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Abstract

We describe a natural particle physics basis for late-time phase transitions in the Uni-

verse. Such a transition can seed the formation of large scale structure while leaving a

minimal imprint upon the microwave background anisotropy. The key ingredient is an

ultra-light pseudo-Nambu-Goldstone boson with an astronomically large (O(kpc-Mpc))

Compton wavelength. We analyze the cosmological signatures of and constraints upon

a wide class of scenarios which do not involve domain walls. In addition to seeding

structure, coherent ultra-light bosons may also provide unclustered dark matter in a

spatially flat universe, fi^, — 1.
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I. Introduction

In a few remarkable instances, modern particle physics theory has predicted the ex-

istence of new phenomena on macroscopic distance scales. One well-known example

is the axion, a hypothetical pseudo-Nambu Goldstone boson (pNGB) associated with

the Peccei-Quinn symmetry, introduced to solve the strong CP problem.1 Axions arise

when a global Z7(l)pQ symmetry is spontaneously broken by the vacuum expectation

value of a complex scalar at the scale /„, ($) = /ae'a/'a; at this scale, the axion, the

angular field a around the infinitely degenerate minimum of the potential, is a mass-

less Nambu-Goldstone boson. QCD instantons explicitly break the global symmetry

at the scale /w ~ 100 MeV, generating the axion mass, m0 ~ O(mvfn//„). Since its

couplings and mass are suppressed by inverse powers of /0, the axion is very light and

very weakly interacting. Nevertheless, it can play an important role in astrophysics and

cosmology; indeed, astrophysics! and cosmologica! arguments constrain the global sym- -

xhetry breaking scale to lie in a narrow window around /0 ~ 1010 —1012 GeV. Thus, the

axion mass ma ~ 10~5eV(1012GeV//0), and its Compton wavelength is macroscopic,

A<x ~ (/o/1012GeV) cm. Although motivated by the strong CP problem, the axion

is a particular instance of a more general phenomenon, and it portends an important

lesson: the physical world may contain many new phenomena in the far infrared which

are not directly accessible in the laboratory, but which may play an important role in

the development of the early Universe.

Axions may be generalized to include familons and majorons,2 as well as more exotic

objects3. Recently, a class of pNGBs closely related to familons (called 'schizons'), with

masses of order m^ ~ m/epmum//» ^as been analyzed in some detail4. If one associates

rrifermion with a hypothetical neutrino mass, mv ~ 0.01 — 1 eV, and / ~ MauT — Mpi ~

1015 —1019 GeV, one arrives at a cosmologically interesting scale for the boson Compton

wavelength, A^ ~ //m2 ~ kiloparsecs - Megaparsecs. This naturally leads to the idea

of a "late time phase transition (LTPT)," i.e., a vacuum rearrangement occuring at the
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very low temperature Tc ~ mv, which may generate structure on a correspondingly large

scale.5 If it occurs after decoupling of the cosmic background radiation at Tdec — 0-3

eV, such a late transition opens the possibility of forming large-scale structure without

imprinting an excessive angular anisotropy 6T/T on the 3°K microwave background. It

was originally proposed that "soft" domain walls, with thickness of order m^1 ~ //"i^,

would form in the discrete symmetry breaking at Tc ~ mv and generate non-linear

density fluctuations, while (it was hoped) avoiding direct imprinting of the walls upon

the background radiation.5

The idea of a late time phase transition is, we believe, more general than the par-

ticular realizations that have been suggested. However, it is in need of specific detailed

models and further theoretical refinement before it can be assessed and tested. Pre-

liminary numerical analysis has suggested that soft domain walls of ultra-light pNGB's

may remain potentially problematic, since it has been argued that at least one large

wall ultimately extends across our Hubble volume6, leading to unacceptably large mi-

crowave background fluctuations7. It is unclear, however, whether these simulations are

ultimately definitive; they do not necessarily have the resolution to see the formation of

small structures, such as "vacuum bags," which Widrow and others have argued may

provide an attractive mechanism for the formation of accretion centers.8 Moreover, it is

conceivable that one might still arrive at a viable soft-domain wall scenario with suit-

able modifications, e.g., if the walls are subject to strong friction due to the surrounding

medium, or if they divide regions of differing neutrino mass9. In this paper, we will not

consider domain wall scenarios further.

Recently, Press, Ryden, and Spergel (PRS) have considered an alternative possi-

bility of a second-order late time phase transition and its consequences for large-scale

structure,10 without invoking domain walls. In their model, non-linear fluctuations in

an evolving soft boson field directly generate large-scale structure (and voids) on scales

~ SO/i"1 Mpc. In addition, the coherent oscillations of the field provide dark matter



with, critical density, £1$ = 1. The soft bosons are non-relativistic, but their Compton

wavelength is so large that they do not cluster on galaxy or cluster scales, in agree-

ment with the fact that the inferred density of matter clustered on these scales is only

ft 2z 0.1 — 0.2. In this model, the dark matter in galaxies and clusters is thus purely

baryonic; this is marginally consistent with limits on the baryon density ft& from big

bang nucleosynthesis. If viable, this scenario is attractive, since it brings together a

variety of cosmological problems and solves them in one model. Yet, an important issue

is whether such a model is reasonable from the viewpoint of particle physics.

Our only rational guideline in thinking about ultra-low mass particles is the principle

of "Naturalness." This is a well-defined operational principle in theoretical elementary

particle physics, first stated by 't Hooft11. In this regard, small mass scales must be

"protected" by symmetries, such that when the small masses are set to zero they cannot

be generated in any order, of perturbation theory, owing to the restrictive symmetry.

We will hot enter here into a general or complete discussion of this mechanism, and how

to insure its implementation, since the literature of particle theory is infused with this

principle (see eg., refs. (4,12) for a more lengthy discussion of naturalness in the schizon

models and in thermal physics of soft-bosons). In its strongest form, the principle of

naturalness requires that small mass scales (or large hierarchies) must appear as a

consequence of some plausible mechanism (in addition to being protected once they

appear). While the cosmologies! implications depend upon dynamics and are generally

insensitive to whether or not a given model Lagrangian has been fine-tuned, the form

of any given low-energy effective Lagrangian, and its finite temperature corrections12,

will be strongly influenced by the symmetries of the interactions of the full theory. Let

us summarize the constraint of naturalness in the present context.

As mentioned above, there can exist a general class of pNGBs ("schizons"4), with

masses mt ~ m/erni«»n//*» where the decay constant /, is naturally associated with



the GUT or Planck scale, /, ~ 1015 — 1019 GeV. Here, the small schizon mass is pro-

tected by fermionic chiral symmetries or additional discrete symmetries and is therefore

technically natural. That is, when certain fermion mass terms are set to zero in the

Lagrangian, the schizon mass goes to zero; the fermion mass terms will not be generated

in any order of perturbation theory. Familons or schizons are really not significantly

less compelling than axions; indeed,.if one accepts the existence of axions, then it would

seem undemocratic of nature not to supply pNGB brethren such as familons or schizons.

