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Chapter 1

Introduction

In the world of electromagnetics, high frequency radiation and scattering analyses

are very often encountered. A great many techniques have been developed for such

purposes. One of these techniques is the Geometrical Theory of Diffraction (GTD)

analysis [3] [4] [1]. This is a high frequency technique that applies to analyzing both

the near field as well as the far field electromagnetic problems. It should be noted

that in the near field region, measurements can easily be performed to verify the

accuracy of the GTD analysis. However, in contrast to measured near field results,

the GTD solutions can easily be extended to the far field computation without

employing any transformations [1].

1.1 Fundamentals of GTD

The GTD analysis is a high frequency approach developed by J.B. Keller and his

associates at the Courant Institute of Mathematical Sciences [5] in the late 1950s.

Within the asymptotic high frequency solution of Maxwell's Equation, geometrical

optics (GO) is the dominant term in the lit region [5]. As such, GO is also the in-

fluential term in the GTD solution. The scheme involves the inclusion of diffracted

fields which is an extension of GO through a generalization of Fermat's Principle

(this principle will be discussed subsequently in this section). In the GTD analysis,

diffraction is a local phenomenon, because, it depends only on the nature of the



boundary surface and the incident field in the neighborhood of the point of diffrac-

tion. Consequently, the diffracted wave propagates such that: (1) power is conserved

in a tube (or strip of rays), and (2) the phase delay along the ray path equals the

product of the wave number of the medium and the distance. All these are in fact

postulates of Keller's theory, now popularly known as GTD [5].

Nonetheless, a profound difficulty in GTD was the discontinuity at reflection and

shadow boundaries [5]. As a result, Uniform GTD (UTD) [5] [7] was developed at

the ElectroScience Laboratory in the 1970s. In this theory, the diffracted field com-

pensates for the discontinuity at those boundaries. Hence, the total field for the high

frequency is uniformly continuous away from the source. With this technique, high

frequency analysis may be performed on objects which are as small as a wavelength.

In addition, it allows the partitioning of the entire problem into smaller isolated

modules for special analysis, unlike the low frequency Moment Method (MM) which

requires that the entire body be accounted for. This is especially useful when de-

termining the source of a particular field contribution so that appropriate measures

may be undertaken.

In general, with reference to Figure 1.1, Fermat's Principle applied to GTD is

stated as follows [6]:

The diffracted rays connecting two points Q and P in the exterior of

the convex body are those linking Q and P which have stationary (optical)

lengths among all curves from Q to P having an arc on the body surface.

In Figure 1.2, the diffraction on a smooth, convex, perfectly conducting surface is

illustrated schematically [5]. It should be noted that the radius of curvature of the

convex surface is large in terms of wavelength. Region I in the figure is the lit

region. This region is associated with the GO incident and reflected ray optical

fields. Region III, on the other hand, is the shadow region in which only the surface

diffracted rays are of concern. Between these two regions is Region II which contains

the shadow boundary that separates the lit and the shadow regions. In fact, this is a
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Figure 1.1: A schematic illustrating Fermat's Principle.
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Figure 1.2: Diffraction on a smooth, convex, perfectly conducting surface.



transitional region, whereby, with regards to the UTD solution, the ray optical field

description is transformed gradually from the GO field in Region I to the surface

diffracted field in Region III. On the convex surface, at point PI, the incident ray

launches a surface ray that propagates into the shadow region (Region III) along a

geodesic path to point Qj, as stipulated by Fermat's Principle.

An application of GTD (herewith, the term GTD implies UTD as well) involves

the modelling of complicated structures using a combination of simple geometries in

which the GTD solution is easily determined. Furthermore, structures very far away

from the source location in terms of wavelength or deep into the shadow region may

be in some instances neglected. An example of such an application is the Aircraft

Code developed for high frequency GTD analysis of airborne antennae.

1.2 The Aircraft Code - NEWAIR3

The Aircraft Code is a computer code written in FORTRAN 77 for high frequency

GTD analysis of antennae mounted on aircraft fuselages [1]. This code was developed

at ESL and NEWAIR3 is the third version of the original code.

The output solution of NEWAIR3 is in fact computed using the GTD high fre-

quency approach. It is a GTD code capable of near- and far-field analyses. Field

contribution from any secondary source, that is, field not directly originating from

the primary source which is the antenna itself, may be isolated for separate analysis.

Futhermore, it allows the user to determine the individual contributions from vari-

ous field components such as the direct source radiation, reflection, and diffraction.

Each combination of reflections and diffractions may also be considered individually,

as described in [1].

For executing NEWAIR3 the aircraft structure must be simulated using a com-

posite ellipsoid and a set of flat, finite polygonal plates, such that the antenna

mounted on the aircraft fuselage is positioned on the ellipsoid surface. This implies



that the composite ellipsoid should closely approximate the fuselage surface. The

composite ellipsoid in this context is defined as a close-fit composite ellipsoid.

A good fit in the vicinity of the antenna location must be obtained, if for some

reasons a good global fit of the entire fuselage cannot be achieved. This is attributed

to the fact that, in the high frequency GTD analysis, the fuselage is assumed to be

very large in terms of wavelength, and as such, portion of the fuselage that is far

away in terms of wavelength has very small influence on the computed solution. An

example of a composite ellipsoid is illustrated in Figure 1.3. The definitions of the

parameters .Ao, BO, Co and DO utilized in the figure will be presented in Chapter 2,

together with a detailed description of the composite ellipsoid itself.

As far as the plates are concerned, the corners of the plate must be defined

in accordance with the Right-hand Rule [1]. With the right-hand thumb pointed

towards the lit region, the four other fingers of the right-hand should follow the

edges of the plate all around. Hence, the order by which the corners of the plate

are input into the code is specified by the order by which the fingers encounter the

corners, as illustrated in Figure 1.4. If, in any case, the plate is to be attached onto

the^ composite ellipsoid, the plate corners should then be specified such that the first

and the last corners would be the two corners to be attached to the ellipsoid.

Due to the nature of the GTD approach, NEWAIR3 has certain limitations. For

the composite ellipsoid, the radii of curvature in its principle planes at the antenna

location must be at least a wavelength in extent. As for the plates, the direct distance

between any two corners of any plates should be at least a wavelength apart, but in

some cases, may be decreased down to only a quarter wavelength [1]. In addition,

the antenna should be placed at least a wavelength away from any edges and corners.

In fact, the entire composite ellipsoid and plate information, together with all

other essential data which would not be discussed here, are input into NEWAIR3 in

the form of an input file, as described in [1].
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Figure 1.3: An example of a composite ellipsoid for inputting into NEWAIR3.
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Figure 1.4: An illustration of the use of the Right-hand Rule for defining the corners
of a flat polygonal plate. In this figure, the order by which the corners are input
into NEWAIR3 is in accordance with the numerical labels of the corners.



1.3 The HARP Code

At ESL, the development of an integrated software package for analyzing the far-field

radiation and scattering phenomena of an antenna mounted on a helicopter is cur-

rently underway. The code is formally known as the /felicopter .Antenna .Radiation

Prediction (HARP) Code [2]. It will be a computer code that integrates advance

computer graphics together with the GTD and the Moment Method (MM) [8]

numerical techniques. It will be executed on a Tektronics 4337 3D Graphics Work-

station through a user interface driven by an X Windows menu.

Assuming that the cross-sections of the actual helicopter fuselage are symmetrical

in terms of its left and right side, only points on the right half portion of the cross-

section is input. A form of spline-fitting procedure is then performed on these data

points to obtain a smooth and accurate representation of the right half portion of

the actual cross-section [2]. Subsequently,'the left half of the remaining portion is

obtained by reflecting the right half on a centerline PQ, as illustrated in Figure 1.5.

The right half portion, together with its reflected image which represents the left

half, form a complete cross-section model of the actual fuselage of the helicopter.

For the entire code itself, the XYZ-coordinate system depicted in the Figure 1.5

is utilized, with the y-component increasing towards the tail end of the helicopter.

The cross-section illustrated in the figure will now be referred to as the XZ-plane

cross-section. The positions of the points on the cross-section are defined in terms of

parameters y and T, where y is the y-component of the coordinate system utilized in

the code, and T is the normalized arc-length of the cross-section contour. Directly

at the top of the fuselage, the value for parameter T is zero, or 1. On the other

hand, directly at the bottom of the fuselage, the value for T is 0.5. Once defined,

the cross-sections are assembled to create a smooth continuous representation of the

entire helicopter fuselage, as illustrated in Figure 1.6 and Figure 1.7. Fins of the

helicopter, if any, on the other hand, may be modelled by the flat polygonal plates

described in Section 1.2.



1.4 GTD in HARP and ELLC

For the high frequency end of the HARP code, the entire helicopter is modelled by

a composite ellipsoid and flat plates which were described in Section 1.2, with the

condition that the composite ellipsoid fits well the surface of the helicopter fuselage

in the vicinity of the antenna location. It is indeed desirable that such modelling be

undertaken automatically without any user interaction.

As such, the automated fitting of the composite ellipsoid to the fuselage surface is

achieved through the development of the ELLipsoid Code (ELLC), which essentially

provides the parameters necessary for constructing the composite ellipsoid. In spite

of this, the automation of the plate modelling module, hereby referred to as the

PLATES code, is yet to commence. Eventually, nevertheless, the outputs of ELLC

and PLATES would be merged into a data file for inputting into NEWAIR3 then

employed to perform the near- and far-field GTD analysis for HARP. Figure 1.8

illustrates a simplified flow diagram of HARP, emphasizing on the detailed location

of ELLC with respect to other modules. In order to execute ELLC, two types of

10
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Figure 1.5: An example of a fuselage cross-section of a helicopter input into the
HARP Code. Only the right half of the actual cross-section is input, with its reflected
image representing the left half of it.^
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Figure 1.6: Cross-sections are assembled to create a smooth continuous representa-
tion of the entire helicopter fuselage.
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Figure 1.7: A smooth continuous surface representation of a helicopter fuselage.
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information from HARP must be provided. These are:

1. the spline-fitted cross-section of the fuselage, and

2. the antenna location, also known as the source point, in terms of parameters

y and T.

In ELLC, the actual 3-dimensional problem of fitting a composite ellipsoid to the

surface fuselage of the helicopter in the vicinity of the antenna location is divided

into two 2-dimensional problems:

1. The problem of fitting an ellipse to the surface of the cross-section in the

XZ-plane.

2. The problem of fitting a composite ellipse to the surface of the cross-section in

the YR-plane.

Details of these problems will be provided in Chapter 2.

14
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Figure 1.8: A simplified flow diagram of HARP, with special details illustrating the
location of ELLC with respect to other modules.
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Chapter 2

Theories and Concepts

In Chapter 1, it has been pointed out that the utilization of NEWAIR3 in HARP

necessitates that the helicopter fuselage be modelled using a composite ellipsoid and

a set of flat, finite polygonal plates. The computer code for automatically generat-

ing the parameters for constructing the composite ellipsoid is essentially provided by

ELLC. It is important to note that the scheme described in this report to fit the com-

posite ellipsoid to the helicopter fuselage in the vicinity of the antenna location is a

preliminary result. Several improvements have been made to the technique discussed

here, which will be reported at a later date. This chapter contains the theoretical

descriptions of the theories and concepts employed in ELLC. An important point to

note is that the whole idea of such a surface modelling is founded on the fact that

it depends heavily on the mathematical, as well as the graphical, interpretations of

the actual surface and how precise a fit is to be achieved.

2.1 The composite ellipsoid

Prior to the development of ELLC, the parameters of the composite ellipsoid must

first be explicitly defined. Therefore, the material on composite ellipsoid presented

in [1] will be discussed in this section, but in the terms of notations and conventions

utilized in HARP, which would also be utilized in ELLC.

For this application, the composite ellipsoid is actually constructed of two el-
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lipsoid sections fused together back to back at the antenna location (X,, !'„, Z,)

such that the resulting surface is continuous and smooth at that interface. In other

words, the first-order derivative of the surface at the interface must be continuous.

2-dimensional schematic views of the composite ellipsoid construction are illustrated

in Figure 2.1 and Figure 2.2. As is depicted in these figures, the center of the com-

posite ellipsoid is assigned the parameters (Xc , Yc, Zc). Solid lines are employed to

represent sections of the ellipsoid that are utilized for constructing the composite

ellipsoid, whereas dashed lines are employed to indicate those that are discarded.

Since the composite ellipsoid is constructed of two individual ellipsoid sections,

there are two ellipsoid centers in which one is shifted a value Y,h along the y-axis

from the other. Each of these centers is an origin of a coordinate system. Hence,

two coordinate systems are employed in the composite ellipsoid construction, with

one shifted a value Yah along the y-axis from the other. The computation of the

parameter Y,h will be presented in Section 2.5.

Prime notations will be used to represent parameters referenced to the shifted

coordinate system. The term "right ellipsoid" will be used to refer to the ellipsoid

whose center is located to the right of the center of the other, which in the figures,

is the ellipsoid whose center is shifted a value Y,h. On the other hand, the term

"left ellipsoid" will refer to the ellipsoid whose center is located to the left of the

center of the other, which is the ellipsoid whose center is unshifted. The unshifted

coordinate system is also utilized for dimensioning the composite ellipsoid. Hence, it

is a coordinate system associated with the composite ellipsoid, with the origin being

the center (Xc , Yc , Zc) of the composite ellipsoid itself. For the ease of referencing,

the case for which 1^ > Yc is referred to as Case 1, and that for which Ys < Yc is

referred to as Case 2.

Referring to Figure 2.1, which is the composite ellipsoid schematic for Case 1, the

semi-axes of the "left ellipsoid" are Ap, Bp and Cp. As for the "right ellipsoid", the

semi-axes are A'p, B'F and Dp. The sections where y < 1^ (that is, the left sections)
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FROM RIGHT
ELLIPSOID

FROM LEFT
ELLIPSOID

(a) CASE 1 (Ys >YC) : SIDE VIEW

FROM RIGHT
ELLIPSOID

x=Xc

FROM LEFT
ELLIPSOID

(b) CASE 1 (Y8 >YC) : TOP VIEW

Figure 2.1: 2-dimensional schematic views of a composite ellipsoid constructed from
two ellipsoids for Case 1, where Y, > Yc. Solid lines represent sections of the ellipsoids
utilized for creating the composite ellipsoid. Dashed lines represent sections of the
ellipsoids discarded.
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z=z,.̂ :

FROM RIGHT
ELLIPSOID

FROM LEFT
ELLIPSOID

(a) CASE 2 (YS<YC) : SIDE VIEW

X=X

FROM LEFT
ELLIPSOID X

FROM RIGHT
ELLIPSOID

X'

(b) CASE 2 (YS<YC): TOP VIEW

Figure 2.2: 2-dimensional schematic views of a composite ellipsoid constructed from
two ellipsoids for Case 2, where Ys < 1^. Solid lines represent sections of the ellipsoids
utilized for creating the composite ellipsoid. Dashed lines represent sections of the
ellipsoids discarded.
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of the "right ellipsoid" and the sections where y > !'„ (that is, right sections) of the

"left ellipsoid" are interfaced together at y = Y, to form a composite ellipsoid. This

is in fact the interface on which the antenna is located. The cross-section of the

composite ellipsoid at y = Ya is located in an XZ-plane at y — Y,. In this plane,

the cross-section is an ellipse with semi-minor axis A\ and semi-major axis B\. The

parameters representing the dimensions of the composite ellipsoid are A0, B0, Co

and DO- For Case 1, Ay is the distance from the center of the composite ellipsoid

to the point of intersection of the z-axis with the surface of the composite ellipsoid.

Similarly, BO is the distance from the center of the composite ellipsoid to the point

of intersection of the x-axis with the surface of the composite ellipsoid. However,

since the right most end of the composite ellipsoid is also the right most end of the

"left ellipsoid", the semi-axis CF of the "left ellipsoid" is also the parameter C0 of

the composite ellipsoid. The parameter Z?o, on the other hand, is the distance from

the center of the composite ellipsoid to the left most end of the composite ellipsoid.

This, in fact, is represented by D'F — Ysh-

As for Case 2, the schematic of the composite ellipsoid is illustrated in Figure 2.2.

The semi-axes of the "left ellipsoid" as well as the "right ellipsoid" in this case are

assigned the same labels as those for Case 1. For Case 2, the sections where y < Ys

(that is, the left sections) of the "left ellipsoid" and the sections where y > Y, (that

is, right sections) of the "right ellipsoid" are interfaced together at y = Y, to form

a composite ellipsoid. Again, this interface is where the antenna is located, and the

cross-section of the composite ellipsoid at y = Y, is contained in an XZ-plane at

y = Ys. In this plane, the cross-section is an ellipse with semi-minor axis A\ and

semi-major axis B\. However, the dimensioning parameters Ay, £?0, Co and Du of

the composite ellipsoid are now represented differently, except for the parameters AO

and BO which are defined similarly as those in Case 1. The parameter Co in this case

is now the distance from the center of the composite ellipsoid to the right most end

of the composite ellipsoid. This is represented by C'F + Ysh- As for the parameter
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DO, it is represented by the semi-axis Dp of the "left ellipsoid", since the left most

end of the composite ellipsoid is also the left most end of the "left ellipsoid".

2.2 The approach

At the present moment, the fuselage surface of the helicopter fuselage is provided in

the form of on-line computer data files. With such information, the actual contour

of the helicopter fuselage is simulated using a form of spline-fitting technique. As a

result, the helicopter fuselage is made available in the form of cross-section cuts along

the y-axis of the helicopter coordinate system depicted, in Figure 1.7 of Chapter 1.

In this section, a brief outline of the approach employed in ELLC for generating the

composite ellipsoid will be presented..

It should be anticipated that the actual fuselage surface of the helicopter would

contain convex surfaces as well as concave ones, the quantity of these being depen-

dent on the particular design of the helicopter. Therefore, a distinct convention is

employed to identify such surface types. With reference to Figure 2.3 (a), a surface

in the vicinity of a point location A on the helicopter fuselage is defined as convex if

the surface in the vicinity of that particular point, that is, the portion of the surface

within the dashed circle in the figure, forms a convex arc relative to the unit normal

vector n of the surface at that point. On the other hand, referring to Figure 2.3 (b),

a surface in the vicinity of a point location B on the helicopter fuselage is defined

as concave if the surface in the vicinity of that particular point, that is, the portion

of the surface within the dashed circle in the figure, forms a concave arc relative to

the outward unit normal vector n of the surface at that point.

In Section 2.1, it is mentioned that the close-fit composite ellipsoid can be gener-

ated by specifying a set of four parameters AO, BO, Co and DO, as well as the center

(Xc, Yc, Zc) of the composite ellipsoid itself. As pointed out in Chapter 1, the task

of fitting a composite ellipsoid to the helicopter body has been divided into several

steps. First an ellipse is fit to the X-Z cross-section of the body at the antenna
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SURFACE IN
THE VICINITY
OF POINT A

y X

(a)

SURFACE IN
THE VICINITY
OF POINT B

y X

(b)

Figure 2.3: (a) A figure of a convex surface in the vicinity of a point A on the
fuselage surface, and (b) A figure of a concave surface in the vicinity of a point B
on the fuselage surface.
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location. Second, a composite ellipse is fit to the Y-R section of the body, also at

the antenna location. This Y-R section is a plane containing the antenna location

and the center of the X-Z ellipse; this plane is parallel to the Y-axis. Below are

described the algorithms which determine the best-fit X-Z ellipse, which generate

points on the body in the Y-R plane and an algorithm which determines the best-fit

in the Y-R plane.

1. The problem of fitting an ellipse to the surface of the cross-section in the

XZ-plane at the antenna location:

In this problem, the fuselage cross-section in the XZ-plane at y = Y, is of

particular interest. The close-fit ellipse to the surface of the cross-section in

the XZ-plane at the antenna location is obtained through the evaluation of the

center (Xc, Zc) of the close-fit ellipse and its semi-minor axis A\ and semi-

major axis BI. Data points on the cross-section at specific intervals in the

proximity of the antenna location are utilized for such purpose. A schematic

of the close-fit ellipse is illustrated in Figure 2.4.

It should be noted that, in certain cases, due to the nature of the data points,

numerically accurate solutions could not be obtained. Therefore, for such cases,

a form of a perturbation technique is applied to the data points. This procedure

shifts some points to a new position such that good numerical approximations

can be generated.

2. The problem of fitting a composite ellipse to the surface of the cross-section in

the YR-plane at the antenna location:

Once a close-fit ellipse to the cross-section in the XZ-plane at the antenna

location is obtained, a YR-plane can be constructed. Referring to Figure 2.4,

an R-axis is created from the extrapolation of the radial line from the center

(Xc , Zc) of the close-fit ellipse to the antenna location on the fuselage surface.

The R = 0 line, which is orthogonal to the XZ-plane, is defined to coincide
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x=X

ANTENNA

ELLIPSE

X

Figure 2.4: A schematic of a close-fit ellipse to the surface of the cross-section in the
XZ-plane at the antenna location. The point at (Xc , Zc) is the center of the close-fit
ellipse, and A\ and B\ are its semi-minor and semi-major axes, respectively. Vector
n is the outward unit normal vector of the fuselage surface at the antenna location.
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with the horizontal axis of the composite ellipsoid that is orthogonal to the

XZ-plane. The direction of increasing R is the direction such that an increase

in R always implies an increase in z. The plane containing this R-axis that is

orthogonal to the XZ-plane is the YR-plane. Indeed, the YR-plane is inclined

at an angle <f>s from the minor (vertical) principle plane of the close-fit ellipse.

For obtaining the fuselage cross-section in the YR-plane, the intersection of

the fuselage surface with the YR-plane is traced out. This is achieved by ob-

taining a data point at each specific interval DY to the front and rear of the

antenna location in the YR-plane. Since the tail end of the helicopter fuselage

is towards the direction of increasing j/, the phrase "front of the antenna loca-

tion" is defined as referring to the portion of the cross-section in the YR-plane

immediately to the front of the antenna location in the direction of decreasing

j/, and the phrase "rear (or back) of the antenna location" as referring to the

portion of the cross-section in the YR-plane immediately to the rear of the

antenna location in the direction of increasing y. Interpolating these adjacent

data points with straight lines, a continuous line modelling the actual surface

of the cross-section in the YR-plane in the vicinity of the antenna location is

created. This is illustrated in Figure 2.5.

