
SOFTWARE ENGINEERING LABORATORY SERIES SEL-91-003

SOFTWARE ENGINEERING
LABORATORY (SEL)

ADA PERFORMANCE STUDY REPORT

JULY 1991

CSCL 098

N92-18125

Unclas
G3/61 0068916

NASA
National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

SOFTWARE ENGINEERING LABORATORY SERIES SEL-91-003

SOFTWARE ENGINEERING
LABORATORY (SEL)

ADA PERFORMANCE STUDY REPORT

JULY 1991

NASA
National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt. Maryland 20771

FOREWORD

The Software Engineering Laboratory (SEL) is an organization sponsored by the Na-
tional Aeronautics and Space Administration/Goddard Space Right Center (NASA/
GSFC) and created to investigate the effectiveness of software engineering
technologies when applied to the development of applications software. The SEL was
created in 1977 and has three primary organizational members:

• NASA/GSFC, Systems Development Branch

• The University of Maryland, Computer Sciences Department

• Computer Sciences Corporation, Systems Development Operation

The goals of the SEL are (1) to understand the software development process in the
GSFC environments; (2) to measure the effect of various methodologies, tools, and
models on this process; and (3) to identify and then to apply successful development
practices. The activities, findings, and recommendations of the SEL are recorded in
the Software Engineering Laboratory Series, a continuing series of reports that
includes this document.

The major contributors to this document are

Eric W. Booth (CSC)
Michael E. Stark (GSFC)

Single copies of this document can be obtained by writing to

Systems Development Branch
Code 552
Goddard Space Flight Center
Greenbelt, Maryland 20771

PRECEDING PAGE BLANK WOT RLfVfED

6344

ABSTRACT

/ /r-f/r/

This-doeumentidesxeribes,the goals of the Ada Performance Study/explains the meth-
ods used, presents.and=arialyzes«the»results,,and-provides guidelines for future Ada
development efforts] Section-l-details the goals and scope*"bf the study and presents

'" the background of Ada development in'the Flight Dynamics Division (FDD).̂ Se'c^
tion 2 presents the organization and overall purpose of each test. Section-3-details^ie
purpose, methods, and results of each test and provides analyses of these results. See-
^SBs^»P5SKides guidelines for future development efforts based on the analysis of re-
sults from this study. Appendix A explains the approach used on the performance
tests. ^ ^ ^ . . . > . . , , . . .

- ^,/-,, / > , / / - , - . / ,«7 , , ^

*"-'Wr.

PRECEDING PAGE BLAMK MOT FILMED

6344

Table of Contents

Executive Summary .. 1

Section 1 — Introduction ... 1-1

1.1 Objectives and Scope 1-1

1.2 Background of Ada in the FDD 1-2

1.3 Document Overview 1-4

Section 2-Test Overview .. 2-1

2.1 Design-Oriented Tests 2-1

2.2 Implementation-Oriented Tests 2-2

Section 3-Results ... 3-1

3.1 Design-Oriented Tests 3-1

3.1.1 Scheduling 3-1

3.1.2 Unconstrained Structures 3-4

3.1.3 Initialization and Elaboration 3-9

3.1.4 Generic Units 3-11

3.1.5 Conditional Compilation 3-15

3.1.6 Object-Oriented Programming 3-17

3.2 Implementation-Oriented Tests 3-19

3.2.1 Matrix Storage 3-19

3.2.2 Logical Operators 3-21

3.2.3 Pragma INLINE 3-25

3.2.4 String-to-Enumeration Type Conversion 3-26

Section 4— Conclusions ... 4-1

4.1 Lessons Learned .. 4-1

4.1.1 Compiler Options and Problems 4-1

4.1.2 Estimating Simulator Performance 4-2

*

\\\ , ^-v^a t--.* •• PRECEDING PAGE BLANK NOT FSLft/EDî M $*$£ vn^^ vn

6344

Table of Contents (Cont'd)

Section 4 (Cont'd)

4.2 Recommendations 4-4

4.2.1 Requirements Analysis 4-4

4.2.2 Design 4-4

4.2.3 Implementation 4-5

4.2.4 Maintenance 4-5

Appendix A—Approach to Measurement

Glossary

References

Standard Bibliography of SEL Literature

vni

6344

List of Illustrations

Figure

1-1 Timeline of Ada Development in the FDD 1-2

1-2 Software Reuse Trend in the FDD Using OOD and Ada 1-3

3-1 Time-Driven, Hard-Coded Algorithm 3-2

3-2 Event-Driven Algorithm 3-2

3-3 Simple Code Segment From the Matrix Access Test 3-7

3-4 Comparison of Times (us) for Matrix Access Methods Test .. 3-7

3-5 A Generic Solution and a Nongeneric Solution 3-13

3-6 Comparison of Times and Sizes for Generic Units 3-14

3-7 Method for Simulating Inheritance and Polymorphism 3-18

3-8 Sample Code Segment From the Matrix Storage Test 3-19

3-9 Comparison of Times (us) for Matrix Storage 3-20

3-10 PDL Comparison of Logical Data Base and Direct Call
Approaches 3-27

IX

6344

List of Tables

Table

3-1 Results From Scheduling Design Alternatives 3-4

3-2 Results From ESA Record Structure Modification 3-5

3-3 Times for Matrix Access Methods Test 3-8

3-4 CPU Time (us) Results of the Various Initialization Tests 3-10

3-5 CPU Time and Memory Usage for Generic Units 3-14

3-6 Conditional Compilation Results 3-16

3-7 Measuring the Overhead Associated With OOP 3-18

3-8 CPU Time (us) Results of the Matrix Storage Test 3-20

3-9 Test Results of a < boolean operator >b 3-23

3-10 Test Results of f(a) < boolean expression >f(b) 3-23

3-11 Test Results of a < boolean expression >f(b) 3-24

3-12 Measuring the Effect of pragma INLINE 3-26

3-13 Results From Logical Data Base Versus Direct Call 3-28

4-1 Impact of Measured Performance Results on Dynamics
Simulators 4-3

6344

EXECUTIVE SUMMARY

INTRODUCTION

The need to predict, measure, and control the run-time performance of systems in the
Flight Dynamics Division (FDD) is a growing concern as software systems become
more sophisticated. The transition to Ada introduces performance issues that were
previously nonexistent. Additionally, this transition to Ada was accompanied by the
transition to object-oriented development (OOD), which has performance implica-
tions independent of the programming language. To better understand the implica-
tions of new design and implementation approaches, the Software Engineering
Laboratory (SEL) conducted the Ada Performance Study.

OBJECTIVES AND SCOPE

The Ada Performance Study had the following three objectives:

• Determine which design and implementation alternatives lead to acceler-
ated run times

• Determine what, if any, trade-offs are made by choosing these alternatives

• Develop guidelines to aid future Ada development efforts in the FDD

The study focused on the run-time performance of existing Ada and OOD approaches
used in the FDD. The study did not address compiler, linker, or other development
tool performance.

RESULTS

The following statements summarize the results of the Ada performance study:

• Incorrect design decisions were the largest contributor to poor run-time per-
formance. The design should continually be reevaluated against evolving
user requirements and specifications.

• Current Ada compilation systems still have inconvenient bugs that may con-
tribute to poor performance. Organizations using Ada should use available
performance analysis tools to assess their compilation systems.

• Ada simulators in the FDD can be designed and implemented to achieve run
times comparable to existing FORTRAN simulators. Inefficient systems
indicate errors in the system design and/or the compiler being used.

As these results indicate, few, if any, trade-offs were necessary to achieve accelerated
run-times comparable to existing FORTRAN simulators. This report contains a

6344

detailed analysis of each alternative studied and summarizes the results of this analysis
with specific performance recommendations for future OOD/Ada development
efforts in the FDD.

6344

SECTION 1-INTRODUCTION

The Ada language reference manual (LRM) (Reference 1) states:

Ada was designed with three overriding concerns: program reliability and
maintenance, programming as a human activity, and efficiency.

Initial implementations of Ada compilers and development environments tended to
favor the first two concerns over the concern for efficiency. Similarly, initial (non-real-
time, non-embedded) applications development using Ada as the programming lan-
guage tended to favor maintainability, readability, and reusability.

The need to predict, measure, and control the run-time performance of systems in the
Flight Dynamics Division (FDD) is a growing concern as software systems become
more sophisticated. The transition to Ada introduces performance issues that were
previously nonexistent. Additionally, this transition to Ada was accompanied by the
transition to object-oriented development (OOD), which has performance implica-
tions independent of the programming language. To better understand the implica-
tions of new design and implementation approaches, the Software Engineering
Laboratory (SEL) conducted the Ada Performance Study.

1.1 OBJECTIVES AND SCOPE

The Ada Performance Study had the following three objectives:

• Determine which design and implementation alternatives lead to acceler-
ated run times

• Determine what, if any, trade-offs are made by choosing these alternatives

• Develop guidelines to aid future Ada development efforts in the FDD

The study focused on the run-time performance of existing Ada and OOD approaches
used in the FDD. The study did not address compiler, linker, or other development
tool performance.

The entire study was performed on a Digital Equipment Corporation (DEC)
VAX 8820 machine running VMS version 5.2 and DEC Ada version 1.5-44.

The performance tests were developed using a commercial performance measure-
ment tool on actual flight dynamics software systems in combination with a tailored
Association for Computing Machinery (ACM) special interest group on Ada
(SIGAda) performance issues working group (PIWG) structure of measurements.
The commercial performance measurement tool used during the study was DEC's
performance coverage analyzer (PCA). Appendix A explains, in detail, how the
PIWG structure of measurements and PCA were used during the Ada Performance
Study.

1-1
6344

1.2 BACKGROUND OF ADA IN THE FDD

The SEL started experimenting with Ada and object-oriented approaches in 1985 with
the Gamma Ray Observatory (GRO) attitude dynamics simulator in Ada (GRODY)
experiment. This experiment included an electronic mail system (EMS) training
project and parallel development of the operational GRO dynamics simulator in
FORTRAN (GROSS). GROSS was developed using a traditional functional decom-
position design and FORTRAN implementation. Figure 1-1 shows the timeline of the
FDD Ada development efforts. The GRODY team was encouraged to experiment
with new methodologies and techniques and used an OOD-Ada approach. As a result,
several lessons were learned about OOD methods (Reference 2), implementation
approaches, and testing techniques (Reference 3).

POVWTS
-70 KSLOC

New Projects

SMEXTELS
-70 KSLOC

COMPASS
-3000 KSLOC

IONS
24 KSLOC

4th Time Ada

EUVEDS
136 KSLOC

EUVETELS
66 KSLOC

GROOY
128 KSLOC

GROSS
PARALLEL FORTRAN EFFORT

46 KSLOC
1st Time Ada

EMS
6 KSLOC

1/86
1/86 1/87 1/88 1/89 1/90 1/91

Figure 1 -1. Timeline of Ada Development in the FDD

1-2
6344

Following the GRODY experiment, the FDD began support for the Geostationary
Operational Environmental Satellite (GOES) with the GOES attitude dynamics simu-
lator in Ada (GOADA) and the GOES telemetry simulator (GOESIM). These simula-
tors incorporated the lessons learned from the GRODY experiment and were
developed using OOD and Ada. Driven by the promise of increased reusability with
Ada, GOADA and GOESIM simulator teams performed an in-depth reuse analysis of
GRODY. As a result, many design decisions and software components developed
during the GRODY experiment were incorporated and reused.

This trend of reusing design and code has continued throughout the development of
the OOD-Ada simulators in the FDD with extremely promising results (see Fig-
ure 1-2). Software development costs have been reduced by as much as 66 percent,
and software reliability has improved by an order of magnitude. However, a side effect
of this emphasis on software reuse has been the proliferation of inefficient design
approaches and implementation techniques.

100%

80%

60%

Slightly modified

Verbatim reuse

40%

20%

GOADA GOESIM UARSTELS EUVEDSIM EUVETELS SAMPEXTS
(87/90) (87/88) (88/89) (88/90) (88/90) (90/91)

Figure 1-2. Software Reuse Trend in the FDD Using OOD and Ada

As a result, each of the OOD-Ada simulators incorporate fundamental design and
implementation inefficiencies. The Ada Performance Study investigated design and
implementation approaches that were known to contribute or suspected of contribut-
ing to the largest of the observed inefficiencies. Each of these approaches was meas-
ured and compared with other, potentially more optimal, approaches. The
approaches offering improvements, as well as those lacking improvement, were

1-3
6344

recorded. This report summarizes these results to provide guidance for future OOD-
Ada designers and to predict more accurately achievable run-time performance.

1.3 DOCUMENT OVERVIEW

This document is organized into the following sections:

• Section 2—Test Overview presents the organization and purpose of the dif-
ferent test groups.

• Section 3—Results details the purpose of, methods used during, results from,
and analysis of each performance test.

• Section 4—Conclusions provides performance guidelines for future OOD-
Ada development projects in the FDD.

• Appendix A —Approach to Measurement presents the two approaches used
during the performance study arid describes the details of each.

1-4
6344

SECTION 2-TEST OVERVIEW

Ten test groups were developed; each represented a design or implementation issue
that is relevant to current FDD applications. The test groups are presented in two
categories: design-oriented tests and implementation-oriented tests. The test groups
were chosen as a result of an in-depth analysis of several PCA runs with two simulators:
GOADA and the Extreme Ultraviolet Explorer (EUVE) telemetry simulator
(EUVETELS). If a certain design alternative or language feature appeared to con-
sume a relatively large portion of central processing unit (CPU) time or memory, it
was analyzed, measured, and quantified in this study. The design alternatives or lan-
guage features consuming a relatively small portion of CPU time or memory were not
studied further. Therefore, the test groups presented here are intended as a represen-
tative rather than exhaustive sampling of current design and implementation
approaches.

2.1 DESIGN-ORIENTED TESTS

The following briefly describes the purpose of each design test group run by this study.

