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NOTICE: The project that is the subject of this report was approved by the Governing Board
of the National Research Council, whose members are drawn from the councils of the National
Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine.
The members of the committee responsible for the report were chosen for their special competences
and with regard for appropriate balance.

This report has been reviewed by a group other than the authors according to procedures
approved by a Report Review Committee consisting of members of the National Academy of
Sciences, the National Academy of Engineering, and the Institute of Medicine.

~- .

-

The National Academy of Sciences is a private, nonprofit, self-perpetuating society of dis
tinguished scholars engaged in scientific and engineering research, dedicated to the furtherance
of science and technology and to their use for the general welfare. Upon the authority of the
charter granted to it by the Congress in 1863, the Academy has a mandate that requires it to
advise the federal government on scientific and technical matters. Dr. Frank Press is president
of the National Academy of Sciences.

The National Academy of Engineering was established in 1964, under the charter of the
National Academy of Sciences, as a parallel organization of outstanding engineers. It is
autonomous in its administration and in the selection of its members, sharing with the National
Academy of Sciences the responsibility for advising the federal government. The National
Academy of Engineering also sponsors engineering programs aimed at meeting national needs,
encourages education and research, and recognizes the superior achievements of engineers.
Dr. Robert M. White is president of the National Academy of Engineering.

The Institute of Medicine was established in 1970 by the National Academy of Sciences to
secure the services of eminent members of appropriate professions in the examination of policy
matters pertaining to the health of the public. The Institute acts under the responsibility given
to the National Academy of Sciences by its congressional charter to be an adviser to the
federal government and, upon its own initiative, to identify issues of medical care, research,
and education. Dr. Stuart Bondurant is acting president of the Institute of Medicine.

The National Research Council was organized by the National Academy of Sciences in 1916
to associate the broad community of science and technology with the Academy's purposes of
furthering knowledge and advising the federal government. Functioning in accordance with
general policies determined by the Academy, the Council has become the principal operating
agency of both the National Academy of Sciences and the National Academy of Engineering in
providing services to the government, the public, and the scientific and engineering communi
ties. The Council is administered jointly by both Academies and the Institute of Medicine. Dr.
Frank Press and Dr. Robert M. White are chairman and vice chairman, respectively, of the
National Research Council.

Support for this project was provided by Contract NASW 4627 between the National Acad
emy of Sciences and the National Aeronautics and Space Administration.

Copies of this report are available from

Space Studies Board
National Research Council
2101 Constitution Avenue, N.W.
Washington, D.C. 20418

Printed in the United States of America

ii

.... .... .

1:

... ... 1"; '!"" ,.... 1"'" F.".,...
.£ o' , 0 f." ":"" L k J r t- ..... .L- L ~ ..L.. ~ ..

I.'. .-.-
L "'.L 'r p.

L



•••••••

... TASK GROUP ONPRIORJ:rIES IN
SPACE RESEARCH-PHASE ONE

John A. Dutton, Pennsylvania State University, Chairman
..... ..... ..

Philip H. Abelson, American Association (or the Advancement of Science ..~
Steven V.W. Beckwith, Cornell University
William P. Bishop, Desert Research Institute
Radford Byerly, Jr., U.S. House of Re~reseJl.tativesCommittee on Science,

Space, and Technology
Lawson Crowe, University of Colorado
Peter Dews, Harvard Medical School
Owen K. Garriott, Teledyne Brown Engineering
Jonathan Lunine, Lunar and Planetary Laboratory 'r" rr r" w

~ J

Molly K. Macauley, Resources for the Future .... .l. • a.!t.

Buddy MacKay, Lt. Governor, State of Florida
Thomas A. Potemra, Johns Hopkins University

SSE Staff
Joyce M. Purcell, Executive Secretary

,
"-

Melanie M. Green, Administrative Secretary "- ,
\
'\..

l""Y r- r: t1 ,...
.....: ....... &-

iii

....

I.:: -r:

..... ,...
1... li

I.:

~ ~
,... r r~ .E .f f- L f

- .L. .L .i:. ....... .10.. - 10. ,;.. ..

E.". '"1..
r
L..

..
1.



a. ft a·......

SPACE STUDIES BOARD

Louis J. Lanzerotti, AT&T Bell Laboratories, Chairman
Philip H. Abelson, American Association for the Advancement of Science ..
Joseph A. Bums, Cornell University ..-.~
John R. Carruthers, INTEL
Andrea K. Dupree, Center for Astrophysics
John A. Dutton, Pennsylvania State University
Larry W. Esposito, University of Colorado, Boulder
James P. Ferris, Rensselaer Polytechnic Institute
Herbert Friedman, Naval Research Laboratory (retired)
Richard L. Garwin, IBM T.J. Watson Research Center
Riccardo Giacconi, Space Telescope Science Institute TT ~ 1"' T"l' n n rr
Noel W. Hinners, Martin Marietta Corporation ' .

.u d.

James R. Houck, Cornell University
David A. Landgrebe, Purdue University
Elliott C. Levinthal, Stanford University
William J. Merrell, Jr., Texas A&M University
Richard K. Moore, University of Kansas
Robert H. Moser, The NutraSweet Company
Norman F. Ness, University of Delaware
Marcia Neugebauer, Jet Propulsion Laboratory I:

,...,.
l'! r C r'J rSally K. Ride, University of California, San Diego -~
_..:

Robert F. Sekerka, Carnegie Mellon University
Mark Settle, ARCa Oil and Gas Company
L. Dennis Smith, University of California, Irvine
Byron D. Tapley, University of Texas, Austin
Arthur B.C. Walker, Stanford University

Marc S. Allen, Staff Director .... ..... ,.... r~ ror r'f

..... ... h t{. 1.~ i.:. h

iv

."." ~ ~ ~
.,.... r rr: ~ F -, i ./ L- ...Ll. 1.. - L.. ~ ii-

E.-. p-

1. r
..L...

-. l!?
...... " ·rk ~

r
.i...

r
.L..



a· •••••

COMMISSION ON PHYSICAL SCIENCES,
MATHEMATICS, AND APPLICATIONS - ..

Norman Hackerman, Robert A. WeIch Foundation, Chairman
Peter J. Bickel, University of California at Berkeley ~.

George F. Carrier, Harvard University
Dean E. Eastman, IBM T.J. Watson Research Center
Marye Anne Fox, University of Texas
Phillip A. Griffiths, Institute for Advanced Studies
Neal F. Lane, Rice University
Robert W. Lucky, AT&T Bell Laboratories
Claire E. Max, Lawrence Livermore Laboratory

1""" r'f l"'l' n 11"Christopher F. McKee, University of California at Berkeley
James W. Mitchell, AT&T Bell Laboratories .Lt. ~

Richard S. Nicholson, American Association for the Advancement of Science
Alan Schriesheim, Argonne National Laboratory
Kenneth G. Wilson, Ohio State University

Norman Metzger, Executive Director

n ,..,. r: ~ 'r'"
......: ...- •

..... l"'"

r: r::

v

"'.~ '!"'" .... r r.£ f" '" £:; : r;'- .L .L ....,-. 1... ...... .I.r.. .- k ..... -- ......

r.· ....,
L

.....
L

...
1..

r
L..

f1" -.-"
.L 1:.





Preface

0· •••• •

'r" "'"' "..,. F V
0.. .~

This report represents the first phase of a study by a task group convened
by the Space Studies Board to ascertain whether it should attempt to develop a
methodology for recommending priorities among the various initiatives in
space research (that is, scientific activities concerned with phenomena in space
or utilizing observations from space). The report argues that such priority
statements by the space research community are both necessary and desirable
and would contribute to the formulation and implementation of public policy.

The report advocates the establishment of priorities to enhance effec
tive management of the nation's scientific research program in space. It
argues that scientific objectives and purposes should determine how and
under what circumstances scientific research should be done. The report
does not take a position on the controversy between advocates of manned
space exploration and those who favor the exclusive use of unmanned space
vehicles. Nor does the report address questions about the value or appropri
ateness of Space Station Freedom or proposals to establish a permanent
manned Moon base or to undertake a manned mission to Mars. l These
issues lie beyond the charge to the task group.

IFor further discussions in National Research Council reports on the role of manned versus
unmanned spaceflight, see Human Exploration of Space-A Review of NASA's 90-Day Study
Alternatil'es (1990), Toward a New Era in Space-Realigning Policies to New Realities (1988),
Report of the Committee on the Space Station of the National Research Council (1987), A
Strategy for Space Biology and Medical Sciences for the 1980's and 1990's (1987), and Space
Science in the Twenty.First Century-lmperatiJ'es for the Decades 1995 to 2015-Ql'erl';ew
(1988) (National Academy Press. Washington, D.C.); and "The Nation's Space Program After
Challenger: The Need for a Reassessment of the Roles of Manned and Unmanned Systems for
Launching Scientific Space Missions" (1986), an unpublished report of the Space Studies Board.
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We believe that the vision, objectives, and operating principles we pro-
pose are compatible with the objectives of the human spaceflight program
and could contribute to a vigorous space program at all levels. For this .. .... ~

reason, we commend these proposals to those responsible for the entire ~

space program for their consideration. In general, the efforts of the space
research community have concentrated on setting priorities for scientific
research and assessing the scientific merit of proposed space research mis-
sions. One issue considered here is whether the space research community
should take a more active role in recommending a hierarchy of priorities to
guide the program. A second issue is what considerations should influence
priorities and the criteria used to determine them.

The Space Studies Board is interested in priorities for several reasons.
r r n ~ r;First, as a result of a reexamination and redefinition of its role in 1988 and rr ~ , .

~ ..
1989, the Board expanded its advisory perspective and initiated studies of ~.;o. ...
broad issues associated with management of the civil space program. Sec-
ond, the numerous opportunities for space research initiatives far exceed
available resources; thus choices among them must be made. Finally, there
is evidence that both Congress and some members of the scientific commu-
nity are interested in developing a reasoned approach to creating a national
scientific research agenda with explicit priorities assigned to various cat-
egories of effort.2

This report is intended for an audience that includes the scientific com- ~
,..... rz Y"7 L r1 r- -

munity and policymakers in the executive branch and Congress. The Board
is mindful of the prospect that its efforts may lead to a model that could be
useful in a broader context of determining priorities for a national scientific
research agenda.

This first phase of the Space Studies Board's examination of priorities
in space research began with a workshop in the summer of 1989 that con-
sidered the broad spectrum of research and development activities in the
United States and the complex decision-making process governing them. '11"':' yo-. f""l' ~ r' r l'!Participants represented diverse backgrounds, including science, finance,
economics, industry, and flight programs, and included representatives of ...... ~ .... ~ .1 ... fi h
Congress, the Office of Management and Budget, and NASA.

2For examples of recent congressional views on finite resources and accompanying difficult
choices, see the House and Senate reports on H.R. 2519 (Reports 102-94 and 102-000, respec-
tively; U.S. Government Printing Office, Washington, D.C.), which provides 1992 appropria-
tions for the Department of Veterans Affairs, the Department of Housing and Urban Develop-
ment, and independent agencies. For an example of the scientific community's interest in this

I:: I: x.:: ~ 1.: n: .II:
issue, see Space and Earth Sciences Advisory Committee, The Crisis in Space and Earth
Sciences-A Time for a Ne ..... Commitment (NASA Advisory Council, 1986) or "The Dilemma
of the Golden Age," address by National Academy of Sciences (NAS) President Frank Press to
NAS members (April 1988).
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Extending the discussions of the workshop, this report considers the
rapidly changing context in which federal research activities occur and ar
gues for a rationale for recommending priorities in space research that is
consistent with national goals. To set the stage, the report documents the
accomplishments of the national space research program and surveys the
exciting opportunities ahead. The next phase of the study will attempt to

develop a credible methodology that the Board and the space research com
munity could use to recommend priorities and will be published separately
upon its completion.

Such a set of priorities must be created in a context broader than that of
space research alone.3 In the more than 30 years since the national space
program began, there have been vast changes in the United States and in the
world. The complexity of the federal decision-making process has increased
in proportion to the ever-increasing array of federal activities. There are
continually evolving internal and external pressures at each and every level
of the process. Choices and deliberations within the federal agencies, the
presidential offices, and Congress are shaped by national goals, global eco
nomic competition, the consequences of the federal budget deficit, domestic
politics, national security concerns, and the powerful but often unpredict
able forces of public opinion.

These realities must be addressed in the process of considering priori
ties for space research. Some will insist that space researchers should not
attempt to provide advice about the implications of issues other than the
scientific merit of proposed space missions. This report argues that scien
tific research in space, and (by implication) the entire civil space research
program, will better serve the goals of both science and the nation if the
priorities that govern them simultaneously reflect both scientific and broader
national imperatives. Helping to fashion the appropriate criteria thus be
comes a responsibility of the space research community. The community is
capable of making the sophisticated judgments necessary to foster a vital
and robust space research program: We believe it must do so.

3For funher discussions on the issue of priority setting, see also Office of Technology
Assessment, Federally Funded Research: Decisions for a Decade (U.S. Government Printing
Office, Washington, D.C., 1991).
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[Policy] is like a play in many acts, which unfolds inevitably once the
curtain is raised. To declare that the performance will not take place is an
absurdity. The play will go on, either by means of the actors ... or by
means of the spectators who mount the stage.

Klemens von Metternich
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Summary and Recommendation~

~-.....
....... .......

r. - r;,

The U.S. space program and its space research components have pro-
r r" r r-duced remarkable achievements in the past three decades and generated a ~ L. ~~

wealth of opportunities for scientific initiatives in the years ahead. As we
approach a new century, we must decide: What should we do? How should
we do it?

Answers to these questions are critical for the future success of the
space program and space research (that is, scientific activities concerned
with phenomena in space or utilizing observations made in, or from, space).
The answers will affect the strength of the national scientific and engineer-
ing enterprise, national economic vitality, and the national sense of pride rr roo ,..... Y'" .....
and purpose. Answering the first question is equivalent to setting priorities

t....for space research. Answering the second question requires that we develop t:.:. 'l. ... l~ \.i

a model for our activities that will facilitate accomplishing our highest-
priority activities. Priorities, as used here, are rankings in a preferential
ordering or agenda, possibly multidimensional, that governs allocation of
resources to activities or initiatives.

For some time, the objectives of the space research community and
those of the broader space program have been in conflict. Apollo demon-
strated national technological superiority at a critical time. A fundamental
assumption of the civil space program developed in that era assens that it is 1: .= I..: r:: .no:

human destiny to explore the universe. As a consequence, the civil space
program continues to emphasize the mechanical aspects of flying spacecraft
and transporting humans through space. In contrast, scientific vision fo-

.. ,..... ..... r r~ r ": F ""
.. -, r-" t-
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cuses on the outcome of space activities, insisting that the means of con-
ducting scientific research be determined by the objectives and purposes of
that research itself; it emphasizes the information and understanding gener- -. -.. ...... r-r --ated rather than the means of obtaining them. -

New realities of international competition, domestic politics, and eco-
nomics suggest the need to review the contributions of space research to
national vitality. The accomplishments of the past and the many opportuni-
ties now available, as well as the widely recognized need to provide stimu- "
lation and motivation to education, suggest that we reconsider how scien- "
tific research in space is conducted. Fundamental assumptions about the >',
objectives of space research and the space program that makes it possible '"
may determine the outcome of research more than judgments about scien-
tific merit, or national values, or imperatives presented by the new realities

,.... ...", --.,..... T"'" r "'.'mentioned above. Thus the issue is not the relative value of the human .... ...- -.."'-
spaceflight and space research components of the space program. Rather, it '>

"-
is to develop objectives and operating principles that will produce the maxi-

"mum benefits from the nation's investment in space research and other
space activities.

The imperative driving scientific research is the acquisition of knowl-
,

edge and understanding. The collection of data, the creation of information ,
through its analysis, and the subsequent development of insight and under-
standing should be key governing objectives for scientific research in space r "" rl ~ r: r: r---
and for the broader program. As suggested in the preface, the task group
believes that this vision is compatible with the human spaceflight program
and that the entire space program itself would be invigorated by concentrat-
ing on timely and compelling scientific objectives.

Emphasizing information and understanding will not compromise the
overall space program's legitimate interest in the technology of spaceflight,
because formidable engineering and technical challenges must be met in
order for space research to achieve its objectives. It will, however, permit "'II"': ....,

~ l" ,.... .... T'
the space research program and the overall space program to concentrate on
the development of powerful new techniques for acquiring, communicating, ..... IlIi: ... t.J. 1~ l.:l U

synthesizing, and using information. And because information itself is an
increasingly critical and economically valuable resource, this effort can en-
hance our national technological progress and economic strength while it
enhances our scientific accomplishments.