For ELLC, the antenna location is input using the coordinate form (Y,, T)

corresponding to the coordinate (X,, Yg, Zs) of the antenna location. In fact,

Ys is the y-component of the coordinate of the antenna location. It indicates

particular cross-section in the XZ-plane on which the antenna is located. T,

on the other hand, is the normalized arc-length from T = 0 to the antenna

location on the XZ-plane cross-section at y = Ya. Details of the parameter T

has been presented in Section 1.3. Once the data points in the YR-plane are

determined, a close-fit composite ellipse to the surface of the cross-section in

the YR-plane at the antenna location is generated through the evaluation of

the parameters C"o, D0t Yc and Y,h-
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ANTENNA

SAMPLED DATA POINTS

FUSELAGE

y
DY DY DY DY DY DY DY

Figure 2.5: A schematic of a portion of the fuselage surface in the YR-plane as formed
by the antenna location and the data points determined through the intersection of
the fuselage surface with the YR-plane. Note that .DV is the sampling distance of
the data points in the YR-plane, and n is the outward unit normal vector of the
surface at the antenna location.
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The remaining parameters of the composite ellipsoid that is yet to be computed

are A0 and B0. In fact, these parameters are functions of the parameters AI, JBi, Co,

£>o> Yc &nd Yah, which have been evaluated. Hence, Ay and BO are easily obtainable.

In the subsequent sections, further details of the fitting of the composite ellip-

soid to the helicopter fuselage are discussed and appropriate mathematical analysis

presented.

2.3 Determination of best-fit X-Z ellipse

This is the first stage for generating the close-fit composite ellipsoid to the actual

surface fuselage of the helicopter. Work on this was accomplished by Klevenow and

Scheick utilizing the method of least squares [2] [10].

Seven points are taken on the X-Z section near the antenna; the antenna is at

(14,24). These points are generated using the algorithms described in Reference [2]

Chapter 3.

The four parameters B,C,D, and E of the best-fit ellipse, namely

E = 0 (2.1)

are determined by minimizing

\ £>? + Bz] + Cxi + Dzt + E)2 (2.2)
z •=!

subject to three constraints. The constraints guarantee that the conic section (2.1)

is an ellipse and that this ellipse fits onto the inside of the X-Z cross-section.

The constraints are derived by completing the square on equation (2.1); this

results in

This conic section is an ellipse if

B > 0 (2.4)
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and
2 D2

E > 0 - (2<5)

One of the problems encountered in fitting an ellipse onto the fuselage was that in

many cases the ellipse was located .on the outside of the X-Z cross section as depicted

in Figure 2.6 Thus, a third constraint which guarantees that the ellipse is inside the

X-Z cross-section is obtained by requiring that the angle between the unit outward

normal at the antenna location, n — (XN,ZN), and the vector p from the center

of the best-fit ellipse, (-^5^)j to the antenna location be < ^ in absolute value,

where the vectors n and p are shown in Figure 2.7. This amounts to requiring that

DRDN = (XN,ZN) . (x4 + f ,z, + ̂ -) > 0. (2.6)
/ LD

Here

(XN, ZN) = (*3-*5,x5-x3) (2.7)

This is an approximation to the unit outward normal since the points (a;,, 2,) are

taken clock- wise around the cross-section y=constant. The vector (XN, ZN) is

obtained by turning the vector from (x3, z3) to (x5,z5) through + | and normalizing

it. This forces (XN,ZN) to point outward.

To realize constraints (2.4), (2.5), and (2.6) in the minimization of equation (2.2)

penalty functions were used. This function is large and positive when the argument

is less than a parameter OFFSET=0.2 and is zero otherwise; see Figure 5.12 in [2].

This penalty function is

*< OFFSET (^

otherwise

The penalty function is used to prevent the minimization algorithm from iterating

to a solution where the arguments of the penalty functions are substantially less

than OFFSET.
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Equation (2.2) is minimized subject to the three given constraints by minimizing

1>(B,C,D,E) = ^ $>2 + £?22 + Cx, + I>2, + £)2
z 1=1

-f PEN(B) + PEN(FF) + PEN(DRDN) (2.9)

This is done by finding a zero of

F(B, C, D, E) = VJ>(B, C, D, E] (2.10)

by a modified Newton-Raphson method. An algorithm has been developed to solve

(2.9) subject to the constraints mentioned above.

First, seven points are taken on the X-Z cross-section near the antenna; the

antenna is at (2:4,24). A band of half-width DD=0.04 is constructed about the

line from ( :BI ,ZI ) to (0:7,27). If any of the seven points are outside this band in the

direction of — n the algorithm is stopped and an error flag is set; no attempt is

made to fit an ellipse to a portion of the X-Z cross-section of the body which is not

approximately convex when viewed from outside the section.

If one of the second thru sixth points is within this band of width 2DD then the

portion of the cross-section near the antenna is assumed to be essentially flat and

the points are perturbed. This perturbation is done to avoid trying to solve the ill-

posed problem of fitting an ellipse to one side of a straight line. This perturbation is

achieved by moving (14,24) by -fDD times n and by moving (x \ , z \ ) and (2:7,27) by

-DD times n. The Newton-Raphson method is then used to find the zero of (2.10).

The starting guess for the method is obtained by calculating B,C,D, and E for a

circle with radius i=J(xi — xrf + (z\ — z7)
2 and center at

-r*n. (2.11)
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Setting

(2.12)

and

AB,

AC1,

AD,
h =

the iteration proceeds as follows.

Solve F(Wi -h}^ F(Wi) - VF(Wt)h = 0 giving

(2.13)

(2.14)

This gives a direction h along which a search can be made looking for a value of

|F(W^,^j)|2 smaller than |-F(W,)|2: this is the line search. This line search amounts

to choosing a value of the parameter t such that

<t>(t)< ( l - f2*10~ 4 *t)<j>(0) (2.15)

where <f>(t) = \F(Wi -1 * h)\2 . The first t of the values 1, ±, J, |, etc. which satisfies

equation (2.15) is selected; the next iterate is then taken to be W±+\ — Wt-, — t * h.

This line search guarantees that \F\2 always decreases at each step of the iteration.

See Reference [10] §7.5 Armijo's rule. If 2* W~4 *i is less than the computer double

precision epsilon the iteration is stopped and an error flag is set. If |F(W,)| < 10~4

the iteration is stopped successfully and the ellipse parameters are calculated. No

more than 500 iterations are permitted.

2.4 Generating Points on Y-R Section

Before the task of fitting an ellipse in the Y-R plane can be started, it is necessary to

generate data points of the fuselage body on this Y-R plane. This is accomplished
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as follows. Given an antenna location (yani,tani) this algorithm generates one point

which is on the intersection of the plane y = y,0i and the Y-R section of the aircraft

body; this Y-R section is in a plane parallel to the Y-axis and which contains the

antenna location and the center,(xce, zce), of the best-fit X-Z ellipse to the antenna

position. See Figure 2.8.

This point is found by projecting the plane y = yant in the direction of the y-

axis into the plane y = ysoi. The algorithm finds a point in this composite plane

given by (zgo/,2,0/) on the body section y = ysoi so that the angle 8 between the

vector from (xce,zce) to (xant,zant) and the vector from (xce,zce) to (xaof,zso/) is zero.

See Figure 2.9. Note that given values of y and t the algorithms of Reference [2],

Chapter 3, are used to generate the corresponding values of x and z.

This angle 0 is a function of t which is the parameter which goes from zero to

one as you move clock-wise around any body cross-section y=constant. Finding a

t — tsoi so that 6(tso{) = 0 gives (xsoi,zsoi): the desired solution point in the plane

y = y,oi-
The initial guess at tsoi is provided by the algorithm user; t0 = tanl is usually a

good starting guess. This initial guess must be as close to t,0i as possible.

Next a direction of search for the root of 6(i) is determined. A direction S is

selected so that |0(*0 + S * A*)| < |0(*o)l- Here 5 = ±1 and At = i. It is assumed

that 6 is decreasing in absolute value in this direction S.

The algorithm next searches for an interval of t in which the root of 6 lies. The

variable t is increased in steps of At in direction S until

6(t0 + i*S* &t)*6(to + ( i+ l )*S* At) < 0. (2.16)

The desired root of & then is in the interval (to +1 * 5 * A£, £Q + (* + 1) * S * At) since

the sign of B changes in this interval. If no interval can be found where 9 changes

sign an error flag is set and the algorithm is stopped. This stop condition can occur

if the Y-R plane does not intersect the body cross-section at y = y,0i.
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The root tsoi of & = 0 is found by iteration using a combination of the interval

halving method and a secant-like methods. At each step of the iteration the width of

the interval containing the zero is decreased. At no time is the new iterate produced

by the secant-like method allowed to fall outside the given interval.

Each step of the iteration proceeds as follows. An interval in t, (ti,,<//), is given

in which the root of 6 is known to lie: 8 is of opposite sign at each end of this

interval. A new iterate is obtained by the secant-like method using line search .

Two points are taken in the interval: t\ = t^ + '""^and ti — 'L^'". A line is

constructed thru (t\,6(t\)) and (t2,6(t2)). A direction of line search is determined

by the slope of this secant. The next iterate tyv£ir is selected by a line search in

the direction determined by the secant so that |0(£A'Eir)|2 < l^fa)]2- K £;v£ir is

outside the interval (£/,,£//) the midpoint of this interval is taken for txE\\-: this is

where the interval-halving method is used in this algorithm. If |#(tjv£ir)l < 10~5

the algorithm stops successfully and returns tsoi = INEW- H |0(£yv#ir)l is still too

large a new interval containing the root is obtained from (£LJ* /VEH) and ( £ y v E U > £ / / )

by checking that the sign of 6(t) at the end points of the intervals. If the signs of

6 are opposite at the ends of the interval this guarantees the root is in the interval.

The above iteration is repeated at most 100 times.

2.5 A close-fit in the YR-plane

The scheme described here to fit a composite ellipsoid in the YR-plane is a prelimi-

nary result which requires further improvement. The method was developed in such

a way that only a minimum number of points along the surface of the helicopter

are used. Obviously, to obtain a good fit, it will be necessary to use more points

along the helicopter surface. A method has been developed by Scheick and Klevenow

which uses more points, however, it will not be described here.

In the YR-plane, a close-fit composite ellipsoid is generated using the parameters
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CLOSE-FIT
ELLIPSE

Figure 2.6: A figure of a close-fit ellipse on the undesirable side of the fuselage surface
with | a |> f.
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Figure 2.7: A close-fit ellipse in the XZ-plane at y = Ya with | a |< f.
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Figure 2.8: Interaction of the Y-R and Y = Y90i planes.
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Figure 2.9: Definition of the angle 6 which is used to find the point (X30i,Z30i)on
the plane Y = Yao{.
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obtained in the previous sections. If a close-fit solution can not be obtained, some

approximations are made to obtain a solution.

For this close-fitting procedure, two essential pairs of equations are utilized. One

pair represents the case for which Ya > Yc, which is arbitrarily defined as a Case 1

problem. This pair of equations is For 1^ > Yc:

•"g,
v* "-' -1 = 0; y > Y a (2.17)

where

A = I (x. - xcy + (z. -
l~\.r v \2

cos2 ycs

• jf x*~sin 0g =
:. - xj + (z. - zcf

za-zc
V \2 . / 7 7 \2

s — ̂ cj + \6s — &c)

C0 > 0

and

f2 = A cos2 Ve'.-+ ~ rc~1!2 - 1 = 0 ; » < y. (2.18)
(•C'u 4- l^/i)

where

2 , = [Co cos Ve. + tan Vc, (D0 -f (Y. - Fc))]
2 - tan2 Vea (D0 + (K. - Fc))

2

°OS es [Co cos Vea + tan Ve. (D0 + (Y. - Fc))]
2

y»/l = * . y, "

However, (2.17) is simplified by rewriting it as follows

/i = aCZ + bY 2 + cYc + d = 0 (2.19)rf i U C ' *- ' \ /

where
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a = A-l

b = 1 - A = -a

c = 2(AY.-y)

d = y 2 -AY?

It should be pointed out that the expression in the middle of (2.19) is a variation of

the equation representing a quadratic surface. The general form for representing a

quadratic surface is ax2 + by7 + ex + dy + e = 0 [2]. Since (2.19) is now a function

of two variables Co and Yc, two equations are required to solve for the solutions

simultaneously. In other words, this system of equations requires the use of two

data points to form the two equations. These are actually two surface points in the

YR-plane on the fuselage to the rear of the antenna location. Therefore, by using

the subscript 1 to represent parameters evaluated using the first data point to the

rear of the antenna location and the subscript 2 to represent parameters evaluated

using the second data point to the rear of the antenna location, the following system

of equations with constraints are obtained:

+ rfi = 0 (2.20)

+ d2 = 0 (2.21)

subject to • .

Y,-Ye > 0 (2.22)

C0 > 0 (2.23)

C0,rc e n (2.24)

where

- 1 (2.25)

Ai = -^ (2.26)
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c, = 2 ( A l Y , - y l ) (2.27)

rf, = y'-^F,2 (2.28)

1 _ c c
1 ~ (jr. - *c)

2 + (z. - zc)
2 (2'29)

02 = A2 - 1 (2.30)

62 = l -A 2 = -o2 (2.31)

c2 = 2(>42y.-y2) ' (2.32)

rf2 = y2-i2y,2 (2.33)

]2

(2'34)

and 7?. is a set of real numbers. The inequality constraints in (2.22) through (2.24)

are known as functional constraints. The system of equations (2.20) and (2.21) are

solved simultaneously without the constraints, and by eliminating Co, the equation

(b, - ^6,) Yc
2 + (c2 - %,) Yc + (d2 - ^rf,) = 0 (2.35)

\ aj / \ ai / \ aj /

is obtained. Note that the coefficient expression of the first term in (2.35) is in fact

zero, since the terms in the expression cancels each other out. As a result, (2.35)

is reduced to a linear equation. With further algebraic manipulation, the solutions

produced are
/d sirf \

(2'36)

and

C I-, /V2 _ £lv _ _ O l\'j\O0 —±y -» c ~-*c \t.4i)

Since C*o and Yc are real, and Co must be positive, (2.37), is rewritten as

2 _ £lFc _ ^1 (2.38)

It should be pointed out that this approach of mathematical derivation provides

only one of the few possible sets of solution to the system of equations of (2.20)

and (2.21). For a system of equations that have a solution set, the solution set
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can be feasible, that is, it satisfies all of the functional constraints, or it can be

infeasible, that is, it does not satisfy all of the functional constraints [10]. Thus,

(2.36) and (2.38) is only one of the solution sets that may, or may not, satisfy all

of the constraints (2.22) through (2.24), that is, the solution set may, or may not,

be feasible. However, there exists one other possible solution for Yc which could be

approximated without much difficulty, if

| y,- - Ya \ » | Ya - Yc |

or

I y,- - y. I « I y. - ye |

for t = 1,2, where i = 1 and i — 2 would represent the first and second data points,

respectively, to the front of the antenna location. In fact, in (2.17), Yc appears at

two places in the expression for /] , one in the equation defining the term cos2 Ve,-,

and the other in the term (y — Yc) .

For this approximation, consider the expression (Ys — Yc) in the numerator of

the equation defining the term cos2 Vea in (2.17). Assuming that the value for this

expression is 77, the equation

(ys-yc)2 = 77, T, >o (2.39)

is thus created. There are indeed two possible values of Yc that satisfy (2.39), namely

Y; = Y.-yfi (2.40)

and

Yc* = Y. + ̂  (2.41)

As for the term (y — yc)
2, it is represented as

(y-Y cf (2.42)
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Thus, for Fc = Ye" and Yc = Y*, (2.42) becomes

e (Y;) = e" = (y - Fc')
2 = (y - Ya + v^)2 (2.43)

and

(2.44)

respectively. Therefore, for the condition

- Y * \ t fori=l,2; (2.45)

or

= |y.-i7l = |y.-i; l ll, for 1=1,2; (2.46)

e is such that e* ss e". This implies that the change in e would be negligibly small

when the Yc value was switched from Fc* to Fj1, or vice-versa, if condition (2.45), or

(2.46), was satisfied. The switching of such specific values from Y* to Fc", or vice-

versa, may be regarded as a reflection of Fc = Fc*, or of Fc = Fc", respectively, on the

reflection plane Ya to its corresponding image Fc = Fc", or of Fc = Fc*, respectively.

Indeed, this approximation approach could be utilized if the solution for Fc in (2.36)

did not satisfy constraint (2.22), provided that the condition

| y,- - Fs | > | Ys - Yc |

or

| y,- - FJ < | Y, - Yc |

for t = 1,2 is met. Note that for Case 1, where Fs > Fc, (2.40) would approximate

the feasible solution if the Fc value computed in (2.36) is equal to that computed in

(2.41).

In addition, Fs must be within the range

Yc < Yg < (Yc + C0)
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so that it is located on the rear section of the composite ellipse. This can be conspic-

uously observed from (2.17), whereby the numerator of the expression for cos2 Ves

must be positive. Hence, a further set of functional constraints arising from these

are produced:

F c
2-— Y c - — > 0 (2.47)

C2-(F s-yc)2 > 0 (2.48)

Indeed, (2.47) is the expression for the argument in the square-root function of (2.38),

whereas (2.48) is the expression in the numerator for defining cos2 Vea in (2.17).

In fact, no solution to the original equations (2.20) and (2.21) were found, the

inequality constraints (2.47) and (2.48) would have to be satisfied in order to produce

a composite ellipse in the YR-plane, given the solutions obtained for the XZ-plane,

the first-order derivative of the fuselage surface at the antenna location, and the

first data point to the rear of the antenna location. This could be achieved by

algebraically eliminating Co in (2.48) and rewriting the set of functional constraints

(2.48) and (2.47) as

Fc
2- — Fc-^- > 0 (2.49)

'c - — - Y? > 0 (2.50)
o-i

from which Yc could be solved simultaneously. As a result, the locus of the composite

ellipse would pass through the first data point since there would be a dependency on

the first data point, and that Co would be derived from (2.47) given Yc as determined

previously. .

On the other hand, (2.18) is a function of a single variable D0. It is thus wise

to solve it numerically using a root-finding method. Therefore, in order to obtain

a reasonably good value for D0, two data points are utilized, instead of one. These

two data points would be points on the actual fuselage surface to the front of the

antenna location. Restating these, and representing the parameters evaluated using
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the first data point to the front (that is,t = 1) as subscript 1 and those evaluated

using the second data point to the front (that is, i = 2) as subscript 2, the problem

from (2.18) becomes:

/ _ Y _ Y }2

/2, = At cos2 Ve',. +
 (y i~ ^. y 'x2 -1 = 0; i=l,2 (2.51)

With this, DO would be the average value of the real roots D0i and D0z.

On the other hand, the other pair of equations represents the case for which

Ys < Fc, and is arbitrarily defined as a Case 2 problem. These equations are

For y. < Yc :
™" o \ 9

/, = coB.Ve^(y-yc) _ j = o . y < Fj (2 52)

where

2 2(X, - Xc)
2 + (Z. - Zc)

D2 — (Y — VI
co.'K. = ^° (la. y"]

cos

Xj + (Z. - Z
zs-zc

v- _ J T ' ) 2 _ L f 7 — Z }

Do > 0

and

= cos2 (2-53)

where

2 [PpcosK, - tan Ve, (C0 - (Y, - Fc))]
2 - tan2 Ves (C0 - (Y. - Yc)

-COS
[Do cos Vea - tan Ves (C70 - (Y. - l'c))]

2

1 - sin l£

Note that in (2.52), instead of Co, the parameter is substituted with D0) and in

(2.53), instead of D0, the parameter is replaced with GV Just as before, (2.52)
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is reduced to a system of two equations represented by two data points which are

selected off the actual surface of the fuselage in the YR-plane to the front of the

antenna location and are subjected to a set of functional constraints. This system

of constrained equations are

+ biY? + c,ye + <*! = 0 (2.54)

fi, = ^Dl + b2Y? + c2Yc + rfj = 0 (2.55)

subject to

Y,-YC < 0 (2.56)

D0 > 0 (2.57)

D O J Y C .€ n (2.58)

where

01 = A i - 1 (2.59)

6, = 1 - Ai = -a, . (2.60)

c, = 2 ( A l Y s - y l ) (2.61)

(2, = yf-^,y.2 (2.62)

1 [(«1-JTc)rin^ + (»1-Ze)cog^]2

Al = - (xs-xc)
2 + (z8-zc)

2 - (2'63)

02 = A 2 - l (2.64)

62 = 1 - ^2 = -02 (2.65)

c2 = 2(i2F s-y2) (2.66)

rf2 = yt-AzY? (2.67)

I [(^2 - Xe) sin ̂  + (*2 - Zc) cos ̂ ]2

^2 = - 2 2 - (2'68)

and "R, is a set of real numbers. From (2.54) and (2.55), Yc and D0 are then solved

simultaneously to obtain
/<£2 - sirf, \

¥< = - (2''69)
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and

D» = . /y e2-£Ly e_* (2.70)
V °i fli

Again, as in Case 1, the reflection approximation equations of (2.40) and (2.41)

could be applied in this case, if the solution for Yc in (2.69) did not satisfy constraint

(2.56), provided that the condition

| yt - Ya | > | Ys - Yc |

or

| y, - Ya | < | Ya - Yc |

for i = 1,2, where t = 1 and i = 2 would represent the first and second data points,

respectively, to the rear of the antenna location, occurred. Therefore, for the Case 2

problem, where 1^ < Yc, (2.41) would approximate the feasible solution if the Yc

value evaluated in (2.69) is equal to that evaluated in (2.40).

Proceeding on, algebraically eliminating £>o, similar to (2.49) and (2.50), the

functional constraints for this case are

i;2--rc-- > o (2.7i)
( 1 ) 0 , 1

(2Ys-^}Yc---Ya
2 > 0 (2.72)

V a\ I a\

If, however, no solution to (2.54) and (2.55) was obtained, then the constraints (2.72)

and (2.71) would be utilized. That is, Yc and D0 could be solved simultaneously from

(2.72) and (2.71). It should be observed that (2.59) through (2.68), (2.69), (2.72)

and (2.71) are the same expressions as those for Case 1.

