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Chapter I

Background and Overview of Document

I. Introduction

The following summarizes the progress toward completion of a

comprehensive diagnostic objective analysis system based upon the

calculus of variations. The approach was to first develop the

objective analysis subject to the constraints that the final

product satisfies the five basic primitive equations for a dry

inviscid atmosphere: the two nonlinear horizontal momentum

equations, the continuity equation, the hydrostatic equation, and

the thermodynamic equation. Then, having derived the basic model,

there would be added to it the equations for moist atmospheric

processes and the radiative transfer equation.

The remainder of this section is organized into subsections as

follows. A brief review of the problem design and progress to the

beginning of the current completed grant period is given in I.I.

This first period is designated as Phase I. Then subsection 1.2

summarizes progress under this grant (Phase II) and references

following chapters that give results in greater detail.

The reader should pay particular attention to the findings

presented in Chapter V. A conceptual error within one of the
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mathematical derivations was discovered while preparing Chapter V.

The outcome is that some of the negative conclusions regarding the

meaningful incorporation of satellite thermodynamic data into the

meteorological data mainstream are no longer valid.

1.2. Background of Initial Project and Phase I Summary

By 1981, most quantitative satellite data for the troposphere

consisted of TIROS-N temperature retrievals (Smith and Woolf,

1976), some cloud wind vectors, early VAS soundings (Smith, 1970;

Chesters, et al., 1981), and initial SASS surface winds (Jones, et

al., 1979). Although these data revealed new and interesting

phenomena, it was becoming apparent that satellite data could not

be used to quantify the dynamics of the troposphere without being

supplemented by conventional data.

The tools available to dynamically assimilate satellite data

with conventional data consisted mostly of initialization methods

for numerical prediction models. For example, normal mode

initialization (Baer, 1977; Machenhaur, 1977) improved the dynamic

coupling between the observations and numerical models. Early

comparisons between numerical predictions with and without

satellite temperature data using initialization schemes of the time

were inconclusive (Phillips, 1976; Tracton et al., 1981; Ghil et

al., 1979). The impact of satellite data was highly dependent on

the capability of the analysis and forecast system used for the

impact testing.
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There was, therefore, a need for other methods for blending

satellite data with conventional data. The direct variational

methods presented by Sasaki (1958, 1970) are applicable to a

diagnostic data assimilation method. Achtemeier (1975) applied

Sasaki's method to blend diverse conventional data to satisfy the

primitive equations. This work revealed the potential of the

direct variational method as well as some of the inherent

difficulties. The purpose of the variational objective analysis

project funded by NASA was to extend the Achtemeier method to blend

satellite data with conventional data.

The general goals of the project which began in 1982 (see

Achtemeier, et al., 1986) were to:

(1) Modify the Achtemeier (1975) numerical variational model for

the assimilation or merging of weather data (constraints: the

nonlinear set of dynamical equations for atmospheric flow plus

the radiative transfer equation) collected remotely from space

with conventional weather data.

(2) Translate the variational theory into a practical model that

can be used by other scientists within the NASA Global Scale

Atmospheric Processes Research Program and elsewhere.

(3) Design the variational assimilation to be independent from

numerical forecast models - that is, make it diagnostic. This

does not preclude the method from being used to develop

initial fields for numerical models nor the blending of model

forecast fields with satellite and conventional data.

(4) Apply the variational model to estimate minimal data
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requirements (data type, sampling frequency, density,

accuracy) for accurate diagnosis of atmospheric structure that

could be useful for the design of future satellite-borne

instruments.

The project began with a review of the Achtemeier (1972, 1975,

1979) applications of the Sasaki (1958, 1970) variational methods

by a mathematical consultant. This review confirmed that the

applications of Sasaki's methods were mathematically sound. We

then commenced the development of a general numerical variational

model that includes the following dynamical constraints: the two

nonlinear horizontal momentum equations, the hydrostatic equation,

the continuity equation, the thermodynamic equation for moist

convective processes, a moisture conservation equation, and the

radiative transfer equation. From the experience gained from the

previous studies, it was known that the application of the direct

variational method to the above dynamic constraints presented three

formidable mathematical problems.

;

(1) Courant (1936) showed that the number of subsidiary conditions

(dynamic constraints) must be at least one less than the

number of adjustable dependent variables. Inclusion of the

same number of constraints as dependent variables, such as the

five primitive equations with five dependent variables,

overdetermines the problem and a solution is not guaranteed.

Achtemeier (1975) originally attempted to circumvent this
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problem through a parameterization of the tendency terms of

temperature and the velocity components that required the

exact solution of the integrated continuity equation.

However, this method (a variational adjustment within a

variational adjustment) was considered a failure after an

extensive analysis (Achtemeier, 1979) found unrealistically

large velocity component tendencies where actual velocity

changes over a 12-hr period were small.

(2) Application of the direct variational method to the local

tendencies of temperature and the horizontal velocity

components yield terms in the Euler-Lagrange equations that

are local tendencies of Lagrange multipliers. Boundary

conditions for these terms are unknown. The problem of time

consistency in variational problems has been examined by Lewis

(1980, 1982) and Lewis et al (1983). More recently, the time

consistency problem has been found more tractable through use

of the adjoint method (Lewis and Derber, 1985; Talagrand and

Courtier, 1987).

(3) The Euler-Lagrange equations produced by Sasaki's method

include the dynamical constraints plus variational equations

which are equal in number to the number of dependent variables

to be blended and equal in complexity to the complexity of the

original constraints. This set of complicated nonlinear

partial differential equations presents formidable programming
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problems and is difficult to solve by traditional methods.

Achtemeier (1975) developed a cyclical solution method which,

upon scaling the equations and expressing the terms in powers

of the Rossby number, places higher order terms in forcing

functions, solves the equations as a linear set and updates

the higher order terms with the new solutions. The method,

which converges rapidly, was modified for this project.

To better assure progress toward the development of the

general variational analysis model, the task was divided into four

variational models of increasing complexity. MODEL I, including

the two horizontal momentum equations, the hydrostatic equation,

and an integrated continuity equation as dynamical constraints,

addresses the problems that arise from applying the direct

variational method to local tendency terms. The cyclical solution

method developed by Achtemeier (1975) is applied to the MODEL I

finite differencing scheme. A nonlinear vertical coordinate reduces

the need to vertically interpolate satellite-derived temperatures.

MODEL II, which includes MODEL I plus the thermodynamic equation

for a dry atmosphere, focuses on the overdetermined solution

problem posed by Courant. MODEL III includes MODEL II plus the

radiative transfer equation as a dynamical constraint and the

radiance as a dependent variable. MODEL IV incudes moisture and

its parameterizations.

The theoretical development and initial evaluations of MODEL

I are given by Achtemeier (1986a), Achtemeier et al. (1986a,
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1986b) , and Kidder and Achtemeier (1986) . In MODEL I, the tendency

terms for the horizontal velocity components were separated into

advective and developmental components; the advective component

explains local changes caused by disturbances moving in a basic

current and the developmental component explains local tendencies

caused by changes in the structures or intensities of the

disturbances. The advective components were incorporated into the

dynamic equations through time to space conversion, and the

developmental components became dependent variables.

MODEL I successfully diagnosed local tendencies of the

horizontal velocity components. Diagnosed local tendencies of the

horizontal velocity components compared favorably with observed

three hour tendencies, whereas local tendencies calculated from

direct substitution of unadjusted fields of data into the dynamic

constraints did not.

1.2 Summary of Results under Phase II

Theoretical development, programming, and evaluation of MODEL

II was completed early in 1987. MODEL II included the five

primitive equations for a dry atmosphere as dynamic constraints

ie., MODEL I plus the thermodynamic equation. The partition of the

horizontal velocity tendencies with the definition of the

developmental components as dependent variables increased the

number of dependent variables from five to seven. Therefore, we

have solved the problem of overdetermining the solution (Courant,
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1936).

Evaluation of MODEL II revealed that the tendency term

formulations remained stable (Achtemeier, 1988c). However, first

order terms that contain the divergence adjustment cancel out in

the cyclical solution formulations. The divergence adjustment must

then be carried in second order terms and through other variables.

Formulating the continuity equation as an ancillary constraint to

be satisfied at each cycle - a variational model within a

variational model - and "nudge" the solution does not always

provide the desired dynamic balance with the divergent part of the

wind. Details of the MODEL II evaluation are presented in Chapter

II.

Further examination of MODEL II found that the divergent

component of the wind can be made to satisfy the continuity

equation subject to the satisfaction of an additional mathematical

constraint. That constraint requires the adjusted wind field to

satisfy a particular solution of the integrated vorticity equation.

The particular solution satisfies the conditions that the sum of

the terms of the vorticity equation vanish when integrated from the

surface to the top of the domain and that the divergence vanishes

when integrated from the surface to the top of the domain. This

latter condition satisfies the integrated continuity equation.

Both MODEL I and MODEL II were reformulated mathematically and

reprogrammed into a new version MODEL IIB. MODEL IIB is the

subject of Chapter III. It forms the new basic 5-primitive

equation variational objective analysis model that must be
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satisfied before any additional dynamic constraints can be added to

increase the complexity of the objective analysis technique. The

successful completion of MODEL IIB therefore, is the focus of the

Phase II research effort.

The need to rederive the basic variational models also changed

the focus of this research. The original objective to develop an

analysis tool for the incorporation of satellite data into the

mainstream of meteorological data was changed from applied research

to basic research. Rather than take an existing method and modify

it to produce a product, it became necessary to prove that the

variational method fundamentally was workable.

Several other research efforts aimed at expanding the

variational objective model beyond the basic model were pursued

commensurate with the development of MODEL IIB. A variationally

constrained temperature profile analysis was derived with the

dynamic constraints being the four radiative transfer equations for

the microwave channels used to sample within the troposphere.

Rawinsonde temperature and the four brightness temperatures are the

adjustable variables. Chapter IV presents the results from this

study. Then, in Chapter V, the radiative transfer equations were

combined with the equations for a geostrophic, hydrostatic

atmosphere as part of a theoretical study to determine the impact

of the radiative transfer equations upon the variational analysis.

Additional effort was directed to the goal was to make the

variational analysis more responsive to the original observations.

The gridding of meteorological data is the first step in performing



objective analysis and is done independently from the variational

adjustments. Therefore our first efforts in achieving this goal

was to improve upon the objective analysis method. Chapter VI

presents a study of the effects of influence radius upon an

objective analysis and Chapter VII presents a modification of a

successive corrections technique for improved derivative

calculations.
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1. Introduction

The MODEL II variational data assimilation model is the second

of the four variational models designed to blend diverse

meteorological data into a dynamically constrained data set. MODEL

II differs from the MODEL I developed during Phase I in that it

includes the thermodynamic equation as the fifth dynamical

constraint.

Thus MODEL II includes all five of the primitive equations

that govern atmospheric flow for a dry atmosphere. The reason for

delaying the introduction of the thermodynamic equation until MODEL

II is as follows. Courant (1936) showed that the number of

subsidiary conditions (dynamic constraints) must be at least one

less than the number of adjustable dependent variables. The five

primitive equations form a closed set of equations with five

dependent variables. Inclusion of the same number of constraints

as dependent variables overdetermines the problem and a solution is

not guaranteed. Achtemeier (1975) attempted to circumvent this

problem through a parameterization of the tendency terms of the

velocity components and the temperature that required the exact

solution of the integrated continuity equation. This method, a

variational adjustment within a variational adjustment, was

considered a failure after an extensive analysis (Achtemeier, 1979)

found unrealistically large velocity component tendencies where

actual velocity changes over a 12-hr period were small.

The approach taken in the development of MODEL I was to make
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possible the inclusion of the five primitive equations by

increasing the number of dependent variables. We defined two new

dependent variables, the developmental components of the horizontal

velocity tendencies, which increased the number of dependent

variables from five to seven. Though this solves the problem of

the number of subsidiary conditions, the extent of internal

coupling among the variables and within the equations could not be

determined fully until the development and evaluation of MODEL II.

2. MODEL II: Thermodynamic Equation as a Dynamic Constraint

Upon defluxing and omitting the dissipation term of the

thermodynamic equation in Anthes and Warner (1978) , the

thermodynamic equation as it appears as a dynamical constraint in

MODEL II is,

._._0
cp

The omega-term (term 4) of the thermodynamic equation can be

transformed into the nonlinear sigma coordinate system through the

definition,

- _ ( 2 )
P -Pu



14

where the superscript, *, and the subscript, u, identify,

respectively, the variables at the reference pressure level and at

the top of the model atmosphere. For more information on the

nonlinear vertical coordinate system, refer to Appendix A.I.

Furthermore ,

i] (p,-p*)-3 (3)
P*-PU

where the subscript, s, refers to quantities measured at the

surface. We differentiate (2) with respect to time. If
\

a -- ̂— (4)
P -Pu

and

J-=[3p(p-p*)2+aJ (p-p«) (5)

then we may define two coefficients such that

and

(7)
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for p>p*, and

1_P ' -P U
J ap o*p

and

<?4-0 (9)

for p < p*.

The thermodynamic equation in the nonlinear sigma coordinates

is, upon substitution for the omega-term,

(10)
cp cp

Here the subscript, W, refers to the whole temperature, Tu = TR +

T, where TR is a reference temperature for the layer and is always
<

in hydrostatic balance and T is the departure from the reference

temperature that is subject to adjustment within the variational

model. Substitution for the whole temperature yields the

thermodynamic equation in the adjustable part of the temperature,

+m(u + v } + o - (TR-T) (g36+g4o> . ) + o - - - 0 (11)
dt dx dy do c R 3 4 s da c
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Now nondimensionalize the thermodynamic equation. Letting

u-Uu' , v-Uv1, At=(L/C) At',

TR°QT'R~ ( gH/R) T'R, A T- ( gH/R) ( F/R0) bT' (12)

p-Pp', o~(C/L)o', ws~

and dividing through by (C/L) (gH/R) (F/R0*) , the nondimensionalized

thermodynamic equation with primes suppressed is,

dt dx dy do

Dividing by the additional R0 renders (13) into the same order of

magnitude as the other dynamic equations of MODEL II. In addition,

it can be shown that the two terms that include TR combine to form

the static stability,

'"'

Therefore, the thermodynamic equation reduces to

.
do c0
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Next, the thermodynamic equation is converted to finite differences

and made compatible with the Arakawa D-grid finite difference

template developed for MODEL I (Achtemeier, et al. . 1986) . Fig. 1

shows the template with the locations of the variables that appear

in the thermodynamic equation. Note that the local tendency of

temperature has been defined as the dependent and adjustable

variable, ET. The finite difference version of the thermodynamic

equation is,

(16)

RO [ET+ (m) *y (u) xa (Tx) y+ (m) *y (v) y° (Ty)
 x

CP

where the various overbar averages are defined in Achtemeier, et

al.. (1986).