Thus the vision of a space program and a space research effort empha-
sizing information, knowledge, and understanding presents an ideal format
in which to consider priorities for space research. The central thesis of this
report is that the space science and applications community should reach a or:: I:: 1:: r::: :t: IT ~

consensus on priorities for scientific research in space. Since we cannot do
everything, we should do the most valuable things, with the recognition that
a collection of smaller efforts may in sum be more important than a single

. ,... -- 1";"" ~ ,...- I: t.-- i -. -: r:- [
,.
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large initiative. The task group believes that a scientific agenda set forth by
the community, with due regard for contemporary political and economic
realities, will greatly assist policymakers and will ultimately prevail. Such
an agenda, along with the reformulation of assumptions governing space
research, will better serve scientific and national goals, achieve maximum
return on investment, encourage effective congressional and agency action,
and provide benefits for the nation's citizens.

ACCOMPLISHMENTS, PROSPECTS, AND LESSONS FROM THE
U.S. SPACE RESEARCH PROGRAM

a··•••••

---

The accomplishments since 1957 of U.S. scientific research in space
have broadened and deepened understanding of our physical environment.
As with all science, these accomplishments are but harbingers of even greater
future achievements. Past successes have created a multiplicity of opportu
nities for space science and applications. Moreover, our more than 30 years
of experience in space research have provided important lessons on how to
operate the program more effectively in order to obtain the maximum pos
sible benefit from available resources.

All disciplines reveal the complexity of the physical and biological
world. Things are much more complicated than we thought at the begin
ning of the space age in 1957. As examples, consider the violent astro
nomical events, the courses of planetary evolution, the interactions of solar
and terrestrial magnetic processes, the interdependence of the various com
ponents of the Earth system, and the changes in human physiology that
occur in space. We can expect to discover even more variety and more
complexity in the years ahead.

Perhaps the most striking accomplishment of the U.S. space program is
the demonstration that humans can work in space and on another body of
the solar system and can travel to another part of the solar system and
return successfully. This demonstration has opened the way for human
exploration beyond the Earth for centuries to come.

The value of the unique point of view attainable from space has been
demonstrated beyond doubt. We gain more than just a different perspec
tive: operating far from the Earth's surface expands the domain of param
eters available to science. This expansion will continue with the return and
analysis of samples from planets, asteroids, and comets, with observations
that reach back even further toward the origins of the universe, with ex
tended human presence in space, and with comprehensive views of the
interactions of the Earth's physical and biological subsystems.

In over 30 years of experience in space research, we have learned that
flexibility and multiplicity of opportunity are key requirements. Although
large missions may address the most urgent or most comprehensive scien-

t....

1.: n
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tific issues. small or moderate missions and suborbital initiatives can also
resolve important scientific questions. and can do so more quickly and
less expensively. For space research to produce maximum benefits, the

-"T ,......,.
objectives of scientific research should drive the mission rather than con-
straints imposed by the limitations of a program or a particular launch
vehicle. .....':

\.,
"-

,
~,

TODAV'S IMPERATIVES

Recent events at home and abroad require that we reexamine motiva-

"

tions. objectives, and methods of space research to ensure that they are
responsive to contemporary imperatives. The key imperatives and their r- ......, ....... ".... ~ 1""'" F
implications are as follows: ~. ...:.

• Rapidly changing relationships between nations create new challenges
\.

and opportunities. Scientific efforts and space research must contribute to
our ability to succeed in a vigorous economic and technological interna-
tional competition.

• Domestic needs compete with scientific research in space and with
the space program and force the nation to choose between research opportu-
nities and other endeavors. Thus a focused and compelling space research r ..... rr: ,.... r ,.., r- . J,."

agenda that clarifies the value and increases the productivity of both space
research and the space program must be formulated.

• Public demand for accountability and for effective use of available
resources is increasing. Space research and the space program must be
conducted in accord with operating principles that will ensure that objec-
tives are attained effectively. We must distinguish between initiatives in
space that contribute to scientific understanding and those that are really
aimed at nonscientific public purposes. "l'":' r !"'T .... ..... ,... r

• There is widespread concern that our educational systems are not
adequately preparing our citizens to participate effectively in an increas- L ~ h ~~ ~...;. t .. t.

ingly technological and competitive world. Success in space research can
stimulate the curiosity of all young Americans and motivate some to choose
careers in science. engineering. and technology disciplines. A vigorous
space science program will provide information that interests, and perhaps
enlightens, a national audience.

• Opportunities for international collaboration in space research are in-
creasing. They are attractive because of the increasing complexity and cost
of acquiring knowledge. But sharing the costs of space research with others r I:: I:. .= ~ IT 1::

cannot alone justify international collaboration; rather collaboration should
be undertaken in space research only to enhance scientific achievement.

. .... .... 1"'" 'r"" ~ r ~.... E. -: p .. • { J
f:~ t~'-'

J.:. .t.. 1. L.. .... •... ..... ....... -- .L ..:.. M. ....
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OPERATING PRINCIPLES

Space research and the space program must be managed according to
operating principles that will ensure that resources are used effectively and
that objectives are attained. The foIlowing principles are derived from our
30 years of experience in space research; adhering to them will enhance the
acquisition of information and knowledge and facilitate the response of
space research and the space program to today's imperatives.

A· •••• •

---

• Enhance the human resource base. The community of working
scientists and students should be maintained and invigorated to strengthen
the national scientific enterprise.

• Acknowledge that choices must be made. Science raises more in
triguing questions than can be answered or even addressed. Thus we should
recognize that choices must be made.

• Capitalize on opportunities. Special opportunities to perform good
research are sometimes offered by technological developments or demands
for applications. Wise investments in technological development will cre
ate such opportunities, sometimes in unexpected ways.

• Capitalize on investments. Having chosen to start valuable projects,
we should insist on finishing them, in satisfactory, cost-effective ways. We
need to understand better the direct and indirect costs of abandoning projects
already begun.

• Increase program control by principals. Making principal investi
gators responsible for quality and giving scientists an increased role in
program management offer potentially large benefits.

• Secure access to space by diverse means. Access to space through
a variety of means appropriate to particular research missions is a recog
nized requirement of a vital space program.

THE RATIONALE FOR SETTING PRIORITIES

Priorities are needed at several levels within the national scientific en
terprise, within the space program, and within space research because the
success of science has created a wealth of opportunities for initiatives. Some
initiatives will contribute more to scientific knowledge than others, some
will enhance national economic and technological vitality, some will ad
vance important applications of information from space, and some will as
sist in resolving important policy issues. An orderly process is needed to
make the necessary choices.

Chapter 2 illustrates the broad range of future prospects for space re
search that includes large and small missions, projects in different fields,
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and the need to support both mature fields and untested ideas. Developing
priorities for scientific research in space requires a sophisticated approach
because it is not possible to rank all scientific research activities in a single
list. Any priority scheme should be multidimensional in nature, with cer-

...... -Y ...,. ..... --.-
tain classes of activities given higher priority than others. There are a
number of important criteria: the value of an initiative to science, potential
social benefits, costs and readiness to perform it, and the probability of
success. A priority scheme should provide for balance and flexibility in the
program and for the maintenance of essential, ongoing activities.

Arguments for Setting Priorities

There are two principal arguments in favor of the recommendation of rr r or M n n r-
an agenda for space research by the scientific community: .... .l...:. .ik.

• Consensus is politically compelIing. An agenda for scientific re-
search in space created and supported by the community would be persua-
sive. If scientists demonstrate that their agenda responds to scientific im-
peratives and to national needs, they can argue effectively for an adequate
share of resources and for an orderly progression through the suite of initia-
tives endorsed by the community.

• If scientists will not act, then others will. If scientists cannot, or ~
~ rJ r r: r::: r

will not, recommend priorities, then others whose goals may differ from - -

those of the scientific community will take the stage and make the deci-
sions. None of the reasons scientists cite for eschewing the strenuous work
of reaching consensus prevents federal officials or congressional represen-
tatives from making the necessary choices.

Addressing the Arguments Against Setting Priorities 11"':' rr rT '"
,..... ,.., "!

A number of arguments against recommending priorities are sometimes L. ~ .... L. 1:.i. 1~ h

offered by scientists. Some of them are listed below, with explanations as
to why the task group does not find them compelling:

• There will be losers. Indeed there will be, but there are losers now.
In fact, some who now enter the priority-setting process lose for reasons
unrelated to the quality of the science. It would seem preferable that the
community of scientists help to determine the winners.

• Recommending priorities is too difficult, too contentious. Recom- r::: Il I:' ~ 1:: n l%

mending priorities is difficult but can be accomplished through a formal
process in which competing initiatives are judged uniformly according to
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explicit criteria. If scientists find it too difficult to create a recommended
program for space research, then, as said above, others will do it for them.

• The community will not be able to maintain consensus. Scientists
loyal to initiatives not receiving strong recommendations may tend to sub
vert the process, it is argued, by lobbying for special favor. They would be
better advised to develop more exciting initiatives. This argument and the
two above combine to make a fourth:

• Setting priorities will be counterproductive because the commu
nity will tear itself apart. Moreover, the argument goes, at present the
losers' rancor is directed at officials outside the community; if the commu
nity sets priorities, then the rancor will be turned inward. In essence, this is
an argument that the scientific community is too immature to govern itself.
The task group believes the scientific community can behave responsibly
and that its best interests will be served by doing so.

• The low-priority initiatives will not be done. The argument is that
policymakers will take advantage of any list of priorities by eliminating the
low-priority activities. That is precisely the reason priorities are recom
mended. It certainly seems preferable to abandon low-priority activities
rather than to starve those with high priority.

• Scientists cannot make political judgments. Once scientifically
meritorious proposals are put forward, this argument goes, the judgments
about relative social benefits and the relevance to national needs are beyond •
the purview of scientists. But the task group believes that in arguing for
initiatives, scientists should be sensitive to national goals and political re
alities. Because scientists expect support from the public, they should be
able ,to explain why some initiatives better serve public purposes.

Priorities have been successfully set by scientists in a number of con
texts. For example, NASA's Office of Space Science and Applications
(OSSA) has adopted a structured approach to the assignment of priorities
using the priority recommendations of a scientific advisory committee. The
result is a program in which annual budget requests are made in the context
of a formal five-year plan. Clarifying the components of the program and
specifically setting priorities among initiatives appear to have reduced un
certainty and divisiveness in the space research community, strengthened
space research, and made the program more attractive to the policymakers
who provide the resources for it.

CONCLUSION AND RECOMMENDAnONS

Space research operates within the vision that governs the overall civil
ian space program. The task group concludes that emphasizing the acquisi
tion and processing of observations and information and the conversion of
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this information into knowledge and understanding will simultaneously ad
vance science and contribute effectively to national economic and techno
logical vitality. Even with such a vision, the need to determine priorities
among the various initiatives is inevitable.

For these reasons the task group makes the following recommenda
tions:

• Development of new knowledge and enhanced understanding of the
physical world and our interactions with it should be emphasized as the
principal objective of space research and as a key motivation for the space
program.

• Acquisition and effective management of information derived from
space should be a primary objective of our national activities in space.
Concentrating on innovation in information management will produce ben
efits beyond space research.

• The requirements of space research itself should determine policy
and programmatic decisions in space research and in the support of space
research by the civil space program.

r ~ ~ - r r:' r
.. - .~

Finally, the task group recommends that the Space Studies Board pro
ceed to the next phase of the Priorities in Space Research Study and thereby
develop a methodology for assessing priorities for scientific research in
space. Such an assessment procedure is possible, and its application will
allow the establishment of priorities in space research that will benefit sci
ence, the U.S. civil space program, and the nation. The members of the
scientific community conducting research in space have a responsibility to
the public to undertake this task.
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Setting the Course for Space Research

...... ......

...::

In response to national goals set more than three decades ago, the U.S.
space program and its space research components have produced remark
able scientific and technological achievements. Apollo propelled the United
States into a position of world technological leadership. Scientific mis
sions have surveyed the heavens and the Earth itself, sending back infor
mation that has given us deeper understanding of the nature of our physi
cal world and the universe around us. Success in space science and applications
has generated even greater opportunities for future accomplishment. Now,
for the years ahead, we must decide what we should do and how we should
do it.

The fundamental assumption shaping the U.S. civil space program, and
consequently space research, was expressed in the Apollo era "as the mani
festation of a vision-the vision that our human destiny is to explore the
universe."· In this context, the military metaphor of "mission" has been
used to refer to all space activities, including scientific research. The use of
this term emphasizes the penetration of a difficult domain, rather than the
information and knowledge to be acquired. The Apollo perspective contin
ues to guide the program; the Space Station is intended to provide "a per
manent manned presence" in space, and the President has set the "long
range goal of expanding human presence and activity beyond Earth orbit
into the Solar system."2

Unfortunately, the goals and accomplishments of the scientific commu
nity have sometimes been constrained by the Apollo vision. Scientific
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efforts focus on the outcome of an activity (e.g., an experiment, observa
tion, simulation, or derivation) by concentrating on the knowledge or under
standing to be gained. The successful flight of a spacecraft conveying
scientific experiments is a means to that end.

The space program serves a variety of important national goals, includ
ing fostering national pride and prestige, developing and maintaining eco
nomic and technological vitality, and generating scientific information and

. understanding. The issue addressed here is not the relative value of the
human spaceflight or space research components of the program. Rather,
this report seeks to contribute to the development of a vision along with
objectives and operating principles that will assist the nation in realizing the
maximum benefits from its investment in space research and other space
activities. The value of any initiative or activity in the space program is
measured by the extent to which it serves national goals. Initiatives that
advance all of these goals should be preferable to those with more limited
contributions. From the national perspective, a scientific mission that is
technologically challenging may be preferable to one that employs routine
capabilities. In turn, a crewed mission or a facility with a governing scien
tific purpose will be more valuable than one that demonstrates technologi
cal capability alone. Thus scientific research may be served by both erewed
and robotic missions that concentrate on the timely acquisition of informa
tion and scientific and technical knowledge, and these objectives are com
patible with all aspects of the civil space program. Furthermore, these
objectives should determine how access to space is achieved and how scien
tific research in space is ultimately conducted.

This report examines some of the issues involved in setting priorities
within the scientific research in space program and, to the degree that it is
relevant, within the entire space program. Priorities, in the sense used here,
are rankings in a preferential ordering or agenda, possibly multidimensional,
that governs allocation of resources to activities or initiatives. A system of
priorities appropriate for scientific research in space or for the entire space
program would be more sophisticated than a simple rank ordering.

Priorities are intimately related to basic assumptions about purpose and
motivation. For the space program and for space research, such assump
tions may determine events more powerfully than judgments based on sci
entific merit or national values or shaped by the imperatives of changing
economic and political conditions. For example, an emphasis on transport
to space led to the launching of several scientific research vehicles (e.g.,
Galileo, Magellan, Ulysses, and Hubble) by the Space Shuttle regardless of
whether the Shuttle was appropriate to the scientific task. The contempla
tion of priorities that might produce an effective agenda for space research,
or for the entire space program, must include examination of fundamental
assumptions and the opportunities and constraints consequent upon them.
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II

DEFINITIONS

The U.S. space program-the .totality of the national efforts in space
research, applications, and engineering and technology for activities in
space.

The civil space program-the civilian (nondefense) components of the

space program.

The human spaceflight program-those components of the space pro
gram that involve the flight of humans in space vehicles.

ft· •••••

1'"' r"! ,...,. r:- r:-,
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Space research-Scientific activities concerned with phenomena in space,
or utilizing observations obtained in, or from, space, including the use
of information derived from space to advance other activities. Research
in space involves observation, development of scientific instruments and
scientific support technology, data management and analysis, creation of
theories and models concerning phenomena observed from space, and
application of space observations to further economic or socially benefi
cial activities.

Space science and applications-Here, synonymous with space research.

,..... ,....
L l.'.. '

The task group's studies of priorities in space research have led it to
believe that the nation would benefit if space research and much of the
space program emphasized the acquisition of information and knowledge
and the development of insight and understanding. Adopting the acquisi- ~ ... F' ..... ~7

tion of information that cannot be obtained on Earth as the primary pur-
pose of space activities is compatible with national needs to develop ad- ,,~ 'L. .. t.;; h

vanced technologies and capabilities. Most significantly, such a purpose
provides clear objectives for future development of the human spaceflight
program.