As for (2.53), the same root-finding method employed in Case 1 is applied in this

case. In other words, the expression for this case is

/2; = & cos2 V;,; +
 (y '~ Yc - °< -1 = 0; i=l,2 (2.73)

(C/o, - i, hi)

Thus, Co is the average value of the real roots C'0l and
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As for the data points to be employed in obtaining the parameters for construct-

ing the composite ellipse, two data points on the actual fuselage to front, and two

on the actual fuselage to rear, of the antenna location in the YR-plane is sampled at

a specific interval DY as illustrated in Figure 2.10. For a Case 1 problem, the two

selected data points to the rear would be utilized in (2.20) through (2.27), and the

other two to the front would be utilized in (2.51). Contrarily, for a Case 2 problem,

the two selected data points to the front would be utilized in (2.54) through (2.58),

and the other two to the rear would be utilized in (2.73). If, however, at least one of

the selected data points was located over on the other side of the R = 0 line instead

of on the same side as where the antenna location is, that is, in the R < 0 region if

the antenna location is in the R > 0 region, or vice-versa, caution must be taken.

The case for which the antenna location is in the R > 0 region, but with one of the

data points in the R < 0 region, is depicted in Figure 2.11. Since, as mentioned

in Section 2.2, the R = 0 line coincides with the axis of the composite ellipsoid

that is orthogonal to the XZ-plane, the R = 0 line also coincides with the axis of

the composite ellipse in the YR-plane, which is in fact a YR-plane cross-section of

the composite ellipsoid. Thus, the composite ellipse must be symmetrical along the

R = 0 line.

By referring to Figure 2.11 (a) as an example, the locus of the composite ellipse

may be conformed to pass very closely by, if not directly, the antenna location and

the data points located on the same R > 0 region as where the antenna location is,

but not the data point below the R = 0 line. This is attributed to the symmetrical

property of the composite ellipse along the R = 0 line, as is conspicuous in the

figure. As a result, the point below the R = 0 line cannot be applied to (2.21) for

Case 1, or (2.21) for Case 2, to produce an accurate solution. Therefore, the data

points to be utilized must be selected from the portion of the cross-section surface

that is located on the same side of the R = 0 line as where the antenna location is.
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Figure 2.10: Antenna location with four data points approximating the the surface
of the cross-section in the YR-plane in the vicinity of the antenna location. DY is
the sampling interval from one data point to the other, and n is the outward unit
normal vector of the surface at the antenna location.
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Figure 2.11: (a) An example of the YR-plane surface for the case where the antenna
location is in the R > 0 region, but with a data point in the R < 0 region, and
(b) Each interval DY to the front of the antenna location is reduced to DY' so that
a composite ellipse may be fitted to the surface formed by the data points.
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To execute this, the sampling interval DY must be reduced. In fact, this reduced

DY is DY' in Figure 2.11 (b).

In order to mathematically determine if the antenna is located on the top half of

the composite ellipsoid, or the bottom half of it, the angle parameter <f>, in Figure 2.7

is evaluated. This is an angle of inclination of the YR-plane from the YZ-plane. If

<f>a < 90°, then the antenna would be considered to be on the top half of the composite

ellipsoid. On the other hand, if <f>, > 90°, then the antenna would be considered to

be on the bottom half of the composite ellipsoid.

Once the location of the antenna is determined in the context of top or bottom

half of the composite ellipsoid, the problem can be easily identified as a Case 1 prob-

lem or a Case 2 problem. This is achieved by determining the first-order derivative

of the surface at the antenna location. For the antenna located on the top hal£ of

the composite ellipsoid, the problem would be a Case 1 problem if the first-order

derivative of the fuselage surface at the antenna location was less than or equal to

—0.01; and the problem would be a Case 2 problem if the first-order derivative of

the fuselage surface at the antenna location was greater than 0.01. On the contrary,

for the antenna located on the bottom half of the composite ellipsoid, the problem

would be a Case 1 problem if the first-order derivative of the fuselage surface at

the antenna location was greater then or equal to 0.01; and the problem would be

a Case 2 problem if the first-order derivative of the fuselage surface at the antenna

location was less than —0.01. Note that the value 0.01 is utilized instead of zero so

that values within the neighbourhood of zero are considered as zeros. As a.graph-

ical illustration, these are summarized in Figure 2.12 and Figure 2.13. Indeed,

such antenna location information is also especially important when initializing the

parameters of NEWAIR3 [1].
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TANGENT LI

ANTENNA-

y
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Figure 2.12: Schematics of the fuselage cross-section in the YR-plane for the antenna
location on the top half of the close-fit composite ellipsoid: a) for Case 1 (Y, > Yc):
The first-order derivative of the surface is less than or equal to —0.01, and b) for
Case 2 (Ys < Yc): The first-order derivative of the surface is greater than 0.01.
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Figure 2.13: Schematics of the fuselage cross-section in the YR-plane for the an-
tenna location on the bottom half of the close-fit composite ellipsoid: (a) for Case 1
(Ya > Yc): The first-order derivative of the surface is greater than or equal to 0.01,
and (b) for Case 2 (y, < Yc): The first-order derivative of the surface is less than
-0.01.
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2.6 Perturbation of Data Points

It should be noted that the approximation technique discussed above does no al-

ways produce numerically a good approximation of a close-fit composite ellipsoid.

Therefore, some form of perturbation technique must be performed, so as to distort

the data points such that a good numerical approximation is obtainable. This is

especially true if the actual surface of the fuselage is entirely planar, or just very

slightly concave, within the vicinity of the antenna location. For such a surface, a

perfectly fitting model of a composite ellipsoid is ill-posed.

2.6.1 Perturbation in the XZ-plane

In this section, the perturbation of the data points in the XZ-plane, developed by

Klevenow and Scheick, is discussed briefly.

Such a perturbation is performed when a close-fit ellipse at the antenna location

in the XZ-plane is difficult to calculate due to the actual surface at the antenna

location being essentially planar. In the XZ-plane, this is an almost straight line in

the vicinity of the antenna location.

For the purpose of presenting this perturbation concept, the general xy-coordinate

system is employed, instead of the coordinate system of the XZ-plane. Assuming

that the data points, together with the antenna location are, (i,, y,), i = 1,...,7V,

where N is an odd number (the antenna location is now regarded as a point in the

middle of the array of N points), a straight line is constructed between the two

end points (xt , yt) and (XN , yA>). This straight line is described by the the normal

equation

f n ( x f , y,-j = Axi + Byi + C (2.74)

Hence, by adding a parallel line, Line 1, at a distance DD away from the normal

line on one side, and another, Line 2, at the same distance DD on the other side,

a linear band of width 2 x DD is created, as illustrated in Figure 2.14. For the
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outward normal direction n shown the figure, Line 1 is a linear line described by

fn(xi , y,) = Axi + Byi + C = DD (2.75)

and Line 2, also a linear line, by

/n(x,, y,) = A i,. + 'Byt + C = -DD (2.76)

The points (x< , y,), t = 1,...,7V, are considered as forming a concave arc when

viewed from outside of the cross-section if any one of them lies in the /,,(x,, y,) <

—DD region depicted in the figure, that is, below Line 2 in the figure. In such

a case, no attempt is made to fit an ellipse to the cross-section. Mathematically,

these points would produce /n(z,, y,) < DD, as described by (2.74). If, however,

all of the points were in the /n(x,, y,) > —DD region, that is, above Line 2 in the

figure, then the points are considered either as forming a convex arc, or as forming

an almost straight line to which a close-fit is not explicitly defined. Mathematically,

this corresponds to the points producing /,,(x,, y,) > —DD, as described by (2.74).

In order to determine as to which of these cases actually occur if all of the points

are located in the /n(i,, y,) > —DD region, that is, above Line 2 in the figure, the

positions of these points with respect to Line 1 would then be considered. For this

evaluation, the points would be regarded as forming an almost straight line if any

one of them were in the f n (xi , yt) < DD region, that is, below Line 1 in the figure.

When this occurs, it is assumed that the points are located within the band depicted

in the figure. Points in this configuration are perturbed. Otherwise, the arc to which

they form would be regarded as convex.

2.6.2 Perturbation in the YR-plane

Perturbation of data points in the YR-plane is performed if no close-fit composite

ellipsoid at the antenna location in the YR-plane is found. The perturbation process

in this plane is, however, different from that in the XZ-plane. For this case, the
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Figure 2.14: A generalized schematic illustrating the perturbation in the XZ-plane
at y = Ya. The numerical labels indicate the i-th. point in the figure.
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first-order derivative TOI of the actual fuselage surface at the antenna location is first

obtained. A unit direction vector d perpendicular to the line mj is given by

(2.77)

where m2 — ——, "-f" signs are for m\ > 0, and "—" signs are for mi < 0. The

case where mi = 0 is ignored. With this, any of the data points (y, R) selected can

be shifted, or perturbed, to a new position (y', Rf) along vector d, as provided by

(y', R') = = \ y ' ± a - = , R' ± a—. ; a > 0

(2.78)

where

y =
y - mi ys — R -f R,

TT12 — TTlj

R* = mi(y*-y s ) + #,

with "-f" signs for ml > 0, and "-" signs for m! < 0. In fact, (y*, R') is the

intersection point of lines mi and m2. This is illustrated by Figure 2.15 for the

perturbation of a single data point.

Therefore, employing (2.78) to the first selected data point (that is, i = 1), the

expression becomes

/ 1 TT,- \

; ai >0

(2.79)

where "

. m2 y\ — TO] ys — RI + RS
Vi = m 2 -mi

RI = mi (yj - ya) + Ra

with m2 = — ̂ -, "+" signs for mt > 0, and "—" signs for m\ < 0. For this case,

(y*, R*) is as described previously. With such a perturbation process, there is always
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Figure 2.15: A generalized geometrical description of the perturbation equation
(2.78).
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a possibility that the arc formed by the perturbed data points is concave. So, in

order to decrease but not entirely eliminate such a likelihood, the second data point

(that is, i = 2) is perturbed using the first-order derivative rn\ of a line extrapolated

from the midpoint between the first and the second data points to the antenna

location, instead of using the first-order derivative m\ at the antenna location itself.

Thus, for the second selected data point (that is, t = 2), the expression becomes

> X - > R* a ~T- ( *

where

m2 j/2 — m-i Us — RI +
V2 =

with m'2 = — ̂ r, "+" signs for m\ > 0, and "— " signs for m'j < 0. Nonetheless,

(y*, R*) for this case is the intersection point of lines m\ and m2 instead.
«•»

Indeed, this is an idea of shifting points downwards along vector d, but in the

direction opposite to that of the outward normal of the fuselage which is assumed to

be pointing directly upwards. As such, the points are always located below the first-

order derivative line m\ . This ensures a convexity in the infinitesimal neighbourhood

of the antenna location. It should be noted that any point located above mi will

cause ELLC to fail.

Particularly, this concept can be applied to discern sets of points forming concave

arcs. For data points to the front of the antenna location, the condition

±m'j < ±mi (2.81)

. where -f signs are for representing antenna locations on the top half of the composite

ellipsoid, and — signs for representing antenna locations on the bottom half of the

composite ellipsoid, indicates concavity. Such a concavity may only be slight, or it
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may be rather severe. Nonetheless, the condition

± (m\ ± tr) < ±mi (2.82)

with a > 0 as a sensitivity parameter, is utilized to identify a concavity that is above

a certain tolerance.

For data points to the rear of the antenna location, on the other hand, the

condition

± m \ > ± m i (2.83)

where, again, + signs are for representing antenna locations on the top half of the

composite ellipsoid, and — signs for representing antenna locations on the bottom

half of the composite ellipsoid, is employed to identify concavity, instead. Specifi-

cally, for implementing a condition that accepts a specified tolerance level of slight

concavity, the condition

±(m'J ^<r) > ±771, (2.84)

with <r > 0 as a sensitivity parameter, is utilized instead.

2.7 Computation of parameters AQ and BQ

As mentioned in Section 2.2, the final parameters that are yet to be determined

are the parameters A<j and BQ. In fact, these parameters are easily computed by

geometrical analysis of the entire composite ellipsoid itself using the parameters A] ,

J5j, Co, DO and Yc, which were determined in the proceeding sections. The equations

for AO and BO, hence, are, respectively,

cos V A. + y r t i
cos

and

(2. 8b)
cos
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for Ys > Yc (Case 1 problem), or

4o=co^ (ft-frM.
008V" J(C»-Y.,:f-((Yc-Y,) + Y,hf

and

Bo = ̂  (ft-*.)*. (2.88)008 v~ v/(Co - no2 - ((n - Y.) + Y,,,)1

for Fg < Yc (Case 2 problem). The expressions for cos Vea, as well as cos V^a and Fs/,,

for the Case 1 problem are as stated in (2.17), and (2.18), respectively. On the other

hand, those for the Case 2 problem are as stated in (2.52), and (2.53), respectively.
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Chapter 3

The Algorithms

This chapter provides a concise description of the major algorithms employed in

ELLC, the FORTRAN code that generates the close-fit composite ellipsoid for in-

putting into NEWAIR3C as part of the HARP code. Basically, ELLC consists of a

number of subroutines that are called independently at various stages of the code.

It should be noted that, at the present moment, the entire contour data of the he-

licopter fuselage is already provided in the form of data files from which ELLC is

able to access.

3.1 Subroutine ELLC

This is the main subroutine that executes a number of other subroutines to be de-

scribed subsequently. It integrates these subroutines into a compact subroutine that

outputs the final solutions AQ, B0, C0, DO and I7,/,, necessary for constructing the

close-fit composite ellipsoid, as well as the stop-run parameter STATSTOP. The in-

puts that are necessary for this subroutine are the coordinate location of the antenna

on the helicopter fuselage surface and the data files containing the coordinates of

the points that form the fuselage cross section itself. In fact, the antenna location

on the helicopter fuselage is specified in the (Ya, T) format described in Section 2.2.

A flow-chart of ELLC is illustrated in Figure 3.1 through Figure 3.4. Note that
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subroutines INARSEC, VENDS, POINT, ELLXZ and PNTTHY were developed by

Scheick and Klevenow [?], and details of these are not to be discussed in this report.

This subroutine commences by initializing the various variables to be utilized in

subsequent routines, which determine the points on a particular cross section of the

helicopter fuselage, through the subroutine INARSEC. Then subroutine YENDS is

called upon to determine the positions of the nose and the tail ends of the helicopter

fuselage. To determine the rectangular coordinate of the antenna location, subrou-

tine POINT is executed. Following this, subroutine ELLXZ is utilized to generate a

close-fit ellipse to the points on the fuselage surface in the XZ-plane in the vicinity of

the antenna location. This XZ-plane is in fact the cross section at the antenna loca-

tion where y = Ya. Among the parameters produced by ELLXZ are the semi-axes A\

and B\ of the close-fit ellipse, as well as the center of the ellipse itself which consists

of the x- and z-components, Xc and Zc, of center of the close-fit composite ellipsoid.

If, however, no acceptable solution was found, ELLC would halt with an appropriate

error message. Once completed, the rectangular coordinates of the antenna location

(A"9, I',, Za} are transformed into YR-coordinates (Ra, Ya, <£s), where <f>s is the angle

of the YR-plane (in which the antenna is also located) from the z-axis.

At spacing DY1 from each other, the YR-coordinates of the points behind the

antenna location in the YR-plane are generated via subroutine PNTTHY until the

actual surface of the helicopter fuselage in the YR-plane ceases, or until a point in

the YR-plane cannot be determined precisely, that is, the stop-run condition ISTOP

of subroutine PNTTHY is nonzero. With regards to the latter condition, for the

antenna located too close to an end point of the fuselage, ELLC would produce a

STATSTOP of value 13, indicating that the necessary data points on the fuselage

surface were indeterminate, and finally halts with an appropriate error message.

However, prior to encountering this condition, STATSTOP = 7 and the spacing DY1

is adjusted such that a minimum number of two points are generated behind the the

antenna location. Also, the spacing DY1 may be reduced so that the none of the
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Execute INARSEC to determine
cross-section points in

XZ-plane at y = Y,

Execute VENDS to determine
positions of the nose and tail

ends of the fuselage

1
Execute POINT to transform

antenna location to rectangular
coordinate (X,, Y,, Z,)

I
Execute ELLXZ to generate
close-fit ellipse in XZ-plane

in the vicinity of the antenna
location, producing parameters

Bt, Xc and Zc

Transform antenna location
coordinate to YR-coordinate

(R.,Y,,<j>,) format

Figure 3.1: A simplified flow-chart for subroutine ELLC.
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Compute spacing DY1 for data
points behind the antenna location.

Then, select the n-th data point

Update STATSTOP and some
essential parameters if
the antenna location is

too close to an end point

Is the n-th
data point located beyond

fuselage ends? Yes

Execute PNTTHY to obtain the
n-th data point in the YR-

plane behind the antenna location

Implement adjustment
parameters to ensure

that the n-th data point
in the YR-plane does not

cross the R = 0 line

Figure 3.2: Continuation from Figure 3.1.
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Compute spacing DY2 for data points
in front of the antenna location.
Then, select the m-th data point

Update STATSTOP and some
essential parameters if
the antenna location is

too close to an end point

Is the m-th
data point located beyond

fuselage ends?

Execute PNTTHY to obtain
the m-th data point in

the YR-plane in front of
the antenna location

No

Implement adjustment
parameters to ensure

that the m-th data point
in the YR-plane does not

cross the R = 0 line

Figure 3.3: Continuation from Figure 3.2.
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Set indicator TOP to
logical TRUE for |<£,| < 90°

and to logical FALSE for
\4>.\ > 90°

Execute ELLYR to generate
close-fit composite ellipse in
the YR-plane in the vicinity

of the antenna location,
producing parameters Co, DO,
Yc, CVES, CVESP and Y,h.

STATSTOP = 6?

Are data
points in the YR-plane
convex in the improper

direction?
error message

Compute parameters
An and

Figure 3.4: Continuation from Figure 3.3.
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two selected data points to the rear of the antenna location crosses over the R = 0

line of the YR-plane.

At spacing DY2 from each other, the YR-coordinates of the points in front of the

antenna location in the YR-plane are generated until similar conditions as those for

spacing DY1 occur. Again, a STATSTOP value of 13 would be generated and ELLC

would halt with an appropriate error message if a point in the YR-plane could not

be determined accurately. The very same adjustments for the spacing DY1 apply as

well for spacing DY2.

Next, the routine determines the orientation of the antenna location with re-

spect to the ellipsoid body: That is, if the antenna was located on the top half

of the ellipsoid, the logical indicator TOP would be assigned logical TRUE, and if

at the bottom half of it, indicator TOP would be assigned logical FALSE. This is

performed to enable subroutine ELLYR to ascertain if the problem is of Case 1 or

Case 2. With this information, subroutine ELLYR is then executed to produce the

parameters Co and D0, and the y-component Yc of the center of the entire composite

ellipse, as well as the stop-run condition STATSTOP that may occur in ELLYR. If

the parameter STATSTOP was 6, indicating that the spacings DY1 and DY2 were

changed to beyond the acceptable tolerance whereby the difference algorithm in

subroutine ELLYR would provide accurate computations, ELLC would halt with an

appropriate error message. For STATSTOP values of 7, 14, 15, 16 and 17, a warning

message, indicating that the antenna was too close to an end point of the helicopter

fuselage, would be output. For a STATSTOP value of 8, however, a warning message

would be produced to indicate that the number of iterations in subroutine ELLYR

had exceeded the maximum iterations allowed, and that the selected data points on

the fuselage surface were perturbed to maximum tolerance. If, indeed, the surface

in the vicinity of the antenna location was determined to be concave by subroutine

PTURB in subroutine ELLYR, ELLC would halt with an appropriate error message

as well.
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Subsequently, the parameters A<j and i?0 of the close-fit composite ellipsoid are

computed by employing (2.85) and (2.86),respectively, for a Case 1 problem, or

(2.87) and (2.88), respectively, for a Case 2 problem. Hence, the final results, Au,

BO, C0, DO, Y8h, Xc, Yc and Zc, as well as the stop-run parameter STATSTOP, are

output.

3.2 Subroutine ELLYR

This is a subroutine that generates a close-fit composite ellipse in the YR-plane, given

the parameters Xc and Zc evaluated by subroutine ELLXZ. That is, it generates the

composite ellipsoid parameters C0 and DO, &s well as the y-component Yc of the

center of the composite ellipsoid. The final output parameters of this subroutine are

Co, DO, Yc, CVES, CVESP, Yghi and several logical variables essential to the main

subroutine ELLC. Figure 3.5 through Figure 3.10 illustrates the general outline of

the algorithm.

The subroutine begins by first defining and assigning the necessary parameters

utilized in this routine. Within this part of the subroutine, decision statements

dependent on the stop-run parameter STATSTOP are utilized to initialize several

logical variables that will be employed to update values to the parameter STAT-

STOP. Then the iteration counter is initiated. As long as the iteration count is

not exceeded, the routine continues to initiate yet another parameter, the logical

variable ZAEQZS, to logical FALSE. This logical parameter is a Yc = Y, condition

indicator. Note that this parameter is always initialized to logical FALSE at each

iteration count. Following this, the first-order derivative GRADS at the antenna

location is computed using an appropriate difference algorithm [11] in which the de-

nominator h is assigned a constant of value 1.8 for point spacings of not greater than

1.9 and not less than 1.3. The 3-pointforward difference algorithm is utilized when

spacing DY2 is less than 1.3 or greater than 1.9, and 1.3 < DY1 < 1.9; whereas, the

3-point backward difference is utilized when spacing DY1 is less than 1.3 or greater
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Update STATSTOP if
at max. iteration

At maximum
iteration?

Compute GRABS using
an appropriate

difference algorithm

Can GRADS
be computed?

Initialize ZAEQZS
to TRUE

if GRADS K 0

Figure 3.5: A simplified flow-chart for subroutine ELLYR.
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Is this a
Case 1 problem?

Execute SOLVR
to obtain Co and Yr

ZAEQZS=TRUE,
and SOLVR

fails?

Update STATSTOP
if necessary

Search for the
first zero-crossing

of function /2

Generate an initial
guess for RTSAFE

(This is the midpoint
between limits of

the bracketing range)

I
Obtain real roots

of function /2
by executing RTSAFE

for t= 1,2

Figure 3.6: Continuation from Figure 3.5.
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Yes

Set £)0 *o the
averaged value of
the real roots of

function /2 obtained
for i= 1,2

Perturb the data
points to the front

of the antenna
location

Ate perturbed
points convex in the
proper direction?

Set Do to a
quarter of the
initial guess

value for t = 2

Figure 3.7: Continuation from Figure 3.6.
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Execute SOLVRO
to obtain DO and Yc

ZAEQZS=TRUE,
and SOLVRO

fails?

Update STATSTOP
if necessary

Search for the
first zero-crossing

of function /2

Generate an initial
guess for RTSAFEO
(This is the midpoint

between limits of
the bracketing range)

Obtain real roots
of function ji

by executing RTSAFEO
f o r i = 1,2

Figure 3.8: Continuation from Figure 3.7.
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Is
RTSAFEO
successful?

