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1 Introduction

This report summarizes the progress on compression of video sequences during the second

period of grant no. NAGS-1186. The overall goal of the research was the development of

data compression algorithms for high-definition television (HDTV) sequences, but most of

our research is general enough to be applicable to much more general problems. As the title

suggests, we have concentrated on coding algorithms based on both sub-band and transform

approaches.

Two very fundamental issues arise in designing a sub-band coder. First, the form of the

signal decomposition must be chosen to yield band-pass images with characteristics favorable

to efficient coding. The idealized decomposition is compromised by the width of transition

bands of the band-splitting filters, which should be of practical design, with as few coefficients

as possible. Thus, the design of band-pass filters occupies an important place in our research.

A second basic consideration, whether coding is to be done in two or three dimensions, is

the form of the coders to be applied to each sub-band. Here again, computational simplicity

is of essence.

We have investigated both of the above issues during the past year, and will discuss them

in the following sections. In Section 2 we will review the first portion of the year, during which

we improved and extended some of the previous grant period's results. Section 3 will cover

the pyramid nonrectangular sub-band coder limited to intra-frame application. Perhaps

the most critical component of the sub-band structure is the design of bandsplitting filters.

We apply very simple recursive filters, which operate at alternating levels on rectangularly

sampled, and quincunx sampled images. We will also cover the techniques we have studied

for the coding of the resulting bandpass signals. In Section 4, we discuss adaptive three-

dimensional coding which takes advantage of the detection algorithm developed last year.

To this point, all the work on this project has been done without the benefit of motion

compensation (MC). Motion compensation is included in many proposed codecs, but adds

significant computational burden and hardware expense. We have sought to find a lower-cost

alternative featuring a simple adaptation to motion in the form of the codec. In sequences

of high spatial detail and zooming or panning, it appears that MC will likely be necessary

for the proposed quality and bit rates.

Three graduate students and one post-doctoral researcher have benefitted from the finan-



cial support of Grant NAG3-1186. During the first three months of the year, Coleen Jones

finished and defended her thesis on sample allocation through detection of dynamics and

exploitation of properties of the human visual system. She is now employed by the National

Institute of Standards and Technology in Boulder, Colorado, doing research on quantitative

standards of image quality. Qian Wei moved on to a new appointment at the University of

South Florida after helping us with nonlinear filter design continued from the previous grant

period. Filter design is currently the pursuit of Jie Wang, a second-year Ph.D. student. Xi-

aohui Li replaced Ms. Jones last spring, and has done most of the work on design of subband

coders, and implementation of others, such as the JPEG standard still-image coder.



2 Completion of Previous Topics

For the first months of 1991, after the completion of the previous grant period, Coleen Jones

and Qian Wei remained with the project, and extended their work from the previous final

report's information. Mr. Wei's work during the later period was in more extensive simulation

of our proposed nonlinear preprocessing filter [1]. His results established more dependable

guidelines for choosing the IIR filter coefficient in the linear module of the preprocessing

filter.

At the end of the previous period, we faced the problem of estimating the partition

constant used to normalize the Gibbs distribution describing the pixel level MRF in our

model for binary fields of detected active pixels. The general form of the density function

with external field parameter 71 and inter-pixel bond ft is

, \ h j - h k \ +

where the /&, are the binary results of pixel-level detection of temporal change. The con-

stant is dependent on the pixel-level detection probabilities, which are periodically updated

after noise estimation. Our goal was to approximate the denominator constant with a form

which would allow a simple update, and recomputation of threshold value for the maximum-

likelihood block classification. Our solution, which appears to work well, was approximating

the constant as the product of two terms, representing the interpixel cost, and the external

field:

Z(ft, 71) = C(ft)(l + exp(-7l))" = C(ft)(l - Pl)-
N,

with pi the probability of each pixel's being detected as active. This form is similar to

the zero connectivity case, and equal to it when ft = 0, implying C(/3) = 1. Since ft is

constant through the sequence, this number need only be chosen or estimated once, after

which the constant, and therefore the block threshold can be simply adjusted. Ms. Jones

also performed simulations on other sequences, assuring the more general applicability of her

work. Further details are available in [2, 3, 4].

