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NOMENCLATURE
2

Cr Friction coefficient, r /(0.5 pM )

F Nondimensional velocity in radial direction (equation 2.11)

Fr Froude number, V//"g7

-» . -» 0
g Gravitational acceleration, - 9.81 j m/s

G Nondimensional velocity in angular direction (equation 2.12)
2

h Convective heat transfer coefficient, V/m K,
forheating
' for evaP°ration

i Unit vector in angular direction
-»
j Unit vector in the direction normal to the plate

k Cell index in radial direction

K Thermal conductivity, W/mK
-»
k Unit vector in z- direct ion

n Coordinate normal to the free surface, or number of grid cells in

radial direction

n Unit vector normal to the free surface

Nu Nusselt number, = htf/K

p Static pressure, Pa

p Ambient pressure, Pa

Pr Prandtl number

q Heat flux, V/m2

Q

Q Volumetric flow rate, m /s
Q

Qi Local rate of volume loss at a cell next to free surface, m /s

r Radial coordinate, m

R Radius of curvature

11



Re Reynolds nubmer, V6/v

t Time, s
-»
t Unit vector tangential to the free surface

T Temperature, °C

u Velocity in angular direction, m/s

v Velocity in the direction normal to the plate, m/s
-»
V Velocity vector, m/s

w Velocity in the z-direction, m/s

V- Average radial velocity at entrance, m/s

x Coordinate in angular direction, m

y Coordinate normal to the plate, m

z Coordinate in the radial flow direction (Fig. 1), m

Greek Symbols
2

a Thermal diffusivity, m/s, or relaxation factor

6 Film thickness, m

6 Film height corresponding to Fr = 1, m

( Nondimensional coordinate perpendicular to the plate (eqn. 10)
2

v Kinematic viscosity, m /s
q

p Density, kg/m

ff Surface tension, N/m
2

T Shear stress at wall, N/m
2

r Stress tensor, N/m

a Angular velocity, rad/s

in



Subscripts

b Mixed mean (bulk) condition

c Cartesian components of velocity

e Free surface

in Condition at entrance

out Condition at exit

r Component in radial direction

sat saturation condition

w Condition at solid wall

<|> Component in angular direction

IV



SECTION I

FLOV OVER A STATIONARY DISK

1.1 S1MMABY

Improvements in the theoretical model and computational procedure for

the prediction of film height and heat-transfer coefficient of the free

surface flow of a radially-spreading thin liquid film adjacent to a flat

horizontal surface of finite extent are presented. Flows in the presence

and absence of gravity are considered. Theoretical results are compared to

available experimental data with good agreement. In the presence of

gravity, a hydraulic jump is present, isolating the flow into two regimes:

supercritical upstream from the jump and subcritical downstream of it. In

this situation, the effects of surface tension are important near the outer

edge of the disk where the fluid experiences a free fall. A region of flow

separation is present just downstream of the jump. In the absence of

gravity, no hydraulic jump or separated flow region is present. The

variation of the heat-transfer coefficient for flows in the presence and

absence of gravity are also presented.



1.2 INTRODUCTION

The radially spreading flow of a thin liquid film is encountered both

in the case of axisymmetric discharge of liquid through a thin slot and in

the case of impingement of a liquid jet on a solid surface. These

configurations are encountered in many engineering devices like spray type

heat exchangers, cooling towers, spin coating deposition on metal surfaces,

and rotating condensers and evaporators. The appropriate design of these

systems require an understanding of the structure of the free surface, the

liquid flow field and associated friction and heat-transfer coefficients.

These quantities are usually influenced significantly by the magnitude and

orientation of the gravitational body force. Therefore, information on

these flows in the presence and absence of gravity are required for

successful design and operation of these devices on earth as well as in

outer space.

One of the earliest works on the radially spreading flow of a thin

liquid film was performed by Vatson [1]. The film was formed by

impingement of a liquid jet on a flat horizontal surface. Both analytical

and experimental studies of laminar and turbulent flows were made. A

hydraulic jump was found to be present under some flow conditions. The

analysis covered the supercritical region before the jump where four

different flow regimes were identified and analyzed using the Pohlhausen

integral method and a similarity transformation [2]. In the subcritical

region, the film height was assumed to be constant. For a given location

of the jump, the subcritical height downstream of the jump could be also

predicted.



The heat transfer to a thin film formed by an impinging liquid jet was

considered by Chaudhury ,. [3], whose analysis basically followed the ideas

introduced by Vatson [1] except that the energy equation was also solved.

In the region away from the impingement location where a similarity

solution of the momentum equation was possible, the energy equation was

solved in a closed form including the effects of viscous dissipation. An

approximate solution for the simultaneously developing hydrodynamic and

thermal boundary layers was also obtained using the integral method where

the temperature profile was approximated by a fourth-order polynomial.

In a series of studies, Azuma and Hoshino [4] presented the behavior

of the radially spreading thin film discharging from a cylindrical gap

formed between a circular nozzle and a flat glass plate. Their

experimental research determined criteria for laminar-turbulent transition,

the liquid film thickness, the velocity profile across the film, stability

criteria, and wall pressure fluctuation. The transition from laminar to

turbulent flow was established by observing the nature of surface waves

with a stroboscope. Several types of waves were identified, and it was

proposed that transition occurs when concentric waves change to

lattice-shaped waves. This transition depended on the rate of flow, nozzle

diameter, discharge gap and radial location. The liquid film thickness was

measured with a needle gage. For all the flow rates considered, the film

thickness decreased after exit from the nozzle, attained a minimum and

increased further downstream. The velocity profile across the thickness of

the film was measured using a laser doppler velocimeter. The pressure

fluctuation was measured by a pressure transducer which gathered signals

from two hypodermic needles embedded on the surface of the disk. Most



experimental measurements were supported by simple theoretical analyses.

They identified three regions of the flow: a region just downstream of the

nozzle where laminar boundary layer develops but has not reached the free

surface, a region where boundary layer reaches the free surface but flow is

laminar, and finally a region where flow is turbulent.

Experimental measurements of local heat transfer coefficient when a

liquid jet impinges a solid wall and spreads out as thin film was reported

by Stevens and Vebb [5]. The parameters considered were flow rate, jet

diameter and nozzle-to-plate spacing. Correlations for local and average

Nusselt numbers were determined in terms of jet Reynolds number. In a

later study, Stevens and Vebb [6] investigated the effects of jet

inclination on the distribution of the local heat-transfer coefficient.

In the abovementioned studies of Azuma and Hoshino [4] and Stevens and

Vebb [5,6], attention was focused only on the supercritical flow, and no

jump was found to be present. A jump is possible when the flow rate is

relatively small and disk diameter is relatively large so that transition

occurs before the film gets washed out of the disk. Vatson [1] and

Chaudhury [3] identified the presence of a jump, but their analysis again

focused the supercritical region upstream of the jump. A systematic

investigation of supercritical and subcritical flows including a hydraulic

jump, was carried out by Thomas et al. [7,8] and Rahman et al. [9-11]. In

these studies, the film was generated by discharge of liquid through an

axisymmetric slot from a pressurized container at the center of the disk.



Thomas et al. [7] numerically predicted the film height variation

using a simple one-dimensional model. Neglecting any variation of velocity

across the thickness of the film, the continuity and momentum equations

were integrated across the thin film to develop a single equation for the

film velocity. Results were obtained for both stationary and rotating

disks for a number of inlet Reynolds, Froude, and Rossby numbers. In the

presence of the jump, the outlet Froude number was always assumed to be

unity to simulate a situation where the fluid experiences a free fall over

the edge of the disk due to gravity. It was found that the jump moves

downstream and may get washed away entirely with an increase in the flow

rate, angular velocity and inlet Froude number. Thomas et al. [8]

presented experimental data for the liquid film height and a photographic

study of surface waves for both stationary and rotating disks. The

measurement confirmed the existence of a hydraulic jump for stationary disk

which was washed away when the disk was rotated. Vith the increase of

rotational speed, the surface waves changed from wavy-laminar pattern to

radial-wave pattern which carried fluid in rivulets on top of a thin liquid

sheet adjacent to the disk.

The studies by Rahman et al. [9-11] solved the flow field numerically

by a finite-difference method using a boundary-fitted coordinate system.

