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1. Introduction

The MODEL III variational data assimilation model is the third

of four general assimilation models designed to blend weather data

measured from space-based platforms into the meteorological data

mainstream in a way that maximizes the information content of the

satellite data. Because there are many different observation

locations and there are many instruments with different measurement

error characteristics, it is also necessary to require that the

blending be done to maximize the information content of the data

and simultaneously to retain a dynamically consistent and

reasonably accurate description of the state of the atmosphere.

This is ideally a variational problem for which the data receive

relative weights that are inversely proportional to measurement

error and are adjusted to satisfy a set of dynamical equations that

govern atmospheric processes.''I Because of the complexity of this

type of variational problem, we have divided the problem into four

variational models of increasing complexity. The first, MODEL I,

includes as dynamical constraints the two horizontal momentum

equations, the hydrostatic equation, and an integrated continuity

equation. The second, MODEL II includes as dynamical constraints,

the equations of MODEL I plus the thermodynamic equation for a dry

atmosphere. MODEL III includes the equations of MODEL II plus the

radiative transfer equation.
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The advantage of MODEL III over the previous two models is

that radiance, the atmospheric variable measured by satellite,

becomes a dependent variable. In the previous versions, mean layer

temperatures that had been retrieved from the radiances by some

method, were included in the assimilation by substituting them in

place of the rawinsonde temperatures. Now both rawinsonde

temperatures and satellite radiances are included independently in

the assimilation.

Our approach to the development of MODEL III has been to

divide the problem into three steps of increasing complexity.

Chapter IV deals with the first step, a variational version of the

classical temperature retrieval problem that includes just the

radiative transfer equation as a constraint. The radiances for each

of the four TOYS MSU microwave channels are dependent variables.

These plus temperature constitute a set a five adjustable

variables. Each radiance is related to the temperature through its

radiative transfer equation. There are therefore four dynamic

constraints in this first variational problem.

Chapter V summarizes the second step which combines the four

radiative transfer equations of the first step with the equations

for a geostrophic and hydrostatic atmosphere. This step is intended

to bring radiance into a three-dimensional balance with wind,

height, and temperature. The use of the geostrophic approximation

in place of the full set of primitive equations allows for an

easier evaluation of how the inclusion of the radiative transfer

equation increases the complexity of the variational equations.
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The third and final step includes the four radiative transfer

equations with the fully nonlinear set of primitive equations, ie.,

MODEL III.

2. A Variational Retrieval Algorithm

The radiative transfer equation is the only variational

constraint. It takes the form

B-B0w0-[w'Tdz-Q (1)

where B is the brightness temperature as computed from radiance

measured at the satellite and T is the mean layer temperature of an

incremental depth of the atmosphere, dz. The weight, WQ/ is the

transmittance of the total atmosphere from the surface (where the

surface brightness temperature, B0, is measured) to the space-based

observation platform. The weights, w1, are proportional to the

transmittance from some level within the atmosphere to the

satellite. In order to make the variational derivations from (1)

compatible with the larger set of variational equations in MODEL I

and MODEL II, we will make the following modifications in (1).

First, the brightness temperature is replaced by the skin

temperature, TQ/ and the weight, WQ, will become a skin level

surface weight. Second, (1) is converted from the z to the sigma

vertical coordinate. In this conversion,
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fw'Tdz-fw'T [f(T)]da -fwTda (2)

Now f(T), a small conversion term that results from the changeover

to sigma coordinates, will be combined with the weights and not

subjected to variation. This approach avoids complicated nonlinear

equations that will otherwise arise through the variational

formations. The f(T) and the weak temperature dependence in the

weights will not be held constant however. At each step of a

converging iterative process, the small temperature dependencies

will be updated with adjusted temperatures. With these

modifications, (1) becomes,

B-fwTdo-Q (3)

The next step is to bring (3) into dimensional compatibility with

the more general variational models. Let,

(4)

and

-r (5)
Ro
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so that,

r-—(r^—rx/) (6)