• Group 1: Scheduling—This test group contained three tests that addressed
the run-time cost of various scheduling alternatives. In one test case, user flexibility
and result accuracy were sacrificed to achieve more optimal performance. The impli-
cations of the different approaches are analyzed and contrasted. The results of this test
group provided the applications designers with information necessary to make trade-
off decisions among flexibility, accuracy, and performance.

• Group 2: Unconstrained Structures—Leaving data structures unconstrained
provides greater user flexibility and enhances future reusability. However, the addi-
tional run-time code that may be generated can impose a significant run-time and
memory overhead. This group measured the expense of unconstrained records and
arrays and proposed viable alternatives.

• Group 3: Initialization and Elaboration—This test group addressed initial-
ization of static and dynamic data using various combinations of elaboration- and
execution-time alternatives. This test group was relevant for applications requiring
minimal initialization time.

• Group 4: Generic Units—The benefits of using generic units are reduced
source code size, encapsulation, information hiding, decoupling, and increased reuse
(Reference 4). However, many Ada compilers implement this language feature
poorly. This test group addressed the options available with the compiler implementa-
tion and examined how well these options were implemented.

• Group 5: Conditional Compilation—The ability to include additional
"debug code" in the delivered system adds to the system size and imposes a run-time

2-1
6344

penalty even if it is never used. The test group analyzed the current approach and
proposed flexible alternatives for future systems. The results of this test group can
have applications beyond debug code elimination.

• Group 6: Object-Oriented Programming—Two of the fundamental principles
of object-oriented programming (OOP) are polymorphism and inheritance. Ada does
not directly support these principles. However, the designer may simulate the effect of
inheritance and polymorphism through the use of variant records and enumeration
types (Reference 5). These OOP principles, whether direct or indirect, incur a certain
amount of run-time overhead and problems (Reference 5).

2.2 IMPLEMENTATION-ORIENTED TESTS

The following briefly describes the purpose of each implementation test group run by
this study.

• Group 7: Matrix Storage—The most basic and perhaps the most common
mathematical expressions in flight dynamics applications involve matrix manipula-
tions. This group addressed row-major versus column-major algorithms to quantify
the performance implications.

• Group 8: Logical Operators—The Ada LRM clearly defines behavior of log-
ical expression evaluation. The Ada Style Guide (Reference 6) recommends not using
the short circuit forms of logical operators for performance reasons. The implications
of this recommendation in the flight dynamics environment were measured and ana-
lyzed.

• Group 9: pragma INLINE—Flight dynamics simulators contain a large
number of procedure and function calls to simple call-throughs and selectors. The
overhead of making these calls can slow the performance of any simulator. This test
measured the use of pragma INLINE as an alternative to calling a routine.

• Group 10: String-to-Enumeration Conversion—Current flight dynamics
simulators contain a central logical data base. The physical data are distributed
throughout the simulator in the appropriate packages. The logical data base provides
keys (strings) that map into -the physical data. The logical data base converts these
strings to the appropriate enumeration type to retrieve the corresponding data. This
test assessed the performance implications of this approach.

2-2
6344

SECTION 3-RESULTS

Each performance test in this report is described in this section in the following for-
mat:

• Purpose—Each test was designed with a specific design or implementation
alternative in mind. Rationale for the choice of alternatives tested results from analy-
sis of existing Ada systems developed in the FDD.

• Method—Some tests were performed as changes to an existing system,
whereas other tests were performed by creating new, special-purpose software. Meth-
ods used for each test are described in detail. The basis for each method consisted of
one of two approaches: DEC'S PC A measurement tool or the PIWG structure of
measurements. Appendix A contains a detailed discussion of the two approaches.

• Results—The result of executing a test is some combination of CPU time
and object code size. Most tests were designed to measure the CPU run time in micro- ,
seconds (us). In some cases the object code size in bytes is relevant. The data result-
ing from each test run are provided.

• Analysis—In many cases, detailed analysis of the test results is necessary to
understand the implications for future projects. The analysis performed is summa-
rized, and the implications are highlighted.

3.1 DESIGN-ORIENTED TESTS

3.1.1 Scheduling

3.1.1.1 PURPOSE

Flight dynamics simulators all have a method for performing simulation control. Most
FORTRAN-based simulators used a time-driven, hard-coded approach. The algo-
rithm for this approach is shown in Figure 3-1.

The loop control variable for this time-driven algorithm is Current_Time. All events
(e.g., Model CSS1) occur at the same simulation time. Finally, all events are hard-
coded; that is, the models that are called and the order in which they are called are
determined at compilation time. The CPU time associated with this design is the cost
of incrementing and testing the simulation time.

The approach used for most of the Ada/OOD-based simulators is more of an event-
driven design. The algorithm for this approach is shown in Figure 3-2.

The loop control variable for this event-driven algorithm is Current_ Event. The CPU
time associated with this design is the cost of setting the simulation clock, dispatching

3-1
6344

Current_Time :=Start_Time;
while Current_Time < Stop_Time loop

Advance_Ephemeris (To => Current_Time);
Advance_Attrtude (To => Current_Time);
Model_CSS1;
Model_FSS;
... -model all remaining sensors
Model_OBC;
... -model all actuators
Current_Time := Current_Time + Time_Step;

end loop;

Figure 3-1. Time-Driven, Hard-Coded Algorithm

Current_Event := Next_Event (Onjhe => Queue);
while Current_Event 4 StopjSimulation loop

SetJhe_Clock (To => Current_Event Time);
Dispatch (CurrentJEvent); ^
Reschedule (CurrentJEvent, Onjhe => Queue); 2.
Current_Event := NextJ:vent (Onjhe => Queue); §

end loop; 3
<o

Figure 3-2. Event-Driven Algorithm

the event, rescheduling the event, popping the next event off the queue, and testing the
event. Although the CPU time necessary for this event-driven algorithm will be
greater than that necessary for the time-driven algorithm, the choice of the algorithm
really depends on two items: the characteristics of the data and the desired flexibility
of the final system.

The time-driven approach favors uniformly distributed data. That is, each event is
modeled at the same time for the same frequency throughout the simulation. The
event-driven approach favors random, even erratic, data. For example, some sensor
data may be modeled frequently [e.g., every 32 milliseconds (ms)], whereas other sen-
sor data might be modeled infrequently (e.g., every 64 seconds).

The hard-coded approach of the time-driven algorithm requires little run-time over-
head. However, this is also a very inflexible design. Adding, deleting, or reordering
the events requires changes to the source code.

The event-driven algorithm imposes a higher run-time overhead. However, infre-
quently occurring events in the real world are modeled infrequently in the simulator,
thereby reducing CPU time. Event-driven approaches also provide a level of flexi-
bility to the design. Adding a previously nonexistent event would still require

3-2
6344

modifications to the source code. However, re-adding, deleting, and reordering
events may be accomplished without source code changes.

This test group contained three tests that addressed the run-time cost of various sched-
uling alternatives. Rexibility and accuracy were sacrificed to achieve more optimal
performance. The implications of the different approaches were analyzed and com-
pared. The results of this test group provided the applications designers with informa-
tion necessary to make trade-off decisions among flexibility, accuracy, and
performance.

3.1.1.2 METHOD

The test group was set up and run in the context of the baseline version of the GOADA
dynamics simulator. The output from the batch log file and the PC A was used to assess
the impact of alternate designs. The baseline version of the scheduler in GOADA was
measured first. Two design alternatives of the scheduler were tested: the first modified
the internal data storage and the second modified the scheduling algorithm.

The first design alternative involved using a different data structure for scheduling
events in a discrete event simulation. The delivered version of the scheduler for
GOADA uses an array data structure to maintain the queue. The alternate version'
uses a linked-list data structure constructed with access types. This test was designed
to compare the efficiency of the insertion operation of an array data structure with the
same operation on a linked-list data structure.

The second design alternative tested a looping algorithm to dispatch events in a simu-
lator. The delivered version of the scheduler for GOADA is event-driven. The simula-
tion time is set by the value of the next event on the priority queue. However, after a
modification late in the development phase, all events fired at the set interval of
512 ms. The alternate version tested uses a time-driven algorithm that iterates over a
static queue of events.

3.1.1.3 RESULTS

As shown in Table 3-1, the first design alternative had no measurable effect on per-
formance. It was determined that the CPU time saved by not sliding the elements of
the array during an insertion is offset by stepping though a linked list during a search.
This implied that sliding a slice of an array is a relatively efficient operation. Analysis
of the assembler code generated by the compiler revealed that DEC Ada performs a
"block move" operation when assigning a slice of an array.

3.1.1.4 ANALYSIS

The second design alternative shows a 25-second speed-up for a 20-minute simulation.
For comparison, the original Scheduler package consumed 10.7 percent of the CPU
time needed (6 minutes, 45 seconds) to run GOADA for a 20-minute simulation. The

3-3

6344

Table 3-1. Results From Scheduling Design Alternatives

Variables

Total CPU Time

Scheduler Percentage

Scheduler CPU Time

Baseline Version
of GOADA

6:45

10.7%

44 seconds

First Alternative:
Linked-List

6:45

11%

45 seconds

Second Approach:
Iterative Algorithm

6:20

2.2%

8.5 seconds

1

s
2

improved Scheduler package requires only 2.2 percent of the total CPU time (6 min-
utes, 20 seconds). Table 3-1 summarizes the results of this test.

The results of this test underscore two important rules when dealing with program-
ming languages that allow the user to define abstract data types:

• During the preliminary design phase, choose the data structure that most
closely matches the data for the problem being solved.

• During the detailed design phase, match the algorithm to both the data
structure and the data.

During the design phase, the GOADA developers correctly matched the data structure
(a priority queue), the data (discrete, time-ordered events), and the algorithm. Late in
the GOADA development life cycle, however, the data that were stored in the priority
queue were modified to the extent that the priority queue data structure and the algo-
rithm no longer matched. The following lesson was learned from this experience:

• Modifications made to an Ada system during the testing and maintenance
phases must address both algorithmic and data structure changes to ensure
that they both still match the problem being solved.

3.1.2 Unconstrained Structures

This section addresses the use of unconstrained types, both records and arrays, in a
flight dynamics application. Two separate test approaches were used to assess the
run-time cost of unconstrained data types. The first test addresses the use of an uncon-
strained variant record used in the GOADA simulator. The second test addresses the
use of unconstrained versus constrained matrixes.

3.1.2.1 VARIANT RECORDS

3.1.2.1.1 Purpose

Current flight dynamics simulators make extensive use of an unconstrained variant
record structure. This approach allowed a general communication interface between
the user interface subsystem and the simulation subsystem. It was expected that this

3-4
6344

approach led to increased access time as compared with a constrained (nonvariant)
record structure. This test measures the overhead associated with using this type of
data structure.

3.1.2.1.2 Method

The hardware and environment models in GOADA each declare their state data as an
array of these variant records. It was expected that the use of the variant record data
structure throughout the simulator was causing a performance penalty that is distrib-
uted across many packages (and thus, not highlighted by PCA).

The Earth sensor assembly (ESA) package was chosen as the basis for this test because
it is the most CPU-expensive hardware model in GOADA that uses the variant record
structure. The internal data structure was modified to be a static, rather than dynamic,
record. The subprograms that previously accessed an element of the array were modi-
fied to access the corresponding field of the record. External communication with the
user interface mapped the array elements to the appropriate record field using a case
statement.

3.1.2.1J Results

As shown in Table 3-2, the percentage of CPU time consumed by the ESA dropped
from 3.7 to 1.1 percent. This means that the change to the data structure used to store
the ESA data decreased the CPU time to less than one-third of its previous amount.

Table 3-2. Results From ESA Record Structure Modification

Processing

Total CPU Time

ESA Percentage

ESA CPU Time

Baseline Version
of GOADA

6:45

3.7%

15 seconds

Static Record
Structure

6:33

1.1%

4.3 seconds

S

8
o
T

nto

3.1.2.1.4 Analysis

Alone, the ESA improvement is minor (the total speed-up for the 6-minute, 45-second
benchmark was about 11 seconds), but analysis of the PC A output and the source re-
veals that 45 percent of the CPU time is spent in packages using the same variant data
structure as the ESA. Assuming that altering the data structure in all of these remain-
ing packages has a similar effect, the 45 percent of the CPU time could be reduced to
13 percent. This would mean an overall decrease in the total CPU time by 32 percent.

The results and analysis of this test have many implications. Data structures used for
external communication with an input/output (I/O) device or user interface may be

3-5
6344

sufficiently general to encourage reusability. However, the internal data structures
should be optimal for the problem domain. This may be stated as follows:

• The state data for a package should use a data structure that matches the
data and algorithms being used (see test group 1, Scheduling). Sufficiently
general constructors and selectors may be designed that map data of a gen-
eral type to the optimal state data in the package body.

This approach sacrifices some generality to achieve efficiency. On the other hand, the
explicitness required in the design and implementation of the constructors and selec-
tors encourages the developer to exploit the strong typing feature of the language.

3.1.2.2 MATRIXES

3.1.2.2.1 Purpose

Flight dynamics simulators contain a large number of two-dimensional arrays. The
varying ways of accessing and constraining these arrays can affect the addressing
performance. Three approaches may be applied to two-dimensional array (matrix)
operations that may affect performance:

• Use of a literal range for constrained and unconstrained matrixes

• Use of the 'range attribute for constrained and unconstrained matrixes

• Use of the pragma Suppress_All for constrained and unconstrained
matrixes

Various combinations of each of these three approaches were examined. [NOTE:
DEC Ada does not support pragma Suppress. Instead, DEC provides an
implementation-specific pragma Suppress_All.]

3.1.2.2.2 Method

The first technique assessed the cost of using a literal range to reference a matrix (both
constrained and unconstrained). The second performance technique assessed the cost
of using the range attribute to reference a matrix (both constrained and
unconstrained). The last technique examined the DEC VAX-Ada-specific directive
pragma Suppress_All. Suppress_All suppresses all run-time checking, including
arrays. The code segments shown in Figure 3-3 highlight the different accessing
methods tested.

