NASA-CR-189849
19920008782

_COLLEGE
ENGINEERING

Hi-Alpha Forebody Design: Part I
Methodology Base and Initial Parametrics

by
William H. Mason and R. Ravi

VPI-Aero-176 (rev.,)

VIRGINIA
POLYTECHNIC

INSTITUTE
STATE

UNIVERSITY

BLACKSBURG,
VIRGINIA




31176 01355 6528

Hi-Alpha Forebody Design: Part I

Methodology Base and Initial Parametrics

by o
g ‘

“William H. Mason and R. Ravi

VPI-Aero-176 (rev.,)

October 1990
(rev., January 1992)

Prepared for:

JUL 151997

LANGLEY RESEARCH CENTER
LIBRARY NASA

HAMPTON, VIRGINIA

National Aeronautics and Space Administration
Langley Research Center

Grant No: NAG-1-1037

Covering the period July 17, 1989 - July 15, 1990

Department of Aerospace And Ocean Engineering
Virginia Polytechnic Institute and State University
Blacksburg, VA 24061

NG 13024+




TABLE OF CONTENTS

SUMMARY
INTRODUCTION

LIST OF SYMBOLS
COMPUTATIONAL BASIS

LAMONT TANGENT OGIVE
Tangent Ogive Forebody Grid

Results and Discussion of Lamont Tangent Ogive Computations

F-5A FOREBODY

F-5A Forebody Geometry Math Model
F-5A Grid
Results and Discussion of Computations on the F-5A Forebody

ERICKSON CHINE FOREBODY
Erickson Chine Forebody Math Model
Longitudinal lines
Cross Sections
Erickson Chine Forebody Grid

Results and Discussion of the Computations on the Erickson Forebody20

A MODEL FOR FOREBODY DESIGN:THE GENERIC FOREBODY

CONCLUSIONS

ACKNOWLEDGEMENTS

APPENDIX A MODIFICATIONS TO cf13d ( version 1.1)
APPENDIX B F-5A FOREBODY GEOMETRY MATH MODEL
APPENDIX C ERICKSON FOREBODY MATH MODEL
REFERENCES

TABLES

FIGURES

23
25
26



LIST OF TABLES

1. Tangent ogive Forebody : Comparison of Forces (M__ = 0.20)

LIST OF FIGURES

1. Typical C,, 5 characteristics of an advanced fighter
Grafton's classic example (ref 5)

Schematic of a typical forebody flowfield characteristics
Goal of forebody design effort

Samples of shapes employed in fighter forebody design

SR Y NN

Tangent ogive crude grid comparison with data on windward plane
7(a). Tangent ogive crude grid comparison with data (x/d = 0.5)

7(b). Tangent ogive crude grid comparison with data (x/d = 2.0)

7(c). Tangent ogive crude grid comparison with data (x/d = 3.5)

7(d). Tangent ogive crude grid comparison with data (x/d = 6.0)

8(a). Tangent ogive : Demonstration of ¢/ Bresults at x/d = 0.062

8(b). Tangent ogive : Demonstration of ¢ /Bresults at x/d = 11.02

8(c). Tangent ogive : Demonstration of ¢/ Bresults at x/d = 24.0

9(a). F-5A geometry (from Tom Heglund of Northrop)

9(b). F-5A geometry: FS 49.70 in.(forward station)

9(c). F-5A geometry: FS 130.35 in.(just prior to straight line side beginning)
9(d). F-5A geometry: FS 131.13 in.(just aft of straight line side beginning)
9(e). F-5A geometry: FS 194.00 in.(end station)

10(a) F-5A wind tunnel model (from NASA Langley)

10(b) Set-up used to measure F-5A surface coordinates at VPI




11(a). Comparison of F-5A geometry: Station 3.375 in. from nose

11(b). Comparison of F-5A geometry: Station 6.25 in. from nose

11(c). Comparison of F-5A geometry: Station 9.1875 in. from nose

11(d). Comparison of F-5A geometry: Station 15.3125 in. from nose

11(e). Comparison of F-SA geometry: Station 18.0625 in. from nose

11(f). Comparison of F-SA geometry: Station 22.5 in. from nose

12.  F-5A computational model (PLOT3D)

13.  F-5A cross sectional grid and closeup near surface at x = 9.061 in.

14.  F-5A cross sectional grid and closeup near surface at x = 15.44 in.

15.  F-5A cross sectional grid and closeup near surface at x=29.6 in.

16.  F-5A longitudinal pattern of grid (PLOT3D)

17.  F-5A convergence history (inviscid) a=40° and = 5°

18(a). F-5A convergence history (turbulent) az=40° and = 5°

18(b). F-5A convergence history (turbulent) & =20° and 8= 5°

19.  F-5A directional stability: Comparison of calculation with experiment
20(a). F-5A inviscid surface pressure distribution at x = 14.02 in.

20(b). F-5A inviscid surface pressure distribution at x = 29.61 in.

21(a). F-5A turbulent surface pressure distribution at x = 14.02 in.

21(b). F-5A turbulent surface pressure distribution at x = 29.61 in.

22.  F-5Ainviscid vs turbulent surface pressure distribution.

23(a). F-5A inviscid surface oil flow pattern a=40° and 8 = 5°

23(b). F-5A turbulent surface oil flow pattern o= 40° and 8= 5°

24, F-5A inviscid pressure contours at x = 14.025 in.( &= 40° and §=5°)
25.  F-5A turbulent pressure contours at x = 14.025 in.( &= 40° and = 5°)
26.  F-5A inviscid stagnation pressure atx = 14.025 in.( o¢=40° and = 5°)
27.  F-5A turbulent stagnation pressure at x = 14.025 in.( = 40° and 8 = 5°)
28.  Details of the Erickson forebody wind tunnel model.

iv




29. Comparison of digitized ordinates and smooth math model for the Erickson
forebody for the full range of stations.

30.  Comparison of digitized ordinates and smooth math model for the Erickson
forebody.

31.  Erickson forebody computational model (PLOT3D)

32.  Erickson forebody cross sectional grid at x = 30.00 in.

33.  Erickson forebody convergence history (inviscid) &= 30° and §= 10°

34.  Erickson forebody convergence history (turbulent) = 30° and 8= 10°

35(a). Erickson forebody inviscid surface pressure distribution at x =7.19 in.

35(b). Erickson forebody inviscid surface pressure distribution at x = 13.56 in.

35(c). Erickson forebody inviscid surface pressure distribution at x = 19.94 in.

36(a). Erickson forebody inviscid surface pressure distribution at x = 7.19 in.

36(b). Erickson forebody inviscid surface pressure distribution at x = 13.56 in.

36(c). Erickson forebody inviscid surface pressure distribution at x = 19.94 in.

37(a). Erickson forebody inviscid vs turbulent surface pressures atx = 7.19 in.

37(b). Erickson forebody inviscid vs turbulent surface pressures atx = 13.56 in.

37(c). Erickson forebody inviscid vs turbulent surface pressures at x = 19.94 in.

38(a). Erickson forebody inviscid vs turbulent surface pressures at x = 7.19 in.

38(b). Erickson forebody inviscid vs turbulent surface pressures atx = 13.56 in.

38(c). Erickson forebody inviscid vs turbulent surface pressures atx = 19.94 in.

39.  Erickson forebody with isolated wing VLM model

40.  Wing induced flowfield at Erickson forebody pressure stations.

41(a). Erickson forebody inviscid surface pressures atx =7.19 in.(a = 32.2° and = 0°)

41(b). Erickson forebody inviscid surface pressures atx = 13.56 in.(ax = 32.2° and 8 = 0°)

41(c). Erickson forebody inviscid surface pressures atx = 19.94 in.(cr = 32.2° and 8 = 0°)

42.  Erickson forebody inviscid surface oil flow pattern (a=30° and 8= 0°)




43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.

Erickson forebody turbulent surface oil flow pattern (o= 30° and 8= 0°)

Erickson forebody inviscid pressure contours at x = 13.56 in. (o =30° and = 0°)
Erickson forebody turbulent pressure contours at x= 13.56 in. (o= 30° and = 0°)
Erickson forebody inviscid stagnation pressure at x = 13.56 in. (&= 30° and §=0°)
Erickson forebody turbulent stagnation pressure at x=13.56 in. (&= 30° and S =0°)
Erickson forebody inviscid surface oil flow pattern (a=30° and = 10°)

Erickson forebody turbulent surface oil flow pattern (o= 30° and = 10°)

Erickson forebody inviscid pressure contours at x = 13.56 in. (&= 30° and = 10°)
Erickson forebody turbulent pressure contours at x = 13.56 in. (¢c = 30° and S = 10°)
Erickson forebody inviscid stagnation pressure at x=13.56 in. (@ =30° and 3 = 10°)
Erickson forebody turbulent stagnation pressure at x=13.56 in. (c¢=30° and 8= 10°)
Parametric forebody shapes as driven by the value of n

Parametric forebody shapes when the straight sidewall is selected

Examples of the parametric forebody for the entire cross section

a) elliptic cross sections

b) straight wall sides at max half breadth

c) chine type cross sections



HI-ALPHA FOREBODY DESIGN: PART I
METHODOLOGY BASE AND INITIAL PARAMETRICS

William H. Mason
R. Ravi

Virginia Polytechnic Institute and State University
SUMMARY

The use of Computational Fluid Dynamics (CFD) has been invcsﬁgatcd for the analysis and
design of aircraft forebodies at high angle of attack combined with sideslip. The results of the
investigation show that CFD has reached a level of development where computational methods can
be used for high angle of attack aerodynamic design. The classic wind tunnel experiment for the
F-5A forebody directional stability has been reproduced computationally over an angle of attack
range from 10° to 45°, and good agreement with experimental data was obtained. Computations
have also been made at combined angle of attack and sideslip over a chine forebody, demonstrating
the qualitative features of the flow, although not producing good agreement with measured
experimental pressure distributions. The computations were performed using the code known as
cf13d for both the Euler equations and the Reynolds equations using a form of the Baldwin-
Lomax turbulence model. To study the relation between forébody shape and directional stability
characteristics a generic parametric forebody model has been defined which provides a simple
analytic math model with flexibility to capturé the key shape characteristics of the entire range of

forebodies of interest, including chines.




INTRODUCTION

High angle of attack aerodynamic characteristics are key to agility of advanced fighter
aircraft. Considerable attention has been devoted to flow asymmetries, advanced control device
concepts (forebody “flaps™), and modern control system design (ref. 1-4). However, the
requirement for advanced control devices and control systems is in large part due to directional
stability characteristics. If the basic directional stability characteristics are aerodynamically tailored
by proper shaping of the design, demands on control systems and control devices can be
dramatically decreased, and complicated forebody mechanisms (which are undesirable from an
aircraft designer's point of view) may not be required.

The aerodynamic design problem can be described using typical aerodynamic characteristics
of fighter aircraft. Figure 1 illustrates the problem in terms of typical C,, B characteristics of an
advanced fighter. At low angle of attack the vertical tail provides directional stability. As the angle
of attack increases the tail loses effectiveness because it is located in the separated flow region
behind the fuselage and wing. For some configurations the directional stability increases again as
the angle of attack increases, as shown in the figure. Figure 2 is taken from the report by Grafton,
et. al., (ref. 5). In this case the directional stability of the forebody alone is nearly identical to the
directional stability of the entire aircraft above 30° ¢, and shows the dominant role played by the
forebody in causing the directional stability to start increasing for an F-5A type of configuration.
Figure 3 (ref. 6) provides a schematic of a typical forebody and flowfield responsible for favorable
characteristics, although in this case the concept is quantitatively in error. The leeward vortex is
actually bigger but farther away from the surface than the windward vortex. The low pressure
associated with the vortex located very close to the surface acts to “pull” the body back to a smaller
sideslip, and thus provides a stabilizing moment. The possibility of controlling the flow is shown
in the figure, where the cross section is not axisymmetric, and has a small radius of curvatﬁrc or

crease at the max half breadth line location. Figure 4 shows the desirable changes to the C), B



characteristics shown in figure 1. Ideally the loss of stability should be delayed and the rapid
variation should be minimized, with a resulting maximum C,, 8 being less than the extremely high
values sometimes observed. High values of C,, B are frequently considered to be an indication of
poor C”r characteristics. |

Previous development work in this area has been carried out experimentally. Figure 5
illustrates a range of forebody shapes that have been considered for use on fighter aircraft.
However the capability now exists to use computations to investigate the design of aircraft
components at high angle of attack. This has been demonstrated by recent computational results.
One practical example is the analysis of the F/A-18 (ref. 11). Detailed examinations have also been
made for tangent ogives, including the effects of surface perturbations on flow asymmetry (ref.
12-14). However, none of the previous work has examined the capability of the methods to
compute sideforces arising from combined angle of attack and sideslip on non-axisymmetric
forebodies.

Although the general problem of obtaining positive directional stability levels for fighter
aircraft at high angle of attack is complicated and component interactions are important, the
forebody is crucial, as shown in figure 2, and because of its location necessarily less affected by
interactions than other components . Therefore, the broad objective of the current effort is directed
toward developing an understanding of forebody static directional stability aerodynamics and
methods to tailor the isolated forebody characteristics for desirable high angle of attack
characteristics. Specifically: i) how can a favorable contribution to directional stability be induced at
lower angles of attack and ii) how can extremely large values of C,, B (which presumably are
indicative of poor Cn,- characteristics) be eliminated?

This report addresses the necessary first steps required to achieve the overall objective: the
capability and credibility of using an advanced computational code to conduct iniﬁal aerodynamic
design of forebodies. To investigate the current capabilities of CFD, a current, widely used code,

cf13d (ref. 15), was used to compute two cases for which experimental data is available: the F-5A




forebody tested by Grafton, et. al. (ref. 5), and the chine forebody tested by Erickson and Brandon
(ref. 7). A discussion of the results is preceded by a description of the initial work done to use
cfl3d in a combined « / B flowfield. After the comparison with the experimental results, a
parametric model for a generic forebody is presented which is completely defined by simple
analytic formulas. This generic forebody model is capable of describing forebody geometries over

an extremely large class of shapes, from sharp edge chines to rectangular cross sections.



LIST OF SYMBOLS

a maximum half breadth of the generic forebody definition

b maximum centerline distance of the generic forebody definition
b’ wingspan

c mean aerodynamic chord

Cr lift-force coefficient, lift/gcoSyef

pitching-moment coefficient, pitching momenr/qwgrefc

m
c, yawing-moment coefficient, yawing momcnt/qodsrefb’
C, B directional stability derivative, aC,, / df

Cp pressure coefficient, (P-Poo)/q oo

Cy axial-force coefficient, axial force/q,x,S'ref
Cy side-force coefficient, side forcc/qodS'ref
C, normal-force coefficient, normal force/gooSyef

Cy local side-force, section side force/q“,S"ref

D diameter of circular cross section of tangent ogive
FS fuselage station

m,n adjustable parametric coefficients

M, free stream Mach number

l model length

Re; Reynolds number based on model length, {

Sref reference area

u wall friction velocity, V Tw! P

x,y,z  body coordinate system : x positive aft along model axis,

¥ positive to right and z positive up




X ref moment reference center

yt inner law variable, yu*/v

o angle of attack, deg

B angle of sideslip, deg

e azimuthal angle, measured clockwise from windward plane at any cross

section




COMPUTATIONAL BASIS

The baseline code for this work was the NASA Langley program cfl3d. At the start of the
effort version 1.1 of this code was selected as being appropriate for this investigation. In this code
the three dimensional compressible viscous flow around the body is found by solving the
conservative form of the dimensionless, thin layer Navier-Stokes equations.

