
N92-16611
RULE GROUPINGS IN EXPERT SYSTEMS USING NEAREST
NEIGHBOUR DECISION RULES, AND CONVEX HULLS.

Stergios Anastasiadis

McGill University, School Of Computer Science,
3480 University Avenue,
Montreal, Quebec, Canada, H3A 2A7.
stergios@bnr.ca
calserg@homer.cs.mcgill.ca

Abstract Expert System shells lack in many areas of software engineering. Large rule-based systems are
not semantically comprehensible, difficult to debug, and impossible to modify or validate. Partitioning a set
of rules found CLIPS, into groups of rules which reflect the underlying semantic subdomains of the problem,
will address adequately the concerns stated above. In this paper we introduce techniques to structure a
CLIPS rule-base into groups of rules that inherently have common semantic information. The concepts
involved are imported from the fields of A.I., Pattern Recognition, and Statistical Inference. Techniques
focus on the areas of feature selection, classification, and a criteria of how "good" the classification tech-
nique is, based on Bayesian Decision Theory. We discuss a variety of distance metrics for measuring the
"closeness" of CLIPS rules and describe various Nearest Neighbor classification algorithms based on the
above metrics.

INTRODUCTION

Knowledge is a collection of related facts that can be used in inference systems such as CLIPS. A
production rule is a method for representing knowledge, among others that exist in the world of
knowledge representation, such as inclusion hierarchies, mathematical logic, frames, scripts,
semantic networks, constraints, and relational databases[10]. In CLIPS this method of representa-
tion is particularly appropriate since knowledge is "action-oriented". Although production rules
lend themselves to be used in inference systems, validation and verification of syntactic and
semantic correctness is difficult to achieve.

Rule-based systems have been developed with a very narrow scope. They don't allow
interaction with other types of knowledge and mechanisms used to derive the required results are
driven by pure syntactical procedures. Therefore, to move away from isolation, rules must not
embody all of the knowledge in a system and furthermore, rules must encapsulate semantic infor-
mation that would make the derivation process more sophisticated and efficient.

Production systems are not developed one rule at a time, but the complexity and success of
the system relies on the inter-dependencies and interactions between rules[7]. Small systems
might contain a couple of hundred rules, resulting in a total of many hundreds and/or thousands of
patterns that must be matched in order to logically proceed to another derivation. This results in
exponential growth of pattern matching without taking advantage of the dependencies and inter-
actions that exist between rules ; which dependencies and interactions were the reasons why the
system was established to begin with.

464



CLIPS does provide salienpes for rules as a semantic feature of the rule-base. This alone
does not help in removing redundancies or improving the validity of the system. Grouping the
rule-base into groups of related rules will extract the underlying domain knowledge from the rule-
base. Attaching then priorities to each group, and to each rule in a group will further help the sys-
tem in its derivation process, in its ability to distinguish between various types of knowledge
[2,3], and in its ability to exchange and communicate with other types of knowledge in order to
validate, verify, and explain its conclusions [1].

In this paper we will present a mechanism to measure distances between CLIPS rules, and
using those results we will present classification schemes that will insert rules into the appropriate
group.Then we will also show how accurate the classification schemes are by providing a statisti-
cal estimation of misclassification. This estimation will help when one has already classified the
rules into groups, and requires to insert a new rule into the "best" group. Finally, we will make
some concluding remarks and some possible extensions to the scheme.

OVERVIEW OF METHOD

The general approach is to select the crucial information from a rule, and classify it in the appro-
priate group. Therefore, feature selection, extraction, and classification is the logical route fol-
lowed by this scheme. One can either allow the system to generate the groups on its own, or the
user can choose a rule that represents a group, and then the system classifies the other rules
accordingly.

The important characteristics that are going to be used from a rule are inserted in a feature
vector X. The required parsing of the rule is done in order to fill in the vector. Information that is
selected from a rule are patterns from the antecedent, consequent, or from both. Hence, each rule
has its own feature vector,

/ v v
i — \ 'M* 2» • •

where d is the feature vector size, and i is the rule number. The feature vector size has a
value that is set before run-time, and depends on how complex the rules are. The more patterns
that exist, the higher value d will obtain.

