
SOFTWARE ENGINEERING LABORATORY SERIES SEL-91-005

COLLECTED SOFTWARE
ENGINEERING PAPERS: VOLUME IX

NOVEMBER 1991

(NASA-TM-105508) COLLECTED SOFTWARE N92-lfflP<f
ENGINEERING PAPERS, VOLUME 9 (NASA) 112 p

CSCL 09B
Unclas

G3/61 0068918

NASA—
National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

SOFTWARE ENGINEERING LABORATORY SERIES / SEL-91-005

COLLECTED SOFTWARE
ENGINEERING PAPERS: VOLUME IX

NOVEMBER 1991

fMSA
National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenoeit. Maryland 20771

FOREWORD

The Software Engineering Laboratory (SEL) is an organization sponsored by the
National Aeronautics and Space Administration/Goddard Space Flight Center
(NASA/GSFC) and created for the purpose of investigating the effectiveness of soft-
ware engineering technologies when applied to the development of applications soft-
ware. The SEL was created in 1976 and has three primary organizational members:

NASA/GSFC, Systems Development Branch

University of Maryland, Department of Computer Science

Computer Sciences Corporation, Systems Development Operation

The goals of the SEL are (1) to understand the software development process in the
GSFC environment; (2) to measure the effect of various methodologies, tools, and
models on this process; and (3) to identify and then to apply successful development
practices. The activities, findings, and recommendations of the SEL are recorded in the
Software Engineering Laboratory Series, a continuing series of reports that includes
this document.

Single copies of this document can be obtained by writing to

Systems Development Branch
Code 552
Goddard Space Flight Center
Greenbelt, Maryland 20771

JJ

Ill
PRECEDING PAGE BLAMK NOT FZLMED

10000174

Table of Contents

Section 1—Introduction 1-1

Section 2—Software Models Studies 2-1

"Software Reuse: A Key to the Maintenance Problem,"
H. D. Rombach 2-3

Support for Comprehensive Reuse, V. R. Basili and
H. D. Rombach 2-11

A Reference Architecture for the Component Factory, V. R. Basili
and G. Caldiera 2-53

A Pattern Recognition Approach for Software Engineering Data
Analysis, L. C. Briand, V. R. Basili, and W. M. Thomas 2-95

Section 3—Software Measurement Studies 3-1

"Paradigms for Experimentation and Empirical Studies in
Software Engineering," V. R. Basili and R. W. Selby 3-3

Section 4—Ada Technology Studies 4-1

"Object-Oriented Programming Through Type Extension in
Ada 9X," E. Seidewitz 4-3

"An Object-Oriented Approach to Parameterized Software in
Ada," E. Seidewitz and M. Stark 4-15

"Designing Configurable Software: COMPASS Implementation
Concepts,** E. W. Booth and M. E. Stark 4-31

Standard Bibliography of SEL Literature

10000174 ™tUtOlNG PAGE BLANK WOT FILMED

SECTION 1—INTRODUCTION

N

This document is a collection of selected technical papers produced by participants in
the Software Engineering Laboratory (SEL) from November 1990 through October
1991. The purpose of the document is to make available, in one reference, some results
of SEL research that originally appeared in a number of different forums. This is the
ninth such volume of technical papers produced by the SEL. Although these papers
cover several topics related to software engineering, they do not encompass the entire
scope of SEL activities and interests. Additional information about the SEL and its
research efforts may be obtained from the sources listed in the bibliography at the end
of this document.

For the convenience of this presentation, the eight papers contained here are grouped
into three major categories:

• \ Software Models Studies'

•; > Software Measurement Studies *

• \ Ada Technology Studies -
V .-/

The first category presents studies on reuse models, including a software reuse model
applied to maintenance and a model for an organization to support software reuse. The
second category includes experimental research methods and software measurement
techniques. The third category presents object-oriented approaches using Ada and
object-oriented features proposed for Ada.

The SEL is actively working to understand and improve the software development
^process at Goddard Space Flight Center (GSFC). Future efforts willbe'documented in
additional volumes of the Collected Software Engineering Papers and other SELpublica-
tionsT

1-1
10000174

SECTION 2—SOFTWARE MODELS STUDIES

The technical papers included in this section were originally prepared as indicated
below.

• "Software Reuse: A Key to the Maintenance Problem," H. D. Rombach,
Butterworth Journal of Information and Software Technology, January/
February 1991

• Support for Comprehensive Reuse, V R. Basili and H. D. Rombach, University
of Maryland, Technical Report TR-2606, February 1991

• A Reference Architecture for the Component Factory, V. R. Basili, G. Caldiera,
and G. Cantone, University of Maryland, Technical Report TR-2607, March
1991

• A Pattern Recognition Approach for Software Engineering Data Analysis,
L. C. Briand, V. R. Basili, and W. M. Thomas, University of Maryland, Tech-
nical Report TR-2672, May 1991

2-1

10000174

Software reuse: a key to the maintenance
problem

H D Rombach

Software maintenance is defined us the performance of all activi-
ties required to keep a software system operational and respon-
sive after delivery. Tins includes adaptations to changing require-
ments and corrections of faults. Todav. must practical
maintenance environments have to spend a larger portion of their
maintenance budget on fault corrections than they should have to.
leaving not enough resources to respond to changing requirements
properly. As a result, maintenance is widely viewed as an undesir-
able add-on to development. Improvement needs to be aimed at
reducing the o\'eiall maintenance portion related to fault correc-
tions and increasing the productivity and quality of the remaining
maintenance activities. Maintenance is inherently reuse-oriented.
It seems natural to e\plore how maintenance could benefit from
recent advances in the area of software reuse. The article points
out a number of crucial maintenance problems, presents a com-
prehensive framework that has been proposed to address similar
problems in the area of reuse, and suggests how software main-
tenance mav benefit from results produced in the reuse commun-
ity by adopting a reuse-oriented framework.

software development, software maintenance, software reuse.
software costs, process models

Software maintenance is defined as the performance of
all activities required to keep a software system opera-
tional and responsive after it is accepted and placed into
production'. Maintenance activities can be categorized
as being perfective (i.e.. triggered by a change of require-
ments), adaptive (triggered by a change of the operation-
al environment), or corrective (i.e.. triggered by the
detection of a software failure* or fault) ' . In an ideal
maintenance world, where failure-free systems are main-
tained according to sound maintenance processes, no
corrective maintenance is needed. Perfective and adap-
tive maintenance would be aimed at maintaining or
increasing the economic value of an existing software
system in the light of changing requirements and
environment characteristics.

Department of Computer Science and Inst i tute lor Advanced
Computer Studies. University ol' Maryland. Colleee Park. Maryland
20742. USA

•The terms error fault failure arc used according to the IEEE defini-
tion-': Humans commit errors: errors get manilcsled as faults in a
software product: faults in turn may cause a deviation of the system's
actual behaviour from its specified or intended behaviour. Trie term
defect refers to anv of the above.

In the real world, fault-prone and inappropriately
documented systems are maintained according to ail hoc
and error-prone maintenance processes. As a result,
most maintenance environments have to spend a larger
portion ol their maintenance budget on corrective main-
tenance than they should have to. leaving not enough
resources to respond to important perfective or adaptive
requests properly. In many environments, the mainten-
ance portion of the overall software budget had to be
increased to the point that much needed new develop-
ments had to be'delayed4. All the above has contributed
to the perception that maintenance is an undesirable,
non-creative, non-rewarding add-on to software deve-
lopment.

The maintenance improvement goal should not pri-
marily be to minimize the overall amount of mainten-
ance; instead the goal should be to minimize the number
of necessary corrective maintenance actions and to maxi-
mize the effectiveness of each remaining (predominantly
perfective and adaptive) maintenance activity.

As early as 1976 maintenance or maintenance-related
problems had been reported. Belady and Lehman des-
cribed the problems with the evolution of large software
systems5. Mills suggested that large numbers of faults
and or long-lived faults (i.e.. faults that remain in the
system a long time before being detected) spell trouble
for maintenance". Today, it is common software engi-
neering knowledge that modifications of fault-prone
systems tend to be error-prone themselves (i.e.. they are
likely to create even more fau l t s) and corrections of
faults become harder and more costly the longer they
remain in an evolving system4. There is also overwhelm-
ing evidence that inappropriate documentation is the
cause of many maintenance requests7. Why is it then that
low-quality systems are still accepted into maintenance
and maintenance still performed according to ad hoc
processes'? Maybe understanding of the quant i ty of these
maintenance problems and their underlying causes is
only beginning, no simple solutions to these problems
exist, and the existing negative maintenance perception
does not help attract good professionals into mainten-
ance to facilitate change.

One of the central causes for many maintenance
problems is the lack of good maintenance product and
process models and understanding of their dependencies.
A maintenance product model describes the product
characteristics needed to perform effective maintenance.

86 0950-5849'9I.-010086-07 "f 1991 Buttcrwonh-Heinemann Ltd information and software technology

2-3
10000174

PRECEDING PAGE BLANK MOT FILMED

A maintenance process model describes the individual
steps necessary to satisfy an individual maintenance
request. Different process models may require different
product models and vice versa. Different types of main-
tenance requests, environment characteristics, and/or
budgetary constraints may suggest different process and
product models. Basili has discussed a number of alter-
nate maintenance process models in detail*. No single,
generally applicable, solution exists because all mainten-
ance environments are different'1. Each environment has
to build its own maintenance models thai reflect the
weaknesses and strengths of its specific maintenance
approach and improve from there. Many environments
are still not willing to accept this challenge, not realising
that the alternative is continued chaos in the short run
and. maybe, loss of competitiveness in the long run. In a
recent study in i t i a l models of the maintenance environ-
ment at NASA's Software Engineering Laboratory
(SEL) have been built and several weaknesses and
strengths have been identified through the use of measur-
ement"'. As important as improved technical mainten-
ance approaches are good professionals who can apply
ihese approaches effectively. To compete w i t h develop-
ment for good professionals, comparable reward struc-
tures and career opportunities are needed for mainten-
ance.

Viewing maintenance as a reuse-oriented activity is
natural and promising. It is natural because maintenance
and reuse have many characteristics in common and
share many fundamental problems. Both can be viewed
as creating something 'new' from something 'old'. The
'old' and 'new' tend to refer to the same system in the
case of maintenance, to (components of) different
systems in the case of reuse. In both cases one of the
central questions is: What do I need to know of the 'old'
to create the 'new' effectively. A comprehensive frame-
work that addresses this question for reuse has been
developed". The adoption of a reuse-oriented mainten-
ance view promises not only to solve some of the notori-
ous maintenance problems, but also to integrate develop-
ment and maintenance more na tura l ly . After all. why is
the development of a new system V whose requirements
are formulated as 'same requirements as a previous
system X. except for requirement Rl being treated as
necessarily different from a maintenance task for system
X triggered by a request 'change requirement Rl '?

This article points out a number of crucial mainten-
ance problems (second section), presents a comprehen-
sive framework that has been proposed to address simi-
lar problems in the area of reuse (th i rd section), and
suggests how software maintenance may benefit from
results produced in the reuse community by adopting a
reuse-oriented view (four th section).

SOFTWARE MAINTENANCE PROBLEMS

In this section, serious software maintenance problems
are identified. They are derived from a characterization
of the state-of-the-practice in software maintenance
covering maintained products, maintenance processes.

and maintenance personnel. The characterization is
based on the author's experience from studying indus-
trial maintenance environments (e.g.. NASA's Software
Engineering Laboratory (SEL)10. Burroughs Corpor-
ation7) and the experiences of others'1-'4. Examples from
a maintenance study in NASA's SEL will be used
throughout this section (in italic font) for illustration
purposes'".

Software systems passed into production and mainten-
ance are typically packaged based on a development
perspective. No widely accepted product models have
been developed from a maintenance perspective. As a
result developers do not understand what maintainers
really need and maimainers do not have sound criteria to
certify a delivered system as being fit for maintenance or
not. Typical complaints by maintainers are that inappro-
priate or redundant information is passed to them (e.g..
PDL is really useless because it provides the same in/or-
mation at [he same level of abstraction as does well-com-
mented source code), important information is missing
(e.g.. design rationale is missing, traceahilitv between
requirements and design or code components is not clear,
debug code assumes intimate J'umiliariiv with the source
code), the form of information is not tailored to mainten-
ance needs (e.g.. global information is encoded redun-
dantly in multiple For/ran common blocks resulting in
freuitcni inconsistencies), and the quali ty of the system is
not adequate (e.g.. too many development faults, inconsis-
tent configurations). All these problems require unnecess-
ary resources either to improve the delivered information
or to recreate it (i.e.. reverse engineering). In general, not
all problems with the originally delivered system can be
resolved during maintenance. Remaining problems are
the source for unproductive maintenance and further
faults. Having it right at the time of delivery is the only
promising approach (e.g.. about 25% qt all maintenance
effort in i he SEL is related to fault correction and could be
saved). To achieve this goal, maintenance-oriented pro-
duct models need to be devised that establish sound
criteria for accepting software into maintenance.

Maintenance activities can be categorized as being
perfective (i.e.. triggered by a change of requirements),
adaptive (triggered by a change of the operational
environment), or corrective (i.e.. triggered by the detec-
tion of a software failure or fault) ' . Under the idealistic
assumption that high-quality software systems are deli-
vered into production and maintenance, maintenance
should be dominated by perfective and adaptive activi-
ties. For example, software systems controlling the pro-
duction line of a car manufacturing plant need to be
adapted to changes in the production process. It should
be viewed as an advantage of software over hardware to
be (at least potentially) easier to change. High mainten-
ance costs are not necessarily a bad sign as long as they
are the result of a large number of perfective mainten-
ance requests and not their inefficient completion. It may
simply reflect the speed at which car manufacturing tech-
nology advances. Advantage should be taken of the fact
that software is (at least in theory) more easily adaptable.
Bob Glass once said provocatively: 'Software mainten-

vol 33 no I January february 1991 87

2-4
10000174

ance is not a problem, but a solution"'-'. The author
prefers the following slightly modified version: 'EFFEC-
TIVE software maintenance is not a problem, but a
solution".

So the ideal maintenance scenario would consist of
(almost) no corrective maintenance and any number of
perfective and adaptive maintenance changes — each
change performed at "minimal" cost. Reality is different.
Many environments have a larger corrective mainten-
ance portion than necessary (e.g.. in the SEL. more than
50% of the completed maintenance requests were found to
be corrections; however, they were less complex than other
changes consuming only little more than 25% of the over-
all maintenance resources}. The large number of correc-
tive maintenance requests stemming from low system
quality or inappropriate maintenance processes typically
does not allow resolving many of the "real" maintenance
requests. Keeping the system functional takes precedence
over adaptation to changing needs. Even worse, much
needed new software systems cannot be developed
because the necessary resources are tied up in mainten-
ance4. In addition, less sophisticated practices, methods,
and tools are used for corrective maintenance than for
fault correction during development. The result is a
degradation of maintenance as a whole. Maintenance is
perceived as an undesirable add-on to development that
does not have merits of its own.

Relative to the overall life-cycle cost associated with
large-scale software products, maintenance is reported to
consume significantly more than 50% of all life-cycle
resources4-10". In light of the above discussion of the role
of maintenance, the author believes the current emphasis
on reducing the overall cost of maintenance is wrong. Of
course attempts should be made to reduce the cost of
corrective maintenance to the degree possible by not
allowing low-quality systems into maintenance in the
first place. However, it may not be right to attempt to
reduce the overall amount of perfective and adaptive
maintenance: instead, it should be attempted to improve
the ability to satisfy each single request more effectively.

A general software maintenance process model con-
sists of all (or a subset) of the following seven steps:

• detect need for modifications
• understand need for modifications
• isolate necessary modifications
• design modifications
• implement modifications
• lest modifications
• release modifications

Each of these tasks requires knowledge regarding a
number of issues related to the maintained product.
Detecting the need for a modification requires an under-
standing of the product's functional and behavioural
characteristics in comparison to the needs of its external
environment. Understanding the need for modification
requires an understanding of the potential implications
of a detected discrepancy between expected functionality
and actual functionality to make a decision whether it

can be tolerated or should lead to a maintenance request.
Isolating the necessary modifications requires a good
understanding of the relationship between requirements
and design and implementation to pinpoint the compo-
nents that need to be changed. At this point the cost of a
change can be estimated. Designing the modification
requires a detailed understanding of the actual imple-
mentation to devise all changes without creating unin-
tended side-effects that may result in follow-up
problems. Implementing the modifications requires an
understanding of the coding standards to maintain
implementation consistency: beyond that only local
understanding of the algorithms is needed. Testing the
modified system can be done effectively, if previous tests
are known and can be re-run with or without modifica-
tions depending on the modifications. The needs for
integration, system, and acceptance tests depends on the
structure and use of the product in question. Releasing
the modifications requires an understanding of the cur-
rent use of the system to be able to update the running
version with the modified version with minimal interfer-
ence. Practical software maintenance process models
tend to be much more ail hoc and are performed without
easy access to the appropriate information. In addition,
the maintenance technology level (i.e.. methods for
design or code reading, automated tools, computer lime)
is much lower than during development (e.g.. //; the SEL.
maintenance shares computer resources with groups in
charge of development anil operations. Maintenance has
the lowest access priority.). The result of all the above is
unproductive and error-prone maintenance.