3. MODEL II. Variational Equations

The variational analysis melds data from various measurement

systems at the second stage of a two-stage objective analysis. All

data are gridded independently in the first stage and are combined

in the second stage. The gridded observations to be modified are

meshed with the dynamic constraints through Sasaki's (1970)

variational formulation which requires the minimization of the

integrand of an adjustment functional. Now it is not necessary to

reproduce the full derivation of MODEL I plus the thermodynamic
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equation in order to get MODEL II. Each term of the equations is

a linear combination with the other terms. Therefore, all that is

required is to perform the variational operations upon the

thermodynamic equation and add the resulting terms to the

appropriate adjustment equations of MODEL I. Let,

J-2A,5fl?5+TC8 (ET-Er)2 (17)

where n& is the precision modulus weight for the temperature

tendency and m5 is equation (16). Performing the variations upon

each of the dependent variables that appear in the thermodynamic

equation yields the following terms to be added to the respective

variational equations.

A JT =ir I c1 _jr °\ 0.1? 1 =nl».Cij,= 1lg \Ci-p Cif I ^i\oAg = U

», ,_£> /TJ;\ y i ~ \ ( f F ~ \ y\ xoO U~K-. \ITll \ A c \ l . , ) I
\J J A

°p

dv-R0(m)
x(\5(T~y)

 x)y° (20)

(21)

(u) x(T5)y] x-R0[(m)
(22>
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Table l summarizes the modifications of the existing MODEL I

equations that are required to implement MODEL II. The first

column labeled "variable referenced" locates the variable in the

grid templet shown in Fig. l to which the new terms are referenced.

For example, the new terms to be added to the existing function F1

(first line in Table 1) are calculated for the location of u in

Fig. 1. Also included are two new equations, the latter being the

thermodynamic equation. This brings to 13 the number of linear and

nonlinear equations to be solved.

4. MODEL II: Evaluation

The purpose of this section is to demonstrate whether MODEL II

performs as predicted by theory. In our evaluation of the

variational assimilation models, we have used three criteria which

have found use in the verification of diagnostic analyses

(Krishnamurti, 1968; Achtemeier, 1975; Otto-Bliesner, et al. .

1977). These criteria are measures of, first, the extent to which

the assimilated fields satisfy the dynamical constraints, second,

the extent to which the assimilated fields depart from the

observations, and third, the extent to which the assimilated fields

are realistic as determined by pattern recognition. The last

criterion requires that the signs, magnitudes, and patterns of the

hypersensitive vertical velocity and local tendencies of the

horizontal velocity components be physically consistent with

respect to the larger scale weather systems.
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The strong constraint formalism requires that the dynamical

constraints; the nonlinear horizontal momentum equations, the

hydrostatic equation, an integrated form of the continuity

equation, and the thermodynamic equation be satisfied exactly (to

within truncation). Therefore, it is appropriate that the first

evaluation of the variational model determine whether indeed the

adjusted fields of meteorological variables are solutions of these

physical equations.

In solving the Euler-Lagrange equations, we substituted

observed or previously adjusted variables into the nonlinear terms

and other terms that are products with the Rossby number or are

higher order terms and treated these terms as forcing functions.

This approach made the linearized equations easier to solve but

several cycles with the forcing terms updated with newly adjusted

variables were required for the method to converge to a solution.

The technique for determining whether the method converges to

a solution is as follows. First, we note that any variable is

found from the algebraic sums of all other terms of an equation.

Thus the residual obtained by substituting variables back into the

equation will be identically zero - the equation is satisfied

exactly. This does not mean that the variational method has

converged. Entirely different values for all of the variables may

be found at the next cycle. Therefore, the adjusted variables are

averaged over two successive cycles. Then the averaged variables

are reintroduced into the dynamic constraints. Residuals are

computed as remainders of algebraic sums of the terms of each
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constraint. The root-mean-squares (RMS) of these differences

(Glahn and Lowry, 1972) vanish when variables at two successive

cycles are unchanged. When this happens, the constraints are

satisfied and the method has been judged to converge to a solution.

A convenient measure of how rapidly the method is converging to a

solution is the percent, reduction of the initial unadjustment given

by,

Ar(%)-100(1- r°~rT) (23)
I °

The performance of MODEL II is assessed through the percentage

reductions in the RMS differences from the initial unadjustments

through the first four cycles of the solution sequence. The

calculations are done for the eight adjustable levels in the model.

Table 2 shows the percentages for the two nonlinear horizontal

momentum equations. These results compare favorably with the MODEL

I percentage residual reductions. The initial unadjustments are

approximately halved at each cycle to about 90 percent after four

cycles.

The percentage reductions of the initial unadjustment for the

integrated continuity and hydrostatic equations are shown in Table

3. The RMS differences for the integrated continuity equation are

reduced by from 96 to 99 percent at the second cycle and improve

slowly to near 100 percent by ;the fourth cycle. These improvements

are, of course, dependent upon the magnitudes of the initial

unadjustment. We set the initial vertical velocity to zero. Then
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the initial unadjustment is equal to the divergence integrated

upward. The MODEL I cyclical solution order subjects the adjusted

velocity components to a second adjustment to satisfy the

integrated continuity equation. In this case, the averages of the

adjusted velocity components are just averages of two solutions of

the integrated continuity equation. Therefore the unadjustment

should approach zero by the second cycle.

The initial unadjustments for the hydrostatic equation at

levels 4 through 8 are halved at each cycle and the percentage

reduction increases to near 94 percent by the fourth cycle.

Convergence is much slower at levels 1 and 2. There is a 65 percent

reduction in the initial unadjustment at the second cycle at level

2. There is no change during the third cycle and a slight increase

in the initial unadjustment is observed at cycle 4. Given that the

only difference between the adjustments presented here and the

adjustments presented for MODEL I is the introduction of the fifth

constraint, we are led to suspect that the degradation is directly

related to the thermodynamic equation.

Table 4 gives the percentage reductions of the initial

unadjustment for the thermodynamic equation. Negative percentages

occur where the RMS differences exceed the initial unadjustment.

Table 4 shows that the initial unadjustment was reduced by nearly

90 percent by the fourth cycle at levels 2 and 9. At the remaining

levels, first cycle reductions of from 48 to 63 percent were

followed by increases in the RMS differences that by the fourth

cycle exceeded the initial unadjustment at levels 6 and 7.
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Further analysis of the behavior of the convergence of MODEL

II has revealed the following:

1. The breakdown in the assimilation was almost exclusively in

temperature. The initial unadjustments in the horizontal

momentum equations and the continuity equation were reduced as

was done with MODEL I. Only the first two levels in the

hydrostatic equation showed any response to the temperature

unadjustment and this was somewhat unexpected given that the

most severe departures from convergence in the thermodynamic

equation occurred at higher levels.

2. The patterns of winds and heights generated by MODEL II (not

shown) were unchanged from the winds and heights generated by

MODEL I. The pattern analysis was an additional confirmation

that the breakdown in convergence in MODEL II was largely

confined to the thermodynamic equation.

3. The initial unadjustment in the thermodynamic equation was

found to be approximately an order of magnitude larger than

the initial unadjustments for the other dynamic constraints

and was approximately two orders of magnitude larger in the

stratosphere. Although this is not the cause for the breakdown

in convergence, it does show that a gross imbalance existed in

the initial gridded fields of meteorological variables when

those variables were substituted into the thermodynamic
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equation.

4. Analysis of the patterns of the residuals remaining after the

fourth pass found that they were almost identical to the

patterns of vertical velocity.

Our analysis of the large RMS differences in the thermodynamic

equation remaining after four cycles reveals the following

concerning how the initial and adjusted vertical velocity adversely

impacted upon the analyses. First, the initial vertical velocity

was calculated kinematically and subjected to the variational

adjustment by O'Brien (1970). This method can transfer error from

the lower levels into the upper levels of the troposphere and

generate large and noisy vertical velocity patterns there.

Furthermore, there is no consideration given for the change in

static stability between the troposphere with its relatively large

vertical velocities and the stratosphere with its relatively small

vertical velocities. The kinematic vertical velocities were
\j

unrealistically large in the stratosphere and, when coupled with

the large static stability, produced large and uncompensated terms

in the thermodynamic equation. Therefore, the magnitudes of the

initial unadjustments were approximately two orders of magnitude

larger than were the initial unadjustments for the other dynamical

constraints.

Second, further theoretical analysis has revealed that the

adjustment for the divergent part of the wind is the "weak link" in
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this variational assimilation model. First order terms that contain

the divergence adjustment cancel out in the cyclical solution

formulations. The divergence adjustment must then be carried in

second order terms and through other variables. Our solution for

this problem has been to require the adjusted horizontal velocity

components to satisfy the continuity equation constraint after each

cycle, a variational model within a variational model, then allow

for the second order terms and the readjusted velocity components

to "nudge" the solution toward the desired dynamic balance. The

result was that the RMS differences grew after the first cycle when

the vertical velocity was released to converge slowly toward

another equilibrium.

5. Coupling the Vertical Velocity in MODEL I.

In this section, we propose solutions for the vertical

velocity related problems of very large initial unadjustments for

the thermodynamic equation and the buildup of RMS differences in

MODEL II.

The solution for the problem of very large initial

unadjustments in the thermodynamic equation is the implementation

of a blended vertical velocity algorithm such as the variational

method presented by Chance (1986). This method, developed as part

of this variational assimilation project but not included in the

version of MODEL II evaluated as part of this study, blends the

divergence of the horizontal wind with the vertical velocity
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calculated from the adiabatic method. The relative weighting given

the horizontal and the vertical velocity is a function of the

stability, relative humidity, and satellite observed cloud cover.

The divergence of the horizontal wind receives the greatest weight

when the conditions of low stability, near saturation, or dense

cloud cover at levels with near saturation prevail. The adiabatic

vertical velocity receives greatest weight at locations where

stability is high. Division by large stability reduces the

magnitude of the vertical velocity in the stratosphere and forces

the vertical velocity to near zero at the tropopause rather than at

the arbitrarily defined top of the model domain.

The formula for the modified vertical velocity is

. dM(k-l)+D(k)ba+adT(k)
oM(K> ~ 1-a

The modified vertical velocity at level k is the weighted sum of

the modified vertical velocity at level k-1 plus the incremental

vertical velocity obtained through the continuity equation and the

vertical velocity obtained by the adiabatic method. The weight, a,

carries the theoretical relative accuracies of the two methods for

calculating vertical velocity as obtained through standard errors

of observation for the observed variables. The weight also carries

the relative'importance of the vertical velocities as determined by

meteorological considerations. For example, the adiabatic

vertical velocities are assigned the greatest weight in the

stratosphere because the adiabatic method carries information

regarding static stability,
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(25)

However, in the lowest layers of the analysis domain, a=0 to

account for the near adiabatic conditions within the planetary

boundary layer.

Preliminary studies with the blended vertical velocity show

that large magnitude centers of either sign developed by the

kinematic method in the upper troposphere and lower stratosphere

are reduced or eliminated. Therefore the large initial

unadjustments that exist because of the use of the kinematic

vertical velocities will be reduced or eliminated also.

The solution for the problem of buildup of RMS differences in

MODEL II is to reformulate the MODEL I variational equations so

that the solution sequence will better couple the vertical velocity

with the dynamic adjustment. Achtemeier, et al. (1986) have shown

that the derivations in MODEL I required to reduce the number of

dependent variables and equations to a single diagnostic equation

in geopotential cancel out the zero order divergence adjustment

terms. The adjustment of the divergent part of the wind is

therefore forced into higher-order nonlinear terms which do not

sufficiently impact upon the final adjustment to bring about

compatibility with the continuity equation. The continuity

equation was satisfied through the second variational step which

forced an adjustment of the adjusted velocity components. The
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problem was that the two variational steps could not be connected

in a way that allowed adjustments required for satisfaction of the

thermodynamic equation to feed back to the continuity equation.

This analysis of MODEL II reveals that the second variational

step must be eliminated and the coupling of the vertical velocity

with the remainder of the adjusted variables must be part of a

single variational model. It was found that the divergent part of

the wind obtained from the first step adjustment, is a function of

the nonlinear terms of the horizontal momentum equations. If F5

represents the nonlinear terms of the u-component equation and F6

represents the nonlinear terms of the v-component equation, then

the horizontal momentum equations can be expressed as

m --v+-+F5 = 0 (26)1 s-
ox

(27)

Forming the divergence from (23) and (24) and integrating through

the depth of the analysis domain gives

f(ux+vy)do—f(F6x-F5y)do-0 (28)

Equation (25) is an integral of the vorticity equation. The

constraint upon the divergent part of the wind, and hence the

vertical velocity, that must be satisfied in order for all MODEL I

dynamic constraints to be satisfied is as follows. A particular
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solution of the vorticity equation must integrate to zero at the

top of the model domain - the particular solution being that the

divergent component of the same adjusted wind field must also

satisfy the integrated continuity equation.

The incorporation of the integrated vorticity equation into

the variational formalisms is the subject of MODEL IIB derived in

Chapter III.
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FIGURE CAPTIONS

Fig. 1. The grid template for the variational assimilation model,
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Table 2. Percent reduction of the initial unadjustment
in the horizontal momentum equations after 4 cycles.

Cycle
No. 2 3 4

Level
5 6 7 8 9

u-component

0
1
2
3
4

0
54
81
92
94

0
54
78
89
93

0
52
77
87
90

0
51
75
86
89

0
50
74
86
91

0
50
75
87
91

0
51
76
87
90

0
51
76
87
90

v-component

0
1
2
3
4

0
54
78
88
93

0
53
80
89
92

0
52
77
87
91

0
53
80 -
90
92

0
51
77
88
91

0
51
76
88
91

0
50
76
87
91

0
50
73
84
88

Table 3. Percent reduction of the initial unadjustment
in the integrated continuity and hydrostatic equations
after 4 cycles.