Set C0 to the
averaged value of
the real roots of

function /2 obtained
for »= 1,2

Perturb the data
points to the rear

of the antenna
location

Are perturbed
points convex in the

proper direction?

Set C0 to a
quarter of the
initial guess

value for * = 2

Figure 3.9: Continuation from Figure 3.8.
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Update parameters to
be output by executing
FROUTL for Case 1,

or FROUTLO for Case 2

I
Assign final results

to appropriate
parameters for output

Figure 3.10: Continuation from Figure 3.9.
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than 1.9, and 1.3 < DY2 < 1.9. The 2-point central difference, on the other hand,

is utilized when the values of both DY1 and DY2 are not within these specified

domains. A decision is then made to ascertain the problem type at hand: that

is, being as a Case 1 problem (Y, > Yc), or a Case 2 problem (Ya < Yc). When

-0.01 < GRADS < 0.01, or GRADS < -0.01 and the antenna is located on the top

half of the composite ellipsoid, or GRADS > 0.01 and the antenna is located on the

bottom half of the composite ellipsoid, the problem is assumed as a Case 1 problem.

On the other hand, however, when GRADS > 0.01 and the antenna is located on the

top half of the composite ellipsoid, or GRADS < —0.01 and the antenna is located

on the bottom half of the composite ellipsoid, the problem is regarded as a Case 2

problem.

For a Case 1 problem, the algorithm proceeds on to the module for the Case 1

problem. The first portion of the module is module SOLVR in which the composite

ellipsoid parameter Co and the y-component Yc of the center of the composite ellip-

soid are determined. Only if ZAEQZS was assigned to logical TRUE, and Co and Yc

could not be determined by module SOLVR, would the algorithm then proceed on

to module SOLVRO. Proceeding onwards, the updating procedure for the stop-run

parameter STATSTOP is performed, and then module RTSAFE is executed. This

module actually determines the composite ellipsoid parameter DO which is the av-

eraged values of the real roots of (2.51) for t = 1,2 (that is, for the first and second

data points). If, however, module RTSAFE failed, subroutine PTURB would then

be executed to perturb the data points in front of the antenna location, an appro-

priate updating of parameter STATSTOP would be performed, and parameter DO

would be set to a factor of 0.25 of its initial guess value for i = 2 (for the second

data point), after which the algorithm control would be returned to the counter

incrementing section at the top of the algorithm. Otherwise, the real roots of (2.51)

for i = 1,2 would be averaged and assigned as an ultimate solution to parameter

Do.
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However, if the problem is determined to be a Case 2 problem, the module for

the Case 1 problem would be omitted and the module for the Case 2 problem would

be executed. The module for the Case 2 problem is, in fact, very similar to the

module for the Case 1 problem described previously. In this module, the composite

ellipsoid parameter DO, instead of Co, and the y-component Yc of the center of the

composite ellipsoid is determined by module SOLVRO. If logical variable ZAEQZS

was assigned to logical TRUE, and no solution was obtained by module SOLVRO,

subroutine PTURB, which is at the bottom of this module, would then be executed

to perturb, this time, the data points behind the antenna location. Otherwise,

the parameter STATSTOP would be updated and module RTSAFEO would be

executed. In module RTSAFEO, instead of the parameter Dv, the parameter Co

would be determined. Again, if module RTSAFEO failed, subroutine PTURB would

be executed to perturb the data points behind the antenna location, an appropriate

updating of parameter STATSTOP would be performed, and parameter C^ would be

set to a factor of 0.25 of its initial guess value for i = 1,2, after which the algorithm

control would be returned to the counter incrementing section at the top of the

algorithm. If otherwise, the real roots of (2.73) for i = 1,2 would be averaged and

assigned as a final solution to Co-

if the control was returned to the counter incrementing section at the top of

the algorithm, the entire procedure described previously would be repeated until

reasonable solutions were obtained, or the maximum iteration counts exceeded. At

the end of the entire algorithm execution, appropriate assignments of solutions to the

output variables of this algorithm are performed. The control is then returned to the

main program ELLC. It should be noted that subroutine ELLYR is able to detect

slight concavity through subroutine PTURB, which will be presented subsequently.

75



3.3 Subroutines SOLVR and SOLVRO

These subroutines are executed by the subroutine. Essentially, the subroutine

SOLVR is similar to its twin, the subroutine SOLVRO. These subroutines are the

only routines to be called upon to directly provide the first set of parameter solutions

to the subroutine ELLYR, given the parameters Xc and Yc determined by subrou-

tine ELLXZ. Solutions generated from these subroutines would be guaranteed, if

GRADS was not assumed as approximately zero.

The subroutine SOLVR is utilized when a Case 1 problem is identified. This

routine determines the composite ellipsoid parameter Cu and the y-component Yc of

the center of the composite ellipsoid for a Case 1 problem. For a Case 2 problem,

the subroutine SOLVRO is utilized instead. Here, the composite ellipsoid parameter

DO and the y-component Yc of the center of the composite ellipsoid is determined.

Initialization of the necessary parameters are first performed, some of which could

be passed into subsequent routines in ELLC. Then the variables a,, &,, c, and rf, for

i = 1,2 are assigned their respective functions, as specified in (2.20) for subroutine

SOLVR, or in (2.54) for subroutine SOLVRO. Finally, subroutine SRRO is executed

to provide the respective solutions. Note that the logical indicator ZAEQZS, defined

in Section 3.2, serves as one of the input parameters to subroutine SRRO.

Subroutines SOLVR and SOLVRO are guaranteed to return their respectively

solutions, except when the logical parameter ZAEQZS is assigned to logical TRUE,

and, Ys < Yc for subroutine SOLVR or Y, > Yc for subroutine SOLVRO. This is

attributed to the fact that subroutine SRRO always returns a solution, feasible or

infeasible. Indeed, this matter is further discussed in Section 3.4.

3.4 Subroutine SRRO

This subroutine contains the essential algorithm for determining the first set of

solutions generated by subroutine ELLYR via subroutines SOLVR and SOLVRO. A
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logical parameter REFLECT is also output to indicate if the reflecting procedure, to

be discussed later in this section, is utilized. An important input parameter to this

subroutine is the logical indicator ZAEQZS denned in Section 3.2. The effects of

this logical indicator in this subroutine will be discussed eventually in this section.

Figure 3.11 through Figure 3.14 illustrates the flow-chart of this subroutine.

The core of this algorithm begins with a decision module: Should Yc = Ya con-

dition be utilized? If yes, then Yc would be assigned the value of Yat which is the

value of the y-component of the antenna coordinate. Otherwise, the exact value of

the parameter Yc would be computed using (2.36) for a Case 1 problem, or (2.69)

for a Case 2 problem. Next, if condition (2.22) for Case 1 or condition (2.56) for

Case 2 was not satisfied, then Yc would be obtained by reflecting Yc on Y, so that Yc

falls onto the appropriate feasible side of Ya by applying (2.39) for Case 1 or (2.41)

for Case 2. The logical parameter REFLECT would then be assigned to logical

TRUE, which would otherwise be assigned to logical FALSE by default. Proceeding

on, there is also a check to ensure that the square-root argument DUMSQRT in

(2.38) for Case 1, or (2.70) for Case 2, is positive, so as to ensure a real solution. If,

however, DUMSQRT is less than or equal to 10~6, an adjustment procedure would

be performed so as to force DUMSQRT into the feasible region.

Briefly, the adjustment procedure is as follows. If DUMSQRT was less than or

equal to 10~6, the type of roots (2.49) possesses would be determined. For such a

parabolic function, only three possible root types exist: (a) 2 distinct real roots,

referred simply as Type 1, (b) 2 equal real roots, which is equivalent to a single

value of real root, referred simply as Type 2, and (c) a pair of conjugate roots,

referred simply as Type 3. If the roots are real, that is, if they are of Type 1 or

Type 2, then the roots are evaluated. Of the two roots obtained, the root which

is nearest to Yg for ZAEQZS=TRUE, or to the exact mathematical solution for

ZAEQZS=FALSE, would be selected and assigned to a dummy variable ZA2. The

linear function (2.50) for Case 1, or (2.72) for Case 2, is evaluated at Yc = ZA2. If the
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logical indicator
ZAEQZS=TRUE?

No

Implement exact mathematical
solution foi parameter Yc

Obtain value for
parameter Yc

through (2.39) for Case 1,
or (2.41) for Case 2,

as defined in Section 2.5

Set indicator REFLECT to
logical TRUE from the default

value of logical FALSE

Evaluate parameter
DUMSQRT

Figure 3.11: A simplified flow-chart for subroutine SRRO.
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Evaluate roots of the parabolic
function (2.49) for Case 1,

or (2.71) for Case 2, in Section 3.4,
and determine the type of roots

the function possesses

Yes

' Halt
program with
appropriate

error message
\ output I

Select root of the parabolic function
that is nearest to Y, if ZAEQZS=TRUE,

or to the exact mathematical solution
for Yc if ZAEQZS=FALSE, and assign it

to parameter ZA2

Evaluate linear function (2.50)
for Case 1, or (2.72) for Case 2,

as defined in Section 3.4,
at Yc = ZA2

Figure 3.12: Continuation from Figure 3.11.
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Figure 3.13: Continuation from Figure 3.12.
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of parameter DUMSQRT

Figure 3.14: Continuation from Figure 3.13.
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linear function was found to be less than or equal to 10 6, then if a Type 1 condition

is at hand, ZA2 would be assigned the other root value. The linear function would

then be re-evaluated again at Yc = ZA2. At this stage, if the linear function is found

to be less than or equal to 10~6 again, regardless of the root type being as Type 1 or

Type 2, an indicator flag FZA2GTO would be set, from the default logical TRUE, to

logical FALSE, indicating that (2.50) or (2.72) was not greater than 10~6. Now, the

algorithm proceeds on to evaluate the root of (2.50) or (2.72). If FZA2GTO was not

assigned to logical FALSE, that is, still assigned to logical TRUE, the roots ZA1 and

ZA2 of both the parabolic and linear functions, respectively, would be considered

for being selected as the root nearest to Ya for ZAEQZS=TRUE, or to the exact

mathematical solution for ZAEQZS=FALSE. Selection would be performed, and

thus, Yc would be obtained. Otherwise, by default, the root ZA1 of the linear

function would be selected, and hence, Yc would be assigned the value ZA1.

Subsequently, DUMSQRT is re-evaluated again so as to assign a proper value to

it. It is now, by certainty, greater than 10~6. Parameter C"o, for a Case 1 problem,

or parameter DO? for a Case 2 problem, is then computed by evaluating the square-

root of DUMSQRT, which is in fact (2.38) for a Case 1 problem or (2.70) for a

Case 2 problem. These parameters, together with the logical parameter REFLECT

discussed earlier in this section, form the output parameters of this routine.

3.5 Modules RTSAFE and RTSAFEO, functions
RTSAFE and RTSAFEO, subroutines
FROUTL and FROUTLO, subroutines
AROUTL and AROUTLO

3.5.1 Modules RTSAFE and RTSAFEO

Modules RTSAFE and RTSAFEO are modules in the subroutine ELLYR that de-

termine the composite ellipsoid parameter DO via (2.51) for a Case 1 problem, or

Co (2.73) for a Case 2 problem. Included within each of these modules are function
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RTSAFE or RTSAFEO, respectively, subroutine FROUTL or FROUTLO, respec-

tively, and subroutine AROUTL or AROUTLO, respectively. Module RTSAFE is

utilized when Case 1 is identified, and module RTSAFEO is utilized when Case 2

is identified instead. The simplified flow-charts for these modules are illustrated in

Figure 3.15 through Figure 3.20.

The parameter DO for Case 1, or Co for Case 2, is determined in two stages: First,

through the establishing of a crude bracketing range of the zero-crossing of function

/2 by searching downward from DO, Co = 200 to DO, C0 = —200 at 2 units interval so

that £>0, or C0 is of the largest root within the range. This is to deter the selection

of a negative root, if provided the choices of a positive and a negative roots, as the

positive root solution is ideologically more proper. Second, through the function

RTSAFE for Case 1, or RTSAFEO for Case 2, to significantly refine the solution

obtained. Each of these modules consists of two DO loops. The first DO loop varies

the parameter i of (2.18) for a Case 1 problem, or (2.53) for a Case 2 problem, from 1

through 2 so that the very same algorithm is administered for both t = 1 and t = 2.

As for the other loop, it enables a downward sweeping of parameter Du for Case 1,

or Co for Case 2, from 200 to —200 at —2 units increments so that the first stage of

the root-finding process could be executed. As a matter of fact, the second DO loop

is actually nested within the first. In addition, for each of these modules, there are

two IF statements responsible for deciding when to execute function RTSAFE for

Case 1, or function RTSAFEO for Case 2, and another IF statement for deciding if

subroutine PTURB should be executed at all.

Within the first DO loop, the second DO loop constitutes the initial segment

of the first. In fact, the second loop actually forms the outer shell of the first

stage of the root-finding algorithm. The occurrence of a zero crossing point for a

particular value of i of (2.18) for Case 1, or (2.53) for Case 2, is determined to

within a certain range bracket, by searching downward from 200 to —200 through

the execution of the second DO loop. Assuming that X1<D1<X2 for Case 1,
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First
DO loop:

Increase i from 1 at
1 unit inclement.

Is t > 2?

Second DO loop:
Decrease Dl from -200 at

—2 units increment.
Is Dl < -200?

Yes

Yes

No

Execute FROUTL to evaluate /2

((2.51) in Section 2.5) at A, =Dl

Set FPLEZERO=TRUE and X2 = D1

Figure 3.15: A simplified flow-chart for subroutine RTSAFE.
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Figure 3.16: Continuation from Figure 3.15.
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Figure 3.17: Continuation from Figure 3.16.
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Figure 3.18: A simplified flow-chart for subroutine RTSAFEO.
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Figure 3.19: Continuation from Figure 3.18.
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Figure 3.20: Continuation from Figure 3.19.
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or XI < Cl < X2 for Case 2, is the bracketing range obtained, a zero-crossing at a

particular point within the bracketing range would be recognized if /2(X1) < 0

and /2( X2) > 0, or vice-versa. Indeed, the module always selects the very first

zero-crossing encountered for evaluation. This is in fact the bracketing range that

specifically contains one of the real roots of /2. The midpoint value of this bracketing

range is actually the initial guess value that is to be utilized in function RTSAFE for

Case 1, or function RTSAFEO for Case 2. Through these functions, the specific value

of the real root in the bracketing range is precisely determined. In addition to this,

the indicators STATRT1 and STATRT2 for function RTSAFE, or STATRT10 and

STATRT20 for function RTSAFEO, are generated henceforth to arbitrate certain

decision statements, as illustrated in the figures. If, however, the first stage of the

root-finding algorithm were to fail, the initial guess to function RTSAFE, or function

RTSAFEO, could assume any real value. Nonetheless, due to the structure of the

algorithm itself, the initial guess would be assigned the value —100 for /2 < 0, or

the value zero for /2 > 0.

Once completed, the roots thus obtained for i = 1,2 areaveraged to produce

the solution for £>0 if Case 1 is in question, or Co if Case 2 is at hand instead.

If, however, no acceptable solution was generated, that is, if one of the STATRT

indicators for a particular case is of value 2, then subroutine PTURB would be

executed to perturb the data points in front of the antenna location for a Case 1

problem, or the data points behind the antenna location for a Case 2 problem. The

parameter STATSTOP would then be updated to 10 or 15. The former value would

indicate that the perturbed data points are concave. The latter, however, would

represent a STATSTOP condition of 7, but the solutions are of STATSTOP = 10

type. If the perturbed data points are concave, the statement RETURN would

be executed, and the control pointer would exit subroutine ELLYR and return to

ELLC. Otherwise, control would be returned to the iteration counter module at the

top of subroutine ELLYR for initializing the next iteration.
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3.5.2 Functions RTSAFE and RTSAFEO

Function RTSAFE determines a real root of (2.51) for a Case 1 problem, and its

twin, function RTSAFEO determines a real root of (2.73) for a Case 2 problem.

These functions are in fact modified versions of the routine provided in [9], which

is in essence, a root solving routine that outputs a real-valued root solution. This

routine utilizes the Newton-Raphson and bisection methods of root finding for a 1-D

nonlinear function.

Functions RTSAFE and RTSAFEO are modified so as to be able to perform the

appropriate range bracketing procedure required by the original version. In fact,

these procedures are appended at the beginning algorithm of these functions. Addi-

tionally, the calling statements of subroutine FROUTL, or FROUTLO, (representing

expression (2.51), or (2.73), respectively), and subroutine AROUTL, or AROUTLO,

respectively, (representing its first order derivative), are also included, as required

by the original version itself. An indicator STATRT for function RTSAFE, or STA-

TRTO for function RTSAFEO, would be flagged to a value of 1 to indicate that the

function does not cross the zero line within maximum iterations, and to a value of 2

to indicate that the function does not cross the zero line within maximum iterations

and bracketing range. The default value of 0 for STATRT or STATRTO indicates

that a real root solution is obtained prior to maximum iterations or bracketing range.

The range bracketing procedure for functions RTSAFE or RTSAFEO is described

as follows. After initializing the parameters necessary for the function concerned,

the iteration counter is initialized from 0 to 1. If the iteration count was exceeded,

parameter STATRT for Case 1, or STATRTO for Case 2, would be set to 1 and

the range increment parameter doubled. The iteration counter would then be re-

initialized to zero again. If, however, the new range increment parameter exceeds a

specified maximum value of 20, the function would then assume the upper limit of

the current bracketing range, and parameter STATRT for Case 1, or STATRTO for

Case 2, would be assigned a value of 2, after which statement RETURN would be
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executed to return the control to the calling routine. Otherwise, the new limits of

the bracketing range would be computed, and (2.51) for Case 1, or (2.73) for Case 2,

would be evaluated at the range limits.

If the entire bracketing range was indeed above or below the zero line, the limits

would be extended in an attempt to include the zero line within the bracketing

range. The algorithm control would then be returned to the iteration counter at the

beginning of the algorithm for the next iteration. Nevertheless, it should be noted

that, if (2.51) for Case 1, or (2.73) for Case 2, was evaluated at any one of the limits

within the tolerance ±10~6, then the function routine would be assigned to that

particular limit value.

3.5.3 Subroutines FROUTL and FROUTLO

Subroutines FROUTL and FROUTLO represent the /2 functions in (2.51) for the

Case 1 problem, and (2.73) for the Case 2 problem, respectively. A required input is

the independent variable DO for Case 1, or C"o for Case 2. Other inputs necessary for

each of these routines are the parameters essential for evaluating /2 which have been

computed by subroutines SOLVR or SOLVRO prior to the execution of FROUTL

or FROUTLO, respectively.

In order to eliminate a possible numerical error which could result in the parame-

ter sin V^a in /2 being slightly larger than or equal to 1, or slightly lesser than or equal

to —1, IF statements would be utilized to default the value of sin V^t to 0.999, or

—0.999, respectively, if such events ever occurred. Another restriction implemented

is the minimum value tolerance of the denominator parameter DENOM = DO -f Yah

for Case 1, or DENOM = C0 - Y,h for Case 2. DENOM would be assigned a value

of 10~6 if its computed value was between —10~6 and 10~6. This is implemented to

deter a possible occurrence of a division-by-zero error.
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3.5.4 Subroutines AROUTL and AROUTLO

Subroutines AROUTL and AROUTLO are subroutines for evaluating the fust order

derivatives of (2.51) for a Case 1 problem, and (2.73) for a Case 2 problem, respec-

tively. The method of computation employed in each of these subroutines is the

method of 4-point central difference [11]. The denominator h in this algorithm is

assigned to a constant value of 0.008 for point spacings of not greater than 1.9 and

not less than 1.3. Indeed, this algorithm contain CALL statements to subroutines

FROUTL and FROUTLO for the former and latter cases, respectively.

3.6 Subroutine PTURB

Subroutine PTURB is a subroutine that executes subroutine CONVEX which ac-

tually performs the perturbation process on a given set of data points. In addition,

it can identify the set of data points that forms a concavity that exceeds the toler-

ance specified. With regards to the data points input into the routine, subroutine

PTURB assumes that there are two pairs of points flanking the antenna location,

a pair on the front and another behind the antenna location. Among the inputs

to this subroutine are the parameters <t>s and GRADS which have been defined in

subroutine ELLYR, as presented in Section 3.2. In fact, these are input parameters

essential to subroutine CONVEX.

Following the initialization of some necessary parameters, subroutine CONVEX

is executed to perturb the data points downwards along vector d defined in (2.77),

but in the direction opposite to that of the outward normal of the fuselage which is

assumed to be pointing directly upwards. In fact, these data points are perturbed

such that they are always located below the tangent line m\. It should be noted

that the perturbation process would be performed only if the original (unperturbed)

data points were convex Otherwise, the statement RETURN would be executed to
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return the algorithm control to module RTSAFE for a Case 1 problem, or module

RTSAFEO for a Case 2 problem, in subroutine ELLYR.

Subsequently, the incremented incremental variable DEL, of which its initial

value is set externally in subroutine ELLYR, is incremented for future use in the it-

eration counter module in subroutine ELLYR itself. As outputs, subroutine PTURB

returns the appropriate perturbed data points, the incremental variable DEL, and

the logical parameter CONCAVE which indicates that the data points form a con-

cavity if its value is logical TRUE, or that the data points form a convexity if its

value is logical FALSE.

3.7 Subroutine CONVEX

Subroutine CONVEX is a subroutine that is executed by the parent subroutine

PTURB. It computes the perturbed coordinates of the data points in the vicinity of

the antenna location provided. If the set of data points were convex, the perturba-

tion process would be performed and a new set of coordinates would be generated.

Among the inputs into this subroutine are the parameters <f>, and GRADS, which

were defined in subroutines ELLC (Section 3.1) and ELLYR (Section 3.2), respec-

tively. A simplified flow-chart of this subroutine is illustrated in Figure 3.21 through

Figure 3.23.

The routine commences by initializing some essential parameters. It then ac-

knowledges the position of the antenna location with respect to the composite el-

lipsoid body: If the antenna was located at the top half of the close-fit composite

ellipsoid, that is, <f)a < 90°, the sign coefficient parameter SIGN is initialized to 1.

At the bottom half of it, that is, <fra > 90°, parameter SIGN is initialized to —1.