As illustrated in Chapter 2, observations from space reveal an unex-
pected and wondrous complexity. The objects and phenomena we have
studied have turned out to be much more complex than imagined. The goal
of research is to unravel this complexity, to understand its implications and
to discover principles or points of view that will render it comprehensible. I.:: .!::: r ~ .I::

To do so will require an abundant flow of information from space and the
capability to use it effectively. Observational and informational systems
must be created to interact effectively: "The satellite and the computer are a
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natural partnership; one provides data, the other makes sense of it. "3 Thus
an effective model for scientific research in space will emphasize the acqui-
sition, management, and use of information from space to enhance human ...... "-Y ...." rT
knowledge and understanding. It will enable us to focus on this critical
commodity of the contemporary world.

The acceptance of this governing objective for scientific research in
space will assist in establishing priorities. It is evident that such priorities
are necessary because current opportunities for scientific research in space
demand far more resources than are likely to be available in even the most
optimistic scenario.

Table 1.1 summarizes the entire spectrum of NASA space science mis-
sions now active or expected by NASA planners to be launched before the

n r r r r ~year 2000. Figure 1.1 shows that the expected increase in funding required
to complete present missions and to implement and launch the missions ~-

already approved for new starts exceeds an annual growth rate of 15 per-
cent. Future new starts will require an even greater rate of increase in the
budget for space research.

The increased funds required to maintain or expand the program may
not be available. In commenting on the NASA budget for fiscal year
1991, the Appropriations Conference Committee of the 101 st Congress
observed:4

r '" fr !""' r C' IIt is essential that the agency recognize that the budget crisis is only begin- - -
ning. The five-year budget agreement assumes an annual growth rate in
domestic discretionary spending ... of approximately five to seven per-
cent. That fact suggests that the maximum annual growth in NASA's
budget cannot exceed eight to ten percent.

TABLE 1.1 NASA Scientific Missions-1990 to 2000

'1l"! T"'l T'"l Y'I' Y"" r l;;
Active as of Planned for

Field December 1990 1991 to 2000 Total L iJ I:.l 'I.... 1..:.1. \i 1.,

Space physics 6 17 23
Planetary and

lunar science 8 4 12
Earth sciences 2 24 26
Astrophysics 6 9 15
Life sciences 0 4 4

TOTAL 22 58 80 r:: Il I.:. r! l: n n;

SOURCE: General Accounting Office. 1989, Space Operations: Listing
of NASA Scientific Missions. 1980-2000. GAO/IMTEC-89-46FS (U.S.
Government Printing Office. Washington, D.C.) April.
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FIGURE 1.1 Funding (in $million) required to maintain the space research pro
gram, including missions now in flight and new starts already approved. SOURCE:
Office of Space Science and Applications, NASA.
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Thus it appears clear that NASA and the nation will have to choose
among scientific research initiatives and other components of the space
program. In recognition of these realities, the Advisory Committee on the
Future of the U.S. Space Program recommended that science activity be
"the fulcrum of the entire civil space effort." As justification, the commit
tee argued thatS

... the space science program warrants the highest priority for funding. It,
in our judgment, ranks above space stations, aerospace planes, manned
missions to the planets, and many other major pursuits which often receive
greater visibility. It is this endeavor in science that enables basic discov
ery and understanding, that uncovers the fundamental knowledge of our
own planet to improve the quality of life for all people on earth, and that
stimulates the education of the scientists needed for the future. Science
gives vision, imagination, and direction to the space program and as such
should be vigorously protected and permitted to grow, holding at or some
what above its present fraction of NASA's budget even as the overall
space budget grows.

If this recommendation is followed and there is a stronger focus on
space research, then the necessity for making difficult choices will be even
more urgent. There are many opportunities in space research, and thus we
need a procedure by which to select those that are most valuable. The
community of scientists engaged in scientific research in space should reach

1.:

,....

.,.,..

I:

.....-

I:'

f r ..
.L .L ....... -'-- i...

,,

...... ..... ~
.,....

~..... ("", f
J.... ... ... L

" . ...;- ....
1.

'. ",.

l...
f'l

.l



14

a consensus on priorIties and thereby contribute to the formulation of an
agenda for space research and for the space program. Such an agenda and
the priorities it represents will need to respond to national needs and to the
larger priorities of the national agenda.

The two key questions in space research, as in most continuing endeav
ors, are: What should we do? How should we do it? As argued above, the
priorities that determine what we choose to do reflect our values. The meth
ods we then adopt, and often our successes, are also determined by the
vision and purpose that guide our activities. Careful consideration and
formulation of assumptions and priorities for the scientific research pro
gram and the overall space program that supports it will enable us to better
serve national goals, compel effective action, achieve the maximum return
on our national investment, and inspire our citizenry.

NOTES

r '" "~ ?""! n ~ rrto
~,- ....
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The U.S. Space Research Program:
Accomplishments, Prospects, Lessons

~ .

'f' l
r r r ~ r

It a_ .~.. I

Space research concentrates on observations or experiments that are
'f': effective means of obtaining essential information, including studies of the ~ !"""" r r: J--

Earth and its environment, solar and space physics, solar system character-
istics, astronomy, life sciences, and fundamental physics. Each of these
fields is in a different state of maturity: astronomy, earth sciences, planetary
sciences, and space physics reach back to the very origins of the space
program, whereas life sciences and microgravity sciences are just now emerging
as longer missions offer increased opportunities for research.

The following pages summarize briefly the accomplishments and status
of U.S. space research. The summary is not meant to be exhaustive but rr r ..... r- ~-;-

rather to provide a glimpse of what has been achieved in our space program,.~ some ideas of opportunities that remain, and a constructive evaluation of ""- t.. 1 • L. t&

what we have learned about program management.

SELECTED DISCOVERIES AND ACCOMPLISHMENTS OF THE
U.S. SPACE RESEARCH PROGRAM

In only 30 years, space research has brought forth a rich array of ex-
panded knowledge and understanding in all areas of space science and ap-

T- plications. Major discoveries have been made as we moved outside the 1: ::: 1.:. r= n:....
Earth's atmosphere, found a new view of our home planet, and left behind
such features of our environment as the physiological effect of gravity.

From our new vantage point, we have achieved significant understand-
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ing of many fundamental processes in the cosmos, solar system, Earth, and
even our own bodies. Our constant search for origins has been aided by
space observations providing new insights into the formation of the uni
verse, the Earth, other planets, and life as we know it. Through new eyes,
we see an unexpected complexity in structure and processes over a vast
range of spatial scales. Closer to home, we have gained a deeper apprecia
tion for the intricate interactions between humans and the Earth. In some
areas, we have gained substantial practical applications of new knowledge
and techniques.

Scientific research in space has provided answers to many questions and
stimulated even more. We have learned much about larger issues such as

• What is in our worlds?
• How do our worlds work?
• How did our worlds come to be?
• How do our worlds evolve?
• How do we affect and how are we affected by our worlds?

fIj--. ft A" A " •••
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These questions are used as organizing themes in the following brief
review of the major accomplishments of the space sciences over the past 30
years.

r ,...
rJ r f' r r- - .. -

"Discovery-What Is in Our Worlds? , ,

We discover the wonders of the universe by extending our senses with "" "-
sophisticated instruments. In space, our instruments attain a unique per- "'-
spective from which to observe the Earth below and the cosmos above.

~Exotic objects, such as gamma-ray bursters and braided rings, and global
physical processes, such as the ubiquitous mesoscale eddies in ocean cur-
rents, were revealed by the unique capabilities of space instrumentation. "W"'l' ...... ....,. ...

"'" 0
r- r:

New discoveries almost always stimulate new investigations that require
new sensory capabilities and lead to further discovery. ..... ~ L 'h ,..; t.;; ~

• Complete worldwide patterns revealing the extent and variability
of important features and phenomena on the Earth have been assembled.
Atmospheric trace species (e.g., ozone, carbon monoxide, particulates, and
many others) were sampled only at isolated locations until just a decade
ago. Now with observations from space we can begin to piece together
global budgets of these important chemicals. Satellites have produced im-
ages showing the location and seasonal movement of ecosystem boundaries. I:.. 1:. 1:. !: 1: r:: ~

GEOS-3 produced the first realization of the global geoid over the oceans,
and Magsat mapped the Earth's magnetic field. Landsat has contributed the
first global view of geologic structures. Landsat and other Earth remote
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sensing satellites provide abstracted information on regions of the world
that were unmapped 20 years ago. Since 1960, weather patterns have been
mapped by satellites and now represent a major tool in weather forecasting
and its interpretation to millions of television viewers. Mineral and oil
deposits are located and mapped with the aid of Landsat and SPOT.

o Solar system probes have discovered new planetary bodies and
unexpected phenomena throughout the solar system. The Voyager mis
sions discovered new moons and rings around the giant planets that had not
been detected from the Earth. The Voyagers also discovered active volcan
ism on 10, bizarre and unexpected tectonics on icy satellites, a tenuous
atmosphere and massive nitrogen polar caps on Triton, tilted and shifted
magnetic fields on Uranus and Neptune, and other previously undetected
phenomena. These discoveries and the accompanying images from plan
etary explorers stimulated wide public interest in the science and explora
tion of space.

o Space is not a void, but is occupied by complex plasmas. One of
the first Earth satellites discovered the Van Allen radiation belts in 1958.
Continuing exploration with spacecraft revolutionized our view of the Earth's
environment above 200-km altitude. We have discovered much about the
molecular complexity of interstellar and circumstellar environments. We
now know that there is a region above the ionosphere consisting of an
electrically conducting plasma permeated by the Earth's magnetic field. It
is called the magnetosphere because its structure and many of its processes
are controlled by the magnetic field. We have learned that other planets
possess magnetospheres and that the Sun has a magnetosphere consisting of
a hot (about one million degrees Kelvin), magnetized plasma flow (the solar
wind) extending beyond the orbits of the planets and filling interplanetary
space, forming a distinct cavity-the heliosphere-in the nearby interstellar
medium.

o Instruments in space have now covered almost the entire electro
magnetic spectrum, prompting the discovery of new objects and new
environments impossible to see in any other way. Through spacecraft
surveys of the celestial sphere at X-ray, ultraviolet, and infrared wave
lengths, we have cataloged more than 250,000 objects, many of which
can be seen only from space. Observations from rockets and satellites
revealed the first black hole candidates by detecting the intense, variable X
rays created near the event horizons of these exotic objects. The Vela
satellites, designed to monitor gamma-rays from clandestine nuclear tests,
quickly discovered gamma-ray bursters, objects emitting bursts of gamma
rays lasting only a few seconds, whose exact nature remains undetermined
after more than a decade of study. The first infrared sky survey discovered
large, solid particles in orbit around ordinary stars, presumably remnants of
an earlier era of planet formation, detectable only from space-borne tele-
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scopes and suggesting that planetary systems like our own are common in
the galaxy. As each new window at X-ray, gamma-ray, and infrared wave-
lengths opened, new phenomena appeared with characteristics difficult or .,...... -.
impossible to sense in any other way. -

We have identified the earliest stages of star formation from their faint
infrared emission. We know that almost every type of star, normal and
extraordinary, loses mass through outflowing streams of matter at all stages
of its evolution. Galaxies that emit 99 percent of their light at infrared
wavelengths, quasars with strong X-ray emission, supernovae, novae, accre-
tion disks around neutron stars, and black holes have all been discovered or
studied from space. Without spacecraft bearing scientific instruments, these
phenomena would remain unknown.

r ~ r r fPC r:r f;, .

Understanding Processes-How Do Our Worlds Work? -- ....

Manifestations of physical laws in the universe occur through physical
and chemical processes that transform and transfer material, energy, and
momentum throughout natural systems. Spacecraft missions enable us to
study processes in a number of ways impossible from the Earth's surface:
by using wavelengths absorbed by the atmosphere, by investigating celestial
objects and phenomena at close range or by direct sampling, and by gaining
a global-scale view of terrestrial processes. In many cases, spacecraft obser- r ,...,. ...,. r- r r: r- - --'

vation aims not just at understanding how a particular process works. Rather,
by examining systems not reproducible in a laboratory, (e.g., planetary rings,
magnetospheres, and atmospheres), space investigations gain a deeper un-
derstanding of the underlying physical laws.

• The first measurements of important and cyclical phenomena on
Earth have been made from space, The now famous antarctic ozone hole
was observed in 1984 and confirmed by satellite imagery from Nimbus-7. T":' n rr .... .,.... r- r
With satellite measurements the spatial extent and magnitude of yearly changes
were established. The yearly movements of both the antarctic and the arctic L ~ Ao.:. 'l.. 1,;.. t~ t~

icepacks have now been tracked in a synoptic manner to reveal detailed
patterns. We have also observed E1 Nino events, the effects of volcanoes
on the stratosphere, and, even occasionally, human-caused pollution events.
Tropical cyclones are now tracked from their spawning grounds to their
landfall, with important consequent reduction in human disaster.

• The view from space has provided a fundamental advance in un·
derstanding of the structure and dynamics of the Earth system. Perhaps
the most pervasive accomplishment of the space age began in 1960 with the I:... I.: I.:. r: 1: ~ ~

launch of TIROS-l, the first weather satellite. The images pieced together
from the first several passes of the satellite dramatically confirmed a view
of atmospheric dynamics that previously had only been inferred. Now,
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every evening, televisions throughout the world display the latest genera
tion of satellite imagery of global and regional weather systems. Since the
launch of TIROS-l, no hurricane has touched shore without being spotted
and tracked well in advance. The combination of sea surface temperature
and chlorophyll fields confirmed the widespread ocean phenomenon of me
soscale eddies, changing our thinking about energy transport in the oceans.
Ocean color observations, at first a curiosity recognized as useful only by
fishermen, are now regarded as an excellent means to map mesoscale circu
lation patterns in the open ocean, especially where the temperature signal is
washed out by seasonally high or low temperatures. That oceanic meso
scale features are widespread was firmly established by such measurements.

Understanding plate tectonics and the tectonics of other solid planets
has revolutionized the study of the solid Earth. Space-borne measurements
have contributed most spectacularly by establishing the rate at which plates
move with respect to each other on the time scale of years and also by
determining the geoid (the shape of the Earth's figure) with tremendously
improved accuracy. The geoid relates to mass distribution in the Earth's
interior and helps in showing how the Earth's mantle is convecting. Altim
etry from orbit has improved understanding of both submarine topography
and structure. Measurements from space have shown how the length of the
Earth's day responds to wind currents on annual time scales and to interior
movements on decennial scales. Precise distance measuring from space is
revolutionizing the way we look at sea level variation on decennial time
scales, and space-borne optical and infrared imagery has come to be essen·
tial in the study of the geology and geophysics of the continents. The first
radar measurements from space show the enormous potential of that method,
and magnetic measurements have established, among other things, that ulti.
mately we can expect to monitor temporal variations in the Earth's main
field from space on time scales from seconds to decades and centuries.

• Enormous diversity in the manifestations of physical laws and
processes on other worlds has been discovered through planetary explo
ration. Solar system bodies are remarkably different in evolution, compo
sition, and dynamics. Voyager encounters with the giant planets revealed
intricate and unexpected complexity in the ring systems of Saturn, Uranus,
and Neptune. Understanding the morphology of the rings has required de
tailed, ongoing studies at the forefront of gravitational dynamics. Much of
this work has application to larger astrophysical systems, making ring stud
ies a testbed for understanding gravitational dynamics.

Based on spacecraft observations, comparative studies of atmospheric
dynamics on terrestrial and giant planets reveal a much broader range of
physical conditions than those seen on the Earth, and outstanding problems
remain that tax our understanding of the fluid mechanics of atmospheres.
These include the maintenance of long-lived spot features on Jupiter, the
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origin of wind speed distribution on giant planets, and the energy balance of
the Venus thermosphere. Tectonic processes occur on large and small bod-
ies alike, and understanding both the energy sources and the origin of par-

..". ,...... --
ticular features continues to be a challenge long after they were identified ..
by spacecraft. The thick atmosphere of Titan, discovered by Voyager, ap-
pears to hide a wealth of chemical and dynamical processes as complex as
those on the Earth (including a methane "hydrological" cycle). Triton was
shown by Voyager to have a surface-atmosphere nitrogen transport cycle
akin to that of carbon dioxide on Mars, but with the added feature of nitro-
gen geysers, for which no Martian analog exists.