No assumptions regarding the velocity variation or friction coefficient

were required. Since the height of the free surface was dependent on the

flow conditions and was not known ahead of time, an iterative procedure had

to be used to determine the correct location of the free surface. The

original method presented by Rahman et al. [9,11] is termed as the

'pressure optimization method'. In this method, the shape of the free



surface was assumed to be described by an algebraic equation with two or

more arbitrary constants. The constants were optimized using an exhaustive

search technique that minimized the difference between the computed free

surface and ambient pressures. Vhen a jump existed in the flow field, the

supercritical and subcritical flows were computed separately, and the

solutions were matched at the location of the jump. The second method

presented by Rahman et al. [10] is termed as the 'porous wall method'. In

this method, the free surface is assumed to be a permeable wall through

which fluid particles may leave or enter the control volume depending on

the difference between the fluid and ambient pressures. The shape of the

surface is corrected in successive iterations until the free surface

conforms to a streamline and the penetration through the surface reduced to

zero. This essentially satisfies the kinematic condition on the free

surface. This method computed the whole flow field as a single domain.

The purpose of the present investigation is to critically investigate

the merits and drawbacks of the existing computational methods as well as

significant improvements for the prediction of thin film flow as discharged

from a pressurized vessel at the center of a horizontal stationary disk.

The significant improvements sought are assumptions about boundary

conditions and inclusion of surface tension at the outlet, an improved

iterative procedure for determining the film height, and better criteria

for the estimation of error in computed results. Furthermore, the

theoretical predictions are also compared with experimental data to

establish their validity. The details of the flow structure and

heat-transfer coefficient are also determined for flows in the presence and

absence of gravity.



1.3 EXPERIMENTAL DATA

The details of the experimental setup and the method of data

acquisition and its uncertainty estimates are described by Thomas et al.

[8]. Measurements of film height were made for a thin liquid film

emanating from a pressurized vessel at the center of a circular horizontal

disk. The diameter of the disk was 406.4 mm and the diameter of the collar

through which the discharge was made was 101.6 mm. The gap height between

the bottom face of the collar and the top of the disk was 0.267 mm, which

is also the initial thickness of the discharging liquid film. Water at an

average temperature of 22 C was used as the test fluid. The closed loop

experimental system maintained an isothermal fluid that discharged

axisymmetrically on the disk. A noncontact capacitance sensor was used to

determine the thickness of the liquid film. The probe was moved along a

radius to determine the distribution of film height. The sensing area had

a diameter of 11.28 mm, providing reasonably accurate measurements of the

film height except for the location of the hydraulic jump. The film height

distribution were determined for 5 different flow rates (7, 9, 11, 13, and

15 LPM). Distinct supercritical and subcritical regions isolated by a

hydraulic jump were present only for the three lower flow rates. For both

13 LPM and 15 LPM, the subcritical region was washed away from the disk and

a partial jump was seen near the outlet. In order to avoid any misleading

conclusion, only data for 7, 9, and 11 LPM will be used for comparison with

theoretical predictions. Comparison of these experimental data with any

theoretical prediction was not attempted in any earlier work, and it is

therefore one of the primary objectives of this paper.



1.4 ND1ERICAL PREDICTIONS

The radially spreading flow over a stationary horizontal disk of

finite extent in the presence and absence of gravity is schematically shown

in Fig. 1.1. In the presence of gravity, the flow may encounter a

hydraulic jump where incoming supercritical flow transforms to a

subcritical flow downstream of the jump. Beyond the disk, the fluid

encounters a free fall due to gravity. In the absence of gravity, the flow

remains entirely supercritical and no jump is possible. At the exit from

the disk, the flow discharges radially. The equations governing the

conservation of mass, momentum and energy in a thin liquid layer involving

a Newtonian, constant-property liquid can be written as

V . V = 0 (1.1)

-4

BV = . 1 Vp t , V2 V + g (1.2)

I/•!• n̂ T* / -t o\p£ = o V T (1.3)

The boundary conditions are given by:

at entrance: V = Vin, T = Tin, 6 = $in (1.4)
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Fig. 1.1 Schematic of the flow systems
and coordinates for computation



at exit: In the absence of gravity:

In the presence of gravity

S = S (e<luation l.H), at r =

rout < r < re

at solid wall: V = 0, T = T (1.8)

at free surface: T • n = 0, I • t = 0, d6
cE

c
'c

= 0 (1-7)

Here n is the coordinate directed normal to the surface under

consideration. When surface tension is negligible and pressure is the most

significant normal stress, the T • n condition can be written as p = p ,

where 'p ' is the static pressure of the surrounding medium.

The boundary condition at the exit depends on the existence of the

gravitational body force. In the absence of gravity, the flow is entirely

supercritical and the film height at the outlet does not need to be

specified. In the presence of gravity, when a hydraulic jump is present in

the computation domain, a subcritical flow is present in the vicinity of

the outlet. Then, the outlet film height need to be specified. In the

study of Thomas et al. [7] as well as Rahman et al. [9,10], it was assumed

that the Froude number at the outlet (r = r ,) was unity, since the

10



subcritical flow becomes critical and finally supercritical as it falls off

the disk. Therefore, in the absence of any other better approximation, the

flow at r = r . was assumed to be critical. However, in reality, the

fluid does not experience the fall until it is swept away from the disk as

shown in Fig. 1.1. Moreover, the experimental measurements of Thomas et

al. [8] suggests that the flow in the vicinity of the exit is entirely

subcritical. Table 1.1 shows a comparison between the experimentally
*

measured film height and the critical height, S predicted by the Fr = 1
*

condition at the exit. Note that S can be calculated from the continuity

equation:

(1-8)
rout

The measured height corresponded to the data point closest to the edge of

the disk where measurement was reliable. It appears that the actual film

height is about 4 times the critical height. Therefore, even though a free

falling condition exists just downstream of exit, the film is held up by

some sort of external force.

It can be recalled here that in all previous computations [7,9,10],

the surface tension was neglected in all regions of the flow, which may not

be correct near the exit since an appreciable curvature of the free surface

is encountered due to the rapid turning of the flow. In the presence of

surface tension, the fluid and ambient pressures can be related by the

equation

11



Table 1.1: Comparison of the Calculated and Measured Film
Height at the Outlet in the Presence of Gravity

Critical Height Calculated
Measured (6 ) from Deviation Height (̂ out) Deviation

Flow rate Height eqn. (1.8) of 8 from eqn. (1.10) of

(LPM) (mm) (mm) (7.) (mm) (7,)

7

9

11

4.420

4.318

4.369

0.981

1.160

1.337

-77.81

-73.15

-69.39

4.377

4.479

4.582

-0.95

3.73

4.88

12



(1.9)

where R is the radius of curvature. If the pressure is assumed to be

hydrostatic in nature, this equation can be expressed in terms of film

height as

= '*

where 6 + is the actual film height at the exit end of the disk (r =

r , ) , and 6 is the critical height predicted by the Fr = 1 condition at

that location. To solve equation (1.10), an estimate for R is required,

since that is unknown in general. The visual observations showed that when

the flow changes its direction from horizontal to vertical, the radius of

curvature is of the same order as the film height. Substituting R = 0.5

6 . and solving for the film height from equation (1.10), we obtainout

6out

T*2W
0 + TT

(1.11)

Equation (1.11), even though quite approximate in nature, gives a good

estimate of film height at r = r .. This is also demonstrated in Table

1.1, where the height calculated by equation (1.11) is compared with the

measured height. The deviation is within 57. which is reasonable

considering the simplicity of formulation. Therefore, whenever a jump was

present, the film height at the exit end of the disk was computed from

equation (1.11). The liquid film experiences a free fall as it exits from

the disk at r = r t. Based on the experimental observations and

13



comparisons seen in Table 1.1, it was assumed that the free surface forms a

quarter circular arc with radius R and then extends vertically downward.

The radial location of the free surface is given by

re = rout + °'5 *out

The uniform velocity of the free falling liquid was calculated from the

conservation of mass.

The coordinate system used in the present formulation is also shown in

Fig. 1.1. the r-axis is directed along the plate radius and y-axis is

directed perpendicular to the plate. This r-y system was used for the

formulation of the one-dimensional computational scheme where the

continuity and momentum equations were integrated across the y-direction.

For a complete two-dimensional solution, a body-fitted coordinate system

[9] was used. In this system, the coordinates were defined along lines

connecting the centers of the adjacent grid cells. The z-axis lies along

the main direction of the flow, and the y-axis across the thickness of the

liquid layer. Comparing the r-y and z-y system, it can be noticed that

the y-axis remains unaltered, whereas the z-coordinate is related to r by a

geometrical factor.

The present one-dimensional computational scheme is similar to that

developed by Thomas et al. [7] except that the film height at the outlet

was calculated using equation (1.11) instead of the critical height. In

this scheme the governing equations for mass and momentum (1-2) were

integrated assuming a uniform velocity across the thickness of the liquid

layer, and were combined to give a single equation for film velocity.