Cycle
No. 2

Level
3 4 5 6 7 8 9

Integrated Continuity

0 0 0 0 0 0 0 0 01 _ _ _ _ _ _ _ _

2 97 98 98 99 99 99 99 99
3 96 98 98 99 99 99 99 99
4 96 98 99 99 99 99 99 99

Hydrostatic

0
1
2
3

0
51
73
83

0
50
65
65

0
50
75
88

0
50
75
88

0
50
75
88

0
50
75
88

0
50
75
88

0
50
75
88

86 62 94 94 94 94 94 94
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Table 4. Percent reduction of the initial unadjustment
in the thermodynamic equation after 4 cycles.

Cycle
No. 2 3

Level
4 5 6 7 8 9

Thermodynamic Equation

0
1
2
3

0
54
81
89

0
60
80
73

0
62
74
61

0
63
55
32

0
61
24
-12

0
63
39
9

0
63
76
62

0
48
72
83

88 65 50 14 -38 -12 49 89
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Table 1. Modifications to variational equations in
MODEL 1 to obtain MODEL 2.

Variable Existing
Referenced Function New Terms to be Added

u Fi

F2

F3 lso.+Rj.s cp

Eg 34 p 39 F 6—{[(m) x (u) x (T 5 )y° ' \ x + [ ( m ) y ( v )

Achtem. etal + [ (aXc.)
xya] „+ —

cp
1986

Eg 47 p 41 F8/Y
Achtem.etal
1986

Equation A5——2- (ET-ET)
Ro

New Eguation ET--{[ (n>)^(u)x o (Tx)
 y+ (m)**(v)ya (T) x]

°- Cq~3)
Cp R

-£- ( T~R+ (T) *r] }
°p



T
D u

T

Fig. 1. The grid template for the variational assimilation model.
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Chapter III

A Variational Assimilation Method for Satellite
and Conventional Data: A Revised Basic Model IIB
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Office of Climate and Meteorology
Division of Atmospheric Sciences

Illinois State Water Survey
Champaign, Illinois 61820
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ABSTRACT

A variational objective analysis technique that modifies

observations of temperature, height, and wind on the cyclone scale

to satisfy the five "primitive" model forecast equations is

presented. This analysis method overcomes all of the problems that

hindered previous versions - problems such as over-determination,

time consistency, solution method, and constraint decoupling. A

preliminary evaluation of the method shows that it converges

rapidly, the divergent part of the wind is strongly coupled in the

solution, fields of height and temperature are well-preserved, and

derivative quantities such as vorticity and divergence are

improved. Problem areas are systematic increases in the horizontal

velocity components, and large magnitudes of the local tendencies

of the horizontal velocity components. The preliminary evaluation

makes note of these problems but detailed evaluations required to

determine the origin of these problems await future research.

1. Introduction

This study was designed to determine the feasibility of a

constrained objective analysis based upon the variational

methodology of Sasaki (1958, 1970). The method uses as dynamic

constraints the five primitive equations for a dry, adiabatic, and

non-viscous atmosphere: the two nonlinear horizontal momentum

equations, the continuity equation, the hydrostatic equation and

the thermodynamic equation. The method is diagnostic, however
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given the similarities between the dynamic constraints and the

hydrodynamical equations of numerical prediction models, there

exists a potential for extension of the technique to the derivation

of initial fields for numerical models.

The potential of the variational methods for multivariate

objective analyses has been explored with many dynamic constraints.

Some of the studies and the constraints used are: the geostrophic

approximation (Sasaki, 1958), the continuity equation (O,Brien,

1970; Dickerson, 1978; Sherman, 1978; Ray et al., 1978), divergence

and vorticity (Schaefer and Doswell, 1979), the balance equation

(Stephens, 1970), the two horizontal momentum equations (Lewis and

Grason, 1972; Bloom, 1983), the two horizontal momentum and

hydrostatic equation (Lewis, 1972), and the two horizontal

momentum, thermodynamic, and hydrostatic equations (Achtemeier,

1975).

Past attempts to develop a multivariate objective analysis

based upon Sasaki's variational method with the five "primitive"

equations as dynamical constraints have encountered several

fundamental problems. Courant (1936) showed that the number of

subsidiary conditions (dynamic constraints) must be at least one

less than the number of adjustable dependent variables else the

problem is overdetermined and a solution is not guaranteed. The

over-specification problem must be solved as the five primitive

equations form a closed set with five dependent variables.

The Euler-Lagrange operations yield local tendencies of the

Lagrange multipliers if the local tendencies of the temperature or
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the horizontal velocity components are explicit in the dynamic

constraints. Boundary conditions for these terms are unknown. The

problem of time consistency in variational problems has been

explored by Lewis (1980, 1982) and Lewis et al (1983) . More

recently, the time consistency problem has been found more

tractable through use of the adjoint method (Lewis and Derber,

1985; Talagrand and Courtier, 1987).

Achtemeier (1975) found that the Euler-Lagrange equations

decoupled the divergent part of the wind from the remainder of the

adjustment with the result that the continuity equation was not

satisfied. Attempts to constrain the local tendencies of velocity

and temperature to require exact solution of the continuity

equation did not solve the coupling problem (Achtemeier, 1979).

The methodology to circumvent the above problems and the

theoretical development of a primitive equation variational

objective analysis is presented in the next section (mathematical

details are presented in Appendices A, B,and C.) The method is

evaluated in Section 3.

2. Theoretical Development

The objective analysis is designed for a terrain-following

coordinate surface. We used a nonlinear vertical coordinate

created from two functions that are piecewise continuous through

the second derivatives. In this coordinate system, all coordinate

surfaces above a reference pressure level are pressure surfaces.
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The dynamical equations appear in their simplest form in pressure

coordinates. Furthermore, hydrostatic truncation errors are

confined to coordinate surfaces below the reference pressure level.

The problems of reducing hydrostatic truncation error along

terrain-following coordinate surfaces has been the subject of

considerable investigation (Kurihara, 1968; Gary 1973; Sundqvist,

1975, 1976; Janjic, 1977, 1989, and Achtemeier, 1990). The

vertical coordinate is described in Appendix A.I.

Subjecting the pressure gradient terms of the horizontal

momentum equations written in terrain-following coordinates to the

variational operations separates the two pressure gradient terms

and combines the large, now uncompensated terms with terms from the

other equations. These uncompensated terrain terms can dominate

the adjustment. A test found that these terms generated large

error that caused the variational method to diverge.

The pressure gradient problem was solved by

nondimensionalizing the dynamic constraints (Charney, 1948;

Haltiner, 1971) and partitioning the hydrostatic terms to isolate

the terrain part so that the variational adjustment could be

performed on the meteorological partition. Appendix A.2 presents

details of this procedure.

As regards the time consistency problem, Fjortoft (1952) found

that the local change in the winds could be approximated by the

translation of a weather system along an advective or steering

current, usually a smoothed middle tropospheric wind. Therefore,

the local tendencies of the velocity components were partitioned
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into advective components, represented by the steady part of a

weather system moving within a steering current, and developmental

components, represented by the development of a weather system.

Appendix A. 3 describes the partition. The developmental components

of u and v were defined as dependent variables to be subjected to

the variational adjustment.

Appendix A. 4 gives the five dynamic constraints as modified.

Abridged forms of these equations are as follows:

M1--V+$x+DTU+HAU+VAU+EXT(Mi) -0 (1)

M2 - U+$ y+DTV+HA V+ VAV+EXT (Mz ) = 0 { 2 )

~Q (3)

M4-ba+fT+EXT(Mt) -0 (4)

M5=LTT+HAT+VAT+WT+aaa+EXT(M5) -0 (5)

Conventional symbols are used. Abridged terms are defined as

follows:

DTU(V) = developmental component of local tendency of u or v.

LTT = local tendency of T.

HAU(V or T) = horizontal advection of u (v or T) relative to

a moving weather system.

VAU(V or T) = vertical advection of u (v or T) .

WT = product of vertical velocity with perturbations of

stability.
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j) = extra terms that arise from any of the following

sources:

a) Lambert conformal map image projection,

b) conversion into the nonlinear vertical coordinate,

c) expansion of the Coriolis and/or map scale factors.

Q = a normalized pressure thickness weight that arises from

(b) above. For pressure levels above 700 mb, Q = 1.

The fourth term on the right hand side of (5) is the product of the

layer average static stability with the vertical velocity.

These equations have been nondimensionalized and terms

expressed in powers of the Rossby number. All terms identified by

three letters (eg., LTU or EXT) are higher order terms - either

multiplied by the Rossby number or of order 0.1 or terms that

involve unadjusted (observed) variables.

Dependent variables are u, v, *, a, T, eu, and ey. The latter

two variables are the developmental components of the local

tendencies of u and v. This formulation leaves five constraints

and seven variables to be adjusted.

Following Achtemeier (1975), a variational objective analysis

was developed for adjustments of the seven dependent variables

subject to exact satisfaction of the dynamic constraints (l)-(5).

As expected, the addition of the two new dependent variables (the

developmental components of u and v) was sufficient to overcome the

over-specification problem. As regards the time consistency

problem, recomposition of the local tendencies of u and v from the

advective and developmental components yielded tendencies that
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compared favorably with observed 3-h changes in u and v. However,

the decoupling problem remained. Attempts to readjust the

divergent part of the wind by requiring the adjusted horizontal

velocity components to satisfy the continuity equation through a

"variational adjustment within a variational adjustment" were

unsuccessful in satisfying all five constraints.

An analysis of the growth of the divergent part of the

adjusted wind was performed to determine how the variational

solution decoupled from the continuity equation. It was found that

the divergent part of the wind is determined by adjustments through

the higher order terms (HOT) of (1) and (2) . The divergent

components can be made to satisfy the continuity constraint if

these higher order terms are made to satisfy a particular solution

of the vorticity theorem. Define

F5=HOT(M1) (6)

F6-HOT(M2) (7)

so that,

O (8)

(9)
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Forming the divergence,

.-F=v-0 (10)

The function that must integrate to zero is

f(ux+vy)da-f(F6x-F5y)da-0 (11)

for the vertical velocity to vanish at the top at the top of the

domain. Therefore, (11) is a particular solution of the integrated

vorticity theorem, the particular solution also requiring that the

horizontal divergence integrate to zero, a requirement for

satisfaction of the continuity equation.

It is necessary to build (11) into the dynamic constraints if

the decoupling problem is to be eliminated from the variational

objective analysis. Define F5 and F6 as dependent variables and

revise the dynamic constraints as follows:

M1~-F5+DTU+HAU+VAU+EXT(Mi) =0 (12)

M2=F6+DTV+HAV+VAV+EXT(M2)-Q (13)

(14)

(15)
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M^~LTT+HAT+VAT+WT+doa+EXT(M5) =0 (16)

(17)

(18)

The variational objective analysis is developed from these seven

constraints. The nine adjustable variables include the original

seven plus F5 and F6.

The dynamical constraints are written on centered differences

on an Arakawa D-grid (Mesinger and Arakawa, 1976) . The finite

difference operators and finite averaging operators are defined
i

following Anthes and Warner (1978) . The conversion of the

constraints from differential form into finite differences is given

in Appendix B.

The gridded fields of meteorological data to be modified are

meshed with the dynamical equations through Sasaki's (1970)

variational operations. To simplify the derivations, the

frictional terms in the horizontal momentum equations and the

diabatic heating term in the thermodynamic equation were set to

zero.

The finite difference analog of the adjustment functional is,

(19)
i J
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The integrand, I. . is
1 » J

I"-*! ( U-U °) 2+n i(v-V°) 2 + 7l2 (0-0 °) 2

+n3 (4H> °) 2+*4 (r-r°) 2+n5 (<i>x-<t>°) 2

+*5 (<|>y-<t>p 2+*6 (<t>0-<!>o0) 2+*7 (eu-O 2 (20)

The weights, TT,-, are Gauss' precision moduli (Whittaker and

Robinson, 1926) . The gridded initial variables (u°, v°, a°, *°, T°,

eu°' v°' F5°' F6°) enter in a least squares formulation and receive n.

according to their relative accuracies. The strong constraints to

be satisfied exactly are introduced through the Lagrangian

multipliers, Ai .

Objectively modified meteorological variables are determined

by requiring the first variation on F to vanish. A necessary

condition for the existence of a stationary set is that the

functions are determined from the domain of admissible functions as

solutions of the Euler-Lagrange equations. The variation is to be

carried out at every point (r,s) within the grid. Thus, upon

setting the weights a{ = bj = 1 and differentiating the integrand

(20) with respect to the arbitrary variable ar s, the Euler-Lagrange

operator in finite differences is

The Euler-Lagrange equations resulting from the operations
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specified by (21) are given in Appendix C [(C.7)-(C.16)].

Including the seven dynamic constraints, these complete a closed

set of 17 of linear and nonlinear partial differential and

algebraic equations. Solutions are difficult to obtain by

conventional methods. Achtemeier (1975) proposed a cyclical

solution method that moves higher order terms and terms involving

unadjusted (observed) variables into forcing functions. These

forcing functions may be expressed with observed variables at the

first cycle and with previously adjusted variables at higher

cycles. Therefore the forcing functions are known at each cycle.

This method of solution is valid for the latitudes and scales of

motion for which the Rossby number is less than one.

Use of the cyclical solution method yields the following set

of linear Euler-Lagrange equations:

M3 — g5(F6x-F5y)Ao+(d-00)+qr5F7Ao=0 (22)

0 (23)

0 (24)
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(25)

*J+*6.*: t %
(26)

0

(27)

(28)

tt20+A3+F3-0 (29)

(30)

(̂ê -O+floV'0 (32)

it8(er-er)+K0A7-0 (33)

n9 (F5-F5°) -A,1+A5-Aa (<gr5Tf ) y-o (34)

7i9 (F6-F6°) -A,2+X6+Ao (g5I°) x=0 (35)

As shown in Appendix C, variables may be easily eliminated among

the equations. There results three diagnostic equations in

geopotential, vorticity, and divergence,

0 0 j
w, (36)
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(37)

V2 [ (Ao) 2qJK2D] - 1̂0-D-V
2G1+G2x+G3y (38)

Details regarding symbol definition are found in Appendix C.