For turbulent flow cf13d uses the Reynolds averaged counterparts of the Navier-Stokes
equations. An algebraic turbulence model is used, where the turbulent viscosity 4, is obtained by
using the two layer algebraic eddy viscosity of Baldwin and Lomax (ref. 16) as modified by
Degani and Schiff to account for the special characteristics of strongly separated flows in
references 17 - 19. The Roe type inviscid flux difference splitting scheme option in the code was
used to obtain the results presented in this report.

The farfield computational boundaries were chosen sufficiently far away from the body so as
not to affect the forces on the body. They were chosen to be consistent with those used by other
investigators e.g.,F/A-18 (ref. 11) and tangent ogive (ref. 12). The exact distances have been
given under each specific case discussed later. Inflow-outflow boundary conditions were used at
the farfield inflow, farfield outflow and the farfield outer boundary. For turbulent computations the
grid ahead of the nose was treated as a separate block (as described later). When viscous effects are
included the no-slip as well as non-penetration conditions are enforced on the body. At the plane of
geometric symmetry periodic conditions are used to include sideslip as well as angle of attack in the
freestream flow. The temperature boundary condition is treated by defining the body to be
adiabatic.

The computations were made on the NASA Langley Cray-2 computer. Some initial startup
activity was required before beginning the forebody study. The available version of the code was
modified, as described in Appendix A, to handle the boundary conditions for combined ¢/f3

flows, and then validated for operation at combined angles of alpha and beta.



The primary, and minor, modification of the code was the incorporation of a new boundary
condition. For the work conducted here a full grid was used wrapping all the way around the
body, instead of a typical plane of symmetry grid. Therefore, instead of plane of symmetry
boundary conditions, the grid interface in the cross flow plane was setup to allow flow across the
grid boundary on the leeward side.

The computational grids were generated using stacked 2D grids at each axial location. The 2D
grid in the cross plane was generated using a grid generator provided by W. McCrory (ref. 20) that
was originally developed to construct the grid for the calculation of the SR-71 flowfield (ref. 21).

Analysis of flowfield calculations was carried out for the more complicated aspects of the
grid and flow visualization using the NASA Ames code PLOT3D (ref. 22). This program was

used on the Aerospace and Ocean Engineering Department Iris 4D graphics workstation.

LAMONT TANGENT OGIVE

To check the code and grid setup for this work a simple geometry extensively studied by
other investigators was selected. The so-called “Lamont tangent ogive” (ref. 23) was used for the
work. This is a 3.5 diameter tangent ogive nose with a cylindrical afterbody. The total length of the
ogive and cylindrical forebody was 25 diameters. The objecﬁvc of computing the flow over this
relatively simple geometry was to test the minor modifications that were made to cfl3d, including
the added boundary condition. The ability of the code to handle combined angle of attack and
sideslip is a key part of the study and needed to be verified with a geometry which would provide
the same results for a at zero § and B at zero . Inviscid computations were made at
M., = 0.2 for two different cases, one for & = 20° and no sideslip and the other with B = 20° with

)

no angle of attack.




Tangent Ogive Forebody Grid

The three dimensional grid was constructed from two dimensional O-type cross flow grids
which are longitudinally stacked, constituting an H-O topology. The boundaries upstream of the
nose and radially away from the body were selected to be consistent with similar calculations done
by Hartwich and Hall (ref. 12). The forward boundary extends upstream of the nose by 0.502]
and radial outer boundary extends 1.06/ from the model centerline. The reference length [ is
equal to the longitudinal extent of the forebody, which was 25 diameters.

The grid used for the initial inviscid calculations had 24 points in the radial direction and 57
points in the full circumferential direction. Longitudinally, the grid was clustered near the nose
with 22 stations on the forebody and 9 stations ahead of the nose. The grid upstream of the nose
was also longitudinally stretched to provide resolution near the nose. The entire inviscid grid
consisted of 42,408 points. The results obtained using this grid resulted in irregularities in the
surface pressures at the ogive-cylinder intersection and downstream to be discussed below. The
problem was reduced by increasing the grid resolution. Thus, subsequent calculations were made
by increasing the number of grid points in the circumferential direction to 69 points with total

number of points in the entire grid increasing to 51,336 points.
Results and Discussion of the Lamont Tangent Ogive Computations

Initial inviscid calculations used the 24 x 57 x 31 grid for the case of & =20° and 8 =0°.
These results are shown in figures 6 and 7. The experimental data shown in these figures are due
to Lamont (ref. 23). Here they are taken from the paper by Hall and Hartwich (ref. 12) and include
an adjustment in the pressures. The data were obtained at a wind tunnel freestream Reynolds
number of 0.2 x 10° based on the diameter of the tangent ogive. Figure 6 shows the surface
pressures on the windward plane of symmetry. The difference in the surface pressure between the

experimental and the computational data at sections close to the nose is attributed to the poor



resolution of the stacked O-grid type topology at the nose. Figures 7(a) to 7(d) show the surface
pressure coefficient at the axial stations of x/d = 0.5, 2.0, 3.5 and 6.0. The first two locations are
on the ogive forebody, the third is at the junction between the forebody and the cylindrical
afterbody and the fourth is on the cylindrical afterbody. The 6 shown on the x axis is the angle
measured clockwise from the windward plane at any cross section with 8 = 0° corresponding to
the windward plane and 6 = 180° corresponding to the leeward plane. The inviscid computations
agree fairly well with the data on the windward side. Agreement is poor near the nose (fig. 7(a)).
Presumably this is due to a lack of grid resolution, as seen in figure 6. The agreement is
surprisingly good at x/d = 2.0 considering the expectation that viscous effects would have
significantly altered the pressure distribution at this angle of attack. However, agreement does
deteriorate further downstream, where viscous effects do begin to make a significant effect on the
surface pressure distribution as shown in figures 7(c) and 7(d). The irregularities in the computed
surface pressures near 6 = 90° decreased significantly when the 24 x 69 x 31 grid was used. All
the following figures incorporate this finer grid.

Using the refined mesh, computations were also made for the case of a=0° and 8 =20° to
verify that the surface pressures and forces were equivalent to the @ = 20° and 8 = 0° case. The
surface pressures at different cross sections are shown in figures 8(a) to 8(c) for both the cases.
The ordinates for the case of & = 0° and 8 = 20° have been shifted by 90° for comparison to the
surface pressures from the & = 20° and 8 = 0° case. The pressures are identical in both cases.
Table [ 1] gives the forces for these cases. The forces and moments are nearly identical with the
orientation of the body in each case. Only small differences occur between components. The
replacement of the plane of symmetry boundary condition with the periodic boundary condition
also weakened the convergence.

This computation establishes the validity of the new boundary condition and the ability to
treat side slip with angle of attack. Having established confidence in the code for sideslip as wéll as

angle of attack calculations, the calculation of aerodynamic interest were initiated.
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F-5A FOREBODY

The flowfield around the F-5A forebody was computed to study the use of an advanced code
like cfl3d in predicting the directional stability characteristics of forebodies at high angles of
attack. This forebody had been tested by Sue Grafton , et.al. at NASA Langley Research Center

and the results are available in ref 5.
F-5A Forebody Geometry Math Model

The computational math model was constructed using classical conic lofting techniques (ref.
24) based on the lofting information provided by Tom Heglund of Northrop. Figures 9(a) to 9(e)
show the F-5A forebody geometry with cross section shapes at different locations along the length
of the body, together with the data required to construct the numerical model. The configuration
was modeled from the nose longitudinally back to x = 225 in. The computational model did not
include the canopy. At sections close to the nose, as shown by figures 9(b) and 9(c), the upper and
the lower maximum half breadth points coincide. However, at sections downstream the upper and
lower maximum half breadth points are separated by a flat side wall. Because of this, grid points
were clustered near the maximum half breadth points forward of the flat side wall to provide
adequate definition on the flat wall portion of the forebody and create smoothly varying
longitudinal grid lines. The computer code to generate the F-5A surface co-ordinates is given in
Appendix B.

To verify that the wind tunnel model geometry agreed with the math model, Sue Grafton of
NASA Langley provided the forebody from the wind tunnel model of the F-5A. The model was a
0.17-scale model of the full scale airplane. Figures 10(a) and 10(b) show the wind tunnel model
forebody and the setup that was used to make templates of the cross sections. The measured shape

of the forebody at different cross sections was then digitized from a tracing of the shape defined by

11




the template and compared with the computational model. The cross sectional shapes of the
computational and the wind tunnel model agree very well considering the method used to obtain the

model shape, as shown in figures 11(a) to 11(f). The shaded surface pattern of the F-5A

computational model is given in figure 12.
F-5A Grid

The three dimensional grid was constructed from two dimensional O-type cross flow grids
which are longitudinally stacked, constituting an H-O topology. The boundaries upstream of the
nose and radially away from the body were initially selected to be consistent with the F/A-18
calculations in ref 11. These were later found to be sufficiently far away from the body so as not to
affect the forces and moments on the body. The forward boundary extends upstream of the nose
by 0.62! and radial outer boundary extends 0.98/ from the model centerline. The downstream
boundary, as explained earlier, extended from the nose back to x = 225 in ( in full scale ) which
is as shown in figure 9(a) without the canopy. The reference length / is equal to the longitudinal
extent of the forebody which was 31.025 in using the wind tunnel model scale.

For inviscid calculations the grid had 45 points in the radial direction and 93 points in the full
circumferential direction. This number was increased based on the experience with the tangent
ogive and the need to resolve the details of the cross section. Longitudinally, the grid was clustered
near the nose with 25 stations on the forebody and 8 stations ahead of the nose. The grid upstream
of the nose was also longitudinally stretched to provide resolution near the nose. The entire
inviscid grid consisted of 138,105 points.

For viscous calculations the grid had 65 points in the radial direction with longitudinal and
circumferential grid points remaining the same as used for the inviscid calculations. The total
number of grid points for the viscous grid was 199,485 points. The grid upstream of the nose‘ was

treated as a separate block for turbulent flow calculations. Figures 13 to 15 show the grid used for
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the viscous calculations at different cross sections downstream from the nose. The reason for the
clustering of the grid points near the maximum half breadth point at stations close to the nose was
described above. Figure 16 shows the longitudinal stretching of the grids. For the grid that was
used, it can be seen that good resolution of the grid at the nose is required to resolve the flow
details there.The actual grid used in the computations had more stations near the nose than that
shown in figure 16.

The grid was established with sufficient normal clustering near the surface to adequately
resolve the laminar sublayer for the turbulent boundary layer flow. This grid produced an average
normal cell size of approximately 10-41. At the wind tunnel freestream conditions ( M, = 0.2,
Rep=125x 10% , and & = 20 ) the baseline grid typically resulted in a value of y*= 2 at the
first mesh point away from the body. |

Results and Discussion of Computations on the F-5A Forebody

Inviscid calculations were performed for o= 20°, 30°, 40° and 50° with side slip angles of
B =0°, 5° and 10°. Turbulent calculations were performed for ¢ = 10°, 20°, 30°, 40° and 45°
and B =5°. All computations were performed on the Cray-2. The inviscid computations took |
approximately 0.55 hours of CPU time for convergence, and the turbulent computations took
approximately 4.5 hours to reduce oscillations in the lift coefficient Cy and the yawing moment
coefficient C,, to a negligible level.

Convergence histories for a typical inviscid case is given in figure 17 in terms of residual and
lift. The convergence histories for a typical viscous computation are shown in figure 18 which
includes the residual, the lift force, side force and the yawing moment coefficients. The inviscid
calculations which were started with a CFL number of 2 and ramped over 100 steps to a CFL
number of 6 demonstrated strong convergence. Unlike the inviscid case, the turbulent
computations show low frequency decaying oscillations in values of Cy, and C}, and require

about 5000 iterations for a fully converged solution. The turbulent computations were started with
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a CFL number of 0.1 and ramped over 100 steps to a CFL number of 0.3 The detailed behavior of
the residual and forces change abruptly after 3000 iterations as shown in figures 18(a) and 18(b).
This is the result of reducing the CFL number once the solution ceased to converge, thus, making
the oscillations decay further to a steady solution.

The E-5A forebody directional stability experimental data from ref 5 are shown along with
the computed inviscid and viscous results in figure 19. The computed values of C,, B were
obtained as the finite difference of the yawing moment coefficients C,,. These values being small,
it was required that the solution be fully converged to avoid errors in the computed values of C), 5
It can be seen that both inviscid as well as viscous results show the stabilizing effect of the
forebody at high angles of attack. At low angle of attack (10° and 20°) the inviscid and viscous
calculations agree with each other and the data. At 30° the viscous computations continue to agree
with the data, and at the higher angles of attack (40° and 45°) differences begin to appear. This is
reasonable considering both the thin layer assumption and the accuracy of the turbulence model for
massively separated flows. Nonetheless, the ability of the computations to reproduce the
experimentally observed contribution of the F-5A forebody to directional stability is an exciting
result. The viscous calculation results establish the effectiveness of an advanced code like ¢fl3d in
computing the directional stability characteristics for forebodies at high angles of attack. However
the inviscid results are in error. The Euler solution results are shown below to contain the spurious
non-physical flow separation arising due to lack of grid resolution. The grid resolution effects were
not studied in this report but the issue should be considered as a part of future study.

Figures 20 and 21 show the inviscid and turbulent surface pressure distributions at various
cross section stations, respectively. The corresponding cross sectional shapes are shown at the
bottom of the figure. The results presented here were carried out on the respective standard grids
for the case of & = 40° and 8 = 5°. The negative peak pressures are due to the vortices on the
upper surface of the cross section and are shown more clearly in the surface flow visualization
pictures presented in the following paragraph. The asymmetry in the pressure distribution due to

the side-slip can also be seen. Figure 22 provides a comparison of the inviscid and turbulent
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results. At station 14 the viscous results clearly show the effect of the vortices, with two low
pressure regions underneath the windward and leeward primary vortices. Curiously, at the aft
station (29.61), the inviscid results contain the low pressure peaks. At this station the true vortices
in the turbulent calculations are well away from the surface, and the flow is massively separated,
with the associated low pressure gradients along the surface. The three low pressure peaks in the
turbulent solution are due to the windward primary vortex, the leeward primary vortex and the
leeward secondary vortex. The inviscid results contain low pressure regions that are related to the
Cross section curvature.

The flowfield results shown in figures 23 to 27 have been generated using computational
flow visualization techniques (PLOT3D). Figure 22a shows the inviscid surface flow pattern for
o = 40° and B = 5°. The dye is injected at two axial stations to observe the formation of
separation lines, if any. The inviscid separation lines seem to indicate some kind of spurious
separation occurring on the surface. The turbulent flow surface oil flow pattern, is shown in figure
23b for the same o and f. Here, primary separation lines starting from near the nose as well as
the secondary separation lines starting from further downstream are shown.