A system's maintenance personnel are typically not its
original developers, more junior than development
personnel, lacking ownership of the product they are
maintaining, and missing the same career opportunities
that developers have. When a product's maintainers are
different from its original developers, the mainlainers
entirely depend on the information (system plus docu-
mentat ion) passed to them at the time of delivery. Many
organizations use maintenance to train their junior
personnel on-the-job. This means that maintainers on
average are less experienced with both the application
domain and solution domain of the products to be main-
tained. In summary, less experienced personnel are
expected to maintain badly documented software pro-
ducts. And there is no real incentive for maintainers to
push for improvements because, after all. they are only
maintaining someone else's product. A typical quote is "I
only fix. I don't create software". On the contrary, there
is an incentive to leave maintenance as quickly as poss-
ible because of" lack of maintenance career opportunities.
A typical quote to this effect is "I cannot move up in my
company as a maintainer".

SOFTWARE REUSE MODEL

Recently, software reuse has re-emerged as a promising
approach to improve the quality and productivity of
software development. The encouraging difference to

information and software technology

2-5
10000174

REUSE FRAMEWORK

Software development process

*>'
, context

Reuse
target

Reuse
process

Interface-1

object

1k

context
Interface

activity

/

Reuse
candidate

, „ /'object., ,

• Interface "
\

, -^..context'-

Reuse repository

Figure 1. Reuse framework

previous emergences is that people seem to have learned
a few lessons:

• it is not sufficient to focus on code reuse
• how to package reuse candidates in a reuse repository

appropriately depends on their intended use in future
projects and the actual reuse process itself

• reuse is enabled by some development process and
both reusable components and employed reuse process
need to be tailored to and integrated into that develop-
ment process model

A framework and supporting characterization scheme
has been developed to increase understanding, analysis,
motivation, and improvement of reuse issues reflecting
the above lessons".

This framework (see Figure 1) distinguishes between
the reuse target (or reuse specification), the reuse candi-
date, and the reuse process.

Both the reuse target (or reuse specification) as well as
each reuse candidate available in some repository are
characterized in terms of the object itself, its interface
with other objects, and the context knowledge required
to understand it.

The object itself is characterized-in terms of name of
the object (e.g., component name 's_buffer.ada'), func-
tion performed by the object (e.g., string buffer), type of

the object (e.g., source code), granularity of the object
(e.g., package), and representation (e.g., Ada).

The interface is characterized in terms of input/output
(e.g., less than six formal input and output parameters)
and other dependencies (e.g., the assumption that the
user knows Ada).

The context is characterized in terms of the application
domain for which the object was originally developed or
is intended to be reused (e.g., business software for bank-
ing), the solution domain in which the object was orig-
inally developed or is intended to be reused (e.g., water-
fall life-cycle model), and the quality exhibited by the
object (e.g., less than 1 fault per IK LOG detected during
development, documented according to certain
standards).

The reuse process is assumed to include the following
five basic steps:

• understanding of a given reuse target (or specification)
• identification of reuse candidates (based on matching

certain key characteristics of the reuse specification
with the set of available reuse candidates)

• evaluation of the reuse potential of each candidate (by
predicting the cost related to bridging the discrepan-
cies between each candidate and the given reuse speci-
fication) and selection of the best suited object if any

• modification of the selected object (by making the
object satisfy the given reuse specification)

• integration of the modified object into the ongoing
development

Each reuse activity is characterized in terms of the
activity itself, its interface with the enabling development
process, and the necessary context.

The activity itself is characterized in terms of name
(e.g., unique activity name), function (e.g., a functional
description of the activity), type (e.g., modification), and
mechanisms (e.g., parameterized in the case of modifica-
tion).

The activity interface is characterized in terms of
input/output (e.g., input criteria and output criteria for
performing the activity) and dependencies (e.g., phase of
modification).

The activity context is characterized in terms of exper-
ience transfer (e.g., candidate packages are provided
through a repository) and reuse quality (e.g., high relia-
bility).

The following partial example is intended-to demon-
strate the usefulness of the above scheme to describe a
specific reuse scenario involving Ada packages. The sug-
gested five-step reuse process is followed:

• Understanding. The existence of a reuse specification
corresponding to the example categories used above is
assumed. The objective is to develop a string buffer
package in Ada.

• Identification. All object characteristics of the reuse
specification except 'name' are used as search criteria
to identify candidates in the reuse repository. Pretend
that three candidates were found, all of which satisfy

vol 33 no 1 january/february 1991

2-6
10000174

all search criteria except for 'function'. The first is an
integer buffer, the second a string list, and the third a
generic buffer.

• Evaluation. Next, evaluate the reuse potential of each
identified candidate. The aim is to be able to predict
the amount of resources needed to transform each
candidate into a package that satisfies the given reuse
specification entirely. Pretend that all three candidates
satisfy all the interface and context characteristics of
the reuse specification except ' input/output" and 'qua-
lity'. All three candidates have a higher than desired
input/output interface and provide no information
about faults detected during development. It depends
on the mechanisms used for modification which of the
three candidates is viewed closest with respect to "func-
tion". If the use of Ada's generic instantiation mecha-
nism is assumed, the third candidate (the generic
buffer) seems closest: if manual modification is
assumed, the first candidate (the integer buffer) seems
closest. Regarding the reduction of the input/output
interface, again ii needs to be known whether manual
or automated modification will be used. In addition,
quantitative information about the success of prior
similar attempts and the cost involved would be help-
ful. With respect to development quality (i.e.. number
of faults detected during development), no infor-
mation exists at all. That means that an uncalculable
risk may have to be accepted. If. under these circum-
stances, there is willingness to reuse any of the candi-
dates, the third candidate (generic Ada package) may-
be the most likely selection.

• Modification. The generic instantiation mechanism of
Ada allows low-cost and reliable modification to
create the desired Ada string buffer package.

• Integration. The integration of the newly created Ada
string buffer package needs to follow the procedures
established within the enabling development process:
compilation, binding, integration testing, etc.

It is obvious that the presented reuse characterization
does not improve reuse per se. However, il enables rea-
soning about the implications of reusing a particular
software component to satisfy a given reuse specification
using a given reuse process by pointing out important
issues. To the degree future reuse specifications are
known, the scheme can help establish criteria for compo-
nents accepted into a reuse repository. There is no point
in populating reuse repositories with components that
violate characteristics that are non-negotiable in a parti-
cular environment. For example, if it is anticipated that
all systems built in the future require a minimal reliability
level, it would make no sense to pollute a repository with
less reliable components.

Reuse is complicated by the fact that the personnel
attempting to reuse existing candidates are typically
different from the ones who originally created them.
That makes the reuser totally dependent on the explicit
information packaged together with the reuse candi-
dates. Reuse can be facilitated in different wavs:

• Packaging reuse candidates together wiih the appro-
priate information.

• Re-creating lost information post mortem — either at
the time of entering the candidate into a repository or
at every time it is attempted to be reused.

• Have (he creators of reuse candidates be involved in
reusing them. Most industrial reuse success stories arc
mainly due to stable personnel, meaning that reusers
of software objects are either their original creators or
at least have easy access to the original creators.

The scope of reuse has been expanded in thai consider-
ation is given not only to experience in the form of
products, but also in ihe form of processes and oiher
reusable knowledge". The above reuse scheme has
proved to be useful in defining packaging schemes for
such comprehensive software engineering experiences
bases. They have also been useful in defining entry cri-
teria for including objects into an experience base or
transforming objects wi thin an experience base to
increase its reuse potential1'. The classification scheme is
also being used in a project aimed at developing a 'code
factory'".

REUSE-ORIENTED MAINTENANCE

It is obvious that software maintenance is a particularly
intense form of reuse*. In the study of the NASA SEL
maintenance environment il was observed that the rela-
tionship between modified and newly developed modules
was about 50:1. No components were added during cor-
rective and adaptive maintenance. And even perfective
maintenance had a surprisingly low percentage of newly
developed components — less than 5% — in the
presence of rather time-consuming changes. That, of
course, implies that changes of reused components must
have been substantial. Now what kind of reuse takes
place during maintenance wi l l be explored in more detail .

Traditionally, reuse during maintenance is l imited to
reusing pans of the system at hand. This may range from
reusing just source code to reusing the entire system [i.e..
including all documentation). Basili has discussed in
much detail example reuse process models that corres-
pond to these two extremes: the quick-fix process model
and the iterative-enhancement model". According to the
former, the response to a maintenance request consists
primarily of changing the code. Other forms of docu-
mentation are updated if time permits. According to the
latter, another evolutionary cycle through the entire
development process is performed starting with changing
the requirements (if needed) all the way down to chang-
ing source code. Each approach may be appropriate
under certain circumstances. The quick-fix model may he
appropriate to perform a fault correction for a system
that will be retired soon and is not safety-critical by a
maintainer who is intimately familiar with the system.
Another justification for the quick-fix model can be a
tight budget, provided the implications on future main-
tenance are understood. The iterative-enhancement
model may be appropriate to perform an additive

90 information and software technoloav

2-7

10000174

requirements change (i.e.. one lhat does not require a
general overhaul of the existing system architecture) to a
system that needs to stay in production for some time.

However, the limitation to reuse only parts of the
existing system can often be viewed as an unnecessary
constraint, even in the case of complicated corrective
maintenance requests. For example, a corrective main-
tenance request can be imagined that suggests a major
change of the overall system architecture (e.g.. to
improve system performance significantly) or a perfec-
tive maintenance request that suggests the addition of
several new components. In either case, it may be worth
while to explore the possibility of reusing components
from previous versions of the same system or different
systems w i t h i n the same application domain. It is u n l i k -
ely that this expanded form of reuse can work without
access to a reuse repository, appropriate packaging of
interface and context information together with those
systems, etc. Basili refers to this form of maintenance
process model as the full-reuse model*.

The full-reuse maintenance model is totally compat-
ible v/ith what has been suggested for reuse in general.
This is reflected in the similari t ies between the general
process models suggested lor maintenance and reuse in
the second and third sections, respectively. Both main-
tenance and reuse are aimed at creating new objects from
old objects. Why should there be a technical difference
between the development of a new string butter whose
requirements are formulated as 'same requirements as
integer buffer, except that the base element type should
be string' and the performance of a perfective mainten-
ance request asking for the 'modification of an existing
Ada integer buffer package to handle strings instead of
integers'? The differences between reuse-oriented main-
tenance and development may be diminishing. The main
remaining difference is tha t development of a system
should be performed on a fixed budget, maintenance on
a variable budget depending on the number of perfective
and adaptive maintenance tasks — or should it be named
'mini-development''.1

However, it would be wrong to impose any one of the
discussed reuse process models. On the contrary, the
reuse-oriented framework — as introduced in the third
section — supports the identification of the most effec-
tive form of reuse (e.g.. quick-fix, iterative-enhancement,
full-reuse, or any other form of reuse) for any type of
maintenance request, environment characteristics, and
budgetary constraints. That includes — according to the
proposed reuse model —- the identification of reuse
candidates suited to satisfy the maintenance request, the
assessment of each candidate and selection of the best
one. modification of the selected candidate if necessary,
and its integration into the existing system. Each main-
tenance request is transformed into a change specifica-
tion. If. for example, a maintenance request results in a
requirements specification, there is a choice of either
reusing the existing system architecture and modifying it
accordingly or checking the repository for an architec-
tural design that may be better suited. In this case, the
characterization of :he desired architectural design needs

to be matched against the characteristics of any architec-
tural design available in the repository. Of course, each
candidate has to be assessed as to how likely it is that the
cost of modification will not exceed the cost of changing
the existing architectural design. Hopefully, enough
information is packaged together with each candidate to
assess the implications of reusing it.

There is also economical pressure to integrate develop-
ment and maintenance under one umbrella concept of
reuse. As the demand for new software systems is
increasing faster than the ability to develop them4, it
seems to be appropriate to consider requirements for
new systems and major maintenance requests to change
existing systems at a par. Furthermore, as software deve-
lopment technology moves towards more extensive
reuse, it is no longer tolerable lo have ad hoc mainten-
ance processes decrease the qual i ty — and thereby the
future reuse potential — of existing systems.

RELATED RESEARCH AT UNIVERSITY
OF MARYLAND

Reuse-related work at the University of Maryland is
currently concentrating on reuse and maintenance both
from a theoretical and practical perspective. Theoreti-
cally, the presented reuse model and related characteriza-
tion schemes have to be further refined and necessary-
reuse support mechanisms defined"-15: an experience
base scheme is being designed to hold all types of exper-
ience reused in a software development organization
such as processes, products, and other knowledge: and
formal languages are being developed to represent indivi-
dual process, product, and quality models (joint work
with Victor Basili and others in the TAME project20).
Practically, real-world maintenance scenarios are being
analysed with the objective lo improve the ease with
which existing systems can be reused (e.g.. in the Sof-
tware Engineering Laboratory at NASA/Goddard Space
Flight Center1"-' "): and prototype implementations of
the TAME experience base concept (work going on in
Victor Basili's research group), an experimental process
modelling language (the author's research group), and a
source code-oriented reuse environment (work by Victor
Basili and Gianluigi Caldiera in the CARE project1'') are
being developed.

ACKNOWLEDGEMENT

Research for this study was in part funded by NASA
grant NSG-5123 to the University of Maryland.

REFERENCES
1 Federal Information Processing Standards Guideline on soft-

ware maintenance US Dept of Commerce/National Insti-
tute of Standards and Technology. FIPS PUB 106 (June
1984)

2 IEEE "IEEE standard glossary of software engineering ter-
minology' Rep. IEEE-Sut-729-1983 IEEE (1983)

3 Swanson. E B The dimensions of software maintenance' in

vol 33 no I January february 1991 91

2-8

10000174

Proc. 2nd IEEE Ini. Con/. Software Engineering (October
1976) pp 492-497

4 Boefam, B W and Papaccio. P N 'Understanding and con-
trolling software costs' IEEE Trans. Soft. Eng. Vol 14 No
10 (October 1988) pp 1462-1477

5 Belady, L and Lehman, M 'A model of large program deve-
lopment' IBM Syst. J. Vol 15 No 3 (1976) pp 225-252

6 Mills. H D 'Software development' IEEE Trans. Soft. Eng.
Vol 13 No 12 (December 1976) pp 265-273

7 Rombach, H D and Basili. V R "Quantitative assessment of
maintenance: an industrial case study' in Proc. IEEE Con/.
Software Maintenance Austin. TX. USA (September 1987)
pp 134-143

8 Basili, V R 'Viewing maintenance as reuse-oriented soft-
ware development' IEEE Software Vol 7 No 1 (January
1990) pp 19-25

9 Basili. V R and Rombach. H D 'Tailoring the software
process to project goals and environments' in Proc. 9th
IEEE Int. Con/. Software Engineering Monterey. CA. USA
(March 1987) pp 345-357

10 Rombach, H D, Ulery, B T and Valett, J 'Measurement
based improvement of maintenance in the SEL' in Proc.
14th Annual Software Engineering Workshop NASA/God-
dard Space Flight Center, Greenbelt. MD. USA
(November 1989)

11 Basili. V R and Rombach, H D 'Towards a comprehensive
framework for reuse: model-based reuse characterization
schemes' Technical report University of Maryland. USA
(April 1990). to be published in Soft. Eng. J. (July 1991)

12 Proc. IEEE Con/. Software Maintenance IEEE (1985. 1987.
1988. and 1989)

13 Schneidewind, N F (ed) 'Special section on software main-

tenance' in Proc. IEEE Vol 77 No 4 (April I9S9I pp 5SI-
624

14 Schneidewind, N F (ed) "Special section on software main-
tenance' IEEE Trans. Soft. Eng. Vol 13 No 3 (March !9S'i
pp 301-361

15 Glass. R 'Software maintenance is a solution, not 2
problem" in Proc. IEEE Con/. Software Miiintetiani't'
Miami. FL. USA (October 1989) pp 224-225

16 Boehm, B W "Software eneineering' IEEE Trans. Cmnpuier-
Vol 25 No 12 (December"] 976) pp 1226-1241

17 Lientz. B P. Swanson. E B and Tompkins. G E 'Characteris-
tics of application software maintenance' Commun. ACM
Vol 21 No 6 (June 1978) pp 466-471

18 Basili, V R and Rombach. H D "Towards a comprehensive
framework for reuse: a reuse-enabling software evolution
environment' Technical report Dept of Computer Science
and UMIACS. University of Maryland. USA (December
1988)

19 Caldiera. G and Basili. V R 'Re-engineering existing software
for reusability' Technical report I UMIACS-TR-WJ-JI). CS-
TR-2419) Dept of Computer Science. University of Mary-
land. USA (February 1990)

20 Basili, V R and Rombach. H D "The TAME project: towards
improvement-oriented software environments' IEEE
Trans. Soft. Eng. Vol 14 No 6 (June 1988) pp 758-773

21 Rorqbach. H D and Ulery, B T "Improving software main-
tenance through measurement' in Proc. IEEE Vol 77 No -J
(April 1989) pp 581-595

22 Rombach. H D and Ulery, B T "Establishing a measurement
based maintenance improvement program: lessons learned
in the SEL" in Proc. IEEE Can/. Software Maintenance
Miami Beach. FL. USA (October 1989) pp 50-57

92 information and software technoloev

2-9
10000174

UMIACS-TR-91-23 February 1991
CS-TR-2606

Support for Comprehensive Reuse"*

V.R. Basil! and H.D. Rombach

Institute for Advanced Computer Studies and
Department of Computer Science

University of Maryland
College Park, MD 20742

Abstract

Reuse of products, processes and other knowledge will be the key to enable the software indus t ry
to achieve the dramatic improvement in productivity and quality required to satisfy the anticipated
growing demands. Although experience shows tliat certain kinds of reuse can be successful, gen-
eral success has been elusive. A software life-cycle technology which allows comprehensive reuse
of*all kinds of software-related experience could provide the means to achieving the desired orclcr-
of-magnitude improvements. In this paper, we introduce a comprehensive framework of models,
model-based characterization schemes, and support mechanisms for better understanding, evaluat-
ing, planning,and supporting all aspects of reuse.