• Microgravity has pronounced effects on living systems. While
plants and animals, including humans, can survive in the space environ-

r .....-: r r ~ ~ r:-ment, there are clear effects (including exposure to microgravity) that have
pronounced impacts on living systems. Seeds of higher plants germinate in ...- ~

space, and grow at least into seedlings. Fertilized frog eggs have developed
in space.

Understanding Origins-How Did Our Worlds Come to Be?

In the broadest sense, we seek to understand where we came from and
how the natural world was formed. Questions about the origin of the uni-
verse, the formation of the solar system, and the appearance of life have r ~ r ...... r r r-- ~.

been central to space research over the past three decades.

• The cosmic background radiation seen from space is the signa-
ture of the beginning of the universe. Cosmic background radiation is the
oldest remnant of the early universe directly detected today. Its spectrum
and pattern on the sky show us the most primitive state of matter and serve
as the strongest constraints on our theories of how galaxies formed after the
Big Bang. Between the discovery of cosmic background radiation in 1965 'r.' r '" .... r' .,.,. T-
and 1990, observations from the ground, from aircraft, and from balloons
all provided estimates of the spectrum of this very faint radiation. But the L. &J/ L ~. ,- \..;; t...

Cosmic Background Explorer (COBE), launched in late 1989, measured the
spectrum so accurately that it disproved a few key results from the previous
10 years, and several hundred theoretical papers became meaningless. Mid-
way through its mission at the time of this writing, COBE has already
revolutionized our understanding of the early universe and promises the
greatest refinement to our knowledge of the cosmic background since its
discovery 25 years ago.

• Solar system exploration revealed intricate links between the physical ro. :.: 1: !:: 1.: IT u:
and chemical record of planetary bodies and the large-scale processes
of star and planet formation. Detailed Pioneer and Voyager studies of the
outer system have shown that Jupiter and Saturn contain cores of elements
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heavier than hydrogen and helium, while Uranus and Neptune appear to be
made of such cores with a veneer of hydrogen and helium. It is now
recognized that the formation of these planets required accretion of ice and
rock cores before gas was added. This is distinctly different from the forma
tion of stars and constrains the evolution of the protoplanetary disk in a
number of intriguing ways. The volatile composition of outer solar system
bodies, including comets, is now just beginning to be elucidated and has a
number of significant differences from the composition of environments in
giant molecular clouds. With such a record, it is becoming possible to piece
together a history of grain material from such clouds, through infall into the
protoplanetary nebula and accretion into solar system bodies. Further mis
sions to investigate in situ the less-evolved bodies of the solar system should
clarify the history of the material that eventually formed the planets and
allow us to characterize the formation of the solar system as a part of star
formation and galactic chemical evolution.

• Study of the gravito-electrodynamics in "dusty plasmas" discov
ered in Saturn's rings provided insight into the formation and evolution
of the solar system. Observations of spokes in Saturn's rings by Voyager
highlighted the effect of electromagnetic forces on charged dust particles.
In a similar way, the interaction of dust and plasmas in comets is believed
to be a central element in understanding the formation of comet tails. Such
observations have given rise to the study of gravito-electrodynamics in dust
plasmas, which has important applications to the understanding of the for
mation and evolution of the solar system.

• The search for life on Mars is of continuing scientific interest.
While signs of life were not found at the sample areas, evidence from
Viking for past climate change on Mars shifts the issue to whether life
formed on Mars sometime in the past and whether it exists in selected
niches today. The answers to these questions are of fundamental impor
tance, since on the Earth the evidence is strong that life heavily modified
the Earth's environment in favor of continued habitability. If life actually
formed there, why did this not occur on Mars?

Understanding Change-How Do Our Worlds Evolve?

Scientific events often remind us that few things are constant. The
universe evolved from some primordial event or juncture and continues to
evolve. Stars are born and die. Our Sun changes both gradually and cycli
cally. Planets develop climates, and then those climates change. We know
from geologic records that the Earth has changed and continues to change.
Some changes can be seen only from space by observations in new spectral
ranges, by visiting our neighbors in the solar system, and by viewing our
planet from the vantage point of Earth orbit.
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• Satellites now routinely document the extent of some major changes
in the planet Earth. Images from space document continuing change of
the Earth's surface. The expansion of arid regions (desertification) is now ....... ......
tracked in several regions almost exclusively by satellite. Retreats of ..
glaciers, deforestation and natural movements of forest edges, and even
changes in habitat are now tracked from satellites in some locations. Space
geodesy provides measurements of continental drift and changes in sea
level.

• Climate change on the terrestrial planets Venus and Mars is
profound on long and short time scales. Mariner 9 and Viking orbiters
and landers have revealed the complexities of the Martian environment.
with intricate weather patterns on diurnal and seasonal time scales distinct

r 'I"'""":' r r"'"! r ~ f;from those of the Earth. The absence of oceans and the presence of sea- ,.
sonal polar caps with which the atmosphere is in equilibrium provide a ~- .-t!..

different physical system in which to test our understanding of climate
from local to global scales. Viking and Mariner data detected seasonal and
permanent polar cap composition, pressure variations at two ground sites,
water vapor distribution. growth and decay of dust storms. and the pres-
ence of dust devils and mesoscale cyclonic storm systems. Evidence for
an earlier, warmer climate on Mars based on Viking images of apparent
river channels and glacial and lake deposits is even more profound. The
evolutionary sequence leading from the warmer, wetter past climate to the r ,....,. -n ~ r r: r- .
present cold, dry climate is an outstanding issue raised by spacecraft ex-
ploration of Mars. The climate of Venus varies on the short term, as
revealed by Pioneer Venus ultraviolet data showing a decrease in sulfur
dioxide abundance in the stratosphere. The high surface temperatures on
Venus, established firmly by spacecraft. constitute a dramatic demonstra-
tion of greenhouse warming. Magellan images indicate that Venus has
had a violent, volcanically active history, the climatic implications of which
have just begun to be assessed. "\I":' .,.....,. rr r< 1f"" r- T""

• The solar energy flux is not constant, but varies with time. Using
knowledge gained over the past 30 years, we can now identify some of the L Ll L- t.. ,...; I..: .t.~

physical mechanisms linking the Sun to the near-Earth environment. Mo-
tions in the convective layers of the Sun are believed to generate the mag-
netic field and solar wind variations; these in turn affect the Earth's magne-
tosphere and regulate the amount of plasma energy incident on the Earth's
polar caps. Current research suggests that small percentage changes (about
0.5 percent) in the total energy output of the Sun (the solar constant) may
influence short-term terrestrial climate. The Earth and its space environ-
ment contain coupled phenomena that must be studied as part of a system r: 1.:. 1: .- 1.: IT ~-....

including the Sun and its plasma environment along with the Earth's mag-
netosphere. atmosphere, oceans. and biota.
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Understanding Human Interaction-How Do We Affect and
How Are We Affected by Our Worlds?

Space research is increasingly concerned with human activities. Infor
mation from Earth-observing satellites documents how human activities,
including agriculture, forestation and deforestation, and the use of fossil
fuels, are changing the Earth's surface and the planetary environment. Such
information is used in a variety of applications to guide our activities. Spaceflight
exposes humans to an unfamiliar environment with weightlessness and the
threat of lethal streams of radiation, thus raising questions about human
physiology that must be addressed to ensure safe, long-duration spaceflight.

• Satellite observations are important for following some human
impacts on the planet and are materially aiding many human endeav
ors. The first nighttime picture of city lights provided from the Defense
Military Satellite Program (DMSP) was a stunning image. More recently,
leaders of several developing countries have been convinced by satellite
imagery to control deforestation in tropical rain forests. In general, it is
possible to track land use patterns on regional scales simply and easily with
data from operational satellites. Even day-to-day logistical operations are
aided by both Landsat and the Global Positioning System (GPS), as dra
matically demonstrated in Desert Storm operations in 1990-1991.

• People can live and work in microgravity for periods at least as
long as one year and can then return to the Earth and readapt to
gravity. Perhaps the most striking accomplishment of the U.S. space pro
gram is the discovery that humans can work in space and on another body
in the solar system and can travel to another part of our solar system and
return successfully. Experience gained by the Soviets using their space
station MIR has proven that humans can survive for up to one year in space
and successfully adapt to 1 g upon return to the Earth. Such demonstrations
have opened the way for human exploration beyond the Earth for centuries
to come.

Prior to the spaceflight of higher mammals, physiologists did not know
whether humans could survive for a significant period in a gravity-free
environment. In microgravity, essentially all physiological systems are per
turbed. Some systems, such as the bone and muscle, vestibular, and cardio
vascular systems, are affected more than others, such as the gastrointestinal
and urinary systems. Some systems, including the vestibular, adapt in a few
days, whereas bone resorption continues at least for months and perhaps
indefinitely.

• Space plasmas can have a profound and sometimes disastrous
effect on spacecraft and humans. It is well established that many space-
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craft systems and subsystems exhibit anomalies, or even failures, under the
influence of magnetospheric substorms, geomagnetic storms, and solar flares.
Processes such as spacecraft charging and "single-event upsets" (due to .... "......, -
highly ionizing energetic particles) in processor memories make the day-to-

.
day operation of space systems difficult. Radiation from these events could
be fatal to humans if adequate protection is not provided.

PROSPECTS AND OPPORTUNITIES FOR SPACE RESEARCH

Almost every field touched by space science has planned missions or
long-term opportunities promising major advances in our scientific knowl-
edge of the universe near and far. The major missions have been thor-

r ~ r r r: r:' f7oughly reviewed and refined. And the flow of novel ideas and proposals for ,-
smail projects in unexplored areas continues as the scientific achievements ~- d

of the last three decades stimulate new questions. The following is a repre-
sentative list and brief description of the myriad of missions and initiatives
that are under discussion or planned for launch. The list is not exhaustive
but illustrative of the many exciting opportunities that exist.

• Earth Observing System (EOS). The EOS will make a range of
contributions to the scientific questions outlined in the federal Global Change
Research Program. For some key questions, such as the role of clouds in r :r! r1

,.... r r; r- .
the planetary radiation budget and in the global hydrologic cycle, EOS will
provide information essential to rapid advancement in understanding the
planet. In other areas, like the Earth's history, EOS will supplement infor-
mation largely derived from surface measurements (e.g., sequencing of land-
forms). In all, EOS is the centerpiece of the measurement program for
global change research. Instruments proven for scientific purposes on EOS
will be the next generation of operational sensors to monitor our weather,
land use, and changing environment.1

"tl"'! .,.-.: P ..... r- t""" r
• Specialized spaceflights for measuring earth processes-Earth Probes.

Not all of the important variables will be measured from EOS. A number of L lU L ~~ 1..0:. 'L;i 1...

special initiatives are planned as Earth Probes. These include Synthetic
Aperture Radar (SAR), the best hope for quantitative measurements of soil
moisture and vegetative mass; the Tropical Rainfall Measuring Mission (TRMM);
the Sea-viewing Wide Field-of-View Sensor (SeaWIFS), for studying oce-
anic biomass and mesoscale circulation features; a scatterometer to investi-
gate global wind fields over the ocean; and new magnetic and gravity mea-
surements.

• Geosynchronous platforms for Mission to Planet Earth. These I:: I:. 1:: !: 1: r::: ~

satellites will provide continuing detailed observations of a number of vari-
ables in mid-latitude with temporal resolution of minutes (versus days).
They will contribute to studies of atmospheric dynamics, oceanic dynamics,
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atmospheric structure, water vapor, surface features and vegetation, and
many more processes. Some of these satellites will provide all-weather
observations by using microwave emissions.

• Upper atmosphere composition and dynamics-UARS. Launched
in late 1991, the Upper Atmosphere Research Satellite (UARS) is to mea
sure the key constituents and key dynamic processes of the upper atmo
sphere on a global scale. UARS will also contribute to studies of ozone
depletion.

• Ocean topography mission-TOPEX/Poseidon. Planned for a 1992
launch, the TOPEX/Poseidon spacecraft will resolve topography in order to
measure the variable component of oceanic circulation. In due course
(with a gravity mission), it will produce a quantitative measure of mean
oceanic circulation.

• Improved operational meteorological satellites. Continuing im
provements are planned for the U.S. series of weather satellites to enhance
observations of the horizontal and vertical structure of the atmosphere (mainly
temperature and water content) worldwide. These observations will con
tribute to improved forecasts of large-scale weather patterns and significant
weather events affecting human activities.

• Operational land observatories-Landsat. Many routine remote
sensing applications require continuing and consistent measurements. These
have been provided by Landsat, and more recently by SPOT. Applications
include mineral exploration, agriculture, and land use management.

• Martian climatic processes-Mars Observer. The Mars observer
will provide a comprehensive remote sensing study of the surface and atmo
sphere, with emphasis on climate change on a variety of scales.

• Aeronomy of the Martian atmosp~ere-MarsAeronomy Observer.
The Mars Aeronomy Observer will characterize the potential fields of the
upper Martian atmosphere, clarify the role of photochemistry, and study the
dynamics of the ionosphere.

• Geophysics of the Martian surface-Mars penetrators. These missions
will install a network of seismometers, weather stations, and heat flow
experiments on the Martian surface and possibly perform simple geochemi
cal analyses.

• Study of the Jovian System-Galileo. Galileo, now en route to
Jupiter, will deploy a probe to measure directly the composition and dynam
ics of the Jovian atmosphere and will study in detail the satellites, atmo
sphere, and magnetosphere of the Jovian system.

• Detailed geophysical surveys of the Galilean satellites-The Jupi
ter Grand Tour. This nuclear electronic propulsion mission will orbit each
individual Galilean satellite, providing microwave and radar sounding of
the subsurface. It will deploy penetrators for surface geochemical analyses
of selected satellites and provide global remote sensing for each from the
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main spacecraft. It will determine gravitational moments and hence the
constraints on internal structure for each satellite.

• Origin and evolution of the outer solar system-CRAF/Cassini.
Planned for launches in the late 19905, these missions will closely observe
the nucleus of a comet, deploy a probe into the atmosphere of Titan, and
provide in-depth physical and chemical studies of primitive bodies, Titan,
and the Saturn system. The surface atmosphere processes appear to be as
rich and complex as those on Earth but without the presence of life.

• Neptune Orbiter and Probes-Triton penetrator and Pluto flyby
Poseidon. This spacecraft will orbit Neptune and drop a probe to sample
gas abundance and atmospheric dynamics through and below the ammo
nium hydrosulfide cloud layer. It will perform long-term atmospheric ob
servations from orbit. The orbiter will make repeated passes by Triton to
determine surface temperature distribution, volatile transport processes, gravi
tational moments (for internal structure), and atmospheric composition for
molecular abundances, including noble gases. A companion probe to make
the first flyby of the enigmatic Pluto-Chalon system is also under study.

• Intensive geological and biological studies of sites on Mars-Mars
Rover and Sample Return. Mars Rover is being planned to conduct de
tailed, on-site geological and biological investigations of portions of the
Martian surface. It will search for microfossils and return selected samples
to the Earth for comprehensive laboratory studies.

• Detailed atmospheric and surface chemical analysis for Venus
Venus Probe. The Venus Probe will determine the isotopic and chemical
composition of the atmosphere, resolving ambiguities from previous experi
ments. It will characterize the geochemistry of uplands and plains sites on
the surface.

• Comet Sample Return-Rosetta. Rosetta is intended to collect a
sample of a comet nucleus from at least I-meter depth, in order to under
stand further the ice-volatile component. The sample will be preserved and
returned to the Earth for laboratory study.

• Global mapping of the lunar surface-Lunar Observer. The Lu
nar Observer will characterize the crustal composition of the Moon, place
lunar samples in global context, and search for ice in the polar regions of
the Moon.

• Composition and properties of a sample of asteroids-Multiple
Asteroid Rendezvous Mission. This mission is intended to yield observa
tions of remotely sensed asteroid surface composition as a function of he
liocentric distance.

• Exploration of the universe through new windows-The Great
Observatories. The major components of the planned astronomical satel
lites for the next decade are NASA's Great Observatories, four orbiting
platforms for observations in different wavelength bands. The first of these,
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the Hubble Space Telescope (HST) now flying, was designed to improve
the resolution, sensitivity, and wavelength range of ultraviolet and visual
observations beyond anything available from the ground. With modifica
tions to its camera optics to compensate for spherical aberration induced by
construction errors, it should achieve this full resolution by 1993. The
Advanced X-ray Astronomy Facility (AXAF) will increase the capabilities
of X-ray observations by several orders of magnitude over any previously
available, allowing study of accretion disks around black holes, quasars,
and the diffuse X-rays from distant clusters of galaxies. The Gamma-ray
Observatory (GRO) is designed to study the exotic gamma-ray bursters as
well as the matter-antimatter annihilation seen toward the center of the
galaxy. The Space Infrared Telescope Facility (SIRTF) will cover the en
tire infrared spectrum from 1 micron to almost 1 millimeter, searching for
dark matter in the form of brown dwarfs, the birth of new planetary systems
around young stars, and the first generation of galaxies created after the Big
Bang.