From this perspective, the "soft boson" model of PRS, while cosmologically inter-

esting, is highly unnatural. The Lagrangian is that of a self-interacting complex scalar

field, with potential V(^<f>) = A(0t<£ _ v
2)2 and the scale v ~ 1017 GeV. The mass

term for the scalar field, m^ — 2Aa/2v, is fine-tuned to be of order m^ ~ 2 x 10~28

eV ~ (30 kpc)"1, by fixing the self-coupling constant to be A ~ 10~108. Moreover,

the field is assumed to have normal strength interactions with other particles. In any

quantum field-theoretic version of the model, these interactions would lead to an un-

controllable quadratic divergence of the mass term (and a logarithmic divergence of the

self-coupling). Thus, to maintain the small mass term one must fine-tune the theory in

each order of perturbation theory. Also, even if one is willing to accept the unnatural

fine-tuning of the Lagrangian, the initial condition imposed on the field, (j>i/v & 10~30

is ad hoc and fine-tuned. Nevertheless, given the interesting cosmological consequences

of the PRS scenario, we feel it is worth pursuing more plausible particle physics models

which can incorporate its attractive features.

Thus, in this paper "we attempt to "naturalize" and amplify the proposal of a late

time phase transition. We will largely dispense with domain walls and instead follow

the route of PRS without, however, invoking unnatural fine-tunings of parameters or

of initial conditions. In Sec. II, we exploit the aforementioned properties of pNGBs to

construct a class of well-defined LTPT models which are acceptable from the point of

view of naturalness. In Sec. Ill, we abstract the general features of these models and



discuss the resulting cosmological scenarios in detail. We follow with the conclusion,

in which we also speculate on other possible consequences of an ultra-light pNGB field

which became dynamical at recent epochs. In the second paper of this series (hereafter,

paper II), we study structure formation arising from the dynamics of a light pNGB field

under a wider variety of initial conditions, and we explore concomitant constraints from

the microwave background anisotropy.

II. Models

Above, we argued that an ultralight boson mass scale naturally arises only in models

which implement symmetries in an appropriate way. In this section, we review two

classes of toy models with the desired properties: neutrino schizon models and a hidden

axion model.

Consider first the low energy effective Lagrangian which contains a neutrino field v:

C = -d^d'V + VLif^d^L + VRif^d^VR + TnoVLVRJ+H + h.c. (2.1)

where V(R,L) a*6 respectively right- and left-handed projections, V(R,L) — (1 i 75)I//2.

The term, proportional to mo can arise from a Yukawa coupling g&LVR$ + h.c., where

the complex scalar field $ has a non-zero vacuum expectation value, {$) = /e"^/\/2,

and mo = <7//-\/2. This is a familiar chiral Lagrangian, possessing the continuous chiral

symmetry:

"L -> e''afL5 *« -> e-'ai/H; < j > ^ < t > + 2af (2.2)

Such a theory has several important and well-known properties: (l) it can be embedded

in a fully renormalizable theory in which a Z7(l)-invariant complex field develops a

vacuum expectation value, ($) = /, and 4> is then the residual Nambu-Goldstone boson;

(2) £ is itself renormalizable for a small cut-off A, up to suppressed counterterms of

order A//; (3) <£ will be identically massless unless terms are introduced which explicitly
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break the chiral symmetry; (4) 0 satisfies "Adler decoupling," i.e., we may replace v

everywhere by i/:

(2;3)

and we thus see that <f> disappears in the mass term but couples derivatively to the neu-

trino as #'*#i7'757Mi>'//- Therefore, for small 0 momentum <^, ̂  emission or absorption

amplitudes will tend to zero. As a consequence of this decoupling theorem, <f> will not

mediate a long range 1/r2 force (we note, however, that the decoupling theorem can be

violated when the symmetry is broken by a chirally non-invariant mass term).

Let us now consider explicitly breaking the symmetry. To the Lagrangian of (2.1)

we may add a small mass term of unknown origin. Usually this comes from some deeper

symmetry breaking in the theory which breaks the continuous 17(1) down to a discrete

subgroup ZN. For example, let us break U(l) — » JJ2- This implies that <j> — * < / > + nirf

remains an invariance. So we now have:

C
n± \

~J + & ) (2-4)

The physical mass of 0 is determined by shifting 0 to a local minimum and then ex-

panding the cosine to quadratic order in <j>. We obtain:

m^ = 2/c2// (2.5)

and the quartic interaction term A<£4/4!, where

A = 16/c4//4- (2.6)

The limit /e — +• 0 is the symmetry limit of the theory in which we recover the full

continuous U(l) chiral symmetry. Therefore, K can be naturally small in the technical

sense; radiative corrections from the full theory, or even for the effective theory, will only

multiplicatively renormalize K, since when K = 0 the symmetry prevents these effects

from generating a nonzero K (hence, small K(,are produces a small Krenormaiized °c «&are
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in perturbation theory). Of course, as we stated above, the mass term comes from some

deeper structure in the theory, and when we take the symmetry limit we know that this

deeper symmetry breaking structure has also gone to its symmetry limit. However, just

adding the mass term for <f> has one special property: it breaks the symmetry only in

the mass term of 4> and the decoupling theorem will still hold.

What kind of deeper structure might give rise to such a mass term for 0? In the case

of QCD, the proton and neutron are analogues of the v field and the pion is the analogue

of <j>. The deeper structure that breaks the chiral symmetry there is the presence of light

quark masses, which are not chirally invariant. This leads to the nonzero pion mass, and

a small non-chirally invariant contribution to the nucleon mass (the <r term). We can

make an analogy to this situation in the present case by adding an explicit neutrino mass

term to the Lagrangian that breaks the chiral symmetry. The low energy Lagrangian

then becomes:

C =-

fd> \
+lf + evLvR + /i.e.) + /c4 cos f j + 0 J

Notice that the U(l) symmetry is now broken here to the trivial center by the neutrino

mass terms as well as the cosine term, and therefore only the residual discrete symmetry

(j> — » (f> + 2mrf remains as an invariance. (As a consequence, the argument of the pNGB

potential is now $/f instead of 20//.)

Now, if K — » 0 we must also set e — >• 0 to recover the true symmetry limit. However,

a nonzero /c will always be induced at one loop by the presence of a nonzero 6 and mo.4

With a cutoff A < /, we find the induced term:

. (2.8)

We can freely view this as the origin of the scale K2 ~ y'moeA. Thus far, this is a

neutrino version of the schizon model of Hill and Ross4. We note, however, that we
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have ignored the possible effects of CP-violation which can lead to induced Yukawa

couplings of ^ to i?i/, and thus to new long-range forces between neutrinos of quasi-

gravitational strength4'13; a more general model should allow for a CP-phase on the c

term as discussed below.