This test comprises the following experiments:

• Referencing a constrained matrix using a literal range

• Referencing an unconstrained matrix using a literal range

• Referencing a constrained matrix using the range attribute

3-6
6344

Literal Range Specified

fori in 1..6 loop
forj in 1..6 loop

Matrix(i.j) := i * j;
end loop;

end loop;

Use of Range Attribute

for i in Matrix'range (1) loop
for j In Matrix'range(2) loop

Matrix(i.j) := i * j;
end loop;

end loop;

8
o

Figure 3-3. Simple Code Segment From the Matrix Access Test

• Referencing an unconstrained matrix using the range attribute

• Finally, repeating all four experiments using pragma Suppress_All

3.1.2.23 Results

This performance test must be examined in a number of ways. The bar chart in Fig-
ure 3-4 contains the performance costs and gains of the various access techniques.

3. 60

Constrained
Unconstrained

No Suppress_AII
Literal

No Suppress_AII
'Range

Suppress_AII
Literal

Suppress_AII
'Range

Figure 3-4. Comparison of Times (us) for Matrix Access Methods Test

3-7

6344

Figure 3-4 shows the dramatic difference between constrained and unconstrained ma-
trixes. The CPU time when using an unconstrained array is double that when using a
constrained matrix. Even with the use of pragma Suppress_All, the difference is large.
The use of pragma Suppress_All had little effect on the range attribute address mech-
anism. The real gain in using Suppress_All came with the use of a literal range when
accessing the matrix. The use of a literal range with pragma Suppress_All was close in
performance to the use of the range attribute. The raw data for this test are shown in
Table 3-3.

Table 3-3. Times for Matrix Access Methods Test

Reference Method No Suppress (u.s) Suppress (u.s)

Constrained matrix using a literal range

Unconstrained matrix using a literal
range

Constrained matrix using the range
attribute

Constrained matrix using the range
attribute

18.6

103.4

17.8

47.5

17.6

43.3

17.9

46.4

3.1.2.2.4 Analysis

Using pragma Suppress_All improves performance where there is range and access
checking on arrays. This checking occurs when a literal range is specified in the
processing of an unconstrained matrix. The sample code in Figure 3-3 shows that
there is no way for the compiler to know whether the indexes that are being used are
inside the bounds of the declared matrix. Therefore, range checking is being enforced,
and this negatively impacts performance.

In Figure 3-3, use of the range attribute provides the compiler with enough informa-
tion to eliminate run-time constraint checking code. The only cost is the initial evalua-
tion of the 'range attribute. However, analysis of the assembler code generated from
the source code shown in Figure 3-3 reveals that while the value of'range(l) is calcu-
lated only once, the (loop invariant) value of Vange(2) is calculated within the outer
loop. This represents a bug in the DEC Ada version 1.5-44 compiler. Similar com-
piler bugs have been previously discovered (Reference 7). DEC has corrected this
problem in the 2.0 version of the Ada compiler.

The most obvious performance gain to be made in accessing a matrix is to constrain it.
Unconstrained matrixes have an additional cost attributed to them due to their dy-
namic nature. The additional cost comes from the run-time checking necessary. The

3-8
6344

generated range checking code also consumes additional memory. Use of the range
attribute also eliminates run-time range checking, but the current version of the com-
piler generates inefficient object code. Finally, operations on a matrix of a con-
strained type may be checked at compilation time, because the bounds are static rather
than dynamic. The implications of this test follow:

• Whenever the size of the structure (record or array) is truly static for a partic-
ular domain, define the type as a constrained type.

• Use attributes wherever possible when unconstrained structures are neces-
sary.

3.1.3 Initialization and Elaboration

3.13.1 PURPOSE

This test group compared various methods of initializing objects of different types.
The PCA revealed an unexpectedly large portion of CPU time spent performing elab-
oration. For example, objects were often initialized explicitly at subprogram elabora-
tion even though unconditional initialization of objects occurred in the subprogram
body. This test group consisted of four experiments, each of which compared two djf-
ferent initialization methods.

3.13.2 METHOD

This test was divided into four experiments containing two different initialization tests
each, as follows:

• Elaboration versus assignments-in-the-body

• Array/record aggregates versus separate component assignments

• Package body elaboration code versus explicit call

• Types with default values

Each test was developed using the PIWG methodology. The method for each of these
four experiments is outlined below.

The elaboration versus assignments-in-the-body experiment compared initializing ob-
jects of arbitrary types at subprogram elaboration time with initializing the same ob-
jects in a subprogram body via assignment statements. The subprogram elaboration
test yielded the CPU time taken for initializing an integer object, a float object, a
Boolean object, and a three vector of integers at subprogram elaboration time. The
assignment test gave the CPU time to initialize the same objects using assignment
statements in the procedure body.

The array/record aggregates versus separate component assignments experiment
compared initializing objects of array and record types using record and array

3-9
6344

aggregate assignments in the subprogram body with using separate component assign-
ments in the subprogram body. Both tests used a record consisting of integer, float,
and Boolean components and a three vector of integers.

The package body elaboration code versus explicit call experiment contrasted use of
package body elaboration for initializing state data with use of an explicit call to an
initialization procedure for the same purpose. To measure the time for package body
elaboration, the elaboration test was designed to have a dynamic package created
each time the test procedure was called; that is, a package that has elaboration code in
the package body is declared inside the test procedure. In both tests, integer, float, and
Boolean components and a three vector of integers were initialized.

The types with default values experiment determined the CPU time expense for having
a record type with default values followed by initialization of an object of that type at
subprogram elaboration time and via assignment statements in the subprogram body.
The record contained two components of type float.

3.133 RESULTS

The results for each of the experiments are presented in Table 3-4. Analysis of these
results is presented in the next subsection.

Table 3-4. CPU Time (M.S) Results of the Various Initialization Tests

Elaboration

1.8

Aggregate Assignment

3.0

Package Elaboration

2.7

Type with Defaults Elaboration

0.0

Assignment

1.7

Separate Component

3.3

Explicit Call

7.7

Types with Defaults Assignment

1.0

3.13.4 ANALYSIS

The CPU times associated with the first experiment (elaboration versus assignment in
the body) indicate that the two approaches are effectively the same. Table 3-4 shows
that there was no time penalty for initializing objects at subprogram elaboration over
using assignments in the subprogram body.

3-10
6344

The results of the second experiment (array/record aggregates versus separate compo-
nent assignments) demonstrated approximately a 10-percent reduction in CPU time
for using aggregate assignments.

As expected, the results of the third experiment (package body elaboration code ver-
sus explicit call) show that the cost of the explicit call was more expensive. Initializing
state data via an explicit call (for this case) required approximately 2.85 times more
CPU time than initializing state data at elaboration time.

The results of the fourth experiment (types with default values) showed that the CPU
time for initializing the components of the record in the subprogram body took ap-
proximately 1.0 ms, which is simply the time required to do an assignment statement of
the record aggregate. Initializing the object at subprogram elaboration did not incur
the cost of this additional assignment. The assembly code for the tests showed that
when an object of the record type with default values is declared, these default values
get assigned to the object at this point. However, in the case of the elaboration test,
the object does not get assigned the default value associated with the type, but instead
the value is assigned to it in the object declaration.

The implications of this test are as follows:

• When dynamic data are needed, initialization of that data during subpro-]'_
gram elaboration is no more or less efficient than initialization of the same
data during subprogram execution.

• Aggregate assignment is just as efficient, if not slightly more efficient, as in-
dividual component assignment.

• Initialization of package state data during elaboration is more efficient than
initialization of the same state data through the use of a subprogram call.

[NOTE: This efficiency is relevant only when short initialization time is a
requirement and the amount of CPU time needed to perform ini-
tialization is small relative to the CPU time needed to perform a
procedure call.]

• Defining records with default values does not incur any run-time overhead
when those defaults are overridden during object declaration. However,
accepting the default values during declaration and unconditionally initializ-
ing the same object during subprogram execution will generate twice as
many assignments.

• Finally, data elaborated and initialized with a subprogram body should be
minimized while retaining information-hiding and encapsulation principles.

3.1.4 Generic Units

3.1.4.1 PURPOSE
To increase the level of software reuse in flight dynamics, simulators have used Ada
generic units. These generic units have saved a significant amount of effort in

3-11
6344

subsequent simulator projects (Reference 4). However, if a nongeneric unit is signifi-
cantly more efficient than a generic unit, the generic unit may not be reused. This test
examines the CPU and memory overhead associated with the use of a generic unit for
matrix multiplication.

3.1.4.2 METHOD

This test measures the CPU and memory utilization of multiplying two 3x3 and two 6x6
matrixes. This test consists of two experiments:

• Multiplying two 3x3 matrixes using a generic unit and a nongeneric unit

• Multiplying two 6x6 matrixes using a generic unit and a nongeneric unit

The matrix types were constrained two-dimensional arrays of single-precision
floating-point numbers. Figure 3-5 shows the generic and nongeneric source code so-
lution for this test.

3.1.4.3 RESULTS

As Table 3-5 and Figure 3-6 show, no measurable difference exists in processing times
using the generic and nongeneric 3x3 matrix units, and very little difference exists in
processing times of the 6x6 matrix units. Additionally, the differences in object code
sizes are insignificant.

3.1.4.4 ANALYSIS

A compiler may implement generic units using an inline expansion algorithm or a
code-sharing algorithm. The inline expansion algorithm does just as the name sug-
gests: each instantiation of a generic unit is expanded inline at the point of instanti-
ation. The code-sharing algorithm generates one object code template and passes the
actual generic parameters for each instantiation at run time.

The advantage of the inline expansion algorithm is that each instantiation of the ge-
neric unit may be optimized on the basis of actual parameters passed in during instan-
tiation. This effect may be exploited, as shown in Section 3.1.5, "Conditional
Compilation." The advantage of the shared-code algorithm is that each instantiation
does not generate an additional object code copy. Instantiations may be nested within
the scope of the type visibility without increasing object code size. This feature en-
courages strong typing. This is particularly important for targeted hardware with lim-
ited memory. However, code sharing may be important on virtual machines to
minimize the number of page faults.

DEC Ada version 1.5 uses an inline expansion algorithm, which test results confirm.
The instantiations of the generic units are as efficient, both in terms of CPU time and
memory, as the corresponding nongeneric units. However, if multiple instantiations
are made, the memory utilization will increase linearly. A shared code algorithm will

3-12
6344

Generic Solution

generic
type REAL is o;
type INDEX is range o;
type MATRIX is
array (INDEX.INDEX) of REAL;

package Generic Matrix is
function "•"

(M1.M2:in MATRIX)
return MATRIX;

end Generic_Matrix;

package body Generic_Matrix is

function"-"
(M1.M2:in MATRIX)
return MATRIX is

R: MATRIX;
begin

return R;
end'.';

end Generic_Matrix;

package Matrix_Types is
type REAL6 is digits 6;
type INDEX3 is range 1..3;
typeMATRIX33is

array (INDEX3.INDEX3) of REALS;
type INOEX6 is range 1 ..6;
typeMATRIX66is

array (INDEX6JNDEX6) of REAL6;
end Matrix_Types;

with Matrix_Types;
use Matrix_Types;
package Matrix_30 is new
Generic_Matrix
(REAL => REAL6,
INDEX => INDEX3,
MATRIX => MATRIX33);

with Matrix_Types;
use Matrix_Types;
package Matrix_6D is new
Generic_Matrix
(REAL => REALS,
INDEX => INDEX6,
MATRIX => MATRIX66);

Nongeneric Solution

package Matrix3 is

type REALS is digits 6; .
type INDEX3 is range 1 ..3;
typeMATRIX33is
array (INDEX3.INDEX3) of REALS;

function "•*
(M1,M2:inMATRIX33)
return MATR1X33;

end MatrixS;

package body Matrix3 is

function "•*
(M1.M2:inMATRIX33)
return MATRIX33 is

R: MATRIX33;
begin

return R;
end'.";

end Matrix3;

package MatrixS Is

type REALS is digits 6;
type INDEX6 is range 1 ..6;
type MATRIXES is
array (INDEX6.INDEX6) of REALS;

function *•*
(M1.M2: in MATRIXES)
return MATRIX66;

end MatrixS;

package body MatrixS is

function *•'
(M1.M2:inMATRIX66)
return MATRIX66 is

R:MATRIX66;
begin

return R;
end".";

end MatrixS;

6344G(30)-27

Figure 3-5. A Generic Solution and a Nongeneric Solution

3-13
6344

Table 3-5. CPU Time and Memory Usage for Generic Units

Experiment

3x3 Generic Unit

3x3 Nongeneric Unit

6x6 Generic Unit

6x6 Nongeneric Unit

CPU Time (\is)

117.5

117.5

768.8

737.5

Object Code Size
(bytes)

190

187

197

196

o

Generic
(3x3)

Non-
generic
(3x3)

Generic
(6x6)

Non-
generic

(6x6)

Time in u,s
Size in bytes

o>
e\i
o"

.

CO

0 100 200 300 400 500 600 700 800

Figure 3-6. Comparison of Times and Sizes for Generic Units

be necessary to exploit strong typing and encourage abstraction and information hid-
ing without adversely affecting performance (References 8, 9, and 10).

[NOTE: DEC Ada 2.0 supports the code-sharing algorithm for certain types of
generic units (Reference 11).]

3-14
6344

The implications of this test are as follows:

• Use a compiler that supports both inline expansion and code sharing of ge-
nerics.

• Use an inline expansion algorithm when few instantiations of a generic unit
are necessary or when a particular instantiation must be optimized at com-
pile time.

• Use a code-sharing algorithm when multiple instantiations of a generic unit
are necessary or when memory space must be optimized at compile time.

3.1.5 Conditional Compilation

3.1.5.1 PURPOSE

Section 10.6 (Program Optimization) of the Ada LRM (Reference 1) states:

A compiler may find that some statements or subprograms will never be
executed, for example, if their execution depends on a condition known to
be FALSE. The corresponding object machine code can then be omitted.
This rule permits the effect of conditional compilation within the language.