• Other astronomical missions. A suite of other missions is equally
important for exploration of emissions impossible to study from the ground.
The Extreme Ultraviolet Explorer (EUVE), the X-ray Timing Explorer (XTE),
and the Submillimeter Wave Astronomy satellite are three examples among
many. These special-purpose satellites will further extend our capabilities
by providing, for example, high spectral resolution in special bands, wide
field coverage, special timing capability to detect rapid variables and accu
rately measure their periods, polarization properties of light, particle detec
tors for cosmic rays, and specialized instruments to follow up new discover
ies with the Great Observatories. Suborbital observations, including the
Stratospheric Observatory for Infrared Astronomy (SOFIA) measurements
from aircraft, are essential complements to the spacecraft missions. They
not only provide unique capabilities, but also aid space instrument design
ers by allowing quick turnaround and hands-on development of novel tech
niques.

• Moon-based instruments. Multiple-telescope interferometers in Earth
orbit or on the Moon promise to improve the angular resolution for visual
and infrared observations by several orders of magnitude. At this time,
spacecraft interferometers, both for imaging and for astrometry, represent
one of the logical next steps for instrument development. It is widely
believed that advances from this technique alone could revolutionize our
view of the universe with resolution fine enough to image surfaces of nearby
stars and probe to the event horizons of massive black holes in the nuclei of
distant galaxies.

• International Solar-Terrestrial Physics (ISTP) Program. A con
stellation of several Earth-orbiting satellites will be launched during the
1990s by the United States, Japan, Europe (through the European Space
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Agency) and the [former] USSR. The overall scientific objective of ISTP is
to develop a comprehensive, global understanding of the generation and
flow of energy from the Sun, through the interplanetary medium, and into
the Earth's space environment. The improved knowledge will have practi
cal applications in understanding and forecasting radio and power interrup
tions from solar events.

• Orbiting Solar Laboratory (OSL). The OSL is intended to provide
high-spatial-resolution measurements of temperatures. densities, velocities. mag
netic fields, and chemical abundances in the solar atmosphere to determine the
fundamental processes responsible for plasma heating and the transport of
mass and energy between different levels of the solar atmosphere.

• Solar Probe. This spacecraft will pass through the outer regions of
the Sun's corona, carrying out in situ measurements of plasma, fields, and
energetic particles in the solar wind acceleration region.

• Imaging Super Cluster (lSC). Two spacecraft in highly elliptical
polar and equatorial Earth orbits will employ photon, energetic neutral atom
(ENA), and radio-wave imaging techniques to provide images of the Earth's
radiation belts (Van Allen belts) and magnetotaiI. A cluster of four space
craft will be actively maneuvered throughout the magnetotail to make si
multaneous in situ plasma and field measurements.

• Ionosphere-Thermosphere-Magnetosphere Coupler (ITMC). A
constellation of several Earth-orbiting satellites will investigate the physi
cal, chemical, dynamic, radiative, and energetic processes that couple the
ionosphere-thermosphere-magnetosphere system with the heliosphere and
outer magnetosphere above and the stratosphere below.

• Mercury Orbiter (MEO). Two spacecraft with instruments to ob
serve plasmas and fields and with solar physics and planetology experi
ments will fly in polar orbit around Mercury. The mission will map the
magnetic structure and plasma environment of Mercury, investigate appar
ent substorm processes, and study the transfer of mass and energy from the
solar wind.

• High-Energy Solar Physics (HESP) Mission. This mission will
acquire high-resolution imaging and spectroscopy of high-energy radiations
during solar maximum. Sub-are-second imaging and high-resolution gamma
ray spectroscopy will provide simultaneous photospheric and coronal imag
ing.

• Long-duration human exposure to microgravity. The effects of
microgravity on physiological systems that have evolved in the constant and
ubiquitous presence of gravity provide rich opportunities for research. Un
derstanding of the processes of physiological systems is facilitated by the
study of perturbed systems, and the reduction of gravity provides such an
effect. Much remains to be discovered and understood. Such studies are a
necessary prelude to defining limiting physiological factors for long voy-
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ages in space. Experiments need to be conducted in microgravity for at least
as long as the contemplated voyage.

• Human productivity in space. We do not know whether crew mem
bers can withstand the effects of long-duration space missions of several
years or more. Much basic and applied research is necessary to ascertain
whether spaceship design and programming of activities can enhance the
safety. efficiency, and accomplishments of crews on long-duration missions.
The social effects of long-term confinement are unknown, but such confine
ment can be provided on the Earth. Very-long-term studies will be re
quired. These should be started several decades before a long-term human
mission is designed in detail. As with EOS, practical applications are likely
to develop quickly based on the improved measurements and the enhanced
understanding they generate.

• Effects at varying gravity-space-based centrifuge. Variable speed
centrifuges in space will permit quantitative assessment of effects of differ
ent accelerations on physiological functions. Studies at 1 g either on the
Earth or in a centrifuge in space would provide control states for compari
son with microgravity environments. A centrifuge large enough to provide
a living environment for crew members would permit determination of the
extent to which constant acceleration can prevent or attenuate the physi
ological disturbances in space, especially those of bone and muscle. Even
prolonged vigorous exercise has, at most, only limited effectiveness in
microgravity.

• Reproduction in microgravity. Prolonged sojourns in space will
provide the opportunity to determine whether sequential generations of higher
plants and animals will occur in the absence of gravity.

Table 2.1 shows how many of these and other initiatives and programs
contribute in a major way to addressing the five questions used above in
this chapter to organize the exposition of past accomplishments of the U.S.
space research program. Major missions and smaller missions, of course,
contribute to many questions simultaneously. Other initiatives often focus
on just one of these areas.

The scientific potential of the planned programs is tremendous. They
are well planned and have been reviewed by scientists at many different
levels, each group reaffirming their worth to science. When the small, less
visible programs and the unseen opportunities that will arise from rapid
advances in technology and scientific understanding are added to this list,
the prospects are far greater than the support that will be available.

As this list of prospects demonstrates, we must grapple with choices
between large projects and small, between projects in different fields, and
between support for mature fields versus support for untested ideas. To
succeed in space research, we must push forward with new missions while
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TABLE 2.1 Major Contributions of Future Initiatives and Programs to
the "Large Questions"

-... T"O' ~

Major Contributions

Understand-
Initiatives Understand- Understand- Understand- ing Human
and Programs Discovery ing Processes ing Origins ing Change Interaction

Research X X X X X
and Analysis
Base

Mission to
Planet Earth r T'::' r r r:" ~ f:

EOS X X X X
~.. ....

Eanh Probes X X

Geosynchronous X
platforms

UARS X X X X

TOPEX/ X
Poseidon

Upgraded X
meteorological r ~ ~ r r c r
satellites - -,

Landsat/SPOT X X X X

Planetary and
Lunar Exploration

Mars Observer, X X
Mars Aeronomy
Observer, and
Mars penetrators ~ rr t'"! ~ r- F r

CRAF X X X

Cassini X X X X L .." ... .... :;.~ \~ .t.&

Galileo X X X

Poseidon X X X X

Mars Rover and X X X
Sample Return

Venus Probe X X

Rosetta X X

Lunar Observer X X
L L.. 1: = 1: n n

Astronomy and Astrophysics

Great X X X X
Observatories

continued
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TABLE 2.1 Continued

Major Contributions
ro' ~

Understand-
Initiatives Understand- Understand- Understand- ing Human
and Programs Discovery ing Processes ing Origins ing Change Interaction

Other Astronomical Missions

EUVE X X

Submillimeter X X
wave
astronomy r r n r ~XTE X X X

Moon-based X X X X ..-. ....
imaging
interferometry

Grand Tour X X
Cluster

Space Plasma Physics

International X X X
Solar Terrestrial
Physics (lSTP) ~ 1"'"" r 1"'"" rProgram

:,A

Orbiting Solar Lab- X X X
oratory (OSL)

Solar Probe X X X X

Mesosphere Lower X X X
Thermosphere
(TIMED)

Inner Magneto- X X
sphere Imager
(IMI) r ...,. r· t"'"" "7

Ionosphere- X X X
Thermosphere- L.:. ,-, 6_ t~ t~

Magnetosphere
Coupler (lTMC)

Mercury Orbiter X X
(MEa)

High-Energy X X X
Solar Physics
(HESP)

Biological Systems in Space I.:. ~ 1:. r::: IT-LifeSat X X "-,

~
Spacelabs/Space

Shuttle X X

Space Station X X
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reinvesting in human resources and the technology base necessary to main
tain vigorous scientific enterprise.

LESSONS LEARNED

Many lessons are available from more than 30 years of experience in
flying space research missions. Here they are coalesced into a few specific
statements offered as guidance for the future:

". ft A- ......

• Routine access to space is of utmost importance to scientific re
search in space. Unfortunately, this does need to be said because space
research has suffered from restricted access to space. Launch vehicles
should be appropriate for the mission and should reliably achieve the needed
orbit and launch date.

• The space program should minimize its reliance on a single launch
capability. The main example of a failure to follow this principle is the
forcing of all payloads onto the Shuttle. However, scientific research pro
grams should also avoid excessive reliance on large, complex spacecraft.
Space research requires a balance of large and small missions. The follow
ing two lessons are related to this one.

• Build spacecraft with robustness and flexibility. The Voyager spacecraft
operated beyond their lifetimes, permitting scientifically exciting extended
missions to Uranus and Neptune. Relatively inexpensive upgrades to Earth
based communication antennas maximized the data return from these most
distant planets.

• Do not force scientific activities into an inappropriate approach.
A prime example is the forcing of Hubble onto the Shuttle, with the conse
quence that it was required to operate in low Earth orbit and to be "man
rated." These requirements diminished its scientific effectiveness, raised its
costs, and increased its operational complexity by large factors.

• In almost all cases of interest, space-based scientific investiga
tions must be complemented by other observations. For example, in the
Earth sciences, surface verification of space measurements is essential. The
Great Observatories cannot make all needed observations: the light-gather
ing capacity of large ground-based telescopes is needed for spectroscopy.

• For the lifetime of scientific programs, scientists should be inti
mately involved with the instruments making the observations. This
lesson has several implications. For example, the principal investigator of
the Solar Mesosphere Explorer was intimately involved with its develop
ment and operation and that was seen as contributing strongly to its scien
tific, schedule, and budget success. Another implication is that there must
be continuous efforts to make data readily available to the scientists who
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will use it. An unfortunate example of the failure to do this is the filtering
(by data management algorithm) of data on ozone concentrations, which
delayed discovery of the antarctic ozone hole. A positive example of suc
cessful efforts to make data available is the unplanned use of Advanced
Very High Resolution Radiometer (AVHRR) data to determine a global
vegetation index. These data were intended only for cloud images and sea
surface temperature maps.

• Adequately fund data analysis. Seasat is an example of a program
that had grossly inadequate funding for data analysis, and the result was
great delay of scientific results. A positive example is found in astronomy,
where funds are available to do research using archived data. When pro
posals to use a certain data base are no longer being submitted, then those
data probably have been adequately exploited for the time being.

• There is a need for more accountability in project management.
The Earth Radiation Budget Experiment (ERBE) is an example in which
two centers had partial responsibility for a project. It was badly managed
until responsibility was clarified. On the other hand, the Upper Atmosphere
Research Satellite (UARS) project was not started until responsibilities were
clear. In addition, the UARS managers made a careful cost estimate at the
beginning, and the project has remained within that budget. Because the
ultimate purpose is scientific research, one way to ensure accountability in
science missions is to put scientists in charge. Another caveat with respect
to project management accountability is that promises must be linked to
reality. A primary example of the failure to do this was the claim that the
Shuttle could be expected to fly 50 missions per year.

• Multiyear funding of basic research supporting spaceflight activi
ties is essential. The development of new concepts and the exploitation of
observations from space missions are both multiyear efforts and usually
involve graduate students working on dissertations. Annual proposals and
multiple grants take time and effort away from research and seriously im
pede progress.

• Basic research is a good investment. The fruits of space research
are harvested by analysis of observations and modeling, efforts that reveal
new opportunities for observation. When resources are severely limited,
the best value is obtained from basic research, as supported by the research
and analysis program, because it maintains the vigor of scientific research
and education and provides the foundation for future scientific progress.

• Consensus works. When a community can say with one voice what
needs to be done, it can have great force in budget and program planning.
Two examples are the sequence of astronomy survey reports2 and the report
of the federal Committee on Earth Sciences setting forth a national global
change research program.3
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NOTES

I. For additional National Research Council discussions on EOS, see Space Studies Board.
"Space Studies Board Position on the NASA Eanh Observing System" (unpublished repon
issued July 10. 1991) and the 1990 report of the Panel to Review the FY 1991 Global Change
Research Program. The U.S. Global Change Research Program: An Assessment of FY 1991
Plans (National Academy Press. Washington, D.C.• 1990).

2. See. for example. the two most recent such surveys (National Academy Press, Washing
ton. D.C.): Astronomy Survey Committee, Astronomy and Astrophysics for the 1980's (1982);
Astronomy and Astrophysics Survey Committee, Board on Physics and Astronomy, The De
cade of Discm'ery in Astronomy and Astrophysics (1991).

3. Committee on Eanh Sciences. 1989. Our Changing Planet: A U.S. Strategy for Global
Change Research, a repon to accompany the U.S. President's Fiscal Year 1990 Budget.
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Today's Imperatives

A"aa •••

r

The nation's overall agenda in science and technology, including scien-
r r rtific research in space and the space program, serves the highest national pur- ~ r .. -

poses, including the development of new understanding about our surround-
ings and the maintenance of national vitality. This chapter examines contemp-
orary imperatives-largely external to science and space research-and de-
scribes their implications for space research and the civil space program.

INTERNATIONAL COMPETITION AND CONCERNS

Rapidly evolving relationships between the leading nations of the world !"'T ... r' r r-
are now characterized by the movement from ideological and military com-
petition to economic and technological competition. 10& l.. .- \.;i L;

The Challenges

From the 1940s until very recently, diplomatic and military competition
between West and East dominated international affairs. This competition
shaped national priorities and, in tum, national budgets, major initiatives in
science, engineering, and technology, and efforts to win friends among other
nations. Some of the old alliances and international political structures I.:: = 1: r:. ~

constructed in response to this competition have unraveled, and nations are
engaged in long-term reallocation of funds between defense and other na-
tional endeavors.
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The United States now has strong competitors in the economic and
technological realm to replace the single nation dominant in military com-
petition. Other nations are entering the arena; new alliances based on eco- ..... ...... --
nomic and geographical imperatives promise to be powerful contestants. -
The complexity of the new competition is compounded by the fact that the

'<~world now has a geographically integrated economy. The flow of informa-
tion and investment funds ignores national boundaries. In this new economy, "."
new strategies are indicated. "~

In the midst of this new global economic competition, there is a grow-
ing worldwide concern for the environment. Human activities are changing
the surface and atmosphere of the planet, and the full consequences of these
changes are stiIl unknown. The world wi11look to science and engineering
to help solve these problems, which have been created in part by technology T"T 'I"""l' l'"'" ..... r"" F fj:,-
and in part by a burgeoning human population. Assessing the gravity of the ... ~

threat and determining the rapidity with which we should act require much
more information about the Earth and how it functions.

The Response

Intellectual capacity, creativity, and flexibility are critical capabilities
for coping with complexity in science and national affairs. Because of its
nature, the U.S. system should respond well to change and complexity. Our r ....

~ r- r r:: j-- --'
decentralized system permits many independent initiatives to flourish si-
multaneously. It creates flexibility and encourages intellectual creativity to
take advantage of opportunities. We should be a nimble competitor, thriving
on change.

This nation should emphasize its unique strengths: heterogeneity, de-
centralized capabilities, individual initiative, and fondness for competition.
We need to exploit our diverse skills, strengthen the education of our chil-
dren, and emphasize continuing education and intellectual revitalization. "II"'! M rt .... ..,. . .... r
We can take advantage of the university system as a key component of
national science capability and encourage industries to participate in basic L. ~ h ...... 1 .. f~ h
research and thus strengthen the national science infrastructure.