In this theory we see that the induced scalar mass will be of order:

m\ ~ m0e(A2//2) ~ ™oe. (2.9)

The mass for <f> can now be technically naturally small since we can tune the symme-

try breaking parameter c to be arbitrarily tiny for large mo; e.g., the observed neutrino

mass is mv ~ mo ~ 1 eV while m^ ~ (100 Mpc}~1 if e ~ 10~80 eV. The symmetry

guarantees that radiative corrections will not change this result.

This theory will generally have a late-time phase transition at a temperature of order

the neutrino mass, T ~ mo ~ 1 eV.12 However, having to input the small parameter c

is still not completely satisfactory. Preferable is a. scheme in which the scale of ~ 100

Megaparsec is generated by a strongly natural mechanism that involves only the putative

scales of particle physics, such as mv ~ 1 eV and MQUT or Mpjancfc, in concert with

some additional symmetry principle.

In the Lagrangian of eqn.(2.7), we observed the appearance of a ("large") quadrati-

cally divergent contribution to the induced mass of <^, eq.(2.8). Can we somehow reduce

the degree of divergence of this induced term? Yes, in fact residual symmetries can

readily control this. Consider first the following schizon Lagrangian invariant under a

residual Z% discrete symmetry:

+ vi^d^v + xi^dpx

+ (m0 + e e + ^ V L V R + (m0 - eJ

where the allowed CP-violating phase, /?, is arbitrary. The continuous U(l) chiral

symmetry is broken down to a residual Zi discrete symmetry:

"-*x; x^v, <{> -+<]> + * f (2.11)



If one now computes the induced (f> mass term, one observes that the A2 term of eqn.(2.8)

cancels. The leading contribution is now only log-divergent:

(2.12)

The (j> mass scale that is now induced is of order

m0e//. (2.13)

In this case, if e ~ mo ~ m,,, we retrieve the desired result that m^ ~ TO£//, so *^a* axi

ultralight schizon emerges without inputting a tiny mass scale.

These models can be easily generalized to further soften the contribution of fermion

loops and eliminate the cut-off dependence in the induced ^ mass altogether. Consider

the Zw-invariant chiral theory of N neutrinos,
N~l

.' : £:= -0^0'V + ^ vjvfQ^ + (m0 + eeWf+t*'/"^ vjLVjR + h.c. (2.14)
"-. • - ; :"••• • ' • ^=o - . . . " . ' • • • ' • • . • • • ' • ' • • . • :

(Hereafter, we suppress possible CP-violating phases (3.) The U(I) chiral symmetry is

broken to a residual ZN discrete symmetry:

I -> vo ; 4> -* <t> + 2Trjf/N . (2.15)

The 1-loop correction is now

"fS-($).j=o \ J /

where

2m0ecos + . (2.17)

This respects the discrete symmetry. For N > 2, the sum EjMf is independent of (f>;

thus, the ^-dependent term is independent of the cutoff A, and for N > 2 we can write

__v^2
~~ •~ ifiir
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In this case, the ^-potential is explicitly calculable.

In addition to neutrino schizons, one can readily envisage other candidates for "natu-

ral" low mass elementary particles. For example, consider14 a hidden, unbroken 517(2)

gauge theory ("quasicolor") containing n'j massless fermion flavors ("quasi- quarks"),

which unifies with SU(3)C at a scale MGUT- By the usual renormalization group, this

new force will become confining at an energy scale

~ MGUT - • (2.19)
J

Taking MGUT ~ 1017 GeV, n/ = 6, n'f = 4, and using AQCD — 0.1 GeV, we obtain

Ast/(2) * 0.1 eV. If the "quasi-quarks" are massless, then this theory will contain mass-

less quasi-pions, some di quark "quasi-baryons" with masses of order 2Asu(2)i and. "an

analogue of the 77' with a mass of order A-su(2) (due to macroscopic instanton effects).

These are all "quasi-hadron" boundstates on the scale of Asu(2)> and all of the phe-

nomena will be natural in the strong sense. A quasi-hadronic phase transition would

occur when the Universe has a temperature T ~ A-su(2)i *-e-> a* a redshift z ~ 400. If

such a phase transition occurred within the hidden sector of a unified theory, e.g., if

the SU(2) is the low energy remnant of the hidden E» of superstring models, we would

only know of its existence through the gravitational effects that it produces. If the

9 parameter of the SU(2) theory becomes associated with a dynamical field through

a Peccei-Quinn-like mechanism, i.e., via an anomalous global symmetry with sponta-

neous symmetry breaking scale fqa, the resulting pNGB, the 'quaxion', will obtain a

mass mqa ~ &?su(2)/ ft*' ^or A« ~ MGUT ~ 10ir GeV, we again find mqa ~ 10~28 eV,

with a Compton wavelength of order 30 kpc.

It is also possible that such cosine potentials can be generated nonperturbatively in

a theory if the associated symmetry has an anomalous current; this happens in QCD

where instantons nonperturbatively generate a large 77' mass, or a nonvanishing axion

mass, through the axial U(l] anomaly. In the present context the prefactor of the
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cosine potential might be the large scale A4 ~ /4 multiplied by an extra "tunneling

suppression" factor of order exp(—Sir/a], yielding a very small mass for the pNGB.

The application of ideas like this to soft-boson models has been suggested by Ovrut

and Thomas15; this may ultimately be a very appealing way of generating soft-boson

mass scales.

To study phase transitions in these models, we need to know their behavior at fi-

nite temperature T.12 For the neutrino schizon models, this involves integrating over

a thermal Fermi-Dirac distribution of neutrinos to get the one-loop finite temperature

effective potential Vr((f>}- There are two subtleties here: first, one is interested in study-

ing effects at T ~ mv ~ eV, yet the light neutrinos freeze out of thermal equilibrium

at Tp ~ 1 MeV. Although the neutrinos are no longer in thermal equilibrium, their

distribution function retains the form of a redshifted thermal distribution so long as

they are semi-relativistic. (This distribution is characterized by an effective temper-

ature Teff =Tj?a(<F)/o(<), where a(t) is the cosmic scale factor; one thus computes

^T«//(^)0 Second, the reactions that keep <f> in thermal equilibrium have rates of order