Figures 24 and 25 show the cross sectional pressure contours at the axial station x = 14.025
in. from the nose for the inviscid and viscous flows respectively, where these results are again for
o =40° and B = 5°. The magnitudes associated with the contour quantities are displayed with a
color bar on the left.The viscous leeward vortex is bigger and farther away from the surface than
the windward vortex in figure 25. The lower surface pressure associated with the vortex closer to
the surface acts to pull the body back to smaller sideslip, and thus provides a stabilizing moment.
The vortex pattern and asymmetry are more clearly seen in the figures 26 and 27 which are shaded
based on the stagnation pressure. The leeward vortex in the case of turbulent flow is farther away
from the surface than that of the inviscid flow. This difference in the relative positions of the
vortices in turbulent and inviscid cases is the reason for the different directional stability shown in
figure 19. The turbulent flow also shows the secondary vortices being shed from under the

primary vortices further downstream from the nose.
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ERICKSON CHINE FOREBODY

The surface pressure distributions from the chine forebody tested by Erickson and Brandon
(ref. 7) were used to investigate the capabiﬁty of CFD to compute the flow over a chined forebody.
The experimental configuration is shown in figure 28 (ref. 7). The geometry information used to
construct the grid was supplied by Robert Hall of NASA Langley, and the pressure data was
supplied by Gary Erickson, also of NASA Langley.

The wing tunnel model had rows of pressure orifices at FS7.19, FS13.56, and FS19.94. All
of the data was taken with the wing present. It was assumed that the presence of the wing would
not affect the results at the first station, and have minor effects at the second station. The third row
of pressures was considered too close to the wing to provide valid comparisons with the forebody

calculations, but are presented to provide additional information.
Erickson Chine Forebody Math Model

The Erickson forebody definition was not available in a convenient form for development of
the surface definition. A CAD drawing was made available, together with digitized ordinates of the
cross-sections contained on the drawing. We were also supplied with digitized coordinates of the
drawing generated by Nielsen Engineering and Research, Inc.® As a basis for the shape, Robert
Hall supplied a copy of his notes defining the class of theoretical shapes intended to be used to
design the forebody. The forebody was required to blend smoothly to an existing NASA Langley
model, and this requirement led to deviations from the theoretical concept.

The surface is constructed using standard lofting techniques. First, the key longitudinal lines

are defined as a function of the axial station. In this case the lines are the top center line, the bottom

* The CAD drawing of the model forebody was identified as “Roll Stability Model
Forebody”, 11 July 1984, C.J. Rozo, Change A
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center line, and the max half breadth line. A cross section model is then developed which connects
these lines smoothly and produces a section which varies smoothly with axial location. For this
model the upper and lower cross sections are developed independently of each other. The listing of

the FORTRAN code of the math model is given in Appendix C.

Longitudinal Lines

Upper surface centerline; from the nose to FS7.5 the top centerline is defined by a portion of
a 19.5° tangent ogive. Aft of this station the shape is defined by combination of three cubic spline
segments and two straight line segments. This model was based on careful analysis of the CAD

drawing.

Lower surface centerline: from the nose to FS6.0 the bottom centerline was defined by a
portion of a 15° tangent ogive. Aft of this station the shape was defined by a combination of two
cubic line segménts and two straight line sections. Again, the model was developed based on an

analysis of the CAD drawing.

Max half breadth line: from the nose to FS8.0 the max half breadth line was defined by a
portion of a 27.5° tangent ogive. A cubic spline was used from FS8.0 to FS19.0, followed by a

zero slope straight line segment.

In all cases the line segments and spline end point conditions were chosen to provide
smoothly varying changes in the slope of the lines, and to minimize jumps in the curvature
distribution. Analysis of the CAD drawing suggests that the modifications to the theoretical shape
originally outlined by Hall resulted in some abrupt changes in curvature distribution in the actual
model lines (recall that a point and slope type match between surfaces will normally result in a
discontinuity in curvature at that point). The exact details of the models are easily found in the

listing in Appendix C.
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Cross Sections

Upper surface cross section: Forward of FS 7.19 the Hall equation was found to fit the
supplied digitized ordinates from the drawing well. Aft of the FS7.17 the séction was modified to
match the existing circular fuselage at FS23. Thus another station was defined at FS23, which was
initially circular, and then departed to make the chine using cubic splines. Between these two
sections a combination of the two function was used based on the blending function method

described by Barger and Adams (ref.25)

Lower surface cross section: When normalized by the max half breadth line and the lower
centerline the digitized representation of the cross sections was found to be the same at all cross
sections. Thus only one cross sectional shape was required. This cross section was constructed
'using Hall’s equation as the basis, and adding a spline curve defining the difference between Hall’s
equation and the actual shape. The difference was found by subtracting the analytic shape giveh by
Hall from the measured ordinates. Because the measured coordinates were slightly noisy, a smooth
curve was developed by selecting a small number of points from the data, and using a spline

interpolation between the points to evaluate intermediate values.

The results of the math model are compared with the ordinates measured from the drawing in
figure 29 for the full range of stations. Figure 30 presents details at the three stations where
pressure data was obtained. This is the best smooth model of the forebody we were able to
construct. The surface shaded PLOT3D view of the model is shown in figure 31, and demonstrates
the resulting smooth contour of the math model. Construction of an accurate math model for the

Erickson forebody was one of the most time consuming parts of the work described in this report.




Erickson Chine Forebody Grid

Using a procedure similar to the approach used for the F-5A grid, the three dimensional grid
around the Erickson forebody was constructed from two dimensional O-type cross flow grids
which were longitudinally stacked, constituting an H-O topology. The boundaries upstream of the
nose and radially away from the body were again selected to be consistent with the F/A-18
calculations in ref. 11.The downstream boundary Was extended from 19.94 in to 30.00 in with
~ the same cross section. The forward boundary extends upstream of the nose by 0.61/ and radial
outer boundary extends .99/ from the model centerline. The reference length / is equal to the
longitudinal extent of the forebody (30.00 in).

The inviscid calculation grid had 45 points in the radial direction and 101 points in the full
circumferential direction. Longitudinally, the grid was clustered near the nose with 25 stations on
the forebody and 8 stations ahead of the nose. The grid upstream of the nose was also
longitudinally stretched to provide resolution near the nose. Care was taken to have axial stations at
sections where the experimental surface pressures were available. These were at a distance of 7.19,
13.56 and 19.94 inches from the nose along the length of the body. The entire inviscid grid
consisted of 149,985 points.

As compared to the inviscid grid, the viscous calculation grid had 65 points in the radial
direction with longitudinal and circumferential grid points remaining the same. The total number of
grid points for the viscous grid was 216,645 points. As described for the F-5A calculations, the
grid upstream of the nose was treated as a separate block for turbulent flow calculations. Figure 32
shows the viscous grid structure at a typical cross section.

The baseline grid was established with sufficient normal clustering near the surface to
adequately resolve the laminar sublayer for the turbulent boundary layer flow. This grid produced
an average normal cell size of approximately 10741, Atthe wind tunnel freestream
conditions (M., =0.2,Re;=1.02x 108, and o = 20° ) the baseline grid typically resulted in

a value of y*= 2 at the first mesh point away from the surface.
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Results and Discussion of the Computations on the Erickson Chine Forebody

Inviscid and turbulent calculations were initially performed for & =30° with side slip angles
B = 0° and 10°. Inviscid computations took approximately 0.75 hours of CPU time for
convergence to five orders of magnitude.The turbulent computations took approximately 4.0 CPU
hours to reduce oscillations in lift force coefficient C; and yawing moment coefficient C,, to a
negligible level, by which time the residual went down two orders in magnitude.

The convergence summary for a typical inviscid and viscous case are given in figures 33 and
34 respectively. Convergence histories of the residual and the normal force coefficients are shown.
As in the case of F-5A the inviscid calculations were started with a CFL number of 2 and ramped
over 100 steps to a CFL number of 6. Unlike the inviscid case, the turbulent computations show
low frequency decaying oscillations in values of C; and require about 4000 iterations for a fully
converged solution. The turbulent computations were started with a CFL number of 0.1 and
ramped over 100 steps to a CFL number of 0.3. Once the solution ceased to convérge after 2000
iterations the CFL number was increased and the oscillations decayed further to a steady solution.
This change in CFL number is the reason for the sudden change in the behavior of the plot in
figure 34.

Figures 35 and 36 present the computed inviscid surface pressure distributions on the upper
surface at the three pressure instrumented cross sections, with the cross sectional shapes shown
below each of the plots . The experimental data were obtained from Gary Erickson. The details of
the experimental investigation are available in ref 7. The axial stations where the pressures have
been plotted were at a distance of 7.19, 13.56 and 19.94 inches from the nose along the length of
the body. Figure 35 shows the pressures for the & = 30° and 8 = 0° case. At the section closest
to the nose (7.19 in.) the computations predict the pressure level very well near the center éection

of the body, and underpredict the surface pressure suction levels outboard, where the suction peak

20



occurs. Moving downstream, the trends are the same, except that the agreement at the center
section also becomes less accurate. Figure 36 shows the surface pressure comparisons for the case
of & =30° and B = 10°. In this case the windward pressure suction levels, as well as the center
section pressures are predicted very well by the inviscid computations. The agreement deteriorates
at the F519.94 station, where wing effects not included in the calculation would become important.
The leeward pressure levels are poorly predicted at all the stations.

The effect of viscosity on the surface pressure comparisons presented above are given in
figures 37 and 38. Including viscosity effects does not improve the agreement. Figure 37 provides
the results at zero sideslip. Viscous effects did not change the pressure levels at the mid section of
the forebody, but did have a large effect on the peak suction pressure level, reducing the peak
pressures and resulting in even worse agreement with the experimental data. The same trend is
observed for the results at 10° sideslip, as shown in figure 38.

Due to the disappointing agreement between the experiment and computations, an estimation
of the possible effects of the wing on the forebody flowfield was made. To investigate the effect of
the wing on the flow over the forebody Lamar's Vortex Lattice code ( VLM4997, ref 26 ) was run
for an isolated wing model of the wind tunnel model for the case of & = 30° and 8 = 0°.The
velocity field due to the wing lift was then computed at the pressure measurement locations.
Although approximate, this calculation provides an estimate of the additional induced angle of
attack that would exist on the forebody due to the presence of the wing. Two models of the isolated
wing were considered, as shown in figure 39. The first model had the leading edge sweep
extended to the centerline and the second model had the wing nose clipped at the wing-chine
forebody intersection. Using the experimental value of the lift at & = 30°, C; = 1.0, the code
computed an angle of attack of 26°. Under these conditions the induced angles of attack as
computed by the VLM code are given in figure 40. The effect is approximately 1° at FS7.19, 2° at
FS13.56, and becomes large at FS19.94, which is very close to the wing.

Based on the induced angle of attack analysis, an inviscid solution was computed using an
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additional 2.2° alpha. The resulting 32.2° o would correspond to the corrected o at FS13.56
including wing induced angle of attack effects. The results are shown in figure 41 compared with
the results presented above for o = 30° and = 0°. Although the results at the first station (where
the estimated effect was only 1°) start to show good agreement, the change in the solution at
FS$13.56 is not enough to attribute the differences to the neglected wing flowfield. Also note that if
viscous effects had Been included an even greater angle of attack change would be required to
obtain agreement with experiment. Thus the wing flowfield effects do not entirely explain the poor
agreement between experiment and computation at the suction peak locations.

Thé flowfield results shown in figures 42 to 53 have been generated as in the case of F-5A
using computational flow visualization techniques (PLOT3D). Figure 42 shows the inviscid
surface oil flow pattern for & = 30° and S = 0°. The dye is injected at two different axial stations
to observe the formation of separation lines, if any. The inviscid separation can be clearly seen to
be occurring at the sharp edges as expected. The turbulent surface flow pattern is completely
different, as shown in figure 43 for the same case. The primary separation lines start from the edge
as in the case of inviscid flow, and an attachment line occurs at the centerline. However a
secondary separation line is shown in the figure.

Figures 44 and 45 show the cross sectional pressure contours at the axial station x = 13.56
in. from nose for the inviscid and viscous flows respectively at & = 30° and § = 0°. The
pressures are seen to be symmetrical about the plane of symmetry for both the inviscid and
turbulent cases. The vortex pattern and symmetry are more clearly seen in the figures 46 and 47
which are shaded based on the stagnation pressure. The turbulent flow also shows the secondary
vortices being shed from under the primary vortic.es further downstream from the nose.

Figures 48 to 53 show the similar flow visualization pictures for the case of a = 30° and
B = 10°. Figure 48 shows the inviscid surface oil flow pattern. The asymmetry pattern is readily
apparent. The lines that end abruptly arise when the streamline reaches the edge of the

computational grid. After this photo session we learned how to operate PLOT3D to avoid this
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premature termination of the oil flow line. However, the figure demonstrates that the attachment
line has shifted due to sideslip. Figure 49 presents the results when viscous effects are included.
Qualitatively the results are the same as in the zero sideslip case, but show the asymmetry
introduced by the sideslip. Figures 50 and 51 show the pressure contours with the magnitudes of
the pressures shown on the left. In both the turbulent and inviscid cases the leeward vortex is
farther away from the surface than the windward vortex. Figures 52 and 53 show the stagnation

pressure contours, and define the vortex location more precisely.
A MODEL FOR FOREBODY DESIGN: THE GENERIC FOREBODY

Passive tailoring of the aerodynamic properties of forebodies can only be achieved through
the geometry of the forebody. As a means of beginning the study of geometry effects on forebody
characteristics, a class of shapes possessing the ability to produce shapes of interest has been
defined. In particular, the body can be considered to be composed of essentially independent
cross-section and planform lines. This forebody makes use of the equation of a super-ellipse to

obtain both cross section and planform lines. The super-ellipse can:

» Recover a circular cross-section

+ Produce elliptical cross-sections

 Capture the key characteristics of chine forebodies, such as the oné tested by
Erickson and being used on the YF-23.

» Produce a straight sidewall at the max half breadth line with various slopes

» Be generated by a simple analytical equation
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The equation for the forebody cross section is:

where n and m adjustable coefficients. The constants @ and b correspond to the max
halfbreadth and centerlines respectively. Depending on the value of n and m, the equation can be
made to meet all the requirements specified above. The case n =m = 0 corresponds to the
standard ellipse, where the body is circular when a =b. When n = -1 the sidewall is linear at
the max half breadth line, forming a distinct crease line. When n < -1 the body cross-section takes
on the cusped or chine-like shape. The derivative of z/ b with respecttoy / a is:

(2+m)
daz _ 2+n

v [1 - y(2+m)](%)

wherez=z/band y=y/a. Asy — 1, the slope becomes:

o0 n>-1

%?— =<0 n<-1
'y

—(2+m)y*m n=-1

Extreme flexibility is provided by allowing n,m, a, b to be functions of the axial distance x,
and providing for different cross-sections to be used above and below the max half-breadth line.

Notice that when n = -1 the value of m can be used to control the slope of the sidewall at the

crease line.

An example of the range of shapes available within this simple parametric geometry is

illustrated in the figures. Figure 54 provides an upper quadrant section to illustrate the manner in
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which the cross-section can change from a chine, through the straight line sidewall at the max
halfbreadth to the elliptic and even "fuller” elliptic shape originally envisioned for super ellipses
simply by changing the value of the exponent coefficient n. As n becomes very large the shape
will approach a rectangular cross section. Figure 55 shows the special case where the wall slope is
finite and non-zero at the max half-breadth (n = -1). In this case the value of the slope is
controlled by the value of m. The figure demonstrates the range of control that is available, and
the effect of sidewall slope selection on the entire cross-section.