'A revised version of iliisTR will be published in the SOFTWARE E N G I N E E R I N G J O U R N A L . Br i t i sh Compmer
Society, July 1991.

'Research for this study was supported in part by NASA grant NSG-5123, ONR grant NOOO1-4-87-K-03U7 and
Airmics grant 19K-CN983-C to the University of Maryland.

10000174

2-11
PRECEDING PAGE BLAMK NOT FILMED

TABLE OF CONTENTS:

1 INTRODUCTION 2

2 SCOPE OF COMPREHENSIVE REUSE , 3
2.1 Software Development Assumptions 3
2.2 Software Reuse Assumptions 5
2.3 Software Reuse Model Requirements 9

3 EXISTING REUSE MODELS 10

4 A COMPREHENSIVE REUSE MODEL 13
4.1 Reuse Model 13
4.2 Model-Based Reuse Characterization Scheme 16

4.2.1 Reuse Candidates 16
4.2.2 Needed Objects 18
4.2.3 Reuse Process 19

4.3 Example Applications of the Comprehensive Reuse Model 21

5 SUPPORT MECHANISMS FOR COMPREHENSIVE REUSE 25
5.1 The Reuse Oriented TAME Environment Model 25
5.2. Mechanisms to Support Effective Reuse in the TAME Environment
Model 28

5.2.1 Recording of Experience 29
5.2.2 Packaging of Experience 30
5.2.3 Identification of Candidate Experience 32
5.2.4 Evaluation of Experience 32
5.2.5 Modification of Experience 35

5.3 TAME Environment Prototypes 36

6 CONCLUSIONS 37

7 ACKNOWLEDGEMENTS 37

8 REFERENCES 38

2-13

10000174 PRECEDING PAGE BLANK NOT FILMED

1. INTRODUCTION

The existing gap between demand and our ability to produce high quality software cost-

effectively calls for an improved software development technology. A reuse oriented development

technology can significantly contribute to higher quality and productivity. Quality should

improve by reusing all forms of proven experience including products, processes as well as quality

and productivity models. Productivity should increase by using existing experience rather than

creating everything from scratch.

Reusing existing experience is a key ingredient to progress in any discipline. Without

reuse everything must be re-learned and re-created; progress in an economical fashion is

unlikely. .Reuse is less institutionalized in software engineering than in any other engineering dis-

cipline. Nevertheless, there exist successful cases of reuse, i.e. product reuse. The potential

payoff from reuse can be quite high in software engineering since it is inexpensive to store and

reproduce software engineering experience compared to other disciplines.

The goal of research in the area of reuse is to develop and support systematic approaches

for effectively reusing existing experience to maximize quality and productivity. A number of dif-

ferent reuse approaches have appeared in the literature (e.g., [10, 12, 14, 17, 18, 19, 20, 26, 27,

29]).

This paper presents a comprehensive framework for reuse consisting of a reuse model, char-

acterization schemes based upon this model, the improvement oriented TAME environment model

describing the integration of reuse into the enabling software development processes, mechanisms

needed to support comprehensive reuse in the context of the TAME environment model, and (par-

tial) prototype implementations of the TAME environment model. From a number of important

assumptions regarding the nature of software development and reuse we derive four essential

requirements for any useful reuse model and related characterization scheme (Section 2). We illus-

trate that existing models and characterization schemes only partially satisfy these essential

requirements (Section 3). We introduce a new reuse model which is comprehensive in the sense

-2-

2-15
10000174 SeEBiKe PASI §LANK NOT

that it satisfies all four reuse requirements, and use it to derive a reuse characterization scheme

(Section 4). Finally, we point out the mechanisms needed to support effective reuse according to

this model (Section 5). Throughout the paper we use examples of reusing generic Ada packages,

design inspections, and cost models to illustrate our approach.

2. SCOPE OF COMPREHENSIVE REUSE

The reuse framework presented in this paper is based on a number of assumptions regarding

software development in general and reuse in particular. These assumptions are based on more

than fifteen years of analyzing software processes and products [2, 5, 7, 8, 9, 23]. From these

assumptions we derive four essential requirements for any useful reuse model and related charac-

terization scheme.

2.1. Software Development Assumptions

According to a common software development project model depicted in Figure 1, the goal

of software development is to produce project deliverables (i.e., project output) that satisfy pro-

ject needs (i.e., project input) [30]. This goal is achieved according to some development process

model which coordinates the interaction between available personnel, practices, methods and

tools.

-3-

2-16
10000174

DEVELOPMENT PROCESS MODEL

Figure 1: Software Development Project Model

With regard to software development we make the following assumptions:

• Software development needs to be viewed as an 'experimental' discipline: An evolu-

tionary model is needed which enables organizations to learn from each development and incre-

mentally improve their ability to engineer quality software products. Such a model requires the

ability to define project goals; select and tailor the appropriate process models, practices,

methods and techniques; and capture the experiences gained from each project in reusable form.

Measurement is essential.

• A single software development approach cannot be assumed for all software

development projects: Different project needs and other project characteristics may suggest

and justify different approaches. The potential differences may range from different develop-

ment process models themselves to different practices, methods and tools supporting these

development process models to different personnel.

• Existing software development approaches need to be tailorable to project needs

and characteristics: In order to reuse existing development process models, practices,

methods and tools across projects with different needs and characteristics, they need to be

-4 -

2-17

10000174

tailorable.

2.2. Software Reuse Assumptions

Reuse oriented software development assumes that, given the project-specific needs "x' for

an object V, we consider reusing some already existing object 'xi ' instead of creating V from

scratch. Reuse involves identifying a set of reuse candidates 'x ' ..., 'x ' from an experience base,

evaluating their potential for satisfying T, selecting the best-suited candidate 'x,', and - if

required - modifying the selected candidate 'x, ' into 'x'. Similar issues have been discussed in

[16]. In the case of reuse oriented development, IF is not only the specification for the needed

object 'x', but also the specification for all the mentioned reuse activities.

As we learn from each project which kinds of experience are reusable and why, we can

establish better criteria for what should and what shouldn't be made available in the experience

base. The term experience base suggests that anticipate storage of all kinds of software related

experience, not just products. The experience base can be improved from inside as well-as out-

side. From inside, we can record experience from ongoing projects which satisfies current reuse

criteria for future reuse, and we can re-package existing experience through various mechanisms

in order to better satisfy our current reuse criteria. From outside, we can infuse experience which

exists out-side the organization into the experience base. It is important to note that the

remainder of this paper deals only with the reuse of experience available in an experience base

and the improvement of such an experience base from inside (shaded portion of Figure 2).

-6-

2-18
10000174

Experience

existing

in the world

at-large

• DEVELOPMENT PROCESS MODEL

^transfer into
\ organizational

\ ownership

identify
/

nodify

&
/ evaluate

/ & select

JSE PKOCESS MODEL

record
project-specific

experience

EXPERIENCE BASE

V y
Figure 2: Reuse Oriented Software Development Model

With regard to software reuse we make the following assumptions:

• All experience can be reused: Traditionally, the emphasis has been on reusing concrete

objects of type 'source code'. This limitation reflects the traditional view that software equals

code. It ignores the importance of reusing all kinds of software-related experience including

products, processes, and other knowledge. The term 'product' refers to either a concrete docu-

ment or artifact created during a software project, or a product model describing a class of

concrete documents or artifacts with common characteristics. The term 'process' refers to

either to a concrete activity or action - performed by a human being or a machine - aimed at

-6-

2-19
10000174

creating some software product, or a process model describing a class of activities or actions

with common characteristics. The phrase 'other knowledge' refers to anything useful for

software development, including quality and productivity models or models of the application

being implemented.

The reuse of 'generic Ada packages' represents an example of product reuse. Generic Ada pack-
ages represent templates for instantiating specific package objects according to a parameter
mechanisms. The reuse of 'design inspections' represents an example of process reuse. Design
inspections are off-line fault detection and isolation methods applied during the module design
phase. They can be based on different techniques for reading (e.g., ad hoc, sequential, control
flow oriented, stepwise abstraction oriented). The reuse of 'cost models' represents an example
of knowledge reuse. Cost models are used in the estimation, evaluation and control of project
cost. They predict cost (e.g., in the form of staff-months) based on a number of characteristic
project parameters (e.g., estimated product size in KLoC, product complexity, methodology
level).

• Reuse typically requires some modification of the object being reused: Under the

assumption that software developments may be different in some way, modification of experi-

ence from prior projects must be anticipated. The degree of modification depends on how

many, and to what degree, existing object characteristics differ from the needed ones. The time

of modification depends on when the reuse needs for a project or class of projects are known.

Modification can take place as part of actual reuse (i.e., the 'modify' within the reuse process

model of Figure 2) and/or prior to actual reuse (i.e., as part of the re-packaging activity in

Figure 2).

To rente an Ada. package 'list of integers' to organize a 'list of reals' we need to modify it. We
can either modify the existing package by hand, or we can use a generic package 'list' which can
be instantiated via a parameter mechanism for any base type.

To reuse a design inspection method across projects characterized by significantly different fault
profiles, the underlying reading technique may need to be tailored to the respective fault profiles.
If 'interface faults' replace 'control flow faults' as the most common fault type, we can either
select a different reading technique all together (e.g., step-wise abstraction instead of control-
flow oriented) or we can establish specific guidelines for identifying interface faults.

To reuse a cost model across projects characterized by different application domains, we may
have to change the number and type of characteristic project parameters used for estimating
cost as well as their impact on cost. If 'commercial software' is developed instead of 'real-time
software', we may have to consider re-defining 'estimated product size' to be measured in terms
of 'function points' instead of 'lines of code' or re-computing the impact of the existing parame-
ters on cost. Using a cost model effectively implies a constant updating of our understanding of

- 7 -

2-20

10000174

the relationship between project parameters and cost.

• Analysis is necessary to determine when and if reuse is appropriate: The decision to

reuse existing experience as well as how and when to reuse it needs to be based on an analysis

of the payoff. Reuse payoff is not always easy to evaluate [l]. We need to understand (i) the

reuse needs, (ii) how well the available reuse candidates are qualified to meet these needs, and

(iii) the mechanisms available to perform the necessary modification.

Assume the existence of a set of Ada genetics which represent application-specific components
of a satellite control system. The objective may be to reuse svch components to build a new
satellite control system of a similar type, but with higher precision. Whether the existing gener-
ics are suitable depends on a variety of characteristics: Their correctness and reliability, their
performance in prior instances of reuse, their ease of integration into a new system, the poten-
tial for achieving the higher degree of precision through instantiation, the degree of change
needed, and the existence of reuse mechanisms that support this change process. Candidate
Ada generies may theoretically be well suited for reuse; however, without knowing the answers
to these questions, they may not be reused due to lack of confidence that reuse will pay off.

Assume the existence of a design inspection method based on ad-hoc reading which has been
used successfully on past satellite control software developments within a standard waterfall
model. The objective may be to reuse the method in the context of the Cleanroom development
method J22, 25]. In this case, the method needs to be applied in the context of a different life-
cycle model, different design approach, and different design representations. Whether and how
the existing method can be reused depends on our ability to tailor the reading technique to the
stepwise refinement oriented design technique used in Cleanroom, and the required intensity of
reading due to the omission of developer testing. This results in the definition of the stepwise
abstraction oriented reading technique [llj.

Assume the existence of a cost model that has been validated for the development of satellite
control software based on a waterfall life-cycle model, functional decomposition oriented design
techniques, and functional and structural testing. The objective may be to reuse the model in
the context of Cleanroom development. Whether the cost model can be reused at all, how it
needs to be calibrated, or whether a completely different model may be more appropriate
depends on whether the model contains the appropriate variables needed for the prediction of
cast change or whether they simply need to be re-calibrated. This question can only be answered
through thorough analysis of a number of Cleanroom projects.

• Reuse must be integrated into the specific software development: Reuse is intended to

make software development more effective. In order to achieve this objective we need to tailor

reuse practices, methods and tools towards the respective development process.

We have to decide when and how to identify, modify and integrate existing Ada packages. If we
assume identification of Ada generies by name, and modification by the generic parameter
mechanism, we require a repository consisting of Ada generies together with a description of the
instantiation parameters. If we assume identification by specification, and modification of the

-8-

2-21
10000174

generic's code by Jtand, we require a suitable specification of each generic, a definition of
semantic closeness of specifications so we can find suitable reuse candidates, and the appropri-
ate source code documentation to allow for ease of modification. In the case of identification
by specification we may consider identifying reuse candidates at high-level design (i.e., when the
component specifications for the new product exist) or even when defining the requirements.

We have to decide on how often, when, and how design inspections should be integrated into the
development process. If we assume a waterfall-based development life-cycle, we need to deter-
mine how many design inspections need to be performed and when (e.g., once for all modules at
the end of module design, once for all modules of a subsystem, or once for each module). We
need to state which documents are required as input to the design inspection, what results are
to be produced, what actions are to be taken, and when, in case the results are insufficient, and
who is supposed to participate.

We have to decide when to initially estimate cost and when to update the initial estimate. If we
assume a waterfall-based development life-cycle, we may estimate cost initially based on
estimated product and process parameters (e.g., estimated product size). After each milestone,
the estimated cost can be compared with the actual cost. Possible deviations are used to correct
the estimate for the remainder of the project.

2.3. Software Reuse Model Requirements

The above software reuse assumptions suggest that 'reuse' is a complex concept. We need to

build models and characterization schemes that allow us to define and understand, compare and

evaluate, and plan the reuse needs, the reuse candidates, the reuse process itself, and the potential

for effective reuse. Based upon the above assumptions, such models and characterization schemes

need to satisfy the following four requirements:

• Applicable to all types of reuse objects: We want to be able to include products, processes

and all other kinds of knowledge such as quality and productivity models.

• Capable of modeling reuse candidates and reuse needs: We want to be able to capture

the reuse candidates as well as the reuse needs in the current project. This will enable us to (i)

judge the suitability of a given reuse candidate based on the distance between the characteris-

tics of the reuse needs and the reuse candidate, and (ii) establish criteria for useful reuse candi-

dates based on anticipated reuse needs.

• Capable of modeling the reuse process itself: We want to be able to (i) judge the ease of

* Definitions of semantic closeness can be derived from existing work (24|.

-9-

2-22
10000174

bridging the gap between different characteristics of reuse candidates and reuse needs, and (ii)

derive additional criteria for useful reuse candidates based on characteristics of the reuse pro-

cess itself.

• Defined and rationalized so they can be easily tailored to specific project needs and

characteristics: We want to be able to adjust a given reuse model and characterization

scheme to changing project needs and characteristics in a systematic way. This requires not

only the ability to change the scheme, but also some kind of rationale that ties the given reuse

characterization scheme back to its underlying model and assumptions. Such a rationale

enables us to identify the impact of different environments and modify the scheme in a sys-

tematic way.

3. EXISTING REUSE MODELS

A number of research groups have developed (implicit) models and characterization schemes

for reuse (e.g., [12, 14, 17, 26, 27]). The schemes can be distinguished as special purpose schemes

and meta schemes.