T ~ T3//3. The field will be in thermal equilibrium if this rate is larger than the Hubble

expansion rate H, where, for a radiation-dominated universe, H ~ T*2/Mpfancfc. Thus,

the condition that <j> be in equilibrium, F ^ H, corresponds to T ^ /2/MpjancA.. Hence,

for / ~ MGUT, <i> decouples thermally very early. However, we emphasize that this

does not invalidate use of the effective potential. In the neutrino-schizon models, one

computes the temperature corrections by calculating the value of operators to which 0

couples, such as i?i/, in the appropriate density matrix for the neutrinos. We emphasize

that this it a coherent or classical field treatment of <j> and Pi/, corresponding to a clas-

sical limit of quantum mechanics, and it is not invalidated by the small reaction rates

for (f> particles to scatter incoherently off of a given v excitation16.
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The relevant temperature corrections have been calculated for the ZN neutrino

schizon models in ref. 12. In the high temperature limit, T » mo, the result is

Comparison with eqn.(2.18) shows that, for the Zi model, the coefficient of the cosine

potential changes sign at a critical temperature T ~ (mo ± e): the schizon undergoes a

second order phase transition at a temperature comparable to the neutrino mass. If the

zero-temperature minimum of the potential is at (f>/ f = TT, with maxima at 0// = 0,2ir,

then at temperatures T ^ mv, <f>/ f = TT becomes a local maximum of the potential,

and the zero-temperature maxima become minima. This is illustrated in Fig. 1. On

the other hand, for the N > 2 models, because of the (^-independence of the expression

^2j MJ, in the sum of the vacuum contribution of eq.(2.18) and the finite temperature

contributions of eq.(2.20) the <j> dependence cancels at T ^> TTIQ. In this case, the 0

potential becomes asymptotically flat as the temperature is raised, as shown in Fig.2.

As a result, the transition at T ~ mv in this case is analogous to the transition for

an axion potential arising from QCD instantons at T ~ AQCD in which the axion

mass turns on. Note that this is also the expected finite temperature behavior for the

hidden SU(2) quaxion model outlined above. There is, however, a qualitative difference

between the ZN>* and quaxion models: for the schizon models, the potential turns

off only logarithmically as the temperature is raised, while for quaxions the instanton-

induced potential is suppressed roughly as an inverse power of the temperature. For

axion models, it is well known that the temperature dependence of the mass plays an

important role in determining the cosmological bound on / due to the density of coherent

axion oscillations. For the schizon models, however, this temperature dependence is

small: when the schizon starts oscillating, its mass differs only logarithmically from its

zero temperature value. The cosmological implications of these different behaviors will

be discussed in the next section.
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In the model of Ovrut and Thomas15, it appears that there is no temperature

dependence of the potential for T & /; in this case, the "phase transition" will simply

involve the 'unfreezing' of the boson field when the Hubble expansion parameter becomes

of order the ^-mass. If, however, the tunneling effects which generate the potential are

associated with a mass scale M, then we would generally expect the potential to turn

on as a power of temperature at T ~ M, as in the (qu)axion model.

III. Cosmology and Late Time Phase Transitions

Having discussed a variety of underlying particle physics models for late phase transi-

tions, we now turn to their cosmologies! implications. We will examine consequences

that are relatively insensitive to the details of particular models. Thus, we assume the

existence of a generic pNGB with a phenomenological Lagrangian given as a function

of temperature: • . '* :- . ' ' . . ' " . -

LpNGB = \d^d»<l> + VT(4>) , (3.1a)

where the finite-temperature potential is

VT(<I>) = M
4(2 + c(T)[cos(0//) - 1]) . (3.16)

Here, <f> is a real pNGB scalar field, / is the scale of global spontaneous symmetry

breaking, assumed to be of order the grand unification or Planck scale, / ~ 101S — 1019

GeV, and /i is an explicit symmetry breaking scale associated, e.g., with a light neutrino

mass or a hidden strong interaction scale, taken to be of order 10~2 —1.0 eV. By suitable

rescaling of /* we can set c(T = 0) = 1, and we have inserted a constant term in the

potential to insure a vanishing cosmological constant in the usual way.

From the discussion of particle physics models in Section II, we extract three broad

classes of models for the temperature-dependence of the potential:
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I. Models in which c(T) ~ 0 at high temperatures, T )5> Tc ~ /z, and the potential

turns on approximately logarithmically at a critical temperature T ~ Tc ~ fj.; for

these models, c(T) ~ 1 for T & Tc. The ZN schizon models with N > 2 are in this

category.

II. Models in which c(T) is a slowly varying function of temperature that changes sign

at a critical temperature Tc ~ /z, denned by c(Tc) = 0; for example, in the Zi

schizon model, c(T) ~ ln(Tc/r), where Tc ~ /x ~ mv. For models of this type, the

Universe goes through a second-order phase transition at the critical temperature

Tc. For T ^ Tc, we will generally assume |c(T)| ~ 1.

III. Models in which c(T) ~ 0 for high temperatures, T » Tc, and the potential turns on

roughly as a power law in temperature near a critical temperature, c(T) ~ (Tc/T)n,

n ~ a few (for T £ Tc). For these models, c(T) ~ 1 for T ^ Tc. For example,

the quaxion model, where the instant on-induced potential is suppressed at high

temperature, is of this type.

We will not explicitly consider a fourth logical possibility, that c(T) is constant

for all T, as in the Ovrut-Thomas model with a high energy tunneling scale. This

possibility is implicitly included in some of the cases discussed below.

Abstracting from the models of the preceding section, we generally expect the critical

temperature to be of order the explicit breaking scale, Tc ~ \L\ we will define

£ = Tc/p = 0(1) (3.4)

as a third parameter of the model, which is naturally of order unity. We note that, in

some cases, the potential term in eqn.(S.l) may actually be absent until the Universe

cools to the electroweak symmetry breaking scale, T ~ 100 GeV. Indeed, in the schizon

models this is necessarily so since the potential term arises from quark or lepton masses,

which do not appear until electroweak breaking.
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With the generic temperature-dependence of the potential in hand, we now discuss

the cosmological evolution of the scalar field in broad outline. We focus here upon the

spatially homogeneous, zero-momentum mode of the field, 0(t) = {^(x", t)}, where the

brackets here denote spatial averaging. In paper II, we study the evolution of spatial

fluctuations in the field; here, we are implicitly assuming that these fluctuations do not

strongly perturb the zero mode. This is certainly the case if the fluctuation amplitude is

small compared to 0 as would be expected, e.g., after inflation if the reheat temperature

TRH < f: in this case, aside from inflation-induced quantum fluctuations, the field will

be homogeneous over many present Hubble volumes. On the other hand, if inflation

did not take place, or if TRH > / so that the global symmetry is broken again after

inflation, we generically expect large spatial gradients ("Kibble gradients") in the field

due to the fact that </>// is uncorrelated on scales larger than the Hubble radius when

the transition at T ~ / occurs. In this case, it may not make sense to talk of a zero-

momentum mode17, but, at least in the absence of light boson production by topologicai

defects, the zero-mode treatment does lead to an estimate of the scalar energy density

which should be accurate in order of magnitude, since the (neglected) gradient energy

term is comparable to the potential energy term18.