The general flow is as follows :

xl v

Class
Index

Feature Extractor
X2 N

xd \

Classifier

BLACK BOXWHITE BOX

The "WHITE BOX" of the feature extractor is application dependant and produces the
feature vector for a given rule. The "BLACK BOX" of the classifier is a universal method com-
prised of a discriminant function and a maximum selector that returns some class index indicating
which group the rule has been put in. The "BLACK BOX" classifier is shown in Figure 1.

465



xl
X2

xd

MAX

SELECTOR

Some

Index

i

Figure 1: "BLACK BOX" Classifier.

The discriminant function indicates the confidence that a feature vector comes from a par-
ticular class or group of rules. In Figure 1 the function gj(x) is the discriminant function, and m is
the number of classes or group of rules that exist in the system. The selector is used as a "voting"
mechanism to finally determine where the rule belongs.

Graphically, decisions are represented as regions, and the boundaries between regions are
determined by the difference among the discriminant functions that represent each region. For
example given two feature vectors Xj, X2, and regions RI, R2,

men me boundaries are found
through the equation:

gl(X)-g2(X) = 0

The regions might look like what is shown in Figure 2.

X2

— ^ R2

Figure 2 : Boundaries between regions.

466



DISTANCE METRICS

Different metrics capture different information from the rule-base of an expert system, and each
rule-base lends itself to a particular distance metric. In CLIPS a rule-base is made up of rules with
antecedents and consequents. Each antecedent or consequent is composed of patterns which
match facts in working memory during run time. Each pattern is further divided into tokens,
which in CLIPS can be a word, string or number.

As part of our formulation reserved words are ignored. All strings and variables are sup-
pressed. Strings convey little domain knowledge, and variables have values only during run time,
are local to a rule, and hence cannot carry along information when we are statically relating rules.

Here are the four distance metrics that will be used in our classification scheme :

„,„ i /, o\\ NumOfTokensInRulel+NumOfTokensInRule2Dall (Rule (1,2)) =

Dcon (Rule (1,2)) =

NumOfCommonTokensFromRule 1 andRule2

NumOfTokensInCqnOfRulel + NumOfTokensInConOfRule2
NumOfCommonTokensInConFromRulelandRule2

NumOfTokensInAntOfRulel + NumOfTokenslnAntOfRule2
t(Ru ' NumOfCommonTokensInAntFromRule 1 andRule2

NumOfTokensInConOfRulel + NumOfTokensInAntOfRule2
Dca (Rule (1,2)) = NumOfCommonTokensInConFromRulelandAntFromRule2

If any of the denominators of the above metrics is zero, then the value will be infinity. This
is the case because we can see that the commonality between two rules is inversely proportional
to the distance between them. Hence, a small distance indicates that the two rules have many pat-
terns in common.

The Dca metric is used when the fundamental relationships between the rules of the sys-
tem drive the derivation process from the consequent of one rule to the antecedents of other rules
(refer to example 1). If in a rule-based system a large amount of knowledge is present in the ante-
cedent of the rules, then the Dant metric would be appropriate. Similarly for the consequent part,
then Dcon would be the metric of interest. Finally, it might be the case, as in diagnostic systems,
that rule-interdependency does not allow one to use one of the above three metrics. Both the ante-
cedent and the consequent of each rule play a different role each time a new derivation is to be
made. So, since we want to take both sides into consideration, the Dall metric will be used (refer
to example 2).

The following examples illustrate how the above metrics are used, and how one makes the
decision on using a particular metric :

467



EXAMPLE 1:

(defrule rulel (a) => (assert (b))
(defrule rule2 (b) (c) => (assert (d))
(defrule ruleS (d) (e) => (assert (f))

Dca(l,2) = 3/1= 3; Dant(l,2) = Dcon(l,2) = INFINITY; Dall(U) = 5/1 = 5.
Dca(l,3) = Dant(l,3) = Dcon(l,3) = Dall(l,3) = INFINITY.
Dca(2,3) = 3/1 = 3; Dant(2,3) = Dcon(2,3) = INFINITY; DaU(2,3) = 6/1 = 6.
Therefore, Dca would be the appropriate metric to use.