The large majority of published characterization schemes have been developed for a special

purpose. They consist of a fixed number of characterization dimensions. There intention is to

characterize software products as they exist. Typical dimensions for characterizing source code

objects in a repository are 'function', 'size', or 'type of problem'. Example schemes include the

schemes published in [14, 17], the ACM Computing Reviews Scheme, AFIPS's Taxonomy of Com-

puter Science and Engineering, schemes for functional collections (e.g., GAMS, SHARE, SSP,

SPSS, IMSL) and schemes for commercial software catalogs (e.g., TCP, IDS, IBM Software Cata-

log, Apple Book). It is obvious that special purpose schemes are not designed to satisfy the reuse

modeling requirements of section 2.3.

- 10-

2-23
10000174

A few characterization schemes can be instantiated for different purposes. They explicitly

acknowledge the need for different schemes (or the expansion of existing ones) due to different or

changing needs of an organization. They, therefore, allow the instantiation of any imaginable

scheme. An excellent example is Ruben Prieto-Diaz's facet-based meta-characterization scheme

[18, 21]. Theoretically, meta schemes are flexible enough to allow the capturing of any reuse

aspect. However, based on known examples of actual uses of meta schemes, such broadness has

not been utilized. Instead, most examples focus on product reuse, are limited to the reuse candi-

dates, and ignore the reuse process entirely. Meta schemes were not designed to satisfy the reuse

modeling requirements of section 2.3.

To illustrate the capabilities of existing schemes, we give the following instance of an exam-
*

pie meta scheme :

• name: What is the product's name? (e.g., buffer.ada, queue.ada, list.pascal)
• function: What is the functional specification or purpose of the product? (e.g., integer_queue,

< element > buffer, sensor control system)
• type: What type of product is it? (e.g., requirements document, design document, code docu-

ment)
• granularity: What is the product's scope? (e.g., system level, subsystem level, component

level, module - package, procedure, function - level)
• representation: How is the product represented? (e.g., informal set of guidelines, schematized

templates, languages such as Ada)
• input/output: What are the external input/output dependencies of the product needed to

completely define/extract it as a self-contained entity? (e.g., global data referenced by a code
unit, formal and actual input/output parameters of a procedure, instantiation parameters of a
generic Ada package)

• application domain: What application classes was the product developed for? (e.g. ground
support software for satellites, business software for banking, payroll software)

The scheme is applicable to all reuse product candidates. For example, a generic Ada package

'buffer.ada' may be characterized as having identifier 'buffer.ada', offering the function

'< element >_buffer', being usable as a 'product' of type "code document' at the 'package

module level', and being represented in 'Ada'. The self-contained definition of the package

requires knowledge regarding the instantiation parameters as well as its visibility of externally

* Characterization dimensions are marked with '•'; example categories for each dimension are listed in parentheses.

- 11-

2-24

10000174

defined objects (e.g., explicit access through WITH clauses, implicit access according to nesting

structure). In addition, effective use of the object may require some basic knowledge of the

language Ada and assume thorough documentation of the object itself. It may have been

developed within the application domain 'ground support software', according to a 'waterfall

life-cycle' and 'functional decomposition design', and exhibiting high quality in terms of 'relia-

bility'. In order to characterize reuse candidates of type process or knowledge, new categories

need to be generated.

• Such a scheme has typically been used to characterize reuse candidates only. However, in order

to evaluate the reuse potential of a reuse candidate in a given reuse scenario, one needs to

understand the distance between its characteristics and the stated or anticipated reuse needs.

In the case of the Ada package example, the required function may be different, the quality

requirements with respect to reliability may be higher, or the design method used in the current

project may be different from the one according to which the package has been created origi-

nally. Without understanding the distance to be bridged between reuse requirements and reuse

candidates it is hard to (a) predict the cost involved in reusing a particular object, and (b)

establish criteria for populating a reuse repository that supports cost-effective reuse.

• The scheme provides no information for characterizing the reuse process. To really predict the

cost of reuse we do not only have to understand the distance to be bridged between reuse candi-

dates and reuse needs, but also the intended process to bridge it (i.e., the reuse process). For

example, it can be expected that it is easier to bridge the distance with respect to function by

using a parameterized instantiation mechanism rather than modifying the existing package by

hand.

• There is no explicit rationale for the eight dimensions of the example scheme. That makes it

hard to reason about its appropriateness as well as modify it in any systematic way. There is

no guidance in tailoring the example scheme.to new needs with respect to what is to changed

• (e.g., only some categories, dimensions, or the entire implicitly underlying model) or how it is

-12-

2-25
10000174

to be changed. For example, it is not clear what needs to be changed in order to make the

scheme applicable to reuse candidates of type process or knowledge.

In summary, existing schemes - special purpose as well as meta schemes - only partially

satisfy the requirements laid out above. The most crucial shortcoming is the lack of rationales

which makes it hard to tailor such schemes to changing needs and environment characteristics.

This observation suggests the need for new, broader reuse models and characterization schemes.

In the next section, we suggest a comprehensive reuse model and characterization schemes which

satisfy all four requirements.

4. A COMPREHENSIVE REUSE MODEL

In this section we define a comprehensive reuse model and characterization schemes which

satisfy the requirements stated in section 2.3. We start with a very general reuse model, refine it

step by step until it generates reuse characterization dimensions at the level of detail needed to

understand, evaluate, motivate or improve reuse. This modeling approach allows us to deal with

the complexity of the modeling task itself, and document an explicit rationale for the resulting

model.

4.1. Reuse Model

The comprehensive reuse model used in this section is consistent with the view of reuse

represented in section 2.2. Reuse comprises the transformation of existing reuse candidates into

needed objects which satisfy established reuse needs. The transformation is referred to as reuse

process. Specifications of the needed objects are an essential part of the reuse needs which guide

any reuse process.

- 13 -

2-26
10000174

0

REUSE CANDIDATES REUSE PROCESS NEEDED OBJECTS

Figure 3: Abstract Reuse Model (Refinement level 0)

The reuse candidates represent experience from the same project, prior projects, or other sources,

that have been evaluated as being of potential reuse value, and have been made available in some

form of experience base. The reuse needs specify objects needed in the current project. In the

case of successful reuse, these needed objects would be the potentially modified versions of reuse

candidates. Both the reuse candidate and reuse needs may refer to any type of experience accu-

mulated in the context of software projects ranging from products to processes to knowledge.

The reuse process transforms reuse candidates into objects which satisfy given reuse needs.

In order to better understand reuse related issues we refine each component of the reuse

model further. The result of this first refinement step is depicted in Figure 4.

- 14 -

2-27

10000174

»
activity

activity interface

activity context

1

REUSE CANDIDATES REUSE PROCESS

Figure 4: Our Reuse Model (Refinement level 1)

object

systenj

context

NEEDED OBJECTS

Each reuse candidate is a specific object considered for reuse. The object has various attri-

butes that describe and bound it. Most objects are physically part of a system, i.e. they interact

with other objects to create some greater object. If we want to reuse an object we must under-

stand its interaction with other objects in the system in order to extract it as a unit, i.e. object

interface. Objects were created in some environment which leaves its characteristics on the

object, even though those characteristics may not be visible. We call this the object context.

Given reuse needs may be satisfied by a set of reuse candidates. Therefore, we may have to

consider different attributes. The system in which the transformed object is integrated and the

system context in which the system is developed must also be classified.

The rente process is aimed at extracting a reuse candidate from a repository based on the

characteristics of the known reuse needs, and making it ready for reuse in the system and context

in which it will be reused. We must describe the various reuse activities and classify them. The

reuse activities need to be integrated into the reuse—enabling software development process. The

means of integration constitute the activity interface. Reuse requires the transfer of experience

across project boundaries. The organizational support provided for this experience transfer is

referred to as activity context.

-16-

2-28
10000174

Based upon the goals for the specific project, as well as the organization, we must assess (i)

the required qualities of the reused object as stated by the reuse needs, (ii) the quality of the reuse

process, especially its integration into the enabling software evolution process, and (iii) the quality

of the existing revise candidates.

4.2. Model—Based Reuse.Characterization Scheme

Each component of the First Model Refinement (Figure 4) is further refined as depicted in

Figures 5(a-c) . It needs to be noted that these refinements are based on our current understand-

ing of reuse and may, therefore, change in the future.

4.2.1. Reuse Candidates

In order to characterize the object itself, we have chosen to provide the following six dimen-

sions and supplementing categories: the object's name (e.g., buffer.ada), its function (e.g.,

integer_buffer), its possible use (e.g., product), its type (e.g., requirements document), its granu-

larity (e.g., module), and its representation (e.g., Ada language). The object interface consists of

such things as what are the explicit inputs/outputs needed to define and extract the object as a

self—contained unit (e.g., instantiation parameters in the case of a generic Ada package), and what

are additionally required assumptions and dependencies (e.g., user's knowledge of Ada). Whereas

the object and object interface dimensions provide us with a snapshot of the object at hand, the

object context dimension provides us with historical information such as the application classes

the object was developed for (e.g., ground support software for satellites), the environment the

object was developed in (e.g., waterfall life—cycle model), and its validated or anticipated quality

(e.g., reliability).

The resulting model refinement is depicted'in Figure 5a.

- 16 -

2-29

10000174

0

ow^l^
>ject interface"^

^

•.!•

-object context

— name
- function
- use

- *yp«
— granularity
— representation

input/output
dependencies

REUSE CANDIDATES I - application domain
- solution domain

I - object quality

Figure 5a: Reuse Model (Reuse Candidates / Refinement level 2)

Each reuse candidate is characterized in terms of

• name: What is the object's name? (e.g., buffer.ada, sel inspection, sel_cost_model)
• function: What is the functional specification or purpose of the object? (e.g., integer_queue,

< element >_buffer, sensor control system, certify appropriateness of design documents,
predict project cost)

• use: How can the object be used? (e.g., product, process, knowledge)
• type: What type of object is it? (e.g., requirements document, code document, inspection

method, coding method, specification tool, graphic tool, process model, cost model)
• granularity: What is the object's scope? (e.g., system level, subsystem level, component

level, module - package, procedure, function - level, entire life cycle, design stage, coding
stage)

• representation: How is the object represented? (e.g., data, informal set of guidelines,
schematized templates, formal mathematical model, languages such as Ada, automated tools)

• input/output: What are the external input/output dependencies of the object needed to
completely define/extract it as a self-contained entity? (e.g., global data referenced by a
code unit, formal and actual input/output parameters of a procedure, instantiation parame-
ters of a generic Ada package, specification and design documents needed to perform a design
inspection, defect data produced by a design inspection, variables of a cost model)

• dependencies: What are additional assumptions and dependencies needed to understand the
object? (e.g., assumption on user's qualification such as knowledge of Ada or qualification to
read, specification document to understand a code unit, readability of design document,
homogeneity of problem classes and environments underlying a cost model)

• application domain: What application classes was the object developed for? (e.g. ground
support software for satellites, business software for banking, payroll software)

• solution domain: What environment classes was the object developed in? (e.g., waterfall
life-cycle model, spiral life-cycle model, iterative enhancement life-cycle model, functional
decomposition design method, standard set of methods)

• object quality: What qualities does the object exhibit? (e.g.,-level of reliability, correctness,
user-friendliness, defect detection rate, predictability)

-17-

2-30

10000174

A subset of this scheme has been used in Section 3. In contrast to Section 3, we now have

(i) a rationale for these dimensions (see Figure 5a) and (ii) understand that they cover only part

(i.e., the reuse candidate) of the comprehensive reuse model depicted in Figure 4.

4.2.2. Needed Objects

In order to characterize the needed objects (or reuse needs), we have chosen the same eleven

dimensions and supporting categories as for the reuse candidates. The resulting model refinement

is depicted in Figure 5b:

- name
— function
- use

^
object

system
~- -.

system coi

NEEDED OBJECTS

type
granularity

• representation

input/output
dependencies

- application domain
— solution domain
— object quality

Figure 5b: Reuse Model (Reuse Needs / Refinement level 2)

However, an object may change its characteristics during the actual process of reuse.

Therefore, its characterizations before and after reuse can be expected to be different. For exam-

ple, a reuse candidate may be a compiler (type) product (use), and may have been developed

according to a waterfall life—cycle approach (solution domain). The needed object is a compiler

(type) process (use) integrated into a project based on iterative enhancement (solution domain).

- 18-

2-31
10000174

This means that despite the similarity between the refined models of reuse candidates and

needed objects, there exists a significant difference in emphasis: In the former case the emphasis is

on the potentially reusable objects themselves; in the latter ease, the emphasis is on the system in

which these object(s) are (or are expected to be) reused. This explains the use of different dimen-

sion names: 'system' and 'system context' instead of 'object interface' and 'object context'.

The distance between the characteristics of a reuse candidate and the needed object give an

indication of the gap to be bridged in the event of reuse.

4.2.3. Reuse Process

The reuse process consists of several activities. In the remainder of this paper, we will use a

model consisting of four basic activities: identification, evaluation, modification, and integration.

In order to characterize each reuse activity we may be interested in its name (e.g., modify.pl). its

function (e.g., modify an identified reuse candidate to entirely satisfy given reuse needs), its type

(e.g., identification, evaluation, modification), and the mechanism used to perform its function

(e.g., modification via parameterization). The interface of each activity may consist of such

things as the explicit input/output interfaces between the activity and the enabling software evo-

lution environment (e.g., in the case of modification: performed during the coding phase, assumes

the existence of a specification), and other assumptions regarding the evolution environment that

need to be satisfied (e.g., existence of certain configuration control policies). The activity context

may include information about how reuse candidates are transferred to satisfy given reuse needs

(experience transfer), and the quality of each reuse activity (e.g., reliability, productivity).

This refinement of the reuse process is depicted in Figure 5c.

- 19 -

2-32
10000174

activity

activity interface
activity context

— input/output
— dependencies

— experience transfer
— reuse quality

REUSE PROCESS

Figure 5c: Reuse Model (Reuse Process / Refinement level 2)

In more detail, the dimensions and example categories for characterizing the reuse process are:

• REUSE PROCESS: For each reuse activity characterize:

+ Activity:

- name: What is the name of the activity? (e.g., identify.generics, evaluate.generics,
modify.generics, integrate.generics)

- function: What is the function performed by the activity? (e.g., select candidate objects
{x-} which satisfy certain characteristics of the reuse needs "x5; evaluate the potential of
the selected candidate objects of satisfying the given system and system context dimensions
of the reuse needs "J" and pick the most suited candidate 'xi"; modify 'x^' to entirely
satisfy "x*; integrate object 'x' into the current development project)

- type: What is the type of the activity? (e.g., identification, evaluation, modification,
integration)

- mechanism: How is the activity performed? (in the case of identification: e.g., by name,
by function, by type and function; in the case of evaluation: e.g., by subjective judgement,
by evaluation of historical baseline measurement data; in the case of modification: e.g.,
verbatim, parameterized, template-based, unconstrained; in the case of integration: e.g.,
according to the system configuration plan, according to the project/process plan)

+ Activity Interface:

- input/output: What are explicit input and output interfaces between the reuse activity
and the enabling software evolution environment? (in the case of identification: e.g.,
description of reuse needs / set of reuse candidates; in the case of modification: e.g., one
selected reuse candidate, specification for the object to be reused / object to be reused)

- dependencies: What are other implicit assumptions and dependencies on data and infor-
mation regarding the software evolution environment? (e.g., time at which'reuse activity
is performed - relative to the enabling development process: e.g., during design or coding
stages; additional information needed to perform the reuse activity effectively: e.g., pack-
age specification to instantiate a generic package, knowledge of system configuration plan,
configuration management procedures, or project plan)

+ Activity Context:

- experience transfer: What are the support mechanisms for transferring experience across

-20-

2-33

10000174

projects? (e.g., human, experience base, automated)
- reuse quality: What is the quality of each reuse activity? (e.g., high reliability, high

predictability of modification cost, correctness, average performance)

4.3. Example Applications of the Comprehensive Reuse Model

We demonstrate the applicability of our model-based reuse scheme by characterizing the

three hypothetical reuse scenarios which have been used informally throughout this paper: Ada

generics, design inspections, and cost models. The resulting characterizations are summarized in

tables 1, 2, and 3:

-21-

2-34

10000174

Dimensions

============

name

function

use

type

granularity

representation

input/output

dependencies

application domain

solution domain

object quality

Ada generic

================

buffer-ada

< element > buffer

product

code document,

package

Ada/
generic package

formal and actual
instantiation params
(type and number)

assumes Ada knowledge

ground support
sw for satellites

waterfall (Ada)
life-cycle model,

functional de-
composition design

method

high reliability

(e.g., < 0.1 defects
per KLoC for a given

set of acceptance tests)

