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ABSTRACT

An approach to compute three dimensional flows using two stream functions is pre-

sented. The method generates a boundary fitted grid as part of its solution. Commonly

used two steps for computing the flow fields: (l) boundary fitted grid generation, and

(2) solution of Navier-Stokes equations on the generated grid, are combined into a single

step in the present approach. The method presented can be used to compute directly 3-D

viscous flows, or the potential flow approximation of this method can be used to generate

grid for other algorithms to compute 3-D viscous flows.

The independent variables used are x> a spatial coordinate, and £ and tj, values of

stream functions along two sets of suitably chosen intersecting stream surfaces. The de-

pendent variables used are the streamwise velocity, and two functions that describe the

stream surfaces. Since for a three dimensional flow there is no unique way to define two

sets of intersecting stream surfaces to cover the given flow, in the present study three dif-

ferent types of two sets of intersecting stream surfaces are considered. First is presented

the metric of the (x, £,»?) curvilinear coordinate system associated with each type. Next

equations for the steady state transport of mass, momentum, and energy are presented in

terms of the metric of the (XjC**?) coordinate system. Also included are the inviscid and

the parabolized approximations to the general transport equations.



I. INTRODUCTION

Since the introduction of stream function by Lagrange (l) for two dimensional plane

flows and by Stokes (2) for axisymmetric flows, the use of a stream function to study two

dimensional flows has been extensive. Computation of two-dimensional incompressible po-

tential flows using the stream function as the dependent variable and the space coordinates

as the independent variables is well known and can be found in almost any introductory

fluid mechanics book. The stream function has also been used in the computation of vis-

cous flows. In the recent past, the stream function, along with the vorticity, has been

used extensively to compute two-dimensional incompressible viscous flows. Patankar and

Spalding (3) have used the stream function to construct the cross-stream coordinate for

the computation of two-dimensional compressible 'parabolic' (boundary layer) type flows.

Kwon and Fletcher (4) have used the stream function and the axial velocity as the depen-

dent variables to compute two-dimensional incompressible separated channel flow. These

are a few examples of the use of the stream function for the computation of viscous flows.

More recently, streamlines of the incompressible potential flow corresponding to a given

geometry have been used to construct boundary-fitted grid systems for the computation

of viscous flows. The streamlines needed for the grid generation have been calculated by

various methods. For example, Ghia et al. (5) generated the grid by the use of conformal

mapping; Meyder (6), and Ferrel and Adamczyk (7), by solving the potential equation. A

survey of the use of streamlines to generate a grid is included in the review article on grid

generation by Thompson et al. (8).

The corresponding development for three dimensional flows, that is the use of two

stream functions to study three dimensional flows, so far has been limited. Several au-

thors in the past have introduced two stream function to describe three dimensional flows.

Among the pioneering works are the works of Clebsch (9), Prasil (10), Maeder and Wood

(11), and Yih (12). For the two dimensional plane flows it follows from the continuity

equation
dul

that uldx2 - u2dxl is an exact differential of a function of x1 and z2, calling this function



, we have

ax2 , and u2 = — (1.2)

This is the approach Lagrange (l) used to introduce the stream function for two dimen-

sional plane flows; and, later, by a similar approach Stokes (2) introduced the stream

function for axisymmetric flows. One can also introduce the stream function for two di-

mensional flows by the following, slightly different, approach. A general solution of the

continuity equation (1.1) is given by an arbitrary, as yet undetermined, function \P such

that u1 and u2 are related to \& by (1.2). This approach to introduce the stream function

for two dimensional flows can be immediatly extended to three dimensional flows. The

extension is based on a theorem by Jacobi (quoted in Clebsch),which for our purposes can

be stated as follows: The equation,

du1 du2 dun

has a general solution given by (ra-1) arbitrary, as yet undetermined, functions

(1.3)

(1.4)

with u* given by its cofactor in the matrix

f u1

a*1 u
a*1 u"

a»l

a*3 a*2

a*

(1.5)

Following this line of approach Clebsch (9) introduced stream functions for three dimen-

sional flows. We denote the two arbitrary functions for the case of three dimensional flows

by 5 and H (instead of #* and ^2) and obtain from (1.5) for the velocity vector v

v = grad E x grad H (1.6)

From (1.6) we note that v is normal to gradE, thus the surface defined by 5 equal to a

constant contains streamlines and E is appropriately called a stream function. We will



denote by £ the value of the function 5 along a given stream surface. With a similar

discussion of H, we .write our stream function equations as,

£ = E(z,y,2); r] = K(x,y,z} (1.7a,b)

In Eqs.(1.7) the space coordinates are denoted by (x,y,z) to establish continuity with

what follows latter. Another approach to introduce stream functions for three dimensional

flows, is presented by Yih (12). Following Yih we integrate the equations of a stream line

dx1 dx2 dx3 , .
^r = ̂ r = ̂ 3- C1-8)

and obtain (1.7) as the integral surfaces of (1.8). Relation (1.6) is then obtained from the

argument that since 5 and H describe stream surfaces, their gradients are normal to the

velocity vector. The preceding discussion, for the sake of simplicity, is given for the case

of incompressible flows. The case of compressible flows follows similarly with ul in the

preceding discussion replaced by pu1.