The variational theory specifies natural boundary conditions

that are consistent with the Euler-Lagrange equations. If it is

assumed that there are no adjustments in the data along the

boundaries, then the boundary conditions may be specified. In the

latter case, the Lagrange multipliers, A., , are zero at the

boundaries and the initial unadjusted values are used for the

boundary conditions.

Initially, the Euler-Lagrange equations were solved with

specified boundary conditions. These boundary conditions forced

high frequency waves into the solutions for the velocity components

near the boundaries. Divergences calculated from these velocity

components gave large erroneous vertical velocities. We therefore

returned to the natural boundary conditions.

The Euler-Lagrange operator for natural boundary conditions

is,

SI -0
dfA (39)
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Performing the operation specified by (39) produces a set of Euler-

Lagrange boundary equations in 4, u, v, and D. Details of the

derivations are given in Appendix D. The boundary conditions for

* are,

(40)

( Ĵ )4) * 4,°+ JLL̂ L(U
5 5 y

The boundary conditions for u and v that are consistent with (40)

are,

(41)

. u °-0
9 9

The derivation of (40) placed a constraint upon the boundary

conditions for the divergence, namely, that the divergence must be

specified along two rows or columns at the boundaries.

Subject to the boundary conditions and specification of the

precision moduli, (36) -(38) may be solved for the geopotential,

vorticity and divergence. Coefficients for the second order

partial derivative terms are always positive, the equations are

elliptic, and thus solutions by standard methods are assured. Then

u and v must be retrieved from the vorticity and the divergence.

A number of investigators (Sangster, 1960; Hawkins and

Rosenthal, 1965; Shukla and Saha, 1974; Schaefer and Doswell, 1979;
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Lynch, 1988) have proposed methods for reconstruction of the

velocity components from the vorticity and divergence (or

streamfunction and velocity potential) . After investigating

several of these methods, including those of Endlich (1967) and

Bjilsma et al. (1986), it was determined that the Lynch method

could be best adapted to the Arakawa D-grid with a minimum of error

in reconstructing the velocity components.

First, the field of divergence was modified by a small

constant so that Gauss' theorem,

r
nds (42)

was satisfied. Then the u-component was reconstructed through

(43)

subject to mixed boundary conditions in u (obtained from (41) )

along the y-boundaries and u obtained along the x-boundaries from

(44)

Then, beginning at the lower x-boundary with v from (41) ,

vy-D-ux (45)
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was solved to find v uniquely.

3. Case Study Description and Preprocessing of Data

The data used to test the variational objective analysis

consisted of rawinsonde temperature, height, and wind data at

standard National Weather Service reporting sites shown in Fig. 1

for a large part of the United States and parts of southern Canada

on 12 GMT 10 April 1979 and 00 GMT 11 April 1979. This case was

originally selected because microwave temperature soundings

coexisted with special 3-hr rawinsonde data over a large area of

the central United States (small dashed-line box in Fig. 1) during

a major cyclogenesis. The 3-hr rawinsonde data were used as ground

truth for the local tendencies of the velocity components and

temperature diagnosed from the variational objective analysis.

The data at 12 GMT 10 April 1979 described a weak, dissipating

short wave moving northward over the Central Plains in advance of

a more vigorous short wave. At 00 GMT 11 April, an intense jet

streak moved northeastward over Oklahoma and Texas and triggered a

mesoscale convective system over northern Texas that produced a

number of fatalities at Wichita Falls, Texas.

The data were gridded from the observations by a modification

of the Barnes (1964) objective technique that is designed to

minimize analysis error at the boundaries of the field of data

(Achtemeier, 1986) and to provide accurate derivatives within the
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interior of the domain (Achtemeier, 1989) . The analyses were done

for 10 levels from 1000 mb to 100 mb. The horizontal grid was a

40x25 array with a 100 km grid spacing. Then thermodynamic data

were converted to the nonlinear vertical coordinate through a

hydrostatically consistent interpolation downward from the

reference pressure level of 700 mb to the terrain-following

coordinate surfaces. In addition, a smoothed version of the 600 mb

wind velocity components was obtained through a single pass of the

objective interpolation designed to reproduce the long wavelength

features inherent in the data. The smoothed wind field served as

the advective wind in the calculation of the advective part of the

local tendencies of the velocity components.

The above analyses produced gridded fields of temperature,

height, and u and v wind components. The initial fields of

vertical velocity, developmental components of the local tendencies

and F5 and F6 must be estimated from these data. Letting

(46)

the adiabatic vertical velocity can be found by solving (B.10) for

a. Then an adjusted vertical velocity can be found by a

variational formulation using the continuity equation (Chance,

1986) that is similar to the O'Brien (1970) method with the

exception that compatibility between the divergence and the

vertical velocity is forced at each level. The relative weight

accorded to the adiabatic vertical velocity is directly
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proportional to the static stability. Thus the adiabatic vertical

velocity receives the greater weight in areas of higher stability

such as the stratosphere. This procedure keeps large erroneous

vertical velocities generated by divergence error from being

transferred from the troposphere into the stratosphere where,in

product with the static stability terms of (B.10), would produce

large errors in the adjusted time derivatives of temperature.

We have no way of estimating the developmental components of

the velocity component tendencies from data collected at a single

time. Therefore, these fields were set to zero. An alternative,

if available, would be local tendencies from a numerical model.

The forcing function variables, F5 and F6 are estimated by

substituting the initial variables into (B.4) and (B.6). Then F5

and F6 were adjusted to satisfy (11) with the exception that the

integral of the divergence was replaced by the adjusted vertical

velocity.

The resulting fields (and selected derivative fields) of T, $,

u, v, a, eu, ev, F5, and F6 were designated as unadjusted fields and

entered into the variational objective analysis through the

functional integrand, I, given by (20). The unadjusted quantities

were accorded precision modulus weights according to the formula,

Gi (x, y)
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where the ai is the root-mean-square (RMS) error of observation for

the ith variable. G,- is in general a function of observation

density but G=1. for this study. However, since observational

errors are available only for u, v, *, and T, only TT.,, 7T3, and ?r4

can be obtained from (47) . the a1 for the remaining unadjusted

quantities must be inferred from the known observational errors

through the dynamic constraints or simplifications therefrom.

These a. are given by,

ain(p)
da '

(48)

Here S is the average separation between observation sites.

In addition, n9 = TT,, as terms such as the Taylor series

expansion of the Coriolis parameter in product with the wind are

considered equal in weight with the wind itself.

Table 1 shows the standard errors of observation for the

winds, heights, and temperatures and the RMS errors for the other

adjustable meteorological variables. Estimates for the sealer wind

speed as functions of elevation angle of the balloon (Fuelberg,

1974) are given in the first two columns. The values for the 20
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degree elevation angle compare favorably with the results from

Hovermale's (1962) spectral decomposition of meteorological data.

RMS values for heights and rawinsonde temperatures are from a

composite of methods for estimating measurement error (Achtemeier,

1972).

Table 2 gives the nondimensional precision modulus weights

calculated from the various functional relationships of the RMS

errors from Table 1. The more accurately measured (estimated)

variables receive larger values. Largest weights are accorded the

geopotential height followed by the winds and temperatures. The

developmental components of the local velocity tendencies receive

the smallest weights.

Several modifications in the n. given in Table 2 were made

before the April 10-11 data were subjected to the variational

objective analysis. First, the precision modulus weights for

levels 9 and 10 of the vertical velocity were assigned large values

to require the adjusted vertical velocity to vanish at the top of

the domain. Second, the weights for the geopotential were reduced

by a factor of 10 because prior studies gave solutions that were

forced too strongly toward the geopotential. It is possible that,

as a boundary condition, the geopotential has a greater impact upon

the the solution than suggested by the magnitude of its precision

modulus weight.
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4. Evaluation of the Variational Assimilation Model

Three diagnostic criteria were used to evaluate the

variational objective analysis. These criteria are, satisfaction

of dynamical constraints, adjustment departures from observations,

and pattern analysis.

a) Satisfaction of Dynamical Constraints

The method must converge regardless of how well the other

criteria are satisfied. But some method must be developed that

demonstrates that the analysis does converge. The Sasaki (1970)

strong constraint formalism requires that the dynamical

constraints; the nonlinear horizontal momentum equations, the

hydrostatic equation, the continuity equation, and the

thermodynamic equation be satisfied exactly (to within truncation) .

Recall that the cyclical solution method for solving the Euler-

Lagrange equations required the substitution of observed or

previously adjusted variables into the forcing functions. As a

measure of progress toward convergence, at the end of each cycle,

the adjusted variables were averaged with their respective values

at the previous adjustment, reintroduced into the dynamical

constraints and residuals calculated. It follows that the

residuals decrease as the differences between adjusted variables at

two successive cycles decrease. The residuals vanish (the
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variational objective analysis converges) if the adjusted variables

at two successive cycles are the same. A convenient measure of how

rapidly the method is converging to a solution is the percent

reduction of the initial unadjustment given by,

Ar(%)-100(1- r°"rt) (49)
i

Fig. 2 shows how the reductions of the initial RMS differences

for the two horizontal momentum equations varies for each pass

through the cyclical solution sequence for the eight adjustable

levels of the model. The residuals for the u-component momentum

equation are approximately halved with each cycle through the

fourth cycle. The solution stabilizes to near 99-100 percent

reduction of the initial unadjustment except for a 97 percent

reduction at the 9th level after eight cycles. The RMS differences

for the v-component equation decrease at the first cycle and level

off at the second cycle. These differences increase slightly at

level 7. Then the residuals decrease monotonically through the

eighth cycle with reductions of the initial unadjustment of from

98-99 percent (96 percent at level 9).

There were two reasons why the analysis was done through eight

cycles. First, the objective of obtaining near 100 percent

reduction in the RMS differences was accomplished for most levels.

Second, regardless of the care taken in formulating consistent

boundary conditions, there remained deleterious boundary effects

that were drawn into the interior of the domain one grid space for
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each cycle. The outer three rows of grid points were deleted from

the evaluation statistics (see large dashed rectangle in Fig. 1).

Therefore, the effects of the boundary conditions entered the

evaluation area beginning at the fourth cycle.

The reductions of the initial unadjustment for the integrated

continuity equation are shown in the left panel of Fig. 3. The

rate of percentage reductions drops off after a large decline at

the first pass but still reductions by the eighth pass were mostly

between 97-99 percent. The slower convergence at level 9 (92

percent after 8 cycles) and also at level 9 for the horizontal

momentum equations may have been the result of large adjustments of

the divergent part of the wind required for mass consistency with

small vertical velocities in the stratosphere.

The initial unadjustments for the hydrostatic and

thermodynamic equations (middle and right panels of Fig. 3)

monotonically decreased by about one half at each cycle. The

percentage reductions of the RMS differences were mostly near 100

percent at all levels by the eighth cycle.

The satisfaction of constraints test shows that convergence

toward a solution was obtained for all levels and for all five

dynamic constraints. Therefore, MODEL IIB represents a significant

advancement over the MODEL II.
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b) Adjustment Departures from Observations

The transferral of the observations to the grid and the

modification of the gridded data to satisfy the dynamical

constraints is a two-step process. Information from the

observations is not available to the second step. Therefore, there

is an implicit assumption that the initial gridded fields correctly

carry the phenomena described by the observations. This assumption

is not strictly true and it is necessary to grid the data with

sufficient accuracy so that analysis error does not dominate the

first and second derivatives. We have modified the widely used

Barnes (1964, 1973) method for gridding meteorological data to

yield significant improvement in the accuracy of the gridded data

and its derivatives (Achtemeier, 1986, 1989).

In the section under a) above, we showed that the variational

objective analysis converges to a solution. Now we seek to find

whether the variational method improved upon the unadjusted

analysis by adjusting the fields to better fit the original

observations.

Consider an "accuracy index" given by the solid lines in Fig.

4. We first calculated two sets of RMS differences, one between

values from the unadjusted fields at observation locations and the

observations and the second between the adjusted fields and the

observations. Then we subtracted from these RMS differences the

standard errors of observation for wind components, height, and
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temperature listed in Table 1. This means that if the results are

zero, the objective analysis has gridded the data to within the

standard error of observation for the data. If the results are

negative, then the objective analysis has produced a better fit to

the observations. Positive values mean that the adjustments have,

on the whole, departed farther from the observations than expected.

In interpreting these results, it must be kept in mind that the

mean winter standard observational error estimates taken from

Hovermale's (1962) results do not exactly express the true

observational error for this case. Thus, some small departure of

either sign from given values should be expected.

The accuracy index for the unadjusted and adjusted heights and

temperatures (Figs. 4a and 4b) were within acceptable limits. The

index for the adjusted heights was displaced toward the positive,

an indication that adjustments away from the observations were

necessary to bring the fields into constraint satisfaction. The

unadjusted fields of the horizontal velocity components were also

within acceptable limits (Figs. 4c and 4d). However, above 800 mb,

large positive values for the adjusted velocity components show

that the variational analysis produced wind fields that were,

significantly different from the observations.

The dashed lines in Fig. 4 are the means of the differences

between the unadjusted (adjusted) fields interpolated to the

observation sites and the observations. Means near zero are

expected unless systematic adjustment is required to < achieve

solution of the variational equations. Means were near zero for
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the heights and the temperatures, except for temperatures near the

tropopause between 300 mb and 200 mb where systematic adjustments

were expected. The means were also near zero for the unadjusted

velocity components. However, large systematic adjustments were

found for the variationally adjusted velocity components (Figs. 4c

and 4d) . The u-components were increased on the average 6 m s"1

between 500 mb and 300 mb. The v-component systematic reduction

was a linear function of pressure. The v-component was on the

average decreased by approximately 8 m s"1 between 300 mb and 200

mb.

There was no systematic modification of the height fields that

could be called upon to explain the adjustments in the velocity

fields. An error in the mathematical derivation of the dynamic

constraints or in the programming is suspected in these cases. The

pattern analysis should provide further insight into the origin of

these large systematic adjustments.
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c) Pattern Analysis: 00 GMT 11 April 1979

Maps of heights, wind vectors, and temperatures were taken

from selected levels within the domain of the variational objective

analysis for 00 GMT, 11 April 1979, in order to interpret the

statistical results presented in subsections a) and b) .