14



Since the velocity was explicitly specified at r = r , ,the free falling
Oil L

flow beyond that location could be ignored. Even though the steady-state

solution was desired, the transient term was retained in a simplified form

to devise an explicit marching scheme. The friction coefficient, Cc, was

estimated using a two-part formulation: Biasius-solution for regions where

the thickness of the boundary layer was smaller than the film thickness,

and the coefficient obtained from a parabolic velocity profile in regions

where the boundary layer encompassed the entire film. The equation was

discretized using the MacCormack predictor-corrector method [12]. For each

time step, the predicted solution first used forward differencing in both

time and space and then improved the prediction using forward differencing

in time, but backward differencing in space. The corrected solution was

taken as an arithmetic average of the past and predicted solutions. Since

the one-dimensional solution did not require a significant amount of

computer time, 500 grids were used in r-direction to obtain a smooth

distribution of the film height. Convergence to the steady-state solution

was obtained within 5000 iterations, where the maximum possible time-step

that allowed stability was used.

The complete two-dimensional solution of the flow and temperature

fields were performed using a body-fitted curvilinear coordinate system.

The grid cells were generated by algebraic interpolation between the

boundaries of the computation domain, where the irregular free surface was

taken as one of the boundaries. As shown in Fig. 1.1, the local

coordinates were defined along lines connecting the centers of the adjacent

grid cells. The discretized equations were written for each cell by using

principles of conservation of mass, momentum and energy, where the primary

15



physical variables were retained without any nondimensionalization. The

hybrid difference scheme presented by Patankar [13] was used to retain

convection and/or diffusion terms. The flow field was solved using the

SIMPLEST algorithm as demonstrated by Spalding [14]. The number of grid

cells were determined from a series of tests that varied the number of

grids in each coordinate direction. It was found that 50 x 30 cells in the

z-y plane yielded grid independent solutions and was used for the present

computation.

The primary difficulty in two-dimensional computation was that the

height of the free surface, which was unknown in general, needed to be

specified in order to generate the grid structure and to solve the flow

field. Therefore, an iterative procedure was required to ascertain the

free surface height distribution. Two possible algorithms, outlined by

Rahman et al. [9] and Rahman et al. [10] are 'pressure optimization method

(POM)' and 'porous wall method (PVM)', respectively. Here, we would like

to suggest improvements for both methods and give advantages of one over

the other for certain kinds of problems.

POM is suitable for one-domain flows where no jump is present, and

two-domain flows where a jump isolates the supercritical and subcritical

flow regimes. In this method, the free surface is approximated by an

algebraic equation with a number of arbitrary constants. These constants

are optimized by an exhaustive search technique which minimizes the error

in the pressure distribution on the free surface defined as

16



1 n 2
E . S Pk

Normalized MS Error = " .
/IF ^. + «• /i V.
^g in 5 ^ in

where p* is the difference between the free surface and ambient pressures

at the kth radial location, and n is the number of cells in the radial

direction.

When a jump is present in the computation domain, the film height

distribution is computed as follows:

(1) The supercritical film height distribution for the entire disk is

calculated by approximating the free surface by the equation

6= 6fr ((r- A)/(rin- A))"
1.

The parameters 'A' and 'an' are optimized keeping the specified inlet

film height constant. This equation allows 2 degrees of freedom.

Higher degrees of freedom can be accomodated by assuming more complex

forms of the equation. Note that supercritical flow does not require

any specification of outlet condition, where the flow is assumed to be

locally parabolic in nature.

(2) The subcritical film height distribution for the entire disk is

calculated by approximating the free surface by the equation

* - «<mt «r - B>/(ro»t - "I)""'
The parameters 'B' and 'bn' are optimized preserving the outlet film

height fixed at 6 + determined by eqn. (1.11). A free falling

condition was present at the outlet.

17



(3) The jump height distribution corresponding to the supercritical film

height distribution is determined from the momentum balance at the

jump [15].

9.6

where subscripts '!' and '2' indicate conditions upstream and

downstream of the jump, respectively.

(4) The location of the jump is determined by matching the jump height

with corresponding subcritical film height distribution.

(5) The supercritical film height distribution is recalculated for the

partial disk from the entrance to the location of the jump. The

method used is the same as that outlined in step (1).

(6) The slope of the jump is determined by calculating the flow as a

single domain using the height determined in step (5) for the

supercritical region and that from step (2) for the subcritical

region. In this process, the jump surface is assumed to form a plane,

the location for the initiation of jump is kept constant, and as

before, the normalized RMS error is minimized.

(7) The flow and energy equations are solved as a single domain problem

using the film height distribution determined in step (6) to find the

flow field and heat transfer coefficient.

In steps (1), (2), (5) and (6), the film heights in the different

regions are optimized independently to give a minimum normalized RMS error

in pressure. The acceptable solution corresponds to a normalized RMS Error

18



of less than 0.1. This margin was established in [9] from the benchmark

problem of falling film flow. Steps (5-7) are improvements over the

original POM presented by Rahman et al. [9], in which the jump occurred

across one grid cell. So, the extent of the jump decreased with an

increase in the number of computational cells. Moreover, the experiments

of Thomas et al. [8] suggested a somewhat gradual jump rather than an

instantaneous rise in the film height. Step (5) significantly improved the

estimation of the film height in the supercritical region. Moreover, in

step (2), the free falling flow at the outlet was appropriately modeled and

accounted for in the computation of subcritical film height distribution.

In the original method [9], the flow at the outlet was always assumed to be

locally parabolic with a prescribed hydrostatic pressure gradient. In

reality, the flow in a hydraulic jump is elliptic in nature, where outlet

conditions significantly affect the location of the jump as well as the

film height distribution. In order to accurately determine the

heat-transfer coefficient in the vicinity of the jump, the one-domain

calculation outlined in step (7) is essential since a natural continuity of

the velocity and temperature fields needs to be preserved. It may also be

noted that energy equation is solved only after the film height

distribution is completely ascertained.

In the PVM, the free surface is assumed to be a permeable wall through

which fluid particles are allowed to enter or leave the control volume

depending on the difference between the ambient pressure and the pressure

in cells next to the free surface. The location of the surface is improved

in successive iterations until the rate of penetration becomes negligible.

Instead of assigning any particular equation for the free surface height

19



distribution, the new height is calculated from the old height and the

local rate of penetration as shown below.

(*new>k = (Wk + fl ('corr)k

where a is the relaxation factor. A value of a = 1 was found to be

adequate for the problems considered here. The apparent advantage of this

procedure is that there are more degrees of freedom for the free surface

height distribution. The number of degrees of freedom here is the same as

the number of grid cells in the radial direction. This technique is also

more systematic and uniformly convergent than the exhaustive search

technique associated with the POM. The deviation from the ideal

zero- penetration condition can be estimated by either of the following

measures .

(a) Root- sum- square penetration

k; l OSS

20



(b) Absolute sum of penetration

(c) Maximum error in flow rate

|̂  " ̂ in'[max

Since the method is uniformly convergent, all these error measures

decrease with the number of iterations. In a practical problem, a solution

may be acceptable when both root-sum-square penetration and maximum error

in flow rate are less than 0.05 and the absolute sum of penetration is less

than 0.1.

The PVM outlined above is significantly different from the method

originally proposed by Rahman et al. [10]. In the original method, the

correction to the film height was obtained from the kinematic condition on

the free surface instead of the local rate of penetration. This improved

the surface in successive iterations to form a streamline, but apparently

without a significant reduction in the local rate of penetration.

Therefore, the convergence was extremely slow. Moreover, frequent

smoothing was required to eliminate undesirable irregularities. These

drawbacks were removed in the present modified algorithm. There is also a

great improvement in the estimation of error. The criteria used by Rahman

et al. [10] is RMS penetration, which is somewhat similar to the

root-sum-square penetration except that an average was taken over all the

cells in the radial direction. The disadvantage of using the average

21



penetration is that for a given free surface, it can be reduced by making

the cell size smaller or increasing the number of cells in radial

direction, which is somewhat misleading. In the present investigation, the

total penetration over the entire free surface was considered, which was

independent of the number of grid cells. Some limitations of the PVM were

also discovered. It appears that the method does not work very well when a

hydraulic jump is present, since a relatively large influx of fluid is

encountered in the vicinity of the jump which leads to incorrect estimates

of the subcritical film height downstream of the jump. However, it yields

very good results when the flow is entirely supercritical, like flow in a

zero-gravity environment.