Here g is gravity, H=10 km is a reference height, R is the

universal gas constant, F is the Froude number, and RQ is the

Rossby number. The subscript R refers to a reference atmosphere

and the notation " refers to departures from the reference

atmosphere. Substitution of (6) in place of T in (3) gives,

(7)
R

Further, we partition B = BR + Bm and define

B =-2ii IT da (8)DR —— \ L Dao \»/

follows then, that

R

Finally, upon suppression of the double primes, the radiative

transfer equation becomes,



129

do)

Now there are four TOVS microwave channels each with an

independent measurement of the brightness temperature. Let Bj be

the brightness temperature perturbation for the jth channel. The J

constraining equations are,

w
k̂'0 (ID

The functional to be minimized is

F-flda (12)

where

J-l

Performing the variations upon T and B as shown by Achtemeier, et

al. (1986) yields the following Euler-Lagrange equations,

WjyXj-0 (14)
j'-i
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for each k and,

for each j . Variation upon the J Lagrange multipliers restore the

original constraints (11) . These equations are linear and may be

easily reduced to one diagnostic equation in temperature. First,

eliminate reference to the Lagrangian multipliers by substituting

(15) into (14) . Then substituting for Bj gives the adjusted

temperature as a function of weight functions and observed

variables,

(16)

for each k. Here

Equation (16) can be easily solved with a standard matrix

inversion package to retrieve the variationally adjusted

temperature profile. At most two cycles with the weight functions

updated with adjusted temperatures are required for convergence to

a final adjusted temperature.
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4. Results

In order to properly interpret the results of the example of

variational adjustment with the radiative transfer equation, one

must be aware that three sets of weights appear in (16) . The

weights, w.., are the transmittance weights for the ith level and

the jth microwave channel. They are not subject to the variational

adjustment and remain unchanged with the exception of minor

adjustments for temperature sensitivity. The variational weights,

ir. and 7rt, carry the relative importance of the jth microwave
J ^

channel and the temperature at the kth level. It is the choice of

the variational weights that are important in interpreting the

results.

Consider a temperature profile that is to be retrieved from

MSU brightness temperatures. It is to be made halfway between two

rawinsonde sites. The rawinsonde soundings are given by A and B in

Fig. 1. Sounding A is cold up to the tropopause (about 220 mb) and

then it becomes isothermal up to 60 mb. Sounding B is warm from

the surface to 170 mb and then becomes colder than A in the layer

from 170 mb to 60 mb. Its tropopause is located at 100 mb.

The first guess or "observed" sounding that will enter into

the temperature part of the variational analysis is the mean of A

and B. It is given by M in Fig. 1. Now suppose that the true

sounding is given by T. Note that M=T from the surface to 230 mb

and from 50 mb to the top.
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Next, the brightness temperatures, B- , were calculated from

(10) using the true temperature sounding. Thus the Bj° that enter

(17) are true and the Tk° are approximate. However, only the

temperatures between 100-230 mb need adjustment. The observational

error for the temperature was 0.7 K and the weight accorded to the

temperature was,

20

da)

Fig. 2 shows the results of three retrievals between 500 mb

and the top. The dashed line is the difference M-T between the

true and first guess temperature soundings. The other curves are

the differences between the adjusted and the true temperatures for

TTj that ranged in values from 10 to 100 to 1000. Note that the

weights for the four MSU channels and hence the brightness

temperatures were always equal.

Fig. 2 shows that increasing the brightness temperature

weights progressively reduced the differences between the adjusted

and true temperature soundings but by only 2.5 K. However, the

retrievals also spread the adjustments throughout the depth of the

sounding. Therefore, improvements where the M-T residuals were

nonzero were offset by degraded temperatures throughout the

reminder of the sounding - the errors being almost 2 K at 250 mb

with lesser error elsewhere.

A more extensive analysis of the behavior of (16) found that

the retrievals were sensitive to the vertical distribution of the
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weights for the temperature hence the errors of observation for the

temperature. If there existed some independent observations that

could be used to estimate the accuracy of the first guess

temperature as a function of height, then the retrievals could be

focused into those locations where the M-T residuals were greatest.