Comparisons were made between patterns in the unadjusted initial

fields and the adjusted fields. The analyses were done on the

synoptic scale however, we note that a mesoscale convective system

was located within the high frequency observation area over parts

of Texas and Oklahoma.

Heights at 60 m intervals and wind vectors at 300 km intervals

are shown in Fig. 5 for 800 mb, 500 mb, and 300 mb. The convention

for wind speed is: flag (25 m s"1) , barb (5 m s"1), and short barb

(2.5 m s"1) . At 800 mb, the circulation center has been displaced

from its unadjusted location over northwestern Colorado to its

adjusted location over eastern Colorado in better agreement with

the center of lowest heights. Elsewhere, adjustments in both

heights and winds at 800 mb were small (Fig. 6). At 500 mb (Fig.

5) , the unadjusted analysis placed a weak short wave trough

oriented eastward into Kansas from the parent trough. No trough

appears in the wind field over Kansas. Thus, winds blow from high

to low heights over Texas and Oklahoma and from low to high heights

over Nebraska. The adjusted winds have been turned to more

westerly in better agreement with the heights over Texas and
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Oklahoma however, east of the Great Plains, the adjusted winds turn

to blow toward higher heights. The same pattern of adjustment is

also evident at the 300 mb jet stream level. The unadjusted

analysis fits the winds with the height field. The adjusted

analysis increases the wind speeds and turns the winds more

westerly to blow toward higher heights.

The differences between the adjusted and unadjusted fields are

shown in Fig. 6 for 500 mb and 300 mb. In general, the variational

objective analysis decreased the heights over the northern states

and increased the heights over the southern states. The 10 m

adjustment over Oklahoma at 500 mb tended to lessen the sharpness

of the short wave trough there. Elsewhere, heights were lowered

15-20 m over Montana.

Fig. 6 also shows that an average 5 m s " 1 westerly component

was added to the wind field at 500 mb and an average 10 m s"1

northwesterly component was added to the 300 mb wind field. This

broad scale adjustment has no apparent relationship to either the

height field adjustment or the synoptic weather pattern.

Fig. 7 shows fields of unadjusted and adjusted mean layer

temperatures for 750 mb, 450 mb, and 250 mb. The unadjusted

patterns at all levels have been preserved by the variational

objective analysis. Temperature adjustments were less than one

degree at 750 mb and 450 mb. The variational analysis cooled the

250 mb layer by an average of 2C. The unadjusted layer average

temperature was too warm across the tropopause and the change was

made to make the temperatures consistent with the heights.
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The variational objective analysis modified height,

temperature, and wind velocity for satisfaction of the dynamic

constraints. We now assess how these adjustments have impacted

upon derivative quantities such as vorticity, divergence, and

vertical velocity that are derived from these basic fields. In

addition, the local tendencies of the velocity components and

temperature are determined from arithmetic sums of adjusted terms.

Patterns of these sensitive variables must be physically realistic

when compared with other data sets such as cloud fields,

precipitation, and independent measurements of the variable.

Patterns of relative vorticity for the unadjusted and adjusted

wind fields are shown in Fig. 8 for 500 mb. The variational

objective analysis shifted the vorticity gradient, identifying the

area of positive vorticity advection and upward vertical velocity,

from over the Texas panhandle to over Oklahoma and Kansas,

locations coincident with the mesoscale convective system.

Elsewhere, there were only small differences between the unadjusted

and adjusted vorticities.

A comparison of the 500 mb vertical velocity patterns (Fig. 9)

shows that the variational objective analysis shifted the center of

maximum vertical velocity eastward from the Texas panhandle to

western Oklahoma in better agreement with the location of the

mesoscale convective system located over central Oklahoma and north

Texas. The variational analysis also weakened the subsidence area

over Nebraska by 2 cm s"1. The subsidence area over Louisiana and

eastern Texas in the unadjusted vertical velocities was replaced by
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2-4 cm s"1 rising motion in the adjusted field. Deep convective

precipitation was located within this area (see shaded area in Fig.

9).

Once the variational objective analysis was completed, the

developmental components of the local tendencies of velocity

components and temperature were recombined with the advective

components, redimensionalized, and expressed as 3-hr changes.

These 3-hr "adjustment" tendencies were compared with tendencies

calculated from 3-hr rawinsonde data collected over the central

part of the United States as part of the NASA AVE/SESAME project

(see fine dashed grid in Fig. 1) . Then "unadjusted" 3-hr

tendencies were calculated upon substitution of unadjusted

variables into the dynamical constraints and solving for the

tendency terms. Inherent in these comparisons is an assumption

that the observed 3-hr tendencies are "ground truth". This

assumption is not strictly valid for the following reasons. First,

it is likely that some of the observations, either at 0000 GMT or

at 0300 GMT, were influenced by the mesoscale phenomena within the

analysis areas. Second, the unadjusted and adjusted 3-hr

tendencies were calculated from 0000 GMT data and are therefore

centered at 0000 GMT. These tendencies were compared with the

ground truth tendencies that were calculated from observations

taken at both 0000-0300 GMT and are therefore centered at 0130 GMT.

And third, extrapolation of the local tendencies calculated from

the unadjusted and adjusted data has validity only if the time

scales of the passage of the weather systems are much greater than
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three hours.

Fig. 10 shows fields of the 3-hr u-component tendencies at 800

mb and 500 mb. The observed tendencies show increases in u over

Oklahoma and decreases in u over northern Missouri and Iowa. Both

unadjusted and adjusted tendencies show similar features but they

are shifted to the southwest by about 500 km. Note also that the

unadjusted and adjusted tendencies have approximately the same

pattern and the centers from the variational objective analysis

tend to be slightly larger in magnitude.

The v-component tendencies at 800 mb and 500 mb are shown in

Fig 11. Unlike the u-component tendencies, the centers for

unadjusted and adjusted tendencies are approximately collocated

with the observed centers. The magnitudes of the positive center

over Arkansas compare well at 800 mb however the adjusted field

shows little correlation with the observed v-tendencies in the

western half of the grid. At 500 mb, the centers were mostly

collocated however the magnitudes for both the unadjusted and

adjusted v-component tendencies were much greater than the observed

3-hr magnitudes - the magnitudes of the adjusted v-component being

the largest.

At 300 mb, Fig. 12, both unadjusted velocity component

tendencies departed considerably from the observed fields. The

adjusted tendencies appeared to be no more correct.

Table 3 gives correlation coefficients between the unadjusted

(initial) and observed tendencies and between the adjusted

(variational) and observed tendencies for the eight interior levels
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of the analysis domain. Somewhat surprisingly, the adjusted

correlations were higher than the unadjusted correlations for most

levels below 500 mb. In calculating the correlation coefficients

that appear in Table 4, we shifted the adjusted and unadjusted

tendency fields to the northeast approximately 150 km to account

for the 1.5 hr translation of the weather system. The correlations

for the shifted tendencies were larger. The variational objective

analysis gave improvement over the unadjusted u and v tendencies

however, in general the correlations for the adjusted fields were

in the range from 0.5-0.8 below 500 mb and were still negative

above 400 mb. Results for the temperature tendencies in both

tables showed no clear indication of superiority of the adjusted

temperatures over the unadjusted temperatures.

5. Discussion

Based upon our experience with developing a basic variational

objective analysis technique (Achtemeier et al., 1986) we have

derived a new variational objective analysis method that appears to

solve all of the problems encountered with earlier versions. These

problems included the problem of over-determination noted by

Courant (1936), the problem of time consistency that arose upon

applying the direct variational method to local tendencies of wind

velocity components and temperature, the problem of solving a set

of complicated nonlinear partial differential equations, and the

problem of decoupling the divergence equation constraint from the
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remaining dynamical constraints. This version of the objective

analysis contains more equations and requires more complicated

solution methods than were necessary for the 1986 version.

The evaluation presented in this report is only preliminary in

that it identifies problems with the method but does not determine

whether the problems are endemic to the method and therefore

degrade data assimilation or whether the problems arise because of

correctable errors in the mathematical derivations or the

programming.

The satisfactory results of the evaluation are as follows.

1) The method converges for all five dynamic constraints. The

divergent part of the wind is strongly coupled in the

solution. Convergence after only eight cycles ranged mostly

between 98-100 percent of the initial unadjustment with the

poorest convergence at the 9th level still at an acceptable 92

percent.

2) The method gave reasonable adjusted fields of heights and

temperatures from the standpoint of pattern recognition. The

major synoptic weather systems were retained from an accurate

initial objective interpolation to the analysis grid. Smaller

features such as short waves were also retained. The method

did not introduce erroneous wavelengths into the adjusted

fields.

3) Sensitive derivative fields such as vorticity and vertical

velocity were better located with respect to important
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precipitation producing weather systems relative to the

unadjusted fields. Gradients of positive vorticity advection

were collocated with upward vertical velocity centers.

The unsatisfactory results from the evaluation are as follows.

1) The variational objective analysis systematically increased

the zonal component of the wind in a way that caused

significant departures from the original observations. These

departures appeared to be a function of elevation and of

latitude from the grid origin (the largest increases were

found in the eastern part of the grid) . These departures

systematically turned the winds east of the Great Plains to

blow from low to high heights.

2) Though at many levels, the patterns were similar, the

variational objective analysis greatly overestimated the

magnitudes of the local tendencies of the wind components and

temperature. Correlations between verification 3-hr

tendencies and 3-hr tendencies derived from adjusted data

ranged from about 0.5 to 0.8 at levels below 500 mb.

Correlations were mostly very small or negative at 200 mb and

300 mb.

The reasons for the unsatisfactory results await a more

thorough analysis of the method. The systematic increases in the

adjusted wind velocity are suggestive of an error embedded within

the mathematical formulas or coding of the programs. We were able



71

to trace the vary large magnitudes of the tendencies to the

advective components. These are relative simple formulations and

it has yet to be determined why large advective changes in velocity

were found in both the unadjusted and adjusted fields but were not

observed.

It could be argued that the large tendencies of the adjusted

fields should have been expected given that a mesoscale convective

system was within the analysis area during the period 0000-0300

GMT. The variational objective analysis was rerun for 1200 GMT 10

April 1979 data set to test this argument. This period was

characterized by the same general synoptic scale long wave trough

over the western United States. There were no significant

precipitation systems active however. The results showed large

magnitude centers of the local tendencies of u and v in both the

unadjusted and adjusted fields. Therefore, the finding of large

magnitude tendencies within the 0000 GMT 11 April variational

analysis was not coincidental with severe weather.

In conclusion, the variational objective analysis represents

a mammoth effort in mathematical development and programming. One

must question whether, if the problems encountered thus far are

solved, the difficulty of the method would limit its use in routine

analysis of meteorological data given that there are other

nonvariational techniques for blending meteorological data that are

being used with success. The answer to the question will in part

be delayed until the methods currently in use have been fully

applied and evaluated.
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Appendix A: The Dynamic Constraints

Following Shuman and Hovermale (1968), the horizontal momentum

equations and the continuity equation that form the basis of the

numerical variational objective analysis/assimilation method are

written below as they appear in an arbitrary vertical coordinate

and cartesian on a conformal projection of the earth:

+d*^f 0 (A.l)
"

dy da dp dy dy

dt do dx dy do dx dy

The hydrostatic equation is,

dp do p

and the thermodynamic equation,

(A>3)

(A.4)

_ _ _ Q
dt dx dy do Cpp cp
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These equations must be subject to several transformations before

they can be used in a successful variational method. These

transformations are described in the following sections.

A.I A Nonlinear Vertical Coordinate System

The vertical coordinate is designed to concentrate horizontal

variations with the lower coordinate surface to levels below a

reference pressure level p*. The coordinate surfaces above p* are

constant pressure surfaces. The transformation into a nonlinear

vertical coordinate was done for the following reasons:

(1) The dynamical equations appear in their simplest form on

pressure surfaces. The complex, compensatory terms are

confined to levels below p*.

(2) Vertical interpolation of meteorological observations to

coordinate surfaces is not required for pressure surfaces.

Further, there is no need to interpolate from sigma

coordinates back to pressure surfaces for purposes of

interpretation of the variationally adjusted fields of data.

(3) Hydrostatic truncation error and pressure gradient force

errors are eliminated on the pressure levels above p*. The

problems of reducing hydrostatic truncation error along
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sloping coordinate surfaces are well known (Achtemeier, 1990) .

Two curves that are piece wise continuous through the second

derivatives make up the nonlinear vertical coordinate. The upper

layer relates to pressure by a straight line. Boundary conditions

are a = 0 at p = pu and a = a* at p = p*. This equation is,

(A.6)

P -Pu

Boundary conditions for the lower curve are a = 1.0 at p = ps and

o-o*

da o*
dp (PS-PU) (A. 7)

=0

at p = p*. The lower curve, a cubic polynomial, is,

o = p (p-p*) 3+o* —, (A.8)
P*-PU

where

-o*--^) (ps-p*)-
3. (A.9)

P*-PU

Fig. A.I shows the distribution of coordinate surfaces below

600 mb for the approximate range of surface pressures (800 to 1025

mb) for the smoothed orography of the variational analysis. The

reference pressure p* is 700 mb. These coordinate surfaces tend to
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follow constant pressure surfaces at locations away from areas of

high elevation. The compression of the coordinate surfaces over

higher elevation is clearly evident.

Other variables that are an outcome of the nonlinear vertical

coordinate appear elsewhere in the transformation of the dynamic

equations. These are:

-Sp(p-p')
J2

2aJel
32 r5

*3 Jp' (A. 10)

where,

a-
P*-PU

It is understood that if p - p* < 0, then p - p* = o.

Terms in the dynamic equations that must be transformed are as

follows:
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1 TOO

Fig. A.I Distribution of coordinate surfaces below 800 mb.
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(1) The pressure gradient force terms of the horizontal momentum

equations (A.I and A. 2) take the form,

_ _ _ >
op ox ox ox ox

(2) The first term of the continuity equation transforms into

(A. 12)

(3) The hydrostatic equation transforms to,

_
do do

(4) The fourth term of the thermodynamic equation (5) becomes,

RT& RTCP (g3o+gr4(,)s) (A. 14)

A.2 Reduction of Terrain Impacts upon Analysis

Small hydrostatic residuals and related pressure gradient

force errors that plague numerical models written in terrain-

following coordinates have been well documented. Much larger

errors can be generated upon subjecting the pressure gradient terms

of the horizontal momentum equations to the variational operations.