3 Pyramid Coding with Non-Rectangular Sub-Bands

Sub-band coding methods have been shown useful and flexible for many applications in

speech and image processing[5, 6]. Their performance in image compression is comparable



to that of the ubiquitous discrete cosine transform (DCT), but error is localized in frequency,

rather than space, and effects such as block boundary visibilities are naturally avoided. The

usual frequency-domain geometry of decomposition is a series of rectangles. This allows

the use of separable filters with design in one dimension. In the following discussion, we

will elucidate only the algorithms for coding the luminance portion of the video sequence.

The lower bandwidth chrominance images are compressed at lower resolution by a JPEG

transform-based technique[7j.

As was demonstrated in our previous work[2] and that of other researchers, the human

visual system (HVS) has curves of constant sensitivity in the spatial frequency domain which

are approximately diamond-shaped. Thus lowpass filtering for data reduction is ideally done

using non-rectangular passbands. Ansari, et al.[8] exploited this fact in a sub-band coder

which lowpass filtered each image, followed by a two sub-band decomposition of the remain-

ing signal shown in Fig. 1. The diamond-shaped passband allows a quincunx downsampling

of the original image with an immediate reduction of sampling density by a factor of two.

The quincunx image in [8] underwent one further band separation, with the lowest band

coded by the DCT.

If high resolution imagery is to be available to devices with widely varying sampling

rates, transmitted through channels of varying capacities, it may be necessary to bandlimit

a given image at several levels. Since the diamond-shaped sensitivity contours hold over

a broad range of spatial frequencies, it appears desirable to have available a hierarchy, or

pyramid, of frequency sub-bands. This is also true for temporally adaptive three-dimensional

coding of image sequences, as illustrated in [9]. The form of the proposed decomposition

is simply a generalization of that in Figure 1, with the inner square further decomposed

recursively. While the pyramid need not stop at a particular level, we have found a five-

band decomposition adequate for our purposes.

The decomposition process can be understood by considering the transition from one

level of the pyramid to one other. For simplicity, we describe the first, which is illustrated

in Fig. 2. By bandlimiting the image to the diamond shape, we can produce two images

whose sum is the original. Each of the resulting images is now sampled at a rate twice the

necessary density. Provided aliasing is excluded, each image can be decimated by a factor

of two in a quincunx pattern, as shown in Fig. 3. Should we wish to recombine to recover

the original image, each sub-band can be interpolated to the original sampling rate, and
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Figure 1: Shape of sub-band decomposition proposed by Ansari, et al.
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Figure 2: Single stage of diamond-shaped sub-band decomposition. "2Q" indicates a
quincunx decimation reducing rate by 2. Shaded portions represent the passbands of corre-
sponding band-splitting filters. Channel effects are not included here.
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Figure 3: Quincunx sampling pattern resulting from "2Q" decimation after separation of
previous figure.

bandpass filtered before summing.

Even when some aliasing exists in the decimated images, perfect reconstruction filter

banks can produce aliasing cancellation in the final result to erase error[10]. In the absence

of coding and channel errors, the output in Fig. 2 can be written as

X(z) = [HL(z}GL(z) + HH(Z}GH(z)}X(z) + [HL(-z)GL(z) + HH(-z)GH(z)]X(-z). (1)

Here we have adopted the vector notation z for (21,22)- Provided the second term on the

right-hand side is zero, aliasing will be cancelled at reconstruction. Perfect reconstruction

follows also if the first term equals 1.

Note that the two quincunx-sampled sub-band images may be thought of as being repre-

sented on a rectangular grid, rotated by 45 degrees from the original. In this orientation, we

can think of again lowpass filtering the low-frequency image to separate bands as at the first

level. The resulting decimated lowpass image will be sampled on a rectangular grid which is

decimated by a factor of two in each coordinate relative to the original. This process can be

continued in a pyramid fashion, with successive lowpass images of smaller size, alternating

between rectangular and quincunx grids.

We have studied the filter design and coding aspects of the pyramidal non-rectangular

sub-band coder, and implemented a version which appears to perform well at intraframe bit

rates of about 1.0 to 1.5 bits/pixel for color imagery. These rates would allow transmission

of HDTV sequences at about 30-45 Megabits/sec with very limited hardware expense.