We assume that at temperatures / £ T » Tc, ̂  is a classical field expectation

value, randomly placed on its potential. The scalar equation of motion is

0, (3.5),
cup

where the Hubble parameter is given by JT2 = (STr/SmL)/? for a spatially flat universe.

At these high temperatures, the Compton wavelength of the field is much larger than the

Hubble radius, so the potential term is negligible compared to the Hubble damping term

(0 is effectively massless). In this limit, the solution is time-independent,

i.e., the field is frozen to its initial value.
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As the temperature drops below Tr, defined by the point where

m (Tr)| = \#VTJdp\^ * 9#2(Tr) , (3.6)

the <£ field becomes free to roll down the potential, modulo Hubble damping. There

will then result spatially coherent oscillations about the potential minimum; once the

amplitude is sufficiently small that the oscillations are approximately harmonic, the

<£ stress tensor is that of a nonrelativistic particle (pressureless dust). The coherent <j>

oscillations may currently dominate the mass density of the universe, providing (unclus-

tered) dark matter, but they must satisfy 17^ < 1. This condition provides a constraint

on the parameter space of /, n, and £ (see below).

We now discuss the cosmic evolution of the scalar field for the three classes of models

in more depth.

IIL1 MODEL I

For these models, the potential is fiat at high temperatures and turns on rapidly at

the critical temperature Tc (see Fig. 2). We shall approximate their behavior by letting

c(T) = 0 , T > Tc

(3-7)
= 1 , T < Tc

The model is described by 3 parameters, /, /i, and £ (or Tc), and it is useful to define 3

important characteristic temperatures: Tc is the critical temperature as defined above

(i.e., when the potential goes from being fiat to curved); Tr is the temperature, defined

above, when the Hubble damping ceases and the field begins to oscillate in the potential;

and Td is the temperature when the energy density of the scalar field begins to dominate

over baryons (if ever). By definition, Tr < Tc.

We will assume that the initial value of the field, <£i, is not extremely close to

the maximum or minimum of the zero-temperature potential. For a typical initial
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value of the field, the potential energy density at the critical temperature is of order

^Te($i) — A*4- ^ ls convenient to define a parameter a which characterizes the ratio of

the scalar energy density to the baryon density,

(3.8)
\ PB J T

Thus, the temperature Td is defined by a(Td) = 1. Since pB(Tc) = nBpcr;t(Tc/To)3,

and using Tc = £/i, we have

where, in the last equality, we have used the present microwave background temperature,

To = 2.4 x 10-* eV, and the critical density pcrit = 8.1 x 10-n/i2eV4. We also define

the ratio
m

. . . . . . - . / T .

Thus, the temperature Tr, at which the field starts oscillating, is defined by /?(Tr) = 1.

It is convenient to divide the discussion of this model into two sub-cases: 1) a(Tc) <

1, i.e., /i < (^3/8.5)(fiB'i2/0.02) eV: baryons dominate at T = Tc and Tc > Td\ 2)

a(Tc) > 1: <f> dominates at Tc, and Td > Tc. We consider these two cases separately.

III.1.1 Case 1: a(Tc) < 1

Since baryons dominate at Tc, we must use the baryon density to determine the

expansion rate in the denominator of ft (eqn.3.10); for a typical field value on the

potential, we have |TTI|| ~ /*4//2, and so

(3'n)

For this case, since ex(Tc) < I, we have /3(TC) < m2
pl/2<iirf2 . Again, we subdivide the

possibilities:
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la) / > mpi/\/247r = 1.4 x 1018GeV: in this case, we are guaranteed to have

/?(TC) < 1, so that Tr < Tc: once the potential 'turns on', the field remains frozen

to its initial value for a while, because of Hubble damping. As a result, the scalar

energy density remains approximately constant (instead of redshifting), acting as a

cosmological constant during this phase. Since the baryon density redshifts, the ratio

a(T) grows as a ~ T~3, giving us the more general relation (3(T) — a(T)m2
pl/24irf2, so

that f3(T) < a(T). Thus a(T) reaches unity before j3(T} does: <£ is frozen to its initial

value until after it dominates the energy density, i.e., we have the relation Tc > Td > Tr.

This can be seen from evaluating

while the critical temperature is given by

Thus 2d/Tc = a1/3(Tc) < 1. The evolution of the scalar and baryon densities is shown

schematically in Fig. 3.

Once the temperature drops below Tj, the scalar energy density dominates the

expansion rate, and the expression for /3(T) changes. Initially, at T just below T<f, the

field is still frozen at its initial value, so the density V(<^) ~ p* ~ constant. In this

case, we find /3(T & Td) = ^y. Since / > mpi/A/247?, this implies (3(T ^ Td) < 1,

so the field remains approximately frozen. In actuality, however, the field does evolve

toward the minimum, but on a timescale slower than the expansion time H~l . When

(3(T) & 1, the field slowly rolls down the potential with a characteristic growth rate

^ ~ exp(m^t/3H) ~ exp(3.fffy?). One can think of this as a brief period of slow rollover

quasi-inflation beginning at T = Td and ending when the field begins to roll rapidly
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down the potential at T = Tr. As we shall see, however, this epoch must be very brief,

so that the universe never enters a full-blown exponential de Sitter inflation.

With a simple approximation, we can analyze the slow rollover epoch: we assume

that the baryon density is negligible compared to the scalar density at T < Td and that

the scalar energy density remains constant from T = Td down to T = Tr, below which

it subsequently scales as non-relativistic matter. As a result, we have, at the present

epoch,

£*=Y^) ~ (Tr/Td)3 = e-*N- (3.14)
"* \P*/o

where Ne = \n(Td/Tr) is the number of e-folds of the scale factor during the quasi-

inflationary epoch between Td and Tr (note that we are not assuming exponential ex-

pansion during this phase). Since big bang nucleosynthesis suggests fig — 0.01 — 0.21,

we require

JVe ~ (1 ± 0.5) + iln(n^) (3.15)
. • • ' . ' ' . • ' . . . • » •

e-folds of quasi-inflation, i.e., the scalar field should slow-roll only for about 1 expansion

time.

The slow roll-over of a scalar field in a potential of the form (3.1) has been analyzed

recently in the context of a model of inflation19, and we can apply those results here.