The midpoint between the two points to the front of the antenna location is then

determined. By extrapolating a line from this midpoint to the antenna location, the

first-order derivative MAGVL of the extrapolation line is computed.
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Set appropriate value to
parameter SIGN based on the

position of the antenna location

I
Determine midpoint between the
two data points in front of the
antenna location, extrapolate

it to the antenna location, and
compute its gradient MAGVL

Has
condition (2.81)
in Section 2.6.2

occurred?

Has
condition (2.82)
in Section 2.6.2

occurred?

Set gradient
MAGVL to the value
GRADS+SGN*TOL

Yes

Set logical indicator
CONCAVE to logical

TRUE from the default
value of logical

FALSE

Figure 3.21: A simplified flow-chart for subroutine CONVEX.
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Execute CONVX to perturb
first data point in front
of the antenna location

with parameter GRADS as
one of the input parameters

Execute CONVX to perturb
second data point in front

of the antenna location
with parameter GRADS

substituted with
parameter MAGVL

I
Determine midpoint between the

two data points behind the
antenna location, extrapolate

it to the antenna location, and
compute its gradient MAGVR

Has
condition (2.83)
in Section 2.6.2

occurred?

Has
condition (2.84)
in Section 2.6.2

occurred?

Set gradient
MAGVR to the value
GRADS-SGN*TOL

Set logical indicator
CONCAVE to logical

TRUE from the default
value of logical

FALSE

Figure 3.22: Continuation from Figure 3.21.
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Execute CONVX to perturb
first data point behind the

antenna location with
parameter GRABS as one
of the input parameters

Execute CONVX to perturb
second data point behind the

antenna location with
parameter GRADS

substituted with
parameter MAGVR

Figure 3.23: Continuation from Figure 3.22.
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If the condition (2.81) were to occur, yet another decision would be arbitrated.

This would be as follows. If the condition (2.82) were to occur, the problem would

be formally declared as concavity by setting the logical indicator CONCAVE to

logical TRUE from the default logical FALSE which indicates otherwise. Follow-

ing this, statement RETURN would be executed to return the algorithm control

back to the calling subroutine PTURB. Otherwise, MAVGL is assigned the value

GRABS -I- SGN * TOL, which, in fact, is the parameter GRABS added or subtracted

with a specified tolerance, and indicator CONCAVE remains as logical FALSE. The

first data point (that is, i = 1) to the front of the antenna location is then perturbed

by executing subroutine CONVX with parameter GRABS as one of the input pa-

rameters. Then, the second point (that is, i = 2) to the front of the antenna location

is perturbed by executing subroutine CONVX again, but with parameter GRABS

now substituted with parameter MAVGL.

Subsequently, the other pair of data points to the rear of the antenna loca-

tion is considered. As for this pair of data points, the very same algorithm ap-

plies, only with three alterations. That is, firstly, instead of conditions (2.81) and

(2.82), conditions (2.83) and (2.84) are utilized, respectively. Secondly, the expres-

sion GRABS -I- SGN * TOL is replaced by GRABS - SGN * TOL, and last of all,

parameter MAGVL is substituted with parameter MAGVR.

3.8 Subroutine CONVX

This is, in fact, a subroutine that executes the mathematical expression (2.78),

described in Section 2.6.2, on a data point provided. In other words, this sub-

routine perturbs the data point downwards along a vector d, defined in (2.77) in

Section 2.6.2, in a direction opposite to that of the outward normal of the fuselage

which is assumed to be pointing directly upwards. With regards to this, the new

position of the point is guaranteed to be always below the tangent line mj defined

(2.77).
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Chapter 4

Numerical Results

In this chapter, a few numerical results are presented. It should be pointed out that

the numerical results generated may be acceptable, or sometimes they may not.

One criterion to determine if whether a particular solution is acceptable is just by

direct graphical observation by the user. Another criterion that may be employed

is by checking the value of the stop-run parameter STATSTOP. STATSTOP=0

condition is an ideal solution. For other values of STATSTOP, the solution may not

be ideal, but is yet acceptable. However, there are of course cases where STATSTOP

would indicate an unacceptable solution, or for the worst case scenario, the entire

program would come to a complete halt with an appropriate error message output

by the program itself. A full list of the various values of the stop-run parameter

STATSTOP and their descriptions are listed in Appendix B .

Note that for this chapter, a different set of notations and symbols is utilized in

titles and labels for the figures, as well as in the contents of Appendix A through

Appendix C.9. This is due to the fact that the figures, and the contents were

generated through the execution of ELLC and other supporting computer codes

written in FORTRAN 77 and VAX FORTRAN. In these FORTRAN languages,

subscripts and superscripts cannot be employed, and special symbols are limited

as well. Hence, the mathematical notations and symbols utilized in Chapter I and

Chapter II were redefined for use in the codes. The outputs from these codes were
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therefore the alternative notations and symbols utilized. A list of these notations

and symbols is tabulated in Appendix A.

In the subsequent sections of this chapter, some examples of ideal solutions as

well as of cases where STATSTOPs are not zeroes, are presented. Discussions and

interpretations of these cases are base more on graphical observations rather than on

mathematical formulations. The coordinate form (Y,, 7"), discussed in Section 2.2,

is employed to specify the location of the antenna on the helicopter fuselage in all

the following sample runs. The cross-section plots of the fuselage in all these sample

runs are consistently scaled in relative units. The computational times for these runs

did not exceed 20 seconds at all. In general, they were only 10 to 12 seconds long.

4.1 Ideal solutions

As is defined previously, an ideal solution is a STATSTOP=0 condition. It should be

noted that, however, such a condition does not necessarily indicate that the selected

data points are actually located on the close-fit composite ellipsoid, but are within

tolerable distances from it. In other words, the solution corresponds to the best

solution possible, given the particular set of data points. Described mathematically,

this means that, for the XZ-plane at y = Ya, accurate solutions were obtained for

(2.5). For the YR-plane, on the other hand, if the problem is a Case 1, exact

solutions would be obtained for the system of equations (2.20) and (2.21) satisfying

the constraints (2.22) through (2.24). Parameter DQ of the composite ellipse, and

hence, the composite ellipsoid, is the average value of the real roots D'0. for t = 1,2 of

(2.51). If the problem is a Case 2, exact solutions would be obtained for the system

of equations (2.54) and (2.55) satisfying the constraints (2.56) through (2.58), and

parameter Co is the average value of the real roots CQ. for i = 1,2 of (2.73). A

sample of the numerical results generated by ELLC is presented here as Sample 1.
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4.1.1 Sample 1

The antenna location for this example is at (YS,T) = (17.00,0.55), which is at the

bottom of the helicopter fuselage, as illustrated in Figure 4.1. This is in fact a

Case 1 problem. Figure 4.1 and Figure 4.2 displays the graphical results of the

run. The data file thus output is provided in Appendix C.I. Due to the extreme

flatness of the fuselage surface at that location, the close-fit ellipse in the XZ-plane

formed an enormously hugh shape, by comparison with the XZ-plane cross-section of

the helicopter fuselage. Nevertheless, the ellipse generated was a perfect fit, almost

entirely, to the XZ-plane in the vicinity of the antenna location. In the YR-plane,

the composite ellipsoid generated was outstandingly gigantic as well for the very

same reason. Again, in this plane, the composite ellipse was also an excellent fit to

the fuselage surface in the proximity of the antenna location.

For this example, subroutine ELLXZ provided a close-fit ellipse in the XZ-plane

at y = Ya — 17.00. This ellipse possessed a semi-minor axis A\ of value 19.809 and

a semi-major axis B\ of value 8.831 with a center (Xc, Zc) at (—1.634, 15.315)

In terms of the analysis performed by the subroutine ELLYR, the parameters Yc

and Co are evaluated by solving the system of equations of (2.20) and (2.21). The

exact solutions for Yc and C0 were zero and 105.738, respectively. These solutions

satisfy the constraints (2.22) through (2.24). Moreover, since Co > 0 and is real, the

additional functional constraint (2.47) was also satisfied automatically. Since

Yc < Ya < (Yc + Co) ,

the additional functional constraint (2.48) was also satisfied as well.

As for the evaluation of the parameter Z?o5 the real roots D'(). of (2.51) at each

data point i for (t = 1,2) to the rear of the antenna location are searched. The

solution DO obtained is the average value of the real roots D'Ul and D'^. Therefore,

for this sample run, DO = 83.614. The functions /?, of (2.51) for t = 1,2 are shown

in Figure 4.3. Note that each of the real roots D'g. for t = 1,2 is the first real
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Figure 4.1: A close-fit ellipse in the XZ-plane for the antenna located at (Ya,T)
(17,0.55).
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Figure 4.2: A close-fit composite ellipse in the YR-plane for the antenna located at

103



F2 VERSUS DO PLOTS AT (YS,T)=(17,0.55)
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Figure 4.3: Plots of function /2, (for i = 1,2) for the antenna located at (Ya,T)
(17,0.55) prior to perturbation in the YR-plane.
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root encountered, while searching downward from a value of 200, as explained in

Section 3.5.

4.2 An example employing the reflection approx-
imation

In Section 2.5 and Section 3.4, the idea of reflecting an infeasible value of Yc on the

y-component of the antenna location to approximate the solutions Yc and Co for

Case 1, or Yc and D0 for Case 2, were discussed. In this section, the results of such

a procedure are presented. The values of the stop-run parameter STATSTOP that

correspond to the application of the reflection concept are 11 and 12. The value 11

represents that, as an approximation, Yc is obtained by reflection on Ya without any

perturbation of the data points. The value 12, on the other hand, represents the same

status as that of value 11, but with perturbation procedures performed on the data

points. For the purpose of illustrating the results of the reflection approximation, a

sample run of ELLC is presented here.

4.2.1 Sample 2

For this sample run, the antenna location is at (ys,T) = (12.00,0.30). The resulting

plots are provided in Figure 4.4 and Figure 4.5, and the numerical values output are

appended in Appendix C.6. In this sample run, the stop-run condition STATSTOP

was 11.

From Figure 4.4, it is observed that the close-fit ellipse generated provided a

fairly good fit of the surface in the XZ-plane in the vicinity of the antenna location.

There was indeed a problem of fitting an ellipse to a slightly concave arc, which is in

fact, the actual cross-section surface of the fuselage that is concave. Apparently, this

slight concavity was within the acceptable tolerance set forth in subroutine ELLXZ.

The semi-minor axis A\ and semi-major axis B\ of the close-fit ellipse obtained were

2.354 and 1.020, respectively.
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To form a cross-section surface approximating the actual cross-section of the he-

licopter fuselage in the YR-plane, the surface points in the YR-plane were computed

and interpolated. As can be pictured from Figure 4.5, the ellipsoid problem was un-

doubtedly a Case 2 problem since the first-order derivative of the surface in the YR-

plane at the antenna location is negative and that the angle (f>3 = PHIS = 91.45 >

90°. The automatic categorization of a problem into Case 1 or Case 2 based on the

first-order derivative of the surface at the antenna location was presented in Sec-

tion 2.5. The angle ^s, on the other hand, has been discussed in Section 2.2. A

rather good fit of the composite ellipsoid was obtained, despite of the fact that the

front most point at both ends of the array of selected data points did not coincide

with the composite ellipse at all.

Figure 4.5 conspicuously indicates that the locus of the composite ellipse did not

pass closely by the front most data point selected, which is the second data point to

the front of the antenna location. This was because the solution for Yc in the system

of equations (2.54) and (2.55) corresponding to the first and second data points in

front of the antenna location, respectively, was not feasible, that is, the functional

constraint (2.56) was not satisfied (Ya — Yc was positive). Nevertheless, through the

reflection approximation equation (2.41), the approximated value of Yc obtained was

18.492. For this approximation, the values of | y,• — Yg \ for i = 1 and i = 2 are 1.6

and 3.2,respectively. For | Ya — Yc |, on the other hand, the value was 6.492. From

these computations, it is accepted that

| y,; - Ys | < | Ya - Yc |

for i = 1,2. Hence, condition (2.46) was satisfied for i = 1,2. Indeed, this approxi-

mated value of Yc satisfied the functional constraint (2.56).
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Figure 4.4: A close-fit ellipse in the XZ-plane for the antenna located at (Y,,T)
(12,0.3).
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Figure 4.5: A close-fit composite ellipse in the YR-plane for the antenna located at
(K,,T) = (12,0.3).
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Figure 4.6: Plots of function /2, (for t = 1,2) for the antenna located at
(12,0.3) prior to perturbation in the YR-plane.
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Utilizing the value for Yc obtained, the corresponding solution for Z?0 was eval-

uated from (2.70) as 9.298, which is positive and real. With these solutions, the

constraints (2.56) through (2.58) were all satisfied. In addition, since £>u > 0 and is

real, constraint (2.71) is automatically satisfied. Furthermore, since

Yc > Ya > (Yc - Do) ,

constraint (2.72) is satisfied, as well.

Having determined the values for DO and Ya, thesolution for CQ was determined

by applying the root searching algorithm of module RTSAFEO in ELLC (described

in Section 3.5) on (2.73). For this problem, in particular, function /j,. of (2.73) is

depicted in Figure 4.6. The root Co, determined for each t was indeed the first root

encountered searching downwards from 200 to —200. The average of these roots was

the solution for Cu, which was 4.559. Analyzing the problem geometrically, the front

most data point in the Figure 4.5 is very near the R = 0 line, which is the axis of the

composite ellipse that is orthogonal to the XZ-plane. By examining Figure 4.5, it is

conspicuous that, in order for the locus to pass at least very closely to the front most

point, the front end of the composite ellipse would have to be shaped like a wedge,

which was unobtainable in this case. Nevertheless, considering the rear section of the

composite ellipse, the locus did pass closely by the rear most data point, although

not directly through it. This was due to the fact that <70 is the averaged value of

the foots Cy. for i = 1,2. The explanation for this is presented subsequently in the

Section 4.3.

4.3 Effects of averaging two real root solutions

In ELLC, the real root solutions D'OI and Z?0z of (2.51) corresponding to the first and

second data points, respectively, for Case 1, or C'Vl and C^ of (2.73) corresponding

to the first and second data points, respectively, for Case 2, are averaged to obtain

an approximate solution D0 for the former, or CQ for the latter. This is performed so
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as to obtain a best possible fit of a composite ellipse to the surface of the YR-plane

cross-section of the helicopter fuselage in the vicinity of the antenna location. In

the following example, the effects of averaging the real roots D'0. of (2.51), or C^. of

(2.73), are demonstrated.

4.3.1 Sample 3

In this example, the antenna was located at (YS,T) = (7.00,0.41). Results of this

sample run are plotted in Figure 4.7 and Figure 4.8 and the output appended in

Appendix C.4. This was a Case 1 problem with a stop-run condition ST AT STOP =

11, indicating that no perturbation procedure was involved. Referring to the output

in Appendix C.4, one of the front data points selected initially was located across

the R = 0 line, which would be the axis of the composite ellipse in the YR-plane

that is orthogonal to the XZ-plane. Since the composite ellipse must be symmetrical

along its axis, as discussed in Section 2.5, only data points on the same side as where

the antenna location was would be useful. Therefore, the sampling interval DY was

decreased from a value of 1.6 to a value of only 0.96. With this, the two data points

to the front of the antenna location were selected without having them crossing over

the R = 0 line, as is illustrated in Figure 4.8.

From Figure 4.7, the fitting of the ellipse onto the surface of the cross-section in

the XZ-plane at y = Ys = 7.00, in the proximity of the antenna location appeared

to be fairly good, despite of the slightly improper fit just to the left of the antenna

location in the figure. This was in fact due to a mild indentation of the .actual

fuselage surface just to the left of the antenna location in the figure. In spite of this,

the fitting of the ellipse just to the right of the antenna location was excellent.

Analyzing the close-fit ellipse parameters in XZ-plane at y = Yg = 7.00, it is

noted that the semi-minor axis AI and the semi-major axis B\ of the close-fit ellipse

are 0.842 and 0.771, respectively, with its center at (Xc, Yc) = (1.431, -3.989).
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Figure 4.7: A close-fit ellipse in the XZ-plane for the antenna located at (F,,T)
(7,0.41).
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Figure 4.8: A close-fit composite ellipse in the YR-plane for the antenna located at
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Figure 4.9: Plots of function /2, (for i = 1,2) for the antenna located at
(7,0.41) prior to perturbation in the YR-plane.

114



Quite conspicuously, the ellipse was rather circular, and thus is most appropriately

fitted to the particular corner of the XZ-plane cross-section.

As for the YR-plane, the composite ellipse appeared to fit the actual surface

of the fuselage rather well in the vicinity of the antenna location, as illustrated in

Figure 4.8. Since the value of DY was decreased due to the crossing of at least

one of the front data points over the R = 0 line, the forward difference algorithm

in subroutine ELLYR was employed to identify if the problem was a Case 1 or a

Case 2, instead of the default central difference algorithm. Details of these have

been discussed in Section 3.2. However, the locus of the composite ellipse did not

pass closely by the front most data point, as is obvious in the figure, for the very

same reason as that described in It should be noted that, since STATSTOP = 11

for this case, which is a Case 1 problem, as indicated in Appendix C.4, the reflection

approximation equation (2.40) was employed, producing Yc = —52.466. The values

of | y,• — Ya | for i = 1 and i = 2 are 1.6 and 3.2,respectively, and that of | Ys — Yc \

is 59.466. Hence,

| y, - Y,\ < | Ys - Yc |

for i = 1,2, and therefore, satisfying condition (2.46). With the value of Yc thus

obtained, Co was evaluated as 67.623. Using similar line of reasoning as that in

Sample 2 of Section 4.2, these solutions Co and Yc were found to be satisfying all

the constraints (2.22) through (2.24), and (2.47) and (2.48).

For an analysis of the effects of averaging two real roots D'0l and D'^, a series of

minor modifications of the module RTSAFE in subroutine ELLYR were performed

so as to generate the plots illustrated in Figure 4.10 through Figure 4.12. For this

analysis, all other parameters, including A\, Bj, Co and Yc, remained unchanged. In

Figure 4.10, the composite ellipse was generated using only the first front data point,

instead of both the first and the second front data points. This means that DO = D'^ ,

where D0i is the first real root of the function /2, of (2.51) encountered by module

RTSAFE. For this particular case, the ellipse was independent of the second front
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data point. As such, the locus of the 'composite ellipse would not necessarily pass

through the second data point at all, but would pass through the first. This would

indicate that a perfect fit was obtained at the position of the first front data point.

If, on the other hand, only the second front data point was used for the computation

of the parameter Dp of the composite ellipse, the locus of the composite ellipse

would then pass through the second data point instead of the first, as illustrated in

Figure 4.11. For this case, D0 = D(,2, where D'^ is the first real root of the function

/22 of (2.51) encountered by module RTSAFE. Nevertheless, unlike the previous

case, the locus would pass rather closely by the first data point as depicted in the

figure, which of course, would be most appreciated. In general, however, this may

not always be the case since the composite ellipse would be independent off the first

front data point. In other words, a good fit to the position at the first front data

point, which is very essential to having a perfect fit in the vicinity of the antenna

location, would not be guaranteed. But employing only the first data point would

only provide a fit that is extremely local to the antenna location, and the use of only

the second data point would provide a fit at that second data point which is a small

distance away from the antenna location.

Considering all these options, a good compromise would be to utilize both the

first and the second front data points simultaneously to provide the value for the

parameter D0. In this case,

D0 = 0.5 (D'0) + D'Q7] = -57.647.

Figure 4.12 illustrates the resulting locus of the composite ellipse with respect to the

two front data points and the antenna location on the actual surface of the YR-plane

cross-section for this implementation. As is observed from the figure, the locus of the

composite ellipse would not pass directly through any of the two front data points

at all. Nevertheless, the locus would pass very closely by the first front data point,

a sufficiently good fit. With regards to the second front data point, the locus would

pass closer by it in this implementation than in the first case where only the first
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Figure 4.10: A close-fit composite ellipse in the YR-plane for the antenna located at
(Va,T) = (7,0.41). The front portion of the composite ellipse was generated utilizing
only the first data point to the front of the antenna location.
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Figure 4.11: A close-fit composite ellipse in the YR-plane for the.antenna located at
(YS,T) = (7,0.41). The front portion of the composite ellipse was generated utilizing
only the second data point to the front of the antenna location.
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Figure 4.12: A close-fit composite ellipse in the YR-plane for the antenna located at
(Kg, T) = (7,0.41). The front portion of the composite ellipse was generated utilizing
both the first and the second data points to the front of the antenna location.
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data point was utilized. Mathematically, tins would indicate that, at DO = —57.647,

instead of trivial values, the values of function /2f of (2.51) for t = 1 and i = 2 were

-0.088 and 0.249, respectively. The values -0.888 and 0.249 are in fact errors of the

composite ellipse fitting corresponding to the respective data points, which ideally

should be zeroes. Obviously enough, since DO is the average value of D^ and Z?(,2,

the composite ellipse was dependent on both the first, as well as the second, front

data points. This was exactly what was implemented in the module RTSAFE of

subroutine ELLYR, discussed in Section 3.5.

4.4 An example of perturbation in the YR-plane

Given a specific location of the antenna on the helicopter fuselage, ELLC will attempt

to produce a solution for each of the parameters of the close-fit composite ellipsoid

by performing the various decision making tasks at every level of the program run.

If such an attempt failed in subroutine ELLYR, as would be when module RTSAFE

or RTSAFEO fails, or when the first-order derivative of the surface of the XZ-plane

cross-section at the antenna location is approximately zero and all the modules in

subroutine ELLYR failed, ELLC would resort to perturbing the data points in the

YR-plane as an attempt to create an optimal arrangement of the data points such

that acceptable solutions could be generated. This perturbation process in the YR-

plane would be performed by subroutine PTURB which would be called upon by

subroutine ELLYR. All these has been discussed in Chapter 3. In the following, a

sample of such a case is presented.

4.4.1 Sample 4

For the case where the antenna location is at (YS,T) — (35.00,0.00), the results

illustrated in Figure 4.13 and Figure 4.14 were obtained and the output generated

is appended in Appendix C.10. As stated in was 10, indicating that subroutine
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PTURB was called upon to perform the perturbation procedure on the data points

in the the YR-plane, at least once, before the data points were detected as being

concave in the vicinity of the antenna location.