The variational operator separates the two pressure gradient terms

and combines the large now uncompensated terms with terms from the

other equations. The terrain terms, for which the

nonmeteorological part may exceed 90 percent of the magnitude of
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the term, can dominate the adjustment. A test found that these

terms generated large error that caused the variational method to

diverge.

The above problem may be avoided if the hydrostatic terms are

partitioned to isolate the terrain part so that the variation can

be applied to only the meteorological "signal". Note that a

partition not a transforation is done. There is no change in the

vertical coordinate.

The equations were nondimensionalized following the

methodology of Charney (1948) and Haltiner (1971). The resulting

nondimensional variables contain the "whole" signal. The

geopotential height and temperature are partitioned into terrain,

reference, meteorological, and residual categories according to,

In addition, the "whole" pressure is partitioned into terrain and

reference parts according to

PW=PT
+PR (A. 16)

The hydrostatic equation is partitioned into four groups of terms.

These are:

Terrain,

-
PR da da pR do
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Reference,

1 da

Meteorological,

(A. 19)
o

Residual,

[<£*-!> * (*-*o)+Ĵ *!5ES] (A>20)
PR °° PR °°

where ,

Y_Y do

Non-derivative pw and pR in (A. 17) and (A. 20) are layer mean

pressures which must be accurately known for the partition to be

successful. After some experimentation, it was found that, given

the pressures at the top and the bottom of the layer, vthe average

of the arithmetic mean plus twice the geometric mean,

0 . 5 (pc+pb) +
P"

yields accurate layer mean pressure. The superscript zero

identifies observed variables. These are not subject to the

variational operations.

Upon specification of pR (pR = 1000, 900, 800 mb) , pT is known

through (A. 16). Therefore, (A. 17) can be solved for the terrain
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height 0T. 0R is found from the level average of height after the

removal of 0T. Remaining reference variables are obtained through

(A.18) and the meteorological variables are found from (A.15). The

residual group (A.20) exist through small modifications in 0 that

result from the variational operation. These terms are typically

two orders of magnitude smaller than the meteorological terms. If

these terms are represented by B, then the hydrostatic equation

that is subject to the variational operation is,

-I&+YT+P-0 (A.21)
O<3

Now the pressure gradient terms of the horizontal momentum

equations can be partitioned to separate the terrain part from the

meteorological part that is subject to the variational operations.

The modified nondimensional pressure gradient term is,

(A.22)
dx dx '*

where,

dlnp-
n -(T1 1 v

= \ J.
* •= - •V - ^\

dx ax dx

A. 3 Partition of the Local Tendencies of u and v

Local changes in the horizontal velocity components result

from translation of existing disturbances and development.
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Consider that the local change in the u-component of the wind for

a moving weather system is,

(A.23,

where c is the velocity of an advective or steering current

(Fjortoft, 1952) usually a smoothed middle tropospheric wind. Let

u = u0 + u
1 where UQ is the u-component of the steady part of the

circulation and u1 arises from development. Then,

The first term is the local change in u caused by translation of

the steady part of a disturbance. The second term is the local

change of u from development. Note that the vertical advection of

u is considered part of development.

The use of the advective current throughout the troposphere is

valid because most synoptic systems tend to maintain vertical

structure. Any changes in vertical structure are assumed to be the

result of development. However, the variational operations require

that the adjustments be done on total velocity components.

Therefore, we represent the local tendency of u by (A.23) . The

total derivative, an approximate developmental component, is

defined as a new dependent variable, eu = du/dt (ey = dv/dt) .
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A.4 The Dynamic Constraints

Subjecting the dynamic equations (A.I) - (A.5) to the required

transformations yields the following constraints: For the

horizontal momentum equations,

R0(eu+m(u-cx) ̂.

R0[ev+m(u-cx)
y ° (A-25)

As part of the nondimensionalization, the Coriolis parameter and

the map scale factor have been expanded into a Taylor series.

Thus, f = 1 + R,C and m = 1 + R,K where R, = 0.1.

The continuity equation will become an integrated constraint,

(A. 26)

^ K ( + ) . R I ( U + V ) } da-01 dx dy 1 dx dy

The hydrostatic and thermodynamic equations are,

-^k+Yr+P-O (A. 27)
do
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R n* * '

where ,

••-4
is the static stability. Here F is the Froude number and Q*

carries nondimensionalization constants. In addition,

CP

where the latter is introduced as a dependent variable.
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Appendix B: Finite Difference Equations for the Dynamic Constraints

The dynamic equations will be written in centered differences

on an Arakawa D grid (Mesinger and Arakawa, 1976) . Fig. Bl shows

the distribution of variables on the staggered grid. Anthes and

Warner (1978) define the horizontal finite difference operators and

the finite averaging operators as

(B.I)

The i are the east-west indices, the j are the north-south indices

as defined at the grid origin located at the lower left corner of

the grid. In addition, the vertical differences and averages are

defined by

(B.2)

The finite difference equations for the horizontal momentum

equations are,

0 (B.3)
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T

FigBJL. The grid template for the variational assimilation model.
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-F5+R0&%+mx(u-cx)xyu%+mx(v-cy) u*

( u-cj v/+in

s+ ^^ ( "x+ V) -J?1 ( "X^+ ^yjKX) 3

M-R [e5 0

(B.4)

(B.5)

(B.6)

The continuity equation is

A f 3 - g 5 (ux+vy) cfo+ (o-o 0) +fq5F1da-0 (B. 7)

The hydrostatic and thermodynamic equations are,

-0 (B.9)
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The seven dynamic equations are referenced at, respectively, M, and

M6 at v, M2 and M7 at u, M3 at D, M4 at T, and Mg at the vertical

velocity.
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Appendix C: The Euler-Lagrange Equations

The gridded fields of meteorological data to be modified are

meshed with the dynamical equations through Sasaki's (1970a)

variational operations. To simplify the derivations, the

frictional terms in the horizontal momentum equations and the

diabatic heating term in the thermodynamic equation were set to

zero.

Early experiments with this method found that the divergent

part of the wind was decoupled from the adjustment with the result

that the continuity equation was not satisfied. Attempts to

readjust the winds through a subsidiary variational formulation

that satisfied the continuity equation were not successful. The

vertical velocity tended to "drift" with the result that the

thermodynamic equation was not satisfied.

Analysis of the problem revealed that the divergent part of

the wind could be coupled with the variational adjustment if an

additional constraint was satisfied. The adjusted variables must

satisfy a particular solution of the integrated vorticity equation.

The integrated divergence and the integrated vorticity theorem must

vanish at the top of the model domain. This requirement is met if

F5 and F6 are made dependent variables and M3 is modified to

0 (C.I)
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In addition,

(C.2)

0 (C.3)

The finite difference analog of the adjustment functional is,

ĵ (c.4)
i J

The integrand, I, . is
1 i J

(<|)y-<))°)2+7i6(<|)(r-<l)0
0)2-ni7(eu-e°)2 (c.5)

(e-O 2+7i (er-c?) 2+7t9 (F5-F5°) 2

-l

The weights, TT,-, are Gauss' precision moduli (Whittaker and

Robinson, 1926) . The gridded initial variables (u°, v°, a°, *°, T°,

eu°, v°, F5°, F6°) enter in a least squares formulation and receive n.

according to their relative accuracies. The strong constraints to

be satisfied exactly are introduced through the Lagrangian

multipliers A,..

Objectively modified meteorological variables are determined

by requiring the first variation on F to vanish. A necessary

condition for the existence of a stationary set is that the

functions are determined from the domain of admissible functions as

solutions of the Euler-Lagrange equations. The variation is to be
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carried out at every point (r,s) within the grid. Thus, upon

setting the weights a. = b, = 1 and differentiating the integrand

(C.5) with respect to the arbitrary variable otr s, the Euler-

Lagrange operator in finite differences is

Each term in I. . that contains an overbar term, that is, each term
1 i J

in M,. [(B.4), (B.6), (B.9), (B.10), (C.I) - C.3)] produces an

overbar term when subjected to the operations specified by (C.6).

Multiplicate overbar terms such as (~XX) are treated having no

overbar so that fewer grid points are required to express these

terms in the Euler-Lagrange equations.

The Euler-Lagrange equations resulting from the operations

specified by (C.6) are

7i1u+A.6-«-F1-0 (C.7)

(C.8)

(C.9)
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(C. 10)

(C.ll)

Variation on the Lagrange multipliers restores the original

constraints [(B.4), (B.6), (B.9), (B.10), (C.I) -C.3)].

The forcing functions, F1 - F4 contain the following:

x] x- [m̂ (v-cy) *] y-R0 ( o
 xf ° ) 0 ( C . 17 )
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Uy+m xAf v/

- [mX2(u-cx) n x- [m*T2
x ( v) n -*0 < o "If" ) 0 ( C . 18 )

(C.19)

In addition, the forcing function F8 is,

*+ (̂ ) ̂+̂ 3 ( 57̂ ) ̂
(C.21)

We observe that the forcing functions contain the nonlinear

terms of their respective equations. Further, the forcing

functions consist of terms that are either observed and therefore

not adjusted, or are multiplied by RQ or R^ These equations may

be therefore linearized and a solution obtained through a cyclical

method as follows. Terms multiplied by R0 or R1 are expressed with

observed variables at the first cycle, and are expressed by

previously adjusted variables at higher cycles. Therefore the

forcing functions are known at each cycle. This solution method is

valid for the latitudes and motion scales for which the Rossby

number is less than one.
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The set of equations [(B.4), (B.6), (B.9), (B.10), (C.I) -

C.3), (C.7) - (C.16)] are the linear algebraic and partial

differential equations to be solved. Variables may be eliminated

to reduce the number of equations to three diagnostic equations in

vorticity, divergence, geopotential. Eliminate A.4, A5, A6, and T

between, respectively, (B.9), (C.10) and (C.ll); (C.8) and (C.15),

and (C.7) and (C.16). Next, eliminate 3 between (C.9) and (C.15)

and (C.16). Then, A, and A,2 may be eliminated between (C.12) and

(C.13) and (C.10), (C.15) and (C.16). If M, and M2 are rewritten,

pulling out the eu and ev terms and designating the remaining terms

as f5 and f6, respectively, then eu and ev may be eliminated by

substituting (C.12) and (C.13) into (C.15) and (C.16). Finally,

letting D = uv + v , the vertical velocity can be eliminated betweenA /

(C.I) and (C.15) and (C.16). Performing the above operations

reduces the Euler-Lagrange equation set to the following five

equations:

0 (C.22)

(C.23)

(C.24)
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-n + (n9 + -̂ l) F6 + (Ao)
 2 [ (g5

2*2) °D] X-G1X-G2-0 (C. 25)

(C.26)

where the forcing functions, G1 - G4 are given by:

°) +F2

-F̂

We are now in a position to substitute (C.22) and (C.23) into

(C.24) and (C.25) to eliminate F5 and F6. We make note that the

substitution generates the following combination of precision

modulus weights,

Further, we note that all of these precision moduli vary

horizontally with horizontal variations in T^. Thus, if,
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""i (x/Y/a) =7ri (a) f (X/Y) / a°d the horizontal variations of n7 and ?r9

also vary as f(x,y), then by dividing all precision moduli by

f(x/Y)/ the horizontal variations of 7r10 and TT^ may be removed

without changing the relative relationships between the weights.

With these modifications, the Euler-Lagrange equations (C.24) and

(C.25) may be combined to form a divergence equation,

V2 [ (Ao)2g|jt2£>] -^i0D=V2G1+G2x+G3y (C.27)

The vorticity formed from (C.24) and (C.25) is,

-^ (C-28)

Substitution of the vorticity between (C.26) and (C.28) leaves a

diagnostic equation in geopotential,

(C.29)

Equations (C.27) - (C.29) form the three diagnostic equations that

must be solved for a successful variational adjustment. All terms

to the right of the equal sign are forcing functions that contain

either unadjusted initial variables and/or variables that have been

adjusted at the last iteration. (C.29) is solved first to get the

geopotential height. Then the divergence and vorticity are
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obtained through (C.27) and (C .28 ) .
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Appendix D: Boundary Conditions

The variational theory specifies natural boundary conditions

that are consistent with the Euler-Lagrange equations. If it is

assumed that there are no adjustments in the data along the

boundaries, then the boundary conditions may be specified. In the

latter case, the Lagrange multipliers, A.,., are zero at the

boundaries and the initial unadjusted values are used for the

boundary conditions.

Initially, the Euler-Lagrange equations were solved with

specified boundary conditions. These boundary conditions forced

high frequency waves into the solutions for the velocity components

near the boundaries. Divergences calculated from these velocity

components gave large erroneous vertical velocities. We therefore

returned to the natural boundary conditions.

The Euler-Lagrange operator for natural boundary conditions

is,

dl _Q

af-̂ i)= (D>1)

\dxj)

Performing the operation specified by (D.I) yields the following

expressions for the boundary conditions on $
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/. . Ol J - /T) 4\

The terms multiplied by R1 come from the constraints, M1 and M2.

These equations can be solved for the $ boundary conditions subject

to substitutions for the A.,, through the Euler-Lagrange equations

(22)-(35) in the text. The lateral boundary conditions for the x-

and y-boundaries are, respectively,

1 (D.5)

1 < D-6 )

where,

1C7

-5

K,

n7
'12

It,
—7t10
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Several observations may be made with regard to (D.5) and

(D.6) .

(.I) F.,, F2, A.3, f5, and f6 all contain terms that are updated at

each cycle. Thus it is possible to update the boundary

conditions as the interior fields are being adjusted.

(2) These forcing functions contain nonlinear terms that

cannot be calculated at the boundaries unless derivatives are

extrapolated across the boundaries. Therefore, the boundary

equations may be simplified by setting A1 = A2 = A3 = 0 at the

boundaries. It follows therefore, that

F1—K1u°t F2--it1v°, F3--n26°

(3) From (22) and (29),

(D.7)

Given that it is the gradient of A.3 that appears in (D.5) and

(D.6) it follows from (D.7) that gradient of the divergence

must be specified, or in other words, the divergence must be

specified along at least two boundary grid rows or columns in

order that the gradient of A,3 vanish in the * boundary

equations.

