for
developing complex architecture beyond a relatively simple routing Agent. None of these
frameworks provide a predefined integration interface to CLIPS, although ABE and GBB include
simple "black box" tools such as external or foreign function call passing to build one.

STATUS AND FUTURE DEVELOPMENT

The original CLIPS Gateway Agent was implemented for CLIPS V4.3 in Franz Common Lisp,
using a foreign function interface to the CLIPS API, which is written in C. Within the next year,
we intend to develop a full C implementation of the Agent. This Agent will also be extended to
reflect enhancements in CLIPS V5.0, most notably, procedural programming and the CLIPS
Object-Oriented Language.

CONCLUSIONS

CLIPS was designed to facilitate embedding intelligent applications within more complex systems.
However, lacking built-in support for distributed communications capability, applications
implemented with CLIPS are generally "hardwired" directly to other software systems residing
either on the same platform or on a parallel multi-processor. Moreover, CLIPS integration
interfaces are typically custom-built, by systems level programmers who are experienced with the
mechanics of interprocess communication. SOCIAL CLIPS Gateway Agents provide a
generalized, high-level approach to integrating CLIPS applications with other intelligent and
conventional programs across heterogeneous hardware and software platforms. Gateways exploit
object-oriented inheritance to partition generic distributed communication and control capabilities,
shell-specific APIs, and application-specific functionality. Developers need only learn the high-
level APIs to integrate CLIPS applications with other application Agents. SOCIAL'S modular and
extensible integration technologies promote a uniform, "plug compatible" model for non-intrusive,
peer-to-peer interactions among heterogeneous distributed systems.

ACKNOWLEDGMENTS

Development of SOCIAL, including the CLIPS Gateway Agent, was sponsored by the NASA
Kennedy Space Center under contract NAS10-11606. MetaCourier was developed by Robert
Paslay, Bruce Nilo, and Robert Silva, with funding support from the U.S. Army Signals Warfare

320

center under Contract DAAB10-87-C-0053. Rick Wood designed and implemented the C portions
of the CLIPS Gateway API. Bruce Cottman developed the prototypes for SOCIAL'S data
management tools and the Oracle Gateway Agent

REFERENCES

Adler, R.M. (1991). A Hierarchical Distributed Control Model for Coordinating Intelligent
Systems. Proceedings, 1991 Goddard Conference on Space Applications of Artificial Intelligence.
NASA CP-3110. pp. 183-198.

Adler, R.M. and Cottman, B.H. (1990). EXODUS: Integrating Intelligent Systems for Launch
Operations Support. Proceedings, Fourth Annual Workshop on Space Operations, Applications,
and Research Symposium (SOAR'90). NASA CP-3103. pp. 324-330.

Adler, R.M., Heard, A., and Hosken, R.B. (1989). OPERA - An Expert Operations Analyst for A
Distributed Computer Network. Proceedings, Annual AI Systems in Government Conference.
IEEE Computer Society Press. Washington, DC. pp. 179-185.

CLIPS Reference Manual. (1989).Version 4.3. Artificial Intelligent Section, Johnson Space
Center, Houston, TX.

CLIPS Reference Manual. (1991). Version 5.0. Software Technology Branch, Johnson Space
Center, Houston, TX.

Corkill, D.D., Gallagher, K.Q., and Murray, K. (1986). GBB: A Generic Blackboard
Development System. Proceedings Fifth National Conference on Artificial Intelligence, pp. 1008-
1014.

Gasser, L., Braganza, C., and Herman, N. (1987). MACE: A Flexible Testbed for Distributed AI
Research, in Distributed Artificial Intelligence Vol. 1. M. Huhns (Ed.) Morgan Kaufmann. Los
Altos, California, 1987.

Hayes-Roth, F., Erman, L.D., Fouse, S., Lark, J.S., and Davidson, J. (1988). ABE: A
Cooperative Operating System and Development Environment in A. H. Bond and L. Gasser,
(Eds.) Readings in Distributed Artificial Intelligence. Morgan-Kaufmann. Los Altos, CA.

Heard, A.E. (1987). The Launch Processing System with a Future Look to OPERA. Acta
Astronautica, IAF-87-215.

Jagannathan, V., Dodhiawala, R., and Baum, L. (1988). The Boeing Blackboard System: The
Erasmus Version. InternationalJournal of Intelligent Systems, vol. 3. no. 3. pp. 281-294.

Schultz, R.D., and Stobie, I.C. (1990). Building Distributed Rule-Based systems Using the AI
Bus. First CUPS Conference Proceedings. NASA CP-10049. pp.676-685.

Symbiotics, Inc. (1990). Object-Oriented Heterogeneous Distributed Computing with
MetaCourier. Technical Report. Symbiotics, Inc. Cambridge, MA.

321