The entire cross section is shown for a series of axial station in figure 56. Figure 56a shows
a standard elliptical cross section, with different upper and lower surface centerlines, while figure
56b provides similar results for the case with the straight line side at the max half breadth, and
figure 56¢ provides the equivalent view for the chine shaped case. The range of cross sectional
shapes, together with the possibility of allowing them to vary character with axial distance provides
an extremely broad design space to investigate aerodynamic tailoring of forebody characteristics

through geometric design.
CONCLUSIONS

In this study the use of a Navier-Stokes code to obtain credible results has been demonstrated
for high angle of attack forebody aerodynamics at combined angle of attack and sideslip.The F-5A
forebody experimental results have been simulated computationally. The computed results nearly
duplicated the experimental results. By comparing inviscid and viscous computaﬁonal solutions tﬁe
role of viscosity in creating the stabilizing effect of the forebody has been explicitly identified.

When considering extreme forebody shapes such as the Erickson forebody, the code has also
been shown to bc capable of obtaining solutions in qualitative agreement with measured pressure
distributions, although differences between computed and measured pressure distributions remain.

Further analysis must be carried out to determine if grid resolution or turbulence model deficiencies
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are responsible for the lack of quantitative agreement.

In obtaining the solutions used to determine the directional stability derivatives it was found
that the solution had to be “fully converged”. Because the derivative was obtained as the difference
between two small numbers, the value of C,, B only started to converge after around 4000
iterations.

An analytic generic forebody model that is extremely versatile yet very simple has been

proposed to study the relation between forebody geometry and aerodynamic characteristics.
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APPENDIX A
MODIFICATIONS TO cf13d ( version 1.1)

The following modifications and additions were made to ¢fl3d ( version 1.1 )
Where : bef ; subroutine be

Purpose : Periodic boundary condition at the grid interface of a wraparound grid used for

flows with sideslip

New :
if (mtypej(l).eq.2001 .or. mtypeij(2).eq.2001)
call bc2001 (jdim, kdim, idim,w(1q),w(1qj0),w(1gk0),w(1qil),
w(lsj),w(lsk),w(lsi))
Where : be.f ; completely new subroutine
Purpose : Periodic boundary condition at the grid interface of a wraparound grid used for
flows with sideslip
New :

subroutine bc2001 (jdim, kdim,idim, q,qj0,qk0,qi0, s]j, sk, si)
common / reyue / ivisc(3),reue,tinf,isnd, c2spe

common /info/ title(20),xmach,alpha,beta,nit,ntt,dt, fmax,idiag(3),
. nitfo,iflagts, rkap(3),istrag,impl, iru,nju,ijac,iaf, nres,iafa,

. levelb(5),mgflag,iconsf,mseq, ncycl (5),levelt (5),nitfol (5),mmx,

. imesh,ngam,nsm(5),iflim(3)
common/fluid/gamma, gml, gpl, gmlg, gplg, ggml

common/ivals/p0, rho0, c0,u0,v0,w0,et0,h0,pt0, qdv (5)

common /te/ jtel, jte2,ktel,kte2,itel,ite2

common/bv/ibci (2) ,ibcj (2),ibck (2) ,ibenmi (5, 2) ,ibemj (5, 2) , ibamk (5, 2)
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common /type/ mtypej(2),mtypek(2),mtypei (2)

c
common/unst/iunst, time, rfreq, alf, alphau, cloc, rfreq0
common /sklton/ isklton

c
dimension q(jdim,kdim,idim,5),qi0 (jdim,kdim,5, 4),

. qjo (kdim, idim~1, 5, 4) ,qk0 (jdim, idim-1, 5, 4)
dimension sk (jdim, kdim,idim-1,5),

.si (jdim, kdim, idim, 5), sj (jdim, kdim, idim-1, 5)
dimension tsym(5)

data tsym / 1.e0,1.e0,-1.e0,1.e0,1.e0 /

c
jdiml=jdim-1
kdiml=kdim-1
idiml=idim-1

c

c

c

C * k Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk *k Kk Kk Kk *kkk *

c * yawed flow boundary condition mtype=2001 *

C * % Kk % * Kk *k *k *k K%k *k k Kk Kk k *k Kk *k *x *k *xkk *

ChkhkhkhhkhkhhkhkhkhkhhkhhkAAkAAkAkhkkkkkkhkhkhhhkkhkhhkhkhhhkhhhkhkhhhkhhhkdhhkhhhhhhhkkkhkhhhkhkhhk

c j=1 boundary flow across x-z plane mtype 2001
Ch* kkkhhhhkhhkhhhkhhkhkhkhhhkhkhkhkhkhhkkhkkkhkkkhkhkkhkhkkhhkkhhkhhhhkhhkhhhkhhkhhkhkhkhhhkhkhkrkrx
c
c reflection - symmetry plane 3j=0/j=7jdim
c

if (mtypej(l).eq.2001) then

if (isklton.eq.l) write(l1,*)

.'" j=1 boundary flow across x-z plane from j = jdim mtype 2001'

do 38 i=1,idiml

do 38 1-1,5

do 38 k=1, kdiml

qjo(k,i,1,1) = gq(jdim-1,k,i,1)

qjo(k,i,1,2) = gq(jdim-2,k,1i,1)

38 continue

end if

c
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c**************************************************************************

C j=jdim boundary flow across x-z plane mtype 2001
c**************************************************************************
c
c reflection - symmetry plane j=0/j=jdim
c
if (mtypej(2).eq.2001) then
if (isklton.eq.l) write(ll,?*)
.' j=jdim boundary flow across x-z plane from j = 1 mtype 2001’
do 39 i=1,idiml
do 39 1-1,5
do 39 k=1, kdiml
qjo(klillr3) = q(llklill)
qjo(k,i,1,4) = q(2,k,1i,1)
39 continue
end if
return
end
Where : cbsem.f ; subroutine plot3d
Purpose : Calculate and print coefficient of pressure Cp instead of p/p .,
Old:
write (17,291, j,k,x(3,k,1),y(3,k,1),2(3,k,1),
g2,q3,q4,95,tl,xml,pitot, edvis
New :
cp = 2.0/gamma/xmach**2* (g5 - 1.0)
write(17,29)1, j,k,x(3,k,1),y(3,k,1),2(3,k, 1),
a2,q93,q94,cp,tl,xml,pitot, edvis
Where : cbsem.f ; subroutine plot3d
Purpose : At a corner point, for wraparound grids, this is more appropriate
old:

if (k.eq.kdim) kd = kdiml
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if (j.eq.1 .or. j.eq.jdim) then
if (j.eq.jdim) jd = jdiml
c corner points
Xw(Jjw,kw,iw,1) = 0.5*(q(jd,kd,id, 1)+qg(jd, k4, idl, 1))

New :
m=2
if (k .eq. kdim ) m=4
if (j .eq. 1)
XW (Jw, kw,iw, 1)=.25* (gk0(jd,id,1,m) +gkO0(jdiml,id,1,m)
+ qk0(3d,idl,1,m) + gkO(jdiml,idl,1,m))
if (j .eq. jdim)
Xw (Jw, kw,iw,1)=.25* (gk0(jd,id,1,m) +qk0(1,id,1,m)
+ gkO0(jd,id1,1,m) + gkO0(1,id1,1,m))
Where : lbcx.f ; subroutine force
Purpose : Calculate yawing moment
old:

subroutine force (jdim, kdim,idim,x,y, z, sk, q,

.cl, cd, cz, cm, chd, swet, 100, ub, vb, wb, vmu, vol)
c

CHR*Ahhkhhhhkhhhkdkkhhhkkkhkhhkdhhdhhkhkdhhhkdkhhkhkhhkhkkkkkhkhkhkdkhhhhhkdkhhkhhkhhkkhkk Ak cxrAhdx

c Purpose: Integrate the forces on the body.
c***********************************************************************
c

c implicit half precision(a-h,o-z)

common /fsum/ sref,cref,bref,xmc,yme, zmc
common/ivals/p0, rho0, c0,u0,v0,w0,et0, h0,pt0, giv (5)
dimension ub (jdim*kdim, 1), vb(jdim*kdim,1),
+wb (jdim*kdim, 1), vmu (jdim-1,1),vol (jdim*kdim, 1)
common /te/ jtel, jte2,ktel,kte2,itel,ite2
common /info/ title(20),xmach,alpha,beta,nit,ntt,dt,fmax,idiag(3),
. nitfo,iflagts, rkap(3),istrag,impl, iru,nju, ijac,iaf, nres,iafa,
. levelb(5),mgflag, iconsf, mseq, ncycl (5), levelt (5),nitfol (5), mmx,
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. imesh,ngam,nsm(5),iflim(3)

dimension x(jdim,kdim,idim),y (jdim, kdim,idim), z (jdim, kdim, idim)
dimension sk(jdim*kdim,idim-1,5),q(jdim, kdim,idim, 5)
common/fluid/gamma, gml, gpl, gmlg, gplg, ggml

common / reyue / ivisc(3),reue,tinf,isnd,c2spe

common/unst/iunst, time, rfreq, alf, alphau, cloc, rfregl
al=alphat+alf
cpc=2.e0/ (gamma*xmach*xmach)

cosa=cos (al)
sina=sin(al)

cl=0.e0

cd=0.e0

cz=0.e0

cm=0.e0

chd= 0.e0
swet=0.e0
ist=itel
ifn=ite2-1
jte2l=jte2-1
const=4./ (reue*xmach)
do 9000 i=ist,ifn
cxl=0.e0

cyl=0.e0

czl=0.e0

cnl=0.e0
chdl=0.e0
xas=0.e0

yas=0.e0

zas=0.e0
swetl=0.e0
Jjte2l=jte2-1

do 50 j=jtel, jte2l

xa=,25e0*( x(j,1,1i) + x(3+1,1,1i) + x(j,1,i+1) + x(j+1,1,i+1) )
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50

ya=.25e0*( y(3j,1,i) + y(j+1,1,1i) + y(3,1,i+1) + y(j+1,1,i+1)
za=.25e0*( z(j,1,1i) + z(3+1,1,1i) + =z(j,1,i+1) + =z(j+1,1,i+1)
xas=xas+xa
yas=yas+ya
zas=zas+za

dcp=-(q(j,1,1i,5)/p0-1.e0)*cpc*sk(j,1i,4)
dcx=dcp*sk(j,i,1)
dey=dcp*sk(j,1i,2)
dcz=dcp*sk(j,1i, 3)

if (ivisc(3).gt.0) then

tau=vmu (j, 1) *const/vol (j,i)*sk(j,1i,4)**2

vnorm=ub (j,1i)*sk(j,1i,1)+vb(j,1i)*sk(j,1i,2)+wb(]j,1i)*sk(],1i,3)
dcx=dcx+tau* (ub(j, i) -vnorm*sk (j,1i,1))
dcz=dcz+tau* (wb (j, 1) -vnorm*sk(j,i, 3))
dcy=dcy+tau* (vb (j,i)-vnorm*sk(j,i,2))

end if

chdl=chdl+abs(sk(j, 1, 3))*sk(j,1i,4)
swetl=swetl+sk(j,1i, 4)
cxl=cxl+dcx

cyl=cyl+dcy

czl=czl+dcz
cml=cml-dcz* (xa-xmc) +dcx* (za-zmce)
xas=xas/float (jte2-jtel)
yas=yas/float (jte2-jtel)
zas=zas/float (jte2-jtel)

cds= cxl*cosa+t+czl*sina
cls=-cxl*sina+czl*cosa

cms=cml

chds=chdl

swets=swetl

cl=cl+cls

cd=cd+cds

cz=cz+czl

cm=cm+cms

chd=chd+chds

swet=swet+swets

if(ntt.le.1 .or. i00.eq.l) then
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if(chds.le.0.) chds=l.
¢cls=2.0*cls/chds
cds=2.0*cds/chds
czl=2.0*czl/chds
cyl=2.0*cyl/chds

if(i.eq.ist) write(11,8613)

8613 format (/30x,41hSUMMARY OF I=CONSTANT K=1 SECTIONAL LOADS,/,
. 23%,54hSref-s is 1/2 projected area in X-Y plane, if positive)
if(i.eq.ist) write(11,8713)

8713 format (/1x, 2x,1hI, 5%, 6hXavg-s, 6x, 6hYavg-s, 6x, 6hZavg-s, 6x,
.6hSref-s, 6x, 6hSwet-s, 7x, 4hCl-s, 8%, 4hCd-s, 8%, 4hCz-s,
. 8x, 4hCy-s, 7x, ThRe-Xavq)

xrep = reue*xas
write(11,1318) i, xas,yas, zas,
.chds, swets, cls, cds, czl, cyl, xrep

1318 format (1x,i3,10el2.3)

c

end if

9000 continue
return
end

New :

subroutine force(jdim,kdim,idim,x,y, 2z, sk, q,
.cl,cd, cz, cm, cx, cy, cn, chd, swet, 100, ub, vb, wb, vimu, vol)
c

Ch*kkkhhhkhkhhkhhhkhkhkhkhkhkhkhkhkhkdkhkrkkhkhhhkhhkhkkhkhhkhkhhkhkhkhkhkhkhhkhhkkhkkkhhkdkhkhkrrkkkkkxk

c Purpose: Integrate the forces on the body.
ChhkkkhkkkhkhkkhkkhkkdkdkkhkkhkhkhkhhkrrkkkhkdkdkkhhkkhkkhkArkkkkkkkhkkhrrhhhkdkk ko dkkhh

c implicit half precision(a-h,o0-z)

common /fsum/ sref,cref,bref, xmc, ymc, zmc
common/ivals/p0, rho0, c0,u0,v0,w0,et0,h0, pt0, giv (5)
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dimension ub (jdim*kdim,1),vb (jdim*kdim,1),