We need to focus our response to the new global economic competition.
The export of products and services that are based on knowledge and so-
phisticated technology may be more profitable and may confer more influ-
ence than the export of traditional manufactured goods. This nation should
emphasize those areas with the largest potential net national benefits-the
activities in which knowledge, infonnation, and sophisticated management
of processes are dominant. Space research and the overall space program r: I: x:: ~ I..: IX n
can contribute significantly to such an emphasis.

As a nation, we need a strong sense of what is really important in our
rapidly changing world. In scientific research, and in the space program,
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we need to create a way of determining priorities among initiatives that
blends scientific opportunities with national imperatives. Having done that,
we should be able to formulate effective programs and initiatives and implement
them surely, swiftly, and successfully.

DOMESTIC POLITICS

For space research and for the space program, the reality of domestic
politics is that the federal budget is both finite and in deficit. The nation
cannot afford to do all the things that it could or should. Choices must be
made. The long-term reign of national defense as a top priority for federal
spending may be ending, but there will be continued strong competition
from other areas and other initiatives for increased funds.

In recent years, science generally and scientific research in space in
particular have fared well despite varying political agendas and eccentrici
ties of the budget process in which they compete. Presidents have consis
tently recommended increased funds for science as an investment in en
hanced economic competitiveness. In the congressional appropriations process,
however, much civilian science and the space program are in direct compe
tition with the social programs of agencies concerned with housing, health,
the environment, and veterans' affairs, all of which must be funded within a
single budget allotment.

As part of the vigorous public debate about the relative needs of our
society and the discussions over appropriate national goals, there is an op
portunity for scientific space research and the entire space program to de
velop a compelling, long-term agenda that will be seen as rational and
equitable by the interested constituencies. Certain ingredients are critical
for success. There must be consensus among scientists on the relative
priorities of the major initiatives. In addition, the agenda must respond to
the needs of the nation as well as to opportunities presented by scientific
progress.

For more than four decades, science and the government have operated
largely under the terms of the social contract envisioned by Vannevar Bush
in 1945 in Science-The Endless Frontier. 1 Bush argued that science, sup
ported by federal funds and allowed to make its own decisions, would
produce benefits for the public. Now the contract seems to be changing.
Expected benefits need to be specified more clearly, and actual performance
is more likely to be reviewed to determine whether claimed benefits have
been realized. There is an increasing expectation that scientific progress
should be linked more directly to economic benefit and competitiveness as
part of the justification for receiving federal funding. Universities and
other not-for-profit research institutions are seeking to transfer intellectual
property to the private sector, partly to support economic vitality and partly
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to create an independent source of funds. Thus there are pressures today to
convert scientific results into useful products through entrepreneurial initia-
tive and direct management of the transfer process. In addition, there is a ....... ~

growing demand for an agenda, for a system of priorities in scientific re-
search and for scientific initiatives.

ECONOMIC REALITIES AND THE MANAGEMENT
OF AVAILABLE RESOURCES

Economic determinants are increasingly important in the formulation of
public policy and provision of funds supporting science. The demands for
clear benefits from public investments and for effective use of available

r r r r- r ~ r:resources confront the space science and applications community today. ,.
a_ &-«.

Valuation of Space Research-Assessing the Benefits

Two trends in public policy offer both challenge and opportunity to
space science. First, there appears to be an increased willingness to support
activities producing primarily broad social benefits, as evidenced by policy
and action motivated by concerns for clean water and clean air, for protect-
ing the environment, and for maintaining wilderness, wildlife, and habitats.
There is some evidence of heightened public interest in space activities, r ,.... !'"1' l""" r C r- -
particularly to augment scientific understanding.2 Second, there is an in-
creasing demand for publicly supported activities to provide explicit evi-
dence that the benefits to be achieved outweigh the costs. Responding to
these demands requires careful thought to specify how space research that
fundamentally serves to augment knowledge and understanding contributes
to society; it requires careful analysis to answer questions such as, In what
way and by how much does space research further national objectives?

~ yo-, p ~ ..... r ,,-.'
Contributions of Space Research to Knowledge and Understanding L ~" ~ 'I.. .~ t~ ~

Enhancement of knowledge through scientific research has been recog-
nized for nearly 50 years as a national imperative meriting federal financial
support. The National Aeronautics and Space Act of 1958 sets forth the
objective to extend "human knowledge of the Earth and of phenomena in
the atmosphere and in space." The President reiterated this commitment in
stating that an objective of the U.S. civil space activities "shall be ... to
expand knowledge of the Earth, its environment, the solar system, and the
universe...."3 L L. 1: r: 1:. r:: ~

The overall goal of science is to gamer sufficient information to de-
velop understanding of the structure and evolution of objects or phenomena
in the natural world. Science seeks to create an understanding sufficiently
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robust that correct predictions can be made about objects or phenomena not
yet observed. Science thus expands our perceptions and, in some cases,
enhances our control of natural phenomena or allows us to modify our
relationship with our environment. The recent progress of science is char
acterized by expansion of temporal and spatial domains of interest, by en
hanced awareness of the complexity of interactions in the natural world,
and by an increased ability to provide quantitative measures and models of
natural phenomena. In this sense, space research contributes markedly to
scientific progress, as is shown in Chapter 2.

Clarifying the significance of science or of space research as a con
tributor of enhanced knowledge and understanding will be an important
consideration in any attempt to create an agenda for science. It behooves
scientists seeking public support to demonstrate to the public and its repre
sentatives that the fruits of scientific research do indeed enhance the quality
of life and the welfare of the nation's citizens.

r r ~ r
....- ...

Evaluation of Other Benefits of Space Research

For the foreseeable future, the space program and space research will
compete for public support with other scientific and technological initia
tives and programs offering a variety of social benefits, in some cases even
competing with different approaches offering the same understanding or
result. Table 3.1 illustrates several of these activities. Table 3.1a lists
some of the major science initiatives proposed for the next decade or so. If
national spending on nondefense research and development continues at the
rate prevailing since the mid-1970s (see Table 3.2), projects in Table 3.1a
alone will require a 50 percent increase in nondefense research and devel
opment funding. Additional initiatives or activities will require additional
funding. The estimated costs of these projects are three times as large as
the present total spending on basic research.

The difficulties faced by policymakers and the Congress are suggested
by Tables 3.1 b, c, and d, which illustrate the opportunity costs (that is, the
alternatives) of spending public funds on science or space research. The
activities in Tables 3.1 band d are significant in that they include programs
that compete directly with space funding within the relevant congressional
appropriations committees.

Economic benefits have been cited as a rationale for space research
since the inception of the U.S. civil space program, yet precisely what is
meant by "economic benefit" has not always been clear. The narrowest
definition would include strictly commercial activity that is profitable in the
business sense. The case most often cited is that of commercial communi
cations satellites, where economic benefits can be defined as the value con
sumers place on the service and are measured by industry revenues.4 For
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TABLE 3.1 Spending Estimates for Various National Science,
Technology, and Social Programs (1989 $billion)

(a) Proposed Major National Science and Tech- (b) Selected Social Programs (FY 1989) ~ "...,.

nology Projects During the Next 15 Years

Estimated Estimated Estimated
Project Total Cost Annual Costa Program Annual Cost

Superconducting Elementary. secondary, and
supercollider 8.0 0.5 vocational education 10.0

Mapping human Higher education (financial
genome 3.0 0.2 assistance. student loans) 10.0

Space Station 30.0 2.0 Social services (block grants.
Manned mission foster care. human '"'" ...... -- ..... 'P"'J!' -r- IT
to Mars 400.0 28.0 development) 10.0 "

National aerospace Housing assistance 10.0
.... ,. .~

plane 4.0 0.3 Food and nutrition 21.0 "-
Earth Observing

"-System 32.0 2.1 TOTAL 61.0

TOTAL 477.0 33.1
(d) Selected Social Programs (FY 1989), Each

(e) NASA Space Science Basic Research Pro- with Budgets Commensurate with the Total ,
gram (FY 1989) of Table (c) ,

r ,...,.
~ ,..... r: - I:7 r

Estimated Estimated - . -~

Budget Line Annual Costb Budget Line Annual Cost

Physics and astronomy 0.25 Summer youth employment 0.7
Life sciences 0.05 Assistance to dislocated
Planetary exploration 0.20 workers 0.5
Solid Earth observation 0.02 Job Corps 0.7
Environmental observation 0.13 Older Americans employment 0.3
Communications 0.01 Low-rent public housing 0.9

~ 'f""I' rT .... ,...... ..... 17
TOTAL 0.66 TOTAL 3.1

L. ~ L. to.. .... U t£

QDiscounted current cost of project assuming 4 percent inflation and IS-year construction
time.

bAdjusted from 1988 to 1989 dollars using implicit price deflator for 1989. "

SOURCES: Table (a): Stever. G., and D. Bodde. 1989. "Space Policy: Deciding Where to " \",
Go," Issues in Science and Technology V. No.3. pp. 66-71. Tables (b) and (d): Budget of the "U.S. Government. FY 1990 (U.S. Government Printing Office. Washington. D.C.). Table (c):
Congressional Budget Office. U.S. Congress. 1988. The NASA Program in the 1990's and
Beyond (CBO. Washington. D.C.). May.
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TABLE 3.2 Trends in Federal Spending for Research and Development
(current $billion)

Year Defense All Other Total
Basic
Research GNP

Total/GNP
(percent)

Basicrrotal
(percent)

1960
1965
1970
1975
1980

6.1
7.3
8.0
9.7

15.1

1.5
7.3
7.3
9.3

14.7

7.6
14.6
15.3
19.0
29.8

0.6
1.4
1.9
2.6
4.7

497
657
959

1522
2670

1.53
2.2
1.60
1.25
1.12

7.9
9.6

12.4
13.7
15.8

1985 33.4
1986 36.5
1987 38.4
1988 39.5
1989 (est.) 41.3

1990 (est.) 44.0

16.1
16.2
17.6
19.3
21.7

23.3

49.5
52.6
56.1
58.8
63.0

67.3

7.8
8.1
9.0
9.5

10.5

11.2

3952
4187
4434
4780
5120

5476

1.25
1.26
1.27
1.23
1.23

1.23

15.8
15.4
16.0
16.2
16.7

16.6

.~

SOURCES: GNP Data. 1960 to 1970: The Budget for FY 1980 (Executive Office. Washing
ton. D.C.• 1979). Table 19; GNP Dala, 1975 10 1990: The Budget for FY 1990 (Execulive
Office. Washington, D.C.. 1989), Table 17; Research and Development data. all years. special
analyses: Budget of the United States Government, FY 1990 (Executive Office. Washinglon.
D.C.• 1989). Table 1-10.

public policy, there are additional benefits and costs that must be consid
ered, even for communications satellites. Broader definitions include con
tributions to technological progress, national prestige and competitiveness,
and science and engineering education.

The task group does not offer a formal cost-benefit analysis5 for scien
tific research in space because such an analysis lies beyond its charge and,
perhaps more significantly, because it is relatively difficult to do. It is
desirable to measure all costs and all benefits of an activity whether readily
quantifiable or not, but in the case of scientific research in space many of
its benefits and many of its costs are not easily observable and are difficult
to measure. It should be noted that scientific research is not alone in having
benefits and costs that are difficult to measure. Many public projects for
the improvement of human health, safety, and environmental regulation are
equally difficult to analyze in these terms. Table 3.3 lists but does not
attempt to quantify those costs and benefits readily discernible in scientific
research in space initiatives.

From the perspective of setting priorities for space research initiatives,
however, many requirements of cost-benefit analysis are instructive. Both
those who propose research initiatives and those who review them should
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identify, as far as possible, all costs and benefits, to determine the necessary
conditions for success, the probabilities and consequences of failure, and
the expected outcomes. Such a process should improve proposals for initia
tives. If such a formal analysis forces assumptions to be stated explicitly,
they can be examined and compared with alternatives, and the possibilities
for manipulation will be reduced. This analysis could provide for a formal
comparison between initiatives when priorities are recommended, either within
the community or as part of the federal budget process, and could clarify
expected contributions of various initiatives. Those with the greatest scien
tific merit sometimes will have less immediate social benefit and practical
utility; those with the greatest social benefit sometimes contribute less mark
edly to the enhancement of knowledge.6 The issue thus becomes the rela
tive weighting between enhancement of knowledge, provision of social ben
efits, and costs.

Comparison between initiatives in this way is important in distinguishing
scientific research in space from other aspects of the space program. The
scientific research community has long been uncomfortable with the justifica
tion of large-scale initiatives in the space program by their scientific motiva
tions when their purpose is not scientific and opportunity costs preclude more
fundamental scientific initiatives. Analysis of alternative initiatives should
reveal this disparity and provide an incentive for structuring such programs
to provide greater scientific benefit. It should also provide convincing support
for the recommendation that "the advance of science and its application to
human welfare be adopted and implemented as an objective no less central
to the space program of the United States than any other...."7

Although they can be identified and assessed, direct social benefits
from scientific research in space and the overall space program are diffi
cult to quantify. Success in space research has provided a stimulus for
education, enhanced national prestige, and fostered public pride in na
tional accomplishment. The public has demonstrated a continuing interest
in space research and in information obtained about the Earth and other
planets as well as the universe beyond. The Viking, Voyager, and Pioneer
missions were widely publicized in both print and on television. The
discovery of a defect in the mirror of the Hubble Space Telescope was a
major news item. Recommendations of the Advisory Committee on the
Future of the U.S. Space Program were featured in the headline article in
many newspapers when they were released. Less obvious are space pro
gram contributions to technological development as a stimulant to eco
nomic progress; attempts to quantify them have been, so far, unconvincing.
Still, the development of national capabilities for managing complex en
deavors and for creating and managing information is an important benefit
of the overall space program.
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Effective Use of Space Research Resources

Despite the universal desire of the scientific space research community
to increase funding for space science and applications, some observers ar- ....... ,-.

gue that current allotments are adequate to support a vital and exciting
program if appropriate policy and programmatic reforms are implemented.s

Space Research and the Human Spaceflight Program

The consequences of forcing science payloads better suited for indepen-
dent launch by expendable vehicles onto the Space Shuttle have been widely
documented. Although NASA is now procuring launch services for re-
search payloads on expendable vehicles, because of past experiences many r r- r r- n f'7 r;
in the space research community remain skeptical that these vehicles will be
readily available to support science payloads.9 ....... ....

Scientific accomplishment has often been cited as an important motiva-
tion for major programs (e.g., Apollo, Space Station, and the Space Explo-
ration Initiative) that are actually space engineering and technology devel-
opment programs aimed at legitimate but essentially nonscientific public
purposes. Scientists argue that the science thus accomplished is often not
of high priority and that support needed for more meaningful scientific
opportunities is lost because policymakers believe that through these pro- r ~ ~ "... r r rgrams they are already giving adequate support to science. Many space ~ . - ~.

_.
researchers argue that both the overall space program and scientific re-
search in space would benefit from a clarification of goals and a more
formal separation of space research and human spaceflight activities. As
noted above, it is now widely agreed that most science payloads should be
launched with expendable vehicles and that in most cases launching re-
placement satellites would be preferable to having astronauts service space-
craft in Earth orbit.

The nonscientific objectives of major space program initiatives, such as r r: '" Y"T ..,.. r ,~

the Space Station and the Space Exploration Initiative, could be fully met
L ~.. .... ... ....;. \-" ~£

even if these programs were intended and designed from the beginning to
pursue science objectives of the highest priority. For example, the attain-
ment of sufficient knowledge about biological processes and human perfor-
mance in space to ensure crew safety on long flights should be one of the
main aims and design drivers for the Space Station. Human abilities have
been, and will continue to be, important to certain scientific activities in
space; for other initiatives, they are not necessary and, if present, greatly
increase costs. However exciting it may be to have humans in space, they r.. L. 1.: ~ 1: r:: l~
should not be subjected to the dangers of space travel unless important tasks -
compel their presence. Putting the emphasis on information to be returned
from space-on knowledge to be gained about the Earth and other bodies or
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about human performance in space-simplifies the setting of priorities for
both the space program and scientific space research and will eliminate the
unnecessary and debilitating competition between the human space explora
tion program and the scientific research program.

a· •••••

Program Management Issues and Principles

In view of the imperatives imposed by international economic and tech
nological competition, it is essential that the United States have an effective
space research program. Managing the space research program according
to several key operating principles will enhance the benefits to both science
and the nation; some of these principles are already incorporated in the
annual Strategic Plan of NASA's Office of Space Science and Applications
(OSSA). The following list moves from general principles applicable to
any research program to those more specific to scientific research in space:

• Enhance the human resource base. The community of working
scientists and students in space research needs to be maintained and invigo
rated. The strength of university programs should be preserved, and there
should be stable research funding to ensure vigorous basic science and a
steady flow of well-educated graduates. Such funding should be aimed at
basic research, development of ideas for new initiatives, and analysis and
synthesis of data from space research; it should be controlled principally by
the research community itself, through peer review. The components of
space research performed in space are quite expensive; their associated
terrestrial components are generally comparable to other fields of scientific
research. Adequate investments will ensure that maximum use is obtained
from data acquired from space. Finally, recognizing that students must be
attracted into science and engineering at an early age, we must ensure that
excellent teachers and facilities are available in both primary and secondary
schools.