1.5 RESULTS AND DISCUSSION

The film height distributions for thin film flows over a stationary

disk are presented in Figures 1.2-1.4 for flow rates of 7, 9, and 11 LPM,

respectively. The inlet height corresponded to the first experimental data

point, and the exit height was estimated by using equation (1.11). The

two-dimensional solution used the modified POM, where the fluid velocity

profile at the entrance was assumed to be parabolic with the maximum at the

free surface. In the experiment by Thomas et al. [8], however, the fluid

was discharged through a thin slot, so the maximum in the velocity profile

at the discharge location is expected to be somewhere between the solid

walls. After a short distance from the entrance, the flow is expected to

evolve to a parabolic profile with the maximum velocity at the free

surface, since the no-slip condition exists on the solid wall and the

zero-shear condition is present on the free surface. Therefore, using the

first measured data point instead of the physical entrance condition may be

22



0
CO

£
tz

o
CD

CNJ

LULU *|L|6j9L| W|!J

t?

23



o
CO

CO (N *~

LULU *|L|6l9L| LU|IJ

24



O
O

o
00

o
CO

2
CD

"D

O

0)
TJ

5 8 ^^
C L_ .

oil §^CN [g ̂  2
O r==

O
O

O
00

(D

E
LZ

O
CO

CD ^t

LULU *

CM

LUIU

25



more appropriate for the numerical computations.

At all flow rates, the present two-dimensional solution compares best

with the experimental measurements. The present one-dimensional solution

reasonably predicts the supercritical and subcritical film heights, but the

jump appears to occur at a smaller radius. Moreover, the experimental data

shows a somewhat gradual jump in contrast to the sudden jump predicted by

the one-dimensional solution method. Figures 1.2-1.4 also present a

relative comparison of the present results with the one-dimensional

solution of Thomas et al. [7] in which a critical condition (Fr=l) was

specified at the outlet. The predicted subcritical film height

distribution was much lower than that measured experimentally. The

distribution of film height in the supercritical region is reasonably close

to the experimental data and the two-dimensional solution. The solution of

Thomas et al. [7] also predicted that the hydraulic jump occurred further

downstream than the experiment. These comparisons show that the POM

described above can be an effective mechanism for the prediction of the

location of the jump as well as the supercritical and subcritical film

height distributions. It may be improved further if the jump is assumed to

be a curved surface instead of being a plane, as indicated by the data

corresponding to 9 and 11 LPM. This, however, was not attempted here,

since the shape of the film at the location of the jump is expected to be

quite complicated due to churning motion of the fluid, and since no

experimental data were available in regions where the jump is initiated.

Figure 1.2 also shows a comparison with the analytical solution of Vatson

[1] for radially spreading thin film flow initiated by a liquid jet

impinging perpendicularly to a solid wall. Since Vatson's results depend
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on jet radius, an equivalent radius for the present system was calculated

as aon = ^2h r , where r is the radius and h is the thickness of the slot
CC[ C C C C

through which the liquid film is discharged. This equivalence was obtained

from the relationship between jet radius and film thickness in an invisid

flow. Vatson's results show a larger film height than that measured

experimentally or predicted numerically in the present investigation. The

difference may be attributed to the approximate nature of the comparison

due to the physical differences of the two flow systems.

The details of the two-dimensional flow field in the presence of

gravity is illustrated in Fig. 1.5 for the flow rate of 11 LPM. The

velocity profile was parabolic at r = 0.101-0.110 m, which is in the

supercritical region. Here the flow is well-structured with the maximum

velocity at the free surface. This is the typical velocity profile in most

of the supercritical region. However, as the jump is approached and film

height increased rapidly, the inertia of the fluid stream decreased to

preserve the continuity of fluid motion. Moreover, the stress-free

condition on the free surface causes more forward-moving fluid particles to

orient themselves to the free surface. Therefore, the flow separates from

the solid wall, and a recirculating flow region is seen next to the wall

just downstream of the jump. This is the characteristic seen in plots

corresponding to r = 0.145-0.154 m and r = 0.174-0.183 m which are in the

jump and subcritical regions, respectively. The separation from the solid

wall is due to frictional resistance in an adverse pressure gradient and

was previously seen in the experimental work of Nakovyakov et al. [16].

They actually measured the wall shear stress for a circular hydraulic jump
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: 1.5800E+09 m/s. r=0.101-0.110m

•» : 1.0B00E+00 m/s. r=0.145-0.154m

-> : 1.9008E+00 m/s,

Fig. 1.5 Velocity vectors for radially spreading flow under
normal gravity at a rate of 11



of a thin liquid film and found it to be negative for a short distance

downstream from the location of the jump.

The friction coefficient becomes zero at the point where the flow

separates, and remains negative in the recirculating flow region. In the

present work, it was seen that the flow remained separated in the entire

subcritical region downstream of the jump. This is due to a relatively

small extent of the subcritical region. A test run with a larger radius

showed that the flow reattaches to the surface and a parabolic velocity

profile is established further downstream. It should be also mentioned

here that the above flow structure was obtained for a stationary free

surface. The small variation of film height with time due to surface waves

was neglected in the numerical computation.

The variation of the film height for radially-spreading flow under

zero gravity at a flow rate of 7 and 11 LPM are shown in Figures 1.6 and

1.7, respectively. The dimension of the disk and the entrance flow

condition were taken to be the same as the experiment of Thomas et al. [8]

and numerical computation presented in Figs. 1.2 and 1.4. Since no

experimental data is available for thin film flow in a gravity-free

environment, the numerical prediction is the only means to understand the

behavior of the flow. In the present work, the PVM was used to iterate the

film height distribution, where the root-sum-square penetration and maximum

excess flow rate were less than 5 percent, and absolute sum of penetration

was less than 10 percent for the final solution. In a zero gravity

environment, the film height increases monotonically with distance, and no

sudden rise in the form of a hydraulic jump was encountered. Figures 1.6
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and 1.7 also show the height predicted by the one-dimensional computational

method of Thomas et al. [7]. The one-dimensional solution gave a nearly

linear rise in the film height, whereas the two-dimensional solution is

curved. The difference between the two solutions is within 10 percent. It

can be recalled here that the two-dimensional solution is obtained by

successive reduction in the rate of penetration and the final film height

distribution approached a streamline, which is an essential characteristic

of the free surface.

The distribution of velocity vectors for flow under zero gravity at a

rate of 7 LPM is demonstrated in Fig. 1.8. The velocity profile across the

thickness of the film was parabolic at all locations. The magnitude of the

velocity, however, decreased as the fluid moved downstream. No jump or

separation of flow was encountered in a zero-gravity environment, and the

flow remained supercritical from entrance to exit.

The distribution of Nusselt number for radially-spreading flow on a

disk is shown in Fig. 1.9. The disk surface was maintained at a uniform

temperature higher than the entering fluid temperature. The free surface

was assumed to be adiabatic with no evaporation. The Nusselt number was

calculated as Nu = hfl/k, where h = q /(T - T,). The Nusselt number

decreased rapidly near the entrance due to the development of the thermal

boundary layer from a uniform temperature condition at the entrance. The

development of this boundary layer was extremely rapid. In the absence of

gravity, the Nusselt number approached a uniform asymptotic value after a

short distance from the entrance. In this case, the effect of flow rate

was evident only in the thermally developing region and was very small in

32



•> : 5.0900E-01 re/s. r=0.102-O.I(>Tm

: 5.0000E-91 re/s. r=0.132-0.137m

-> ; 5.6000E-01 rn^s. r=0.162-0.107m

Fig. 1.8 Velocity vectors for radially spreading flow under
zero gravity at a rate of 7 LPM
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magnitude. The effect of flow rate became significant when gravity was

present, since the hydraulic jump was encountered at different locations.

In the supercritical region upstream from the jump, the Nusselt number

approached a constant value following the development of thermal boundary

layer. As soon as the jump was encountered, the Nusselt number first

decreased, then increased to a peak, then decreased by a small amount, and

increased monotonically further downstream. The irregular distribution in

the vicinity of the jump is due to the churning motion of fluid and mixing

of forward and recirculating flows. The monotonic increase in the

subcritical region indicated the development of a thermal boundary layer in

the recirculating flow region. The thickness of this boundary layer

decreased with radius, and therefore, the Nusselt number increased. The

maximum Nusselt number is seen to be at the exit end of the disk since the

flow is forced to re-attach to the surface at that location due to the

presence of the free falling liquid. Since the recirculating flow velocity

was smaller than the main stream flow, the changes in the subcritical

region were somewhat gradual in contrast to the rapid change in Nusselt

number near the entrance. It can be recalled here that the film height,

which was used as the lengthscale in the definition of the Nusselt number,

was much larger in magnitude in the subcritical region than the

supercritical region. To get a better understanding of the actual rate of

heat transfer, the dimensional heat-transfer coefficient is presented in

Fig. 1.10.