In fact, this problem was initially regarded as a Case 1 problem by subroutine

ELLYR, but no acceptable solution was obtainable. This implied, among other

things, a failure of module RTSAFE in determining the roots CQ of the function

/2, for t = 1,2. As a result, by executing subroutine PTURB, the perturbation

process in the YR-plane was performed on the data points in the YR-plane to the

front of the antenna location. These data points were utilized in module RTSAFE,

as has been indicated in Chapter 3. This was the first, and also the only, iteration

in subroutine ELLYR for this problem. A concave surface of the cross-section in the

YR-plane in the vicinity of the antenna location was detected through subroutine

CONVEX. Immediately, appropriate error messages were output by ELLC, after

which the program halted.

From Figure 4.13, the ellipse fitting was only fairly good in the XZ-plane. This

was because of the presence of a concave notch directly at the antenna location,

which is conspicuous in the figure. This notch was actually accidentally created in

the process of inputting, interactively, the data points on the right half portion of the

cross-section in the XZ-plane of the helicopter fuselage. The remaining other half

was a symmetrical projection of the right half, as has been explained in Section 1.3.

Such notches and bulges (one which, coincidentally, appeared on the bottom of the

cross section of Figure 4.13) are, in fact, presently inevitable. As for the YR-plane,

the composite ellipse was not generated due to a concave surface in the YR-plane

in the vicinity of the antenna location. Nevertheless, the functions /2, of (2.51) for

i — 1,2 are plotted in Figure 4.15 to illustrate that no real root was present for

t = 1,2 within the search range of -200 to 200 for both functions, prior to the

execution of the subroutine PTURB.
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Figure 4.13: A close-fit ellipse in the XZ-plane for the antenna located at (Y,,T)
(35,0).
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Figure 4.14: A close-fit composite ellipse in the YR-plane for the antenna located at
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Figure 4.15: Plots of function /2, (for i = 1,2) for the antenna located at (Ya,T)
(35,0) prior to perturbation in the YR-plane.
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Figure 4.16: Plots of function /2, (for i = 1,2) for the antenna located at (YS,T)
(35,0) following perturbation in the YR-plane.
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4.5 Results obtained at maximum iteration count

As mentioned in Section 4.4, subroutine PTURB would be employed if module

RTSAFE or RTSAFEO failed, or when the first-order derivative of the surface of the

XZ-plane cross-section at the antenna location is approximately zero and no accurate

solution could be obtained. However, if the perturbation process was unsuccessful in

producing acceptable solutions in a particular iteration, the iteration process would

be performed again in the next iteration. This would continue until an acceptable

solution was found, or when the iteration count exceeded the maximum iteration

allowed. When the latter occurs, for a Case 2 problem, the returned values Co and

Yc are values from the last iteration, and Dy is a quarter the initial guess for i = 2

from the last iteration; and similarly for a Case 2 problem, the returned values DQ

and Yc are values from the last iteration, and Co is a quarter the initial guess for

i = 2 from the last iteration. In the following examples, analyses of such a such a

situation were presented.

4.5.1 Sample 5

For this sample run, the antenna is located at (Y,,T) = (12.00,0.05), which is at a

top edge of the helicopter fuselage. Figure 4.17 and Figure 4.18 illustrate the results

obtained from ELLC for this sample run! The output for this case is appended

in Appendix C.5, which indicates a stop-run condition STATSTOP of 8 and the

nature of the problem being a Case 2. The data points generated to model the

portion of the cross-section in the YR-plane in the vicinity of the antenna location

were perturbed to maximum tolerance, to the extend that maximum iteration in

subroutine ELLYR was exceeded.

Appendix C.5 indicates that this was a Case 2 problem. It should be noted that,

however, the Case 2 problem here is actually based upon the perturbed data points

from the final iteration, and does not reflect the actual nature of the original unper-
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turbed data points. Since this was a Case 2 problem, as indicated in Appendix C.5,

the returned values for DQ and Y, are values from the last iteration, and that for Co

is a quarter of the initial guess value i = 2 utilized in module RTSAFEO in the last

iteration.

With regards to Figure 4.17, the close-fit ellipse in the XZ-plane at y = Y, = 12.00

for this problem was rather small as compared to the entire XZ-plane cross-section of

the fuselage, although the fit appeared well in the proximity of the antenna location.

For the surface a little further away from the antenna location, the fit was not as

good due to the waviness of the actual surface, as has been discussed in Sample 2.

of Section 4.2.

Proceeding on to the YR-plane, and referring to Figure 4.18, the close-fit com-

posite ellipse generated did not fit the surface of the cross-section in that plane at all,

even in the vicinity of the antenna location. This was due to the STATSTOP value

being 8, that is, the maximum iteration was exceeded. In fact, the composite ellipse

in the figure was constructed entirely on parameter values generated at the final

iteration count, which was the tenth iteration. Nevertheless, it should be noted that

a STATSTOP value of 8 may, in some instance, provide acceptable close-fit compos-

ite ellipse, especially if higher tolerances in functions RTSAFE and RTSAFEO were

permitted. As was listed in Appendix C.5, at least one of the data points selected

to the front of the antenna location crossed the R = 0 line, which was the axis of

the composite ellipse that is orthogonal to the XZ-plane, instead of being on the

same side of the line as where the antenna location is. This was indeed undesirable,

as mentioned in Section 2.5. Hence, the sampling distance DY between the data

points was reduced so as to avoid selecting the undesirable data points, similar to

Sample 3.

As is obvious from Figure '4.18, the locus of the composite ellipse generated did

not pass closely by the front most data point, which was positioned very near to the

.R = 0 line. Explanations of cases similar to this has been presented in Sample 2
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Figure 4.17: A close-fit ellipse in the XZ-plane for the antenna located.at (F9,T)
(12,0.05).
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Figure 4.18: A close-fit composite ellipse in the YR-plane for the antenna located at
(F,,T) = (12,0.05).
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Figure 4.19: Plots of function /2, (for i = 1,2) for the antenna located at (1,,T)
(12,0.05) prior to perturbation in the YR-plane.
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Figure 4.20: Plots of function /2, (for i = 1,2) for the antenna located at (FS,T)
(12,0.05) following perturbation in the YR-plane.
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and Sample 3 of Section 4.2 and Section 4.3, respectively. However, the locus did

pass through the first front data point. This implies that the solutions D0 = 1.515

and Yc = 12.962 were acceptable. Indeed, these solutions were obtained through

the reflection approximation equation (2.41). By the same logic as that applied to

Sample 2 and Sample 3, solutions could be shown to satisfy all of the governing

constraints for Case 2.

In spite of this, perturbation on the data points to the rear of the antenna location

was performed. This was due to the failure of module RTSAFEO to locate the zero

crossings, that is, the real roots CUt and C0l of (2.73) within the search range of

-200 to 200. The functions /2, of (2.73) is as illustrated in Figure 4.19. As can

be conspicuously observed in the figure, the curve representing the second rear data

point crossed the zero line at approximately Co = 9, but not that representing the

first rear data point. If, however, the search was extended way beyond Co = 200,

the two curves might approach close enough to the zero line such that they would be

within the acceptable tolerance value. This would mean that Co would be extremely

large, and so would the composite ellipse. Apparently, with perturbation performed

on the rear data points for each successive iteration until the tenth, the /2, curves

did not improve at all, if not worse. The results for the tenth iteration is depicted

in Figure 4.20, which in fact, appeared somewhat similar to those in Figure 4.19.

Without any doubt, the final value of 1.75 returned for Co was a quarter of the initial

guess for inputting into subroutine RTSAFEO in the tenth iteration. Indeed, the

functions /2, for t = 1,2 were enormously large when Co = 1.75 was substituted into

(2.73) for t = 1,2, implying that the value Co = 1.75 was far from being accurate.

For the purpose of analyzing the perturbation process of the rear data points for

this antenna location as executed by subroutine PTURB, the algorithm of which has

been presented in Section 4.4, Figure 4.21 through Figure 4.24 were plotted. In Fig-

ure 4.21, Ml represents the tangent line to the surface of the YR-plane cross-section

at the antenna location, evaluated through a difference algorithm implemented in in
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the beginning portion of the algorithm in ELLYR, prior to any perturbation proce-

dure. M2, on the other hand, represents the extrapolation of a line from the antenna

location to the midpoint between the first and second original (unperturbed) data

points to the rear of that antenna location. Line 1 and Line 2 are lines through the

same first and second original data points, respectively. They are, respectively, per-

pendicular to Ml and M2. Such a set up was performed by subroutine CONVEX,

which then called subroutine CONVX to evaluated the new perturbed positions of

the respective data points. In fact, in the figure, subroutine CONVX relocated the

first data point a factor of only 0.25 a into the fuselage from Ml along Line 1, where

a = 0.2 in this iteration. Similarly, the second data point was relocated a factor of a

into the fuselage from Ml along Line 2. All other data points remained unperturbed.

Unfortunately, again, the perturbation did not successfully produce any accept-

able solutions at all. Therefore, in the next iteration, a similar perturbation was

performed all over again, as illustrated in Figure 4.22. In this figure, the original

positions of the data points from Figure 4.21 were placed into the figure as reference

points. In this iteration, Ml represents the tangent line to the presently perturbed

surface at the antenna location, whereas M2 represents the extrapolation line from

the antenna location to the midpoint between the perturbed locations of the first

and second data points. Line 1 and Line 2 are lines through the perturbed locations

of the first and second data points, respectively. These lines are also, respectively,

perpendicular to Ml and M2, similar to Figure 4.21. For this iteration, a was incre-

mented to 0.4. Nonetheless, similar to the previous iteration, the perturbed location

for the first data point was relocated a factor of 0.25 a into the fuselage from Ml

along Line 1, and that for the second data point, a factor of a into the fuselage from

M2 along Line 2.

Particularly for this antenna location, the iteration was executed until the max-

imum iteration count was reached without any acceptable solutions at all, as indi-

cated by the STATSTOP value of 8. Figure 4.23 and Figure 4.24 are perturbation
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Figure 4.21: A geometrical description of the perturbation process in the YR-plane
on data points to the rear of the antenna location (Yg, T) = (12,0.05): First iteration.
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Figure 4.22: A geometrical description of the perturbation process in the YR-plane
on data points to the rear of the antenna location (1^,7") = (12,0.05): Second iter-
ation.
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Figure 4.23: A geometrical description of the perturbation process in the YR-plane
on data points to the rear of the antenna location (Ya,T) = (12,0.05): Third itera-
tion.
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Figure 4.24: A geometrical description of the perturbation process in the YR-plane
on data points to the rear of the antenna location (YS,T) = (12,0.05): Final itera-
tion.
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schematics for the third and last (tenth) iterations, respectively, whereby a = 0.6 for

the former, and a = 1.2 for the latter. In fact, the points in Figure 4.24 were per-

turbed too far apart, to the extend that Ml was no longer accurate in representing

the tangent line of the original surface at the antenna location at all. At this stage,

the difference algorithms in subroutine ELLYR would have to be recalibrated.

4.6 Some cases of antenna locations close to end
points of the helicopter fuselage

It should be noted that the present version of ELLC was not developed to handle

antenna locations close to the end points of the helicopter fuselage. This was be-

cause, for the current algorithm of ELLC, data points on the cross-section in the

YR-plane must be selected, two to the front and two to the rear of the antenna

location. Nevertheless, the separation DY between any two adjacent data points in

the YR-plane, or between the antenna location and the data point in the YR-plane

adjacent to the antenna location, may be decreased, if necessary, to accommodate

these data points. The solutions generated may actually be acceptable if the spac-

ing between the data points were within the tolerance range whereby the difference

algorithm in subroutine ELLYR would provide accurate computations, as has been

discussed in Section 3.1 and Section 3.2. Otherwise, the solutions would generally

be unacceptable. The stop-run condition STATSTOP for such antenna locations are

7, 13, 14, 15, 16 and 17.

4.6.1 Sample 6

For this sample run, the antenna was located at (Yt,T) = (49.00,0.30), that is, on

the right side of the tail end of the helicopter fuselage. The graphical results of this

run are depicted in Figure 4.25 and Figure 4.26. The output of this sample run is

appended in Appendix C.ll. Conspicuously, this is a Case 1 problem, as is implied

in the figures, as well as indicated in the appendix. Since the antenna was located

138



THE X-Z CROSS SECTION
YS = 49.00, T = . 0.30
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Figure 4.25: A close-fit ellipse in the XZ-plane for the antenna located at (F8,T) =
(49,0.3).

f
very near the tail end of the helicopter fuselage, where y = 50.00, no data point on

the YR-plane cross-section that was located to the rear of the antenna location could

be obtained, if the parameter DY1 in ELLC, discussed in Section 3.2 was set to the

default value of 1.6. Therefore, in order to accommodate the two necessary rear data

points, the value for DY1 was decreased to 0.5. As a result, the STATSTOP value

for this run is 7, as indicated in Appendix C.ll.

From Figure 4.25, the close fit ellipse generated appeared to be an acceptable

solution for the cross-section in the XZ-plane, although the fit was localized to the

surface in that cross-section at the antenna location. It should be noted that the

scaling in 4.25 was enlarged, compared to all other XZ-plane plots provided in the

previous examples. The very minor misfit at the antenna location appears distinctive

on this enlarged diagram. Despite of this misfit, there was no detectable error in
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Figure 4.26: A close-fit composite ellipse in the YR-plane for the antenna located at
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Figure 4.27: Plots of function /2, (for i = 1,2) for the antenna located at (FS,T)
(49, 0.3) prior to perturbation in the YR-plane.
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Figure 4.28: Plots of function /2, (for i = 1,2) for the antenna located at (Y,,T)
(49,0.3) following perturbation in the YR-plane.
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the execution of subroutine ELLXZ. Indeed, this implied that the fit was acceptable

within the maximum tolerance defined in subroutine ELLXZ.

In the YR-plane, as is observed in Figure 4.26, the cross-section surface was

rather straight at the proximity of the antenna location. Since the sampling interval

DY1 for data points to the rear of the antenna location was adjusted, the backward

difference algorithm was utilized for computing the first-order derivative of the sur-

face at the antenna location, so as to determine that this was a Case 1 problem.

Details of this procedure has been discussed in Section 3.1 and Section 3.2. In the

first iteration, module RTSAFE in subroutine ELLYR failed to provide accurate so-

lution for DO. Indeed, there was no zero crossing of the the function /2, for i = 1,2

within the search range of —200 to 200, as was illustrated in Figure 4.27. In fact, /2

was not even within the tolerance range that would regard it as zero, implying that

the at least one of the real roots of /2 , i = 1,2 did not exist within this domain.

Analyzing this geometrically, such a problem might be attributed to the actual sur-

face of the fuselage being too linear in the vicinity of the antenna location, and that

the absolute value of the R-component, \R S \ , at the cross section of the antenna

location, Ys = 49 was restricted to a small value of only —0.424.

Therefore, subroutine PTURB was executed to perturb the data points to the

rear of the antenna location. Fortunately enough, for this second iteration, and due

to the fact that module SOLVR would always guarantee a solution if the surface

gradient at the antenna location was not within the tolerance range of being zero, as

was in this case, module RTSAFE successfully obtained a value for DO. Although,

again, none of the curves of functions /2, i = 1,2 crossed the zero line, they were

both within the tolerance range of being considered as zeroes at some regions within

the search range of £>0 = —200 to DO = 200. (Note that the tolerance range for this

was \DX\ < 1.0 x 10~6, where DX is /2( A>)/3^/2(A>) [9].) For the first point, the

real root was 0.779, and that for the second, was 0.906. Hence, averaging these, the

value of DO was evaluated to be 0.842. For this second iteration, module SOLVR
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had produced the solutions Co = 7.558 and Yc = 43.7 by the method of reflection,

prior to the execution of module RTSAFE.

In general, the composite ellipse was acceptable, even though its locus did not

pass by close to the front most selected data point, as expected, due to perturbation

performed on the front data points. In spite of this, the locus did pass closely by

the first front data point, and almost directly on both the right data points. As a

matter of fact, the composite ellipse thus obtained protruded a little beyond the edge

of the fuselage end, as was obvious in Figure 4.26. As such, the completed close-fit

composite ellipsoid produced would protrude out of the tail end of the helicopter

fuselage. This, of course, would not be a problem when the parameters were input

into NEWAIR, since NEWAIR would be able to handle such a problem by chopping

off the protruding portion of the composite ellipsoid [1].

4.6.2 Sample 7

The antenna location for this sample run was at (FS,T) = (5,0.85), at the slanted

surface on the side of the helicopter fuselage. The stop-run condition STATSTOP

for this case was 13, indicating that the antenna location was being too close to

one end of the fuselage, and that the required data points could not be selected

in the YR-plane since they are indeterminate. Therefore, no composite ellipse was

generated. The run was halted at this point. The output file of this run is appended

in Appendix C.3.

Figure 4.29 illustrates the XZ-plane cross section of the helicopter fuselage with a

close-fit ellipse at the antenna location. The degree of acceptability of this fitting to

the slanted surface of fuselage was similar to those of samples 7 and 8, even though

it does not appear to be so in the figure due to the smaller scaling factor of the plot.

Moreover, the region of the ellipse utilized for close-fitting the actual surface was

much flatter than those of the previous cases.
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Figure 4.29: A close-fit ellipse in the XZ-plane for the antenna located at (yg,T)
(5,0.85).
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4.7 Failures in routine ELLXZ

There are indeed five causes of program halting in routine ELLXZ, which are stop-

run conditions STATSTOPs of values 1 through 5 listed in Appendix B. Of these, the

most frequently encountered are ST AT STOP = 1 and STATSTOP - 2, indicating

that the surface at the antenna location is not convex in the proper direction of

the outward normal of the fuselage for the former, and the exceeding of maximum

iteration count for latter. Somewhat rare is the case for which STATSTOP =

3, indicating a line search failure had occurred. Interestingly, STATSTOP = 4

and STATSTOP = 5 are yet to be observed to occur. These stop-run conditions

indicate, respectively, that failure in QR solution of the Newton-Raphson equation

had occurred, and that a square-root of a negative value had occurred. In this

section, two of these cases are presented.

4.7.1 Sample 8

For this sample run, the antenna is positioned at (Ya,T) = (16.00,0.00), directly

above the fuselage of the helicopter, as illustrated in Figure 4.30. As is observed

from the enlarged view of the antenna location in the XZ-plane, the antenna location

in question was in fact a small notch at the top of the fuselage, very possibly caused

by the inaccurate inputting of the fuselage surface points interactively, as discussed

in Sample 2. In fact, such notches are very often encountered throughout the entire

cross sections of the helicopter fuselage. For this particular case, the notch was

too deep to the extend that routine ELLXZ regarded it as a convex surface not in

the proper direction of the outward normal of the fuselage. As such, the stop-run

condition STATSTOP was 1, as listed in the output appended in Appendix C.12.

4.7.2 Sample 9

The antenna location for this sample run was at (YS,T) = (2.1,0.9), presumably

extremely close to the front tip of the helicopter fuselage, which was 1^ = 2.0. As is
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Figure 4.30: A close-fit ellipse in the XZ-plane for the antenna located at
(16,0).
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observed from Figure 4.31, the actual surface in the vicinity of the antenna location

was rather irregular, again, possibly due to the inaccurate inputting of the surface

points interactively, as discussed in Sample 2. This was indeed the suspected cause of

the stop-run condition STATSTOP being 3, indicating that a line search failure had

occurred in ELLXZ. The short output file of this run is included in Appendix C.9.
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Figure 4.31: A close-fit ellipse in the XZ-plane for the antenna located at (Y8,T)
(2.1,0.9).
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Chapter 5

Summary

In summary, three computer codes were described in this report. The first was the

/felicopter Antenna .Radiation Prediction (HARP) Code. This is a software pack-

age still under development at the ElectroScience Laboratory of The Ohio State

University. This is in fact a computer code capable of displaying advance computer

graphics. Integrated into it are the GTD and MM techniques for analyzing, re-

spectively, the high and low frequency spectrum of the radiation emitted from an

antenna mounted on a helicopter fuselage. The second code mentioned in this re-

port is NEWAIR3. This code is written in FORTRAN 77 for high frequency GTD

analysis of antennae mounted on aircraft. This code will be integrated into HARP

to provide for the high frequency analysis of an antenna mounted on a helicopter

fuselage. For this code to be executed, the helicopter must be modelled in terms of

a composite ellipsoid and a set of flat, finite polygonal plates. In order to perform

the modelling of the composite ellipsoid automatically, a computer code known as

the .Eilripsoid Code (ELLC) was developed, hence, the third and final code to be

described here.

With the successful development of ELLC, the automatic fitting of the composite

ellipsoid to the surface of the helicopter fuselage was made possible. In most of the

sample runs presented in Chapter 4, the composite ellipsoids were generally good fits

of the fuselage surface in the vicinity of the antenna location. In fact, in ELLC, the
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actual 3-dimensional problem of fitting a composite ellipsoid to the fuselage surface

was separated into two 2-dimensional problems:

1. The problem of fitting an ellipse to the surface of the cross-section in the

XZ-plane.

2. The problem of fitting a composite ellipse to the surface of the cross-section in

the YR-plane.

The subroutines necessary for solving the first 2-dimensional problem were developed

by Scheick and Klevenow and a brief description is presented in Section 2.3. The

other 2-dimensional problem in the Y-R plane, however, were completely described

in this report. The method utilized here is only a preliminary result which requires
\

further improvement. For this method, only a minimum number of points along the

surface of the helicopter fuselage was used. Indeed, to obtain a good fit to the fuselage

surface, more points would have to be utilized. A method has been developed by

Scheick and Klevenow that uses more points on the surface. This latter technique

will be discussed in a future report. Numerous sample runs of ELLC were analyzed

in Chapter 4 utilizing the theories and concepts presented in Chapter 2. A concise

description of the algorithm utilized in ELLC was presented in Chapter III, together

with some flow-charts illustrating the nature of the logic in ELLC.

One of the limitations of ELLC is being incapable of fitting a composite ellipsoid

to surfaces near the ends of the helicopter fuselage. In addition, computational

runs of ELLC for antenna locations on concave surfaces of the fuselage may not

be successful, depending on the severity of the concavity of the surface in question

and the tolerance desired by the user. Nevertheless, ELLC is very efficient, with a

general CPU time of less than 20 seconds on a VAX 8550 computer.
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Appendix A

Notations and Symbols in ELLC

Notations and symbols

utilized in ELLC

Fl for i = 1,2

F2 for » = 1,2

XS, YS, ZS, RS

T

PHIS

X , Y , Z , R

40, 50, CO, Z?0

Al, Bl

XC, YC, ZC

YSH

C01P, C02P

I?01P, I>02P

Notations and symbols

in Chapter 1 and Chapter 2

/..for i = 1,2

/2, fo r t = 1,2

X,, Yg, Zs, Rs

T

4>,
x, y, z, R

AO, BO, C(}, D(j

At, B!