The present work takes as its starting point the existence of two stream functions that

will describe three dimensional steady flows. From that point on we develop techniques

for computing three dimensional flows using two stream functions. The stream surfaces in

the present work are defined parametrically by equations such as

x = X> y — y(x> £>»?)> and z = Z(x,£,r)), (1.9a, 6,c)

For a given value of x Eqs. (l.7a,b) and Eqs. (1.9b,c) are inverse relations of each other. In

the present work, an important compliment to the use of two stream functions to describe

three dimensional flows is the choice of the independent and the dependent variables used to

describe the flow. As discussed in detail in the next section, the independent variables used

to describe the flow are x> £> and 77; and the the dependent variables, C7, the streamwise

velocity, and Y, and Z. With these variables we studied in Ref. 13 two dimensional (plane

and axisymmetric) parabolized viscous flows, and in Ref. 14 parabolized three dimensional

flows through straight rectangular ducts. For such simple flows equations for U and Y,

for two dimensional flows, and for U, Y and Z for three dimensional flows, can be easily



obtained by partitioning the flow into a number of appropriately defined stream tubes, and

then applying conservation principles directly to the flow through the individual stream

tubes. In Refs. 15 and 16 we studied two and three dimensional potential flows in term

of these variables. In these studies equations for Y and Z were obtained by projecting the

streamline motion on to the x-y and x-z planes. In Ref. 16 equations for Y and Z were also

derived for the three dimensional potential flows by setting, with the help of differential

geometry, the vorticity around a closed contour drawn on a stream surface equal to zero.

In the present paper we present, with the help of tensor calculus, a general theory for

studying three dimensional viscous flows using the aforementioned variables. The present

work is restricted to steady flows.



II. INDEPENDENT AND DEPENDENT VARIABLES

In this section we introduce the independent and the dependent variables. The inde-

pendent variables are x? £, and rj. Variable x is a spatial coordinate along the main flow

direction. Variables £ and 77 are the values of stream functions along suitably chosen two

sets of intersecting stream surfaces. A stream surface along which the stream function

£ is constant is referred to as a £=const. surface or as a x~*7 surface. Similar nomen-

clature is used for stream surfaces along which rj is constant. As discussed in the earlier

studies (as, for example, in Maeder and Wood (11), and Yih (12)), in general, for three

dimensional flows there is no unique way to define two sets of interacting stream surfaces.

For a given flow there are numerous choices for the E and H stream surfaces that will

cover the given flow. However, to take advantage of the (x, £, rj) choice of the independent

variables the general shapes of the H and H stream surfaces are to be selected to facilitate

the imposition of the required boundary conditions. In the present, paper we present three

different combinations of two basic types of E and H stream surfaces that should cover

many flows of practical interest. The two basic types of stream surfaces considered are:

plane stream surfaces and cylinderical stream surfaces. The plane stream surfaces are not

necessarily flat. The boundaries of plane stream surfaces intersect the flow boundaries.

The cylinderical stream surfaces are not necessarily straight circular cylinders. The cylin-

derical stream surfaces are nested within each other. From these two basic types of stream

surfaces we form three different combinations, each consisting of two sets of intersecting

stream surfaces, to model three different types of flows. These three different types of flows

are named: (i) Plane Flows, (ii) Axial Flows, and (iii) Circulating Flows. 'Plane' flows are

modeled with one set of f=constant plane stream surfaces and one set of ?7=constant plane

stream surfaces as shown in Fig.la. This type of modeling is proposed for studying flows

that are bounded by flat boundaries. 'Axial' flows are modeled with one set of £=constant

cylinderical stream surfaces and one set of r/=constant plane stream surfaces such that

one edge of all the r/=constant stream surfaces meet in the axis of the flow as shown in

Fig.lb. This type of modeling is proposed for studying flows that are bounded by curved

boundaries. 'Circulating' flows are modeled with one set of f ̂ constant cylinderical



Fig. la. General shape of a £—const, stream surface intersecting a ??—const, stream surface for

Plane Flows.

7



Fig. Ib. General shape of a £=const. stream surface intersecting a ?7=const. stream surface for

Axial Flows.
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stream surfaces and one set of 77=constant plane stream surfaces as shown in Fig.lc. The

intersection of the £=constant stream surfaces and r;=constant stream surfaces are closed

curves. This type of modeling is proposed for the study of circulating flows.