This optimization technique has applications throughout our software systems in flight
dynamics. A Boolean flag may be included with a generic unit that controls the accu-
racy of the resulting object code. For example, consider the following generic unit.

generic
Correct_For_Aberration_Effects : in BOOLEAN : = FALSE;

package Moon is
function Position (At_Time : in TIME_TYPE)

return GCI_ VECTOR;

end Moon;

In the body of the function Moon.Position, there is a block of code resembling the
following:

if Correct_For_Aberration_Effects then
. .. —code to do correction goes in here

end if;

For a dynamics simulator or for a mission in which the Moon's interference with sen-
sors is relevant, the generic might be instantiated with the correction flag set to TRUE
to achieve the greatest accuracy. However, for most other applications, the generic
would probably be instantiated with the correction set to FALSE. This would result in
less accurate, yet more efficient, executable code because the "if" statement could be
completely optimized away.

3-15
6344

3.1.5.2 METHOD

Current flight dynamics simulators check a run-time variable to determine whether
the user selected debug output. This test addressed the run-time overhead of having
an infrequently used feature in a delivered system. The alternative examined was the
use of a compilation time constant.

The test involved the debug output capability that is included in all of the simulators
developed in the FDD. The package Debug_Collector was originally developed on
the GRODY project. The package's capabilities were expanded on the GOADA
project to handle two floating-point types (single and double precision). The package
was modified to be generic on the Upper Atmosphere Research Satellite (UARS)
telemetry simulator (UARSTELS) project. Finally, the package was optimized on the
EUVETELS project.

The optimizations incorporated by the EUVETELS project included the use of
pragma INLINE for functions that other components in the system use to determine
whether the tfser has enabled debug output. In addition, a Boolean formal parameter
(Debug On) was added to the generic parameter list.

The test executed by the Ada performance study compared the cost of checking a run-
time variable against the cost of checking a compilation time constant. In both cases,
the variable/constant is set to FALSE to determine the run-time overhead associated
with having an infrequently used capability built into a system. This overhead includes
the CPU time and the amount of executable code generated. To achieve this, two
instantiations of the Debug_Collector package were used: the first sets the Debug_On
constant to TRUE, and the second sets the constant to FALSE.

3.1.5.3 RESULTS

As Table 3-6 shows, the CPU cost of checking a run-time variable that is set to FALSE
is approximately 1 ms, while the run-time CPU cost of checking a compilation time
constant that is set to FALSE is zero. This result suggests that the Ada compiler has
optimized away the "if" statement completely. Inspection of the assembly code con-
firmed this fact. The size of the executable code was also reduced due to this elimina-
tion.

Table 3-6. Conditional Compilation Results

Options

Run-Time Variable

Compilation-Time Constant

CPUto.Check(us)

0.9

0.0

63
44

G
(3

0)
-1

0

3-16
6344

3.1.5.4 ANALYSIS

The implications of this test exceed this simple debug example. One of the key points
demonstrated by this test was that the generality (and in the case of Ada,
"genericness") of the software was not sacrificed to gain a more CPU- and memory-
efficient system. This test has important implications for designers of reusable Ada
components:

• Proper design for reusable, generic components will provide sufficient flexi-
bility for designers of future missions to choose between accuracy and effi-
ciency without modifying the component.

3.1.6 Object-Oriented Programming

3.1.6.1 PURPOSE

Two of the fundamental principles of OOP are polymorphism and inheritance. Ada
does not directly support these principles. However, the designer may simulate the
effect of inheritance and polymorphism through the use of variant records and enu-
meration types. These OOP principles, whether direct or indirect, incur a certain
amount of run-time overhead and were intentionally excluded from the Ada language
because of potential performance problems. '-

3.1.6.2 METHOD

The first test method (inheritance method) passes specific sensor data into a subpro-
gram to process sensor data. The subprogram then uses a case statement to determine
which type of sensor data is being processed and calls the appropriate data processing
routine. The second test method calls the appropriate data processing routine directly.
The two test procedures and the Process Sensor Data subprogram are shown in Fig-
ure 3-7, along with the data structures used.

3.1.63 RESULTS

Results for the two tests are summarized in Table 3-7.

3.1.6.4 ANALYSIS

As expected, calling the subprogram to process the sensor data directly takes less time
than calling the intermediate subprogram to make the run-time decision about which
specific routine to call. Using the intermediate subprogram takes approximately 6 ms
longer than calling the desired subprogram directly. This extra expense may be con-
sidered small if the subprogram called consumes a large amount of CPU time (e.g.,
1000 ms). However, if this approach is a fundamental design decision and several lay-
ers of a class hierarchy are created in this fashion, nearly all subprogram calls could
incur this performance penalty. The implication of this test is as follows:

• When using the OOP principles of inheritance and polymorphism, minimize
the class hierarchy and maximize the processing performed by the subpro-
gram called.

3-17
6344

type KIND is (CSS, FSS, FHST);

type FSS_Type Is record
Alpha Beta: FLOAT;

end record;

type CSS_Type is record
Y. Z: FLOAT;

end record;

type FHST_Type is record
Theta, Phi: FLOAT;

end record;

type SENSOR (K: KIND) is record
case K is

when CSS => CSS_Stu«: CSS_Type
when FSS => FSS_Stuff: FSS_Type
when FHST => FHST_Stu«: FHSTJype;

end case;
end record;

FSS1: SENSOR(FSS);
X: INTEGER; -- control variable

procedure Process_Data (For_Sensor: in SENSOR) Is
begin

case For_Sensor.K is
when CSS => Process_CSS_Data;
when FSS => Process_FSS_Data;
when FHST => Process_FHST_Data;

end case;
end Process_Data;

procedure Test-Tag is
begin

X: =4; ~ control statement
Process_Data(FSS1);

end Test_Tag;

procedure Test_Direct Is
begin

X: =4; - control statement
Process_FSS_Data;

end Test Direct

Figure 3-7. Method for Simulating Inheritance and Polymorphism

Table 3-7. Measuring the Overhead Associated With OOP

Direct Method (|is)

3.2

OOP Method (us)

9.2

63
44

G
(3

0)
-1

2

3-18
6344

3.2 IMPLEMENTATION-ORIENTED TESTS

3.2.1 Matrix Storage

3.2.1.1 PURPOSE

Flight dynamics simulators use two-dimensional arrays in quantity. In some cases,
time could be saved by using the most efficient access method to these arrays. The
matrix storage test investigated the cost of the different addressing mechanisms of a
matrix.

3.2.1.2 METHOD

The test involved using a constrained integer matrix. The operations on the matrix
consisted of an assignment of a calculated value to the matrix cell. Three methods
were used to address the matrix indexes:

• Row-major order of processing

• Column-major order of processing

• A series of statements addressing each cell individually

Figure 3-8 shows the row- and column-major code fragments used for this test. The
third approach used a series nine of statements that replace the double for-loops.

Row-Major Addressing

for i In 1 ..3 loop -i
for j In 1 ..3 loop -j

Matrix(i, j) > <expression>;
end loop;

end loop;

Column-Major Addressing

for j In 1 ..3 loop -j
for i In 1..3 loop --i

Matrix(i, j) > <expression>;
end loop;

end loop;

8
o

3

Figure 3-8. Sample Code Segment From the Matrix Storage Test

3.2.1.3 RESULTS

The row-major order method of processing was the standard by which the test was
measured. This is the DEC Ada storage and addressing method when processing a
matrix. As shown in Figure 3-9 and Table 3-8, the column-major order method of
processing was nearly two times slower than the row-major order method. The fastest
method of access was to assign each matrix cell individually.

3.2.1.4 ANALYSIS

The reason for the higher cost of column-major processing was the additional memory
management necessary to move the assigned value into each cell. As mentioned

3-19
6344

Individual

Row
Major

Column
Major

10 15 20 25 30 35

Figure 3-9. Comparison of Times (u,s) for Matrix Storage

Table 3-8. CPU Time (u.s) Results of the Matrix Storage Test

Access Method '

Row-major processing

Column-major processing

Series of individual statements

CPU Time (p.s)

17.2

30.5

5.9

previously, the DEC Ada method for storing matrixes in memory is row major. This
makes row-major addressing a simple operation of addition to the current memory
location to get to the next memory location. When accessing a matrix in a column-
major mode, the address calculation is more complex and requires more CPU time to
complete.

When using a series of individual statements to access the matrix, the CPU time was
significantly reduced. This created more source and object code but allowed the com-
piler to optimize away the matrix address calculations. Instead of referencing a matrix
by two variable indexes, the code was written to access a literal index [e.g.,
matrix(l,l)]. Because the matrix type was constrained, the code was checked at

3-20

6344

compile time for any range or access errors, and therefore the run-time version did not
include these checks. The implications of this test follow:

• For most Ada implementations (in this case, DEC Ada), the recommended
method of matrix processing is row major.

• It is more time efficient to reference each element individually. For small
arrays, this method would only slightly increase the size of the executable
code.

3.2.2 Logical Operators

3.2.2.1 PURPOSE

The logical operators test group compares different methods of implementing com-
pound logical expressions. Comparisons are made of tests with and without short cir-
cuit operators and with nested "if" statements, where applicable. The same tests were
run with compound expressions of two variables, two external function calls, and a
variable and an external function call, resulting in a total of three experiments with
multiple tests each.

3.2.2.2 METHOD

Each test in this experiment was designed and developed using the PIWG methodol-
ogy. There are five test procedures ("and," "and then," "or," "or else," nested "if"),
each containing two input Boolean parameters, a and b, which are used in the com-
pound logical expression. Each test was run twice, first with the first input parameter
(a) equal to TRUE and second with the first input parameter (a) equal to FALSE. This
input parameter (a) is used in the first half of the compound logical expression and
determines whether short circuiting is possible. For the "and," "and then," and nested
"if" tests, the second input parameter (b) defaults to FALSE. For the "or" and "or
else" tests, the second input parameter (b) defaults to TRUE. The tests are organized
into three experiments as described below.

METHOD FOR a < boolean operator > b TESTS

The first set of tests compares expressions of the form

a and b

a and then b

a or b

a or else b

where a and b are parameters input to the test procedures. In addition, a nested "if"
test of the form "if a then if b" was run to compare the results to the "and" and "and

3-21
6344

then" results. Two sets of tests were run, one with a set to TRUE and one with a set to
FALSE.

METHOD FOR f(a) < boolean expression > (b) TESTS

The second set of tests compares expressions of the form

/(a) and/p)

/(a) and then f(b)

/(a) orf(b)

/(a) or else f(b)

where a andb are parameters input to the test procedures and the external function/
returns whatever Boolean value its argument possesses. Two sets of tests were run, one
with a set to TRUE and one with a set to FALSE.

METHOD FOR a < boolean expression > f(b) TESTS

The third set of tests compares expressions of the form

a and/(&)

a and then/(6)

a or/0)

a or else f(b)

where a and 6 are parameters input to the test procedures and the external function/
returns whatever Boolean value its argument possesses. Two sets of tests were run, one
with a set to TRUE and one with a set to FALSE.

3.2.23 RESULTS

Results from each of the experiments are presented in Tables 3-9,3-10, and 3-11. The
nested "if" test was not replicated for the "/(a) < boolean expression >/(6)" tests or the
"a < boolean expression >/(£)" tests because of its similarity to the "and then" short
circuit form demonstrated in Table 3-9.

3.2.2.4 ANALYSIS

ANALYSIS OF a < boolean operator > b TESTS

Examination of the assembly code for the tests with and without short circuit operators
shows that the compiler generates the same code for both sets of tests; that is, short
circuiting is performed in all cases. Because of this, the CPU times for the "and" and

3-22
6344

Table 3-9. Test Results of a < boolean operator > b

A

TRUE

TRUE

TRUE

FALSE

FALSE

FALSE

TRUE

TRUE

FALSE

FALSE

B

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

TRUE

TRUE

TRUE

TRUE

Operator

and

and then

if A then if B

and

and then

if A then if B

or

or else

or

or else

CPU time ((is)

1.6

1.5

1.5

0.9

1.1

1.2

0.5

0.4

0.5

0.5
o
m
<o

Table 3-10. Test Results of f(a) < boolean expression > f(b)

F(A)

TRUE

TRUE

FALSE

FALSE

TRUE

TRUE

FALSE

FALSE

F(B)

FALSE

FALSE

FALSE

FALSE

TRUE

TRUE

TRUE

TRUE

Operator

and

and then

and

and then

or

or else

or

or else

CPU time (us)

15.2

15.2

15.2

8.0

15.0

8.1

14.9

15.0

6
3
4
4
G

(3
0
)-

1
8

3-23
6344

Table 3-11. Test Results of a < boolean expression > f(b)

A

TRUE

TRUE

FALSE

FALSE

TRUE

TRUE

FALSE

FALSE

F(B)

FALSE

FALSE

FALSE

FALSE

TRUE

TRUE

TRUE

TRUE

Operator

and

and then

and

and then

or

or else

or

or else

CPU time (us)

8.0

8.3

7.9

0.9

7.3

0.7

7.5

8.0

6
3
4
4
G

(3
0
)-

U

"and then" tests were effectively the same (negligible differences due to i he effects of a
nonstandalone machine), and the CPU times for the "or" and "or else" tests were
effectively the same (negligible differences due to the effects of a nonstandalone ma-
chine).

ANALYSIS O¥J(a) < boolean expression >J[b) TESTS

Examination of the assembly code showed that the tests act as expected; that is, short
circuiting is only performed for the "and then" and "or else" tests. Therefore, in cases
where both expressions do not have to be evaluated because/(a) is FALSE in the "and
then" case or/(a) is TRUE in the "or else" case, the short circuit tests are faster. In the
other cases, the CPU times are effectively the same (differences due to the effects of a
nonstandalone machine).