EXAMPLE 2:

(defrule rulel (a) (b) => (assert (c)) (assert (d)))
(defrule rule2 (a) (e) => (assert (f)) (assert (g)))
(defrule rule3 (c) (d) (h) => (assert (i)))

Dca(l,2) = Dcon(l,2) = INFINITY; Dant(l,2) = 4/1=4; Dall(l,2) = 8/1 = 8.
Dca(l,3) = 5/2; Dcon(l,3) = Dant(l,3) = INFINITY; Dall(l,3) = 8/2 = 4;
Dca(2,3) = Dcon(2,3) = Dant(2,3) = Dall(2,3) = INFINITY;
The metric Dcon is ruled out, but Dca and Dant have unstable behaviors. Therefore, Dall would
be selected.

CLASSIFICATION

The approaches that will be presented here are algorithmic and graphical. Three classification
schemes are introduced, and an attempt will be made to analyze these schemes through some
graphical representation. Then the Nearest Neighbor rule will be introduced, along with how the
three schemes fit in to the decision making.

The basic assumption here is that initially each rule belongs in its own group, although the
user has the ability to create initially his own groups with a representative rule from the rule-base
being the initial member of each group. Lets begin with some definitions.

Let <X,C) = {Xj, Q;...; XN, CN) be the set of N pattern samples available, where N is
the number of rules in the CLIPS rule-base, and Xj and Q denote, respectively, the feature vector
and the label for the classification information of the ith pattern sample. Values for C, are in the
range [Urn], where m is the number of groups present in the rule-base as defined above. It's obvi-
ous with the above assumption that 1 <= m <= N.

In the following schemes training and testing a set of data samples is frequently used.
Training a data set means to use a decision rule (and in our case it will be the Nearest Neighbor
rule) that will insert each of the feature vectors into the appropriate group. Given this initial clas-
sification one takes another set of data, that is possibly mutually exclusive from the training set,
and examines if the feature vectors in the set for testing could be classified correctly in the classi-
fication scheme derived during the training session.

Here are the three methods for classification :

468



METHOD 1: (Resubstitution - R method).[5]
The steps for classification are :
1) The classifier is trained on <X,C}.
2) The classifier is tested on <X,C}.

METHOD 2 : (Holdout - H method).[4]
The steps are:
1) Partition <X,C> into K randomly chosen pajrs of sets of equal size

such that for i = 1,...,K , {X,C}l
a and {X.C}1), are mutually exclusive.

2) For i = 1,...,K , train the classifier on {X,G>^a and test it orf {X.C}1}, .
METHOD 3 : (Leave-me-out - U met hod). [8]

The steps are :
1) Take one pattern sample <Xj, Q} out of <X, C> to create {X, C}j.
2) Train the classifier on {X, C},.
3) Test the classifier on {Xj, Q>. If Xj is classified into the group associated with

set Cj = 0; otherwise 6j = 1, where Cj acts as an error indicator.
4) Do steps l)-3) for i = 1, ... , N to obtain values for all ei's.

j, then

It turns out that the R-method is very biased as one will see when calculating the probabjl-
ity of misclassification. For the H-method traditionally 50 percent of the available samples have
been used for training, and the other 50 percent for testing, and in the U-methqd wheq N is partic-
ularly large the method works well, but when N is relatively small it is not very reliable. Further-
more, it is an overly optimistic estimate of performance. Although lots of computations are
required, the method tends to be unbiased and uses all the available data with high variance in dis-
crete cases.

Apply the Nearest Neighbor rule with one of these methods (see next section on Nearest
Neighbor rule), and fill in the values in {X, C}.

Now how can one graphically take this information and check for correctness? This can be
done through what is called a convex hull. Let R denote the set of real numbers. Then R2 denotes
the set of all points in the plane. Define a set of points p from R2 as being a convex domain if, for
any two points x and y in D, the line segment xy is entirely contained in D. So if S is a set of
points from R2, then the convex hull of S is the boundary of the smallest convex domain in R2

containing S [9]. See Figures 3,4 for an example of a convex domain and a convex hull, respec-
tively.

Line segment xy
lies outside D.

Not a convex domain.

A convex domain.
Figure 3 : Convex Domain.