The stream surfaces are denned parametrically by the following equations:

Plane Flows: x = x, y = Y(x,t,l), and z = Z(X,t,r)), (2.1a)

Axial Flows: x = X, r = R(X,t,ri), and 0 = Q(x,t,rj), (2.16)

Circulating Flows: x = X(x,£,r]), r = £(x, £,*/), and 0 = x (2.1c)

In Eqs.(2.1) x, y, and z are the rectangular Cartesian coordinates, and x, r, and 6 are polar

cylinderical coordinates. For a given value of r/ Eqs.(2.1) define x-£ stream surfaces with

X and £ as the parameters. Similarly, for a given value of £ these equations parametrically

define x-*7 stream surfaces with x and TJ as the parameters.

Let U(x,£,rj) represent the streamwise velocity. The dependent variables used to

describe the flow are:

Plane Flows: U, Y, Z (2.2a)

Axial Flows: U, R, Q (2.26)

Circulating Flows: U, X, R (2.2c)

Let gx and g£ represent the coordinate vectors of the x-£ stream surfaces, and gx

and g,, the coordinate vectors of the x-*7 stream surfaces (these vectors are calculated in

the next section). Since the coordinate vector gx is common to both the x~£ and the x-*7

stream surfaces, it is tangent to the stream line defined by the intersection of the x-£ and

the x-»7 stream surfaces. Since U is the streamwise velocity, we note, for later use, that U

is along gx.



Fig. Ic. General shape of a £=const. stream surface intersecting a 77=const. stream surface for

Circulating Flows.
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III. METRICS OF THE STREAMWISE COORDINATE SYSTEMS

The independent variables x> £> and r) form a streamwise curvilinear coordinate system.

It is called streamwise, since, by virtue of the \ coordinate lines it is aligned with the

streamlines. In this section we present the metric of the streamwise curvilinear coordinate

system associated with each of the three different types of flows introduced in the previous

section.

We start with a brief summary of the summation and the tensor notation used in this

paper. Latin letters i, j, k, and m are used for free and dummy indices. Whenever the

same Latin letter i, j, k, or m appears in a product, once as a subscript and once as a

superscript, it is understood that this means a sum over all terms; thus, for example,

3

Indices x> £5 and rj represent definite directions; summation is never intended on index x>

£, or 77 no matter how they appear. A subscript or a superscript proceeded by a comma

denotes ordinary partial derivative. Thus, for example,

We now return to the calculation of metrics of the streamwise curvilinear coordinate

systems. Covariant base vectors g» of the (Xsf j*? ) coordinate system are calculated from

the transformation formula,

« - ||fe (3.3)

where x* represent the coordinate lines of the (x, £, rj) system and x? are the coordinate

lines of the (x, y, z) system for the Plane Flows, and the coordinate lines of the (x, r, 0)

coordinate system for the Axial and the Circulating Flows. In Eq.(3.3) gy are the base

vectors of the x3 system and are for the (x,y,z) system

gx = (1,0,0); gy = (0,1,0); g* = (0,0,1) (3.4)

and for the (x, r, 0) system

gl = (1, 0, 0) ; gr = (0, co50, sine) ; g* = (0, -RsinQ, RcosQ) (3.5)

11



Carrying out the transformation (3.3), as shown in Appendix A.I, we obtain for the co-

variant base vectors of the Plane Flow (x, f, rj) coordinate system

gx = (i,y,x,zx); g£ = (o,y>0^); g, = (o,y>r,,^) (s.e)

All these three covariant base vectors are expressed by the single equation,

&i = (6ix>Y,i,Z,i) (3-7)

where the Kronecker delta, 6ix, is equal to one if i = x or zero otherwise. The covariant

components of the metric tensor, grt-y, defined by 0,-y = g,.gy (where the dot between the

vectors, indicates sealer product) are given by:

19ij = gt.g; = 6ix6ix + y,.-y,y + ZtiZj \ (3.8)

(Another derivation of 0,-y is given in Appendix A.3)

The determinant, g, of the matrix of the metric coefficients is

9 = (g*.g$ x g,,)2 = (y,€ z,, - y,, z,€)
a. (3.9)

where x denotes the cross product. Since ̂ fg appears often later in the transport equations,

we denote ^/g by D, thus

(3.10)

To facilitate the representation of the contravariant components of the metric tensor

we introduce Y'*, the contravariant components of the gradient of Y, (also shown in the

equation are Yj, the covariant components of the gradient of y),

gradY = Y'gi = Y'*gx + Y'*gt + Y'"gr,

(3.11)

Gradient of Z is expressed similarly. Relations between Y'\ Yfi, Z'* and Zti are given in

Appendix A.2. The contravariant base vectors defined by,

x

D

12



are expressed in terms of Y>f and Z1' and are,

g'' = ( , Y ••' , Z'<) where (3.12)

The Kronecker delta, 6^, is equal to one if t

components of the metric tensor, gtj, are

-Z,xZ'i (3.13)

x or zero otherwise. The contravariant

913 = (3.14)

Expressions for the contravariant base vectors and the contravariant components of the

metric tensor in terms of Y^ and Zti are given in Appendix A.2.