ANALYSIS OF a > boolean expression >f(b) TESTS

Examination of the assembly code for the "and" and "or" tests shows that the compiler
evaluates the function call first and then performs short circuiting logic. To allow for
the chance that the function may change the variable a, the contents of a are moved to
a different location before the function call. If a must be evaluated, the contents of this
new location are evaluated, not the contents of the original location for a.

Because/(6) is always FALSE for the "and" tests andf(b) is always TRUE for the "or"
tests, these tests only require evaluation off(b) for reasons described in the preceding
paragraph. It should be noted that small differences in the numbers [e.g., 8.0 for the
first test to evaluate/(6) and 7.9 for the third test for the same task] should be treated as

3-24
6344

system "noise" (the effects of a nonstandalone machine) and that the numbers should
be treated as effectively equal.

3.2.2.5 SUMMARY ANALYSIS

The DEC Ada compiler will short circuit a Boolean expression whenever possible.
This possibility occurs when at least one of the Boolean operands is a variable. This
automatic short circuiting is not possible when both operands are function calls. In
this case, the function calls may have desired side effects and both must be executed
unless explicit short circuiting is specified. The implication of the logical operators test
group is as follows:

• Short-circuit Boolean forms should be used to act as a guard for the second
expression (Reference 7). Additionally, short circuit Boolean forms may be
used to explicitly short circuit an expression containing function calls for
performance-critical applications.

3.2.3 pragma INLINE

3.23.1 PURPOSE

Flight dynamics simulators contain a large number of procedure and function calls to
simple call-throughs and selectors. The overhead of making these calls can slow the
performance of any simulator. This test measured the use of pragma INLINE as an
alternative to calling a routine.

3.23.2 METHOD

A two-step method was studied in this experiment. First two routines were written and
compiled without any pragma. Those routines were then copied and pragma INLINE
was added to the code of each procedure. The two test cases included a procedure to
multiply a number and a procedure that did nothing (a stub). The following experi-
ments make up the test:

• Make an external procedure call to do an operation

• Make an external stub call to do nothing

• Make the same call as in test 1 but use pragma INLINE

• Make the same call as in test 2 but use pragma INLINE

The results should indicate that the use of pragma INLINE improves performance
while sacrificing compiled code size. The pragma INLINE directive will bring in the
external reference and do the operations of the procedure in the body of the calling
routine. The bottom line is that this may be a significant performance enhancement to
Ada while allowing the designer to retain the modularity of the design.

3-25
6344

3.2-33 RESULTS

The comparisons show that the calls to the routines compiled with pragma INLINE
were much faster than those compiled without. As Table 3-12 shows, using this com-
piler directive improved the performance of the test routines by more than ten-fold.

Table 3-12. Measuring the Effect of pragma INLINE

Method

Call a procedure to do an operation

Call a STUB to do nothing

Call a procedure to do an operation
(INLINE)

Call a STUB to do nothing (INLINE)

CPU time (us)

59.0

45.9

6.3

0.4

8

3.23.4 ANALYSIS

Pragma INLINE allows the compiler to build the code of the external procedure into
the main calling body. Because no overhead in stack maintenance and address change
exists for the subroutine call, pragma INLINE improves performance. If parameters
are passed to the called routine, performance will improve even more. If a procedure
is called from only one location, the final code size may not increase at all. In fact, due
to the elimination of stack maintenance and address changing, the executable size may
decrease.

A compilation issue must be understood when using the pragma INLINE. The com-
pile time cost can be much higher when the inlined subprogram is changed. This
change requires all the units that call the subprogram to be recompiled so that the new
or modified object code can be "re-inlined." The solution is to leave out the pragma
INLINE directive until the procedure has reached its final state. At this time, the di-
rective can be added with the effect of recompiling only once.

The implication for the use of pragma INLINE is as follows:

• Use pragma INLINE when the subprogram is small and its expected use is
to be referenced in few locations and be called several times dynamically.

3.2.4 String-to-Enumeration Type Conversion

3.2.4.1 PURPOSE

Current flight dynamics simulators contain a central logical data base. The physical
data are distributed throughout the simulators in the appropriate packages. The

3-26
6344

logical data base provides keys (strings) that map into the physical data. The logical
data base converts these strings to the appropriate enumeration type to retrieve the
corresponding data. This test assesses the performance implications of this approach.

3.2.4.2 METHOD

The PC A analysis indicated that the string manipulation and conversion to an enumer-
ation type was consuming 14.5 percent of GOADA's CPU time. In addition, the
several calls to the logical data base package were suspected of consuming a signifi-
cant amount of CPU time. References to the logical data base package were modified
to call the appropriate package directly, rather than using the logical data base. The
differences between the two methods are shown using PDL in Figure 3-10. The main
difference between the two approaches is the time in which certain decisions are made.
In the logical data base approach, the decision of what package to call and what enu-
meration type to use is made at run time. In the direct call approach, these decisions
are made at compile time.

Logical Data Base Approach Direct Call Approach

1. Call logical data base
CPrefixJdentifier")

2. Extract the Prefix

3. Determine package from the Prefix

4. Convert the keys to the appropriate enumeration type

5. Call the appropriate package
(EnumerationJJteral)

1. Call the appropriate package
(EnumerationJJteral)

8
o
3
S

Figure 3-10. PDL Comparison of Logical Data Base and Direct Call
Approaches

3.2.43 RESULTS

As shown in Table 3-13, the change to direct referencing improved GOADA's per-
formance by 70 seconds, or 17.3 percent. The use of the logical data base was re-
stricted.to the user interface.

[NOTE: A similar performance improvement was observed during the performance
tuning phase of the EUVETELS software development project (Refer-
ence 4).]

3-27
6344

Table 3-13. Results From Logical Data Base Versus Direct Call

Time

Total CPU Time

Baseline Version of
GOADA

6:45

Direct Call
Approach

5:35

63
44

G
(3

0)
-2

3

3.2.4.4 ANALYSIS

The conversion from string to an enumeration literal is CPU intensive compared with
the numerical operations typically performed in a dynamics simulator. The implica-
tion of this test is as follows:

• Restrict string-to-enumeration type conversions to non-CPU critical seg-
ments of the system. Statically binding to a package and type, rather than
dynamically converting and testing, is the preferred method within
performance-critical loops (e.g., simulation loop).

3-28
6344

SECTION 4-CONCLUSIONS

The Ada performance study had three objectives: (1) to determine which design and
implementation alternatives lead to accelerated run times; (2) to determine what, if
any, trade-offs are made by choosing these alternatives; and (3) to develop guidelines
to aid future Ada development efforts in the FDD. Section 4.1 summarizes the lessons
learned about the compiler and current design and implementation approaches. Sec-
tion 4.2 summarizes the results of each of the performance tests described in Section 3
and provides recommendations for future development projects.

4.1 LESSONS LEARNED

A valuable side effect of this performance study is a much better understanding of both
the software development environment and the current design and implementation
approaches of FDD simulators. Section 4.1.1 summarizes the lessons learned about
the DEC Ada 1.5-44 version of the compiler. Section 4.1.2 summarizes the lessons
learned about current simulator development.

4.1.1 Compiler Options and Problems

The DEC Ada 1.5-44 compiler, Ada Compilation System (ACS), and the VAX soft-
ware engineering tools (VAXset) represent one of the more mature Ada development
environments available. Many optimization features were discovered by reviewing
the intermediate assembler code generated by the compiler. However, as with any
large software system, some known limitations and bugs exist.

The following optimizations performed by the compiler were discovered during the
course of this study:

• Array assignment is implemented as a single "block move" command rather
than individual component moves (see test group 1, scheduling).

• Using pragma SUPPRESS_ALL will not only eliminate the run-time con-
straint checks but will eliminate all constraint checking and exception han-
dling object code (see test group 2, unconstrained structures).

• Although subprogram elaboration code might be a large portion of the sys-
tem, the CPU consumption is minimal (see test group 3, initialization and
elaboration).

• The compiler recognizes and eliminates unreachable code even when a
combination of pragma INLINE and generics is used (see test group 5, con-
ditional compilation).

4-1
6344

• Compound Boolean expressions are automatically short circuited whenever
possible (see test group 7, logical operators).

The following limitations were discovered or considered to be significant to Ada de-
velopment:

• Using a nested-loop algorithm with unconstrained arrays is inefficiently
implemented with significant loop-invariant object code (see test group 2,
unconstrained structures).

• Local composite objects that are not referenced, either through accident or
intent, are not optimized away (see test group 3, initialization and elabora-
tion).

• Code-sharing among similar instantiations of generic units is not possible
(see test group 4, generic units).

• The PCA does not display the CPU time profiles of nested units and over-
loaded operators in a straightforward manner.

The latest version of the DEC Ada compiler (2.0-18) seems to correct some of these
problems. Further analysis of this new compiler release is necessary before any final
determination can be made.

4.1.2 Estimating Simulator Performance

As a result of this performance study, more accurate estimation of run-time perform-
ance for future FDD simulators is possible. Assuming future dynamics simulators are
similar in function to GOADA, a more accurate performance estimation is possible
given the following information:

• The run-time performance for a typical run of the GOADA simulator is 6
minutes, 45 seconds for a 20-minute simulation. This yields a 1:3 simulation
time-to-real time ratio.

• The performance profile generated by PCA of a typical GOADA run (see
Figure A-2) shows the distribution of the CPU run-time resource through-
out the simulator.

• The results of this study suggest more optimal design and implementation
alternatives.

Table 4-1 combines the results of the Ada Performance Study with the PCA perform-
ance profile of GOADA.

The first row of Table 4-1 shows the performance difference between the baseline
scheduler in GOADA and the looping scheduler alternative (see test group 1, schedul-
ing).

4-2

6344

Table 4-1. Impact of Measured Performance Results on Dynamics
Simulators

Alternative

1 . Looping scheduler

2. Bypass logical data base

3. Conditional compile debug code

4. Use static data structures

5. Optimized utility packages

Total Percentages

GOADA

10.7%

14.5%

2.1%

45.0%

26.6%

98.9%

Study
Results

2.2%

1 .8%

0.0%

13.0%

5.3%

22.3%

Difference

8.5%

12.7%

2.1%

32.0%

21.3%

76.6%

6
3
4
4
G

(3
0
)-

2
4

Another option is to use the hard-coded approach for the scheduler. However, the
hard-coded approach sacrifices all flexibility in the interest of performance. For this
reason, the more flexible looping approach is the recommended alternative.

The second row highlights the difference between accessing the logical data base and
accessing the physical data directly (see test group 10, string-to-enumeration conver-
sion). The third row recommends the conditionally compiled debug code (see test
group 5, conditional compilation). The fourth row is the estimated result of using a
static record structure instead of a dynamic structure in all simulator packages (see test
group 2, unconstrained structures).

The fifth row is based on the result of comparing GOADA's baseline matrix multiply
function with the optimized matrix multiply function (Reference 12). Because the
FDD deals with mainly three dimensions, an optimized set of utilities can be devel-
oped on that basis. The fully optimized version required less than one-fifth of the CPU
time required for the baseline version.

As Table 4-1 shows, a dynamics simulator that is similar to GOADA and is implem-
ented with the results of this study would consume 76.6 percent less CPU than the cur-
rent version, more than quadrupling the speed. This would yield an upper bound
estimate of 95 seconds to perform a 20-minute simulation run, or approximately a
1:13 simulation time-to-real time ratio.

This estimate is an upper bound for three reasons. First, this study examined a repre-
sentative, rather than exhaustive, list of design and implementation alternatives; that
is, only those alternatives that held the most promise of a large performance difference
were studied. Many other alternatives may be available that offer only minor gains.
However, the combined performance gain of all alternatives may be significant.

4-3
6344

Second, coding optimizations to GOADA, or any simulator, were not studied. The
goal of this study was to identify which design and implementation alternatives would
lead to optimal systems. Line-by-line micro-optimizations on a simulator only provide
information on final efficiency and lack the needed information on how to systemati-
cally predict and achieve that level of efficiency.

Finally, the DEC Ada 1.5-44 compiler is a relatively error-free first attempt at an Ada
compilation system. The next generation of Ada compilers, which include DEC
Ada 2.0, is now available on the market. These second-generation compilation sys-
tems represent improvements in the user (programmer) interface, including efficiency
improvements.

4.2 RECOMMENDATIONS

This section summarizes the results from the performance tests described, in detail, in
Section 3. The recommendations for developers of future FDD Ada systems are sepa-
rated by life-cycle phase with potential trade-offs and the associated test group(s) iden-
tified.

4.2.1 Requirements Analysis

One recommendation affects the requirements analysis and early design phases of a
project.

R-l. Match the data in the problem space (flight dynamics) to the appropri-
ate data structure in the solution space.

Trade-offs: None

Reference: Test group 1, scheduling

4.2.2 Design

Five recommendations affect the design phase of a project.

R-2. Match the algorithm to both the data structure and the data.

Trade-offs: None

Reference: Test group 1, scheduling, and test group 2, unconstrained
structures.

R-3. Design procedures and functions for each package that map data of a
general type to the data (hidden) optimal type.

Trade-offs: More lines of code

Reference: Test group 2, unconstrained structures

4-4

6344

R-5. Design generic components to allow users to choose between accuracy
and efficiency.

Trade-offs: Higher complexity, more lines of code

Reference: Test group 5, conditional compilation

R-6. Performance-critical loops should not include any string-to-
enumeration conversions.

Trade-offs: Less generality, more lines of code

Reference: Test group 10, string-to-enumeration conversion

4.2.3 Implementation

Three recommendations affect the implementation phase of a project.

R-7. Looping structures should access arrays in row-major order.

Trade-offs: None

Reference: Test group 7, matrix storage

R-8. Use attributes wherever possible when unconstrained structures are
necessary.

Trade-offs: None

Reference: Test group 2, unconstrained structures

R-9. Only use short-circuit control forms for performance reasons when the
expression contains function calls that have no side effects.