Reuse Examples

design inspection

==================

seljospection. waterfall

certify appropriateness
of design documents

process

inspection method

design stage

informal set of
guidelines

specification and
design document needed,

defect data produced

assumes a readable design.
qualified reader

ground support
sw for satellites

waterfall (Ada)
life-cycle model.
standard set of

methods

average defect
detection rate

(e.g., > 0.5 defects
detected per staff_hour)

cost model

===================

sel_cost model. fortran

predict
project cost

knowledge

cost model

entire life cycle

formal mathematical
model

estimated product
size in KLOC,

complexity rating,
methodology level,
cost in staff_hours

assumes a relatively
homogeneous class

of problems and environments

ground support
sw for satellites

waterfall (Ada)
life-cycle model
standard set of

methods

average predictability

(e.g., < 10% pre-
diction error)

Table 1: Characterizations of Reuse Candidates

-22-

2-35
10000174

Dimensions

============

name

function

use

type

granularity

representation

input/output

dependencies

application domain

solution domain

object quality

Ada gentries

=================

3tring_bu(Ter.ada

string_buffer

product

code document,

package

Ada

formal and actual
instantiation params
(type and number)

assumes Ada knowledge

ground support
sw for satellites

waterfall (Ada)
life-cycle model,
object oriented
design method

high reliability

(e.g., < 0.1 defects
per KLoC for a given

set of acceptance tests),
high performance

[e.g., max. response times
for a set of testa)

Reuse Examples

design inspection

==================

sel mapection.cleanroom

certify appropriateness
of design documents

process

inspection method

design stage

informal set of
guidelines

specification and
design document needed,

defect data produced

assumes a readable design,
qualified reader

ground support
sw for satellites

Cleanroom (Fortran)
development model,
step wise refinement

oriented design,
statistical testing

high defect
detection rate

(e.g., > 1.0 defects
detected per staff_hour)

wrt. interface faults

cost model

===================

sel_cost model.ada

predict
project cost

knowledge

cost model

entire life cycle

formal mathematical
model

estimated product
size in KLOC,

complexity rating,
methodology level,
cost in staff_hours

assumes a relatively
homogeneous class

of problems and environments

ground support
sw for satellites

waterfall (Adi)
life-cycle model,

revised set of
methods

high predictability

(e.g., < 5% pre-
diction error)

Table 2: Characterisations of Needed Objects

-23-

2-36
10000174

Dimensions

^ ^ — — — — — —

name

function

type

mechanism

Reuse Examples

Ada gentries

modify .genetics

modify to satisfy
target specification

modification

parameterized
(generic mechanism)

design inspection

modify .inspections

modify to satisfy
target specification

modification

unconstrained

cost model

modify.cost models

modify to satisfy
target specification

modification

template-based

input/output

dependencies

buffer .ada,
reuse specification/
string buffer.ada

performed
during coding stage,
package specification

needed,

knowledge of
system configuration

plan

set inspection.waterfall,
reuse specification/

seHnspection.cleanroom

performed
during planning stage,

knowledge of
project plan

sel cost_modeUortran,
reuse specification/
sel cost model.ada

performed
during planning stage,

knowledge of historical
Ada project profiles

experience transfer

reuse quality

. automated

correctness

human and
experience base

correctness

experience base

correctness

Table 3: Characterizations of Reuse Processes

- 24-

2-37
10000174

5. SUPPORT MECHANISMS FOR COMPREHENSIVE REUSE

According to the reuse oriented software development model depicted in Figure 2, effective

reuse needs to take place in an environment that supports continuous improvement, i.e., record-

ing of experience across all projects, appropriate packaging and storing of recorded experience,

and reusing existing experience whenever feasible. In the TAME project at the University of

Maryland, such an environment model has been proposed and (partial) prototype environments

are currently being built according to this model. In the remainder of this section, we introduce

the reuse oriented TAME environment model, discuss a number of mechanisms for effective reuse,

and introduce several prototype environments being built according to the TAME model.

5.1. The Reuse Oriented TAME Environment Model

The important components of the reuse oriented TAME environment model are depicted in

Figure 6: the project organization which performs individual development projects, the experience

base which stores and actively modifies development experience from all projects, and the

mechanisms for learning and reuse. The shaded areas in Figure 6 indicate how the reuse model of

Figure 3 intersects with the TAME environment model.

- 25 -

2-38
10000174

REUSE ORIENTED SOFTWARE ENVIRONMENT MODEL

PROJECT ORGANIZATION

plan

characterize set goals
! choose ''

• processes

i

WEEDED OBJECTS

execute

construct

analyze

record ^ t (re—)use
REUSE
'ROCESS

formalize

REUSE
CANDIDATES

EXPERIENCE BASE

tailor

generalize

EXPERIENCE FACTORY

Figure 6: Reuse Oriented Software Environment Model

Within the project organization each development project is performed according to the

quality improvement paradigm [3, 9j. The quality improvement paradigm consists of the follow-

ing steps:

-28-

2-39
10000174

1. Plan: Characterize the current project environment so that the appropriate past experience

can be made available to the current project. Set up the goals for the project and refine them

into quantifiable. questions and metrics for successful project performance and improvement

over previous project performances (e.g., based upon the goal/question/metric paradigm [9,

13]). Choose the appropriate software development process model for this project with the sup-

porting methods and tools - for both construction and analysis.

2. Execute: Construct the products according to the chosen development process model, methods

and tools. Collect the prescribed data, validate and analyze it to provide feedback in real-time

for corrective action on the current project.

3. Package: Analyze the data in a post-mortem fashion to evaluate the current practices, deter-

mine problems, record findings and make recommendations for improvement for future pro-

jects. Package the experiences in the form of updated and refined models and other forms of

structured knowledge gained from this and previous projects, and save it in an experience base

so it can be available to future projects.

The experience base contains reuse candidates of different types, granularity and representa-

tion. Example entries in the case of the examples described in section 4.3 include objects of type

'code document', granularity 'package' and representation 'Ada'; objects of type 'inspection

method', granularity 'design stage' and representation 'schematized template'; and objects of type

'cost model', granularity 'entire life cycle' and representation 'formal mathematical model'.

During each step of a development project performed according to the quality improvement

paradigm reuse needs are identified and matches made against reuse candidates available in the

experience base. During the characterization step, characteristics of the current project environ-

ment can be used to identify appropriate past experience in the experience base, e.g. based on

project characteristics the appropriate instantiation of a cost model can be generated. During the

planning step, project goals can be used to identify existing similar goal/question/metric models

or process/product/quality models in the experience base, e.g., based on project goals a

- 27 -

2-40
10000174

goal/question /metric model can be chosen for evaluating a design inspection method. During the

execution step, product specifications can be used to identify existing components from prior pro-

jects, such as Ada genetics. During the feedback step, the analysis goals generated during plan-

ning are used as the basis of analysis by fitting baselines to compare against the current data. As

part of the feedback step a decision is made as to which experiences are worth recording. The

degree of guidance that can be provided for entering reuse candidates into the experience base

depends upon the accumulated knowledge of expected reuse requests for future projects.

The experience base is part of an active organizational entity, referred to a the Experience

Factory [4], that supports project developments by analyzing and synthesizing all kinds of experi-

ence, acting as a repository for such experience, and supplying that experience to various projects

on demand. In the context of the reuse oriented software environment model, the Experience Fac-

tory not only stores experience in a variety of repositories, but performs the constant modification

of experience to increase its reuse potential. Example modifications address the formalization of

experience (e.g., building a cost model empirically based upon the data available), tailoring of

experience to fit the needs of a specific project (e.g., instantiating an Ada package from a generic

package), and the generalizing of experience to be applicable across project classes (e.g., develop-

ing a generic package from a specific package). It plays the role of an organizational 'server'

aimed at satisfying project specific reuse requests effectively [4]. The constant collection of meas-

urement data regarding reuse needs and the reuse processes themselves enables the judgements

needed to populate the experience base effectively and select the best suited reuse candidates.

The use of the quality improvement paradigm within the project organization enables the integra-

tion of measurement-based analysis and construction.

5.2. Mechanisms to Support Effective Reuse in the TAME Environment Model

Improvement in the reuse oriented TAME environment model of Figure 6 is based on the

feedback of experience captured from prior projects into ongoing and future software develop-

- 28-

2-41

10000174

ments. The mechanisms needed to support effective feedback are listed in Figure 7.

feedback

record package identify evaluate modify

Figure 7: Mechanisms needed to Support Effective Feedback of Experience

Feedback requires learning and reuse. Although learning and reuse are possible in any

environment, we are interested in addressing and supporting them explicitly and systematically.

Systematic learning requires support for the recording of experience in some experience base and

its packaging in order to increase its reuse potential for anticipated reuse needs in future develop-

ments. Systematic reuse requires support for the identification of candidate experience, its

evaluation, and' modification.

Reuse and learning are possible in any environment. However, we want learning and reuse

to be explicitly planned, not implicit or coincidental. In the reuse oriented software development

environment, learning and reuse are explicitly modeled and become desired characteristics of

software development. They are specific processes performed in conjunction with the Experience

Factory.

5.2.1. Recording of Experience

The objective of recording experience is to create a repository of well specified and organ-

ized experience. This requires a precise characterization of the reuse candidates to be recorded,

the design and implementation of a comprehensive experience base, and effective mechanisms for

collecting, qualifying, storing and retrieving experience. The characterization of reuse candidates

- 29 -

2-42
10000174

is derived from characterizations of known reuse needs and reuse processes. The characterization

of reuse candidates describes what information needs to be stored in addition to the objects them-

selves in order to make them reusable, and how it should be packaged. The experience base

replaces the project database of traditional environment models by the more comprehensive con-

cept of an experience base which is intended to capture the entire body of experience recorded

during the planning and execution steps of all software projects within an organization.

Examples of recording experience include the storing of Ada generics, design inspection

methods, and cost modeb. Based on our reuse model, Table 1 describes the information needed

in conjunction with each of these object types in order to make them likely reuse candidates to

satisfy the hypothetical reuse needs using the hypothetical reuse processes described in Tables 2

and 3, respectively. For example, in the case of Ada generics, we may require each object to be

augmented with information on the number of instantiation parameters, the application and solu-

tion domain, and the expected or demonstrated reliability. If we can quantify such information

(e.g., Ada generics developed within ground support software projects, Ada.generics with less than

5 instantiation parameters are acceptable), we can use it to exclude inappropriate objects from

being recorded in the first place.

5.2.2. Packaging of Experience

The objective of packaging experience is to increase its reuse potential. This requires a pre-

cise characterization of the new reuse needs or processes, and effective mechanisms for generaliz-

ing, generalizing and formalizing experience. Packaging may take place at the time of first

recording experience into the experience base or at any later time when new reuse needs reuse

needs become known or our understanding of the interrelationship between reuse candidates,

reuse needs and reuse processes changes.

The objective of generalizing existing experience prior to its reuse is to make a candidate

reuse object useful in a larger-set of potential target applications. The.objective of tailoring exist-

-30-

2-43

10000174

ing experience prior to its potential reuse is to fine-tune a candidate reuse object to fit a specific

task or exhibit special attributes, such as size or performance. The objective of formalizing exist-

ing experience prior to its actual reuse is to increase the reuse potential of reuse candidates by

encoding them in more precise, better understood ways. These activities require a well-

documented cataloged and categorized set of reuse candidates, mechanisms that support the

modification process, and an understanding of the potential reuse needs. Generalization and

tailoring are specifically concerned with changing the application and solution domain characteris-

tics of reuse candidates: from project specific to domain specific to project specific and vice versa.

Objectives and characteristics are different from project to project, and even more so from

environment to environment. We cannot reuse past experience without modifying it to the needs

of the current project. The stability of the environment in which reuse takes place, as well as the

origination of the experience, determine the amount of tailoring required. Formalization activities

are concerned with movement across the boundaries of the representation dimension within the

experience base: from informal to schematized and then to formal.

Examples of tailoring experience include the instantiation of a set of specific Ada packages

from a generic package available in an object oriented experience base, the fine-tuning of a cost

model to the specific characteristics of a class of projects, and the adjustment of a design inspec-

tion method to focus on the class of defects common to the application. Examples of generalizing

experience include the creation of a generic Ada package from a set of specific Ada packages, the

creation of a general cost model from a set of domain specific cost models, and the definition of

an application and solution domain specific design inspection method based on the experience

with design inspections in a number of specific projects. Examples of formalization include the

writing of functional specifications for generic Ada packages, providing automated support for

checking adherence to entry and exit criteria of a design inspection method, and building a cost

model empirically based upon the data available in an experience base.

-31-

2-44
10000174

A misunderstanding of the importance of tailoring exists in many organizations. These

organizations have specific development guidebooks which are of limited value because they 'are

written for some ideal project' which 'has nothing in common with the current project and, there-

fore, do not apply*. All guidebooks (including standards such as DOD-STD-2167) are general and

need to be tailored to each project in order to be effective.

5.2.3. Identification of Candidate Experience

The objective of identifying candidate experience is to find a set of candidates with the

potential to satisfy project specific reuse needs. This requires a precise characterization of the

reuse needs, some organizational scheme for the reuse candidates available in the experience base,

and an effective mechanism for matching characteristics of the project specific reuse needs against

the experience base.

Let's assume, for example, that we need an Ada package which implements a 'string_buffer'

with high 'reliability and performance' characteristics. This need may have been established dur-

ing the project planning phase based on domain analysis, or during the design or coding stages.

We identify candidate objects based on some subset of the object related characteristics stated in

Table 2: string_buffer.ada, string_buffer, product, code document, package, Ada [28]. The more

characteristics we use for identification, the smaller the resulting set of candidate objects will be.

For example, if we include the name itself, we will either find exactly one object or none.

Identification may take place during any project stage. We will assume that the set of success-

fully identified reuse candidates contains 'buffer.ada', the object characterized in Table 1.

5.2.4. Evaluation of Experience

The objective of evaluating experience is to characterize the degree of discrepancies between

a given set of reuse needs (see Table 2) and some identified reuse candidate (Table l), and (ii)

predict the cost of bridging the gap between reuse candidates and reuse needs. The first type of

-32-

2-45
10000174

evaluation goal can be achieved by capturing detailed information about reuse candidates and

reuse needs according to the dimensions of the presented characterization scheme. The second

goal requires the inclusion of data characterizing the reuse process itself and past experience about

similar reuse activities. Effective evaluation requires precise characterization of reuse needs, reuse

processes and reuse candidates; knowledge about their relationships, and effective mechanisms for

measurement.

The knowledge regarding the interrelationship between reuse needs, processes and candi-

dates is the result of the proposed evolutionary learning which takes place within the reuse

oriented TAME environment model. The mechanisms used for effective measurement are based

on the goal/question/metric paradigm [9, 11, 13j. It provides templates for guiding the selection

of appropriate metrics based on a precise definition of the evaluation goal. Guidance exists at the

level of identifying certain types of metrics (e.g., to quantify the object of interest, to quantify the

perspective of interest, to quantify the quality aspect of interest). Using the goal/question/metric

paradigm in conjunction with reuse characterizations like the ones depicted in Tables 1, 2, and 3,

provides very detailed guidance as to what exact metrics need to be used. For example, evaluation

of the Ada generic example suggests metrics to characterize discrepancies between the reuse needs.

and all available reuse candidates in terms of (i) function, use, type, granularity, and representa-

tion on a nominal scale defined by the respective categories, (ii) input/output interface on an

ordinal scale 'number of instantiation params', (iii) application and solution domains on nominal

scales, and (iv) qualities such as performance based on benchmark tests.

For example, we want to evaluate the reuse potential of the object 'buffer.ada' identified in

the previous subsection. We need to evaluate whether and to what degree 'buffer.ada' (as well as

any other identified candidate) needs to be modified and estimate the cost of such modification

compared to the cost required for creating the desired object 'string_buffer' from scratch. Three

characteristics of the chosen reuse candidate deviate from the expected ones: it is more general

than needed (see function dimension), it has been developed according to a different design

- 33 -

2-46
10000174

approach (see solution domain dimension), and it does not contain any information about its per-

formance behavior (see object quality dimension). The functional discrepancy requires instantiat-

ing object 'buffer.ada' for data type 'string'. The cost of this -modification is extremely low due

to the fact that the generic instantiation mechanism in Ada can be used for modification (see

Table 3). The remaining two discrepancies cannot be evaluated based on the information avail-

able through the characterizations in section 4.3. On the one hand, ignoring the solution domain

discrepancy may result in problems during the integration phase. On the other hand, it may be

hard to predict the cost of transforming 'buffer.ada' to adhere to object oriented principles.