The heat-transfer coefficient decreased monotonically downstream in a

zero-gravity environment. In contrast to the Nusselt number, the

heat-transfer coefficient was found to be a function of flow rate, and as
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expected, the rate of heat transfer increased with flow rate. In the

presence of gravity, the heat-transfer coefficient decreased gradually

downstream in the supercritical region, attained a sudden drop as soon as

the jump was encountered, went through a somewhat irregular distribution

and then increased gradually in the subcritical region following the jump.

The lower heat-transfer coefficient in the vicinity of the jump was

expected, since the main flow in the supercritical region and the

recirculating flow in the subcritical region gather hot fluid there,

leading to a smaller wall to fluid temperature gradient. The irregular

variation is possibly the result of the churning motion of fluid particles

in the vicinity of the jump. For the flow rates and dimensions considered

here, the average heat-transfer coefficient over the entire plate was

larger for the zero gravity flow than the normal gravity flow. Therefore,

a better cooling of the disk may be expected when the system is operated in

a zero or reduced gravity environment, as in a space shuttle.

1.6 CONCLUSIONS

The computational methods for the prediction of the film height and

heat-transfer coefficient of free surface flow of a thin liquid film

adjacent to a stationary disk were critically investigated, significantly

improved, and compared with experimental measurements. A model for

estimating the film height at the outer edge of the disk when gravitational

body force is present was developed. The 'pressure optimization method'

was modified to appropriately handle flows involving a hydraulic jump. A

new version of the 'porous wall method' was presented, where iterations are

more systematic, uniformly convergent, faster, and yield more accurate

results.
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In the absence of gravity, the film height increased monotonically,

and the heat-transfer coefficient decreased gradually downstream. In this

case, the Nusselt number approached a constant value after the initial

development of thermal boundary layer. The velocity profile across the

thickness of the film was parabolic with the maximum at the free surface.

In the presence of gravity, a hydraulic jump was encountered that

isolated the supercritical and subcritical flow regions. Flow separation

was encountered at the location of the jump due to adverse pressure

gradient and frictional resistance at the wall. The heat-transfer

coefficient decreases downstream in the supercritical region and increases

downstream in subcritical region with a sudden drop and fluctuations around

the location of the jump. The predicted film height and location of the

jump compared reasonably well with experimental measurements.
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SECTION II

FLOV OVER A ROTATING DISK

2.1 SUMMARY

The results of a numerical simulation of the flow field and associated

heat transfer coefficient are presented for the free surface flow of a thin

liquid film adjacent to a horizontal rotating disk. The computation has been

performed for different flow rates and rotational velocities using a

three-dimensional boundary-fitted coordinate system. Since the geometry of

the free surface is unknown and dependent on flow rate, rate of rotation and

other parameters, an iterative procedure had to be used to ascertain its

location. The computed film height agreed well with existing experimental

measurements. The flow is found to be dominated by inertia near the entrance

and close to the free surface and dominated by centrifugal force at larger

radii and adjacent to the disk. The rotation enhances the heat transfer

coefficient by a significant amount.
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2.2 INTRODUCTION

The free surface flow of a thin liquid film adjacent to a rotating

surface is an interesting fluid mechanics problem since a number of surface

and body forces act on the system simultaneously to shape the flow structure.

The most dominant of these forces are: the friction exerted by the disk; the

centrifugal and Coriolis forces due to rotation of the disk; and the inertia

from the incoming fluid stream. This kind of flow is also quite commonly

encountered In" engineering processes; e.g., evaporation ~or condensation on a

turbine blade or spin coating of metals. The primary motivation of this

study, however, is to understand the fluid flow and heat transfer in a

proposed absorber unit for a space-based vapor absorption refrigeration

system. This kind of system is expected to be very useful in a micro-gravity

environment where the centrifugal body force can be an effective driving

mechanism for the thinning of the film to promote the absorption of the

refrigerant vapor into the absorbent.

The fluid motion adjacent to a rotating surface in an infinite quiescent

fluid medium is one of the fundamental problems in viscous fluid flow.

Sparrow and Gregg [1] presented an exact solution of the Navier-Stokes

equation for this case by estimating the thickness of the boundary layer from

a basic mass and momentum balance and developing a similarity variable to

transform the partial differential equations for the conservation of mass and

momentum to a set of ordinary differential equations. These equations were

integrated numerically across the thickness of the boundary layer to determine

radial, axial and tangential velocities in dimensionless form. Murthy [2]

analyzed the effects of turbulence in this flow by using the integral method

and compared the results with available experimental data.
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In the present study, however, we are not concerned with boundary layer

flow in an infinite medium of fluid, but flow of a thin film adjacent to a

plate. The boundary layer, however, develops inside this thin liquid film and

may extend all the way across the film. An analytical solution for the flow

of a thin film adjacent to a rotating disk was presented by Rauscher et al.

[3]. An asymptotic expansion technique was used where the radial spread of

fluid was perturbed to determine the effects of convection, Coriolis

acceleration, radial diffusion, surface curvature and surface tension. These

higher-order effects were discussed on a physical basis. Their solution was

valid for laminar flow with small Rossby number.

Espig and Hoyle [4] analytically studied the surface waves in a thin

liquid layer on a rotating disk. Nusselt's equation for film thickness on an

inclined plate was modified to develop an expression for average film

thickness, taking into account the effects of rotation. The thickness was

found to be a function of volumetric flow rate, fluid viscosity and angular

velocity of the disk. Needham and Merkin [5] studied the development of

non-linear waves on the surface of a horizontally rotating thin liquid film.

Using an asymptotic expansion technique, they studied the flow of a film much

smaller in thickness than the distance from the axis of rotation. This

distance, in turn, was smaller compared to the total radius of the disk in

order to eliminate any end effect. It was found that the thickness of the

film changes rapidly near the entrance due to spreading, while further away

from the inlet, the film height is mainly determined by the centrifugal force

and viscous stress. An expressions for film thickness was presented, which

appears to be the same as that developed by Espig and Hoyle [4].
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The analysis of evaporation of a thin liquid film from a rotating surface

was presented by Butuzov and Rifert [6]. A closed-form solution of the film

thickness was derived by neglecting inertia and making a basic balance of

centrifugal and ffictional forces acting on the film. Bornside et al. [7]

also studied evaporation from the free surface of a thin liquid film with

reference to spin coating process. They developed a one-dimensional flow

model accounting for variations of concentration, viscosity and diffusivity

across the thickness of the spin coated film. The flow of the liquid was

governed by a balance between centrifugal driving force and viscous resisting

force. The equations of the flow and transport were solved using Galerkin

finite element method.

In all the above-mentioned studies, the thin film was primarily driven by

centrifugal force. The inertia of the incoming fluid was either negligible or

assumed to be so. In a space-based absorption refrigeration system, however,

the film is expected to be introduced at the center of the disk with a

significant amount of inertia to have a continuous flow of absorbent on the

disk. This kind of system, where liquid is introduced at the center of the

disk from a pressurized container and driven both by inertial and centrifugal

forces, was studied recently by Thomas et al. [8,9].

Thomas et al. [8] presented the numerical solution of the one-

dimensional radial flow of a thin liquid film adjacent to a stationary and

rotating disk. The continuity and momentum equations were integrated across

the thickness of the film by assuming a flat velocity profile to develop a

single equation for film velocity. The resistance to the flow due to wall

shear stress was expressed in terms of an empirical friction coefficient which
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was estimated from the radial flow velocity. The thickness of the film was

predicted by solving the equation for film velocity as a transient problem

using the MacCormack predictor-corrector method.

Thomas et al. [9] presented experimental measurements of radially

spreading flow of a thin film adjacent to a horizontal disk. A non-obtrusive

capacitance technique was used for the measurement of the film height

distribution. A photographic study was done to understand the nature of the

surface waves. Tests were performed both for stationary and rotating disks at

flow rates ranging from 7 to 15 LPM. The rate of rotation varied between 0

and 300 RPM. Their experiments predicted the presence of a hydraulic jump

when the disk was stationary. The jump moved downstream with an increase of

the flow rate and rotational velocity. Waves were found to be present on the

free surface at all flow rates and rates of rotation.