Trade-offs: None

Reference: Test group 6, logical operators

4.2.4 Maintenance

One recommendation affects the maintenance phase of a project.

R-10. Modifications must address both the algorithmic and the data struc-
ture changes to ensure that they both still match the problem.

Trade-offs: None

Reference: Test group 1, scheduling

4-5

6344

APPENDIX A-APPROACH TO MEASUREMENT

To measure the run-time performance of design alternatives and language features,
two fundamental approaches were used. The first approach measured the run-time
improvement of existing systems after an alternative had been incorporated into a
baseline version of the system. The second approach used the ACM SIGADA PIWG
test suite and added tests specific to the flight dynamics environment.

A.1 OVERVIEW

Benchmark programs are commonly used to evaluate the performance of design alter-
natives and language features. Such benchmark programs include: (1) sample appli-
cations such as sorting programs or, as in the FDD, simulators; (2) programs to
measure the overhead associated with a design alternative or language feature; and'
(3) synthetic benchmarks designed to measure the time needed to execute a represen-
tative mix of statements (e.g., Whetstone, Dhrystone) (Reference 13). The first ap-
proach used by this study falls into the first benchmark category, and the second
approach falls into the last two.

To measure the overhead of a design alternative or language feature, the dual-loop
approach is used to subtract the overhead associated with control statements that aid
in performing the measurement. This approach utilizes a control loop and a test loop;
the test loop contains everything contained in the control loop, plus the alternative
being measured. This is described further in Section A.3. A major factor in designing
a dual-loop benchmark is compiler optimization. It is critical that the code generated
by the compiler for both loops be identical except for the quantity being measured
(Reference 14). In addition, it is necessary to ensure that the statement or sequence of
statements being tested does not get optimized away.

Although the dual-loop approach can be used for synthetic benchmarks and applica-
tions, this technique is not required if the running time of the program is long in com-
parison to the system clock resolution (Reference 14). Instead, the CPU time can be
sampled at the beginning of the program and again after a number of iterations of the
program. The time for the benchmark/application is then (CPU_Stop minus
CPU_Start)/Number_Iterations. The same measurement can be achieved by submit-
ting the test program to run as a batch job and obtaining the CPU time from the batch
log file. This CPU time can then be divided by the number of times the sequence of
statements being measured is executed in the main control loop of the test program.

It is important to understand the run-time environment in which the benchmarks are
run when interpreting test results. VMS checks the timer queues once per second,
which can affect measurement accuracy. Under VMS, the Ada run-time system is
bundled with the release of the operating system and is installed as a shareable execut-
able image. Consequently, DEC Ada performance is directly dependent on the

A-l
6344

installed version of VMS. There is also a degree of uncertainty present when using
CPU timers provided in time-shared systems like VMS. In the presence of other jobs,
CPU timers charge ticks to the running process when the wall clock is updated. It is
therefore possible for time to be charged to active processes inaccurately, since con-
text switches can occur at any time. Finally, it cannot be assumed that running bench-
marks for a hosted system in batch during low utilization (e.g., at 11 p.m.) guarantees
standalone conditions (References 14 and 15). Therefore, the benchmarks to test in-
dividual design alternatives were run on the weekend to minimize these effects.

A.2 FIRST APPROACH - SIMULATOR

Several of the design alternatives examined by this study were tested and analyzed in
the context of an FDD simulator, GOADA. Alternatives were chosen to be implem-
ented in the context of this simulator for the following reasons:

1. They were simulator-specific (e.g., different ways of implementing the
scheduler).

2. They could be implemented in an isolated part of the simulator where their
impact could easily be measured using the VAX PC A.

3. They could be implemented in an isolated part of the simulator and still have
a measurable effect on the time required for a 20-minute simulation run.

The baselined version of GOADA was used to test each of the design alternatives.
CPU times were obtained for 20-minute simulation runs of the baselined version from
the log files created by batch runs. PCA was used to obtain a profile of the simulator.
This profile showed what percentage of the CPU time was spent in each Ada package
of the simulator. The VAX manual Guide to VAX Performance and Coverage Analyzer
(Reference 16) contains more information on PCA.

Design alternatives were incorporated into the baselined version of the simulator.
New CPU times were obtained for 20-minute simulation runs from the log files
created by batch runs and new profiles obtained using PCA. Figure A-l shows the
accounting information contained in a batch log file, and Figure A-2 shows sample
PC A output. From these two pieces of information, the impact of each design alterna-
tive was assessed.

Accounting information
Buffered I/O count: 109 Peak working set size: 4096 £
Direct I/O count: 1132 Peak page file size: 15304 g
Page faults: 11766 Mounted volumes: 0 ef
Charged CPU time: 000:06:45.08 Elapsed time: 000:09:02.47 |

to

Figure A-1. Sample Batch Log File Accounting Information

A-2
6344

VAX Perforr.ar.ee ar.d Ccverace A.-. .1 lyre
CPU Sampling Dac-a r_:219 =--.r.a "ot.-.zs -=-••_

Bucket Name
?ROGRAM_ADDRESS\
UTILITIES_
SIMULAT.ION_SCHEDULE
R

S£ARCH_STRING . .
5?ACECRAFT_ATTITUDE
DATABASE_MANAGER .
ADDING_UTILITIES .
EARTH_SENSOR . . .
oTILITIES_LONG_ .
DATABASE_TYPES_ .
S?ACECRAFT_WHEELS
ACCS_PROCESSOR . .
S?ACECRAFT_EPHEMERI
5

ENVIRONMENTAL_TORQU
-.5

THRUSTERS
GEOMAGNETIC_FIELD
DEBUG_COLLECTOR .
MAGNETOMETER . . .
SADA
SOLAR_SYSTEM . . .
MTA
TTDM
TIMER
DIRA
THRUSTER_COMMAND .
EARTH_ATMOSPHERE .
HARDWARE_UTILITIES
TACHOMETER
TCKEPL
IMAGER_DEVICE . .
DSSA
SOONDER_DEVICE . .
GYRO CONVERTER . .

23.2%

10.7%

7.5%
7.5%
7 . C%
4 .7%
3.7%

3.0%
2.9%
2.9%
2.6%

2 .5%

2.3%
2 .2%
2.2%
2.1%
1.7%
.4%
.2%
.1%
.0%

0.9%
0.6%
O.S%
0.5%
0 .5%
0.3%
0.3%
0.3%
0.3%
0.3%
0.2%

Figure A-2. Sample PCA Output

A.3 SECOND APPROACH - PIWG

Design alternatives not isolated to a particular part of the simulator were tested using
the PIWG structure of measurements. The PIWG structure of measurements is based
on the concept of a control loop and a test loop. The test loop contains everything in
the control loop, plus one alternative to be measured. The CPU time is sampled
before the execution of each loop and after many iterations of each loop. If the test
loop time duration is not considered stable, the process is repeated with a greater
number of iterations; this is accomplished through the presence of an outer loop
surrounding the test and control loops. To be considered stable, the test loop time
duration must be greater than a predefined minimum time. If this condition is met, the
test loop time duration is compared against the control loop time duration, and the

A-3
6344

number of iterations is compared against a predefined minimum number of iterations.
If the test loop time is greater than the control loop time or the minimum number of
iterations has been exceeded, the results are considered stable and the CPU time for
the design alternative is calculated. The time for the alternative is the difference be-
tween the amount of CPU time taken for the control loop and the amount of CPU time
taken for the test loop, divided by the total number of iterations performed. Collect-
ing control loop and test loop CPU times, calculating design alternative times, and
testing for stability were done using PIWG's Iteration package in the test drivers for
this study.

All test drivers used in this study were called three times from a main driver routine so
that the CPU time for a given design alternative could be averaged for more accuracy.
All results were averaged and recorded using PIWG's I/O package and report genera-
tor procedure. A sample PIWG report is contained in Figure A-3.

Test Name: Generic_A
CPU Time: 117.2 microseconds
Wall Time: 117.2 microseconds

Test Description:
Use of generic matrix processing
- Generic package for 3x3 matrix

Class Name: Matrix - Gen

Iteration Count: 128
Number of samples: 3

Test Name:
CPU Time:
Wall Time:

Generic_C
117.2 microseconds
117.2 microseconds

Test Description:
Use of generic matrix processing
- NonGeneric package for 3x3 matrix

Class Name: Matrix - Gen

Iteration Count: 128
Number of samples: 3

Figure A-3. Sample PIWG Report

As mentioned in Section A.1, some of the tests using this approach fall into the cate-
gory of "synthetic benchmarks." The synthetic benchmarks in the PIWG test suite
sample the CPU time before and after many iterations of the sequence of statements
being tested and then divide the difference of these two times by the number of itera-
tions. The synthetic benchmarks developed from this study use the batch job approach
and obtain the CPU time from the log file generated when the benchmark is submitted
to be run in batch.

A-4
6344

GLOSSARY

ACM

CPU

DEC

EMS

ESA

EUVE

EUVEDSIM

EUVETELS

FDD

GOADA

GOES

GOESIM

GRO

GRODY

GROSS

GSFC

I/O

LRM

OOD

OOP

PCA

PIWG

SAMPEXTS

SEL

SIGADA

UARS

UARSTELS

VAXset

VMS

Association for Computing Machinery

central processing unit

Digital Equipment Corporation

electronic mail system

Earth sensor assembly

Extreme Ultraviolet Explorer

EUVE dynamics simulator

EUVE telemetry simulator

Flight Dynamics Division

GOES attitude dynamics simulator in Ada

Geostationary Operational Environmental Satellite

GOES telemetry simulator

Gamma Ray Observatory

GRO attitude dynamics simulator in Ada

GRO attitude dynamics simulator in FORTRAN

Goddard Space Flight Center

input/output

language reference manual

object-oriented development

object-oriented programming

performance coverage analyzer

performance issues working group

Solar, Anomalous, and Magnetospheric Particle Explorer
telemetry simulator

Software Engineering Laboratory

special interest group on Ada

Upper Atmosphere Research Satellite

UARS telemetry simulator

VAX software engineering tools

virtual memory system

6344

G-l

REFERENCES

1. Ada Programming Language, American National Standards Institute/Military
Standard 1815A, January 1983 (ANSI/MIL-STD-1815A-1983)

2. Computer Sciences Corporation, SEL-88-003, Evolution of Ada Technology in
the Flight Dynamics Area: Design Phase Analysis, K. Quimby et al.,
December 1988

3. Goddard Space Flight Center, FDD/552-90/010, Software Engineering Labora-
tory (SEL) Study of the System and Acceptance Test Phases of Four Telemetry Sim-
ulator Projects, D. Cover, prepared by Computer Sciences Corporation,
September 1990

4. —, FDD/552-90/045, Extreme Ultraviolet Explorer (EUVE) Telemetry Simulator
(EUVETELS) Software Development History, E. Booth and R. Luczak, pre-
pared by Computer Sciences Corporation, June 1990

5. Booch, G., Object Oriented Design, The Benjamin/Cummings Publishing Com-
pany, Inc.: Redwood City, California, ISBN 0-8053-0091, 1991

6. Goddard Space Flight Center, SEL-87-006, A/a Style Guide, E. Seidewitz et al.,
June 1986

7. Byrne, D., and R. Ham, Results, Chapter J, Ada Versus FORTRAN Performance
Analysis Using theACPS, Ada Performance Issues, Ada Letters, A Special Issue,
Association of Computing Machinery, New York, New York,
ISBN 0-89791-354, vol. 10, no. 3, Winter 1990

8. Goddard Space Flight Center, FDD/552-89/006, Upper Atmosphere Research
Satellite (UARS) Telemetry Simulator (UARSTELS) Software Development
History, E. Booth and R. Luczak, prepared by Computer Sciences Corporation,
November 1989

9. Firesmith, D., "Two Impediments to the Proper Use of Adz"ACMSIGAdaAda
Letters, Association for Computing Machinery, New York, New York,
ISSN-076-721, vol. 7, no. 5, September/October 1987

10. Digital Equipment Corporation, VAX Ada Run-Time Reference Manual (Ver-
sion 2.0), May 1989

11. —, VAX Ada Reference Manual (Version 2.0), May 1989

12. Burley, R., Some Data from Ada Performance Study, internal FDD memoran-
dum, September 1990

13. Clapp, R., and T. Mudge, Rationale, Chapter 1—Introduction, Ada Performance
Issues, Ada Letters, A Special Issue, Association of Computing Machinery, New
York, New York, ISBN 0-89791-354, vol. 10, no. 3, Winter 1990

R-l
6344

14. Clapp, R., and T. Mudge, Rationale, Chapter 3—The Time Problem, Ada Per-
formance Issues, Ada Letters, A Special Issue, Association of Computing
Machinery, New York, New York, ISBN 0-89791-354, vol. 10, no. 3, Winter
1990

15. Gaumer, D. and D. Roy, Results, Reporting Test Results, Ada Performance
Issues, Ada Letters, A Special Issue, Association of Computing Machinery,
New York, New York, ISBN 0-89791-354, vol. 10, no. 3, Winter 1990

16. Digital Equipment Corporation, Guide to VAX Performance and Coverage Ana-
lyzer, June 1989

R-2
6344

STANDARD BIBLIOGRAPHY OF SEL LITERATURE

The technical papers, memorandums, and documents listed in this bibliography are
organized into two groups. The first group is composed of documents issued by the
Software Engineering Laboratory (SEL) during its research and development activi-
ties. The second group includes materials that were published elsewhere but pertain
to SEL activities.