• Acknowledge that choices must be made. Science raises more in
triguing questions than can be answered or even addressed. This is a sign
of vitality, not difficulty. In making choices, only scientifically meritorious
and technically feasible initiatives should be considered seriously. Since
we cannot do everything, we need a process to select those things that will
be done.

• Capitalize on opportunities. Special opportunities to perform good
research are sometimes offered by technological developments or demands
for applications. Wise investments in technological development will cre
ate such opportunities, sometimes in unexpected ways. The community
should be prepared to take advantage of those opportunities that will foster
scientifically meritorious research.
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• Capitalize on investments. Having chosen to start valuable projects,
we should insist on finishing them, in scientifically satisfactory and cost
effective ways. It is essential to start only the most valuable initiatives and
then to understand fully all the costs of abandoning them. The cancellation
of the International Solar Polar Mission and the extended stretch-out of
Galileo are examples of lost investments.

• Increase program control by principals. Making principal investi
gators responsible for quality and giving scientists an increased role in
program management offer potentially large benefits. As the Solar Meso
spheric Mission and the first spin-stabilized scanning camera for weather
satellites demonstrate, giving the scientists most directly concerned an in
creased role in program management offers potentially large performance
advantages and reduced costs. Although this may be difficult to achieve in
larger scientific efforts, the rewards are likely to justify the effort.

• Secure access to space by diverse means. Diverse means for access
to space are necessary so that the launch vehicle or space platform can be
matched to scientific objectives. Scientific missions adapted to inappropri
ate transportation methods are likely to be inferior.

~-•.• A·a ••••

--,.

t:',-

Certain modifications in the overall space program are advisable in
order to obtain maximum benefit from the available resources. For this
reason, it is necessary to reexamine the fundamental assumptions and pro
cedures governing the program. It is necessary to ascertain why costs of
space research escalate exponentially with time, why costs are often much
greater than originally estimated, and why it takes a decade rather than a
few years to build and launch a spacecraft. Some issues that should be
considered in refining the principles listed above are as follows:

• How do we take advantage of individual initiative and build resil
iency, adaptability, and redundancy into the system?1O

• Do we aim for a high probability of success with scientific missions
in one try or in several tries? Will we accomplish more if we accept finite
risks of failure but launch more spacecraft?

• Who should be primarily responsible for the successful performance
of scientific spacecraft-NASA, contractors, or principal investigators?l1

• How can we reduce the costs of spacecraft and launches? Should
scientific initiatives be issued launch vouchers 12 that can be used to select
the most appropriate and most economical means of transportation?

• What principles should govern architecture and management of data
and information systems? How can they be constructed to stimulate and
enhance scientific productivity?13

• Is the economy-of-scale argument for increasing mission size and
complexity valid, both scientifically and economically?
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• Are the scientific benefits of small and sharply focused scientific
spacecraft sufficient to merit a high priority, especially since such initia
tives can contribute in important ways to education and the strength of
university programs?

The answers to these questions will govern the productivity of scien
tific research in space for years to come. Current policies have evolved
over the history of the space program and have been shaped by the Apollo
experience. Changing policies to fit the realities of the 1990s and the early
2000s may be a difficult experience for all concerned. But there is no
alternative if scientific research is to flourish and if it is to be possible to
accomplish even a reasonable fraction of the highest-priority scientific op
portunities, however those priorities might be determined.

SCIENCE AND THE EDUCATION OF YOUNG CITIZENS

There is widespread concern about the effectiveness of primary and
secondary education in preparing young Americans for their lives in an
increasingly complex world. Comparative examinations reveal that Ameri
can pupils lag behind those of other nations in various disciplines. Fewer
college students are choosing careers in science and engineering, and only
half the doctorates in science and engineering awarded by U.S. universities
are being granted to U.S. citizens. The surprise of Sputnik stimulated a
reexamination of the American U.S. education system. Improvements were
forthcoming in the excitement generated by the Apollo program. Many
look once again to the space program and to scientific research in space as
possible sources of inspiration and stimulation for young citizens.

It is evident that spaceflight and human travel in space are stimulating
to young people and may provide motivation to pursue scientific and math
ematical subjects in the schools. Information and new knowledge derived
from space research may be exciting to young minds if presented in attrac
tive formats. The data and information systems being developed to provide
interactive access to information from space research for geographically
distributed researchers could also provide valuable opportunities for pupils
in grade schools and high schools. Appropriate computer and software
systems would allow these pupils to explore new worlds, to see the Earth
from a new vantage point, and to work intellectually with new concepts and
new ideas stimulated by the procession of images flowing across their com
puter screens. Students can perform scientific investigations, albeit simple
in some cases, if they have access to actual data from space. Such efforts to
provide intellectual stimulation and participation could have important long
term benefits for young people.

Space research provides a venue in which to teach the physical, chemi-
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cal, and biological fundamentals that in today's standard curricula are so
often presented in uninspired fashion. Some of the most important questions
that space research addresses have intrinsic appeal to the nation's citizens. --
The origin of the universe, the nature of astronomical bodies and phenom- -
ena, the characteristics of other planets, the origins of life, and the preserva-
tion of the Earth's environment all attract public interest and could be trans-
lated into important educational opportunities for young citizens.

NATIONAL AIMS AND INTERNATIONAL
COOPERATION IN SPACE

From the beginning of the space program, this nation has viewed achieve-
r r r r n r; r:ments in space engineering, technology, and research as instruments of its , .

foreign policy, believing that leadership in space activities conferred an .... ...
image of national vitality and power. Certainly, the successes of Apollo in
landing humans on the Moon created an aura of national prowess that was
of value in the Cold War competition with the Soviet Union and overshad-
owed the initial image of Soviet superiority in space.

Since then, the nation's accomplishments in space science and applica-
tions and its attitudes toward space research have had important conse-
quences. For example, the United States supports an "open skies" policy
that any nation may openly and freely observe any place on Earth from !:

,.,
~ r [' r"1 r..

~-- --space. As a corollary policy, we provide open and equal access to informa- ,,
,

tion derived from civil satellites. With few exceptions, other nations, in-
,

'"eluding the [former] Soviet Union, have joined the United States in adher-
ing to these policies. Similarly, it has been U.S. policy for almost a century
to exchange weather information freely and openly, a process facilitated by
the World Meteorological Organization (WMO). The WMO and its mem-
ber countries have established standard observation times, and the U.S.
weather satellites obtain temperature profiles at or near those times. The ,.... r" rr - .... r r
United States also participates in international scientific experiments, such
as the Global Weather Experiment, with specific initiatives, including early .... LIt L ...... ~ .. t-~ L.
launches and operations in space keyed to program needs. The United
States has also begun a major cooperative program (Cassini) with the Euro-
pean Space Agency to explore Saturn and Titan.

Cooperation and collaboration in scientific research in space with inter-
national partners continue to be components of the nation's efforts to stimu-
late international understanding and cooperation in broader areas. Coopera-
tive projects with the [former] Soviet Union, with European nations through
the European Space Agency, and with a host of countries through bilateral - -r:' I:. 1:

,...
1: z:::: ~-'-

agreements have produced an environment in which international coopera-
tion is commonplace and in which nations share specific aspects of collabo-
rative efforts.
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Space Leadership and International Cooperation

The notion of maintaining "leadership in space" constitutes national
policy, as reiterated in the President's statement: "A fundamental objec
tive guiding United States space activities has been, and continues to be,
space leadership."14 However, the increasing complexity and cost of ma
jor space initiatives have stimulated a growing interest in international
collaboration as a way of reducing national financial commitments to these
initiatives.

Thus for the civil space program, the National Space Policy states, as
the fourth of six objectives, the determination "to preserve the United States
preeminence in critical aspects of space science, applications, technology,
and manned space flight." The sixth objective is "to engage in international
cooperative efforts that further United States overall space goals."15

However, there are obvious difficulties in seeking international partners
to share costs in efforts intended to enhance U.S. preeminence. Other
nations engage in, or hope to engage in, space activities for the same rea
sons that the United States does. For many, the emphasis on a scientific or
technological specialty will be the way to seek special status through unique
and unusual accomplishment. As other nations take advantage of niches in
space research, it will be increasingly difficult for the United States to excel
and seek preeminence across the spectrum of "critical aspects of space
science." Thus new levels of international competition in space will force
the United States to make difficult choices in its space research program.
Some argue for selecting certain areas of space science and applications in
which to excel and then concentrating talent and resources on them, in
effect abandoning leadership in other areas of space research to any nations
that wish to pursue them. Others argue that such choices should not be
made a priori, but rather that the scientific space research program should
pursue promising opportunities in space science and applications as they
unfold. In either case, it will be necessary to develop a sensible process for
examining alternatives and, eventually, for setting priorities among space
research initiatives.

Managing International Cooperation

The scientific community and the space agencies can expect to manage
an increasing number of space research initiatives conducted in collabora
tion with international partners. The U.S. scientific space research program
already is deeply engaged in cooperative efforts at varying levels of interna
tional participation.

With operational weather satellites, nations develop and implement in
dependent systems designed to satisfy national needs but share results on a

I.:.

- ,...."

r......

....
t.

.... .... .... .,.....
f~ E -: r n f" r-, f"

L L ..:. L.. .L.. ~ .... .. L......

".. r "'- ~ '"
p -·r- f;f - ." r tr ,...- r' .. "'.. ..... ~ r

1;; .. L
J"

l... .L. .L\' .i.... .i..o. ....... .l- L.. L.. ..... .i.;. ..L...- - --



50

timely basis through long-standing international agreements and networks
that serve all the nations of the world. In this case, development of the
international capability has been evolutionary and driven by the needs of
global weather research and prediction. These cooperative arrangements ..
provide a foundation for creating the international structure of the Earth
Observing System (EOS), in which major contributions from the United
States, the European Space Agency (ESA), and Japan will be combined to
form a system for long-term and detailed determination of the characteris-
tics and rates of change of the Earth system.

The International Solar-Terrestrial Physics program is similarly con-
structed, with independent spacecraft from Japan, the ESA, and NASA sur-
veying distinct parts of the Earth's environment in space. Two other mis-
sions nearing launch involve international partnerships. The Ocean Topography r r r ~ n r t:',
Experiment (TOPEX/Poseidon) is a joint development with France. Coop- ... -. aiL

eration with the Federal Republic of Germany and the ESA on the CRAF/
Cassini mission has, in the opinion of informed observers, led to significant
improvements in design and capabilities.

There are also examples in which international cooperation has not
produced favorable results or has not been exploited adequately. The Omega/
VIMS endeavor was an attempt to build an instrument, canceled on Mars
Observer for budgetary reasons, through an international partnership, but
neither cost savings nor enhanced performance capabilities were obtained. £"

,....
~

,...,.
C

,...,. r-- ~~

The United States, despite the technological success of Landsat, failed to
appreciate the opportunities for gathering, organizing, and taking advantage
of information from remote sensing. Forcing Landsat into an underfunded,
quasi-commercial venture precluded cooperation with other nations and perhaps
contributed to successful development of French and Soviet Earth remote
sensing programs with strong ties to applications.

These and other examples suggest some guidelines that should maxi-
mize benefits to participating partners in international cooperative ventures: ....... r" r - ,..- r" ....

• Scientific accomplishments will be enhanced if international coopera- L All L L. 1 .. Li h

tion is guided by scientific goals rather than policies mandating cooperation
as a way of reducing expenses. Scientific achievements, tempered by
economic reality, should be the main motivation for international coopera-
tion.

• The joint effort should be constructed, to the extent possible, so that
each partner will make a contribution that, if successful, brings independent
prestige and, if not successful, does not imperil the success of the entire
venture. I:: 1: 1:- r: I.:- n 1:

• The joint effort should be constructed so that responsibilities are clearly
identified and the interfaces between partners, their hardware, and their data
and information systems are simple, precise, and robust.
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International cooperation in space research should be viewed as a means
for scientific advancement, not merely as an end in itself. If correctly
managed, it offers the potential for greatly enhancing accomplishment. In
ternational cooperation must be considered in selecting those space research
initiatives that the nation should pursue.

INFORMATION, KNOWLEDGE, AND UNDERSTANDING

Information is a critical resource for many activities in the public and
private sector alike, and managing information is now the critical task in
most sophisticated activities. 16 Developed nations increasingly depend on
the gathering, communication, and effective use of information.

In the United States, information-intensive industries (including bank
ing, transportation, insurance, financial services, and professional services)
accounted in 1975 for 10.2 percent of the gross national product, rising by
1985 to 12.8 percent and, according to the latest estimates, to 15 percent by
1989.J7 The production and processing of information now constitute an
enterprise larger than any of the major manufacturing industries in the United
States. Revenues in 1983 from the communications, computer, information,
and knowledge industries together were three times those of the steel indus
try, twice those of the automobile industry, and nearly half as large as those
of the petroleum industry. IS

Information management is increasingly critical to space research as
the number of spacecraft increases, as the improved technology of instru
ments provides greater resolution in space, time, and wavelength, and as the

['.... r.

DEFINITIONS ..... - ...... ,... r
Data are numerical quantities or other factual representations derived
from observation, experiment, or calculation. L. l.~ :a. .... ~i. t&

Information is a collection of data concerning or characterizing a par-
ticular object, event, or process.

Knowledge is information organized, synthesized, or summarized to en-
hance comprehension, awareness, and understanding.

Understanding is the possession of a clear and complete idea of the 1: .= 1: r:: .r::
nature, significance, or explanation of something; the power to render
experience intelligible by ordering particulars under broad concepts.
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program moves to the study of increasingly complex phenomena. Efficient
handling of data from space and the conversion of data into information that
can be shared and used by geographically dispersed investigators become
an important challenge in all components of the space research program. A ...

variety of generic issues related to the philosophy, architecture, and man-
agement of distributed and interactive data and information systems are
emerging. Because of the volume of space research data, the development
of computer analysis techniques based on concepts of artificial intelligence
offers promise and would seem to be inevitable. Success in developing the
concepts, algorithms, and technology to implement such a program will
create capabilities of value to industry, both here and abroad,

As it already has for information-intensive industries and components
T'! n r f;'of government, focusing on information, knowledge, and the development rr T'! 1""'!' ,-

of understanding provides an effective organizing principle for the space ... ~

program's support of scientific research in space. Interest can be expected
to tum from the mechanical aspects of placing objects or humans in orbit or
on other celestial bodies to the information to be gathered and exploited:
the key reward will be the understanding gained. To the extent it provides
the means for the conduct of scientific research in space, the governing
objective of the space program will be the same as that of scientific re-
search-namely, to achieve the maximum amount of knowledge and under-
standing about physical objects and processes, about their origins, about r= ..,

:1 r r r:; T""
-~

..... a

biological processes, and about human performance in space or on other
planetary bodies,

Recognizing that the acquisition of data about complex systems and the
conversion of this information into knowledge and understanding constitute
the primary objective for scientific research in space and a major motiva-
tion for all space activities will have far-reaching, significant implications.
Such an objective will

...... rr r ... .... . .... l":'
• enhance the accomplishments of space research and applications and

provide an intellectual basis and support for other components of the civil L. .b h ~.. 1-'" \..:i t~
...

space program;
• stimulate national capabilities in international economic competition;
• enhance intellectual and economic activity throughout the nation; and "...
• provide a focus for U.S. education that will stimulate the interest of '",-

young citizens in science and engineering and in the rapidly changing tech-
nology influencing their lives. '"Moreover, such an objective will help to guide the process of contem- r: II I:. : r n:: .z::
plating and setting priorities for the space program and for scientific re-
search in space.
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The Rationale for Setting Priorities

". n a-A ••••
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Priorities reflect ambitions and values. Individuals or organizations set
priorities to ensure that attention is concentrated on the most important !: .... !""'1' ,.... r ,.... 'r, .-. ..- .
objectives, to ensure that the most important things are done first. To set
priorities effectively, we need to clarify our objectives. We must be confi-
dent that our purpose and operating principles advance, rather than impede,
the achievement of those objectives.