469



X

X

Figure 4 : The convex hull of the points on the left is on the right

One can transform the set of points in <X, C} using a function F, the details of whicfy are
beyond the scope of this paper. So applying F to each element of {X, C> one has :
F(Xj, Q) = (i, k) meaning that rule i belongs to group k, for every i belonging to [1,N].Hence, we
have pairs of numbers that can be graphed in R just like in Figure 4, but the difference here is
that one does not construct the convex hull of the entire set, but one builds the convex hulls pf
each group individually. So, if after classification one finds that the N original rules fall in r (wjth
1<= r <= m <= N) distinct groups, then it must be the case that the r convex hulls that are pro-
duced are all linearly separable between them (refer to Figure 5 for an example).

Two sets of points are linearly separable if and only if there exists a hyperplane H that
separates them [9]. Therefore, two sets are separable if there convex hulls are disjoint, and our
classification is a success only if all the convex hulls that correspond to the groups that have been
derived are disjoint between them.

Group X and Y are not
classified properly. Failure.

Group X and Y are classified
properly. They have disjoint
convex hulls.

Figure 5 : Two separable sets on the right and two non-separable sets on the left.

470



NEAREST NEIGHBOR RULE

The basic idea behind this concept is given a rule "A" find its distance with all the other rules in
the training set. From those distances one chooses the smallest, and classify rule A as being in the
same group as the rule for which they have the smallest distance.

Let G = the number of samples in the training set. Therefore, there are N -G samples in the
testing data set.The general algorithm general algorithm is shown below :

Assign K = G
CLASSIFY the training set
FOR every rule i in the testing set

CALCULATE the distance of rule i with all other rules in the training set
FIND the K smallest distances between rule i and every rule in the training set
FOR every K-pair of rules (i,j) if rule j belongs to group A, then group A gets a vote
FIND the group that has the most votes, say A . Then rule i is classified in A .

Many of these steps can be done together, but it's written out explicitly in order for one to
understand the algorithm. As one can see by varying K, one can get any of the above methods.
Particularly one may also group the rules into a testing set and a training set discretely, choosing
possibly mutually exclusive sets. Finally, as mentioned earlier, by classifying a training set one .
simply results to the default, where each rule belongs in its own group, or the expert selects rules
that might be pivotal to a derivation as being the head of a group.

In the experiments that will be discussed the U-method was used. If K = 1, then it's the
pure method, otherwise by varying K one is able to classify even with a more unbiased attitude.
The ideal value for K, as mentioned in many papers and proven empirically, is:

ESTIMATION OF MISCLASSIFICATION

For each of the above methods a probability of misclassification will be derived. There
exist many probabilities of error that are used in ones analysis. Here we will consider two, and the
second one will be chosen for our derivations.

471



OPTIMAL/BAYES PROBABILTY OF ERROR : It is denoted by PB
e and is given by:

P(X/Ci) and P(Q) are the class conditional probability density function and a priori proba-
bility of the ith group, respectively. The maximum value of the product is taken over all i, ie. over
all possible groups of rules in the system. This error probability results when one has complete
knowledge of the probability density functions with which to construct the optimal decision rule
and uses the Bayes decision rule [6].

PROBABILITY OF ERROR : It is denoted by Pe and is the probability of error on
future performance when the classifier is trained on the given data set. In practice one usually
obtains a data set which is not only finite, but in fact quite small. Frequently no knowledge is
available concerning the underlying distributions. In such cases one would like to know what the
resulting probability of error is going to be on future pattern samples when the classifier is trained
on the given data set. All the above methods train and then test the classification. Using this prob-
ability one will see how "good" the original classification was.

Let Pe[R] denote the probability of error for the R-method using the Nearest Neighbor
rule. If K denotes the number of incorrect classification attempts in step 2) of the process, then the
resulting probability is K / N, where N is the number of rules in the system.

Let Pe[H] denote the probability of error for the H-method using the Nearest Neighbor
rule. At step 2) of the experiment let Pe[H], be the number of errors found when attempting to test
<X, C>lb on the trained classifier <X, C}l

a. With i varying from 1,..., K, then the resulting proba-
bility of error is:

(l/K)(Pe[H]1 + ... + Pe[H]K).