Consider possible accuracy functions given in Fig. 3. The

effective temperature error at 150 mb is doubled by f(l) and is

tripled by f(2). Therefore, the weights accorded to the

temperature there are decreased by a factor of four for f (1) and a

factor of nine for f(2).

Fig. 4 shows the residuals between the adjusted and true

temperature profiles for the three retrievals when the accuracy

function f(1) was applied to the temperature weights. The initial

residual has been reduced by approximately 6 K. Fig. 5 shows the

results for f(2). Additional reductions in the residuals over f(l)

results were found between 150 and 100 mb. Fig. 6 summarizes the

resulting temperature soundings for f(0), f(l), and f(2) if the

weights for the brightness temperatures were n. = 1000. The

improvement of f(2) over f(l) is apparent between 150 and 100 mb

but elsewhere the differences between the two retrievals are only

a few tenths of a degree. This suggests that it is the shape of

the accuracy function, not the magnitude, that determines where the

variational adjustment will be focused.

Fig. 7 shows part of the temperature soundings T and M between

250 mb and 50 mb. The curve identified by VI is the sounding that

was obtained with the conditions that the weights for the first
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guess temperature were constant with height. The sounding V2

results from the application of f(2) to the temperature weights.

The first step in the variational analysis of the radiative

transfer equation succeeded in producing a variational algorithm

that could be used to retrieve temperature from the four MSU

channel brightness temperatures given a first guess temperature

sounding. The results showed that the variational retrievals were

subject to the same limitations as are retrievals by other methods,

inability to accurately resolve temperatures near the tropopause

spreads error though the whole retrieved sounding, unless some

temperature accuracy function is employed to focus the retrieval.

The identification of a data set that could be used for a

temperature accuracy function and the derivation of the same is

beyond the scope of this study.
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FIGURE CAPTIONS

Figure l. Two typical temperature soundings A and B; the mean of
A and B, sounding M; and true temperature sounding T used for
sensitivity studies of variational temperature retrievals.

Figure 2. Dashed line: differences between the mean or first guess
temperature sounding and true sounding. Solid lines:
differences between variational temperature retrievals and
true temperature sounding for the following choices of
brightness temperature weights; sounding 1 (10), sounding 2
(100), sounding 3 (1000).

Figure 3. Curves for hypothesized temperature accuracy functions.

Figure 4. Same as Fig. 2 but for f(l).

Figure 5. Same as Fig. 4 but for f(2).

Figure 6. Differences between first guess and true temperature
(dashed line) and variational temperature retrievals and true
temperature for brightness temperature weights equal to 1000
for f(0), f(1), and f(2).

Figure 7. Parts of temperature soundings T and M between 250 mb
and 50 mb. Sounding VI is temperature retrieval with f (0) and
sounding V2 is temperature retrieval with f(2).



250 260

Figure i. Two typical temperature soundings A and B; the mean of
A and B, sounding M; and true temperature sounding T used for
sensitivity studies of variational temperature retrievals.
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Figure 2. Dashed line: differences between the mean or first guess
temperature sounding and true sounding. Solid lines:
differences between variational temperature retrievals and
true temperature sounding for the following choices of
brightness temperature weights; sounding 1 (10), sounding 2
(100), sounding 3 (1000).
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Figure 3. Curves for hypothesized temperature accuracy functions,
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Figure 4. Same as Fig. 2 but for f ( l ) .
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Figure 5. Same as Fig. 4 but for f ( 2 )
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Figure 6. Differences between first guess and true temperature
(dashed line) and variational temperature retrievals and true
temperature for brightness temperature weights equal to 1000
for f(0), f(1), and f(2).
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Figure 7. Parts of temperature soundings T and M between 250 mb
and 50 mb. Sounding VI is temperature retrieval with f (0) and
sounding V2 is temperature retrieval with f(2).