Corresponding results for the Axial and Circulating flows are:

AXIAL FLOWS:

g, = (6ix , R^cosQ — Q^RsinQ , RjsinQ + Q^RcosQ)

D = e,, -

g« = - ®'*Rsin® , R'*sinQ + Q^RcosQ) where

'X "X

ij = gist + R'R'3' + fl20'*

CIRCULATING FLOWS:

— 6iXRsinQ, R^sinQ + 6ixRcosQ)

R,iR,3

g* = (X1*, R'cosQ - g^RsinQ , R'sinQ + g^RcosQ) where

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

13



= X'X'3 + R'R'3' (3.26)

Definitions of the Christoffel symbols F*- and F^-jt, used in this study are,

r K «™fWT^
ij =9 i ijm ,

k,i — 9ij,k

(3.27a)

(3.276)

and, in particular

14



IV. TRANSPORT EQUATIONS

Equations for the transport of mass, momentum, and energy in a general curvilinear

coordinate system have been derived previously and are given in books and review articles,

among others, by Aris(17), Flugge(18), and Serrin(l9). In this section we adapt these

equations to the streamwise curvilinear coordinate system. The transport equations are

presented in terms of the metric of a streamwise curvilinear coordinate system; and, thus,

are equally valid for all the three curvilinear coordinate systems introduced in the last

section.

As discussed in section II, the velocity vector at any point is directed along gx. Thus,

the contravariant velocity components u^ and un are zero everywhere. To calculate ux we

use the relation

U2 = u*' u> gij = u* u* gxx . (4.1)

Thus, u*, the contravariant velocity components are:

; « = 0; u * = 0 .

The covariant velocity components, ut-, are calculated from

= 9i] u1 = gix u
x

and are:

ux =— _£XX_77. = J*t_u. Un = ^L.V_

(4.2)

(4.3a)

(4.36)

The contravariant velocity components, uj , in the xj coordinate system can now be calcu-

lated from

tf = **„* = fiux (4.4a)
ox1 dx

and the physical velocity components, u(j), in the & coordinate system from

u(j) — x/^yyuj (no sum over j] (4.46)

where §jj, the covariant components of the metric tensor of the r7 coordinate system, are

for the (x,y, z) system

1; 9zz = l (4.4c)

15



and for the (x, r, 0} system

9xx = I', 9rr = I? 908 = r2 = -R2 (4.4d)

From (4.4a,b,c,d) we obtain the physical velocity components for the (see Appendix B.I):

Plane Flows: u(x) =

Axial Flows: u(x) =

IT
\ u(y) = - * - ; and fi(*) =

\f9xx

', u(r) = ^; and u(0) =

(4.4e)

(4.4/)

TTV UR RU
Circulating Flows: u(x) = - ^; u(r) = - ^; and u(0) = - (4.40)

The expressions for the covariant derivatives u* |y and u,- |y in terms of the Christoffel

symbols used latter are (see Appendix B.2):

« = u

u»y = u»,y ~

(4.56)

(4.5c)

In Eqs.(4.5) we have evaluated the sums over k using the fact that ux is the only nonzero

contravariant velocity component.

We next introduce expressions for the vorticity u,

(jj = f. (4.6)

where e*J'*, the permutation tensor, is equal to +1/D , —1/D , or 0 depending on whether

i,j,k is a cyclic, an anticyclic, or an acyclic sequence. From (4.6) we obtain for the

individual components (see Appendix B.3),

= (ux,n ~ UT,,X)/D

(4.7a)

(4.76)

(4.7c)

16



We are now ready to develop the transport equations for a streamwise curvilinear

coordinate system

CONTINUITY EQUATION:
dp
-£ + div(pv)=0, (4.8)

where p is density. In streamwise computation of flow fields, ux is the only non-zero

contravariant velocity component and the preceding equation becomes,

) = 0 . (4.9)

For steady flow ptt — 0, and we obtain on integrating the remaining part of (4.9),

Dpux = a constant along x • (

We select the numerical values of our stream functions such that the constant of integration

is unity. The steady state continuity equation thus becomes,

and with the help of (4.2),

U = ̂  . (4.116)
pD

Relationship of Eqs.(4.11b) and (4.4e) of this section with Eq.(1.6) of the introduction

section is discussed in Appendix C.

MOMENTUM EQUATION:

D\ d\ , „

where F is the force (surface and body) per unit volume. Once again, since ux is the only

non-zero contravariant velocity component, the covariant and the contravariant momentum

equations become, respectively,

= Fig*. (4.13a)

17



For steady flow Eqs.(4.13) become,

Covariant: puxu,-|x = f,-

Contravariant: puxu*\x = Ft

Development of the covariant components of the momentum equation:

With the help of (4.5b) we rewrite Eq.(4.14a) as

pu*(u*x gxi + u* rxxi) = Fi .