Let Pe[U] denote the probability of error for the U-method using the Nearest Neighbor
rule. During the entire process one has been tabulating the errors of misclassification when testing
a sample pattern on the trained set (ej). Therefore, the resulting probability of error is :

... + Pe[U]N).

In spite of its advantages with regards to bias, the U-method suffers from at least two dis-
advantages. Although it is desirable to have the average of errors "close" to the actual error of
probability, it is more important to use a method with a small variance. Having confidence about a
particular classification of a data set might be preferred to being just unbiased. It has been shown
that the U-method has much greater variance than the R-method, making it even more likely that
it will be used less, compared to the simplicity of implementation of the R-method. Finally, the U-
method requires excessive computation in the form of N training sessions, unless N is small.

472



EXPERIMENTAL RESULTS

Table 1: U-Method

K

6

12

24

36

ERRORS

2

5

13

24

The analysis of the automobile rule-base (auto.clp)
There are 36 rules. The Dcon metric for obvious reasons
is used. From the rules, 3 are selected as group leaders.
One rule summarizes diagnostics, the second rule
captures data collection and the other possible solutions.
One uses the Nearest Neighbor rule with the U-method.
Various values for K are considered. Observe that the
square root of N (ie. 36) is the best solution.
Errors indicate how many misclassifications were
attempted. Simialr results are derived with other
methods.

CONCLUSIONS

From the information presented it is evident that there is more information encapsulated in the
system. Underlying subdomains are created with more semantics attached to them in terms of
classification, validation of the semantics of the rule-base is achievable through convex hulls, the
rule-base is now more semantically comprehensible, and problems are simpler to debug.

Initially one must select the appropriate distance metric, choose a suitable method of clas-
sification depending on the characteristics of the system, and apply the Nearest Neighbor rule to
the data. At the same time errors at run time are collected in order to come up with a probability of
misclassification.

As an extension to the scheme one might add saliences to each group derived, and to fur-
ther enhance the system one might add saliences to each rule in a group. Another addition might
include for the system to select on its own the best metric after examining the probabilities of
error along with the data. It is obvious that this analysis can be executed when entering the CLIPS
shell, but as one develops the rule base it is possible to classify one rule at a time, or gather newly
defined rules and process them in batch mode. Finally, gathering information on how many times
a rule is used, how many times a rule is used to initiate a derivation, and how many times a rule is
used to conclude a derivation can prove to be very useful information in a more complex scheme
of classifying a rule-based system.

ACKNOWLEDGEMENT

I would like to thank Bell-Northern Research Ltd. for the resources that were used in order
for this research to be completed and published.

473



REFERENCES

[1] S. Anastasiadis (1990). CLIPS Enhanced with Objects, Backward Chaining, and Explanation
Facilities. First CLIPS Conference Proceedings, Houston, pp. 621-641.

[2] B. Chandrasekharan (1986). Generic tasks in knowledge based reasoning: High-level build-
ing blocks for expert system design. IEEE Expert, Fall 1986.

[3] WJ. Clancey (1983). The advantages of abstract control knowledge in expert system design.
National Conference on Artificial Intelligence, pp. 74-78,1983.

[4] R. Duda, P Hart (1973). Pattern classification and scene analysis, New York: Wiley, 1973.
[5] W. Highleyman (1962). The design and analysis of pattern recognition experiments. Bell Sys-

tem Tech. Journal, vol. 41, pp. 723-744, Mar. 1962.
[6] R.V. Hogs, E.A. Tanis (1977). Bayesian Decision Theory. Probability and Statistical Infer-

ence, Macmillan.
[7] M.R. Genesereth, NJ. Nilsson (1987). Knowledge and Belief. Logical Foundations of Artifi-

cial Intelligence, Morgan Kaufmann.
[8] P. Lachenbruch (1967). An almost unbiased method for obtaining confidence intervals for the

probability of misclassification in discriminant analysis. Biometrics, vol. 23 , pp. 639-645,
Dec. 1967.

[9] F.P. Preparata, M.I. Shamos (1985). Convex Hulls : Basic Algorithms. Extensions and Appli-
cations. Computational Geometry, Springer-Verlag.

[10] S.L. Tanimoto (1987). Productions and Matching, Knowledge Representation. The Elements
of Artificial Intelligence, Computer Science Press.

474