SEL-ORIGINATED DOCUMENTS

SEL-76-001, Proceedings From the First Summer Software Engineering Workshop,
August 1976

SEL-77-002, Proceedings From the Second Summer Software Engineering Workshop,
September 1977

SEL-77-004, A Demonstration of AXES for NAVPAK, M. Hamilton and
S. Zeldin. September 1977

SEL-77-005, GSFC NAVPAK Design Specifications Languages Study, P. A. Scheffer
and C. E. Velez, October 1977

SEL-78-005, Proceedings From the Third- Summer Software Engineering Workshop,
September 1978

SEL-78-006, GSFC Software Engineering Research Requirements Analysis Study,
P. A. Scheffer and C. E. Velez, November 1978

SEL-78-007, Applicability of the Rayleigh Curve to the SEL Environment, T. E. Mapp,
December 1978

SEL-78-302, FORTRAN Static Source Code Analyzer Program (SAP) User's Guide
(Revision 3), W. J. Decker and W. A. Taylor, July 1986

SEL-79-002, The Software Engineering Laboratory: Relationship Equations,
K. Freburger and V. R. Basili, May 1979

SEL-79-003, Common Software Module Repository (CSMR) System Description and
User's Guide, C. E. Goorevich, A. L. Green, and S. R. Waligora, August 1979

SEL-79-004, Evaluation of the Caine, Farber, and Gordon Program Design Language
(PDL) in the Goddard Space Flight Center (GSFC) Code 580 Software Design Environ-
ment, C. E. Goorevich, A. L. Green, and W. J. Decker, September 1979

SEL-79-005, Proceedings From the Fourth Summer Software Engineering Workshop,
November 1979

BI-1
SELBIB
07/29/91

SEL-80-002, Multi-Level Expression Design Language-Requirement Level (MEDL-R)
System Evaluation, W. J. Decker and C. E. Goorevich, May 1980

SEL-80-003, Multimission Modular Spacecraft Ground Support Software System (MMS/
GSSS) State-of-the-Art Computer Systems/Compatibility Study, T. Welden,
M. McClellan, and P. Liebertz, May 1980

SEL-80-005M Study of the Musa Reliability Model, A. M. Miller, November 1980

SEL-80-006, Proceedings From the Fifth Annual Software Engineering Workshop,
November 1980

SEL-80-007, An Appraisal of Selected Cost/Resource Estimation Models for Software
Systems, J. F. Cook and F. E. McGarry, December 1980

SEL-80-008, Tutorial on Models and Metrics for Software Management and Engineering,
V. R. Basili, 1980

SEL-81-008, Cost and Reliability Estimation Models (CAREM) User's Guide,
J. F. Cook and E. Edwards, February 1981

SEL-81-009, Software Engineering Laboratory Programmer Workbench Phase 1
Evaluation, W. J. Decker and F. E. McGarry, March 1981

SEL-81-011, Evaluating Software Development by Analysis of Change Data,
D. M. Weiss, November 1981

SEL-81-012, The Rayleigh Curve as a Model for Effort Distribution Over the Life of
Medium Scale Software Systems, G. O. Picasso, December 1981

SEL-81-013, Proceedings From the Sixth Annual Software Engineering Workshop,
December 1981

SEL-81-014, Automated Collection of Software Engineering Data in the Software
Engineering Laboratory (SEL), A. L. Green, W. J. Decker, and F. E. McGarry,
September 1981

SEL-81-101, Guide to Data Collection, V. E. Church, D. N. Card, F. E. McGarry,
et al., August 1982

SEL-81-104, The Software Engineering Laboratory, D. N. Card, F. E. McGarry,
G. Page, et al., February 1982

SEL-81-107, Software Engineering Laboratory (SEL) Compendium of Tools,
W. J. Decker, W. A. Taylor, and E. J. Smith, February 1982

SEL-81-110, Evaluation of an Independent Verification and Validation (IV&V)
Methodology for Flight Dynamics, G. Page, F. E. McGarry, andD. N. Card, June 1985

BI-2

SELBIB
07/29/91

SEL-81-205, Recommended Approach to Software Development, F. E. McGarry,
G. Page, S. Eslinger, et al., April 1983

SEL-82-001, Evaluation of Management Measures of Software Development, G. Page,
D. N. Card, and F. E. McGarry, September 1982, vols. 1 and 2

SEL-82-004, Collected Software Engineering Papers: Volume 1, July 1982

SEL-82-007, Proceedings From the Seventh Annual Software Engineering Workshop,
December 1982

SEL-82-008, Evaluating Software Development by Analysis of Changes: The Data From
the Software Engineering Laboratory, V R. Basil! and D. M. Weiss, December 1982

SEL-82-102, FORTRAN Static Source Code Analyzer Program (SAP) System
Description (Revision 1), W. A. Taylor and W. J. Decker, April 1985

SEL-82-105, Glossary of Software Engineering Laboratory Terms, T. A. Babst,
F. E. McGarry, and M. G. Rohleder, October 1983

SEL-82-906, Annotated Bibliography of Software Engineering Laboratory Literature,
P. Groves and J. Valett, November 1990

SEL-83-001, An Approach to Software Cost Estimation, F. E. McGarry, G. Page,
D. N. Card, et al., February 1984

SEL-83-002, Measures and Metrics for Software Development, D. N. Card,
F. E. McGarry, G. Page, et al., March 1984

SEL-83-003, Collected Software Engineering Papers: Volume //, November 1983 ..

SEL-83-006, Monitoring Software Development Through Dynamic Variables,
C. W. Doerflinger, November 1983

SEL-83-007, Proceedings From the Eighth Annual Software Engineering Workshop,
November 1983

SEL-83-106, Monitoring Software Development Through Dynamic Variables
(Revision 1), C. W. Doerflinger, November 1989

SEL-84-101, Manager's Handbook for Software Development, Revision 1, L. Landis,
F. McGarry, S. Waligora, et al., November 1990

SEL-84-003, Investigation of Specification Measures for the Software Engineering
Laboratory (SEL), W. W. Agresti, V. E. Church, and F. E. McGarry, December 1984

SEL-84-004, Proceedings From the Ninth Annual Software Engineering Workshop,
November 1984

SEL-85-001, A Comparison of Software Verification Techniques, D. N. Card,
R. W. Selby, Jr., F. E. McGarry, et al., April 1985

BI-3
SELB1B
07/28/91

SEL-85-002, Ada Training Evaluation and Recommendations From the Gamma Ray
Observatory Ada Development Team, R. Murphy and M. Stark, October 1985

SEL-85-003, Collected Software Engineering Papers: Volume III, November 1985

SEL-85-004, Evaluations of Software Technologies: Testing, CLEANROOM, and
Metrics, R. W. Selby, Jr., May 1985

SEL-85-005, Software Verification and Testing, D. N. Card, C. Antle, and E. Edwards,
December 1985

SEL-85-006, Proceedings From the Tenth Annual Software Engineering Workshop,
December 1985

SEL-86-001, Programmer's Handbook for Flight Dynamics Software Development,
R. Wood and E. Edwards, March 1986

SEL-86-002, General Object-Oriented Software Development, E. Seidewitz and
M. Stark, August 1986

SEL-86-003, Flight Dynamics System Software Development Environment Tutorial,
J. Buell and P. Myers, July 1986

SEL-86-004, Collected Software Engineering Papers: Volume IV, November 1986

SEL-86-005, Measuring Software Design, D. N. Card, October 1986

SEL-86-006, Proceedings From the Eleventh Annual Software Engineering Workshop,
December 1986

SEL-87-001, Product Assurance Policies and Procedures for Flight Dynamics Software
Development, S. Perry et al., March 1987

SEL-87-002,,4</a Style Guide (Version 1.1), E. Seidewitz et al.. May 1987

SEL-87-003, Guidelines for Applying the Composite Specification Model (CSM),
W. W. Agresti, June 1987

SEL-87-004, Assessing the Ada Design Process and Its Implications: A Case Study,
S. Godfrey, C. Brophy, et al., July 1987

SEL-87-008, Data Collection Procedures for the Rehosted SEL Database, G. Heller,
October 1987

SEL-87-009, Collected Software Engineering Papers: Volume V,S. DeLong, November
1987

SEL-87-010, Proceedings From the Twelfth Annual Software Engineering Workshop,
December 1987

BI-4
SELBIB
07/2901

SEL-88-001, System Testingofa Production Ada Project: The GRODY Study, J. Seigle,
L. Esker, and Y. Shi, November 1988

SEL-88-002, Collected Software Engineering Papers: Volume VI, November 1988

SEL-88-003, Evolution of Ada Technology in the Flight Dynamics Area: Design Phase
Analysis, K. Quimby and L. Esker, December 1988

SEL-88-004, Proceedings of the Thirteenth Annual Software Engineering Workshop,
November 1988

SEL-88-005, Proceedings of the First NASA Ada User's Symposium, December 1988

SEL-89-002, Implementation of a Production Ada Project: The GRODY Study,
S. Godfrey and C. Brophy, September 1989

SEL-89-003, Software Management Environment (SME) Concepts and Architecture,
W. Decker and J. Valett, August 1989

SEL-89-004, Evolution of Ada Technology in the Flight Dynamics Area:
Implementation/Testing Phase Analysis, K. Quimby, L. Esker, L. Smith, M. Stark, and
F. McGarry, November 1989

SEL-89-005, Lessons Learned in the Transition to Ada From FORTRAN at NASA/
Goddard, C. Brophy, November 1989

SEL-89-006, Collected Software Engineering Papers: Volume VII, November 1989 j:

SEL-89-007, Proceedings of the Fourteenth Annual Software Engineering Workshop,
November 1989

SEL-89-008, Proceedings of the Second NASA Ada Users' Symposium, November 1989

SEL-89-101, Software Engineering Laboratory (SEL) Database Organization and User's
Guide (Revision 1), M. So, G. Heller, S. Steinberg, K. Pumphrey, and D. Spiegel,
February 1990

SEL-90-001, Database Access Manager for the Software Engineering Laboratory
(DAMSEL) User's Guide, M. Buhler and K. Pumphrey, March 1990

SEL-90-002, The Cleanroom Case Study in the Software Engineering Laboratory:
Project Description and Early Analysis, S. Green et al., March 1990

SEL-90-003, A Study of the Portability of an Ada System in the Software Engineering
Laboratory (SEL), L. O. Jun and S. R. Valett, June 1990

SEL-90-004, Gamma Ray Observatory Dynamics Simulator in Ada (GRODY)
Experiment Summary, T. McDermott and M. Stark, September 1990

SEL-90-005, Collected Software Engineering Papers: Volume VIII, November 1990

BI-5
SELB1B
07/29/91

SEL-90-006, Proceedings of the Fifteenth Annual Software Engineering Workshop,
November 1990

SEL-9 1-001, Software Engineering Laboratory (SEL) Relationships, Models, and
Management Rules, W. J. Decker, R. Hendrick, and J. Valett, February 1991

SEL-9 1-002, Software Engineering Laboratory (SEL) Data and Information Policy,
F. McGarry, April 1991

SEL-91-003, Software Engineering Laboratory (SEL) Ada Performance Study Report,
E. Booth and M. Stark, July 1991

SEL-RELATED LITERATURE
4Agresti, W. W., V. E. Church, D. N. Card, and P. L. Lo, "Designing With Ada for
Satellite Simulation: A Case Study," Proceedings of the First International Symposium
on Ada for the NASA Space Station, June 1986
2Agresti, W. W.,F. E. McGarry, D. N. Card, etal., "Measuring Software Technology,"
Program Transformation and Programming Environments. New York: Springer-
Verlag, 1984

Bailey, J. W., and V. R. Basili, "A Meta-Model for Software Development Resource
Expenditures," Proceedings of the Fifth International Conference on Software Engineer-
ing. New York: IEEE Computer Society Press, 1981

ili, V R., "Models and Metrics for Software Management and Engineering,"
ASME Advances in Computer Technology, January 1980, vol. 1

Basili, V. R., Tutorial on Models and Metrics for Software Management and Engineering.
New York: IEEE Computer Society Press, 1980 (also designated SEL-80-008)
3Basili, V. R., "Quantitative Evaluation of Software Methodology," Proceedings of the
First Pan-Pacific Computer Conference, September 1985
7Basili, V. R., Maintenance = Reuse-Oriented Software Development, University of
Maryland, Technical Report TR-2244, May 1989
7Basili, V. R., Software Development: A Paradigm for the Future, University of
Maryland, Technical Report TR-2263, June 1989
8Bailey, J. W., and V. R. Basili, "Software Reclamation: Improving Post-Development
Reusability," Proceedings of the Eighth Annual National Conference on Ada Technology,
March 1990
8Basili, V. R., "Viewing Maintenance of Reuse-Oriented Software Development,"
IEEE Software, January 1990

Basili, V R., and J. Beane, "Can the Parr Curve Help With Manpower Distribution
and Resource Estimation Problems!, "Journal of Systems and Software, February 1981,
vol. 2, no. 1

BI-6
SELBIB
07/29/91

ili, V. R., and K. Freburger, "Programming Measurement and Estimation in the
Software Engineering Laboratory," Journal of Systems and Software, February 1981,
vol. 2, no. 1

3Basili, V. R., and N. M. Panlilio-Yap, "Finding Relationships Between Effort and
Other Variables in the SEL," Proceedings of the International Computer Software and
Applications Conference, October 1985

4Basili, V. R., and D. PatnaikM Study on Fault Prediction and Reliability Assessment in
the SEL Environment, University of Maryland, Technical Report TR-1699, August
1986

2Basili, V R., and B. T. Perricone, "Software Errors and Complexity: An Empirical
Investigation," Communications of the ACM, January 1984, vol. 27, no. 1

ili, V. R., and T. Phillips, "Evaluating and Comparing Software Metrics in the Soft-
ware Engineering Laboratory," Proceedings of the ACM SIGMETRICS Symposium!
Workshop: Quality Metrics, March 1981

Basili, V R., and J. Ramsey, Structural Coverage of Functional Testing, University of
Maryland, Technical Report TR-1442, September 1984

3Basili, V. R., and C. L. Ramsey, 'ARROWSMITH-P— A Prototype Expert System for
Software Engineering Management," Proceedings of the IEEE/MITRE Expert Systems
in Government Symposium, October 1985 ' ,-