The slow rollover phase ends, and the field begins oscillating, when the field reaches a

value <£ = <^P, given implicitly by \V'($r)mpi/V((j>r)\ = V^STT, or

(3 16)v '

Note that this generally happens while \V"($)\ & 9J5T2, i.e., slightly before the field

begins oscillating according to our criterion (/3(T) = 1) above. For example, for / =

mpi, we have <j>r/f = 2.98, while for / = mpj/\/247r, <£,.// = 1.9. If the field begins (at

T cs Td) at a value ^ = <£i, the number of slow roll e-folds before it begins to oscillate is
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To achieve Ne = 0.5 - 1.5 requires, for example, <£j// = 2.63 - 2.82 if / = mpt and

4>i/ ' f — 0.17 — 0.79 if / = mpi/v/247r. Note that these values are only indicative: for

Ne ~ 1, the approximation we have adopted that p(<j>) > ps is not well justified.

Ib) / < mpj/v/247r: In this case, from eqn.(S.ll), we have /3(T) > a(T), so that j>

starts to oscillate before it dominates the energy density. Once it begins oscillating, p<j>

scales like non-relativistic matter, i.e., like ps, so it never dominates the energy density,

P<j» < PB for all T. (See Fig. 4). In this case, (f> cannot be the dark matter, but it can

still play an important role in structure formation (see paper II).

For this case, the parameter space again naturally splits into two regimes: Ibi) either

the oscillations occur after the phase transition, Tr < Tc, which happens if /3(TC) < 1,

or (Ibii) the field starts oscillating as soon as the potential turns on, Tr = Tc, which

corresponds to 0(TC) > 1. From eqns. (3.9) and (3.11), in the first regime (Ibi),

and the oscillations begin at the temperature

( 4 2
is?

The second regime (Ibii) corresponds to

-3 < 1 T -T f320)
' ( '

In this case, the ratio of the Hubble radius to the 0 Compton wavelength when it begins

oscillating is approximately Nr ~ /?1/2(TC), or

3mP( P\*'* 0.02 V/2
 f(3-21)

which may be substantially larger than one. This is in contrast to the usual case, e.g., for

the axion, which starts oscillating when Nr = m^/ZH — 5'~1/3A^ ~ 1. This difference

has important ramifications when we consider structure formation in these models.
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Briefly, in the scenario of ref.(10), the scalar field generates non-linear perturbations

on the scale of its Compton wavelength; unless Nr ~^> 1 or the transition occurs before

recombination, this may lead to unacceptably large microwave background anisotropies

(see paper II).

Ill, 1.2 Case 2: a(Tc) > 1

In this case, the scalar field dominates the energy density at Tc, and Tj > Tc > Tr.

From the discussion below eqn.(3.13), before the field starts redshifting we have (3(T) ~

mp,/247r/2. We therefore split the discussion again into two subcases.

2a) / > mpi/V247r : in this case, (3(TC) < 1, so the field is frozen at Te (i.e.,

Tc > Tr) and may undergo a brief quasi-inflationary slow-rollover. This is similar to

case (la). Inflation actually begins at T ~ Tj, given by eqn.(3.12). However, in the range

Td > T > Tc, the potential is fiat, and the field does not roll classically. The number of

e-folds of inflation between Tc and Tr is constrained by the requirement, analogous to

eqns.(3.14) and (3.15), that

a(Tr) = a(Tc)e'"-<T"T'> = < J- (3.22)

where a(Tc) is given by eqn.(3.9). Since, for case 2, a(Tc) > 1, this yields the require-

ment that Ne(Te,Tr) < (l/Z)]n(Slgl) < 0.5 - 1.5; again, the number of inflationary

e-folds must be small. For fixed \i and £, eqn.(3.22) fixes the number of e-folds re-

quired to have the proper ratio of scalar to baryon density today; from eqns.(3.16) and

(3.17), this fixes the required initial value of the scalar field <j>\. Since the number of

e-folds is small, the initial value of the field must in general be reasonably large, i.e.,

not fine-tuned very close to the origin.

2b) / < m/»//\/247r : here, ft(Tc} > 1, so the field starts oscillating at the critical

temperature, Tr = Tc. In this case, the ratio of the scalar to baryon densities is pre-

served, o(To) = a(Tc). For fl^, < 1, we thus require a(Tc) < 1/Hs; using eqn.(3.9), this
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yields the constraint

M < ^F1 = 1.4fc20*
seV , fy<l (3.23)

-'o

where the present value of the Hubble parameter is HO = 50/i5o km/sec/Mpc, and

observations indicate 1 < /ISQ < 2. (We use the parameter /iso because its default

value, /ISQ = 1, yields marginal agreement with globular cluster ages if O = 1.) For

fixed physical scale /*, we may think of this as determining the required value of f . For

fj. = C?(eV), the scalar field provides closure density if £ = C?(l). Since we expect £ to

be of order unity, this shows that the natural explicit symmetry breaking scale for a

coherently oscillating field that dominates the present energy density is in the eV range.

That this is far below the QCD scale, A.QCD ~ 100 MeV, that sets the scale for axion

oscillations, does not contradict the fact that axions may also dominate the density (if

/ ~ 1013 GeV), because the temperature dependence of the axion potential is different

(see model III below). .

For closure density bosons (fi^ = 1), using £(/i) from eqn.(3.23) we find the critical

temperature

43 l) (3.24)

and the redshift of the transition,

If we require the transition to occur after recombination, i.e., at zc < 1000, and before

the first known quasars, i.e., zc > 5, eqn.(3.25) gives

8 x 10~3 eV < nh^ /2 < 0.4 eV (3.26)

This also corresponds to the range

0.2 < thlf < 0.7 (3.27)
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(For completeness, for case 2a above, the corresponding constraint is 5 < ZT < 103,

which yields a range for /z identical to eqn.(3.26).) For reference, we note that the ratio

of the Hubble radius to the scalar Compton wavelength at the onset of oscillations is

given in this case by

-(3.28)

For case 2b, this is larger than one.

The parameter space for the different cases of Model I is displayed in Fig. 5.

III.2 MODEL II

For these models, the high temperature potential does not vanish, but is inverted

from the low temperature potential, as in Fig. 1. We approximate the behavior of this

class of models by choosing the temperature-dependent coefficient in eqn.(S.l) to have

the form, • • • ' . . ' • . . ' : • • . . : • ' - • ' • '
c(T)= -1 , T>T e

= 0 , T = Tc (3.29)

= 1 , T < T C

The analysis is similar to that of Model I, the primary difference being that in some cases

the field may now oscillate before the critical temperature is reached. We must now

define two temperatures: Tr (Tr ) is the temperature when the field starts oscillating

in the high-temperature (low-temperature) potential. Clearly, Tr > Tc > Tr .