+wb (jdim*kdim, 1), vmu (jdim-1,1),vol (jdim*kdim, 1)

common /te/ jtel, jte2,ktel,kte2,itel,ite2

common /info/ title(20),xmach,alpha,beta,nit,ntt,dt, fmax,idiag(3),

. nitfo,iflagts,rkap(3),istrag,impl,iru,nju,ijac,iaf,nres,iafa,

. levelb(5),mgflag, iconsf,mseq,ncycl (5),levelt (5),nitfol (5) ,mx,
imesh, ngam,nsm(5) ,i£f1im(3)

dimension x(jdim, kdim,idim),y (jdim,kdim,idim), z(jdim, kdim, idim)
dimension sk(jdim*kdim,idim-1,5),qg(jdim, kdim,idim,5)
common/f£luid/gamma, gml, gpl, gmlg, gplg, ggml

common / reyue / ivisc(3),reue,tinf,isnd, c2spe

common/unst/iunst, time, rfreq, alf, alphau, cloc, rfreq0
al=alphatalf
cpc=2.e0/ (gamma*xmach*xmach)

cosa=cos (al)
sina=sin(al)

cl1=0.e0

cd=0.e0

cx=0.e0

cy=0.e0

cz=0.e0

cm=0.e0

cn=0.e0

chd= 0.e0
swet=0.e0
ist=itel
ifn=ite2-1
jte2l=jte2-1
const=4./ (reue*xmach)
do 9000 i=ist,ifn
cx1=0.e0

cyl=0.e0

czl=0.e0

cml=0.e0

cnl=0.e0
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50

chdl=0.e0
xas=0.e0

yas=0.e0

zas=0.e0
swetl=0.e0
jte2l=jte2-1

do 50 j=ijtel, jte2l

xa=.25e0* ( x(j,1,i) + x(3+1,1,1i) + x(j,1,1i+1) + x(3+1,1,i+1)
ya=.25e0*( y(3j,1,1i) + y(j+1,1,1i) + y(j,1,i+1) + y(j+1,1,i+1)
za=.25e0*( z(j,1,1i) + z(3+1,1,1i) + z(3,1,i+1) + z(3+1,1,i+1)
xas=xas+xa
yas=yas+ya
zas=zas+za

dcp=-(gq(j,1,1i,5)/p0~-1.e0)*cpc*sk(j,i,4)
dex=dcp*sk(j,1i,1)
dcy=dcp*sk(j, i, 2)
decz=dcp*sk(j,i, 3)

if (ivisc(3).gt.0) then

tau=vmu(j, i) *const/vol (j, i) *sk (3,1, 4)**2

vnorm=ub (j, i) *sk(j,i,1)+vb(j,1) *sk(j,i,2)+wb(3,1) *sk(j, i, 3)
dcx=dex+tau* (ub (j,1i) -vnorm*sk(j,i,1))
dcz=dcz+tau* (wb (j, i) -vnorm*sk (j, i, 3))
dcy=dcy+tau* (vb (j, i) -vnorm*sk (j, 1, 2))

end if

chdl=chdl+abs(sk(j,1i,3))*sk(j, i, 4)
swetl=swetl+sk(j,1i, 4)
cxl=cxl+dex

cyl=cyl+dcy

czl=czl+dcz
cnl=cnl-dcy* (xa-xmc) +dcx* (ya-ymc)
cml=cml-dcz* (xa-xmc) +dcx* (za-zmc)
xas=xas/float (jte2-jtel)
yas=yas/float (jte2-jtel)
zas=zas/float (jte2-jtel)

cds= cxl*cosa+t+czl*sina
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cls=-cxl*sina+czl*cosa
cms=cml

chds=chdl

swets=swetl

cl=cl+cls

cd=cd+cds

cx=cx+cxl

cy=cy+cyl

cz=cz+czl

cm=cm+cms

cn=cn+cnl

chd=chd+chds
swet=swet+swets
if(ntt.le.1l .or. i00.eq.l) then

c
if(chds.le.0.) chds=1.
cls=2.0*cls/chds
cds=2.0*cds/chds
czl=2,0*czl/chds
cyl=2.0*cyl/chds

c

if(i.eq.ist) write(11,8613)
8613 format (/30x,41hSUMMARY OF I=CONSTANT K=1 SECTIONAL LOADS,/,
23x,54hSref-s is 1/2 projected area in X-Y plane, if positive)
if(i.eq.ist) write(11,8713)
8713 format (/1x,2x,1hI, 4x, 6hXavg-s, 5%, 6hYavg-s, 5x, 6hzavg-s, 5x,
.6hSref-s, 5%, 6hSwet-s, 6x, 4hCl-s, 7x, 4hCn-s, 7x, 4hCx-s, 7%, 4hCz-s,
. 7%, 4hCy-s, 6x, ThRe-Xavg)

xXrep = reue*xas
write(11,1318) i,=xas,yas, zas,
.chds, swets, cls, cnl, cx1,czl, cyl, xrep
1318 format (1x,i3,11ell.3)
c
end if
9000 continue
return
end
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Where : ths.f ; subroutine resp
Purpose : Calculate and print block summary of axial, normal and side forces and also of

yawing moment

old:

call force(jdim,kdim,idim,x,vy, z,sk,q,
.cl,cd,czz,cm, chd, swet,icall,gq(l,2),q(1,3),q(l,4),vmu,vol)

clt = cl/sref
cm/ (sref*cref)
cd/sref

cmt
cdt

|

(e}

print block summary

if (icyc.le.l .or. icyc.eq.ncyc) then
write(11l,677) nbl
677 format (/10x, 37ThSUMMARY OF FORCES AND MOMENTS - BLOCK,i5)
write (11,603)
603 format (/1x,1llhwetted area, 2x,14hX-Y proj. area,
. 5x, 4hCL-b, 10x, 4hCD-b, 10x, 4hCM-Db)
write (11, 653) swet,chd,clt,cdt, cmt
653 format (1x,e12.5,4(2x,el2.5))
end if

c sum contributions of blocks on global level in clw, cdw

if (level.eg.lglobal) then
chdgp = chdgp + chd
swetgp = swetgp + swet
+ clt
cmgp = cmgp + cmt
+ cdt

clw(nres) clw(nres)

cdw (nres) cdw (nres)

end if
print summary of global blocks
if (icyc.le.l .or. icyc.eq.ncyc) then

if(nbl .eq. 1lblock) then
write (11, 777)
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777 format (/10x,49hSUMMARY OF FORCES AND MOMENTS - ALL GLOBAL BLOCKS)
write (11,703)
703 format (/1x,1llhwetted area, 2x,14hX-Y proj. area,
6x, 2hCL, 12x, 2hCD, 12x, 2hCM)
write(1ll, 653) swetgp,chdgp,clw(nres),cdw(nres), cmgp
end if
end if
670 continue

irite=1

if(irite .eq. 1 .and. iunst .gt. 0) then
call prntcp(jdim, kdim,idim,wk, q)

end if

print residual and lift

(0]

if (icyc.eq.l .or. (icyc.eq.2 .and. nbl.eq.lblock)
. .or. icyc.eqg.ncyc) then
if(junst .1t. 2) then
write (11, 5002)
5002 format (/1x,5hlevel, 1x, Shblock, 1x,Shiteration, 3x,
8hresidual, 4x,10htotal res., 3x, 7Thrkap(i), 3%, 7hrkap(j),
3%, Thrkap (k) , 3%x,10hlift coef., 3x,10hdrag coef.)

else
write (11,4682)
4682 format (/1x,5hlevel, 1x, Shblock, 1%, Shiteration, 3x,
8hresidual, 4x, 10htotal res., 3x, Thrkap (i), 3x, 7Thrkap(J),
3%, Thrkap (k) , 3x,10hlift coef., 3x,10hdrag coef.,
4x,4htime, 6x, Shalpha)
end if
end if
if (icyc.eq.l .or. (icyc.ge.2 .and. nbl.eq.lblock)
.or. icyc.eqg.ncyc) then
if (iunst .1t. 2) then
write(1ll,5001) level,nbl,nres,rmst,rms (nres),rkap,
. clw(nres) ,cdw(nres)
5001 format (1x,i5,1x,1i5,3x,15,2x%,e12.5,1x%,e12.5,2x,£6.2,
. 4%,£6.2,4%,£6.2,3%x,e12.5,1x,e12.5)
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else
alot=(alpha+alf)*57.2958
write(11,4683) level,nbl,nres,rmst, rms(nres),rkap,
. clw (nres), cdw(nres) ,time,alot
4683 format (1x,15,1x,15,3%,15,2%,e12.5,1x%,e12.5,2x,£6.2,
4x%,f6.2,4%,£6.2,3x,e12.5,1%,e12.5,1%,£9.4,1x%,el1l1.4)

end if
end if
c
if(nbl.eq.1lblock) then
chdgp = 0.
swetgp = 0.
cmgp = 0.
end if
67 continue
New :
call force(jdim, kdim,idim,x,y, z, sk, q,cl, cd, cz, cn,
.cx,cy,cn,chd, swet,icall,q(1,2),q(1,3),q(1,4),vmu,vol)
c
clt = cl/sref
cmt = cm/ (sref*cref)
cdt = cd/sref
cxt = cx/sref
czt = cz/sref
cyt = c¢cy/sref
cnt = cn/ (sref*bref)
c
print block summary
c

if (icyc.le.l .or. icyc.eq.ncyc) then
write(11,677) nbl

677 format (/10x,37hSUMMARY OF FORCES AND MOMENTS - BLOCK, i5)
write(11,603)

603 format (/1x,1llhwetted area,2x,14hX-Y proj. area,4x,4hCL-Db,

. 9%, 4hCD-b, 9%, 4hCM-b, 9%, 4hCX-b, 9%, 4hCY-Db, 9%, 4hCZ-b, 9%, 4hCN-Db)
write (11, 653) swet,chd,clt,cdt, cmt, cxt, cyt, czt, ent
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0

653

7717

703

670

format (1x,e12.5,8(2x,el11.4))
end if

sum contributions of blocks on global level in clw,cdw

if (level.eg.lglobal) then

chdgp = chdgp + chd
swetgp = swetgp + swet
clw(nres) = clw(nres) + clt
cngp = cmgp + cmt
cdw(nres) = cdw(nres) + cdt
Cxgp = cxgp + cxt
czgp = Cczgp + czt
Cygp = Cygp + cyt
cngp = cngp + cnt
end if

print summary of global blocks

if (icyc.le.l .or. icyc.eq.ncyc) then

if(nbl .eq. lblock) then

write (11, 777)

format (/10x, 4ShSUMMARY OF FORCES AND MOMENTS - ALI GLOBAL BLOCKS)
write (11, 703)

format (/1x,11hwetted area, 2x,14hX-Y proj. area,
5%, 2hCL, 11%, 2hCD, 11x, 2hCM, 11x, 2hCX, 11x, 2hCY,
11x,2hCZ,11x,2hCn)

write (11, 653) swetgp,chdgp,clw(nres),cdw(nres), cmgp, cXgp, CYIP,
czgp, cngp

end if

end if

continue

irite=1

if(irite .eq. 1 .and. iunst .gt. 0) then
call prntcp(jdim, kdim,idim,wk,q)
end if

print residual and 1lift
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if (icyc.eq.l .or. (icyc.eq.2 .and. nbl.eq.lblock)

. .or. icyc.eq.ncyc) then

if(iunst .lt. 2) then

write (11, 5002)

5002 format (/1x,5hlevel, 1x, 5hblock, 1x, 9hiteration, 3x,

8hresidual, 4x,10htotal res., 3x, Thrkap (i), 3%, 7Thrkap(j),
3%, Thrkap (k) , 3%x,10hlift coef., 3x,10hdrag coef.,
3x,7n c¢cy ,3x,7hcn )

else
write (11,4682)

4682 format (/1x, 5hlevel, 1x, 5hblock, 1x, 9hiteration, 3x,
8hresidual, 4x,10htotal res., 3x, 7Thrkap (i), 3%, 7hrkap (j),
3x, Thrkap (k) , 3%x,10hlift coef., 3x,10hdrag coef.,
4x,4htime, 6%, Shalpha)

end if

end if

if (icyc.eq.l .or. (icyc.ge.2 .and. nbl.eq.lblock)
.0or. icyc.eq.ncyc) then

if(iunst .lt. 2) then

write(11,5001) level,nbl, nres, rmst,rms(nres),rkap,

. clw (nres), cdw (nres), cygp, cngp

5001 format (1x,iS5,1x,i5,3x%,15,2%,e12.5,1x,e12.5,2x,£6.2,

. 4x,f6.2,4x%,f6.2,3%,€12.5,1x%,e12.5,1x,e12.5,1x,e12.5)
else
alot=(alpha+alf)*57.2958
write(11,4683) level,nbl,nres,rmst,rms(nres),rkap,

. clw(nres),cdw(nres),time, alot

4683 format (1x,1i5,1x,1i5,3x%,15,2x%,e12.5,1x%,el12.5,2x,£6.2,
4x,f6.2,4x%x,f6.2,3x,e12.5,1x,e12.5,1x,£9.4,1x,ell.4)

end if

end if

if(nbl.eq.lblock) then

chdgp = 0.
swetgp 0.
cmgp 0.
cxgp = 0.
cygp = 0.
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Where :

Purpose :

old:

New :

Where :

Purpose :

old :

New :

czgp =0
cngp = 0.
end if

67 continue

rhs.f ; subroutine turb
Correction to the value of parameter cwk used in Baldwin Lomax model ( ATAA

78-257 ) which was incorrect

data aplus/26.e0/,ccp/1.6e0/,ckleb/.3e0/,cwk/.25e0/,vk/.4e0/,
clauser/.0180e0/

data aplus/26.e0/,ccp/l.6e0/,ckleb/.3e0/,cwk/1.0e0/,vk/.4e0/,
clauser/.0180e0/

ths.f ; subroutine turb
Change initialized value of fblmax to avoid division by zero. More of a

precautionary measure as suggested by Dr. R. W.Walters

fblmax

|
o

fblmax l.e-10

1
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APPENDIX B
F-5A FOREBODY GEOMETRY MATH MODEL

The F-5A forebody math model was constructed using conic lofting techniques ( ref 7 ) based on

lofting information provided by Tom Heglund of Northrop, and verified by comparison with an

actual nose provided by Sue Grafton. The computational model was extended to 225 in. (without

the canopy) which was beyond the length of the wind tunnel model (175 in. ).

OOOOOOOOOOOOOOOOOOO

program fS5agrid ( F-5A forebody math model )
F-5A forebody surface geometry and grid definition.

R.Ravi, August 1989

program generates the control and maximum half breadth points at
various cross sections as suggested by Tom Heglund of Northrop
and then generates the cross sectional shape using conic lofting

techniques (ref. 24 )

It also generates the F-5A surface grid and uses this
information to generate the input to the grid generator

which in our case was GRIDTOOL

The length of the computational model was 225 in. (canopy

not included)

It scales down the surface co-ordinates to compare with

Sue Graftons F-5A wind tunnel model

It finally writes down the surface co-ordinates in PLOT3D format

dimension x(100,10),y(100),2z(100,10),x1(100,100),x2(100,100),
z1(100,100),22(100,100) ,xxx(100,100,1),yyy(100,100,1)
+222(100,100,1),xx2(100,100) ,z22(100,100),yext (15)
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Q0O 00 0000

,slopel(100,100),curv(100,100),s(100)
open(7,file="f5asurface.out')
open(l0,file='f5asurface.plot3d’')
open(ll,file="'f5asurface.compare’)
open(l3,file="test"')
open(l4,file="'slopes")

open (15, file="curv')
open(l2,file="'fbody.gridgen')

open (16,file='report’)

pi=acos(-1.)