3.1 Design of Recursive Bandsplitting Filters

Recursive (IIR) filters for sub-band coding offer good performance with significantly reduced

computational cost[ll, 12]. We use only IIR bandsplitting niters in the work presented here.

Two fundamental filter modules form the core of the entire filter structure for the tree-

structured sub-band decomposition. For the separation of bands at the coder (analysis

filters), we employ the filters described by:

-[1 + zlT(zlz2)T(zlz^1)} (Lowpass) (2)
2

}} (Highpass) (3)

where T(z) — (4)

and T(ziz^1) are one-dimensional all-pass filters, operating on an image in diagonal

directions. The desired frequency response is created by phase cancellations. Higher order

filters substituted for T(z) have narrower transition bands, but do not necessarily yield better

results. These second-order prototypes guarantee perfect reconstruction if the synthesis

filters are chosen to be causality-inverted, scaled versions of the analysis filters[8]. That is,

the conditions imposed above by (1) are satisfied by

(5)

(6)

The most effective implementation of the filter blocks HL,HH can be achieved using the

concatenation in Fig. 4.

Note from (2)-(4) that a single frequency response, either that of the lowpass or highpass

module, specifies the entire system. The frequency responses for typical implementations

of HL(Z\,ZI] are given in Fig. 5 for the first-order case. Though these filters clearly allow

aliasing, they possess aliasing cancellation properties common in perfect reconstruction filter

banks[10], and will allow error-free reconstruction of the image at the receiver. The response

here depends on a single parameter, a, which yielded best results with 0.25 < a < 0.35.

We have observed the best performance in the n-th order case with a\ = a^ = ... = an.

The implementational and stability considerations for these filters are summarized in the

Appendix.



Figure 4: Single stage of nonrectangular analysis filter tree.

The same filters are used at all other levels of the pyramid:

) (7)

) (8)

where -//{/, denotes the filter transfer function at level v in the analysis/synthesis structure.

The filters at any level can operate directly on the image resulting from the previous level,

after the image is simply rotated by 45° and subsampled. With this structure, we can use the

same filter description at each level of the pyramid, simplifying both the design process and

implementation. Fig. 6 is the frequency response of the lowpass section of the second level

of the pyramid. Note the approximate square passband centered at the origin in frequency.

A sketch of a portion of the complete pyramid is given in Fig. 7. In theory, the decom-

position may be carried out until the image consists of a single pixel. In terms of entropy

considerations, the goal of sub-band decomposition is separation of the image into bandpass

functions which have much more flat spectral content than the original. If the power spectral

density within the passband of a given image is flat, the fully decimated image may be coded

most efficiently by a PCM coder, since samples will be uncorrelated. For practical coding

purposes, a small number of levels in the pyramid appears adequate.

The pyramid sub-band separation is closely related to wavelet decomposition[13]. The

greater bandwidth of the higher frequency sub-bands yields greater spatial resolution, while

the lower frequencies, which concentrate at the top of the pyramid, are highly resolved in

frequency, while having low spatial resolution at original sampling rates. While wavelets

have received a good deal of attention of late, no clear practical advantages of the wavelet

view of image compression has yet been demonstrated.

8



(a)

(b)

(c)

Figure 5: Frequency response of recursive, separable lowpass filtering operation
for three values of the coefficient, (a) a - 0.2; (b) a = 0.25; (c) a = 0.33.
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Figure 6: Frequency response of lowpass section of decomposition at second level of pyra-
mid. This filter operates on the rotated, quincunx-sampled image, filtering horizontally and
vertically in order, followed by the addition and subtraction expressed in (2) and (3).

J2Q[—•> Y*2)

Figure 7: Analysis side of nonrectangular sub-band pyramid, producing signals {Y1}. Su-
perscripts correspond to v in (7) and (8). Synthesis side reconstructs the image in the inverse
order, interpolating in the quincunx pattern at each step between levels.
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(a) (b)
Figure 8: (a)Causal prediction pattern for rectangularly sampled sub-band images. The
scan proceeds from left to right, and top to bottom, (b) Similar pattern for quincunx-
sampled images. This pattern results from our maintaining original actual directions of scan
for software simplicity. By rotating scan into a rectangular pattern, one could use the same
form predictor in (b) as (a).