Without additional information about either the integration of non-object oriented packages or

the cost of modification, we only have the choice between two risks. Predicting the cost of

changes necessary to satisfy the stated object performance requirements is impossible because we

have no information about the candidate's performance behavior. It is noteworthy that very often

practical reuse seems to fail because of lack of appropriate information to evaluate the reuse

implications a-priori, rather than because of technical infeasibility [15].

The characterization of both reuse candidates and needs and the reuse process allow us to

understand some of the implications and risks associated with discrepancies between identified

reuse candidates and target reuse needs. Problems arise when we have either insufficient informa-

tion about the existence of a discrepancy (e.g., object performance quality in our example), or no

understanding of the implications of an identified discrepancy (e.g., solution domain in our exam-

ple). In order to avoid the first type of problem, one may either constrain the identification pro-

cess further by including characteristics other than just the object related ones, or not have any

objects without 'performance' data in the reuse repository. If we had included 'desired solution

domain'' and 'object performance' as additional criteria in our identification process, we may not

have selected object 'buffer.ada' at all. If every object in our repository would have performance

data attached to it, we at least would be able to establish the fact that there exists a discrepancy.

In order to avoid the second type of problem, we need have some (semi-) automated modification

mechanism, or at least historical data about the cost involved in similar past situations. It is

- 34 -

2-47
10000174

clear that in our example any functional discrepancy within the scope of the instantiation param-

eters is easy to bridge due to the availability of a completely automated modification mechanism

(i.e., generic instantiation in Ada). Any functional discrepancy that cannot be bridged through

this mechanisms poses a larger and possibly unpredictable risk. Whether it is more costly to re-

design 'buffer.ada' in order to adhere to object oriented design principles or to re-develop it from

scratch is not obvious without past experience. A mechanism for modeling all kinds of experience

is given in [6].

5.2.5. Modification of Experience

The objective of modifying experience is to bridge the gap between a selected reuse candi-

dates and given reuse needs. This requires a precise characterization of the reuse needs, and effec-

tive mechanisms for modification. Technically, modification mechanisms are very similar to the

tailoring (and generalization) mechanism introduced for packaging experience. Tailoring here is

different in that during modification the target is described by concrete, project specific reuse

needs, whereas during packaging the target is typically imprecise in that it reflects anticipated

reuse needs in a class of future projects. We refer to tailoring (and generalizing) as 'off-line'

(during packaging) or 'on-line' (during modification) depending on whether it takes place before

or as part of a concrete instance of reuse.

Examples of modifying experience - similar to the examples given earlier for tailoring -

include the instantiation of a set of specific Ada packages from a generic package available in an

object oriented experience base, the fine-tuning of a cost model to the specific characteristics of a

class of projects, and the adjustment of a design inspection method to focus on the class of defects

common to the application.

-35 -

2-48
10000174

5.3. TAME Environment Prototypes

In the TAME (Tailoring A Measurement Environment) project, we investigate fundamental

issues related to the reuse- (or improvement-) oriented software environment model of Figure 6

and build a series of (partial) research prototype versions [8, 9, 15).

Current research topics include the formalization of the goal/question/metric paradigm for

effective software measurement and evaluation; the development of formalisms for representing

software engineering experience such as quality models, lessons learned, process models, product

models; the development of models for packaging experience in the experience base; and the

development'of effective mechanisms to support learning and reuse within the experience factory

(e.g., qualification, formalization, tailoring, generalization, synthesis). In addition, various slices

of an evolving TAME environment are being prototyped in order to study the definition and

integration of different concepts.

Aspects of the TAME research prototypes, currently being developed at the University of

Maryland, can be classified best by the different classes of experience they attempt to generate,

maintain and reuse:

• Support for identifying objects by browsing through projects, goals and processes based on a

facet-based characterization mechanism.

• Support for the generalization, tailoring, and integration of a variety experience types based on

an object oriented experience base model.

• Support for the definition of environment specific cost and resource allocation models and their

tailoring, generalization and formalization based on project experience.

• Support for the definition of test techniques in terms of entry and exit criteria that provides a

method for selecting the appropriate technique for each project phase based on environment

characteristics, data models, and project goals.

• Support for the definition of process models and their formalization, generalization and tailor-

ing based on project experience.

-36-

2-49
10000174

• Support for an experience factory architecture that supports the evolution of the organization.

6. CONCLUSIONS

We have introduced a comprehensive reuse framework consisting of reuse models, model-

based characterization schemes, the TAME environment model supporting the integration of

reuse into software development, and ongoing research aad development efforts toward a TAME

environment prototype.

The presented reuse model and related model-based characterization schemes have advan-

tages over existing models and schemes in that they (a) allow us to capture the reuse of any type

of experience, (b) address reuse candidates and reuse needs as well as the reuse process itself, and

(c) provide a rationale for the chosen characterizing dimensions. We have demonstrated the

advantages of such a comprehensive reuse model and related schemes by applying them to the

characterization of example reuse scenarios. Especially their usefulness for defining and motivat-

ing the support mechanisms for comprehensive reuse and learning were stressed.

Finally, we introduced the TAME environment model which supports the integration of

reuse into software developments. Several partial instantiations of the TAME environment

model, currently being developed at the University of Maryland, have been mentioned. In order

to make reuse a reality, more research is required towards understanding and conceptualizing

activities and aspects related to reuse, learning and experience factory technology.

7. ACKNOWLEDGEMENTS

We thank all our colleagues and graduate students who contributed to this paper, especially

all members of the TAME, CARE and LASER projects. We also thank the Guest Editors, Nazim

H. Madhavji and Wilhelm Schaefer, and the anonymous referees for their excellent suggestions for

- 37 -

2-50
10000174

improving this paper.

8. REFERENCES

[I] B. H. Barnes and T. B. Bellinger, 'Making Reuse Cost-Effective", IEEE Software Maga-
zine, January 1991, pp. 13-24.

[2] V. R. Basil!, "Can We Measure Software Technology: Lessons Learned from Eight Years of
Trying", in Proc. Tenth Annual Software Engineering Workshop, NASA Goddard Space
Flight Center, Greenbelt, MD, December 1985.

[3] V. R. Basili, • Quantitative Evaluation of -Software Methodology*, Dept. of Computer
Science, University of Maryland, College Park, TR-1519, July 1985 (also in Proc. of
the First Pan Pacific Computer Conference, Australia, September 1986].

[4] V. R. Basili, "Software Development: A Paradigm for the Future", Proc. 13th Annual
International Computer Software & Applications Conference, Orlando, FL, September 20-
22, 1989.

[5] V. R. Basili, "Viewing Maintenance as Reuse Oriented Software Development", IEEE
Software Magazine, January 1990, pp. 19-25.

[6] V. R. Basili, G. Caldiera, and G. Cantone, "A Reference Architecture for the Component
Factory", Technical Report TR-3333, Dept. of Computer Science, University of Maryland,
College Park, MD 20742, March 1991.

[7] V. R. Basili and H. D. Rombach, "Tailoring the Software Process to Project Goals and
Environments", Proc. of the Ninth International Conference on Software Engineer-
ing, Monterey, CA, March 30 - April 2, 1987, pp. 345-357.

[8] V. R. Basili and H. D. Rombach, "TAME: Integrating Measurement into Software
Environments", Technical Report TR-1764 (or TAME-TR-1-1987), Dept. of Computer
Science, University of Maryland, College Park, MD 20742, June 1987.

[9] V. R. Basili and H. D. Rombach "The TAME Project: Towards Improvement Oriented
Software Environments", IEEE Transactions on Software Engineering, vol. SE-14, no. 6,
June 1988, pp. 758-773.

[10J V. R. Basili and H. D. Rombach, "Towards a Comprehensive Framework for Reuse: A
Reuse-Enabling Software Evolution Environment (part I)/ Model-Based Reuse Characteri-
zation Schemes (part II)", Technical Reports, Dept. of Computer Science (CS-TR-
2158/CS-TR-2446) and UMIACS (UMLVCS-TR-88-92/UMIACS-TR-90-47), University
of Maryland, College Park, MD 20742, December 1988/April 1990.

[II] V. R. Basili and R. W. Selby, •Comparing the Effectiveness of Software Testing Stra-
tegies", IEEE Transactions on Software Engineering, vol.SE-13, no.12, December 1987,
pp.1278-1296.

[12] V. R. Basili and M. Shaw, "Scope of Software Reuse", White paper, working group on
'Scope of Software Reuse', Tenth Minnowbrook Workshop on Software Reuse, Blue
Mountain Lake, New York, July 1987 (in preparation).

[13] V. R. Basili and D. M. Weiss, "A Methodology for Collecting Valid Software Engineering
Data", IEEE Transactions on Software Engineering, vol.SE-10, no.3, November 1984,
pp.728-738.

-38-

2-51

10000174

[14] Ted Biggerstaff, "Reusability Framework, Assessment, and Directions", EEEE Software
Magazine, March 1987, pp.41-49.

[15] G. Caldiera and V. R. Basili, "Reengineering Existing Software for Reusability", Technical
Report (UMIACS-TR-90-30, CS-TR-2419), Dept. of Computer Science, University of
Maryland, College Park, MD 20742, February 1990.

[16] S. Cardenas and M. V. Zelkowitz, "Evaluation Criteria for Functional Specifications'1, Proc.
of the 12th iftKK. International Conference on Software Engineering, Nice, France, March
26-30, 1990, pp. 26-33.

[17] P. Freeman, "Reusable Software Engineering: Concepts and Research Directions", Proc.
of the Workshop on Reusability, September 1983, pp. 63-76.

[18] R. Prieto-Diaz and P. Freeman, "Classifying Software for Reusability", IEEE Software,
vol.4, no.l, January 1987, pp. 6-16.

[19] IEEE Software, special issue on 'Reusing Software', vol.4, no.l, January 1987.

[20] IEEE Software, special issue on "Tools: Making Reuse a Reality', vol.4, no.7, July 1987.

[21] G. A. Jones and R. Prieto-Diaz, "Building and Managing Software Libraries", Proc. Comp-
sac'88, Chicago, October 5-7, 1988, pp. 228-236.

[22] A. Kouchakdjian, V. R. Basili, and S. Green, "The Evolution of the Cleanroom Process in
the Software Engineering Laboratory", IEEE Software Magazine (to appear 1990).

[23] F. E. McGarry, "Recent SEL Studies", in Proc. Tenth Annual Software Engineering
Workshop, NASA Goddard Space Flight Center, Greenbelt, MD, Dec. 1985.

[24] A. Mili, W. Xiao-Yang, and Y. Qing, "Specification Methodology: An Integrated Relational
Approach", Software - Practice and Experience, vol. 16, no. 11, November 1986, pp. 1003-
1030.

[25] R. W. Selby, Jr., V. R. Basili, and T. Baker, "CLEANROOM Software Development: An
Empirical Evaluation", IEEE Transactions on Software Engineering, vol. SE-13, no. 9,
September 1987, pp.1027-1037.

[26] Mary Shaw, "Purposes and Varieties of Software Reuse", Proceedings of the Tenth
Minnowbrook Workshop on Software Reuse, Blue Mountain Lake, New York, July,
1987.

[27] T. A. Standish, "An Essay on Software Reuse", IEEE Transactions on Software
Engineering, vol. SE-10, no. 5, September 1984, pp.494-497.

[28] P. A. Straub and E. J. Ostertag, "EDF: A Formalism for describing and Reusing Software
Experience", Proceedings of the International Symposium on Software Reliability Engineer-
ing, Austin, Texas, May 1991.

[29] W. Tracz, "Tutorial on 'Software Reuse: Emerging Technology1", IEEE Catalog Number
EHO278-2, 1988.

[30] M. V. Zelkowitz (ed.), •Proceedings of the University of Maryland Workshop on
'Requirements for a Software Engineering Environment', Greenbelt, MD, May 1986",
Technical Report TR-1733, Dept. of Computer Science, University of Maryland, Col-
lege Park, MD 20742, December 1986 [also published by, Ablex Publ., 1988].

-3fl-

2-52
10000174

UMIACS-TR-91-24 March 1991
CS-TR-2607

A.Reference Architecture for the
Component Factory*

Victor R. Basili and Gianluigi Caldiera
Institute for Advanced Computer Studies and

Department of Computer Science
University of Maryland

College Park, MD 20742, U.S.A.

Giovanni Can tone
Universita' di Napoli

Naples, Italy

Abstract

Software reuse can be achieved through an organization that focuses on utilization of life cycle
products from previous developments. The component factory is both an example of the more
general concepts of experience and domain factory and an organizational unit worth being con-
sidered independently. The critical features of such an organization are flexibility and continuous
improvement. In order to achieve these features we can represent the architecture of the factory at
different levels of abstraction and define a reference architecture from which specific architectures
can be derived by instantiation. A reference architecture is an implementation and organization
independent representation of the component factory and its environment. The paper outlines this
reference architecture, discusses the instantiation process and presents some examples of specific
architectures comparing them in the framework of the reference model.

•Research for this study was supported in part by NASA (Grant NSG-5123), by ONR (Grant NOOO14-87-K-0307)
and by Italian CNR (Grant 89.00052.69).

2-53
10000174

1. INTRODUCTION

The issue of productivity and quality Is becoming critical for the software industry at its
current level of maturity. Software projects are requested to do more with less resources: deliver
the required systems faster, reduce turn-around time In maintenance, increase performance
reliability and security of systems. All of this Implies radical changes to the way software is
produced today. A straightforward solution to the problem of Increasing quality and productivity
can be synthesized In three goals: improve the effectiveness of the process, reduce the amount of
rework, and reuse life cycle products.

The production of software using reusable components is a significant step forward for all
three of those goals. The idea is to use pre-existing well designed, tested and documented
elements as building blocks of programs, amplifying the programming capabilities, reducing the
amount of work needed on new programs and systems, and achieving a better overall control over
the production process and the quality of its products.

The possibility of assembling programs and systems from modular software units
"classified by precision, robustness, time-space performance, size limits, and binding time of
parameters" [Mclllroy 19691 has been suggested from the beginnings of software engineering.
However It has never acquired real momentum in industrial environments and software projects.
despite the large amount of informal reuse already there. Reuse is a very simple concept: it means
use the same thing more than once. But as far as software is concerned, it is difficult to define
what is an object by itself, in isolation from its context [Freeman 1983|. We have programs, parts
of programs, specifications, requirements, architectures, test cases and plans, all related to each
other. Reuse of each software object implies the concurrent reuse of the objects associated with
It, with a fair amount of informal information traveling with the objects. This means we need to
reuse more than code. Software objects and their relationships incorporate a large amount of
experience from past development activities: It is the reuse of this experience that needs to be
fully incorporated into the production process of software and that makes it possible to reuse
software objects (Basill and Rombach 1991].

Problems in achieving higher levels of reuse are the inability to package experience in a
readily available way, to recognize which experience is appropriate for reuse, and to integrate
reuse activities into the software development process. Reuse is assumed to take place totally
within the context of the project development. This is difficult because the project focus is the
delivery of the system: packaging of reusable experience can be, at best, a secondary focus of the
project. Besides, project personnel are not always in the best position to recognize which pieces
of experience are appropriate for other projects. Finally, existing process models are not defined
to support and to take advantage of reuse, much less to create reusable experience. They tend to

2-55
10000174 PRECEDING PAGE BLANK SVOT F2LSWED

be rigidly deterministic where, clearly, multiple process models are necessary for reusing
experience and creating packaged experience for reuse.

In order to practice reuse in an effective way, an organization is needed whose main focus
Is to make reuse easy and effective. This implies a significant cultural change In the software
Industry, from a project-based frame of mind centered on the ideas and experience of project
designers, to a corporate-wide one. where a portion of those ideas and experience becomes a
permanent corporate asset, independent from the people who originate it. -This cultural change
will probably happen slowly, and a way to facilitate it is to provide an organization that is flexible
enough to accept this evolution. Two characteristics stand out in this context

• Flexibility: the organization must be able to change its configuration without a negative
Impact on its performance, incrementally gaining control over the main factors affecting
production.

• Continuous improvement (the Japanese "kalzen"): the organization must be able to learn
from its own experience and to evolve towards higher levels of quality building
competencies and reusing them.

This paper will present some ideas on how to design the production of software using
reusable components. In particular we will show the effectiveness of a representation of the
organization with different levels of abstraction in order to achieve the desired flexibility. This will
lead us to the concept of reference architecture that will provide a representation of the
organization as a collection of interacting parts, each one independent of the way the other ones
perform their task. In this framework, methods and tools can be changed inside each one of those
independent "development islands" without the need for a change in the other ones. We will
outline a possible reference architecture and illustrate it with some examples.

After having automated other organizations' business and production, the software
industry is facing today the problem of a substantial automation of its activities. Without
mechanically translating concepts that are pertinent to very different production environments,
we can say that flexible manufacturing systems combine many desirable features: modular
architecture, integration of heterogeneous methods and tools, configuration and reconfiguration
capabilities, wide automation under human control. Flexible manufacturing comes to age in the
software Industry through the definition of integrated software engineering environments if they
are based on the concepts of flexibility and continuous improvement we have mentioned earlier.