1l

NUMBER OF AXIAL STATIONS AHEAD OF THE NOSE

INCLUDING THE NOSE STATION

JDIM = NUMBER OF POINTS FROM THE TOP CENTER LINE
TO THE POINT WHERE THE FLAT SURFACE STARTS

YAHEAD = DISTANCE AHEAD OF THE NOSE FROM WHERE

SUBSONIC GRID STARTS

IEXT

jdim=25
jdiminit=jdim
iext=10
j2=3jdim*2-1
j2init=32
yahead=100.0
y(1)=42.50
v (2)=42.55
y(3)=42.60
v (4)=42.65
v(5)=42.70
y(6)=42.75
v(7)=42.80
y(8)=42.85
v(9)=42.90
y(10)=42.95
v(11)=43.00
v(12)=43.50
yv(13)=44.00
v(14)=44,50
y(15)=45.00
y(16)=45.50



v(17)=46.00
y(18)=47.00
y(19)=48.00

v (20)=49.00
y(21)=50.00

v (22)=52.00
z(1,1)=-8.589
z(1,6)=-8.589
z(2,1)=-8.464
z(2,6)=-8.745
z(3,1)=-8.408
z(3,6)=-8.811
z(4,1)=-8.364
z(4,6)=-8.861
z(5,1)=-8.326
z(5,6)=-8.904
z(6,1)=-8.291
z(6,6)=-8.942
z(7,1)=-8.259
z(7,6)=-8.977
z(8,1)=-8.230
z(8,6)=-9.008
z(9,1)=-8.201
z(9,6)=-9.038
z(10,1)=-8.175
z(10,6)=-9.066
z(11,1)=-8.149
z(11,6)=-9.092
z(12,1)=-7.929
z(12,6)=-9.308
z2(13,1)=-7.745
z(13,6)=-9.477
z(14,1)=-7.581
z(14,6)=-9.621
z(15,1)=-7.428
z(15,6)=-9.749
z(16,1)=-7.283
z(16,6)=-9.867
z(17,1)=-7.145

45




z(17,6)=-9.976
z(18,1)=-6.884
z(18,6)=-10.175
z(19,1)=-6.636
z(19,6)=-10.356
z(20,1)=-6.4
2(20,6)=-10.523
z(21,1)=-6.171
z(21,6)=-10.68
z(22,1)=-5.721
z(22,6)=-10.98
x(1,3)=0.0
x(2,3)=-0.175
x(3,3)=-.251
x(4,3)=-.311
x(5,3)=-.363
x(6,3)=-.409
x(7,3)=-.452
x(8,3)=-.491
x(9,3)=-.528
x(10,3)=-.564
x(11,3)=-.598
x(12,3)=-0.884
x(13,3)=-1.118
x(14,3)=-1.326
x(15,3)=-1.517
x(16,3)=-1.696
x(17,3)=-1.866
x(18,3)=-2.185
x(19,3)=-2.484
x(20,3)=-2.768
x(21,3)=-3.041
x(22,3)=-3.577
z(1,3)=-8.589
z(22,3)=-8.147
do 3 i=2,21
slope=(z(22,3)-z(1,3))/(y(22)-y (1))
z(i,3)=2z(1,3)+(slope*(y(i)-y(1)))
continue

do 5 i=1,22
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x(i,1)=0.0

x(i,6)=0.0

continue

idim=11

iidim=22+idim-1

y(22)=52.0

y(iidim)=125.00

dely=(y(iidim)-y(22))/(idim-1)

do 10 i=22,iidim

x(i,1)=0.0

x(i,6)=0.0

y1=.01*(y(i)-38.5)

al=-.08815+.235*y1~-.04904%* (y1**2,)

a2=,0457594* (y1**3.)-0.0294590* (y1**4.)+.0077218* (y1**5.0)

a3=-0.000571*(yl1**6.)

z(i,1l)=(al+a2+a3)/.01

b1=-.0881v5—.17125*y1+.068785*(yl**2.)+.1089634*(yl**3.)

b2=-.1823104* (y1**4.)+.110555% (y1**5,)—-.0242660* (y1**6.)

z(i,6)=(bl+b2)/.01

y3=(y(i)-42.5)*0.01

a4=.0065+.213*y3-.269652* (y3**3)+.3669951* (y3**4)~-,25149%* (y3**5)

a5=.0874987* (y3**6.)~.0120677* (y3**7.)

x(i,2)=-1.0%(ad4+a5)/.01

if ((y(i) .ge. 52.0) .and. (y(i) .le. 70.0)) then
z(i,2)=-15.551+.1746575*y (1)
x(i,5)=-1.0%(=7.37+.191*y (1))
%(i,3)=-1.0*(-10.35644+.2679492*y (i))
x(i,4)=x(i,3)

else
y4=.01*(y(1)-70.0)
z(i,2)=(-.03325+.1746575*y4+.0215199*% (y4**3.)) /.01
b4=.,06+.191*y4-1.1941603* (y4**3,)+3.5325676* (y4**4.)
b5=-4.7103427* (y4**5)+2.9985414* (y4d**x6) ~_,7374221% (y4**7)
x(i,5)==1.*(b4+b5) /.01
€l1=.084+.2679492*y4-2.0762353* (y4**3)+8.9749473% (y4**4)
€2=-19,2071906* (y4**5,)+20.6116655% (y4**6.)
e3=-8.8061808* (y4**7.)
x(i,3)=-1.*(el+e2+e3)/.01

x(i,4)=x(i,3)
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10

endif

y5=.01*(y(i)-42.5)

b6=-.09175-.096*y5+.3283568* (y5**3,)~-.8070199* (y5**4.)
b7=.8932135* (y5**5.)-.4656938* (y5**6.)+.0929695* (y5**7.)
z(i,5)=(b6+b7)/.01

z(i,3)=-11.0949+.0589595*y (i)

z(i,4)=z(i,3)

y(i+l)=y (i) +dely

continue

idiml=7

iidiml=iidim+idiml-1

y(iidim)=125.00

y(iidiml)=175.00

dely=(y(iidiml) -y (iidim))/(idiml-1)

do 20 i=iidim,iidiml

x(i,1)=0.0

x(i,6)=0.0

yl=.01*(y(i)-125.)

€1=.095056+.1965665*y1-.017364* (y1**2,)-.1030717* (y1**3.)
€2=.8564063*(y1**4,)-2.0571887* (y1**5.)+1.5294378* (y1**6.)
z(i,1)=(cl+c2)/.01

y2=.01*(y(i)-38.5)

dl=-.08815-.17125*y2+.068785*% (y2**2.)+.1089634* (y2**3,)
d2=-.1823104* (y2**4.)+.110555% (y2**5_ ) -, 024266* (y2**6.)
z(i,6)=(d1+d2)/.01

y3=(y(i)-42.5)*0.01

b4=.0065+.213*y3-.269652* (y3**3)+.3669951* (y3**4)~_,25149% (y3**5)
b5=.0874987* (y3**6.)-.0120677* (y3**7.)
x(i,2)=-1,.*(b4+b5)/0.01

v4=.01* (y(i)-125.0)
d3=.066392+.1941868*y4+.0645597* (y4**2 )~ .3888642* (y4**3.,)
d4=2.6147284*(y4**4.)~6.9406616* (y4**5,)+5,5973024%* (y4**6.)
z(i,2)=(d3+d4)/.01

y5=.01*(y(i)-70.0)

b6=.06+.191*y5-1.1941603* (y5**3.)+3.5325676* (y5**4.)
b7=-4.7103427* (y5**5,)+2.9985414* (y5**6.)~,7374221% (y5**7 )
x(i,5)==1.*(b6+b7) /.01

y6=.01*(y(i)-42.5)

b8=-.09175-.096*y6+.3283568* (y6**3.)-.8070199* (y6**4.)
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20

b9=.8932135* (y6**5.)~-.4656938* (y6**6.)+.0929695* (y6**7.)
z(i,5)=(b8+b9)/.01
y7=.01%(y(i)=~72.3)
€1=.09025+.2679492*y7-.252125* (y7**2,)+.1235176* (y7**3.)
e2=-.0352414*(y7**4.)+.005155% (y7**5,)
x(i,3)==-1.%(el+e2)/.01
x(i,4)=x(i,3)
yl=.01*(y(i)-125.)
€3=~,03725+.0589595*y1+13.7487102* (y1**3,)=98.7915275% (y1**4 )
€4=300.6858408* (y1**5.)-430.699982* (y1**6,)+236.8200513* (y1**7.)
z(i,3)=(e3+e4) /.01
if (y(i) .le. 150.) then
yl=.01*%(y(i)=-125.)
€5=-.03725+.0589595*y1~-.05* (y1**2,)-8.9138868* (y1**3.)
€6=65.1205618* (y1**4,)~191.1452871* (y1**5,)
e7=207.4735881* (y1**6.)
z(i,4)=(e5+eb6+e7)/.01

else
y8=.01*(y(i)-150.)
e8=-.04655-.085*y8-.025* (y8**2 ) +1.1163* (y8**3.)
€9=-16.0196* (y8**4.)+79.9248* (y8**5_)-121.056* (y8**6.)
z(i,4)=(e8+e9)/.01

endif

yv(i+l)=y(i)+dely

continue

idim2=6

iidim2=iidiml+idim2

y(iidiml)=175.00

y(iidim2)=225.0

dely=(y(iidim2)-~y(iidiml))/ (iidim2-iidiml)

do 700 i=iidiml,iidim2

x(i,1)=0.0

y10=.01*(y(i)-175.0)

gl=.18925+.174*y10-.025*% (y10**2,)~-,0891784* (y10**3,)
g2=-.404712*(y10**4.)+1.3978099* (y10**5,)-1.4735205* (y10**6.)
g3=.5163509* (y10**7.,)

z(i,1)=(gl+g2+g3)/.01

x(i, 6)=0.0

yll=(y(1i)-175.)*.01

g4==.1826+.025% (y11**2,)+.000825% (y11**3.)
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700

g5=-.00451* (y11**4,)-.00006* (y11**5,)
z (i, 6)=(g4+g5)/.01
if ( y(i) .ge. 175. .and. y(i) .le. 220.) then

else

endif

y12=.01*(y(i)-42.5)
g6=.0065+.213%y12-.2696520* (y12**3,)+.3669951* (y12**4.)
g7=-.25149% (y12**5)+,0874987* (y12**6)-.0120677* (y12**7)
x(i,2)=-1.*(g6+g7)/.01

y13=.01*(y(i)-72.3)

gl0=.09025+.267949*y13-.25212% (y13**2)+.1235176%* (y13**3)
gll=-,0352414*(y13**4.)+.005155% (y13**5.)
x(i,3)=-1.%(gl0+gll) /.01

x(i,4)=x(i,3)

x(i,2)=-15.50
x(i,3)=-20.25

x(i,4)=x(i,3)

g8=.165+.155%y11-.025* (y11**2)~_311936* (y11**3)+_.826826* (y11l**4)
g9=-.9010034*(y1l1**5.)+.3592734* (y1l1**6,)~.01816* (yl1**x7,)
z(i,2)=(g8+g9) /.01
gl2=,05325+.085%y11-.075% (y11**2)+.1473* (y1l1**3)~_,33543* (y11*x*4)
gl3=.5778333* (y11**5.)-.5472592* (y11**6,)+.1940741* (y1l1*x*7.)
z(i,3)=(gl2+gl3)/.01

if (y(i)

else

endif

.ge.175. .and. y(i) .le. 200.) then
gl4=-.066-.0377*y11+6.3274794* (y11**3)-54.34748% (y11*x*4)
gl5=183.0187488* (y11**5,)-221.217856* (yll*x*6.)
z(i,4)=(gld+gls5)/.01
gl6=.141+.016*yll-.04* (yl1**2)

-.6661333*(y11**3)+5.7792* (yl1l**6)
gl7=-17.80224* (y11**5,)+19.6949333* (y11**6.)
x(i,5)=-1.*(gl6+gl7)/.01

z(1i,4)=-12.4874+.0303714*y (i)
x(i,5)=-14.209

z(i,5)=z(i,6)+3.45
y(i+l)=y (i) tdely

continue

do 100 i=1,22
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am=x (i, 3)
an=z (i, 3)
au=x(i, 1)
av=z(i, 1)
ag=x (i, 6)
ah=z (i, 6)
aa=au-am
ab=av-an
ac=ag-am
ad=ah-an
using a parabola for sections before y(i)<50.0
pup=-1.0* (ab/aa)
sup=(4.0* (ab**2.)) /aa
pdown=-1.0%* (ad/ac)
sdown=(4.0* (ad**2.)) /ac
do 105 j=1,jdiminit
x1(i,j)=aa*cos(((j-1)*pi)/(2.0*(jdiminit-1)))
x1(i,3)=aa-aa*sin(((j-1) *pi)/(2.0* (jdiminit-1)))
if (i .eq. 1) then
z1(i,3j)=0.0
go to 105
endif
z1 (i, j)=pup*x1 (i, j)+((abs (sup*x1(i,j)))**0.5)
105 continue
do 110 j=jdiminit, j2init
jjj=2*jdiminit-j
x1(i,3)=x1(i,333)
if (i .eq. 1) then
z1(i,3j)=0.0
go to 110
endif
z1(i, j)=pdown*x1(i, j) - ((abs (sdown*x1 (i, j)))**0.5)
110 continue
do 115 j=1,32
x2 (1, 3)=x1(4i, j)+am
z2(i,3j)=z1(i,j)+an
115 continue
do 102 j=1,j2init
write(13,103)1i,3,x1(i,3),2z1(i,3),-x2(1,3),2z2(i,3)
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103
102
100

205

format (1x,2(i3,2x),1x,4(£f14.4,1x))
continue
continue
do 200 i=23,44
if (i .ge. 33)then
jdim=21
j2=(2*jdim) -1

jdimfinal=jdim

j2final=3j2
endif
if ((i .ge.23) .and. (i .le. 32)) then
jdim=22
j2=(2*jdim) -1
jdiminter=jdim
j2inter=32
endif

aml=x (i, 3)

anl=z (i, 3)

am2=x (i, 4)

an2=z (i, 4)

aul=x(i, 1)

avl=z (i, 1)

au2=x(i, 2)

av2=z (i, 2)

agl=x(i, 6)

ahl=z (i, 6)

ag2=x(i,5)

ah2=z (1, 5)

au3=aul-aml

av3=avl-anl

aud=auZ2-aml

avé4=av2-anl
ak=((av4-(av3*aud/au3)) **2.)/ (aud* (av3-av4))
as=ak*av3

ar=ak* (.25*ak-(av3/au3))
ap=-0.25*ak-(.25*ak~-(av3/au3))

do 205 j=1, jdim-1
x1(i,j)=au3-aul3*sin(((j-1)*pi)/(2.0*(jdim=-2)))
z1(i, j)=ap*x1(i, j)+((abs(ar*(x1(i,j)**2.)+as*x1(i,J)))**0.5)

continue
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do 210 j=1,jdim-1
x2(1,3j)=x1(i,j)+aml
z2(i,3)=z1(4i, j)+anl
210 continue
ag3=agl-am2
ah3=ahl-an2
agd4=ag2-am2
ah4=ah2-an2
ak=((ah4-(ah3*ag4/ag3))**2.)/(ag4* (ah3-ah4))
as=ah3*ak
ar=ak* (0.25*ak-(ah3/ag3))
ap=-.25*ak-(.25*ak~-(ah3/ag3))
do 220 j=jdim+1, j2
jij=2*jdim-j
x1(i,3)=x1(i,333)
zl(i,j)=ap*xl(i,j)—((abs(ar*(xl(i,j)**2.)+as*x1(i,j)))**0.5)
220 continue
do 230 j=jdim+1l, j2
x2 (i, j)=x1(i, j)+am2
z2(i,3)=z1(4i, j)+an2
230 continue
x2 (i, jdim)=x2 (i, jdim+1)
z2 (1, jdim)=(z2 (i, jdim+1) +z2 (i, jdim-1)) /2.
do 202 j=1, 32

201 format(lx,2(i3,2x),1x,4(f14.4,1x))
202 continue
s(1)=0.0

do 990 j=1,3j2

if (i .eq. 24) then
if (j .1t. 3j2) then
dels=((x2(i,j+1)-x2(i,j))**2+(22(i,j+1)—22(i,j))**2)**.5
s(Jj+1)=s(j)tdels
endif

if (3 .eq. j2) then
generates slopes and curvatures at any particular cross section
hl=x2 (i, j-1)-x2 (i, ])

h3=x2 (i, j-2) -x2 (41, j)
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107
990