3.2 Coding of Nonrectangular Sub-Bands

As mentioned above, if sub-bands are separated to the point where the spectrum is flat

within each, we may simply elect to code each sample in each decimated sub-band image

individually. In practice, we seldom work with such cases. Many types of coders have been

employed on sub-bands, including DCT[8], DPCM[5], and vector quantization[14]. DCT-

based methods may be useful in the lowest frequency band, but some of the characteristics

which make it desirable as an unaccompanied technique are lost. Most DCT methods, such

as the JPEG standard, gain a large portion of their compression by taking advantage of large

numbers of coefficients quantized to zero. In a pyramid of more than three levels, the low

band, which may be decimated in a 4 x 4 pattern, has far fewer of these zeros. Considering

purely compression ratios in intraframe coding, we find the DCT has little or no gain over

computationally simpler approaches.

In our 2-D sub-band coder, we rely primarily on DPCM for sub-bands. We use a three-

point causal predictor in each case, with the choice of pixels illustrated in Fig. 8 for the

rectangular and quincunx- sampled bands. Our predicted value for the given pixel is

X0 = diXi + O2X2 + 03X3.

The coefficients are chosen to yield a least mean-squared error prediction. Using common

results from estimation theory, we can compute the coefficient vector aT = [01,02,03] as

a = RjxRxo, (9)

where RXX is the autocorrelation matrix of the three pixel values given in Fig. 8, and RXQ

is the cross-correlation vector between the value of XQ and the three neighbors. We estimate

11



RXX and RXQ from several sample images from different sequences, then fix the prediction

coefficients.

Such a predictive filter is very commonly thought of as useful for removing high correlation

among neighboring pixels in a signal with much spectral energy concentrated at relativea low

frequencies. In the present setting, it serves as an approximation to a whitening filter, which

flattens the spectrum of the signal to be coded. This decorrelation lowers the entropy of

each entry. The same principle holds for higher frequency sub-bands, which our predictor is

designed to whiten, even if most of the energy is at the highest frequencies represented. Note

that after decimation, the sub-band images are no longer bandpass at the lower resolution.

Following the predictive filters, we are left with prediction errors as the coefficients to be

coded. Most research has indicated that for image representation, linear quantizers are more

useful than the least mean-squared error Max quantizer, since infrequent, large errors detract

more from image quality than quantitative measures indicate[15]. Each of our quantizers

is linear, with increasingly large increasing quantizer step sizes as we move toward higher

frequencies, and large dead zones about zero in the highest bands. This gradation has been

quantified in terms of human perception by other investigators[15]. Low frequency errors

due to quantization may contribute no more to the expected error magnitude per pixel than

those in higher bands, but due to the large decimation ratios to which the lowest bands

have been subjected, their errors translate into errors with extensive spatial correlations in

the final reconstruction. As an extreme example, suppose the lowest sub-band consisted of

only the zero-frequency value, a scalar. Any quantization error for this value results in the

identical contribution to error over the entire image.

The spatial-domain coders described above accomplish significant reduction in entropy

per sample, but more complete exploitation of these properties requires consideration of the

one-dimensional distribution of prediction error in each band. The quantizers are therefore

followed by Huffman coding for each band separately.

In typical natural imagery, highest frequency bands have low total energy, which is

sparsely spatially distributed. Values of significant magnitude are often concentrated near

sharp transitions of intensity. Many sub-band coders exploit this characteristic by recording

some sort of information indicating locations of non-zero samples, in addition to the values

of these samples[16, 14, 17]. For the highest band, if it is not deleted, we use as simple

dead-zone quantizer, followed by run-length coding of strings of zeros.

12



3.3 Intra-Frame Coding Examples

The effects of the developed algorithms will be demonstrated on frames from three sequences.

Each is given in GIF format, with resolution of 240 x 360 pixels. The originals are found in

Figures 9-11. The "table tennis" sequence is the easiest of the three to compress, and "flow-

ergarden" the most difficult. An example of the pyramidal decomposition of the "tennis"

frame appears in Figures 12 and 13. Alternating sub-bands are rotated by 45 degrees for

representation on the rectangular raster. Rather than decrease the physical size for visual

presentation, we have used pixel replication with decreasing sample density at upper levels

of the pyramid. In Figures 14-16, we have the same frames as above compressed by the

pyramidal sub-band coder. Table 1 gives the parameters and statistics of each band and

each image. In each of these, we have simply deleted the highest frequency band, HH of Fig.