(4) n7 is at least two orders of magnitude smaller than the

remaining precision moduli. Neglecting n? leads to the

following simplifications,

The equations for the lateral boundary conditions on $ are thus,
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îcT'

-o ^

The boundary conditions for u and v may be found by solving

the same set of equations used for finding the * boundary

conditions but for u and v. The results are,

(D.9)

Tig
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Table 1

Nondimensional standard errors of observation for wind, height,
and temperature and RMS errors for other adjustable meteorological
variables.

VARIABLE
Model Pressure Mean
Level (mb) u20 u40 * A*/Ax A$/Aa Temp a eu

0.00
10 100 0.45 0.23 0.25 0.71

3.68 0.59 2.13 6.98
9 200 0.45 0.23 0.20 0.56

3.21 0.88 1.88 6.98
8 300 0.42 0.21 0.18 0.51

2.28 0.88 1.64 6.51
7 400 0.36 0.18 0.15 0.42

1,53 0.76 1.43 5.58
6 500 0.32 0.16 0.12 0.33

0.97 0.59 1.24 4.65
5 600 0.30 0.15 0.09 0.26

0.61 0.44 1.04 4.34
4 700 0.28 0.14 0.08 0.22

0.53 0.44 0.84 3.72
3 800 0.24 0.12 0.07 0.20

0.47 0.44 0.64 3.26
2 900 0.21 0.11 0.06 0.18

0.42 0.44 0.44 3.10
1 1000 0.20 0.10 0.06 0.17
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Table 2

Nondimensional precision modulus weights for variational objective
analysis.

Model
Level

10

9

8

7

6

5

4

3

2

1

Pressure
(mb)

100

200

300

400

500

600

700

800

900

1000

U20

2.5

2.5

2.8

3.9

4.9

5.6

6.4

8.7

11.3

12.5

$

8.

12.

15.

22.

34.

61.

78.

102.

138.

138.

0

5

4

2

7

7

1

0

9

9

AS/Ax

1.0

1.6

1.9

2.8

4.6

7.4

10.3

12.5

15.4

17.3

VARIABLE
Mean

A*/Aa Temp

0.04

0.05

0.10

0.21

0.53

1.34

1.78

2.26

2.83

1.

0.

0.

0.

1.

2.

2.

2.

2.

4

6

6

9

4

6

6

6

6

a

100

10

0.14

0.19

0.24

0.33

0.46

0.71

1.22

2.58

eu

0.

0.

0.

0.

0.

0.

0.

0.

0.

01

01

01

02

02

03

04

05

05
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Table 3. Correlation coefficients for a 216-point
subset of initial (i) and variational (v) u, v,
and T 3-h forward tendencies at 0000 UTC compared
with observed 3-h tendencies centered at 0130 UTC.

p
lev

200
300
400
500
600
700
800
900

u.. u

-0.
-0.
-0.
-0.
0.
0.
0.
0.

34
10
24
26
36
66
55
65

-0.
-0.
0.
0.
0.
0.
0.
0.

08
24
12
31
56
71
59
60

V,

-0.
0.
0.
0.
0.
0.
0.
0.

27
43
53
43
01
15
54
31

v

-0.
0.
0.
0.
0.
0.
0.
0.

25
10
35
71
35
61
79
37

T-

0.
-0.
0.
0.
0.
0.
0.
0.

17
36
24
75
42
55
48
25

Tv

0.07
0.17
0.59
0.65
0.75
0.72
0.17
0.22

Table 4. Same as Table l but with 0000 UTC
3-h forward tendencies shifted by weather system
translation to approximate 0130 UTC observed
tendencies.

P
lev

200
300
400
500
600
700
800
900

U.

-0.
0.
-0.
-0.
0.
0.
0.
0.

35
01
27
03
56
79
72
82

u

-0
-0
0
0
0
0
0
0

.06

.04

.20

.57

.69

.83

.75

.78

V,

-0.
0.
0.
0.
0.
0.
0.
0.

31
56
45
54
02
22
60
35

v

-0.
0.
0.
0.
0.
0.
0.
0.

25
23
30
73
45
73
87
48

Ti

0.
-0.
0.
0.
0.
0.
0.
0.

12
31
35
83
57
66
55
32

Tv

0.02
0.14
0.67
0.64
0.76
0.71
0.23
0.49
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FIGURE CAPTIONS

Fig. 1. The distribution of rawinsonde stations over the analysis
grid (solid rectangle), evaluation grid (large dashed
rectangle), and SESAME I network (small dashed rectangle).

Fig. 2. Residual reduction as a function of cycle for the u-
component (left panel) and v-component (right panel) dynamic
constraints.

Fig. 3. Residual reduction as a function of cycle for the
integrated continuity equation (left panel), the hydrostatic
equation (middle panel) , and the thermodynamic equation (right
panel).

Fig. 4. RMS differences between unadjusted (adjusted) fields and
observations after removal of standard observation error
(solid lines) and means of differences between unadjusted
(adjusted) fields and observations (dashed lines) for a)
heights, b) temperatures, c) u-comp, and d) v-comp.

Fig. 5. Heights and wind vectors at 800 mb, 500 mb, and 300 mb for
a) unadjusted and b) adjusted fields.

Fig. 6. Differences between adjusted and unadjusted heights and
vector winds at 800 mb, 500 mb, and 300 mb.

Fig. 7. Same as Fig. 5 but for temperature.

Fig. 8. Relative vorticities at 500 mb, a) unadjusted and b)
adjusted.

Fig. 9. a) unadjusted, b) adjusted vertical velocities (cm sec"1)
at 500 mb. Precipitation areas are stippled.

Fig. 10. u-component tendencies for 800 mb (left panels) and 500 mb
(right panels) for a) observed, b) unadjusted, and c) adjusted
fields in m sec"1 3-hr"1.

Fig. 11. Same as Fig. 10 but for the v-component.

Fig. 12. u-component tendencies (left panels) and v-component
tendencies (right panels) at 300 mb for a) observed, b)
unadjusted, and c) adjusted fields in m sec"1 3-hr"1.



?ig. 1. The distribution of rawinsonde stations over the analysis
grid (solid rectangle), evaluation grid (large dashed
rectangle), and SESAME I network (small dashed rectangle).
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constraints.
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Fig. A. RMS differences between unadjusted (adjusted) fields and
observations after removal of standard observation error (solid
lines) and means of differences between unadjusted (adjusted)
fields and observations (dashed lines) for a) heights, b)
temperatures, c) u-comp, and d) v-comp.
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. 300 mb

500 mb

800 mb

Fig. 5. Heights and wind vectors at 800 mb, 500 mb, and 300 mb for
a) unadjusted and b) adjusted fields.
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Fig. 6. Differences between adjusted and unadjusted heights and
vector winds at 800 mb, 500 mb, and 300 mb.
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Fig. 7. Same as Fig. 5 but for temperature.



2-

Fig. 8. Relative vorticities at 500 mb, a) unadjusted and b)
adjusted.



Fig. 9. a) unadjusted, b) adjusted vertical velocities (cm sec"1) at
500 mb. Precipitation areas are stippled.



800 mb 500 mb

-2

\ -'

Fig. 10. u-component tendencies for 800 mb (left panels) and 500 mb
(right panels) for a) observed, b) unadjusted, and c) adjusted
fields in m sec'1 3-hr"1.



800 mb 500 mb

Fig. 11. Same as Fig. 10 but for the v-component.



u-component v-component

-6

Fig. 12. u-component tendencies (left panels) and v-component
tendencies (right panels) at 300 mb for a) observed, b)
unadjusted, and c) adjusted fields in m sec"1 3-hr"1.
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1. Introduction

The MODEL III variational data assimilation model is the third

of four general assimilation models designed to blend weather data

measured from space-based platforms into the meteorological data

mainstream in a way that maximizes the information content of the

satellite data. Because there are many different observation

locations and there are many instruments with different measurement

error characteristics, it is also necessary to require that the

blending be done to maximize the information content of the data

and simultaneously to retain a dynamically consistent and

reasonably accurate description of the state of the atmosphere.

This is ideally a variational problem for which the data receive

relative weights that are inversely proportional to measurement

error and are adjusted to satisfy a set of dynamical equations that

govern atmospheric processes.''I Because of the complexity of this

type of variational problem, we have divided the problem into four

variational models of increasing complexity. The first, MODEL I,

includes as dynamical constraints the two horizontal momentum

equations, the hydrostatic equation, and an integrated continuity

equation. The second, MODEL II includes as dynamical constraints,

the equations of MODEL I plus the thermodynamic equation for a dry

atmosphere. MODEL III includes the equations of MODEL II plus the

radiative transfer equation.
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The advantage of MODEL III over the previous two models is

that radiance, the atmospheric variable measured by satellite,

becomes a dependent variable. In the previous versions, mean layer

temperatures that had been retrieved from the radiances by some

method, were included in the assimilation by substituting them in

place of the rawinsonde temperatures. Now both rawinsonde

temperatures and satellite radiances are included independently in

the assimilation.

Our approach to the development of MODEL III has been to

divide the problem into three steps of increasing complexity.

Chapter IV deals with the first step, a variational version of the

classical temperature retrieval problem that includes just the

radiative transfer equation as a constraint. The radiances for each

of the four TOYS MSU microwave channels are dependent variables.

These plus temperature constitute a set a five adjustable

variables. Each radiance is related to the temperature through its

radiative transfer equation. There are therefore four dynamic

constraints in this first variational problem.

Chapter V summarizes the second step which combines the four

radiative transfer equations of the first step with the equations

for a geostrophic and hydrostatic atmosphere. This step is intended

to bring radiance into a three-dimensional balance with wind,

height, and temperature. The use of the geostrophic approximation

in place of the full set of primitive equations allows for an

easier evaluation of how the inclusion of the radiative transfer

equation increases the complexity of the variational equations.
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The third and final step includes the four radiative transfer

equations with the fully nonlinear set of primitive equations, ie.,

MODEL III.

2. A Variational Retrieval Algorithm

The radiative transfer equation is the only variational

constraint. It takes the form

B-B0w0-[w'Tdz-Q (1)

where B is the brightness temperature as computed from radiance

measured at the satellite and T is the mean layer temperature of an

incremental depth of the atmosphere, dz. The weight, WQ/ is the

transmittance of the total atmosphere from the surface (where the

surface brightness temperature, B0, is measured) to the space-based

observation platform. The weights, w1, are proportional to the

transmittance from some level within the atmosphere to the

satellite. In order to make the variational derivations from (1)

compatible with the larger set of variational equations in MODEL I

and MODEL II, we will make the following modifications in (1).

First, the brightness temperature is replaced by the skin

temperature, TQ/ and the weight, WQ, will become a skin level

surface weight. Second, (1) is converted from the z to the sigma

vertical coordinate. In this conversion,
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fw'Tdz-fw'T [f(T)]da -fwTda (2)

Now f(T), a small conversion term that results from the changeover

to sigma coordinates, will be combined with the weights and not

subjected to variation. This approach avoids complicated nonlinear

equations that will otherwise arise through the variational

formations. The f(T) and the weak temperature dependence in the

weights will not be held constant however. At each step of a

converging iterative process, the small temperature dependencies

will be updated with adjusted temperatures. With these

modifications, (1) becomes,

B-fwTdo-Q (3)

The next step is to bring (3) into dimensional compatibility with

the more general variational models. Let,

(4)

and

-r (5)
Ro
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so that,

r-—(r^—rx/) (6)

Here g is gravity, H=10 km is a reference height, R is the

universal gas constant, F is the Froude number, and RQ is the

Rossby number. The subscript R refers to a reference atmosphere

and the notation " refers to departures from the reference

atmosphere. Substitution of (6) in place of T in (3) gives,

(7)
R

Further, we partition B = BR + Bm and define

B =-2ii IT da (8)DR —— \ L Dao \»/

follows then, that

R

Finally, upon suppression of the double primes, the radiative

transfer equation becomes,
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do)

Now there are four TOVS microwave channels each with an

independent measurement of the brightness temperature. Let Bj be

the brightness temperature perturbation for the jth channel. The J

constraining equations are,

w
k̂'0 (ID

The functional to be minimized is

F-flda (12)

where

J-l

Performing the variations upon T and B as shown by Achtemeier, et

al. (1986) yields the following Euler-Lagrange equations,

WjyXj-0 (14)
j'-i
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for each k and,

for each j . Variation upon the J Lagrange multipliers restore the

original constraints (11) . These equations are linear and may be

easily reduced to one diagnostic equation in temperature. First,

eliminate reference to the Lagrangian multipliers by substituting

(15) into (14) . Then substituting for Bj gives the adjusted

temperature as a function of weight functions and observed

variables,

(16)

for each k. Here

Equation (16) can be easily solved with a standard matrix

inversion package to retrieve the variationally adjusted

temperature profile. At most two cycles with the weight functions

updated with adjusted temperatures are required for convergence to

a final adjusted temperature.
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4. Results

In order to properly interpret the results of the example of

variational adjustment with the radiative transfer equation, one

must be aware that three sets of weights appear in (16) . The

weights, w.., are the transmittance weights for the ith level and

the jth microwave channel. They are not subject to the variational

adjustment and remain unchanged with the exception of minor

adjustments for temperature sensitivity. The variational weights,

ir. and 7rt, carry the relative importance of the jth microwave
J ^

channel and the temperature at the kth level. It is the choice of

the variational weights that are important in interpreting the

results.

Consider a temperature profile that is to be retrieved from

MSU brightness temperatures. It is to be made halfway between two

rawinsonde sites. The rawinsonde soundings are given by A and B in

Fig. 1. Sounding A is cold up to the tropopause (about 220 mb) and

then it becomes isothermal up to 60 mb. Sounding B is warm from

the surface to 170 mb and then becomes colder than A in the layer

from 170 mb to 60 mb. Its tropopause is located at 100 mb.

The first guess or "observed" sounding that will enter into

the temperature part of the variational analysis is the mean of A

and B. It is given by M in Fig. 1. Now suppose that the true

sounding is given by T. Note that M=T from the surface to 230 mb

and from 50 mb to the top.
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Next, the brightness temperatures, B- , were calculated from

(10) using the true temperature sounding. Thus the Bj° that enter

(17) are true and the Tk° are approximate. However, only the

temperatures between 100-230 mb need adjustment. The observational

error for the temperature was 0.7 K and the weight accorded to the

temperature was,

20

da)

Fig. 2 shows the results of three retrievals between 500 mb

and the top. The dashed line is the difference M-T between the

true and first guess temperature soundings. The other curves are

the differences between the adjusted and the true temperatures for

TTj that ranged in values from 10 to 100 to 1000. Note that the

weights for the four MSU channels and hence the brightness

temperatures were always equal.