With the help of continuity equation (4.11a), (4.15) becomes

(4.14a)

(4.146)

(4.15)

Expressing Txxi via (3.27c) we obtain after some algebra,

i,x ~ 9Xi(pD},x - (4.17)

Another variation of momentum equation (4-14a) is obtained by using the expression for

Ui\ j given hi (4.5c),

= Fi. (4.18)

Using (3.27d) to express F,-xx and that

ux,i = i + - (4.19)

we obtain from (4.18),

pux(ui>x - ux>i + y/9xxU,i) = Fi. (4.20)

With the help of the continuity equation and some rearrangement we obtain from (4.20)

pUU i = Fi - —(u. v - uy .•). (4.21a)
, £)V ,*

Writing out the individual components, and using the expressions for u given in (4.7), we

have,

(4.216, c,d)pUU,x = Fx, pUU,t =Ft-u\

18



Development of the contravariant components of the momentum equation:

With the help of (4.5a) we rewrite Eq.(4.14b) as

(4.22)

With the help of continuity equation (4.22) becomes

(4.23a, 6, c)

ENERGY EQUATION:

d(pe)
dt

+ div(pev) = —divq + dtv(T.v) + pv.b, (4.24)

where e is the energy (sum of internal, kinetic, and potential) per unit mass, q the heat

flux, T the stress tensor, and b the body force per unit mass. Once again using the fact

that ux is the only non-zero velocity component, we obtain from (4.24) for steady flow,

(4.25)

CALCULATION OF Ft:

We separate the pressure, the viscous, and the body force contributions to F* and write

fi = -P,i + fi + pbi

where 6t- is the body force, and the viscous contribution,

fk = 9ki r = 9ki r%- = gki flA (J3r*0 + ̂ "TjJ
L J

with the viscous stress tensor r'J given by

2 mi »y

The stress tensor TIJ is given by

(4.26)

(4.27)

(4.28)

(4.29)

19



V. POTENTIAL FLOW

In this section we discuss the inviscid approximation to the transport equations pre-

sented in the preceding section. The main purpose of this discussion is to illustrate the

procedure for obtaining transport equations for a particular type of flow (for example,

Plane, Axial, or Circulating) from the general transport equations.

For inviscid flow and neglecting body forces,

Fi = -P,i, (S.I)

and the momentum equation (4.21b) becomes,

pUU,x = -PtX. (5.2)

We further assume that the flow is isentropic, and thus (see Appendix D.I),

P \7 - ipy v '
where 7 is the ratio of specific heats. With the help of (5.3) we integrate (5.2) and obtain,

——I = const. (5.4)
2 7 — 1 p

With the help of the continuity equation (4.lib), we rewrite (5.4) as,

ffw *Y P

2p*D2 + 7-1 ~p = C°nSt' ^

From (5.3) and (5.5) we obtain,

From here on subscript i stands only for £ and TJ. From Eqs.(4.17), (5.1), and (5.6) we

obtain,

PD9xi,x ~ 9xi(pD),x - -pDgXXti = P
3D3(gxx/2pzD2)ii (5.7)

With a little algebra (5.7) can be rewritten as (see Appendix D.2),

(5-8)

20



Equation (5.8) can also be obtained by setting the vorticity w* (see Eqs. 4.7b and 4.7c)

equal to zero and using the continuity equation (4.11a) along with Eq (4.3a) to express u,-,

the covariant components of the velocity.

To separate the effects of compressibility we rewrite (5.7) as,

9xi,XD ~ 9XiD,X ~ 9XX,iD + 9xxD,i = ~ (9xiP,X ~ 9XxP,<) (5'9)

For incompressible flows the right hand side of equation (5.9) vanishes and we have,

9xi,xD ~

Equation (5.8) is our basic equation to describe isentropic flows. Upon substitution of

appropriate expressions for gxi, gxx, and D from section III for a given type of flow, Eq.

(5.8) will yield the streamwise isentropic flow equations for that particular flow. In the

following we illustrate the procedure for obtaining isentropic flow equations for a particular

type of flow from the general equation (5.8).

Incompressible Plane Flows: Upon substituting derivatives of 0,-y and D from Eqs. (3. 9)

and (3.10) into (5.10) we get the following equation for the x-£ stream surfaces,

= 0, (S.lla)

and the following equation for the x-r? stream surfaces,

D(YtXXY>r, + Z>xxZir, - yx,yx - Z>XT)Z>X) - gxr,(Y^Ztri + YtZ,xr, - Y>xr,Z,t - Y>r,ZiX^)

+gxx(Ytr,Zir, + YtZ,^ - YtTIT,Z,t - Yir,Z^) = 0, (5.116)

where D, gx£, and gxn are given by Eqs. (3.9) and (3.10). We have two equations for two

unknowns Y and Z. These equations were solved numerically in Ref. 16 for (i) flow through

a rectangular diffuser with an offset and a change in the aspect ratio, and (ii) flow through

a duct whose cross-section changes from a square to a rhombus. For a two-dimensional

flow in the x~£ plane

Y>n = Z,x = Z,t = Q, and Z, n = 1
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and Eq.(5.11a) reduces to,

Y,\YXX - 2Y>xY,tY,xti + (i + yj)y,« = o (5.12)

This equation was solved for flow past an infinite cylinder placed symmetrically between

two parallel plates in Ref. 15.