1. This causes a small amount of aliasing, since the upper sub-band is not used to cancel it.

The error is not easily noticed at normal viewing distance and frame rates.

The visual quality of these images is comparable to many coders, but the sub-band struc-

ture we've chosen has some important advantages, primarily in its concealment of relatively

large quantitative error. The greatest part of the error energy results from the deletion of

the HH band of Fig. 1, which causes the total luminance SNR in the results of Table 1 to

be much lower than that of the coded bands. But this is error at frequencies to which we

have little sensitivity. To illustrate the effect, we present the coded luminance portion of

the "tennis" frame coded by JPEG standard in Fig. 17, and our sub-band coder in Fig. 18.

The JPEG version is coded at a slightly higher bit rate, and has lower noise energy. But the

JPEG artifacts, including blockiness in the background, and varying distortion of the table

edge, are far more visually disturbing when viewed at normal video frame rates.

13



Figure 9: Original ( 'IF image of frame 31 from "table tennis" sequence.

Figure 10: Original frame 0 from "football" sequence.
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Figure 11: Original frame 0 from "flowergarden" sequence.

3.4 Edge-Adaptive Coding of High Frequency Sub-Bands

In addition to high frequency energy being somewhat spatially localized, its subjective per-

ceptibility is dependent on the structure of which it is a part. High frequency loss is prob-

lematic primarily at sharp intensi ty edges, which are important visual cues to the human

observer. One of the advantages of sub-band coding is the ease of adaptation to such specific

temporal frequencies.

Transmission of very sparse spatial information such as single-band edge representation

may be costly in terms of bit rate. It is imperative that any edge adaptation be made

with minimal extra cost. Our approach is to add the highest frequency information only

on edges which have perceptual importance in the image. These we hypothesize as those

which have substantial low frequency in their structure, as well as high. We use simple

one-dimensional edge detection along rows and columns of the rotated quincunx image, and

code the highest band entries with a dead-zone quantizer only if they are part of the edge

map. The edge detectors are low-pass filtered to eliminate non-macroscopic entities from

consideration. The cost of specifying the location of non-zero samples in the highest band

is potentially expensive. But we can perform the identical edge detection operation at both

the coder and decoder, on the coded image, allowing the edge locations to be computed at

15 G^'AL PAGE IS
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Figure 12: Pyramid decomposition of "tennis". All quincunx-sampled bands are rotated
by 45 degrees. Images l a i - i d l correspond to progression of pyramid in Figure 7 up to V ( 4 ) .
(b) and (d) are truncated at sides.
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Figure 13: Lowest sub-band from "tennis".

Figure 14: Frame 31 of "tennis" coded with 0.89 bpp.
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Figure 15: Frame 0 of '"football" coded with 1.15 bpp.

Figure 16: Frame 0 of "flowergarden'' coded with 1.S7 bpp.

18
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Sequence

Table Tennis

Football

Flowergarden

Sub-band

y(i)

y(2)

y(3)

y(4)

y(s)

Total Lum.

Cr

Cb

yd)

y(2)

y(3)

y(4)

y(s)

Total Lum.

Cr

Cb

y(i)

y(2)

y(s)

y(4)

y(s)

Total Lum.

Cr

Cb

Deadzone

oo

15

0

0

0

oo

15

0

0

0

00

15

0

0

0

Quantizer Step

0

4.0

5.0

3.5

3.0

0

4.0

5.0

3.5

3.0

0

4.0

5.0

3.5

3.0

BPP

0

0.13

0.26

0.17

0.21

0.77

0.07

0.05

0.0

0.10

0.27

0.18

0.26

0.81

0.15

0.19

0.0

0.45

0.40

0.23

0.32

1.40

0.20

0.27

SNR(dB)

0

34.1

45.1

48.1

49.3

29.0

39.3

40.0

0

36.2

42.2

47.8

43.8

31.4

40.0

38.7

0

33.0

39.2

46.8

46.2

23.8

35.2

34.0

Table 1: Bit rates and error for still-frame coding examples. Y^ l\ the highest non-
rectangular frequency band, was omitted in all cases give here. This causes the relatively
low SNR for the total luminance signal. "Cr" and "Cb" are red and blue color-difference
representation of chrominance.
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Figure 17: Luminance of Frame 31 of "tennis" coded with 0.81 bpp by JPEG algorithm.
SNR is 30.8 dB.