444

200

down2=h1*h3* (hl-h3)
up2=(h3**2) *22 (i, j-1) - (h1**2) *z2 (i, j=-2) - ( (h3**2) -

1 h1**2) *z2 (i, §)

slopel (i, j)=up2/down2
denom2=hl1*h3* (h1-h3) /2
anumer2=h3*z2 (i, j-1)-hl*z2 (i, j~2) ~-(h3-hl) *z2 (i, J)
curv (i, j)=(anumer2/denom2)/ ((1l+slopel (i, j) **2) **1.,5)
endif
if (j .eq. 1) then
hl=x2(i,3j)-x2 (i, j+1)
h3=x2 (1, j) -x2 (i, j+2)
downl=hl*h3* (h3-hl)
upl=(h3**2) *22 (i, j+1) - (h1**2) *z2 (i, 3+2) - ((h3**2) -
h1**2) *xz2 (i, §)

slopel (i, j)=upl/downl
denoml=hl*h3* (h1-h3) /2
anumerl=h3*z2 (i, j+1) -h1*z2 (i, j+2) - (h3-h1) *z2 (i, j)
curv (i, j)=(anumerl/denoml) / ( (1+slopel (i, j) **2) *x1 5)
endif
if ((j .ge. 2) .and. (j .lt. j2)) then
h2=x2 (i, ]j)-x2 (i, j+1)
hl=x2(1, j-1)-x2 (4, j)
slopel(i, j)=(z2(4i,j+1)~z2(1,3j-1))/(x2(i, j-1)-x2(i, §+1))
denom=( (hl* (h2**2) )+ (h2* (h1**2))) /2
anumer=(hl*z2 (i, j+1))+(h2*z2 (i, j-1) )~ ((h1l+h2) *z2 (1, j))
curv (i, j)=(anumer/denom) /( (1+slopel (i, j) **2) **1_5)
write(13,*)h1,h2,-x2(i,j),zZ(i,j),slopel(i,j),curv(i,j)
endif

endif

format (2 (£14.9,1x))

continue

if (i .eq. 24) then
do 444 j=1,32
ratio=s(j) /s (j2)
write(14,107)ratio,slopel (i, j)
write (15,107) ratio, curv(i, Jj)
continue

endif

continue

do 250 j=1,3j2init
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z2(1,3)=-8.589
250 continue

do 260 i=1,32

if (i .le. 22) then
jdim=jdiminit
j2=j2init
else
jdim=jdiminter
j2=j2inter

endif

do 255 j=1, 32

if (3 .1t. (jdim-1)) then
33=3
xx2(i,33)=x2(i,3)
zz2 (i, 3j)=2z2(4i,3)

endif

if (j .eq. (jdim-1)) go to 255

if (j .eq. jdim) then
ji=jdim-1
xx2(i,33)=x2(4i,3)
zz2 (1, 3j)=2z2(4, j)

endif

if (j .eq. (jdim+1l)) go to 255

if (3 .gt. (jdim+1)) then
jj=j-2
xx2(i,33)=x2(i,3J)
zz2 (i, 3j)=22(41,3)

endif
255 continue
260 continue

do 263 i=23,32

do 264 j=1,3j2init
x2 (i, 3J)=xx2(1,3)
z2(i, j)=zz2 (i, 3)

264 continue

263 continue
do 721 i=23,44
jextra=3

topdels=(z2(i, jdimfinal)-z2 (i, jdimfinal-1))/ (jextra+1l)
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723

726

728
721

300

topdelr=(x2 (i, jdimfinal)-x2 (i, jdimfinal-1))/ (jextra+l)
botdelr=(x2 (i, jdimfinal+l)-x2 (i, jdimfinal) )/ (jextra+l)
botdels=(z2 (i, jdimfinal+l)-z2 (i, jdimfinal))/ (jextra+l)
do 723 j=1, j2final
if (j .le. (jdimfinal-1l)) then
33=3
xx2 (i, 3))=x2(1,3)
z2z2(1,33)=22(4,3))
endif
if (j .eq. jdimfinal) then
jj=jdimfinal+jextra
xx2 (i, 3J)=x2(4,3)
zz2(i,33)=22(4i,3)
endif
if (j .ge. (jdimfinal+l)) then
jj=3+(2*jextra)
xx2 (i, 33)=x2(i, J)
zz2 (i, 33)=22(4,3)
endif
continue
do 726 jibba=1, jextra
jj=jdimfinal-1+jibba
xx2(i, jj)=x2 (i, jdimfinal-1)+ (jibba*topdelr)
zz2(i, jj)=22(4i, jdimfinal-1)+(jibba*topdels)
continue
do 728 jibbal=l, jextra
jj=jdimfinal+jextra+jibbal
xx2(i,3j)=x2(i, jdimfinal) + (jibbal*botdelr)
zz2 (i, j3)=22 (i, jdimfinal) +(jibbal*botdels)
continue
continue
do 300 i=1,44
ylangley=(y(i)-42.5)*.17
do 300 j=1, j2init-2
yyy(i,j,1)=(y(i)-42.5)*.17
continue
do 500 i=1,44
do 400 j=1,3j2init-2

xxx(i,3,1)=-xx2(i,3) *.17
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zzz (i, j,1)=zz2(i,5§) *.17

400 continue

500 continue
do 7000 ii=1,iext
yext (ii)=yahead*sin (((ii-1) *pi)/ (2* (iext-1)))
if (ii .eq. iext .or. ii .eq. (iext-1)) go to 7000
do 7100 j=1,3j2init-2
assl=0.0
ass2=0.0
ass3=yext (ii) *.17
write(12,530)assl,ass2,ass3
if ((3 .eq. 1l).or. (j .eq.(j2init-2))) then
write(16,530)assl,ass2,ass3
endif

7100 continue

7000 continue

writes input to grid generator ( GRIDTOOL )

do 510 i=1,22

if ((i .eq. 1) .or. (i .eq. 22) .or. (i .eg. 18)) then

if (i .eq. 18) then

dely=y (i) -y (1)

endif

if (i .eq. 22)then

dely=y(i)-y(18)

endif

do 520 j=1,32init-2

assl=-xx2(1i,3j)*.17

ass2=(zz2(1i,3j)-2zz2(1,3)) *.17

ass3=(y(i)-42.5+100) *.17

write (12, 530)assl,ass2,ass3

if ((j .eq. 1) .or. (j .eq.(3j2init-2)))
1 write(16,530)assl,ass2,ass3

if (i .eqg. 18) then

write (8, *)assl,ass2

endif
530 format (3£15.8)
520 continue
endif
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510 continue
- do 550 i=23,44
dely=y (i) -y (i-1)
c write (6, *)dely
do 560 j=1,3j2init-2
assl=-xx2(i,j)*.17
ass2=(zz2(i, j)-zz2(1,3j))*.17
ass3=(y(i)-42.5+100)*.17
write(12,570)assl, ass2,ass3
if ((j .eq. 1) .or.(j .eq.(j2init-2)))
write(16,570)assl, ass2,ass3
endif
570 format (3£15.8)
560 continue
- 550 continue
go to 1000
idiml=44
jdiml=j2init-2
kdimi=1

write output in PLOT3D format

write (10, *)idiml, jdiml, kdiml
write (10, *) ((({xxx(i,j,k),1i=1,idiml), j=1, jdiml), k=1, kdiml)
- write (10, *) (((yyy(i,J,k),i=1,idiml), j=1, jdiml), k=1, kdiml)
write(10,*) (((zzz(i,j,k),i=1,idiml), j=1, jdiml), k=1, kdiml)
1000 continue
stop

end
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APPENDIX C
ERICKSON FOREBODY MATH MODEL

The Erickson forebody math model was developed using the descriptions of the model contained in
the Langley reports, a CAD drawing of the forebody and digitized data of the drawing generated by

Nielsen Engineering Company.

Program efbmm.f (Erickson forebody math model)

Erickson/Hall chine forebody surface geometry definition

W.H. Mason, December 1989

the main program is an example driver for the five subroutines
longitudinal lines routines:

xstn is input: ymhb, zupcl, and zlowcl are output

subroutine ymhbc (xstn, ymhb) - find the y max half breadth line
subroutine topecl (xstn, zupcl) - find the top center line
subroutine botcl(xstn,zlowcl) - find the bottom center line

cross section lines routines:
xstn, zupcl, zlowcl, ymhb and xs are input: zu and zl are output

subroutine top (xstn, zupcl, ymhb, xs, zu)
subroutine bot (zlowcl, ymhb, xs, z1)

input/output is dimensional except xs, which is the % spanwise location
xs must be positive, use symmetry to get lines for -xs

the routines use spline subroutines from Conte and Deboor (included)

dimension xpt (10,221),zpt(10,221),xstref (20)

imax = 9
xstref (1) = 0.0
xstref (2) = 1.44
xstref (3) = 4,312
xstref (4) = 7.19
xstref (5) = 10.12
xstref (6) = 13.56
xstref (7) = 17.25
xstref (8) = 19.94
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30.00

xstref (9)

do 10 istn = 1,imax

xstn xstref (istn)
call ymhbc (xstn, ymhb)

call topcl(xstn, zupcl)

call botcl(xstn,zlowcl)

write(6,80) istn,xstn,ymhb, zupcl, zlowcl

do 10 i = 1,101
ii = 201 - (i-1)
XS = 0.01*float (i~-1)

call top(xstn, zupcl, ymhb, xs, zu)
call bot (zlowcl, ymhb, xs, z1)

xpt (istn,i) = xs*ymhb
zpt (istn,i) = zu
xpt (istn,ii) = xs*ymhb
zpt (istn,ii) = z1

10 continue
do 20 i = 1,201
write(6,100) (xpt(j,i),zpt(j,i), j = 1,imax)
20 continue
80 format (2x,i4,f10.5,3f15.5)
100 format (18£14.6)

stop
end

subroutine top(xstn,topcl, ymhb, xs, zu)
W.H. Mason, December, 1989
upper surface chine cross-section based on Bob Hall's routine

xs is % semi-span, and zu is dimensional

topcl - top centerline of body
ymhb - max-half breadth of configuration
xS - spanwise location where z value is desired

zu output value of body elevation at input xs
dimension xi(11),c(4,11)
define cross section for xstn up to 7.19

3.1415926

pi

zu = 0.0
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if(xstn .le. 0.0) return

theta = 12.0*pi/180.0

cc = topcl/ymhb

tantht = tan(theta)

a4 = 2.*tantht - 3.*cc

a3 = S5.*tantht - 8.*cc

a2 = 3.*tantht - 6.*cc

zul = (ad*xs**4 - a3*xs**3 + a2*xs**2 + cc) * ymhb

define cross section for xstn = 19.94 and beyond
if(xs .le. 0.40) then

zu2 = sqrt(1.0-2.6*xs**2) *topcl

go to 10
end if
nin = 4
xi(1) = .4
xi (2) = 0.62594
xi (3) = 0.90121
xi (4) = 1.0
c(1,1) = 0.764199
c(1,2) = 0.34556
c(1,3) = 0.022085
c(1,4) = 0.0
c(2,1) = -1.3609
c(2,nin) = -0.175
n = nin - 1

call spline(n,xi,c)
call calccf(n,xi,c)

zu2 = pcubic(xs,n,xi,c)*topcl
continue

if(xstn .le. 7.19) =zu = zul
if (xstn .ge. 19.94) =zu zu2

if(xstn .gt. 7.19 .and. xstn .lt. 19.94) then

xn = (xstn - 7.19)/(19.94 - 7.19)
cn = f(xn)
zu = (1. - cn)*zul + cn*zu2
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end if

return
end

function £ (xn)

blending function

\% = 5.0*xn**2 - 6,0*xn**3

if(xn .gt. 0.5) y = 1.-(5.0*%(1.-xn) **2-6,% (1.-xn) **3)
t=vy

return
end

subroutine bot (botcl, ymhb, xs, z1)
W. H. Mason, December, 1989
lower surface chine cross-section based on Bob Hall's routine

xs is % semi-span, and zl is dimensional

botcl - bottom centerline of body

ymhb - max-half breadth of configuration at this station
xs - spanwise location where y value is desired

zl - output value of body elevation at input xs

dimension xi(60),c(4,60)

pi 3.1415926

z1l 0.0
if (ymhb .eq. 0.0) return

thetal = -2.0*pi/180.0

b = botcl/ymhb

tantht = tan(thetal)

ad = 3.0*b - 2.*tantht

a3 = 8.0*b - 5.*tantht

a2 = 6.0*b - 3.*tantht

zlbase = (ad*xs**4 - a3*xs**3 + al2*xs**2 - b) * ymhb
zmod = 0.0

nin = 13

xi(1) = 0.000
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xi (2) = 0.020

xi(3) = 0.120
xi(4) = 0.230

xi (5) = 0.340
x1i(6) = 0.450
xi(7) = 0.540
xi(8) = 0.590
xi(9) = 0.630
x1(10) = 0.740
xi(11) = 0.850
x1i(12) = 0.940
xi(13) = 1.000
c(1,1) = 0.000000
c(l,2) = 0.002180
c(1,3) = 0.050257
c(1,4) = 0.152545
c(1,5) = 0.249569
c(l,6) = 0.300617
c(l,7) = 0.270427
c(l,8) = 0.202228
c(l,9) = 0.135704
c(1,10) = 0.050513
c(i,11) = 0.017489
c(l,12) = 0.003740
c(1,13) = 0.000000
c(2,1) =0.0
c(2,nin) = 0.0

n = nin-1

call spline(n,xi,c)
call calccf(n,xi,c)

bot719 = =-1.6359

the 1.76794 factor is the ymhb at x = 7.19

zmod = pcubic(xs,n,xi,c) *(botcl/bot719)*1.76794
zl = —(zlbase + zmod)

return

end

subroutine ymhbc (xstn, ymhb)
y max half breadth definition for the Erickson chine forebody

xstn is input, ymhb is the output
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W.H. Mason, final version May 16, 1990
dimension xi(20),c(4,20)

if(xstn .le. 0.0) ymhb = 0.0
tangent ogive portion

if(xstn .gt. 0.0 .and. xstn .le. 8.0) then

r0 = 4,35

xlref = 27.35

r0xl = r0/xlref

deltana = 27.5

deltan = deltana*3.1415926/180.0

xnr0 = sin(deltan) /(1.0 - cos(deltan))

xnxl = xnr0*r0xl

a = rOxl*cos(deltan) /(1.0 - cos(deltan))
b = 2.*r0xl*sin(deltan)/ (1.0 - cos(deltan))
xn = xnxl*xlref

X = xstn

x1 = x/xlref

rxl = sqgrt(a**2 + b*xl - x1**2) - a

ymhb = rxl * xlref
end if

first spline plortion

if(xstn .gt. 8.0 .and. xstn .lt. 19.0) then

nin = 3

xi (1) = 8.0

xi (2) = 11.00

xi (3) = 19.00
c(l,1) = 3.08787
c(l,2) = 3.717
c(l,3) = 4.35
c(2,1) = 0.26256
c(2,nin) = 0.0

n = nin - 1

call spline{(n,xi,c)
call calccf(n,xi,c)
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ymhb = pcubic(xstn,n,xi,c)
end if
straight line portion
if (xstn .gt. 19.0) ymhb = 4.35

return
end

subroutine topcl(xstn, zupcl)

top centerline definition for the Erickson chine forebody
xstn is input, zupcl is output