Xc, Yc, Zc

Ysh

^0, » CQJ

D'^D'(h

Table A.I: Alternative notations and symbols for utilization in ELLC.
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Appendix B

Stop-run Conditions

STOP-RUN STATUS:

STATSTOP = 0 GOOD CLOSE-FIT COMPOSITE ELLIPSOID

SOLUTION IS OBTAINED.
STATSTOP = 1 ELLIPSE CANNOT BE FITTED IN THE XZ-PLANE AT

THE YS CROSS-SECTION BY "ELLXZ" MODULE; SURFACE
POINTS ARE NOT CONVEX IN THE PROPER DIRECTION.

STATSTOP = 2 MAXIMUM ITERATIONS IN "ELLXZ" MODULE EXCEEDED;
CLOSE-FIT ELLIPSE MAY NOT BE GOOD.

STATSTOP = 3 LINE SEARCH FAILURE IN "ELLXZ" MODULE.
STATSTOP = 4 FAILURE IN QR SOLUTION OF THE NEWTON-RAHPSON

EQUATION IN THE "ELLXZ" MODULE.
STATSTOP = 5 SQUARE-ROOT OF A NEGATIVE VALUE OCCURRED IN

"ELLXZ" MODULE.

STATSTOP = 6 BOTH SPACINGS DY1 (FOR CROSS SECTIONS BEHIND
THE ANTENNA LOCATION) AND DY2 (FOR CROSS

SECTION IN FRONT OF THE ANTENNA LOCATION)
ARE CHANGED BEYOND THE ACCEPTABLE TOLERANCE
WHEREBY THE DIFFERENCE ALGORITHM WOULD PROVIDE

ACCURATE COMPUTATIONS FOR THE YR-PLANE.

STATSTOP = 7 ANTENNA LOCATION IS TOO CLOSE TO AN END
POINT OF THE HELICOPTER FUSELAGE. MAXIMUM
SPACING BETWEEN POINTS IN THE YR-PLANE
REQUIRED FOR COMPUTATIONS IS ADJUSTED. HOWEVER,

THE CLOSE-FIT COMPOSITE ELLIPSOID GENERATED MAY

NOT BE GOOD.

STATSTOP = 8 MAXIMUM ITERATIONS IN "ELLYR" MODULE EXCEEDED.
SURFACE POINTS IN THE YR-PLANE ARE PERTURBED
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STATSTOP = 9

STATSTOP

STATSTOP

STATSTOP

STATSTOP

STATSTOP

STATSTOP

10

11

STATSTOP =12

STATSTOP = 13

= 14

15

= 16

= 17

TO MAXIMUM TOLERANCE. FOR "CASE 1" PROBLEM,

THE RETURNED VALUES FOR CO AND YC ARE VALUES

FROM LAST ITERATION, AND FOR DO, THE RETURNED

VALUE IS A QUARTER THE INITIAL GUESS FOR 1=2 FROM

LAST ITERATION, WHICH MAY NOT BE GOOD. FOR "CASE 2"

PROBLEM, THE RETURNED VALUES FOR DO AND YC ARE

VALUES FROM LAST ITERATION, AND FOR CO, THE

RETURNED VALUE IS A QUARTER THE INITIAL GUESS

FOR 1=2 FROM LAST ITERATION, WHICH MAY NOT

BE GOOD.

IN "ELLYR" MODULE, SURFACE POINTS IN THE YR-PLANE

ARE PERTURBED TO OBTAIN SOLUTIONS; PERTURBED POINTS

ARE CONVEX.

IN "ELLYR" MODULE, SURFACE POINTS IN THE YR-PLANE

ARE PERTURBED TO OBTAIN SOLUTIONS; PERTURBED POINTS

ARE CONCAVE.

AS AN APPROXIMATION, YC IN "ELLYR" MODULE

IS OBTAINED BY REFLECTION ON YS, WITHOUT

PERTURBATION OF SURFACE POINTS IN THE YR-PLANE.

AS AN APPROXIMATION, YC IN "ELLYR" MODULE

IS OBTAINED BY REFLECTION ON YS, AFTER

PERTURBATION OF SURFACE POINTS IN THE YR-PLANE.

STATSTOP=7 CONDITION, BUT THE REQUIRED POINTS

IN THE YR-PLANE ARE INDETERMINATE; CLOSE-FIT

COMPOSITE ELLIPSOID CANNOT BE GENERATED.

STATSTOP=7 CONDITION, BUT SOLUTIONS ARE

STATSTOP=9 TYPE.

STATSTOP=7 CONDITION, BUT SOLUTIONS ARE

STATSTOP=10 TYPE.

STATSTOP=7 CONDITION, BUT SOLUTIONS ARE

STATSTOP=11 TYPE.

STATSTOP=7 CONDITION, BUT SOLUTIONS ARE

STATSTOP=12 TYPE.
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Appendix C

Output Files from ELLC

C.I For Ys = 17.00, T = 0.55

NAME OF THIS FILE: Y17T55 .DAT

THIS DATA FILE IS GENERATED BY "ELLC.FOR"
NAME OF EXTERNAL MASTER DATA FILE READ: LH.MASTER
NUMBER OF SURFACE POINTS USED: 5 (2 EACH, IN THE FRONT

AND IN THE REAR OF THE ANTENNA LOCATION, RESPECTIVELY)

HELICOPTER FUSELAGE STARTS FROM Y = 2.000 TO Y = 50.000
ANTENNA LOCATION (IN THE XZ-PLANE CROSS-SECTION)

= (YS.TINIT) = ( 17.000 , 0.550 )
ANTENNA LOCATION IN RECTANGULAR COORDINATES

= (XS.YS.ZS) = ( -1.664 , 17.000 , -4.468 )

AT YS = 17.000 :

SEMI-MINOR AXIS OF THE BEST-FIT
ELLIPSE IN THE XZ-PLANE = Al = 19.809

SEMI-MAJOR AXIS OF THE BEST-FIT

ELLIPSE IN THE XZ-PLANE = Bl = 8.831

CENTER OF BEST-FIT ELLIPSE = (XC.ZC) = ( -1.634 , 15.315 )

FUSELAGE CROSS-SECTION SAMPLING:

ANTENNA LOCATION IN YR-COORDINATES
= (YS.RS) = ( 17.000 , -19.783 )

TO THE REAR OF THE ANTENNA LOCATION AT SPACING DY = 1.6000
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i-th
CROSS
SECTION X

2 -1.664
3 -1.664
4 -1.664
5 -1.664
6 -1.664
7 -1.664
8 -1.663
9 -1.662
10 -1.660

RECTANGULAR
COORDINATES

Y

18.600
20.200
21.800
23.400
25.000
26.600
28.200
29.800
31.400

Z

-4.465
-4.466
-4.461
-4.458
-4.465
-4.232
-3.746
-3.075
-1.593

TO THE FRONT OF THE ANTENNA LOCATION AT

i-th
CROSS
SECTION X

2 -1.664
3 -1.664
4 -1.664
5 -1.664
6 -1.665
7 -1.665
8 ' -1.664
9 -1.660

THIS IS A "CASE 1"
STOP-RUN STATUS =

RECTANGULAR
COORDINATES '

Y

15.400
13.800
12.200
10.600
9.000
7.400
5.800
4.200

PROBLEM
STATSTOP = 0

PARAMETER VALUES FOR CLOSE-FIT

AO = 19.809
BO = 8.831
CO » 105.738
DO = 83.614
YSH = 0.000
(XC.YC.ZC) = (
STOP-RUN STATUS

-1.634 ,
- STATSTOP =

Z

-4.461
-4.459
-4.509
-4.598
-4 . 677
-4.792
-4 . 587
-1.914

COMPOSITE

17.000 ,
0

YR-COORDINATES
AT PHIS -

Y

18.600
20.200
21.800
23.400
25.000
26.600
28.200
29 . 800
31.400

SPACING DY

-179.91 DEC
R

-19.781
-19.781
-19.776
-19.774
-19.780
-19.547

-19.061
-18.390
-16.908

1.6000

YR-COORDINATES
AT PHIS =

Y

15.400
13.800
12.200
10.600
9.000
7.400
5.800
4.200

ELLIPSOID:

15.315 )

-179.91 DEC
R

-19.776
-19.774
-19.824
-19.913
-19.992
-20.108
-19.902
-17.229
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RUN COMPLETED!
CPU TIME: 12.89 SECONDS

C.2 For Ys = 3.00, T = 0.50

NAME OF THIS FILE: Y03T50 .DAT
THIS DATA FILE IS GENERATED BY "ELLC.FOR"
NAME OF EXTERNAL MASTER DATA FILE READ: LH.MASTER
NUMBER OF SURFACE POINTS USED: 5 (2 EACH, IN THE FRONT

AND IN THE REAR OF THE ANTENNA LOCATION, RESPECTIVELY)

HELICOPTER FUSELAGE STARTS FROM Y = 2.000 TO Y = 50.000
ANTENNA LOCATION (IN THE XZ-PLANE CROSS-SECTION)

= (YS.TINIT) = ( 3.000 , 0.500 )
ANTENNA LOCATION IN RECTANGULAR COORDINATES

= (XS.YS.ZS) = ( 0.000 , 3.000 , -1.884 )

AT YS = 3.000 :
SEMI-MINOR AXIS OF THE BEST-FIT

ELLIPSE IN THE XZ-PLANE = Al = 1.177
SEMI-MAJOR AXIS OF THE BEST-FIT

ELLIPSE IN THE XZ-PLANE = Bl = 0.526
CENTER OF BEST-FIT ELLIPSE = (XC.ZC) = ( 0.000 , -0.729 )

FUSELAGE CROSS-SECTION SAMPLING:

ANTENNA LOCATION IN YR-COORDINATES
= (YS.RS) = ( 3.000 , -1.155 )

TO THE REAR OF THE ANTENNA LOCATION AT SPACING DY = 1.6000

i-th RECTANGULAR YR-COORDINATES
CROSS COORDINATES AT PHIS = -180.00 DEG

SECTION X Y Z Y R

2
3
4

5
6 0.000 11.000 -4.555 11.000 -3.826
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0.000
0.000
0.000
0.000

4.600
6.200
7.800
9.400

-4.032
-4.757
-4.799
-4.702

4.600
6.200
7.800
9.400

-3.303
-4.028
-4.069
-3.973



7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
26
29
30

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000-
0.000
0.000

12.600
14.200
15.800
17.400

19.000
20.600
22.200
23.800
25.400
27.000
28.600
30.200
31.800
33.400

35.000
36.600
38 . 200
39.800
41.400
43 . 000
44 . 600
46 . 200
47 . 800
49.400

-4.426
-4 . 374
-4.386
-4.392
-4.388
-4.389
-4.382
-4.385
-4.361
-4.077
-3.603
-3.061
-2.572
-2.260
-2.213
-2.205
-2.166
-2.101
-2.015
-1.909
-1.789
-1.657
-1.517
-1.372

12.600
14.200
15.800
17.400
19.000
20.600
22.200
23.800
25.400
27.000
28.600
30.200
31.800
33 . 400
35.000
36 . 600
38 . 200
39 . 800
41.400
43.000
44 . 600
46.200
47.800
49.400

-3.697
-3.645
-3.657
-3.663
-3.659
-3.660
-3.653
-3.656
-3.632
-3 . 348
-2.874
-2.332
-1.843
-1.531
-1.484
-1.476
-1.437
-1.372
-1.285
-1.180
-1.060
-0.928
-0.788
-0.643

ANTENNA LOCATION TOO CLOSE TO AN END POINT OF THE HELICOPTER FUSELAGE.
ADJUSTING ...

TO THE FRONT OF THE ANTENNA LOCATION AT SPACING DY = 0.5000

i-th
CROSS
SECTION

2
3

X

0.000
0.000

RECTANGULAR
COORDINATES

Y Z

2.500 -1.536
2.000 -1.536

YR-COORDINATES
AT PHIS = -180.00 DEC

Y R

2.500 -0.807
2.000 -0.807

THIS IS A "CASE 2" PROBLEM
STOP-RUN STATUS = STATSTOP =15

WARNING: ANTENNA LOCATION IS TOO CLOSE TO AN END POINT
IN THE YR-PLANE. CLOSE-FIT COMPOSITE ELLIPSOID
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MAY NOT BE GOOD.

SURFACE POINTS ARE NOT CONVEX IN THE PROPER DIRECTION.

RUN HALTED: STATSTOP =15
CLOSE-FIT COMPOSITE ELLIPSOID CANNOT BE GENERATED.

RUN COMPLETED!
CPU TIME: 21.27 SECONDS

C.3 For Ys = 5.00, T = 0.85

NAME OF THIS FILE: Y05T85 .DAT
THIS DATA FILE IS GENERATED BY "ELLC.FOR"

NAME OF EXTERNAL MASTER DATA FILE READ: LH.MASTER
NUMBER OF SURFACE POINTS USED: 5 (2 EACH, IN THE FRONT

AND IN THE REAR OF THE ANTENNA LOCATION, RESPECTIVELY)

HELICOPTER FUSELAGE STARTS FROM Y = 2.000 TO Y = 50.000
ANTENNA LOCATION (IN THE XZ-PLANE CROSS-SECTION)

= (YS.TINIT) = ( 5.000 , 0.850 )

ANTENNA LOCATION IN RECTANGULAR COORDINATES
= (XS.YS.ZS) = ( -1.572 , 5.000 , -0.473 )

AT YS = 5.000 :
SEMI-MINOR AXIS OF THE BEST-FIT

ELLIPSE IN THE XZ-PLANE = Al = 1.361
SEMI-MAJOR AXIS OF THE BEST-FIT

ELLIPSE IN THE XZ-PLANE = Bl = 0.603

CENTER OF BEST-FIT ELLIPSE = (XC.ZC) = ( -1.103 , -1.210 )

FUSELAGE CROSS-SECTION SAMPLING:

ANTENNA LOCATION IN YR-COORDINATES

= (YS.RS) = ( 5.000 , 0.874 )

TO THE REAR OF THE ANTENNA LOCATION AT SPACING DY = 1.6000

i-th RECTANGULAR YR-COORDINATES

CROSS COORDINATES AT PHIS = -32.50 DEG

SECTION X Y Z Y R
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2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

-1.969
-2.170
-2.374
-2.710
-2.983
-3.056
-3.018
-3.013
-3.024
-3.022
-3.016
-3.025
-2.969

-2.720
-2 . 349
-1.933
-1.503
-1.261
-1.253
-1.235
-1.182
-1.075

6.600
8.200
9.800

11.400
13.000
14.600
16.200
17.800
19.400
21.000
22.600
24.200
25.800
27.400
29.000
30.600
32.200
33.800
35.400
37.000
38.600
40.200

0.150
0.465
0.785
1.312
1.741
1.856
1.796
1.788
1.805
1.802
1.793

1.806
1.719

1.327

0.746
0.092
-0.582
-0.962
-0.975
-1.003
-1.085
-1.253

6.600
8.200
9.800
11.400
13.000
14.600
16.200
17.800
19.400
21.000
22.600
24.200
25.800
27.400
29.000
30.600
32.200
33.800
35.400
37.000
38.600
40.200

1.612
1.987
2.366
2.990
3.499
3.635
3.564
3.555
3.575
3.572
3.560
3.576
3.473
3.009
2.320
1.544
0.745
0.295
0.279
0.245
0.148
-0.051

ANTENNA LOCATION TOO CLOSE TO AN END POINT OF THE HELICOPTER FUSELAGE.
ADJUSTING ...

RUN HALTED: STATSTOP =13
CLOSE-FIT COMPOSITE ELLIPSOID CANNOT BE GENERATED.

RUN COMPLETED!
CPU TIME: 17.31 SECONDS

C.4 For Ys = 7.00, T = 0.41

NAME OF THIS FILE: Y07T41 .DAT
THIS DATA FILE IS GENERATED BY "ELLC.FOR"
NAME OF EXTERNAL MASTER DATA FILE READ: LH.MASTER
NUMBER OF SURFACE POINTS USED: 5 (2 EACH, IN THE FRONT

AND IN THE REAR OF THE ANTENNA LOCATION, RESPECTIVELY)

HELICOPTER FUSELAGE STARTS FROM Y = 2.000 TO Y = 50.000
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ANTENNA LOCATION (IN THE XZ-PLANE CROSS-SECTION)
= (YS.TINIT) = ( 7.000 , 0.410 )

ANTENNA LOCATION IN RECTANGULAR COORDINATES
= (XS.YS.ZS) = ( 1.752 , 7.000 , -4.774 )

AT YS = 7.000 :
SEMI-MINOR AXIS OF THE BEST-FIT

ELLIPSE IN THE XZ-PLANE = Al = 0.842
SEMI-MAJOR AXIS OF THE BEST-FIT

ELLIPSE IN THE XZ-PLANE = Bl = 0.771
CENTER OF BEST-FIT ELLIPSE = (XC.ZC) = ( 1.431 , -3.989 )

FUSELAGE CROSS-SECTION SAMPLING:

ANTENNA LOCATION IN YR-COORDINATES
= (YS.RS) = ( 7.000 , -0.849 )

TO THE REAR OF THE ANTENNA LOCATION AT SPACING DY = 1.6000

i-th RECTANGULAR YR-COORDINATES
CROSS COORDINATES AT PHIS = 157.77 DEG
SECTION X ^ Y Z Y R

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
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1.720
1.686
1.652
1.625
1.622
1.626
1.626
1.625
1.624
1.622
1.628
1.565
1.392
1.161
0.923
0.731
0.645
0.648

8.600
10.200
11.800
13.400
15.000
16.600
18.200
19.800
21.400
23.000
24 . 600
26.200
27.800
29.400
31.000
32.600
34.200
35.800

-4 . 697
-4.614
-4,530
-4 . 464
-4.457
-4 . 466
-4.465
-4.465
-4.462
-4.456
-4.472
-4.317
-3.893
-3.328
-2.747
-2.277
-2.065
-2.074

8.600
10.200
11.800
13.400
15.000
16.600
18.200
19.800
21.400
23.000
24 . 600
26.200
27 . 800
29.400
31.000
32.600
34 . 200
35.800

-0.766
-0.675
-0.585
-0.514
-0.506
-0.516
-0.515
-0.514
-0.512
-0.505
-0.522
-0.354
0.103
0.714
1.342
1.849
2.078
2.069



0.637
0.616
0.586
0.548
0.503
0.453
0.398
0.341

37.400
39 . 000
40.600
42.200
43.800
45.400
47.000
48 . 600

-2.048
-1.996
-1.922
-1.828
-1.719
-1.596
-1.463
-1.321

37.400
39 . 000
40.600
42.200
43 . 800
45.400
47.000
48 . 600

2 .097
2.153
2.233
2.334
2.452
2.585
2.729
2.882

20
21
22

23

24
25
26
27

SELECTED DATA POINT CROSSES THE ZERO LINE IN THE YR-PLANE.
ADJUSTING SPACING DY...

SELECTED DATA POINT CROSSES THE ZERO LINE IN THE YR-PLANE.
ADJUSTING SPACING DY...

SELECTED DATA POINT CROSSES THE ZERO LINE IN THE YR-PLANE.
ADJUSTING SPACING DY...

TO THE FRONT OF THE ANTENNA LOCATION AT SPACING DY = 0.9600

i-th RECTANGULAR YR-COORDINATES
CROSS COORDINATES AT PHIS = 157.77 DEC
SECTION X Y Z Y R

2
3
4

THIS IS A "CASE 1" PROBLEM
STOP-RUN STATUS = STATSTOP =11

PARAMETER VALUES FOR CLOSE-FIT COMPOSITE ELLIPSOID;

AO = 1.768

BO = 1.618
CO =67.623
DO = -57.647

YSH = 59.309
(XC.YC.ZC) = ( 1.431 , -52.466 , -3.989 )
STOP-RUN STATUS = STATSTOP =11

162

1.696
1.544
6.410

6.040
5.080
2.200

-4.638
-4.266
-1.490

6.040
5.080
2.200

-0.702
-0.300
2.699



RUN COMPLETED!
CPU TIME: 14.13 SECONDS

C.5 For Ys = 12.00, T = 0.05

NAME OF THIS FILE: Y12T05 .DAT
THIS DATA FILE IS GENERATED BY "ELLC.FOR"
NAME OF EXTERNAL MASTER DATA FILE READ: LH.MASTER
NUMBER OF SURFACE POINTS USED: 5 (2 EACH, IN THE FRONT

AND IN THE REAR OF THE ANTENNA LOCATION, RESPECTIVELY)

HELICOPTER FUSELAGE STARTS FROM Y = 2.000 TO Y = 50.000
ANTENNA LOCATION (IN THE XZ-PLANE CROSS-SECTION)

= (YS.TINIT) = ( 12.000 , 0.050 )
ANTENNA LOCATION IN RECTANGULAR COORDINATES

= (XS.YS.ZS) = ( 1.469 , 12.000 , 5.588 )

AT YS = 12.000 :
SEMI-MINOR AXIS OF THE BEST-FIT

ELLIPSE IN THE XZ-PLANE = Al = 0.607
SEMI-MAJOR AXIS OF THE BEST-FIT

ELLIPSE IN THE XZ-PLANE = Bl = 0.838
CENTER OF BEST-FIT ELLIPSE = (XC.ZC) = ( 1.022 , 5.054 )

FUSELAGE CROSS-SECTION SAMPLING:

ANTENNA LOCATION IN YR-COORDINATES
= (YS.RS) = ( 12.000 , 0.696 )

TO THE REAR OF THE ANTENNA LOCATION AT SPACING DY = 1.6000

i-th RECTANGULAR YR-COORDINATES
CROSS COORDINATES AT PHIS = 39.96 DEC
SECTION X Y Z Y R

3
4
5
6
7

1.860
1.870
1.827
1.836
1.845
1.838

13.600
15.200
16.800
18.400
20.000
21.600

6.054
6.067
6.016
6.026
6.037
6.028

13.600
15.200
16.800
18 . 400
20.000
21.600

1.305
1.320
1.254
1.268
1.282
1.271
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8
9
10
11
12

1.833
1.848
1.589
0.818
-0.230

23.200
24 . 800
26.400
28.000
29.600

6.023
6.041

5.732
4.812
3.561

23.200
24 . 800
26.400
28.000
29.600

1.263
1.287
0.884
-0.317
-1.948

SELECTED DATA POINT CROSSES THE ZERO LINE IN THE YR-PLANE.
ADJUSTING SPACING DY...