Figure 18: Luminance coded with 0.77 bpp at 29.0 dB by sub-band algorithm.

20
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Figure 19: Detected edges with highest band deleted, and quincunx sampling.

the receiver with no extra cost. The high-band non-zero samples are Huffman coded, and

transmitted as a single string.

Figure 19 illustrates a typical detected set of edge pixels from ''tennis." The edges repre-

sent the logical "OR" of the edges from the vertical and horizontal detection. This represents

a single quincunx decimation by 2 for both the upper band, and the image in which edge

detection is performed. Thus there is a 1-to-l correspondence between pixels in the two im-

ages. As shown in Fig. 20. perceptible sharpness improvement results from the addition of

high frequency edge information. The additional cost is about 0.06 bits per pixel, which may

be a worthy investment, dependent on the specific application at hand. Fig. 21 includes the

highest band, coded with dead-zone quantization and run-length coding, within the sub-band

framework. Note that this improvement increases the bit rate by 0.11 bpp. Both methods

effect essentially the same improvement in rendering edges, especially about the hands and

table edge here. The edge adaptive approach, though, allows the lower bit rate by omitting

high frequency in the background. At the range of bit rates we are considering, the omission

may actually serve as an improvement, since the "speckled7' non-zero pixels from the high

frequency band produce a bothersome effect in the video. The trade-off between these two

can be seen primarily in the background.

«**



Figure 20: Luminance component of frame 31 of "tennis'
adaptive coding of highest frequency band.

coded with 0.83 bpp using edge-

Figure 21: Luminance component of frame 31 with highest frequency sub-band coded by
dead-zone quantization and run-length coder. Total rate = 0.88 bpp.
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4 Motion Adaptive Sub-Band Video Sequence Coding

Video sequences of intelligible information include a high degree of temporal correlation.

A large fraction of most sequences can be usefully described as a superposition of objects

whose changes between adjacent frames in time over short periods consists of translational

motion. This is the principle underlying motion estimation and compensation for sequence

coding. But although motion compensation helps reduce bit rates, it adds a substantial

computational burden and hardware cost to the system. In applications where bit rate

constraints are not extremely stringent, and hardware costs are critical, simpler approaches

may prove useful.

We have investigated image sequence coding with this type of application in mind, seeking

a computationally simple coder to take advantage of temporal correlation. Research during

the first period of the grant included the estimation of temporally active regions of a sequence,

with the immediate goal of allowing conditional block replenishment. Here we generalize this

idea to an adaptive coder, using the segmentation of an image in a sequence into temporally

active and inactive areas to select a coding modality. In earlier versions of this work, before

coding was employed, conditional replenishment was equivalent to the present case with the

prediction error always quantized to zero. Because we have established with our previous

work that we can effectively reduce bit rate in foreground/background settings to at most

the product of the active percentage of a frame and the intraframe bit rate, we have of

late studied only sequences in which the entire frame is in motion, due to panning and/or

zooming of the camera.

Predictive coders obviously rely on a continuous "past" for their estimate of the current

pixel value. The adaptivity of the coder on spatial blocks interrupts this pattern, compli-

cating somewhat the process of coding most bands. Also, the high spatial frequencies are

amplified by temporal differencing in moving areas. Due to these considerations, we apply

a simpler sub-band technique, using the decomposition of Ansari, et al., with intra-frame

compression of the LH band of Fig. 1, and temporal adaptivity on the LL band. Adaptiv-

ity consists of choosing the inter-frame difference signal, or the intraframe block for coding.

Designation of each block's state is made strictly by the algorithm of [4], with the maximum-

likelihood mode only. The LL band is coded by JPEG. Although we have experimented with

several forms of the non-rectangular sub-band technique in this framework, we have seen lit-

tle difference in bit rate improvements among distinct coders. In observing the first-order

23



Figure 22: Frame 3 of "football'' coded by adaptive inter/intraframe coder, using JPEG on
either intraframe. or frame difference signal in LL band. Bit rate = 1.04 bpp.

effects of simple adaptivity on spatially disjoint blocks, the precise form of the coder on those

blocks appears to be of less influence than the choice blocks for the different types of coding.