The next two sections of this paper will present an organizational framework designed to
make reuse happen in the most effective way. Sections 4 and 5 will discuss the representation
that we propose for this framework, that uses different levels of abstraction in order to obtain a
flexible and evolutionary organizational design. Section 6 will outline our methodology for deriving
a particular environment from the general one. and section 7 will illustrate this derivation with
some theoretical and actual examples.

2-56
10000174

2. A REUSE-ORIENTED ORGANIZATION

In order to address the problems of reuse In a comprehensive way. Basil! has proposed an
organizational framework that separates the project specific activities from the reuse packaging
activities, with process models for supporting each of the activities [Basil! 1989]. The framework
defines two separate organizations: a project organization and an experience factory.

One organization is project-oriented. Its goal Is to deliver the systems required by the
customer. It is called the project organization. The other organization, called experience factory,
has the role of monitoring and analyzing project developments, developing and packaging
experience for reuse in the form of knowledge, processes, tools and products, and supplying it to
the project organization upon request.

Each project In a project organization can choose its process model based upon the
characteristics of the project, taking advantage of prior experience with the various process models
provided by the experience factory. It can access information about prior system requirements and
solutions, effective methods and tools and even available system components. Based upon access
to this prior experience, the project can choose and tailor the best possible process, methods and
tools. It can reuse prior products tailored to its needs.

The experience factory, conceptually represented in Figure 1. is a logical and/or physical
organization that supports project developments by analyzing and synthesizing all kinds of
experience, acting as a repository for such experience, and supplying that experience to various
projects on demand. There are a variety of forms for packaged experience. There are. for instance.

• reusable products of the life cycle (i.e. the Ada package that creates and updates B-
trees):

• equations defining the relationship between variables (e.g. Effort = a * Size b):

• charts of data (e.g. Pareto chart of classes of software defects):

• management curves (e.g. product size growth over time with confidence levels):

• specific lessons learned associated with project types, phases and activities (e.g. in code
Inspections reading by step-wise abstraction is most effective for finding interface
faults):

• models and algorithms specifying processes, methods and techniques (e.g. an SADT
diagram defining Design Inspections with the reading technique as a variable
dependent upon the focus and the reader perspective.

2-57
10000174

Figure 1

The Experience Factory

PROJECT ORGANIZATION EXPERIENCE FACTORY

• Planning

I
Construction

I
Analysis

Products
>

Data v

Plans

Reusable
^ Products

Reusable
^ Experience

Experience

Base

10000174

2-58

From this brief discussion we see that the organization of the experience factory can be
divided into several sub-organizations, each one dedicated to processing a particular kind of
experience.

A first level of subdivision of the experience factory can be based on the application domain
[Neighbors 1989]: for each different domain we have a different domain factory, conceptually
represented In Figure 2a, whose purpose Is to define the process for producing applications within
the domain, to implement the environment needed to support that process, to monitor and
Improve that environment and process. Examples of domains are Satellite Ground Support
Software. Information Management Software for Insurance Companies. C3 Systems, etc. The
experience manipulated by the domain factory are the definition of an application domain and the
experience relative to engineering within that specific domain [Caldiera 1991].

A further subdivision of the experience factory, that will be the object of the discussion in
this paper, is the development and packaging of software components. This function is performed
by an organization we call the component factory, conceptually represented in Figure 2b, which
supplies software components to projects upon demand, and creates and maintains a repository
of those components for future use. The experience manipulated by the component factory is the
programming and application experience as it is embodied in requirements, specifications.
designs, programs and associated documentation. The software component produced and
manipulated by the component factory is a collection of ortt/octs that provide the project
organization with everything needed to integrate it in an application system and to provide life cycle
support for this system.

The separation of project organization and (experience, domain or component) factory is
not as simple as it appears in our diagrams. Having one organization that designs and integrates
only, and another one that develops and packages only, is an ideal picture that can present itself
in many different variations. In many cases, for instance, some development will be performed in
the project organization according to its needs. Therefore, the flows of data and products across
the boundary are different from the ones we have shown in the figures of this section. One of the
alms of this paper Is to deal with this complexity, providing a rigorous framework for the
representation of problems and solutions.

We will discuss these issue focusing on the concept of component factory, both as an
example of the more general concept of experience factory and as an organizational unit worth
being considered Independently. On one hand, the component factory will be the framework used
to define and discuss various organizational structures via our concept of reference architecture,
which is applicable as well to the more general frameworks of domain and experience factory. On
the other hand, the discussion will give us better Insight into the role of the component factory
as a milestone on the roadway to an industrialization of software development.

2-59
10000174

Figure 2a

The Domain Factory

PROJECT ORGANIZATION

Products

Data

Plaits

EXPERIENCE FACTORY

Tools

Architectures

Components

Models

DOMAIN FACTORY

Experience

Base

2-60

10000174

Figure 2b

The Component Factory

PROJECT ORGANIZATION EXPERIENCE FACTORY

Products

Data

Plans

Components

iMPONENT FACTORY

Sw Products

Analysis

Experience

Base

2-61

10000174

3. THE COMPONENT FACTORY

The concept of component factory is an extension and a redefinition of the concept of
software factory, as It has evolved from the original meaning of integrated environment to the one
of flexible software manufacturing [Cusumano 1989]. The major difference is that, while the
software factory is thought of as an independent unit producing code and using an integrated
production environment, the component factory handles every kind of code-related information
and experience. The component factory is defined as a part of the experience factory, and therefore
it .is recognized that its potential benefits can be fully exploited only within this framework.

As noted earlier, a software component is any product in the software life cycle. We have

• Code components: objects implemented in some compilable, interpretable or executable
language. This includes programs, subprograms, program fragments, macros, simple
classes and objects, etc.

• Designs: objects representing function, structure and interfaces of software components
(and collections) written in a language that can be formal, semi-formal, graphic, or
natural. This includes structured design specifications, interface specifications,
functional specifications, logical schemata, etc. In some cases designs are code
components themselves.

• Collections of Code Component or Designs: objects obtained by aggregation of several
. functionally homogeneous code components or designs. This includes the libraries

(mathematical, statistical, graphic, etc.). the collections of packages of Ada-like
languages, the composite classes of object-oriented languages, the architectures of
structured design techniques, etc.

• Documents: textual objects written in natural language with figures, tables and
formulas to communicate information in some organized way. Hypertext objects can be,
In many cases, considered in this class. This Includes requirements documents.
standards and policy documents, recommendations, lessons learned documents.
reports from specific studies and analyses, etc.

The software component produced and maintained in the component factory is the
reusable software component (RSC): it is a composite object made of a software component
packaged with everything that Is necessary to reuse and to maintain it in the future. This means
very different things In different contexts, but it should include at least the code of the component,
its functional specification, its context (i.e.. borrowing the term from the Ada language, the list of
the software components that are in some way associated with it), a full set of test cases, a
classification according to a certain taxonomy and a reuser's manual (Caldiera and Basili 19901.

2-62
10000174

The project organization uses reusable software components to integrate them into the
programs and the system that have been previously designed.

The capability of the component factory to make reuse happen In an efficient and reliable
way is a critical element for the successful application of the reuse technology. Therefore the
catalog of available components must be rich In order to reduce the chances of development from
scratch, and look up must be easy.

There are three major groups of activities associated with the production of software
through reusable software components

• Use reusable software components

When the project organization needs a component described by a certain specification.
the catalog of available components is searched:

• If a ready-to-integrate component that matches the specification is found, the
project organization uses It;

• If a component that needs some adaptation in order to match the specification
is found, the project organization uses it after the needed modifications have
been applied to the component: organization;

• If either no component is found that matches the specification or the needed
adaptation is too large to be considered a simple modification of a pre-existing
component, the component Is ordered.

• Develop and maintain reusable software components

A reusable software component enters into the production process for one of two
reasons:

• because it has been recognized as useful from a preliminary analysis of the
application domains the project organizations deal with [Arango 1989):

• because It was needed. It has been deemed "reusable", and wasn't available:

Once the need for some component has been recognized or the component has been
ordered there are three ways for the component to enter into the production process:

• by direct development either from scratch or from pre-existing generic
elementary processes (Joo 1990);

• by direct procurement from an external source (an external repository, a vendor,
etc.) ITracz 1987];

• by extraction and adaptation from existing programs and systems (Caldiera and
Basill 1990).

2-63

10000174

In whatever way the reusable component has entered into the production process, it is

• adapted for further reuse by enhancement or generalization of its functions and
structure, by fusion with other similar components, or by tailoring to expected
needs:

• maintained to satisfy the evolving needs of the applications as identified by
domain analysis;

• maintained to guarantee its correctness.

• Collect and package experience from activities

The activities of project organizations and component factory are recorded and
processed in order to be preserved in a reusable form. This means they are packaged
in units that are

• understandable by everybody interested in using them;
• either Independent or explicitly declared and packaged with their dependencies;
• retrievable using some kind of search procedure.

The experience is formalized and translated into a modeL Different kinds of models are
produced in order to represent the knowledge the project organizations and the
component factory have of products, processes, resources, quality factors, etc.:

• product models representing the observable characteristics of the software
components through measures:

• process models representing the observable characteristics of the production
process, its phases and states, and the measures that allow its control;

• resource and cost models representing the amount of resources allocated to. or
estimated for. a set of activities and their distribution

• lessons-learned models representing the knowledge acquired from former
projects and experiments.

This first summary analysis shows that the ability to anticipate future needs is critical to
the efficient implementation of a reuse oriented paradigm, and to the work of the component
factory in order to satisfy the requests coming from the project organization as soon as possible.
Also critical is the ability to learn from past activities and to Improve the service while providing
it. Therefore, crucial to the component factory are creation and improvement of the models based
on a methodology to systematize the learning and reuse process, and to make it more efficient.
We will now briefly discuss our methodological approach to creation and improvement of models
of experience.

2-64

10000174

The methodology to develop formal models of experience is provided by the
Coal/Question/Metric (GQM) approach [Basil! and Weiss 1984|. The GQM approach defines a
model on three levels:

• Goal level: a goal is defined that characterizes a certain organizational intent or
problem

• Question level: a set of questions is used to characterize in an operational way how
a specific goal is going to be dealt with

• Metric level: a set of metrics is associated with every question in order to answer
it in a quantitative way

Each GQM model has. therefore, a three-level hierarchical structure (Figure 3). but several
goals can use the same question and the underlying set of metrics, and several questions can
share some metrics.

The formal models developed using the GQM approach are characterized by a combination
of

• Object: A model of the object that is represented by the GQM model, e.g. a
process, a product, or any other kind of experience.

• Focus: A model of the particular characteristic or property of the object that
the GQM model takes Into account.

• Viewpoint: The perspective of the person or organization unit needing the
information represented by the model.

• Purpose: The purpose of the GQM model, e.g. characterization, evaluation,
prediction, motivation, improvement.

• Environment: The characteristics of the context where the analysis is performed.

The resulting GQM models are defined and constantly Improved through use. learning from
past experience, and translating this knowledge into changes to the model. This adds a new
dimension to the characterization of a GQM model: its multiple evolving versions. The methodology
that systematizes the learning and improving processes required to generate these versions is
provided by the Improvement Paradigm [Basil! 1984) and is outlined in the following steps (Figure
4b):

2-65

10000174

Figure 3

The Structure of a GQM Model

OBJECT FOCUS VIEWPOINT PURPOSE ENVIRONMENT

1 I I
GOAL!

r

4 44 4

GOAL 2

1

GOAL 3

I
t 4

2-66
10000174

Figure 4a

The Deming Cycle

DETERMINE QUALITY

GOALS AND TARGETS

TAKE APPROPRIATE

ACTION

CHECK THE EhVHC'lS

OF IMPLEMENTATION

DETERMINE METHODS

OF REACHING COALS

ENGAGE IN EDUCATION

AND TRAINING

IMPLEMENT WORK

2-67
10000174

Figure 4b

The Improvement Paradigm

CHARACTERIZE

PACKAGE
INTO REUSABLE UNITS

SET GOALS

CHOOSE PROCESS
AND MEASUREMENT

EXECUTE PROCESS

ANALYZE RESULTS
CONTROL

BY MEASUREMENT

2-68
10000174

1. Plan

1.1 Characterize the activity and the environment in order to Identify and isolate the
relevant experience

1.2 Set the goals and refine them Into a measurable form (this Is done using the GQM
approach)

1.3 Choose the execution process model, the supporting methods and tools, and the
associated control measurement

2. Execute the process, control It. using the chosen measurement, and provide real-
time feedback to the project organization

3. Analyze the results and compare them with the goals defined in the planning
phase

4. Synthesize

4.1 Consolidate the results into updates to the formal models and to their relationships
4.2 Package the updated models Into reusable units and store them for future reuse

The Improvement paradigm is based upon the notion that improving the software process
and product requires the continual accumulation of evaluated experiences in a form that can be
effectively understood and modified into a repository of integrated models that can be accessed
and modified to meet the current needs. It is an evolution of the famous Shewart-Deming Cycle
[Demlng 1986] Plan/Do/Check/Act (Figure 4a) in an environment in which formalization and
institutlonalizatlon of experience are critical factors to the performance of the whole process.

4. LEVELS OF REPRESENTATION OF A COMPONENT FACTORY

The experience factory and Its specialization, the component factory, are necessarily very
general organizational elements. Every environment has Its characteristics and pursues certain
goals by certain means different from every other one. Therefore we need different levels of
abstraction In the description of the architecture of a component factory in order to introduce at
the right level the specificity of each environment. The allocation of a function to an organizational
unit Is a first distinction, the actual implementation of some functions, for instance through
automated tools Is another distinction. However these choices are only variations of the paradigm
of the component factory that can be captured using different levels of abstraction in representing
the framework of the factory.

In this section we will discuss briefly the levels of abstraction that we want to use in order
to represent the architecture of a component factory (Figure 5):

2-69
10000174

Figure 5

The Levels of Abstraction

IMPLEMENTATION LEVEL

2-70

10000174

Reference level

At this first and more abstract level we represent the building blocks and the rules to
connect them, that can be used to represent an architecture. This is not the
description of a component factory but a modeling language for it. The basic building
blocks are called architectural agents and represent the active elements performing
tasks within the component factory or interacting with it. They exchange among each
other software objects and messages.

Example:
In the last section we have discussed the activities associated with the production
of software through reusable components and decided that a reusable component
may enter Into the production process by direct development, by procurement from
an external source, or by extraction and adaptation from pre-existing software.
Each one of these possibilities becomes a function that can be assigned to an
active element of the reference level:

• an agent decides which reusable components are needed
• an agent develops reusable components
• an agent provides external off-the-shelf reusable components
• an agent extracts and re-engineers reusable components
• an agent manages the Internal repository of reusable components

These agents have potential connections with other agents: for instance, the agent
that develops reusable components Is able to receive specifications from another
agent, and the agent that decides which reusable components are needed is able
to provide these specifications, but the actual connection is not specified at the
reference level.

Conceptual level

At this level we represent the Interface of the architectural agents and the flows of data
and control among them, and specify who communicates with whom, what is done in
the component factory and what In the project organization. The boundary of the
component factory, i.e. the line that separates it from the project organization, is
defined at this level based on needs and characteristics of an organization, and can
change with them.

Example:
In a possible conceptual architecture an agent that designs systems and orders
components, located In the project organization. Is connected with an'agent that
develops reusable components, located in the component factory. Specifications
and designs are exchanged between these two agents.

10

2-71

10000174

In another conceptual architecture the agent that designs systems and orders
components, still located in the project organization, communicates with an agent
that coordinates the activities of component development and adaptation in the
component factory. It is this agent that communicates with an agent that develops
reusable components exchanging specifications and designs with it.

• Implementation level

At this level we define the actual implementation, both technical and organizational.
of the agents and of their connections specified at conceptual level. We assign to them
process and product models, synchronization and communication rules, appropriate
performers (people or computers) and specify other implementation details. The
mapping of the agents over the departments of the organization is included in the
specifications provided at this level of abstraction.

Example:
The organization is partitioned into the following departments

• System Analysis and Deployment
• System Development
• Quality Assurance and Control
• Software Engineering Laboratory

In a possible organizational choice, the functions of component design are allocated
to System Development, and the functions of system integration are divided
between System Analysis and Deployment and Quality Assurance and Control. The
Software Engineering Laboratory analyzes the production process, provides the
models to control the activities and improves those models through experience. The
Component Factory includes System Development and Software Engineering
Laboratory. The process model for design is the iterative enhancement model: it
starts from a group of kernel functions and delivers it to System Analysis and
Deployment, and then it expands this group of functions in order to cover the
whole set of requirements in successive makes of the system. The development is
done in Ada using a language-sensitive structured editor and an interactive
debugger.