We divide the analysis into the same subcases as for Model I. Then, for cases la, Ibi,

and 2a, the behavior of Model II is identical to Model I, because the field is always frozen

in the high temperature potential (0(T > Tc) < 1); for these cases, the constraints are

summarized in Fig. 5. We now turn to the cases where the field does oscillate in the

high temperature potential.
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Ibii) For fj, in the range given by eqn.(3.20), the field begins oscillating in the

high temperature potential, corresponding to Tr > Tc = Tr . The onset of these

oscillations occurs when /3(Tr ) = 1, which implies

4_2 \ J / 3
' >

, ._
r _ fj. mpl

To

As in Model I, for this case the scalar oscillations never dominate the energy density of

the universe. Nevertheless, it is of interest to study the behavior of the field.

When the field starts oscillating at 2r , typically there will be rough equipartition

between the kinetic and potential energy of the field, and the energy density decreases

with the expansion. After a short time, the kinetic energy has redshifted to become

negligible compared to the potential energy, and the energy momentum tensor of the

field approximates that of a vacuum state, with vacuum energy pvac ~ 2/i4. This does

not lead to inflation, however, because by construction the scalar field never dominates

the total energy density for this case. Defining p$ = p$ — pvac> it is easy to show that

p$ redshifts like non-relativistic matter, pj, ~ jR~3. This implies that the oscillation

amplitude decays as
T

during the high temperature phase. Using eqns.(3.13) and (3.30), the amplitude at the

critical temperature is then

(W2,

In this case, Tr ~ Tc, and the ratio of the Hubble radius to the Compton wavelength

at the onset of the low temperature oscillations is just the factor by which the amplitude

has been damped in the high temperature phase,

' (3.33)
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2b) As for Model I, this is the most interesting case, since the scalar field can dom-

inate the energy density. As above, we have Til1' > Td > Tc ~ If ; the situation

is qualitatively similar to Model I (2b), except that in this case due to the high tem-

perature damped oscillations, the field may be localized near the origin at the critical

temperature, 4>(TC} <C /. This factor is straightforwardly estimated:

" (, 34)l '

where in the second equality we have used ot(Tc) = fl^/fls. In this case, the ratio of

the Hubble radius to the Compton wavelength at Tc = Tr is

\ J/2

\

some applications in paper II, we will be interested in the case where the high

temperature (in addition to the low temperature) oscillations begin after recombination,

i.e., 4;) == TW/2V < 103. Using eqn.(3.30), this happens if

(3.36)mpl

III.3 MODEL III: QUAXIONS

For this class of models, we take the coefficient in eqn.(S.l) to be

= 1 , T<T C

From the effective Lagrangian viewpoint, the parameter n > 0 corresponds to a fourth

parameter of the model (compared to three for models I and II); however, it is deter-

mined by microphysics. In this case, the potential is flat at T 3> Tc and gradually turns

on, reaching full strength (and its zero-temperature value) at Tc. For field values away
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from, the maxima of the potential, it is convenient to expand VT(<J>) around the potential

minimum, <£ = ^ — TT/,

= f(T) + rnl(T}4? (3.38a)

where

/(T) =

(3.386)

We define the parameters a(T) and (3(T) as before. In this case, like the axion, the

field can start oscillating at Tf > Tc, and it is convenient to divide the cases slightly

differently than above20: 1) a(Tr) < 1, i.e., a baryon-dominated universe when the

oscillations begin, and (2) oc(Tr) > 1, in which case the scalar field dominates the

energy density when it begins to oscillate. For a typical initial field value, p+(Tr) ~ /i4,

so that

(3-39)

III.3.1 Case 1: a(Tr) < 1

In this case, p^(Tr) < pB(Tr). The temperature Tr when the field starts oscillating is

determined by /3(Tr) = m^>(Tr)/9H2(Tr} = 1, where the temperature-dependent mass is

given by eqn.(3.38b) and the expansion rate at Tr is fixed by the baryon energy density.

Straightforward manipulation gives

2V _ f m*,, 8.5 (JL} /_0.02_\ ] 1/(3+n)

~ ' r c
 (3 40)

' " < C~ L247T/* ^ v B/lV

Prom (3.39) and (3.40), we have
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so the condition a(TP) < 1 requires

l/n
Tr f mj,f

Tc * V24ir/V
(3.42)

As before, we subdivide this case into two subclasses depending on the value of /:

la) / > mp//V'247r : In this case, from (3.42) we immediately have TP < Tc. Since

the field does not begin oscillating until the potential reaches its zero-temperature form,

the high-temperature behavior of the potential is irrelevant in this instance. This is

therefore identical to Model I, case la.

Ib) / < mpj/\/247r : in this case, the ratio Tr/Tc may be smaller or larger than one,

depending on the value of p. From eqn.(3.40), the condition Tr = Tc clearly corresponds

to

, Tr = TC (3.43)

(Compare eqns.(3.18) and (3.20).) We thus subdivide this case into two subclasses:(lbi)

A* < A*cr»t> which implies Tr < Tc, and (Ibii) /z > ^crtt> »-e-> ^r > Tc.

Ibi) fjL < Hcrit' this is identical to case (Ibi) of Model I. Again, the high-temperature

nature of the potential plays no role, since Tr < Tc.

Ibii) /x > Hcrit'- in this case, the field starts oscillating while the potential is still

evolving. The condition a(Tr) < 1 restricts \L to the range

1 , ?r>Tc (3.44)

Although the scalar field never dominates the energy density in this case, it is of interest

to study the damping of its oscillations in the evolving potential. As before, if we

subtract the instantaneous zero- point energy by defining p^ = p$ — /(T), then for the

harmonically oscillating field we find

fl - ^] = 0 (3.45)
V "w
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which implies

Since p<t> ~ mi(T)^2, the oscillation amplitude decays as <£ ~ m^(
1'2(r)J2~3/2. Using

eqn.(3.38b), this gives the amplitude at Tc,

/T v(n+6)/4

and the relative energy density

^io= (10 (3>48)

where the ratio in parenthesis is given by the first eqn.(3.40) and we have assumed

fa ~ /. As in the axion case, the commencement of (j> oscillations in the evolving

potential reduces the relative scalar energy density.

III.3.2 Case 2: a(Tr) > 1

In this case, the scalar field already dominates the energy density when it begins to

oscillate, T* > Tr. From eqns.(S.lO) and (3.38), for Td > T > Tr, we find

_ mPi (Tc\n

247T/2 \TJ (3>4g)

_ mPl T <• T
247T/2 ^Jc

where we have used the fact that p^ ~ /i4 for T > Tr.

As usual, this motivates us to consider two subcases:

2a) / > mpi/-s/247r : This case is similar to Model I, case (2a). That is, in order

to end up with an acceptable value of fl^/fiBj tbe scalar field must undergo a very

brief period of slow rolling quasi-infiation. The only difference is that, in the present

case, the field can in principle start evolving classically at T > Tc. However, from

eqn.(3.49), the rollover rate in this high-temperature regime is exponentially suppressed,
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since 0 ~ exp(3fl"//3) and (3 ~ T n. As a result, in practice, the initial value(s) of fa

required to give f^/fig £> 1/(0.01 — 0.2) in this case will be similar to that in Model I.