Equations for axial and circulating flows are obtained in a similar fashion. Solution

of the axial flow equations for flow through superelliptic transitional ducts is given in a

forthcoming article. We next present one special case each of axial and circulating flow.

AXIAL FLOW SPECIAL CASE: For axisymmetric flow in *-£,

Q,t = Q,x = R,r, = 0, and 0>r, = l (5.13o)

and we have from Eqs.(3.14) and (3.15)

gxx = l + R*x, gxt=R,xR,t, and D = RR,t (5.136)

With the help of Eqs.(5.13), Eq.(5.9) becomes,

(5.14)

Equation (5.14) can be used to study isentropic flow through nozzles.

CIRCULATING FLOW SPECIAL CASE: For two-dimensional circulating flows in

x-R
X,x = X,t = R > r l =0, and X,n = l (5.15a)

and we have from Eqs.(3.22) and (3.23)

gxx = R* + E2
X, gX£ = R,xR,t> and D = -RR,t (5.156)

With the help of Eqs.(5.15), Eq.(5.10) becomes,

R^R,XX - 2R,xR,tR,xt + (R* + R*x)R,x - RR\ = o (5.16)

We note that the free line vortex given by

R = const, e* (5.17)
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is a solution of Eq.(5.16). To see the relation between (5.17) and the more familiar form

of the line vortex equation, we obtain from Eqs.(4.4g) for the solution given in (5.17)

u(x) = 0, u(r) = 0, and u(0) = U (5.18)

For compressible flows £ and rj are related to the mass flow rate with the SI units of \/kgjs.

For flows with constant density we rewrite pD for the circulating flow as

pD =

For such flows we absorb ^fp into the definitins of £ and r/, which now become related to

the volume flow rate with the SI units of >/m3/s. Thus, for flows with constant density

the continuity equation (4.11) becomes in terms of the newly defined £ and rj,

U = p (5.20)

By the use of (5-15b) and (5-17) we obtain from (5.20)

tf=V^i = -- R- = -- l— (5.21)
D RR^ const.R

From (5.18) and (5.21) we obtain the familiar form of the line vortex equation.
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VI. PARABOLIZED FLOWS

In this section we present an approximation to the viscous forces which for two dimen-

sional flows reduces to the well known boundary layer approximation. For lack of a better

name we have called it parabolized flow approximation.

We assume that all contributions to the viscous forces that arise from the field variation

of the curvature of the coordinate system (that is, from the terms involving Christoffel

symbols) are negligible. Thus, (a)

' '

and, (b) u'|y are equal to ujy which have only one non zero component u*. Approximation

(b) leads to that

= Tnx = uxn , r« = (-2/3) W"u* , r^ = (-2/3) W™tt* , (6.2)

and that T^n is negligible. We also assume that the contributions of the cross-stream

velocity derivative terms u^ and u^ to the stress dominate over the contribution of the

ux
x terms. Thus, the only non-negligible terms of the stress tensor we are left with are,

0**u*,) (6.3o)

+ 0€*u* ) (6.36)

Xf + g^u*,) (6.3c)

We further assume that in Eq.(6.1) the contribution of the term involving the derivative

with respect to x is negligible, thus

From (6.3) and (6.4) we have that

+ 5^ [^(9«u* +,•>",.*)] (6.5)
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and that /^ and f* are negligible. For the covariant component of the viscous force we

now have

fi = 9ijf j=9ixfx , (6.60)

which leads to

. (6.66, c td)

We conclude this section by deriving the viscous force term used in the boundary layer

approximation for two dimensional flows from the viscous force approximation given by

Eq. (6.5). From equation (6.5) we obtain for two dimensional plane flows in (x,y) with

X = x, £ = y, gyy = 1, D = 1, and the physical velocity along x, u = ^/gXx «z = uz>

/z = — (/z—- ) , (6.7a)

and for axisymmetric flows in (x, r) with x = xi £ = r> grr = 1, D = r, and the physical

velocity along x, u = ^/</zz «
z = «z,
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VII. CONCLUDING REMARKS

A theory to compute three-dimensional flows using two stream functions is presented.

The values of two stream functions along with a spatial coordinate are used as independent

variables. Since the value of a stream function is constant along the solid boundaries,

this choice of variables makes it easy to satisfy the boundary conditions. The dependent

variables employed are the streamwise velocity and two functions that define the stream

surfaces. Thus, the method generates a boundary fitted grid that is aligned with the flow

streamlines as part of its solution.