The present study is undertaken to develop a computational procedure for

solving governing transport equations in their complete three-dimensional form

for the flow of a thin liquid film adjacent to a rotating disk. This

methodology elminated the need for assuming a friction coefficient as was done

in the one-dimensional model developed by Thomas et al. [8]. Furthermore, an

attempt is also made to improve the simple one-dimensional solution procedure.

All computed results are compared with experimental measurements of Thomas et

al. [10]. The details of the three-dimensional flow field and distribution of

the heat-transfer coefficient are discussed.

2.3 MATHEMATICAL MODEL

The curvilinear boundary-fitted coordinate system used for the
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three-dimensional numerical computation is shown in Fig. 2.1. The local

coordinates are directed along lines connecting the centers of the adjacent

grid cells. The x-axis is directed in the azimuthal direction, the y-axis

perpendicular to the plate and the z-axis along the radial direction. The

velocity components in these three directions are u, v and w, respectively.

Due to the axisymmetric nature of the flow and vertical entrance and exit

sections, u is directed parallel to the plate and v is directed perpendicular

to the plate. However, the w-velocity changes its direction along the plate

depending on the slope of the free surface. The height of the free surface

from the solid wall is denoted by 6, which varies with radial location.

For incompressible flow with constant fluid properties, the equations for

the conservation of mass, momentum, and energy are given by

V . V = 0 (2.1)

-t _}

DV = . lvp + ̂ 2 y + g (2>2)

(2-3)

The terms due to viscous dissipation and pressure work in the energy

equation are neglected as is typical for any low speed flow. Since the flow

is symmetric about the axis of rotation, there was no variation of velocity or
-»

temperature in the angular direction, i.e. 5V/dx = 0 and #T/5x = 0. At the

free surface, both tangential and normal stress components are zero. The

vanishing tangential stress condition is represented by the zero velocity
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Flow out

Rotating disk

Fig.2.1 Schematic of the flow of a thin liquid
film adjacent to a rotating disk
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gradient on the free surface. The normal stress condition on the free surface

leads to equations balancing the pressure and other stresses, including

surface tension. Scaling these equations, one can show that, for a thin film

flow where Weber and Reynolds numbers are large, all other stress terms are

negligible compared to pressure, leading to p = p on the free surface. The

kinematic condition on the free surface relates the variation of film height

to the velocity components. At the entrance plane, the velocity is assumed to

be radial with a parabolic profile. At the exit plane, the flow is assumed to

be fully developed with a hydrostatic pressure profile. The boundary

conditions for the flow considered here are then given by

at y = 0: V = 0ri, T = Ty (2.4)

-= 0, P = P , !^ = X,i v> ^ *V dz w'

775 = 0» heating (2-5)
T = T00,., evaporationsat

at z = rin: V = Vin P ({) - ®2] k' T = Tin

at z = rout:

Here n is the direction normal to the free surface. The quantities T ,

T . , T. , V. and a are assumed to be constant. Two different thermalS3/u in in
conditions are considered on the free surface: simple heating without

evaporation; and evaporation. For the first case, the free surface is assumed
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to be adiabatic in nature. In the second case, the free surface is isothermal

at its equilibrium saturation temperature, T , . In the present

investigation, it is also assumed that, in the case of evaporation, the fluid

enters at its equilibrium saturation temperature, i.e., T. = T0.. Thein S3.li

Nusselt number is defined in terms of film thickness since that is the most

significant length scale for this problem.

2.4 COMPUTATIONAL PROCEDURE

2.4.1 Three-Dimensional Method

The governing transport equations along with the boundary conditions

described in the previous section were solved numerically using a

boundary-fitted curvilinear coordinate system. The irregular free surface was

taken as one of the boundaries of the computational domain. The solution

domain had a pie shape structure extending from r. to r , in the radialin OU.L

direction and over a small angle in the angular direction in order to prevent

both distortion of body-fitted coordinates at large radii and clustering of

grids at smaller radii. The grid cells were generated by an algebraic

interpolation between the boundaries of the domain. In general, the cell

faces were non-orthogonal to each other. As shown in Fig. 2.1, the local

coordinates were defined along lines connecting the centers of the adjacent

grid cells. The x-axis was taken in the azimuthal direction, the y-axis

perpendicular to the plate and the z-axis in the radial flow direction. The

velocity resolutes in these three directions are u, v, and w, respectively.

In the finite-difference formulation, the co-variant components, i.e.,

components parallel to the cell faces, were used to represent the velocity and

force vectors.
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The finite-difference equations were derived by using the principle of

conservation of mass, momentum and energy at each cell. The primary variables

were preserved in the formulation instead of doing any non-dimensionalization.

The quantities were stored in a staggered fashion where they made more

physical sense for cell conservation. For each cell, the velocity components

were stored at downstream boundaries, whereas all pressures and temperatures

were stored at the cell center. The mass flux across a cell boundary was

computed exactly from the scalar product of the velocity vector and the vector

representing the area of the cell face. The convection contribution to a cell

from its neighbors were calculated exactly by taking into account the

curvature of a cell face and its non-orthogonal orientation. In the

calculation of diffusion, however, the cell boundaries were approximated to be

locally orthogonal. The hybrid difference scheme, demonstrated by Patankar

[10] was used to preserve the relative contribution of convection and

diffusion to a cell from its neighbor in terms of cell Peclet number. This is

a common practice in the computation of convective flows.

The distribution of cells in the computational domain was determined from

a series of tests with different number of cells in the x, y, and z

directions. Due to the axisymmetric nature of the flow, only 5 cells with an

angular extent of 2.3°/cell were found to be adequate in that direction. This

provided a total angle of 11.5° for the entire computation domain. Test runs

with 3.45°/cell and 2.3°/cell yielded heat transfer coefficient within 0.001

percent. Similarly, runs with 2 cells and 5 cells in the angular direction

gave heat transfer coefficient within 0.0005 percent. Similar tests for the

other two directions showed that 50 cells in the radial direction and 30 cells

across the thickness of the film results in grid-independent solutions.
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Therefore, the computation domain was divided into 5 x 30 x 50 cells by simple

algebraic interpolation to generate a uniformly distributed grid structure.

The finite difference equations were solved by using the SIMPLEST

algorithm as presented by Spalding [11], which is an iterative solution

procedure where the computation was started by guessing a value for the

pressure. Then the momentum equations were solved to determine the velocity

components. The pressure was updated using the continuity equation. Even

though the continuity equation does not contain any pressure, it can be easily

transformed to a pressure correction equation as shown by Patankar [10]. The

iterations were continued until the sum of the residuals for all computational
f\

cells dropped below 10" for each equation. Since the flow was not coupled to

the thermal transport for the problem considered here, the temperature field

was solved once the film height distribution was completely ascertained.

Since the geometry of the free surface was dependent on the flow

parameters, but needed to be specified to generate the grid structure for the

three-dimensional computation, an iterative procedure had to be used to

ascertain the location of the free surface. The free surface boundary was

assumed to be a permeable wall through which fluid particles were allowed to

enter or leave the computational domain. Since the ambient pressure was

prescribed, an outflow took place when the static pressure of the fluid

adjacent to the free surface was higher than the ambient pressure and vice

versa. The penetration of fluid through the free surface essentially violated

the kinematic condition on the surface, which was arrived at by adjusting the

surface height distribution in successive iterations. The scheme worked as

follows:
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1. A free surface height distribution was prescribed (based on

one- dimensional solution of Thomas et al. [8] or any improved method.

2. The flow field was solved completely for that height distribution.

3. The amount of penetration of the fluid through the surface was calculated

at all location along the flow.

4. The new free surface height was determined from the old height and the

rate of penetration.

( K \ f x \ ^ n '"loss'k / r x
* Wk = ('old>k + a Ijin ( Wk

where o is the relaxation factor.

5. Iterations were continued until the rate of penetration became

negligible.

For a given surface height distribution, the deviation from the ideal

zero penetration condition was estimated by the following measures.

(a) Root square penetration
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(b) Absolute sum of penetration

(2.8b)

(c) Maximum error in flow rate

I(Q " Q- )I
= Qin max (2.8c)

All these quantities were found to decrease almost monotonically with

iterations. The final results presented here had both absolute sum of

penetration and maximum error in flowrate of less than 0.06 and root square

penetration less than 0.02. A relaxatim factor of a = 1 was found to be

adequate in most computations. Since flow field was not affected by thermal

transport, the energy equation was solved only for the final free surface

height distribution with no penetration through the surface. The above

computational algorithm is termed as porous wall method originally outlined by

Rahman et al. [12]. Significant modifications of the method, however, have

been made here to improve the iteration procedure as well as the error

estimates. Moreover, this is the first time it has been applied to predict

the three-dimensional flow involving rotation.