W.H. Mason, final version May 165, 1990

dimension xi(20),c(4,20)

if(xstn .le. 0.0) zupcl = 0.0

tangent ogive portion

if(xstn .gt. 0.0 .and. xstn .le. 7.5) then

r0 = 2.616

xlref = 23.000

rOxl = r0/xlref

deltana = 19.500

deltan = deltana*3.1415926/180.0

xnr0 = sin(deltan)/ (1.0 - cos(deltan))

xnxl = xnr0*r0xl

a = rOxl*cos(deltan)/ (1.0 - cos(deltan))
b = 2.*r0Ox1*sin(deltan)/ (1.0 - cos(deltan))
Xxn = xnxl*xlref

X = xstn

x1 = x/xlref

rxl = sgrt(a**2 + b*xl - x1**2) - a

zupcl = rxl * xlref
end if

first spline plortion
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if(xstn .gt. 7.5 .and. xstn .lt. 14.94) then

nin = 3

xi (1) = 7.5
xi(2) = 10.12

xi (3) = 14.94
c(1,1) = 1.9571
c(l,2) = 2.35
c(1,3) = 2.58
c(2,1) = .17184
c(2,nin) = 0.0064935
n = nin - 1

call spline(n,xi,c)
call calccf(n,xi,c)

zupcl = pcubic(xstn,n,xi,c)
end if
first straight line portion

if (xstn .ge. 14.94 .and. xstn .le. 17.25) then

xref = 14.94

zref = 2.58

dzref = 0.0064935

zupcl = zref + (xstn - xref) *dzref
end if

second spline section

if(xstn .gt. 17.25 .and. xstn .1t. 19.94) then

nin = 2

xi (1) = 17.25
xi(2) = 19.94
c(1,1) = 2.595
c(1,2) = 2.630
c(2,1) = 0.0064935
c(2,nin) = 0.0294118
n = nin - 1
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call spline(n,xi,c)
call calccf(n,xi,c)

zupcl = pcubic(xstn,n,xi,c)
end if
second straight section

if (xstn .ge. 19.94 .and. xstn .le. 23.0) then

xref = 19.94

zref = 2.63

dzref = 0.0294118

zupcl = zref + (xstn - xref) *dzref

end if

third and final spline section

if(xstn .gt. 23.0 .and. xstn .le. 30.0) then

nin = 2
xi(1l) = 23.0
xi(2) = 30.0
c(1,1) = 2.72
c(1,2) = 2.75
c(2,1) = 0.0294118
c(2,nin) = 0.0

n = nin - 1

call spline(n,xi,c)
call calccf(n,xi,c)

zupcl = pcubic(xstn,n,xi, c)
end if
if (xstn .gt. 30.0) zupcl = 2.75

return
end

subroutine botcl (xstn, zlowcl)

bottom centerline definition for the Erickson chine forebody
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xstn is input, zlowcl is output

W.H. Mason, final version May 16, 1990
dimension xi(20),c(4,20)

if (xstn .le. 0.0) zlowecl = 0.0
tangent ogive portion

if(xstn .gt. 0.0 .and. xstn .le. 6.0) then

r0 = 3.50

xlref = 27.35

rOxl = r0/xlref

deltana = 15.0

deltan = deltana*3.1415926/180.0

xnr0 = gin(deltan)/ (1.0 - cos(deltan))

xnxl = xnr0*r0xl

a = rOxl*cos(deltan) /(1.0 - cos(deltan))
b = 2.*r0xl*sin(deltan)/ (1.0 - cos(deltan))
Xxn = xnxl*xlref

b4 = xstn

x1 = x/xlref

rxl = sqrt(a**2 + b*x1 - x1**2) - a

zlowcl = —rx]l * xlref

end if

first spline p[ortion

if(xstn .gt. 6.0 .and. xstn .lt. 19.94) then

nin = 3

xi (1) = 6.0

xi (2) = 10.12

xi (3) = 19.94
c(l,1) = =-1.41617
c(l,2) = =2.025
c(1,3) = =2.59
c(2,1) = -0.20456
c(2,nin) = -0.052288
n = nin - 1

call spline(n,xi,c)
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call calccf(n,xi,c)
zlowcl = pcubic(xstn,n,xi,c)
end if

first straight line portion

if (xstn .ge. 19.94 .and. xstn .le. 23.0) then

xref = 19.94

zref = «2.59

dzref = -0.052288

zlowcl = zref + (xstn - xref) *dzref

end if
second spline section

if(xstn .gt. 23.0 .and. xstn .lt. 30.0) then

nin = 2

xi (1) = 23.0
xi(2) = 30.0
c(1,1) = =2.75
c(l,2) = =2.85
c(2,1) = =0.052288
c(2,nin) = 0.0

n = nin - 1

call spline(n,xi,c)
call calccf(n,xi,c)

zlowcl = pcubic(xstn,n,xi,c)
end if
second straight section
if(xstn .ge. 30.0) then
zlowcl = -2.85
end if

return
end
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SUBROUTINE SPLINE (N, XI,C)
FROM CONTE AND DEBOOR

DIMENSION XI(201),C(4,201),D(201),DIAG(3201)
DATA DIAG(1l),D(1)/1.0D0,0.0D0/

NP1=N+1

DO 10 M=2,NP1

D (M) =XI (M) -XI (M~-1)
DIAG(M)=(C(1,M)-C(1,M-1))/D (M)

DO 20 M=2,N
C(2,M)=3.0D0* (D (M) *DIAG (M+1) +D (M+1) *DIAG (M) )
DIAG(M)=2.0DO0* (D (M) +D (M+1))

DO 30 M=2,N

G=-D (M+1) /DIAG (M-1)

DIAG (M)=DIAG (M) +G*D (M~1)
C(2,M)=C(2,M) +G*C (2,M~1)

NJ=NP1

DO 40 M=2,N

NJ=NJ-1
C(2,NJ)=(C(2,NJ) =D (NJ) *C(2,NJ+1) ) /DIAG (NJ)
RETURN

END

SUBROUTINE CALCCF (N, XI,C)
DIMENSION XI(201),C(4,201)

DO 10 I=1,N

DX=XI(I+1)-XI(I)
DIVDF1=(C(1,I+1)-C(1,I))/DX
DIVDF3=C(2,I)+C(2,I+1)-2.0D0*DIVDF1
C(3,I)=(DIVDF1-C(2,I)-DIVDF3) /DX
C(4,I)=DIVDF3/DX/DX

RETURN

END

FUNCTION PCUBIC(XBAR,N,XI,C)
DIMENSION XI(201),C(4,201)
I=1

DX=XBAR-XI (I)

IF (DX) 10,30,20

IF (I.EQ.1) GO TO 30

I=I-1

DX=XBAR-XI(I)

IF (DX) 10,30,30

I=I+1

DX=DDX

IF(I.EQ.N) GO TO 30
DDX=XBAR-XI (I+1)

IF(DDX) 30,19,19

PCUBIC=C(1, I)+DX* (C(2,I)+DX*(C(3,I)+DX*C(4,I)))
RETURN

END
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TANGENT OGIVE 31x 69 x 24 grid

o=20°, B=0° o=0°, f=20°
Cy -0.02004 -0.02004
Cy 0.2737E-3 0.1842
C, 0.1845 -0.3878E-4
C,, -1.595 0.2988E-3
C, -0.4143E-2 1.593
Iterations 1950 2260

Table 1. Comparison of Forces and Moments showing equivalence between angle-of-attack
with no sideslip and sideslip with no angle-of-attack for an axisymmetric body
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Figure 1. Typical C,, B characteristics of an advanced fighter
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Figure 2. Grafton's classic example (ref. 5)
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Figure 3. Schematic of a typical forebody flowfield characteristics
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Figure 4. Goal of forebody design effort
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Figure 5. Samples of shapes employed in fighter forebody design
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Figure 6. Tangent ogive crude grid Euler solution comparison with experimental data on
windward plane.
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Figure 7(a). Tangent ogive crude grid Euler solution comparison with
experimental data(x/d = 0.5)
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Figure 7(b). Tangent ogive crude grid Euler solution comparison with
experimental data (x/d = 2.0)
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Figure 7(c). Tangent ogive crude grid Euler solution comparison with experimental data

(x/d = 3.5)
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Figure 7(d). 'l"angg:nt ogive crude grid Euler solution comparison with experimental data
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Figurc 8(z). Tangent ogive : Demonstration of a / B results at x/d = 0.062 (Re=2*105)

80




- Moch=0.2
X/D=11.02
O F Grid=24x69x31
4 a=20 =0
* a=0 f=20
0.0} Shifted Axis
-0.1}
Co
i -0.2¢+
_ ...0.3 =
-0.4}
O 5 1 i 1 ] I i 1 1 1 [ [ [ 1 ] 1 1

theto
= 5
Figure 8(b). Tangent ogive : Demonstration of « / B results at x/d = 11.02 (Re=2*107)
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Figure 8(c). Tangent ogive : Demonstration of ¢ / 8 results at x/d = 24.0 (Re=2*105)
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Figure 10(a). F5-A wind tunnel model being measured to determine the
shape.
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Figure 10(b). F5-A wind tunnel model being measured to determine the
shape (close-up).
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Figure 11(b). Comparison of F-5A geometry: Station 6.25 in from nose
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Figure 11(d). Comparison of F-5A geometry: Station 15.3125 in from nose
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Figure 11(e). Comparison of F-5A geometry: Station 18.0625 in from nose
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Figure 11(f). Comparison of F-5A geometry: Station 22.5 in from nose
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Figure 12. Wireframe model of F-5A surface definition
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Figure 13. F5-A cross sectional grid and closeup near surface at x = 9.061 in.
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Figure 14. F5-A cross sectional grid and closeup near surface at x = 15.44 in,
( model scale ) )
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Figure 15. F5-A cross sectional grid and closeup near surface at x = 29.6 in.
{ model scale )
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Figure 16. F-5A longitudinal pattern of grid (PLOT3D)
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Figure 18(a). F5-A convergence history (turbulent) & = 40°and 8 = 5°
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Figure 19. F5-A directional stability; comparison of calculation with experiment.
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Figure 20(a). F5-A inviscid surface pressure distribution at x = 14.02 in.

(M=0.2)
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Figure 20(b). F5-A inviscid surface pressure distribution at x = 29.61 in.
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Figure 21(a). F5-A turbulent surface pressure distribution at x = 14.02 in.
( M=0.2, Re, = 1.25*106)
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Figure 21(b). F5-A turbulent surface pressure distribution at x = 29.61 in.
( M=0.2, Re,, = 1.25*106)
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Figure 23(a). F5-A inviscid surface oil flow pattern a =40°and 8= 5°

Figure 23(b). F5-A turbulent surface oil flow pattern o =40°and f =5°
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Figure 24. F5-A inviscid pressure contours at x = 14.025 in.( @ =40°and 8 =59
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Figure 25. F5-A turbulent pressure contours at x = 14.025 in.( & = 40° and 8 = 59
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Figure 27. F5-A turbulent stagnation pressure at x = 14.025 in.( @ =40°and 8 =59
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Figure 28. Details of the Erickson forebody wind tunnel model ( ref. 7 )
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Figure 29. Comparison of digitized ordinates and smooth math model for the Erickson
forebody for the full range of stations.
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Figure 31. Erickson forebody computational model (PLOT3D)
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Figure 32. Erickson forebody cross sectional grid at x = 30.00 in.
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Figure 33. Erickson forebody convergence history (inviscid)
o =30°and B =10°
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Figure 34. Erickson forebody convergence history (turbulent) a = 30° and 8 = 10°
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Figure 35(a). Erickson forebody inviscid surface pressure distribution at x = 7.19 in.
(M=0.2)
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Figure 35(b). Erickson forebody inviscid surface pressure distribution at x = 13.56 in.
(M=02)
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Figure 35(c). Erickson forebody inviscid surface pressure distribution at x = 19.94 in.
(M=02)
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Figure 36(a). Erickson forebody inviscid surface pressure distribution at x = 7.19 in,
(M=0.2)
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Figure 36(b). Erickson forebody inviscid surface pressure distribution at x = 13.56 in.
(M=02)
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Figure 36(c). Erickson forebody inviscid surface pressure distribution at x = 19.94 in.
(M=02)
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Figure 37(a). Erickson forebody inviscid vs turbulent surface pressures at x = 7.19 in.
(M =02, Re,, = 1.02*106)
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Figure 37(b). Erickson forebody inviscid vs turbulent surface pressures at x = 13.56 in.
(M= 0.2, Re,, = 1.02¢105)
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Figure 37(c). Erickson forebody inviscid vs turbulent surface pressures at x = 19.94 in.
(M =02, Re = 1.02*106)
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Figure 38(a). Erickson forebody inviscid vs turbulent surface pressures at x =7.19 in.
(M = 0.2, Re, = 1.02*106)
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Figure 38(b). Erickson forebody inviscid vs turbulent surface pressures atx = 13.56 in.
(M =02, Re,, = 1.02¥106)
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Figure 38(c). Erickson forebody inviscid vs turbulent surface pressures atx = 19.94 in,
(M =02, Re, = 1.02#105)
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Figure 39. Erickson forebody with isolated wing VLM model
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Figure 40. Wing induced flowfield at Erickson forebody pressure stations.
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Figure 41(a). Erickson forebody inviscid surface pressures at x =7.19 in.
(& =32.2°and § =0)
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Figure 41(b). Erickson forebody inviscid surface pressures atx = 13.56 in.
(a =32.2°and B =0°)
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Figure 41(c). Erickson forebody inviscid surface pressures at x = 19.94 in,
(@ =32.2°and B8 =0°)
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Figure 43. Erickson forebody turbulent surface oil flow pattern (& =30° and 8 =0°)
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Figure 44. Erickson forebody inviscid pressure contours at x = 13.56 in.
(o =30°and B =0°)
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Figure 45. Erickson forebody turbulent pressure contours at x = 13.56 in.
(a =30°and 8 =0°)
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Figure 46. Erickson forebody inviscid stagnation pressure at x = 13.56 in.
(ax =30°and B =0°

SPpeppnepEpEpenn
2 J332 g1
T H T

Erickson forebody turbulent stagnation pressure at x=13.56 in.
(a =30°and 8 =0°




PARTICLE TRACES PARTICLE TRACES

ERICKSON CHINE FOREBODY _ ERICKSON CHINE FOREBODY
ALPHA=30 BETA=10 INVISCID | ALPHA=30 BETA=10 TURBULENT

)

30° and B=10°)
30° and B =10°

Figure 49. Erickson forebody turbulent surface flow pattern ( &
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Figure 50. Erickson forebody inviscid pressure contours at x = 13.56 in.
(¢ =30°and B =10°)
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Figure 51. Erickson forebody turbulent pressure contours at x = 13.56 in.
(ax =30°and B =10°)
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Figure 52. Erickson forebody inviscid stagnation pressure at x = 13.56 in.
(ax =30°and B = 10°)

Figure 53. Erickson forebody turbulent stagnation pressure at x=13.56 in.
(o =30°and B =10°)
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Figure 54. Parametric forebody shapes as driven by the value of n.
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Figure 55. Parametric forebody shapes when the straight sidewall is selected.
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Figure 56. Examples of the parametric forebody for the entire cross section
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