SELECTED DATA POINT CROSSES THE ZERO LINE IN THE YR-PLANE.
ADJUSTING SPACING DY...

SELECTED DATA POINT CROSSES THE ZERO LINE IN THE YR-PLANE.
ADJUSTING SPACING DY...

SELECTED DATA POINT CROSSES THE ZERO LINE IN THE YR-PLANE.
ADJUSTING SPACING DY...

SELECTED DATA POINT CROSSES THE ZERO LINE IN THE YR-PLANE.

ADJUSTING SPACING DY...

SELECTED DATA POINT CROSSES THE ZERO LINE IN THE YR-PLANE.
ADJUSTING SPACING DY...

SELECTED DATA POINT CROSSES THE ZERO LINE IN THE YR-PLANE.
ADJUSTING SPACING DY...

SELECTED DATA POINT CROSSES THE ZERO LINE IN THE YR-PLANE.
ADJUSTING SPACING DY...

TO THE FRONT OF THE ANTENNA LOCATION AT SPACING DY = 0.4000

i-th RECTANGULAR YR-COORDINATES
CROSS COORDINATES AT PHIS = 39.96 DEG
SECTION X Y Z Y R

2 1.276 11.600 5.357 11.600 0.395
3 1.029 11.200 5.064 11.200 0.012

THIS IS A "CASE 2" PROBLEM
STOP-RUN STATUS = STATSTOP =8
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WARNING: MAXIMUM ITERATIONS IN "ELLYR" MODULE EXCEEDED.
CLOSE-FIT COMPOSITE ELLIPSOID MAY NOT BE GOOD.

PARAMETER VALUES FOR CLOSE-FIT COMPOSITE ELLIPSOID:

AO =
BO =
CO =

DO =
YSH =

0.786
1.085
1.750

1.515
0.112

(XC.YC.ZC) = ( 1.022 , 12.962 , 5.054 )
STOP-RUN STATUS = STATSTOP = 8

RUN COMPLETED!

CPU TIME: 11.60 SECONDS

C.6 For Ys = 12.00, T = 0.30

NAME OF THIS FILE: Y12T30 .DAT
THIS DATA FILE IS GENERATED BY "ELLC.FOR"
NAME OF EXTERNAL MASTER DATA FILE READ: LH.MASTER
NUMBER OF SURFACE POINTS USED: 5 (2 EACH, IN THE FRONT

AND IN THE REAR OF THE ANTENNA LOCATION, RESPECTIVELY)

HELICOPTER FUSELAGE STARTS FROM Y = 2.000 TO Y = 50.000
ANTENNA LOCATION (IN THE XZ-PLANE CROSS-SECTION)

= (YS.TINIT) = ( 12.000 , 0.300 )
ANTENNA LOCATION IN RECTANGULAR COORDINATES

= (XS.YS.ZS) = ( 3.200 , 12.000 , -1.548 )

AT YS 12.000 :
SEMI-MINOR AXIS OF THE BEST-FIT

ELLIPSE IN THE XZ-PLANE = Al = 2.354

SEMI-MAJOR AXIS OF THE BEST-FIT

ELLIPSE IN THE XZ-PLANE = Bl = 1.020
CENTER OF BEST-FIT ELLIPSE = (XC.ZC) = ( 2.224 . -1.523 )

FUSELAGE CROSS-SECTION SAMPLING:

ANTENNA LOCATION IN YR-COORDINATES
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= (YS.RS) = ( 12.000 , -0.976 )

TO THE REAR OF THE ANTENNA LOCATION AT SPACING DY = 1.6000

i-th
CROSS
SECTION X

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

TO THE

i-th
CROSS
SECTION

2
3
4
5
6

3.379
3.387
3.357
3 .363
3.370
3.364

3.359
3.373
3.196
2.792
2.277

1.740
1.302
1.128
1.137
1.104
1.041
0.953
0.841
0.707
0.542
0.362

FRONT OF THE

X

2.895
2.524
2.208
2.018
1.570

RECTANGULAR
COORDINATES

Y

13.600
15.200
16.800
18.400
20 . 000
21.600

23.200
24.800
26.400
28.000
29.600
31.200
32.800
34.400
36.000
37.600
39.200
40.800
42.400
44 . 000
45.600
47 . 200

YR-COORDINATES
AT PHIS = 91.45 DEG

Z

-1.552
-1.552
-1.552
-1.552
-1.552
-1.552

-1.552
-1.552
-1.548
-1.537
-1.524

-1.511
-1.500
-1.495
-1.496
-1.495
-1.493
-1.491
-1.488
-1.485
-1.481
-1.476

ANTENNA LOCATION AT

RECTANGULAR
COORDINATES

Y

10.400
8.800
7.200
5.600
4.000

Y

13.600
15.200
16.800
18.400
20.000
21.600

23.200
24 . 800
26.400
28.000
29.600
31.200
32.800
34.400
36.000
37.600
39.200
40 . 800
42.400
44 . 000
45.600
47 . 200

SPACING DY =

R

-1.156
-1.164
-1.134
-1.140
-1.146
-1.140

-1.136
-1.149
-0.973
-0.568
-0.053
0.484
0.922
1.096
1.087
1.120
1.183
1.271
1.383
1.517
1.682
1.862

1.6000

YR-COORDINATES

Z

-1.540
-1.531
-1.523

-1.518
-1.507

AT PHIS =
Y

10.400
8.800
7.200
5.600
4.000

91.45 DEG
R

-0.672
-0.300
0.016
0.206
0.654
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7 0.601 2.400 -1.482 2.400 1.623

THIS IS A "CASE 2" PROBLEM
STOP-RUN STATUS = STATSTOP =11

PARAMETER VALUES FOR CLOSE-FIT COMPOSITE ELLIPSOID:

AO = 3.288

BO = 1.425
CO = 4.559
DO = 9.298
YSH = -2.270

(XC.YC.ZC) = ( 2.224 , 18.492 , -1.523 )
STOP-RUN STATUS = STATSTOP =11

RUN COMPLETED!
CPU TIME: 14.74 SECONDS

C.7 For Ys = 16.00, T = 0.00

NAME OF THIS FILE: Y16TOO .DAT
THIS DATA FILE IS GENERATED BY "ELLC.FOR"
NAME OF EXTERNAL MASTER DATA FILE READ: LH.MASTER

NUMBER OF SURFACE POINTS USED: 5 (2 EACH, IN THE FRONT
AND IN THE REAR OF THE ANTENNA LOCATION, RESPECTIVELY)

HELICOPTER FUSELAGE STARTS FROM Y = 2.000 TO Y = 50.000
ANTENNA LOCATION (IN THE XZ-PLANE CROSS-SECTION)

= (YS.TINIT) = ( 16.000 , 0.000 )
ANTENNA LOCATION IN RECTANGULAR COORDINATES

= (XS.YS.ZS) = ( 0.000 , 16.000 , 6.093 )

AT YS = 16.000 :
SEMI-MINOR AXIS OF THE BEST-FIT

ELLIPSE IN THE XZ-PLANE = Al = 0.029
SEMI-MAJOR AXIS OF THE BEST-FIT

ELLIPSE IN THE XZ-PLANE = Bl = 0.889
CENTER OF BEST-FIT ELLIPSE = (XC.ZC) = ( 0.000 , 6.166 )

RUN HALTED: STATSTOP = 1
ELLIPSE FIT IN THE XZ-PLANE CANNOT BE GENERATED.
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RUN COMPLETED!
CPU TIME: 3.30 SECONDS

C.8 For Ys = 16.00, T = 0.03

NAME OF THIS FILE: Y16T03 .DAT
THIS DATA FILE .IS GENERATED BY "ELLC.FOR"

NAME OF EXTERNAL MASTER DATA FILE READ: LH.MASTER
NUMBER OF SURFACE POINTS USED: 5 (2 EACH, IN THE FRONT

AND IN THE REAR OF THE ANTENNA LOCATION, RESPECTIVELY)

HELICOPTER FUSELAGE STARTS FROM Y - 2.000 TO Y = 50.000
ANTENNA LOCATION (IN THE XZ-PLANE CROSS-SECTION)

= (YS.TINIT) = ( 16.000 , 0.030 )
ANTENNA LOCATION IN RECTANGULAR COORDINATES

= (XS.YS.ZS) = ( 0.950 , 16.000 , 6.200 )

AT YS = 16.000 :

SEMI-MINOR AXIS OF THE BEST-FIT
ELLIPSE IN THE XZ-PLANE = Al = 0.200

SEMI-MAJOR AXIS OF THE BEST-FIT
ELLIPSE IN THE XZ-PLANE = Bl = 0.969

CENTER OF BEST-FIT ELLIPSE = (XC.ZC) = ( 0.941 , 6.006 )

FUSELAGE CROSS-SECTION SAMPLING:

ANTENNA LOCATION IN YR-COORDINATES
= (YS.RS) =( 16.000 , 0.194 )

TO THE REAR OF THE ANTENNA LOCATION AT SPACING DY = 1.6000

i-th RECTANGULAR YR-COORDINATES
CROSS COORDINATES AT PHIS = 2.59 DEC

SECTION X Y Z Y R

2
3
4

5

6 0.950 24.000 6.200 24.000 0.194
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0.948
0.950
0.950

0.949

17.600
19.200
20.800

22.400

6.171

6.203

6.202

6.182

17.600
19.200
20.800

22.400

0.165
0.197
0.196

0.176



0.945
0.911
0.859
0.801
0.746
0.714
0.712
0.711
0.710
0.708
0.705
0.701
0.695
0.683

25.600
27.200
28 . 800
30.400
32.000
33.600
35.200
36 . 800
38.400
40 . 000
41.600
43.200
44 . 800
46.400

6.088
5.349
4.197
2.908
1.713
1.002
0.945
0.929
0.899
0.859
0.804
0.718
0.583
0.309

25.600
27.200
28 . 800
30.400
32.000
33.600
35.200
36.800
38.400
40 . 000
41.600
43 . 200
44 . 800
46.400

0.081
-0.658
-1.811
-3.101
-4.298
-5.009
-5.066
-5.082
-5.113
-5.152
-5.208
-5.294
-5.429
-5.703

7
8
9
10
11
12
13
14
15
16
17
18
19
20

TO THE FRONT OF THE ANTENNA LOCATION AT SPACING DY = 1.6000

i-th RECTANGULAR YR-COORDINATES
CROSS COORDINATES AT PHIS = 2.59 DEC
SECTION X Y Z Y R

2 0.954 14.400 6.300 14.400 0.294
3
4
5
6
7
8
9 0.652 3.200 -0.379 3.200 -6.392

THIS IS A "CASE 1" PROBLEM
STOP-RUN STATUS = STATSTOP » 8

WARNING: MAXIMUM ITERATIONS IN "ELLYR" MODULE EXCEEDED.
CLOSE-FIT COMPOSITE ELLIPSOID MAY NOT BE GOOD.

PARAMETER VALUES FOR CLOSE-FIT COMPOSITE ELLIPSOID:

AO = 0.208

BO = 1.011
CO = 5.466
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0.941
0.899
0.835
0.766
0.716
0.695

12.800
11.200
9.600
8.000
6.400
4.800

6,015
5.080
3.673
2.137
1.030
0.571

12.800
11.200
9.600
8.000
6.400
4.800

0.008
-0.927
-2.336
-3.873
-4.982
-5.441



DO = 0.250

YSH = 1.404

(XC.YC.ZC) = ( 0.941 , 14.442 , 6.006 )
STOP-RUN STATUS = STATSTOP = 8

RUN COMPLETED!
CPU TIME: 11.44 SECONDS

C.9 For r5 = 2.10, T = 0.90

NAME OF THIS FILE: Y21T90 .DAT
THIS DATA FILE IS GENERATED BY "ELLC.FOR"
NAME OF EXTERNAL MASTER DATA FILE READ: LH.MASTER
NUMBER OF SURFACE POINTS USED: 5 (2 EACH, IN THE FRONT

AND IN THE REAR OF THE ANTENNA LOCATION, RESPECTIVELY)

.HELICOPTER FUSELAGE STARTS FROM Y = 2.000 TO Y = 50.000
ANTENNA LOCATION (IN THE XZ-PLANE CROSS-SECTION)

= (YS.TINIT) = ( 2.100 , 0.900 )
ANTENNA LOCATION IN RECTANGULAR COORDINATES

= (XS.YS.ZS) = ( -0.529 , 2.100 , -0.511 )

AT YS = 2.100 :
SEMI-MINOR AXIS OF THE BEST-FIT

ELLIPSE IN THE XZ-PLANE = Al = 0.162
SEMI-MAJOR AXIS OF THE BEST-FIT

ELLIPSE IN THE XZ-PLANE = Bl = 0.432
CENTER OF BEST-FIT ELLIPSE = (XC.ZC) = ( -0.590 , -0.665 )

RUN HALTED: STATSTOP = 3

ELLIPSE FIT IN THE XZ-PLANE CANNOT BE GENERATED.

RUN COMPLETED!
CPU TIME: 7.37 SECONDS

C.10 For Y8 = 35.00, T = 0.00

NAME OF THIS FILE: Y35TOO .DAT

THIS DATA FILE IS GENERATED BY "ELLC.FOR"
NAME OF EXTERNAL MASTER DATA FILE READ: LH.MASTER
NUMBER OF SURFACE POINTS USED: 5 (2 EACH, IN THE FRONT
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AND IN THE REAR OF THE ANTENNA LOCATION, RESPECTIVELY)

HELICOPTER FUSELAGE STARTS FROM Y = 2.000 TO Y = 50.000
ANTENNA LOCATION (IN THE XZ-PLANE CROSS-SECTION)

= (YS.TINIT) -'( 35.000 , 0.000 )
ANTENNA LOCATION IN RECTANGULAR COORDINATES

= (XS.YS.ZS) = ( 0.000 , 35.000 , 1.132 )

AT YS = 35.000 :
SEMI-MINOR AXIS OF THE BEST-FIT

ELLIPSE IN THE XZ-PLANE = Al = 2.428
SEMI-MAJOR AXIS OF THE BEST-FIT

ELLIPSE IN THE XZ-PLANE = Bl = 1.085
CENTER OF BEST-FIT ELLIPSE = (XC.ZC) = ( 0.000 , -1.262 )

FUSELAGE CROSS-SECTION SAMPLING:

ANTENNA LOCATION IN YR-COORDINATES
= (YS.RS) = ( 35.000 , 2.395 )

TO THE REAR OF THE ANTENNA LOCATION AT SPACING DY = 1.6000

i-th RECTANGULAR YR-COORDINATES
CROSS COORDINATES AT PHIS = 0.00 DEG
SECTION X Y Z .Y R

2
3
4
5
6
7
8
9
10

TO THE FRONT OF THE ANTENNA LOCATION AT SPACING DY = 1.6000

i-th RECTANGULAR YR-COORDINATES
CROSS COORDINATES AT PHIS = 0.00 DEG
SECTION X Y Z Y R
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0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

36.600
38.200
39.800
41.400
43.000
44 . 600
46 . 200
47 . 800
49.400

1.125
1.103
1.080
1.057
1.033
1.008
0.983
0.957
0.932

36.600
38.200
39.800
41.400
43 . 000
44.600
46.200
47 . 800
49 . 400

2.387
2.365
2.343
2.319
2.295
2.270
2.245
2.220
2.194



2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

THIS IS A "CASE 1" PROBLEM
STOP-RUN STATUS = STATSTOP =10

SURFACE POINTS ARE NOT CONVEX IN THE PROPER.DIRECTION.

RUN HALTED: STATSTOP = 10
CLOSE-FIT COMPOSITE ELLIPSOID CANNOT BE GENERATED,

RUN COMPLETED!
CPU TIME: 16.28 SECONDS

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

33.400
31.800
30.200
28.600
27.000
25.400
23.800
22.200
20.600
19.000
17.400
15.800
14.200
12.600
11.000
9.400
7.800
6.200
4.600
3.000

1.239
1.951 .
3.064
4.301
5.383
6.032
6.087
6.077
6.097
6.093
6.064
6.106
6.182
5.844
4.902
3.499
1.979
0.941
0.475

-0.377

33.400
31.800
30.200
28.600
27.000
25.400
23 . 800
22.200
20.600
19.000
17.400
15.800
14.200
12.600
11.000
9.400
7.800
6.200
4.600
3.000

2.501
3.213
4.327
5.564
6.646
7.294
7.349
7.340
7.360
7.356
7.327
7.368
7.445
7.107
6.164
4.761
3.241
2.203
1.737
0.885

C.ll For Ys = 49.00, T = 0.30

NAME OF THIS FILE: ay49t30 .DAT
THIS DATA FILE IS GENERATED BY "ELLC.FOR"
NAME OF EXTERNAL MASTER DATA FILE READ: LH.MASTER
NUMBER OF SURFACE POINTS USED: 5 (2 EACH, IN THE FRONT

AND IN THE REAR OF THE ANTENNA LOCATION, RESPECTIVELY)

HELICOPTER FUSELAGE STARTS FROM Y = 2.000 TO Y = 50.000
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ANTENNA LOCATION (IN THE XZ-PLANE CROSS-SECTION)
= (YS.TINIT) = ( 49.000 , 0.300 )

ANTENNA LOCATION IN RECTANGULAR COORDINATES
= (XS.YS.ZS) = ( 0.521 , 49.000 , -0.574 )

AT YS = 49.000 :
SEMI-MINOR AXIS OF THE BEST-FIT

ELLIPSE IN THE XZ-PLANE = Al = 0.329
SEMI-MAJOR AXIS OF THE BEST-FIT

ELLIPSE IN THE XZ-PLANE = Bl = 0.445
CENTER OF BEST-FIT ELLIPSE = (XC.ZC) = ( 0.097 , -0.564 )

FUSELAGE CROSS-SECTION SAMPLING:

ANTENNA LOCATION IN YR-COORDINATES
= (YS.RS) = ( 49.000 , -0.424 )

ANTENNA LOCATION TOO CLOSE TO AN END POINT OF THE HELICOPTER FUSELAGE.
ADJUSTING ...

TO THE REAR OF THE ANTENNA LOCATION AT SPACING DY = 0.5000

i-th RECTANGULAR YR-COORDINATES
CROSS COORDINATES AT PHIS = 91.40 DEG
SECTION X Y Z Y R

2 0.479 49.500 -0.573 49.500 -0.381
3 0.436 50.000 -0.572 50.000 -0.338

TO THE FRONT OF THE ANTENNA LOCATION AT SPACING DY = 1.6000

i-th RECTANGULAR YR-COORDINATES
CROSS COORDINATES AT PHIS = 91.40 DEG
SECTION X Y Z Y R

2
3
4
5
6
7
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0.653
0.777
0.645
0.685
0.724
0.762

47.400
45 . 800
47 . 500
47.000
46 . 500
46.000

-0.578
-0.581
-0.577
-0.578
-0.579
-0.580

47 . 400
45.800
47.500
47 . 000
46.500
46 . 000

-0.556
-0.680
-0.548
-0.587
-0.626
-0.665



8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

0.799
0.836
0.872
0.906
0.940
0.972
1.004
1.034
1.062

1.089
1.115
1.138
1.160
1.180
1.198
1.213
1.226
1.237
1.245
1.251
1.254
1.251
1.245

45.500
45.000
44.500
44.000

43 . 500
43 . 000
42.500
42 . 000
41.500
41.000
40.500
40.000
39.500
39.000
38 . 500
38 . 000
37.500
37.000
36.500
36.000
35.500
35.000
34.500

-0.581
-0.582
-0.583
-0.584
-0.585
-0.585
-0.586
-0.587
-0.588
-0.588
-0.589
-0.589
-0.590
-0.591
-0.591
-0.591
-0.592
-0.592
-0.592
-0.592
-0.592
-0.592
-0.592

45.500
45.000
44 . 500
44 . 000
43 . 500
43 . 000
42 . 500
42 . 000
41.500
41.000
40.500
40 . 000
39 . 500
39 . 000
38.500
38.000
37.500
37 . 000
36.500
36 . 000
35.500
35.000
34.500

-0.702
-0.739
-0.774

-0 . 809
-0 . 843
-0.875
-0.907
-0.937
-0.965

-0.992
-1.018
-1.041
-1.063
-1.083

-1.101
-1.116
-1.129
-1.140
-1 . 148
-1.154
-1.157
-1.154
-1.148

THIS IS A "CASE 1" PROBLEM
STOP-RUN STATUS = STATSTOP = 17

WARNING: ANTENNA LOCATION IS TOO CLOSE TO AN END POINT
IN THE YR-PLANE. CLOSE-FIT COMPOSITE ELLIPSOID
MAY NOT BE GOOD.

PARAMETER VALUES FOR CLOSE-FIT COMPOSITE ELLIPSOID:

AO = 0.462
BO = 0.624
CO = 7.558
DO = -0.605
YSH = 3.817
(XC.YC.ZC) = ( 0.097 , 43.700 , -0.564 )
STOP-RUN STATUS = STATSTOP = 17
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RUN COMPLETED!

CPU TIME: 16.66 SECONDS

C.12 For Y3 = 16.00, T = 0.00

NAME OF THIS FILE: ay!6tOO .DAT

THIS DATA FILE IS GENERATED BY "ELLC.FOR"

NAME OF EXTERNAL MASTER DATA FILE READ: LH.MASTER

NUMBER OF SURFACE POINTS USED: 5 (2 EACH, IN THE FRONT

AND IN THE REAR OF THE ANTENNA LOCATION, RESPECTIVELY)

HELICOPTER FUSELAGE STARTS FROM Y = 2.000 TO Y = 50.000

ANTENNA LOCATION (IN THE XZ-PLANE CROSS-SECTION)

= (YS.TINIT) = ( 16.000 , 0.000 )

ANTENNA LOCATION IN RECTANGULAR COORDINATES

= (XS.YS.ZS) = ( 0.000 , 16.000 , 6.093 )

AT YS = 16.000 :

SEMI-MINOR AXIS OF THE BEST-FIT

ELLIPSE IN THE XZ-PLANE = Al = 0.029

SEMI-MAJOR AXIS OF THE BEST-FIT

ELLIPSE IN THE XZ-PLANE = Bl = 0.889

CENTER OF BEST-FIT ELLIPSE = (XC.ZC) = ( 0.000 , 6.166 )

RUN HALTED: STATSTOP = 1

ELLIPSE FIT IN THE XZ-PLANE CANNOT BE GENERATED.

RUN COMPLETED!

CPU TIME: 3.55 SECONDS
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