2b) / < mpj/\/247r : in this case, from eqn.(3.49), we have

and the field starts oscillating above the critical temperature. In the temperature range

Tr > T > Tc, the field oscillates in the evolving potential, and its energy density is

approximately (Cf. eqn.(3.38))

P+ = /(T) + mjCTtf2 (3.51)

The oscillation amplitude (j> decays according to eqn.(3.47); again assuming a typical

initial amplitude 0i ~ / and using eqn.(3.50), we find

(6+n)/2n

Now the analysis follows along the lines leading to eqn.(3.23): we form the ratio a(Te) =

P<!>(TC)/PB(TC) and use the fact that this ratio is conserved for T < Tc, i.e., a(T0) =

a(Tc). Then setting O^ < 1, i.e., o(Tc) < 1/CIB, yields the constraint

(8+n)/2n , 2 N (6+n)/2n

Unlike eqn.(3.23), the cosmological constraint on the scale fj, here depends on /, as in

the usual axion case; in particular, as / is decreased below the Planck scale, the upper

bound on /* is relaxed21, depending on the index n.

Assuming the scalar field saturates closure density determines the parameter £ and,

analogously to eqns.(3.24) and (3.25), we have the critical temperature

!, (3.54)
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and the redshift of the transition,

= 1) (3.55)

IV. Conclusions

We have studied a variety of particle physics models which can potentially generate the

observed large-scale structure in the context of late time phase transitions involving

ultra-low mass bosons. Some of these models can simultaneously explain the dark-

matter in the Universe. These models are distinguished in containing a fundamental

large distance scale, d, which emerges as a hierarchical ratio of microscopic scales, e.g.,

d ~ Afctfy/m*. Symmetry principles, abstracted and borrowed from experience with

QCD, allow us to build underlying theories of such a phase transition at. a very low

energy scale, Tc ^ eV, that are technically and even strongly natural. This low energy

scale corresponds to a moderately recent cosmological epoch, zc & 1000, and such

models may therefore have other potentially striking observational signatures, as in the

scenarios for large-scale periodic structure discussed in ref.(2l).

The common element of the models considered here is the existence of an ultra-light

pseudo-Nambu-Goldstone boson, a lighter cousin of the conventional QCD axion, which

becomes dynamical at this late epoch. We have analyzed the cosmic evolution of this

field in three broad classes of models and have identified the regions of parameter space

for which it can make a significant contribution to the energy density of the Universe.

Unlike the conventional axion, an ultra-light boson associated with global symmetry

breaking at the GUT scale, / ~ 10ia GeV, can provide J7^ ~ 1 without invoking special

initial conditions. We note that such a field is generically very weakly coupled and thus

difficult to detect.
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For completeness, we close with several comments about other possible implications

of, and constraints upon, these models. The first have to do with topological defects. If

inflation does not take place, or if it does occur but with reheat temperature TRH > ft

the boson field is not expected to be homogeneous over scales larger than the Hubble

radius at the critical temperature Tc. In this case, the symmetry breaking at Te ~ fj,

can lead to the formation of domain walls, which may endanger the isotropy of the

microwave background. As in axion models, there are a number of ways to avoid

this domain wall problem1. For example, one can have additional terms in the scalar

potential which explicitly break the residual discrete symmetry22 (bias the potential),

lifting the vacuum degeneracy; this effectively destroys the topological stability of the

walls, driving them into the false vacuum regions. As long as the vacuum asymmetry is

large enough, the walls can disappear before they do any damage.21 Alternatively, if the

broken global symmetry is U(l), then cosmic strings form in the transition at T ~ /;

these become the boundaries of the walls which form later at T ~ p. In models with

N = 1 minimum of the boson potential, there is one wall per string, and the wall-string

system destroys itself before it dominates the energy density.23 We note that in this

case the strings radiate bosons until the boson mass turns on at Tr, and the resulting

cosmic energy density of string-radiated bosons may be larger than that calculated

from 'misalignment' production in section III by a factor ~ ln(/<P) ~ 100.17 In order

for the gravitational effects of the strings not to perturb the microwave background, the

symmetry breaking scale is then restricted to roughly / ^ 1017 GeV.

A final speculative possibility concerns the interesting cosmological role of an ultra-

light field which has not yet become dynamical (is still frozen) or only became dynamical

at moderate redshift (say, z ~ 8 — 10). The origin of the smallness of the cosmological

constant is still shrouded in mystery, but let us suppose that there is some mechanism

which sets the ultimate true vacuum energy density of the universe to zero. Then, at

late times, classically we expect the vacuum energy to be dominated by the lightest field
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which has not yet evolved to its ground state. If there is an ultralight pseudo-Goldstone

boson which has yet to start oscillating, i.e., if it satisfies Tr ^ TO = 2.4 x 10~4 eV,

then it will act as a (temporary) cosmologies! constant, with present vacuum energy

of order p?ac ~ /i4. If fj, ~ 3 X 10~3 eV, then firac — 1- This may have potential

benefits such as increasing the age of the universe (for fixed value of the Hubble pa-

rameter) and boosting the large-scale transfer function for density fluctuations. The

simplest way to implement this is to have Tc < TO, which requires £ = Tc/fj, < 0.08; one

could relax this bound somewhat if the global symmetry breaking scale / <; mpi/\/24ir.

Alternatively, if the field became dynamical at moderate redshift, it could lead to an

epoch of cosmological loitering, in which the scale factor of the universe passes through

a moderate Eddington-Lemaitre-like coasting phase, allowing extra time for the growth

of large-scale structure24.
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FIGURE CAPTIONS

Figure 1: The temperature-dependent potential VT(^) = V(<f>) + AVr((j>) for the

pseudo-Nambu-Goldstone field in the Zi schizon model. The field exhibits a second

order phase transition at a temperature T ~ m0; this is characteristic of models we

classify as Type II (from ref.(12)).

Figure 2: The temperature-dependent potential for the scalar field in a Z$ schizon

model; this is typical of ZN models with N > 2: the potential is flat at high temperature,

developing a minimum at T ~ mo. We classify these as Type I models (from ref.(12)).

Figure 3: The evolution of the scalar and baryon energy densities p^ and pg as a

function of the scale, factor a(t) for model I, case la. In this case, the scalar field

presently dominates the energy density.

Figure 4: The evolution of p^ and PB for model I, case Ib. Here, the scalar field never

dominates the energy density of the universe.

Figure 5: The parameter space for models I and II, showing the different cases in the

plane / (GeV) vs. p./? (eV).
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