Fig. 2 shows that increasing the brightness temperature

weights progressively reduced the differences between the adjusted

and true temperature soundings but by only 2.5 K. However, the

retrievals also spread the adjustments throughout the depth of the

sounding. Therefore, improvements where the M-T residuals were

nonzero were offset by degraded temperatures throughout the

reminder of the sounding - the errors being almost 2 K at 250 mb

with lesser error elsewhere.

A more extensive analysis of the behavior of (16) found that

the retrievals were sensitive to the vertical distribution of the
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weights for the temperature hence the errors of observation for the

temperature. If there existed some independent observations that

could be used to estimate the accuracy of the first guess

temperature as a function of height, then the retrievals could be

focused into those locations where the M-T residuals were greatest.

Consider possible accuracy functions given in Fig. 3. The

effective temperature error at 150 mb is doubled by f(l) and is

tripled by f(2). Therefore, the weights accorded to the

temperature there are decreased by a factor of four for f (1) and a

factor of nine for f(2).

Fig. 4 shows the residuals between the adjusted and true

temperature profiles for the three retrievals when the accuracy

function f(1) was applied to the temperature weights. The initial

residual has been reduced by approximately 6 K. Fig. 5 shows the

results for f(2). Additional reductions in the residuals over f(l)

results were found between 150 and 100 mb. Fig. 6 summarizes the

resulting temperature soundings for f(0), f(l), and f(2) if the

weights for the brightness temperatures were n. = 1000. The

improvement of f(2) over f(l) is apparent between 150 and 100 mb

but elsewhere the differences between the two retrievals are only

a few tenths of a degree. This suggests that it is the shape of

the accuracy function, not the magnitude, that determines where the

variational adjustment will be focused.

Fig. 7 shows part of the temperature soundings T and M between

250 mb and 50 mb. The curve identified by VI is the sounding that

was obtained with the conditions that the weights for the first
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guess temperature were constant with height. The sounding V2

results from the application of f(2) to the temperature weights.

The first step in the variational analysis of the radiative

transfer equation succeeded in producing a variational algorithm

that could be used to retrieve temperature from the four MSU

channel brightness temperatures given a first guess temperature

sounding. The results showed that the variational retrievals were

subject to the same limitations as are retrievals by other methods,

inability to accurately resolve temperatures near the tropopause

spreads error though the whole retrieved sounding, unless some

temperature accuracy function is employed to focus the retrieval.

The identification of a data set that could be used for a

temperature accuracy function and the derivation of the same is

beyond the scope of this study.

REFERENCE
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FIGURE CAPTIONS

Figure l. Two typical temperature soundings A and B; the mean of
A and B, sounding M; and true temperature sounding T used for
sensitivity studies of variational temperature retrievals.

Figure 2. Dashed line: differences between the mean or first guess
temperature sounding and true sounding. Solid lines:
differences between variational temperature retrievals and
true temperature sounding for the following choices of
brightness temperature weights; sounding 1 (10), sounding 2
(100), sounding 3 (1000).

Figure 3. Curves for hypothesized temperature accuracy functions.

Figure 4. Same as Fig. 2 but for f(l).

Figure 5. Same as Fig. 4 but for f(2).

Figure 6. Differences between first guess and true temperature
(dashed line) and variational temperature retrievals and true
temperature for brightness temperature weights equal to 1000
for f(0), f(1), and f(2).

Figure 7. Parts of temperature soundings T and M between 250 mb
and 50 mb. Sounding VI is temperature retrieval with f (0) and
sounding V2 is temperature retrieval with f(2).
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Figure i. Two typical temperature soundings A and B; the mean of
A and B, sounding M; and true temperature sounding T used for
sensitivity studies of variational temperature retrievals.
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Figure 2. Dashed line: differences between the mean or first guess
temperature sounding and true sounding. Solid lines:
differences between variational temperature retrievals and
true temperature sounding for the following choices of
brightness temperature weights; sounding 1 (10), sounding 2
(100), sounding 3 (1000).
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1. Introduction

The approach to the development of MODEL III has been to

divide the problem into three steps of increasing complexity. In

Chapter IV we successfully developed a variational algorithm for

the classical temperature retrieval problem that includes just the

radiative transfer equation as a constraint. The radiances for each

of the four TOVS MSU microwave channels were dependent variables.

Chapter V summarizes the second step which combines the four

radiative transfer equations of the first step with the equations

for a geostrophic and hydrostatic atmosphere. This step is intended

to bring radiance into a three-dimensional balance with wind,

height, and temperature. The use of the geostrophic approximation

in place of the full set of primitive equations allows for an

easier evaluation of how the inclusion of the radiative transfer

equation increases the complexity of the variational equations.

It should be noted that the variational method is a powerful

mathematical tool and a powerful method for diagnosing the physical

role of the observations in the adjustment. We developed seven

different variational formulations for the geostrophic, hydrostatic

and radiative transfer equations. The first derivation was too

complex to yield solutions that were physically meaningful. For

the remaining six derivations, the variational method gave the same

physical interpretation - the observed brightness temperatures

could provide no meaningful input into a geostrophic, hydrostatic

balance - at least through the problem-solving methodology employed
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in these studies. It would be axiomatic therefore, that the

brightness temperatures could provide no meaningful input into a

variational assimilation with the primitive equations.

During the writing of this chapter, the equations were

reviewed and a conceptual error regarding one of the Lagrange

multipliers was discovered.

In the following section, the variational methodology is

presented and the Euler-Lagrange equations rederived for the

geostrophic, hydrostatic and radiative transfer equations. Then

the equations are reduced in number through elimination of

variables to produce a single equation for the geopotential height.

It is shown that the single equation is too difficult to solve but

that a three equation set can be solved iteratively. It is also

shown that space-based thermodynamic data can be assimilated into

the meteorological data mainstream and that none of the

difficulties associated with traditional temperature retrievals

will be encountered.

2. A Variational Assimilation Theory for the Geostrophic,

Hydrostatic and Radiative Transfer Equations

The variational formalism will be derived for the four

radiative transfer equations in integral form. Let the dynamical

constraints be,

-0 (2)
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(1)

/n3-v-<J)x-F5-0 (3)

(4)

For additional simplification, set the terrain correction term 6=0.

The forcing functions F5 and F6 (see Chapter II) are simplified

through setting R0 = 0.

The integrand of the functional to be minimized is,

J-TC! (u-u °) '-n̂  ( v-v°) 2+7t2 (T-T°)
 2+*3 ((j)-(|>

0) 2

j j

where the TT,- are the relative weights accorded to the observations.

Performing the variations for the eight dependent variables,

u, v, $, T, and B, (j=l,4), yields the following Euler-Lagrange

equations,

5u: Ti(u-u°)+X-0 (6)
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dv: TC(^-^°)+A-0 (7)

(10)

These eight equations plus the seven original constraints

constitute a set of 15 algebraic and linear partial differential

equations to be solved. The number of equations may be reduced

through the elimination of variables. There results a single

diagnostic equation with geopotential height as the dependent

variable. We develop a diagnostic equation for the geostrophic,

hydrostatic adjustment first and then include the contribution from

the radiative transfer equations. Two Lagrange multipliers are

eliminated by combining (6), (7), and (8). Then, forming the

vorticity from (3) and (4) and combining with (8) gives,

-7I1 ( V°-Uy°) +7t3<j>-°+TI1 (F5x+F6y) =0 (ID
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Reducing the thermodynamic variables is done as follows.

Divide (9) by y and operate by a. Eliminate brightness temperature

between (1) and (10). There results two equations,

-j- [ (T-T°) ] +A.20- X-0 (12)

where ,

oo

(13)
v' o

and,

Combining (12) with (14) and substituting (2) gives,

1 (15)
n, _. J

Eliminating the Lagrangian multiplier between (11) and (15) yields

a diagnostic equation in the geopotential height,
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where,

Much effort was spent programming for (16). The resulting

solution was not considered satisfactory. Given the complex

coefficient structures and the delicate convergence criteria, much

additional effort was expended through six subsequent derivations

to express the variational formalism in forms easier to understand

and easier to solve. These efforts eventually led away from a

direct inclusion of the radiative transfer equation in a

geostrophic, hydrostatic atmosphere.

In retrospect, it seems that the solution could have been more

easily obtained if the 15 equation set was reduced to the following

3 equation set:

*^--X^+n, (v°-uy°) -7i3<j)
0-7i1 (F5x+F6y) (18)

T— — (4>0+P) (19)
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These equations can be solved iteratively by first setting A,2 =0

and solving (18) for $. Then (19) is solved for T and the

temperature substituted into (20) to derive an updated A,2. Then

the updated values are entered into (18) and the cycle repeated

until a satisfactory level of convergence is attained.

3. Results

There are three important points to consider regarding (18) -

(20).

a) NO RETRIEVAL OF TEMPERATURE IS REQUIRED TO BLEND SATELLITE

OBSERVED BRIGHTNESS TEMPERATURES INTO THE METEOROLOGICAL DATA

MAINSTREAM. This means that none of the problems associated

with temperature retrievals will be encountered. The integral

term appears on the right hand side of (20) not as a term to

be solved. This is analogous to solving the radiative

transfer equation for the brightness temperature - a very easy

exercise. This single finding may make it worth while to

pursue the formal variational approach to assimilation of

microwave channel data especially if higher resolution

radiance data becomes available in the future.
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b) There must be observations of geopotential height or winds or

both of equivalent accuracy with the satellite measurements in

order for the (18) - (20) to work. Accurate observations of

temperature apart from space-based measurements are not

necessary. The caveat is that geopotential height must be

known at the boundaries of the domain in order to obtain a

solution for (18). Lateral boundaries would vanish for the

equations written on the sphere and the top boundary

conditions can be removed to the top of the atmosphere or to

some level where model predictions or climatology give

satisfactory estimates.

c) It is highly probable that (18) - (20) converge to a solution.

The same equation set with the absence of the second term of

(20) (the radiative transfer equation contribution) is known

to converge. The second term of (20) is an integral term

which should further stabilize the solution.

The main goal of the variational assimilation project was to

blend satellite-derived thermodynamic data into the meteorological

data mainstream in a dynamically consistent way. The classical

variational calculus method used to achieve that goal typically

yields sets of complicated equations that require innovative

methods for solution and also involve immense programming efforts.

Therefore the effort was broken down into several simpler models

that could be solved.
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The attempt to reduce the equation set from 15 equations to

one diagnostic equation in geopotential height resulted in equation

(16) . After an extensive programming effort, a satisfactory

solution was not obtained. I was unable to devise a scheme that

could determine whether the problems were mathematical or

programmatical. During the six other efforts to derive a more

tractable diagnostic equation a conceptual error was made, namely,

A.,,, was treated as a variable that could be differentiated with

respect to a. The observed brightness temperature dropped out of

the equations. This led to the conclusion that the satellite data

could not be successfully included in a classical variational

assimilation.

With the discovery of this error during the writing of Chapter

5 of this final report, that conclusion is no longer valid. It

appears, instead, that the satellite data can be successfully

incorporated into a variational assimilation and that the blending

can be done without any of the problems typically encountered with

temperature retr i eva1s.
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ABSTRACT

There has been a long-standing concept by those who use

successive corrections objective analysis that the way to obtain

the most accurate objective analysis is first, to analyze for the

long wavelengths and then to build in the details of the shorter

wavelengths by successively decreasing the influence of the more

distant observations upon the interpolated values. Using the

Barnes method, we compared the filter characteristics for families

of response curves that pass through a common point at a reference

wavelength. It was found that the filter cutoff is a maximum if

the filter parameters that determine the influence of observations

are unchanged for both the initial and corrections passes. This
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information was used to define and test the following hypothesis.

If accuracy is defined by how well the method retains desired

wavelengths and removes undesired wavelengths, then the Barnes

method gives the most accurate analyses if the filter parameters on

the initial and corrections passes are the same. This hypothesis

does not follow the usual conceptual approach to successive

corrections analysis.

Theoretical filter response characteristics of the Barnes

method were compared for filter parameters set to retrieve the long

wavelengths and then build in the short wavelengths with the method

for filter parameters set to retrieve the short wavelengths and

then build in the long wavelengths. The theoretical results and

results from analyses of regularly spaced data show that the

customary method of first analyzing for the long wavelengths and

building in short wavelengths is not necessary for the single

correction pass version of the Barnes method. Use of the same

filter parameters for initial and corrections passes improved the

analyses from a fraction of a percent for long wavelengths to about

ten percent for short but resolvable wavelengths.

However, the more sparsely and irregularly distributed the

data, the less the results are in accord with the predictions of

theory. Use of the same filter parameters gave better overall fit

to the wavelengths shorter than eight times the minimum resolvable

wave and slightly degraded fit to the longer wavelengths.

Therefore, in the application of the Barnes method to irregularly

spaced data, successively decreasing the influence of the more
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distant observations is still advisable if longer wavelengths are

present in the field of data.

It also was found that no single selection of filter

parameters for the two-pass Barnes method gives the best analysis

for all wavelengths. A three-pass hybrid method is shown to reduce

this problem.
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Chapter VII

Modification of a Successive Corrections Objective Analysis fVy

for Improved Derivative Calculations
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Abstract

The use of objectively analyzed fields of meteorological data

for complex diagnostic studies and for the initialization of

numerical prediction models places the requirements upon the

objective method that derivatives of the gridded fields be accurate

and free from interpolation error. A modification of an objective

analysis developed by Barnes provides improvements in analyses of

both the field and its derivatives. Theoretical comparisons,

comparisons between analyses of analytical monochromatic waves, and
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comparisons between analyses of actual weather data are used to

show the potential of the new method. The new method restores more

of the amplitudes of desired wavelengths while simultaneously

filtering more of the amplitudes of undesired wavelengths. These

results also hold for the first and second derivatives calculated

from the gridded fields. Greatest improvements were for the

Laplacians of the height field; the new method reduced the variance

of undesirable very short wavelengths by 72 percent. Other

improvements were found in the divergence of the gridded wind field

and near the boundaries of the field of data.
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