2.4.2 Improved One-Dimensional Method

The one-dimensional computational procedure, developed by Thomas et al.

[8] was also improved here by incorporating a better estimate of frictional

resistance exerted by the solid wall on the flow. In the one-dimensional

method, the governing equations for mass and momentum were integrated across

the thickness of the film assuming a uniform velocity profile. In the
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original procedure of Thomas et al. [8], the flow was assumed to be strictly

radial in nature with a superimposed solid-body rotation. The resistance to

the flow due friction was taken to be the resistance in the radial direction.

In the azimuthal direction, the velocity remained constant across the

thickness of the film with no resistance form the solid wall. In reality,

however, the velocity is expected to change due to the finite viscosity of the

fluid, so there will be frictional resistance form the wall in the azimuthal

direction. To account for the frictional resistance due to the angular

velocity, we may define the total shear stress as

rw =

o
Here T = Cr (1/2 p V ), where c^ can be calculated by using the Blasius (see

Kays and Crawford [13]) or parabolic solution given by Rahman et al. [14],

Also, T* can be estimated from the exact solution of laminar flow adjacent to

a rotating disk in an infinite extent of fluid. As given by Schlichting [15],

= 0.6 />r yl/2 3̂/2 (2.10)

Using T as the shear stress at the solid wall, the discretized equations of

Thomas et al. [8] were reformulated and solved to give the film height

distribution for any given flowrate and rate of rotation.

2.5 RESULTS AND DISCUSSION

The three-dimensional computational procedure discussed in the previous

section was first tested against the limiting flow situations, where
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theoretical or experimental results are already available. By setting the

rotational speed to zero, the computed results reproduced exactly the film

height distribution and velocity field corresponding to two-dimensional thin

film flow adjacent to a stationary disk as presented by Rahman et al. [12].

Another limiting case was the flow motion induced by a rotating disk in an

otherwise stagnant infinite fluid stream. Analytical solutions for this case

was developed by Sparrow and Gregg [1]. In this system, the flow is limited

to a thin boundary layer adjacent to the disk. The computed solution for this

limiting case was plotted in Fig. 2.2, where it was compared with the

analytical results of Sparrow and Gregg [1]. The non-dimensional distance, £,

and velocity components G and F are defined as

I1"
-I vC = y \* (2-13)

F = L (2.14)

(2.15)v '

It can been seen that both the radial and azimuthal velocity distributions

across the thickness of the boundary layer are reasonably matched. One major

difference between the conventional boundary layer flow and the flow of a thin

film is that the thickness of the film is finite and bounded by the free

surface which interacts with the surrounding medium.

The height of a thin film adjacent to a rotating disk was experimentally

measured by Thomas et al. [11]. A horizontal disk of diameter 406.4 mm was
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used for the experiment where water at 20°C was introduced radially through a

slot of height 0.267 mm at a radial location of 50.8 mm. The film height was

measured by using a non-obstrusive capacitance probe from 76.2 mm to 195.6 mm.

The measurements were not reported past 195.6 mm because part of the

capacitance sensor was over the edge of the disk. Twenty sets of experimental

data were taken covering flow rates of 7-15 LPM and rotational speeds of

55-300 RPM. The flow was isothermal and no measurement of heat transfer was

done in that experiment. In the present investigation, we used the flow and

rotation conditions presented by Thomas et al. [11], so that a relative

comparison of the film height distribution could be made. The specific cases

chosen here are listed in Table 2.1. Prediction of film height and heat

transfer coefficient could be done for all the experimental runs. However, to

save the compuational efforts, some specific cases were picked up to cover the

range of experiment in terms of flow rate and rate of rotation, as well as to

understand the trend of variation of flow field and heat transfer coefficient

with flow rate and rotational speed. The table also lists the root square

penetration, absolute sum of penetration and maximum error in flow rate

corresponding to the three-dimensional film height distribution for each

specific flow rate and rate of rotation. For computational runs involving

heat transfer, the wall temperature is assumed to be 30 C, whereas the

entering fluid (water) is at 10°C. This gives a film temperature of 20°C for

the evaluation of properties.

The computed film height for a flow rate of 9 LPM and rotational speed of

200 RPM (case 1 in Table 2.1) is shown in Fig. 2.3. The experimental data as

well as the computed results using previous one-dimensional solution

algorithms are also shown in the same figure. It can be noticed that the
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Table 2.1

Flow and Rotation Rates in Present Investifiation

Case t

1

2

3

4

5

6

7

8

Flow
Rate
(LPM)

9

15

7

11

15

15

7

15

Rotational
Speed
(RPM)

200

200

100

100

300

55

300

100

Root Square
Penetration

0.0043

0.0072

0.0050

0.0110

0.0020

0.0127

0.0148

0.0092

Absolute
Sum of

Penetration

0.0199

0.0235

0.0258

0.0406

0.0097

0.0593

0.0445

0.0332

Maximum
Error in
Flow Rate

0.0113

0.0152

0.0152

0.0218

0.0076

0.0540

0.0100

0.0224
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three-dimensional solution predicts the trend of the experimental data, i.e.,

the film height first increases, attains a peak and then decreases further

downstream. The increase of the film height near the entrance is due to

strong frictional resistance the flow encounters from the solid wall.

However, as the radius increases, the centrifugal force increases in magnitude

and overpowers the frictional resistance. Then the film height decreases due

to the increase in flow velocity as well as radial spreading. This latter

effect is more significant at smaller radii. At larger radii, the curvature

decreases and radially spreading flow approaches a plane flow. The

one-dimensional solution of Thomas et al. [8] shows a monotonic decrease of

film height with radius, and the height is consistently underpredicted except

very close to the exit. Thomas et al. [8] assumed a solid-hody rotation

condition with no variation of velocity across the thickness of the film.

Moreover, friction was computed based on the radial velocity using an

empirical correlation. Therefore, the centrifugal force was more and

frictional force was less accounted for in the numerical formulation.

Therefore, the trend seen here is quite expected. The modified

one-dimensional solution presented here improved the prediction of film height

at smaller radii, but failed to do so at large radii. Here both radial and

azimuthal components of frictional forces were accounted for, but still

keeping no velocity variation across the thickness of the film. It may be

noticed that the present three-dimensional solution, unlike the

one-dimensional methods, does not require any estimate of friction

coefficient. Figure 2.3 also shows a comparison with the analysis of Needham

and Merkin [5]. Since the analysis presented an asymptotic solution valid for

solid-body rotation, the analytical solution shows a monotic decrease in film

height and compares well with the computation of Thomas et al. [8], where
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similar assumptions were incorporated. In reality, however, viscous

resistance at the wall slow down the film and result in a larger height

distribution. Moreover, the asymptotic solution neglects the effects of

inertia which was significant in the experiment and adequately taken care of

in the three-dimensional solution. The computed results for a rotational rate

of 200 RPM and flow rate of 15 LPM (case 2 in Table 2.1) are shown in Fig.

2.4. Here, the present three-dimensional solution gives a very good agreement

with the experimental data. The one-dimensional algorithm of Thomas et al.

[8] consistently underpredicts the film height whereas the solution present

one-dimensional algorithm improves it somewhat, particularly near the entrance

and exit. The analytical solution of Needham and Merkin [5] shows a large

film height near the entrance that monotonically decreases downstream. Near

the entrance, the flow is dominated by inertia, and therefore, the analytical

results of Needham and Merkin [5] is not valid in that region.

The film height at a rotation rate of 100 RPM for two different flow

rates (cases 3 and 4 in Table 2.1) are shown in Figs. 2.5 and 2.6. It can be

seen that at this rate of rotation, the one-dimensional solution procedure

using resultant frictional resistance gives a reasonable overall agreement,

whereas the procedure of Thomas et al. [8] still underpredicts the film height

at most locations. The analytical solution, as before, overpredicts the film

height at smaller radii and underpredicts it at larger radii. The present

three-dimensional solution gives the best agreement with the experimental data

even though it does not coincide with it. A small overestimate of the film

height near the entrance may be because of the development of the velocity

profile from the given entrance boundary condition. At this boundary, the

velocity was assumed to be parabolic in nature with a maximum on the free
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surface. This is the best condition one can impose, particularly for laminar

flow, as confirmed from the distribution of velocity across the thickness of

the film in an intermediate location of the flow.