Basili, V. R., and R. Reiter, "Evaluating Automatable Measures for Software Develop-
ment," Proceedings of the Workshop on Quantitative Software Models for Reliability,
Complexity, and Cost. New York: IEEE Computer Society Press, 1979

5Basili, V, and H. D. Rombach, "Tailoring the Software Process to Project Goals and
Environments," Proceedings of the 9th International Conference on Software Engi-
neering, March 1987

5Basili, V, and H. D. Rombach, "T A M E: Tailoring an Ada Measurement Environ-
ment," Proceedings of the Joint Ada Conference, March 1987

5Basili, V, and H. D. Rombach, "T A M E: Integrating Measurement Into Software
Environments," University of Maryland, Technical Report TR-1764, June 1987

6Basili, V. R., and H. D. Rombach, "The TAME Project: Towards Improvement-
Oriented Software Environments," IEEE Transactions on Software Engineering, June
1988

7Basili, V. R., and H. D. Rombach, Towards A Comprehensive Framework for Reuse: A
Reuse-Enabling Software Evolution Environment, University of Maryland, Technical
Report TR-2158, December 1988

BI-7
SELB1B
07/2*91

8Basili, V. R., and H. D. Rombach, Towards A Comprehensive Framework for Reuse:
Model-Based Reuse Characterization Schemes, University of Maryland, Technical
Report TR-2446, April 1990
2Basili, V. R., R. W. Selby, Jr., and T. Phillips, "Metric Analysis and Data Validation
Across FORTRAN Projects," IEEE Transactions on Software Engineering, November
1983
3Basili, V. R., and R. W. Selby, Jr., "Calculation and Use of an Environment's Charac-
teristic Software Metric Set," Proceedings of the Eighth International Conference on
Software Engineering. New York: IEEE Computer Society Press, 1985

Basili, V. R., and R. W. Selby, Jr., Comparing the Effectiveness of Software Testing
Strategies, University of Maryland, Technical Report TR-1501, May 1985
3Basili, V. R., and R. W. Selby, Jr., "Four Applications of a Software Data Collection
and Analysis Methodology," Proceedings of the NATO Advanced Study Institute,
August 1985
4Basili, V. R., R. W. Selby, Jr., and D. H. Hutchens, "Experimentation in Software
Engineering," IEEE Transactions on Software Engineering, July 1986
5Basili, V, and R. Selby, Jr., "Comparing the Effectiveness of Software Testing
Strategies," IEEE Transactions on Software Engineering, December 1987
2Basili, V. R., and D. M. Weiss,/! Methodology for Collecting Valid Software Engineering
Data, University of Maryland, Technical Report TR-1235, December 1982
3Basili, V. R., and D. M. Weiss, "A Methodology for Collecting Valid Software Engi-
neering Data," IEEE Transactions on Software Engineering, November 1984

ili, V. R., and M. V. Zelkowitz, "The Software Engineering Laboratory:
Objectives," Proceedings of the Fifteenth Annual Conference on Computer Personnel
Research, August 1977

Basili, V. R., and M. V. Zelkowitz, "Designing a Software Measurement Experiment,"
Proceedings of the Software Life Cycle Management Workshop, September 1977

ili, V. R., and M. V. Zelkowitz, "Operation of the Software Engineering Labora-
tory," Proceedings of the Second Software Life Cycle Management Workshop, August
1978

ili, V. R., and M. V. Zelkowitz, "Measuring Software Development Characteris-
tics in the Local Environment," Computers and Structures, August 1978, vol. 10

Basili, V. R., and M. V. Zelkowitz, "Analyzing Medium Scale Software Development,"
Proceedings of the Third International Conference on Software Engineering. New York:
IEEE Computer Society Press, 1978

BI-8

SELBIB
07/29/91

5Brophy, C, W. Agresti, and V. Basili, "Lessons Learned in Use of Ada-Oriented
Design Methods," Proceedings of the Joint Ada Conference, March 1987
6Brophy, C. E., S. Godfrey, W. W. Agresti, and V. R. Basili, "Lessons Learned in the
Implementation Phase of a Large Ada Project," Proceedings of the Washington Ada
Technical Conference, March 1988
2Card, D. N., "Early Estimation of Resource Expenditures and Program Size,"
Computer Sciences Corporation, Technical Memorandum, June 1982
2Card, D. N., "Comparison of Regression Modeling Techniques for Resource Estima-
tion," Computer Sciences Corporation, Technical Memorandum, November 1982
3Card, D. N., "A Software Technology Evaluation Program," Annais do XVIII
Congresso Nacional de Informatica, October 1985
5Card, D., and W. Agresti, "Resolving the Software Science Anomaly," The Journal of
Systems and Software, 1987
6Card, D. N., and W. Agresti, "Measuring Software Design Complexity," The Journal
of Systems and Software, June 1988

Card, D. N., V. E. Church, W. W. Agresti, and Q. L. Jordan, "A Software Engineering
View of Flight Dynamics Analysis System," Parts I and II, Computer Sciences
Corporation, Technical Memorandum, February 1984
4Card, D. N., V E. Church, and W. W. Agresti, "An Empirical Study of Software
Design Practices," IEEE Transactions on Software Engineering, February 1986

Card, D. N., Q. L. Jordan, and V. E. Church, "Characteristics of FORTRAN
Modules," Computer Sciences Corporation, Technical Memorandum, June 1984
5Card, D., F. McGarry, and G. Page, "Evaluating Software Engineering Technolo-
gies," IEEE Transactions on Software Engineering, July 1987
3Card, D. N., G. T. Page, and F. E. McGarry, "Criteria for Software Modularization,"
Proceedings of the Eighth International Conference on Software Engineering. New York:
IEEE Computer Society Press, 1985
LChen, E., and M. V. Zelkowitz, "Use of Cluster Analysis To Evaluate Software Engi-
neering Methodologies," Proceedings of the Fifth International Conference on Software
Engineering. New York: IEEE Computer Society Press, 1981
4Church, V E., D, N. Card, W. W. Agresti, and Q. L. Jordan, "An Approach for
Assessing Software Prototypes," A CM Software Engineering Notes, July 1986
2Doerflinger, C. W., and V. R. Basili, "Monitoring Software Development Through
Dynamic Variables," Proceedings of the Seventh International Computer Software and
Applications Conference. New York: IEEE Computer Society Press, 1983

BI-9
SEIB1B
07/29/91

5Doubleday, D., ASAP: An Ada Static Source Code Analyzer Program, University of
Maryland, Technical Report TR-1895, August 1987 (NOTE: 100 pages long)

•
6Godfrey, S., and C. Brophy, "Experiences in the Implementation of a Large Ada
Project," Proceedings of the 1988 Washington Ada Symposium, June 1988

Hamilton, M., and S. ZeldinM Demonstration ofAXES for NAVPAK, Higher Order
Software, Inc., TR-9, September 1977 (also designated SEL-77-005)

Jeffery, D. R., and V. Basili, Characterizing Resource Data: A Model for Logical
Association of Software Data, University of Maryland, Technical Report TR-1848, May
1987

6Jeffery, D. R., and V. R. Basili, "Validating the TAME Resource Data Model,"
Proceedings of the Tenth International Conference on Software Engineering, April 1988
5Mark, L., and H. D. Rombach, A Meta Information Base for Software Engineering,
University of Maryland, Technical Report TR-1765, July 1987

6Mark, L., and H. D. Rombach, "Generating Customized Software Engineering Infor-
mation Bases From Software Process and Product Specifications," Proceedings of the
22nd Annual Hawaii International Conference on System Sciences, January 1989

5McGarry, R, and W. Agresti, "Measuring Ada for Software Development in the Soft-
ware Engineering Laboratory (SEL)," Proceedings of the 21st Annual Hawaii Interna-
tional Conference on System Sciences, January 1988

7McGarry, R, L. Esker, and K. Quimby, "Evolution of Ada Technology in a Produc-
tion Software Environment," Proceedings of the Sixth Washington Ada Symposium
(WADAS), June 1989

3McGarry, R E.,J. Valett, andD. Hall, "Measuring the Impact of Computer Resource
Quality on the Software Development Process and Product," Proceedings of the
Hawaiian International Conference on System Sciences, January 1985

National Aeronautics and Space Administration (NASA), NASA Software Research
Technology Workshop (Proceedings), March 1980
3Page, G., R E. McGarry, and D. N. Card, "A Practical Experience With Independent
Verification and Validation," Proceedings of the Eighth International Computer Soft-
ware and Applications Conference, November 1984

5Ramsey, C., and V. R. Basili,^ Evaluation of Expert Systems for Software Engineering
Management, University of Maryland, Technical Report TR-1708, September 1986

3Ramsey, J., and V. R. Basili, "Analyzing the Test Process Using Structural Coverage,"
Proceedings of the Eighth International Conference on Software Engineering. New York:
IEEE Computer Society Press, 1985

BI-10

SELBIB
07/29/91

5Rombach, H. D., "A Controlled Experiment on the Impact of Software Structure on
Maintainability," IEEE Transactions on Software Engineering, March 1987
8Rombach, H. D., "Design Measurement: Some Lessons Learned," IEEE Software,
March 1990
6Rombach, H. D., and V. R. Basili, "Quantitative Assessment of Maintenance: An
Industrial Case Study," Proceedings From the Conference on Software Maintenance,
September 1987
6Rombach, H. D., and L. Mark, "Software Process and Product Specifications: ABasis
for Generating Customized SE Information Bases," Proceedings of the 22nd Annual
Hawaii International Conference on System Sciences, January 1989
7Rombach, H. D., and B. T. Ulery, Establishing a Measurement Based Maintenance
Improvement Program: Lessons Learned in the SEL, University of Maryland, Technical
Report TR-2252, May 1989
5Seidewitz, E., "General Object-Oriented Software Development: Background and
Experience," Proceedings of the 21st Hawaii International Conference on System
Sciences, January 1988
6Seidewitz, E., "General Object-Oriented Software Development with Ada: A Life
Cycle Approach," Proceedings of the CASE Technology Conference, April 1988
6Seidewitz, E., "Object-Oriented Programming in Smalltalk and Ada," Proceedings
of the 1987 Conference on Object-Oriented Programming Systems, Languages, and
Applications, October 1987
4Seidewitz, E., and M. Stark, "Towards a General Object-Oriented Software Develop-
ment Methodology," Proceedings of the First International Symposium on Ada for the
NASA Space Station, June 1986
8Stark, M., "On Designing Parametrized Systems Using Ada," Proceedings of the
Seventh Washington Ada Symposium, June 1990
7Stark, M. E. and E. W. Booth, "Using Ada to Maximize Verbatim Software Reuse,"
Proceedings of TRI-Ada 1989, October 1989

Stark, M., and E. Seidewitz, "Towards a General Object-Oriented Ada Lifecycle," Pro-
ceedings of the Joint Ada Conference, March 1987
8Straub, P. A, and M. Zelkowitz, "PUC: A Functional Specification Language for
Ada," Proceedings of the Tenth International Conference of the Chilean Computer
Science Society, July 1990
7Sunazuka, T., and V. R. Basili, Integrating Automated Support for a Software Manage-
ment Cycle Into the TAME System, University of Maryland, Technical Report TR-2289,
July 1989

BI-11
SELBIB
07/29/91

Turner, C, and G. Caron,^4 Comparison of RADC and NASA/SEL Software Develop-
ment Data, Data and Analysis Center for Software, Special Publication, May 1981

Turner, C., G. Caron, and G. Brement, NASA/SEL Data Compendium, Data and
Analysis Center for Software, Special Publication, April 1981
5Valett, J., and F. McGarry, "A Summary of Software Measurement Experiences in the
Software Engineering Laboratory," Proceedings of the 21st Annual Hawaii Interna-
tional Conference on System Sciences, January 1988
3Weiss, D. M., and V. R. Basili, "Evaluating Software Development by Analysis of
Changes: Some Data From the Software Engineering Laboratory," IEEE Transac-
tions on Software Engineering, February 1985
5Wu, L., V. Basili, and K. Reed, "A Structure Coverage Tool for Ada Software
Systems," Proceedings of the Joint Ada Conference, March 1987

^elkowitz, M. V., "Resource Estimation for Medium Scale Software Projects,"
Proceedings of the Twelfth Conference on the Interface of Statistics and Computer
Science. New York: IEEE Computer Society Press, 1979
2Zelkowitz, M. V, "Data Collection and Evaluation for Experimental Computer
Science Research," Empirical Foundations for Computer and Information Science
(Proceedings), November 1982
6Zelkowitz, M. V, "The Effectiveness of Software Prototyping: A Case Study,"
Proceedings of the 26th Annual Technical Symposium of the Washington, D. C., Chapter
of the ACM, June 1987
6Zelkowitz, M. V, "Resource Utilization During Software Development," Journal of
Systems and Software, 1988
8Zelkowitz, M. V, "Evolution Towards Specifications Environment: Experience With
Syntax Editors," Information and Software Technology, April 1990

Zelkowitz, M. V, and V. R. Basili, "Operational Aspects of a Software Measurement
Facility," Proceedings of the Software Life Cycle Management Workshop, September
1977

BI-12

SELBIB
07/29/B1

NOTES:
lrThis article also appears in SEL-82-004, Collected Software Engineering Papers:
Volume I, July 1982.

2This article also appears in SEL-83-003, Collected Software Engineering Papers:
Volume II, November 1983.

3This article also appears in SEL-85-003, Collected Software Engineering Papers:
Volume HI, November 1985.

4This article also appears in SEL-86-004, Collected Software Engineering Papers:
Volume IV, November 1986.

5This article also appears in SEL-87-009, Collected Software Engineering Papers:
Volume V, November 1987.

is article also appears in SEL-88-002, Collected Software Engineering Papers:
Volume VI, November 1988.

7This article also appears in SEL-89-006, Collected Software Engineering Papers:
Volume VII, November 1989.

is article also appears in SEL-90-005, Collected Software Engineering Papers:
Volume VIII, November 1990.

BI-13

SELBIB
07/29/91