Long-range priorities should facilitate management of the scientific re-
search enterprise in a variety of ways. They should indicate directions in
which the program may evolve and stimulate technological development,
organizational evolution, and cooperative arrangements with other agencies -..... .,....,. ..... .... ...... ..... r
and other nations. There is increasing interest in establishing priorities for
federally funded research. In a study requested by the House Committee on L; ~" L. ... L~ t..:.i t.k

Science, Space, and Technology, the Office of Technology Assessment cited
three problems with current federal priority setting: I

First, criteria used in selecting various areas of research and megaprojects
are not made explicit. ... Second, there is currently no mechanism for
evaluating the total research portfolio of the Federal Government in terms
of progress toward national objectives.... Third, although scientific merit
and mission relevance must always be the chief criteria used to judge ... , r.:.: ." I.: = I:' r.:: l:they cannot always be the sole criteria. ...
Attempts to set priorities in scientific research should concentrate on

specific initiatives or proposals for activities at the margins of ongoing
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efforts. Just as it is impossible to say whether painting or music is the more
important activity, it is impossible to rank the disciplines of science or
space research in a priority order. It is essential to concentrate on the
initiatives produced by disciplines, not the disciplines themselves. 2

Priorities are necessary at several levels within the national scientific
enterprise and within the space program and scientific research in space
because science has created a wealth of opportunities for new initiatives.
Some initiatives will contribute more to scientific understanding than oth
ers, some will contribl;lte more to national economic and technological vital
ity, some will advance important applications of information from space,
and some will assist in resolving important policy issues. Because we
cannot do them all, both science and the nation need an orderly process
leading to the necessary choices.

First, resources will be allocated between scientific efforts and other
compelling national needs. Next, resources will be divided between basic
and applied science and technological development, between scientific re
search in space and other ways of obtaining new knowledge. Finally, within
space research itself there is competition for resources between new initia
tives and maintenance of the intellectual and physical infrastructure, as well
as competition among the initiatives themselves.

r r n r r,
~-~ ....

n .,..... r' r 'r
MOTIVATIONS FOR RECOMMENDING PRIORITIES L._ ....~ .

"

There are strong motivations on three levels for creating a scientific "-agenda through the establishment of priorities among competing endeavors: '-,

• on the national level, to ensure that national goals are served as effec- ""."tively as possible; "-"
• for all of science, to ensure that a share of available resources com- '\

mensurate with benefits is provided; and "
r" ..... ".. . r .....

• within science, to ensure that the most worthwhile scientific endeav-
ors are given precedence. L t.. 1 .. t .. t-k

There are two principal arguments in favor of acting on these motiva-
tions to achieve consensus and recommend priorities:

• Consensus is politically compelling. Scientists, in space research
and other endeavors, believe that the benefits from science justify a share of
resources adequate to pursue the most promising initiatives and to maintain
the vitality of science through support for scientific education and modem
scientific equipment. They also believe that public and political identifica- 1: ..- 1.: r=. r:.......
tion of technological initiatives as "science" may not be in the best interests
of science or in the long-term national interest. Nevertheless, scientists, as
individuals or in groups, have generally restricted their advocacy statements
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to the disciplines or initiatives in which they are most interested rather than
arguing for a focused scientific agenda. But an agenda for science or for
space research created and supported by the scientific community should be
compelling. If scientists demonstrate that their agenda responds to national
needs and to scientific imperatives, then they may argue effectively for an
adequate share of resources and for an orderly progression through the suite
of initiatives endorsed by the community.

• If the players will not act, then the spectators will take the stage.3

Because the costs to pursue all opportunities in science or in space research
exceed available resources by a large margin, choices must be made. If
scientists engaged in space research cannot, or will not, set priorities among
opportunities, then others whose own goals may be quite different will take
the stage and make the decisions. Passivity or disarray on the part of the
scientists presents the political process with the opportunity, indeed the
necessity, to make choices, some of which may not be in the best interests
of science. None of the reasons scientists cite for eschewing the strenuous
work of reaching a consensus prevent federal officials or congressional
representatives from making the necessary choices. When others act, it is
the scientists who become the spectators.

COUNTER-ARGUMENTS TO THE COUNTER-ARGUMENTS

A number of arguments against recommending priorities are sometimes
offered by scientists. Some of them are listed below, with explanations as
to why the task group does not find them compelling.

- ...

---

.-:t

• There will be losers. Indeed there will be, but there are losers now.
Certainly, some who enter the priority-setting process will lose; some initia
tives will necessarily be given low priority or cast aside. That happens
now, sometimes for reasons unrelated to the quality of the science. It
would seem preferable that scientists, as a community, help to determine
the winners.

The argument over whether to set priorities is a struggle between the
common good and individual goals, between enterprise and risk avoidance,
and, ultimately, between good science and pedestrian endeavors. Consen
sus in the scientific community along with effective advocacy will, in all
likelihood, produce more funds and stable funding patterns and hence strengthen
science and increase the opportunities for the recommended initiatives. Some
scientists, with confidence in their programs, will welcome priorities; oth
ers, with less compelling programs, will seek to delay a decision that they
suspect will not be in their favor. Without a process that identifies and
promotes good science and strong initiatives, resources are scattered and
the strong subsidize the weak.
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O·Aa •• a

• Recommending priorities is too difficult, too contentious. Recom
mending priorities is difficult and can be accomplished only through a for
mal process in which competing initiatives are judged uniformly according
to explicit criteria, preferably on the basis of written material that specifi
cally addresses the stated criteria. The formality of the process and the
existence of criteria specified in advance both tend to mitigate contention
and to diminish the influence of hidden agendas. Despite the difficulty of
setting priorities, all scientists do so In their own research programs. In
addition, if scientists find it too difficult to create an agenda for space
research, then, as argued above, others will do it for them.

• The community will not be able to maintain consensus. Scientists
loyal to initiatives that do not receive high recommendations may tend to
subvert the process, it is argued, by lobbying policymakers and Congress
for special favor. Such lobbying would tend to undermine the effectiveness
of the consensus. Rather than seeking to restore initiatives that have been
abandoned, losers in the process would be better advised to develop more
exciting initiatives. This argument and the two above combine to make a
fourth:

• Setting priorities will be counterproductive because the commu
nity will tear itself apart. Moreover, the argument goes, at present, the
rancor of losers is directed at others outside the community; if the commu
nity recommends the priorities, then that rancor will remain within the com
munity and fester. Of course, there may be some truth to this observation.
But such an outcome can be avoided by insisting on a fair, open, and formal
process. Making decisions demands maturity-both the discipline to follow
an agreed-upon, honest process and the courage to accept unfavorable re
sults; to depend on the decisions of a bureaucracy is to prolong adoles
cence. The space research community should accept responsibility for its
own future if it is to be taken seriously by others.

• The low-priority initiatives will not be done. Some argue that
policymakers or the Congress will take advantage of any list of recom
mended priorities by eliminating activities with low priorities. But that is
precisely the reason that priorities are recommended-in order that resources
can be concentrated on the highest-priority items. The more sophisticated
priority schemes, such as those discussed below, allow for balance to be
achieved by allocating an appropriate fraction of resources to all essential
activities. Nevertheless, if there are insufficient resources to do everything,
it certainly seems preferable to abandon low-priority initiatives rather than
to starve high-priority ones.

• Scientists cannot make political judgments. The crux of this argu
ment is that once various disciplines put forward scientifically meritorious
proposals, the decisions about relative social benefits and the extent to
which the competing initiatives serve higher national purposes are beyond
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the purview of scientists. But the task group believes that in arguing for
initiatives, scientists should be sensitive to national goals and political re-
alities, just as politicians in considering scientific initiatives should be sen- .... ....,. ....... --sitive to scientific merit. Since scientists expect support from taxpayers, -
they should be willing to explain to the public why some initiatives better
serve national purposes.

In a related argument, some scientists assert that only scientific merit
should be considered, that other social benefits are irrelevant or only of
minor concern. This argument is indeed appropriate for basic research. But
meaningful initiatives, especially in space research, demand a significant
fraction of national resources and thus involve opportunity costs that must
be met by reducing other programs in which social benefits are of prime
concern. These questions of social benefits and programmatic readiness are r ~ r ~ "r" r:' n-
important to our society, and scientists must take them into account. .. ~

The fact is that scientists do make political judgments about the value
of science and about their initiatives, especially when lobbying for them in
agency councils and before policymakers and Congress. Some scientists also
sharply criticize initiatives that are labeled as science but are approved and
pursued for nonscientific motivations. Since scientists do make political judg-
ments, it would be advantageous for them to discuss the broader values of
initiatives among themselves and, in presenting their priority recommenda-
tions, to illuminate the political considerations that they found compelling. r ..... !": ,... rr- r:' T'-- .i...._ .. ~

SCHEMES FOR PRESENTING PRIORITIES

Statements of priorities, except in restricted classes of activities, cannot
be unequivocal. While it is possible to rank three research missions that are
candidates for new start authorization unambiguously, it is not possible to
rank all activities of science or of space research in a single list. Thus any
scheme for presenting priorities must be hierarchical in nature, with certain ....,. rr ~ .... ...... .- r.'
classes of activities given a higher priority than others. Moreover, priority
schemes should distinguish classes of activities that actually can be com- L ~JI L t.~ -- t.;; h

pared.
Broad categories within which separate priority lists can be prepared

have been proposed.4•5 Such categories might include support for basic
research and the scientific infrastructure, followed by the mandatory efforts,
grand initiatives, and incremental efforts that are part of the forward march
of science.6 Such schemes can then be presented as two-dimensional matri-
ces, with the columns representing categories and containing activities listed
by relative priority. The federal Committee on Earth Sciences has pre- I::: .[l I.: :: .L. r= ~

sented such a priority scheme for research activities for the U.S. Global
Change Research Program, specifying the relative priorities of items in the
columns and of the columns themselves.?
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In ranking initiatives or incremental activities, a number of variables
and considerations must be taken into account. First, there is the scientific
value to the proposing discipline and to science more generally. Other
considerations include the probability of success, costs and readiness, alter
nate opportunities to acquire the knowledge, and benefits to society. Prior
ity schemes must also account for unique opportunities presented by un
usual events. Moreover, they must provide for balance and flexibility in the
space research program. Finally, any methodology should include an analy
sis of the sensitivity of the rankings to variations in relative weighting of
the criteria used.

Readiness is often a key issue in evaluating initiatives. For some, the
requisite technology and infrastructure will exist; for others it will have to
be developed. Thus readiness to do scientific research in space involves a
broad range of programmatic issues, including the availability of sensors
and instruments, an appropriate spacecraft and launch vehicle, adequate
plans for managing data and information, and the existence of a community
of scientists with the talent and commitment to ensure the success of the
initiative.

High priority for a future initiative helps to develop readiness. It stimulates
development of the necessary innovative technology and information man
agement concepts and thus enhances the national technological infrastruc
ture. High priority encourages scientists to redirect research and educa
tional programs in ways that will contribute to the initiative.

EXPERIENCE WITH PRIORITIES IN SPACE RESEARCH

NASA's Office of Space Science and Applications (OSSA), in coopera
tion with advisory committees, has adopted a structured approach to the
assignment of priorities within the program and among new initiatives. The
current OSSA approach to developing the mission queue derives from rec
ommendations made in The Crisis in Space and Earth Sciences,s which set
forth a specific procedure for setting priorities among candidates for ap
proval as new starts.

OSSA now produces an annual strategic plan that has two important
features. First, it divides the program into five components, including on
going efforts, major and moderate missions, small missions, utilization of
the Space Station, and research-base enhancements. Second, priorities among
these components are set, in effect, through a series of decision rules for
allocating resources among them. The procedure for selecting new starts in
each fiscal year from among a list of candidates is a formal one based on
the recommendations in the Crisis report referred to above.

The OSSA strategic planning effort appears to be effective. The annual
budget requests for new initiatives are made in the context of a formal five-
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year plan. Clarifying components of the program and specifically setting
priorities among initiatives through creation of a five-year plan for new
starts have reduced uncertainty and divisiveness in the space research com
munity, strengthened space research, and made the program more attractive
to the decision makers who provide the resources for it.

FOCUSING ON GOALS

In order to set priorities and create an agenda for science or for space
research, we need to determine what is really important. both to science and
to the nation. We need to assess our values and formulate clear and com
pelling goals.

In this context. our national goals at the highest level seem fairly clear:
increase our understanding of ourselves and the world around us and con
tribute to national strength and the well-being of the citizens. In seeking to
serve these goals through the scientific enterprise or scientific research in
space. we should then consider the relative importance of more specific
goals and objectives:

• Maintain the strength of the scientific enterprise.
• Concentrate on the most scientifically meritorious initiatives.
• Focus on producing information about the world around us in order to

stimulate new perceptions. foster creation of knowledge. advance under
standing. and enable appropriate policy action.

• Produce benefits for society. including contributions to national eco
nomic and technological vitality. the creation of national pride and sense of
purpose. education and public enlightenment. and international cooperation.

Clarifying the relative importance of such goals and objectives will
help us to decide what we should do. Knowing what importance others in
the decision process assign to them will help create an agenda that policymakers
can embrace with enthusiasm.

PRIORITIES AND THE FUNDAMENTAL ASSUMPTION

,..---. A Ao •••••
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Even a program with clear priorities and a definite agenda must operate
under external constraints. It will be enhanced or impeded by large-scale
forces and by assumptions that mayor may not be evident. Scientific research
in space is clearly affected by the objectives of the civil space program. whose
most basic aim has been to foster human spaceflight. This report contends
that by concentrating on acquiring and processing information and converting
it into knowledge and understanding. space research and the space program
will advance science and contribute to national vitality. This is a funda-
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mental assumption on which to base an agenda for national activities in
space.

From the perspective of knowledge to be gained, flight to orbit and
beyond is the enabling technology, not a goal in itself. In all likelihood the
civil space program will eventually evolve, as has aviation, from the days in
which every flight was a miracle to a multifaceted transportation system
advancing a variety of human endeavors .

NOTES

I. Office of Technology Assessment. 1991. "Summary" in Federally Funded Research:
Decisions for a Decade (U.S. Government Printing Office, Washington, D.C.) p. 139.

2. This point was made in a report by the Space and Earth Sciences Advisory Committee,
The Crisis in Space and Earth Sciences-A Time for a New Commitment (NASA Advisory
Council, 1986).

3. "[Policy] is like a play in many acts, which unfolds inevitably once the curtain is raised.
To declare that the performance will not take place is an absurdity. The play will go on, either
by means of the actors ... or by means of the spectators who mount the stage." Klemens von
Metternich. 1880. Aus Metternich's Nachgelassenen Papieren 8: 190.

4. Press, Frank, "The Dilemma of the Golden Age," address to members of the National
Academy of Sciences (April, 1988).
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6. Dutton and Crowe, "Setting Priorities Among Scientific Initiatives," 1988.
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Conclusion

Priorities are inevitable in such human endeavors as plotting the course
for a nation or disbursing or managing public funds. Implicitly or explic
itly, priorities are set. We need to create an orderly agenda for scientific
research in space, based on clearly defined objectives, in order to ensure
that it flourishes and contributes to national vitality and the public welfare.
A consensus in space research about what is truly most important will serve
the best interests of both science and the nation.

Priorities reflect aspirations and values. They are derived from recog
nition of motivation and purpose. The governing concept of the space
program was created in the early years of spaceflight. Emphasizing flight
to orbit, it concentrates on expanding the domain in which humans have
been present or might maintain their presence. In its most elegant fonn, it
declares that there is a human need to explore the universe. Within this
context, the Apollo mission to the Moon was the greatest success the space
program has ever had, for with Apollo humans left the Earth and traveled to
a distant heavenly body for the first time. But humans also need to know
and understand the universe. A fundamental human imperative is not sim
ply to explore, but to know. It is in search of knowledge and understanding
that we traverse unfamiliar, often hostile, realms. The acquisition of infor
mation, the creation of knowledge, and the development of understanding
are the objectives of scientific research in space and provide strong motiva
tion and purpose for the broader space program. For, as Aristotle observed
so long ago, "all men by nature desire to know." And thus a consensus
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about prIorIties and an agenda for space research focusing on the most
important opportunities for new understanding will yield magnificent ben
efits for science and for the nation. .,...... --..
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