The distribution of the film height for 300 RPM and flow rate of 15 LPM

(case 5 in Table 2.1) is shown in Fig. 2.7, where it is compared with the

one-dimensional predictions of Thomas et al. [8] experimental data of Thomas

et al. [9] as well as the analysis of Needham and Merkin [5]. In this

situation, the numerical solution underpredicts the experimental data in most

regions. The one-dimensional algorithm of Thomas et al. [8] produces a film

height distribution that is much smaller than the experimentally measured

values. The present one-dimension algorithm improves it further, whereas, the

present three-dimensional solution compares best with the experimental data.

The trend of the data that the film height first increases, attains a peak and

then decreases downstream is only captured by the present three-dimensional

numerical solution. The one-dimensional solutions for this case show a

monotonic decrease of film height with radius. It may be noticed here that

analysis of Needham and Merkin [5] compares better with the computation of

Thomas et al. [8] at a larger rate of rotation since the effects of inertia

become smaller. The above comparisons (Figs. 2.3-2.7) show that the present

algorithm can be an effective means for the prediction of the film height for

a thin film flow adjacent to a rotating disk. The small deviations from the

experimental values are within the uncertainties of experimental measurements

and can also be attributed to unsteady surface waves as well as the surface

tension effects that were not accounted for in the present steady-state

numerical formulation, especially at the outer edge of the disk where the film

height suddenly increased.
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The distribution of the velocity vectors at three locations across the

film are shown in Figs. 2.8 and 2.9, respectively, for two limiting operating

conditions: case 6 (55 RPM, 15 LPM) and case 7 (300 RPM, 7 LPM). In Fig.

2.8, it can be seen that the velocity was almost radial at y/8 = 0.88. Since

the flow rate was high compared to the rate of rotation, the flow near the

free surface was almost radial at this condition. At y/5 - 0.13, which was

near the solid wall, it can be seen that the velocity vectors were directed

more in the angular direction, particularly at larger radii. Looking at the

magnitude of the velocity vectors, it can be seen that the centrifugal force

increases as the radius increases. At y/S =0.48, it can be seen that the

velocity vectors turn at an angle that increases with radial distance. Also,

the overall magnitude of the vectors decreases with radius due to the

resistance exerted by the solid wall. The flow is dominated by inertia at

smaller radii and at locations away from the wall, whereas the contribution of

rotation becomes important at locations near the solid wall and in regions

away from the center. From a plot of the velocity components in the radial

and azimuthal directions, it was found that the w-velocity profile is

approximately parabolic in nature with a maximum at the free surface and zero

at the wall. This corroborates corresponding observations for a stationary

disk as presented by Rahman et al. [12]. The azimuthal component is maximum

at the solid wall and gradually decreases as the free surface is approached.

The normal component of velocity was found to be small compared to either of

these components.

In Fig. 2.9, it can be noticed that the flow is dominated by rotation in

most regions except near the entrance when the rotational speed is 300 RPM and

flow rate is 7 LPM. At this condition, the inertia is overpowered by the high
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Fig.18 Velocity vectors for thin liquid film at a flow rate of
15 LPM and angular velocity of 55 RPM
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Pig.19 Velocity vectors for thin liquid film at a flow rate of
7 LPM and angular velocity of 300 RPM
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rotational velocity after traversing some distance. Looking at the magnitude,

it can also be noticed that the resultant velocity increases with radius. At

intermediate conditions, the vector plots showed behavior within these two

limits. The effect of the flow rate was found to increase the radial

component of velocity, whereas rotation increased both radial and azimuthal

components. The friction always counteracts these velocities to arrive at an

equilibrium. The fluid particles exit the disk at an angle with the radial

direction that increases with the rate of rotation.

A plot of Nusselt number for a flow rate of 15 LPM at two different rates

of rotation are shown in Fig. 2.10 (cases 5 and 8 in Table 2.1). The plots

correspond to two different thermal boundary conditions on the free surface,

namely, simple heating without evaporation, when the free surface is

approximately adiabatic in nature, and evaporative free surface when the

surface is isothermal at the equilibrium saturation temperature. The thermal

condition at the rotating disk surface is assumed to be a uniform temperature

higher than the entering fluid (or saturation) temperature. It can be seen

that the Nusselt number decreases rapidly near the entrance at all flow and

heating conditions. This is due to the development of the thermal boundary

layer as the fluid moves downstream. For both the cases of heating and

evaporation, it can be seen that the Nusselt number for the case of 300 RPM

decreases monotonically all the way to the exit, whereas in the case of 100

RPM, the Nusselt number decreases first, attains a minimum and then increases

further downstream to approach an approximately constant value near the exit.

The Nusselt number for heating is consistently found to be higher than the

corresponding case of evaporation at all radial locations and all rates of

rotation. This is also observed in connection with heat transfer to a falling
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liquid film presented by Seban and Faghri [16]. The Nusselt number for 300

RPM is found to be higher than that for 100 RPM in most regions of the disk

except close to the exit. The slightly higher Nusselt number near the exit is

due to much larger film height than the corresponding case of 300 RPM. From

this figure it can also be seen that an overall enhancement of Nusselt number

is obtained by increasing the rate of rotation.

The Nusselt number here is defined in terms of local film thickness,

which also varies along the radius. The film thickness also decreases as the

rotational velocity increases. To see the distribution of the heat-transfer

rate more clearly, the values of the heat-transfer coefficient for the same

flow rate and heating conditions are shown in Fig. 2.11. It can be seen that

heat-transfer coefficient for 300 RPM is consistently higher than that for

100 RPM at all radial locations. This is quite expected since the rate of

rotation increases the centrifugal force which accelerates and thins the film,

both of which contribute to the enhancement of heat transfer. It can also be

seen that for the case of 300 RPM and simple heating, the heat transfer

coefficient decreases near the entrance, attains a minimum and then increases

further downstream. For the other cases shown here, the heat transfer

coefficient approaches approximately a constant value after gradual decrease

near the entrance. As the radius increases, the inertial force decreases and

centrifugal force increases, both of which are counteracted by frictional

resistance at the solid wall. In the absence of rotation or any external body

force, the heat-transfer coefficient gradually decreases downstream as seen in

the studies by Rahman et al. [12] for radial flow at zero gravity. The

rotation balances out or even overcomes the frictional resistance at larger

rate of rotation, as seen in the vector plot for 300 RPM (Fig. 2.9).
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Therefore, the convective heat transfer, which is intimately related to the

fluid velocity, increases downstream once the centrifugal force becomes the

dominant driving mechanism. If a disk of larger radius was considered, we

could possibly see a minimum followed by a gradual rise in the heat-transfer

coefficient for all cases. It can also be noticed that the effects of

rotation in the enhancement of the heat-transfer coefficient is more for the

case of simple heating than the case of evaporation.

Figure 2.12 shows the variation of Nusselt number with radial distance

for a given rate of rotation at different flow rates. For the case of 15 LPM,

the Nusselt number monotonically decreases from the entrance radius, but for

the case of 7 LPM, it decreases gradually at smaller radii and approaches a

constant value further downstream. The behavior is the same for both the

cases of heating and evaporation. For the disk considered here, the Nusselt

number for 15 LPM is found to be higher than that for 7 LPM at all radial

locations. This is expected, particularly at smaller radial locations, since

fluid velocity will be higher at larger flow rates. At large radii, however,

when effects of rotation become more important, a higher heat-transfer

coefficient may be attained by using a smaller flow rate due to more thinning

of the film. So, by controlling the disk radius, flow rate and rate of

rotation, one may attain any desired requirement of heat transfer in this kind

of flow system.

2.6 CONCLUSIONS

Numerically computed distributions of the film height, velocity vectors

and heat-transfer coefficient are presented for the free surface flow of a

thin liquid film adjacent to a horizontal rotating disk. The flow is found to
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be dominated by inertia at smaller radii and close to the free surface and

dominated by rotation near the solid wall and at larger radii. The radial

component of velocity is found to have an approximately parabolic profile

which is maximum at the free surface and zero at the solid wall. The angular

component of velocity is maximum at the wall and gradually diminishes across

the thickness of the film. The local fluid velocity is increased with an

increase in both the volumetric flow rate and angular velocity of rotation.

The fluid particles exit the disk at an angle with radius that increases with

rate of rotation. At the flow rates and rates of rotation considered here,

the film height first increases, attains a peak and then decreases further

downstream. The increment of the film height is attributed to frictional

resistance whereas the reduction of the film height at larger radii is due to

the spreading of the film as the flow area increases as well as the increase

of the centrifugal force with radius. The predicted height using the present

three-dimensional computational method agreed well with experimental

measurements. The rate of heat transfer is enhanced by a significant amount

by increasing the rate of rotation for both the cases of simple heating with

no evaporation and evaporation at the free surface.
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