For three-dimensional flows so far there is no general theory to define two sets of

intersecting stream surfaces to cover a given flow. In the present work we have presented

three different combinations, each consisting of two sets of intersecting stream surfaces,

which should cover many flows of practical interest. However, a general theory regarding

the selection of two sets of intersecting stream surfaces that will cover a given flow for the

most efficient computation of the flow is needed.
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APPENDIX A

A.I In this appendix we derive the covariant base vectors of the streamwise curvilinear

coordinate system, x*, for the three different types of flows introduced in section II.

PLANE FLOWS:

Base vectors, g,-, of the cartesian coordinate system xl — (x, y, z)

g* = (1,0,0); gy = (0,1,0); g* = (0,0,1) (A.I.I)

are transformed by
dxj'

g. = a?fc U-1.2)

to obtain the base vectors, g,-, of the x* = (x, £,*)) coordinate system. From Eqs. (A. 1.1)

and (A. 1.2) we obtain,

Now using the transformation equations

, r ) , and * =

we obtain Eqs. (3.6) from Eqs.(A.l.S).

AXIAL FLOWS:

Base vectors, g,-, of the polar cylindrical coordinate system x* = (x,r, 0)

gx = (1, 0, 0) ; gr = (0, cos0, sine) ; g* = (0, -r sinO, r cos8) (A.1.5)

are transformed by Eq.(A.1.2) to obtain the base vectors, g», of the x* = (x, £, r?) coordinate

system,

. d x d r n 80 . 0 dr . dO ... , . .
= ( — r , — -cos6 -- -r sinO , —-^sinv — —^rcosO). (A.l.b)

» 1 » l * J v y

Now using the transformation equations
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we obtain Eqs.(3.15) from Eqs.(A.l.G).

CIRCULATING FLOWS:

Base vectors, g,, of the polar cylindrical coordinate system z* = (x, r, 6} given in (A. 1.5)

are transformed by Eq.(A.1.2) to obtain the base vectors, g,-, of the x* = (x, £, r?) coordinate

system, once again, given by Eq.(A.1.6). Now using the transformation equations

,ri), and 6 = X (A1.8)

we obtain Eqs.(3.21) from Eqs.(A.1.6).

A. 2 In this appendix we present the contravariant base vectors and the contravariant

components of the the metric tensor in terms Yjt- and Z,,-.

PLANE FLOWS:

= (1,0,0)

* = Sn x SX = (Yr,Z,x - YtXZ,n , Z,n , -Y>r>) (A.2.la tb,e)
D D v '

=

D D

The contravariant components of the metric tensor, gtj\ defined by g^ = g'.gj, are:

g*x = 1 (A.2.2a)

gxt = gtx = (Y>TI Z,x - Y>x Z>r,)/D (A.2.26)

gxr, = gnx = (YX Zt _ Y { Zi

Y., + Z.( Z,n)/D* (A.2.2e)

Relations between the covariant and the contravariant components of gradY and gradZ

are obtained from

Z'f = gVZj, (A.2.2g)
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with g*> given in (A2.2), and are,

(-A.2.2A)

(4.2.20

r-'Y, = 2-%. = 1 and F'

AXIAL FLOWS:

g*= (1,0,0)

g" = ~

(A2.3c, b, c)

9™ = 1 (A.2Aa)

9** = 9<x = R(Rin &>x - R>x ®>n)/D (A2Ab]

g™ = 9"* = R(R,X e,t - Rt QtX)/D (A2.4c)

(A,2Ad]

R'{Rti = R'Q'Q^ = l and R'RQ, = RQ*Ri = Q (A.2Ai}
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CIRCULATING FLOWS:

g* = (0, -sinQ,cosQ)/R

S£ = -^[RR,^ (R,nx,x ~ R,xx^nQ - X>r,RcosQ, (X>r,R>x - X>xRiT,)cosQ - RX>T,sinQ}

g" = — [RR,t, (R,xXtt - R^X>x)sinQ + X^RcosQ, (XtXR,t - X^R>x)cosQ + X^RsinQ]

(A.2.5a,b,c)

X>x R^/RD (A.2.66)

(A.2.QC)

*} (A.2.6d)

R,r,)/D2} (A.2.6e)

*\ (A.2.6/)

X>* = 0, X'* = RR,r,/D, X'" = -RR,t/D (A.2.6g)

R>* = 0, R* = -RXin/D, R'" = RXt^D (A.2.6H)

X^Xti = R'Rj = 1 and X''Rti = R'fXti = 0 (A.2.6i)

A. 3 In this appendix we calculate <7,y from the transformation formula,

dxm dxn
 A ,A n ,,

where gmn are the co-variant coefficients of the metric tensor of the (x,y>z) coordinate

system for the Plane flows, and of the (x, r, 8} cordinate system for the Axial and the
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Circulating flows. For all three flows (Plane, Axial, and Circulating), gmn = 0 if m ^ n

and (A. 3.1) reduces to,

1 * * 3 3

(A.3.2)
- vrJ ox* ax* ox* axJ dx*

PLANE FLOWS:

By the use of following transformation equations and ga

AXIAL FLOWS:

By the use of following transformation equations and </,-,•

9xx = 1; 9yy = 1; 9zz = 1 (4.4c)

we obtain from (A. 3. 2),

(3.8)

x = X, r = R(X ,t ,rj), Q = 0(x,C,r?), (2.16)

9xx = l; grr = l; gge = r* = R* (4Ad)

we obtain from (A. 3.2),

CIRCULATING FLOWS:

By the use of following transformation equations and

r2 = .R2 (4.4d)

we obtain from (A. 3. 2),

^ = X,,-Xiy + JZ..-J2,,- + 6ix6ixR* (3.22)
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APPENDIX B

B.I Equations (4.4e)-(4.4g) are obtained from Eqs. (2.1), (4.4a), (4.4b) and (4.4c).

Recall

dx> ,.-f -\ rz— »v /^— UJ' i
U(J) = \lQjj U3 = V&JJ -fi-iu =

and

The details are:

PLANE FLOWS:

(no sum

^ __ "1 A "1 • A ^^ 1yxx — -••? f»j/y — ^* yzz — J-

= 1; </rr = 1; gefl = r2 =

l.4a, 6)

(4.4e)

AXIAL FLOWS:

CIRCULATING FLOWS:

ufol - ^/5——ux -"V*; — V 9xx a. " ~

«(y) = V%v:Ertt* = -^

,x-^x£

U

»/ \ /* y
tt(r) = VSrr^-«X =

'gee-a-u*dx

V^xx
R0,XC7

Vdxx

u(x] = V9xX^x =
x,Ku

«(»*) = V5rr-H-tZX = -^

= V^WaT" =

RU
aX v^xx

(B.1.2a,6,c)

(5.1.30,6, c)
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B.2 In this appendix we derive the expressions for the covariant derivatives given in

section IV. We start with the expression for «'|y, the i-contravariant component of the

j-detivative of v (see Ref. 18 Eq.(5.11)),

u'|y = u';y + u*ryfc (B.2.1)

This is Eq.(4.5a). On multiplying (B.2.1) with 0,m and using

U*|y0tm *= (ttVtm)lj = «m|y,

«jy<7tm = Ujgkm and

ry'fc0,m = Tyjfcm = Tfcym (5.2.2a, 6, c)

we obtain

Um I/ = «*,' 9km + U* Tfcym (B.2.3)

Equation (B.2.3) is Eq.(4.5b) with the free index t replaced by m. To obtain Eq.(4.5c) we

start with Eq.(5.13) of Ref.18,

ut-ly = ui,y-ufc r*y (fl.2.3)

On multiplying the last term on the right hand side of (B.2.4) with gkigkl = 1, and then

using gkl to raise the index on U* and using gki to lower the index on F*y we obtain

Eq.(4.5c).

B.3 From

u>fc = ««*uy|i (4.6)

we obtain for w",

Similarily we obtain,

we = («xln-«-i lx)/J> (5-3.1*)

(B.3.1c)

Now,
u»ly - «y|t = «»,y - «fcr,-yfc - uj>t + u*Tyt-fc = U,-,y - uy,t- (B.3.2)

where we have used rt-yfc = Tjik. Equations (B.3.1) and (B.3.2) lead to Eqs. (4.7)
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APPENDIX C

From Eqs.(4.11b) and (4.4e) we obtain

pu(x) = i, pu(y) = ̂ , pu(*) = ̂ . (C.I)

For a fixed value of £, say £o> equations

o,ri) t (C.2)

describe the stream surface 5. The gradient of 5 is given by the cross product of the base

vectors of 5, gx and gn, thus,

gradE = (l,Y>x,Zx) x (l,Ya,Zn) (C.3)

Similarly we have,

gradE = (l,y,€,Ze) x (l,y,x,^x) (C.4)

From(C.l),(C.3), and(C.4) we obtain,

pv = gradE x

Equation(C.5) is the compressible version of (1.6).
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APPENDIX D

D.I We start with the well known thermodynamic relation

Tds = dh- dp/p (D.I.I)

where s is entropy and h is enthalpy. For isentropic flow of an ideal gas,

ds = 0, and dh = d(cpT) = d fcp-^ J = d (~^~ ) • (D.1.2)

Upon substituting relations from (D.1.2) into (D.I.I) we obtain (5.3).

D.2 Upon dividing (5.7) by p2D2 we obtain, respectively, for the first, second, and

third term on the L.H.S. and for the term on the R.H.S.,

•**. (0.2.1)

• <D-2-2'

2\ pD '

^(W^2), = ̂ **,' + ̂ xx ( ̂  ) • (^'2'4)

Upon combining (D.2.1) with (D.2.2) we obtain the first term on L.H.S. of (5.8), and upon

combining (D.2.3) and (D.2.4) we obtain the second term on the L.H.S. of (5.8).
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