The results which we have achieved to this point are not conclusive concerning the adap-

t ive 3-D coder. Bit rates are improved, but not yet enough to serve in many challenging

problems. The compression gain in using our dynamics detection algorithm is approximately

the same as is found by the much more costly technique of computing the energy in the in-

ferframe difference and intraframe (wi thou t zero-frequency element) image, and coding the

smaller energy signal. Thus the detection method appears to work well.

A typical example is shown in Fig. 22. which includes much activity in the players' area,

and is part of camera panning. Slightly over 50% of the frame was detected as active by

the dynamics detection algorithm. This is due to the relatively low contrast change in the

panning background. This frame's luminance is compressed to about 0.7 bpp, compared to

0.8 bpp using the hierarchical sub-band algorithm. While this bit rate represents a useful

improvement, and attains approximately the original goal of 1 bpp for the sequence, other

sequences, such as "flowergarden." are not likely to be sufficiently compressible.
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5 Conclusion

Under the support of NASA Grant NAGS-1186, we have pursued several fundamental issues

in the processing of image sequences to be presented as moving pictures. The final period

has seen the development of a hierarchical coder which provides good performance with

limited computational complexity, with the flexibility inherent in sub-band decomposition.

This decomposition appears also to effectively hide quantitatively large errors very well,

since it follows a frequency-domain pyramid more in concert with human visual sensitivities.

The basic coder is established, but several aspects are worthy of further study. Although

relatively long roll-off in our simple band-splitting filters has advantages, and causes no acute

problems in coding of the entire pyramid structure, selective deletion of the upper bands for

changes in resolution, transmission rates, etc., may dictate better cut-offs to avoid aliasing.

Higher order filters should be studied for this case, both FIR and IIR.

Further study will also be allotted to the three-dimensional coding problem. One possible

generalization is a more fully three-dimensional sub-band structure, such as has been applied

to lower bit rate problems[14, 18]. It appears that completely general applicability of our

approach will require the addition of motion compensation to the system. We are currently

studying a new technique for computationally efficient motion estimation, which can run

over an order of magnitude faster than the popular block-matching algorithm.

6 Appendix: Implementational Considerations for Filters

Processing speed is of utmost importance in video applications. The IIR filters we propose

are especially simple, requiring only two multiplications per sample at each filtering. All

filtering structures are separable into two orthogonal 1-D operations, functioning as one-

dimensional filters applied to the diagonals of each sub-band image. This allows arbitrary

degrees of parallelism, up to one processor per diagonal line of pixels across the image.

Implementation of the band-splitting filters in hardware introduces error in finite wordlength

representation of coefficients and products. For simplest hardware realizations, we assume

all computations are done in fixed-point format. For the first-order filter, the parameter a

is critical in determining the propagation of quantization noise. We will denote the number

of stages (levels in pyramid) as N. Three ranges of the value a are of particular interest:
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• |a| < Y 2 l : Quantization error bound (Q) will increase with each stage, but reach a

finite limit as N — >• oo.

• |a| = v2~ l : Q « 1.35-/V<?, linear in the number of stages.

• |a| > v^"1 : Q increases exponentially with N.

In the last case, additional bits may be needed for filtering operations.

Control of quantization error propagation is possible by increasing the number of bits

used to represent each coefficient a, in higher order filters. If h(n) is the impulse response

of the filter specified by T(z), and q is the quantization step size for coefficients, the output

error bound is

for a single filter (highpass or lowpass). This assumes that a double-length accumulator with

a rounding operation is used.

To a much greater extent than finite-impulse response (FIR) filters, recursive filters are

susceptible to instability. Limit cycles are a particularly troublesome form in IIR filters. To

guarantee the exclusion of limit cycles, we specify three ranges for the {a,-}, depending on

the form of truncation used:

• Magnitude Truncation : |a,-| < 1

• Rounding : |a,| < 0.5

• Two's Complement Truncation : 0 < a, < 1

Thus for a first-order fixed-point implementation of the filters used in our work, a double

length accumulator with rounding is optimal. Greater detail concerning limit cycle exclusion

can be found in [19].
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