Each one of these levels of abstraction can be divided into sub-levels by different
operations applied to the agents or to their connections:

• functional decomposition: an agent is decomposed in a top-down fashion into more
specific agents:

• connection decomposition or specialization: a connection between agents is
decomposed into different pipelines, or the object types are refined, or synchronization
rules are defined in greater detail:

11

2-72
10000174

The drawing of the boundary separating project organization and component factory at the
conceptual level is motivated by the need for defining a formal Interface between the two
organizations, more formal than the one between the agents that lay Inside each one. We can, for
Instance, imagine the boundary as a validation and verification checkpoint for the products that
go across It More generally, we can look at the couple project organization/component factory as
at a user/server pair that can be used for quality measurement and Improvement.

The next section will discuss In some detail the reference level and then we will deal with
the problem of the instantiation of a generic architecture into a specific one.

5. THE REFERENCE ARCHITECTURE

While the reference level describes a generic architecture, the conceptual and
implementation levels describe a specific one at different levels of detail. In order to obtain a
specific architecture we can either design It from scratch or obtain it as an instantiation of a
generic architecture. The problem with the architecture designed from scratch is. that it doesn't
give enough assurances it will be able to evolve in order to match the needs of the organization
or to follow its evolution: designing from scratch is often focused on the needs and goals of the
present organization and does not take into account the evolution of this organization.

The instantiation of a generic architecture is Instead a technique that leads to more flexible
architectures, because the adaptability is already in the abstraction. The specific architecture can
be obtained from the abstract one through instantiation. It can be modified by altering the
instantiation without changing the generic architecture, which is explicitly parametric and
reusable. Besides, a generic architecture is a common denominator for comparing and evaluating
different specific instantiations. It allows us to choose the architecture that is best suited for a
particular organization.

The reference level provides this generic architecture. A reference architecture for the
component factory is a description of the component factory in terms of its parts, structure and
purpose, defining which parts might cooperate and to what purpose (Biemans 1986]. The
interacting parts of the reference architecture are kept free from unnecessary linkages in order
to keep the concerns separate and to leave this to the instantiation process. The genericness of
the reference model is represented by the many possible ways of connecting those parts at the
conceptual level for a specific architecture, and the many ways to map them into the
implementation level.

The elements of the reference architecture, the architectural agents, are the components
of the factory production process. We don't make any assumption about the way they are
implemented: they can be a person, a group of people, a computer based system. The reference
architecture specifies only their tasks and the necessary communication paths, leaving to
particular instantiations their implementation and the specification of their nature. We can look

12

2-73

10000174

at the agents as Islands in the component factory, whose nature and implementation can be
changed according to the needs and the Improvement goals of the organization, independent of
other agents. This allows us to implement the tasks of an agent today with a group of people, and
tomorrow with a computer-based system, introducing changes that do not impact the whole
organization.

From our discussion in section 3 of the activities associated with the production of
software through reusable components, we can derive a set of functional requirements for the
architectural agents operating in the component factory or Interact with it:

• Receive the specifications of a system and produce its design taking into account the
information about existing reusable software components made available by the
component factory. These functions specify the role of the Designer agent.

• Build the specified system according to the design using the reusable components
made available by the component factory, and perform the system test in order to
verify the conformance of the developed system with the requirements. These functions
specify the role of the Integrator agent.

• Choose how to fulfill a given request for a reusable software component, based on the
specification of the component, and on the information about existing reusable
software components already available In the component factory. The choice between
development from scratch and adaptation of an existing component is probably .done
according to a model of cost and time effectiveness. i.e. whether it is worth modifying
an existing component or the modification would be so substantial that it is more
convenient to develop a new component. These functions specify the role of the
Shopjlaor Coordinator agent.

• Develop a reusable software component according to a given specification. The
development can be done from scratch or assembling pre-existing components and
elementary processes. It includes the design of the component, its implementation and
verification. These functions specify the role of the Developer agent.

• Modify a reusable software component that is "close enough" to the one described by
a given specification. This can be done generalizing the existing component, tailoring
It to meet a specific need, combining It with other components, etc. The modification
activities include the analysis of the impact of a certain adaptation, its implementation
and verification. These functions specify the role of the Adapter agent.

• Produce and update reusable components based on domain knowledge, extract
reusable components from existing code, and generalize already existing reusable
components into other reusable components. The main difference between these
functions and the development ones is that these are asynchronous with respect the

13

2-74

10000174

production process In the project organization. These functions specify the role of the
Component Manipulator agent.

• Develop formal models analyzing the experience developed In the component factory
and In Its Interfaces with the project organizations. The experience that is collected
and processed has different levels of formallzatlon. according to the incremental
perspective provided by the Improvement paradigm. It starts with very simple models
that are improved in a continuous way in order to fit better in the actual environment
of the component factory. These functions specify the role of the Experience Modeler
agent.

• Manage the collection of objects and information that is used by the component
factory to store experience and products derived from its activities (experience base).
In particular, this function Includes the management of the repository of reusable
software components, which is a subset of the experience base. Every agent, while
performing its tasks, accesses the experience base either to use Its contents or to
record a log of Its activity. The access control, the manipulation of objects and the
search strategy to answer a request are the main experience base management
functions. These functions specify the role of the Experience Base Manager agent.

• Supply commercial or public domain off-the-shelf reusable components that satisfy
the specifications developed by the organization. This function specifies the role of an

. External Repository Manager agent

This list of agents represents a complete set of architectural agents that covers all the
activities of the component factory and of the project organization. However, we could have defined
the agents differently. For example, the reference level can be decomposed into several sub-levels,
and the set of agents in the reference architecture presented here is one of these levels. Agents
can be composed into larger ones or decomposed into more specific ones in a way that is very
similar to the functional decomposition used in structured analysis. For instance, the Designer
agent can be merged with the Shopfloor Coordinator obtaining an agent that specifies not only the
components that are needed but also the way of obtaining them. Or. the Designer agent can be
decomposed into a System Designer agent that performs the preliminary design of the system, and
the Software Designer agent that performs the critical design.

It Is also possible to expand the scope of the analysis, for instance by introducing the
collection and analysis of requirements into the picture, and by specifying the agent that performs
these functions In the reference architecture.

Besides a set of agents, the reference architecture contains a set of architectural rules that
specify how the architectural agents can be configured and connected in the specific architectures
derived from a reference architecture.

14

2-75

10000174

One set of rules deals with the presence and replication of the agents. The agents in the
component factory can be unique or replicated: in the former case only one instance of the agent
can be active, in the latter many Instances of the agent are possibly active at the same time. For
example: there might be two Designer agents that share the service provided by one Adapter
agent.

Another set of rules deals with the connections between agents. The agents communicate
with each other exchanging objects and experience at different levels of formallzation. and
cooperating towards the completion of certain tasks. This communication is realized through
communication ports. A port Is specified when we know what kind of objects can travel through
that port. For instance: the Component Manipulator agent has a port through which it receives
and returns reusable software components. There are data ports and control ports: the port
through which the Designer agent receives the requirements for the system is a data port; the port
through which it receives the process model to design the system is a control port. A port bundles
several channels: each one Is an elementary access point specifying the kinds of objects traveling
through it and the direction. For Instance: the port through which the Designer communicates,
say. with the Shopfloor Coordinator has two channels: an output channel to send component
specifications and an input channel to receive the requested reusable software components.

Ports can be mandatory, l.e. always present on the agent In one or more instances, or
optional, i.e. possibly absent In certain implementations of the agent. For instance: the Developer
agent has always a port through which it receives the specifications of the components it must
develop and a port through which it returns the components it develops, these are mandatory
ports. On the .other hand, the Developer might or might not have a port to receive external off-the-
shelf reusable components to be used in the development of the requested components. From the
point of view of the reference architecture we don't make this choice, leaving it to the specific
architecture.

We can represent our reference architecture using an Ada-like language in which the
agents are task types that encompass port types In the way Ada task types encompass entries.
This allows us to use the distinction between specification and body of the task type to defer the
implementation of the agent to the specific architecture, and also to use Ada genetics to represent
certain abstractions that are specified at the conceptual level. In this representation, the
architectural rules are declarative statements, incorporated in the definition of the agent they are
applied to.

Without getting Into the details of the representation, but to provide an example, we
present a sample specification for the Developer agent

Generic

— These variables are used as options in the ports that
— are optional: their instantiation to "true" will imply

15

2-76

10000174

-- that the port Is present.
search_components la boolean;
extemal_acqulsitlon la boolean;
recommended_components la boolean:

Task type Developer la

— This Is the port through which the agent receives the
-- specs and returns the components that have been
— developed
Data port component_development

(specs: in component.specification.
component: out reusable_software_component)

end component_development;

— This is the port for access to the Internal components
-- repository: It Is present If this access Is permitted
Data port lntemal_components_acquisition

options (search_components)
(specs: out component_speciflcation,
components: In list_of_reusable_software_components)
end lntemal_components_acquisitlon;

-- This Is the port for access to external components
-- repositories: It Is present If access is permitted:
-- there might be many Instances of this port
-- corresponding to different repositories
Data port type extemal_components_acquisitlon

options (extemal_acquisitlon)
(specs: out component_speclflcatlon.
components: In list_of_reusable_software_components)
end external_components_acquisltion;

-- This port Is used to receive components from another
-- agent (probably the Designer or the Shopfloor
-- Coordinator) and use them In the development of a new
-- component
Data port components.receptlon

options (recommended_components)
(components: In list_of_reusable_software_components)
end components_reception;

-- The next two ports are used to Interface with the

16

2-77

10000174

— experience base
Data port activlty_report

(current_process_data: out process_data.
current_product_data: out product_data.
current_resources_data: out resource_data)
end actMty_report;

Control port models
(current_process_model: in process_model.
current_product_model: in product_model.
current_resources_model: in resource_model)
end models;

End Developer;

This specification language for the reference architecture is complemented by a
configuration language whose purpose is to represent the choices made in order to instantiate the
reference architecture into a specific conceptual architecture: presence and number of agents,
presence and number of ports, connection of the ports.

In order to give an idea of the way this configuration language works, let's see a possible
way of configuring a Developer agent. We do this by creating new tasks where

• it is specified what is the type of the agent that is being specified:

• the generic variables used as options in ports are instantiated in order to specify the
presence of a port;

• Instances of replicated ports are represented by declaring their port type:

• connections between agents are specified by a connected with statement in the
specification of a port, declaring with which port of which agent it is connected.

The resulting task Is conceptually represented by:

Task Developer. 1 is new
Developer (search_components := true: extemal_acquisition := true:
recommended_components := false)

Data port component_development
connected with Shopfloor_Coordinator_l.component_acquisition:

Data port intemal_components acquisition

17

2-78

10000174

connected with Experience_Base_Manager_l.component_supply:

Data port reposltory_AAA is extemal_components_acquisitlon
connected with External_Repositoiy_AAA_Manager.component_supply;

Data port repository_BBB Is external_components_acquisition
connected with Extemal_Reposltory_BBB_Manager.component_supply;

Data port activity_report
connected with Expertence_Base_Manager_l.reports:

Control port models
connected with Experience_Base_Manager_l.models_out:

End Developer_l;

The Implementation of the agents is specified by another language, the implementation
language, that assigns to each task type a task body where port statements are associated with
receive statements (like accept in Ada) having the same parameters.

6. INSTANTIATION OF THE REFERENCE ARCHITECTURE

The reference architecture has been defined as a collection of architectural agents and
rules supported by an experience base managed by an agent. There are some degrees of freedom
in this collection that are eliminated by choices made when the architecture is instantiated at the
different levels of abstraction:

A. Choices at the conceptual level:

a. Boundary between component factory and project organization. In making this choice
one tries to optimize reuse, on one hand, by incorporating more functions into the
component factory, and to optimize customer service, on the other hand, by
concentration of the appropriate activities In the project organization.

b. Presence of agents, number of agents of each type, fusion of several agents. This
choice is about communication complexity: a large number of agents increases the
complexity and the overhead due to communication, a small number of agents
produces bottlenecks that would affect the whole organization.

c. Presence of ports and number of ports. As in case b.. this choice deals with the
communication complexity: a large number of ports increases the complexity of the
activities of a single agent but reduces the Impact of possible bottlenecks.

18

2-79

10000174

d. Interconnection of ports between different agents. This choice is about distribution of
control: concentrating the control In a small group of agents makes planning easier,
but serializes many activities that could be otherwise performed concurrently.

B. Choices at the implementation level:

a. Distribution of the agents over organizational units. This choice deals with the
optimization of the already existing organization units and. the smooth evolution to
factory, concepts. It takes Into account the available resources and the historical roles
of those units.

b. Implementation of the functions of the agents (the task bodies). In choosing
algorithms, procedures, methods and tools one tries to achieve an organizational and
technical profile that Is correct, efficient and best suited to the overall mission by
dealing with the available resources and technology.

Therefore. In order to design a specific component factory, we need to instantiate the
reference architecture by an instantiation process based on the levels of abstraction introduced
earlier (Figure 6). This instantiation process is embedded in the methodological framework of the
improvement paradigm now applied to the specific architecture. The four steps of the paradigm.
introduced previously in a different context, become in this context:

1. Plan component factory: the desired instantiation is designed based on the
characteristics of the organization and on the goals to be achieved:

1.1 Characterize the activities and the environment of the current organization:
production process, products, formal and informal models currently in use,
software tools, standards, etc.;

1.2 Set goals and priorities for the introduction of the component factory and for its
separation from the project organization: productivity, customer satisfaction.
product maintenance, environment stability. The goals can be refined into
questions and metrics that will be used to control the production of the component
factory.

1.3 Instantiate the reference architecture into a particular component factory
architecture and define the associated measurement environment:

Instantiation process

A. Configuration of the architecture
(reference level —> conceptual level)

19

2-80

10000174

Figure 6

Instantiations of the Reference Architecture

Reference Level

REFERENCE

ARCHITECTURE/^ A

\^7 o
iCHTTECrURAL

AGENTS

O
CONFIGURATION

Conceptual Level

SPECIFIC
ARC1

SPECIFIC
ARCHITECTURE

-n
IMPLEMENTED
ARl

IMPLEMENTATION

IMPLEMENTED
ARC!

Implementation Level

2-81
10000174

A.1 Definition of the activities of the organization and mapping of those activities
Into specific architectural agents

A.2 Identification of the boundary of a specific factory by specifying which agent
is In the project organization and which one is in the component factory.

A.3 Definition of the conceptual representation of the specific component factory
by specifying the agents and connecting their ports using the configuration
language.

B. Implementation of the architecture
(conceptual level —> implementation level)

B.I Specification of the mapping between the agents and their functions and the
departments of the organization, and of the responsibilities for production
control.

B.2 Definition of the implementation representation of the specific component
factory by mapping agents and functions over specific units (e.g. people.
automated or semi-automated tools), and specifying algorithms, protocols and
process models.

2. Produce components for the project organizations and load products and
information into the experience base:

2.1 Execute the production process using the particular architecture that has been
defined:

2.2 Control the process while executing by using the measurement environment that
has been defined.

3. Analyze the results, after a pre-established period of time, assessing the level of
achievement of the goals that were behind the introduction of the component
factory.

4. Synthesize the results

4.1 Consolidate the results of the analysis into plans for new products, models.
measures, etc., or for updates for the existing ones

4.2 Package the new and updated products, models, measures into reusable units and
store them for future reuse;

20

2-82

10000174

4.3 Modify the instantiation of the particular architecture and the measurement
environment associated with It.

The crucial point of the process is the possibility, offered by the reference architecture, of
modifying the particular architecture without modifying the interfaces between its building blocks.
The modular structure allows configuration and reconfiguration of the processes as required by
an efficient and realistic implementation of an optimizing paradigm. The evolution of the
conceptual level and sub-levels is more difficult because it has impact on the implementation
level, but the explicit definition of the interface types, which Is part of the reference architecture,
offers a certain freedom in the evolution, even at the conceptual level. Changes in the automation
and organizational choices have definitely a lower impact, if they are applied to the
implementation level leaving unchanged the conceptual level.

7. EXAMPLES OP COMPONENT FACTORY ARCHITECTURES

7.1 CLUSTERED AND DETACHED ARCHITECTURES

In order to illustrate the concepts of reference architecture and instantiation we can
present two different conceptual architectures for the component factory.

The two architectures differ fdr the different role they assign to the Designer agent:

• in the first architecture the Designer coordinates all software development activities
from the side of the project organization, we call it "clustered" architecture:

• in the second architecture the development activities are concentrated in the
component factory under the control of the Shopfloor Coordinator agent, we call it
"detached" architecture.

In a clustered component factory architecture (Figure 7a) every development takes place in
the project organization and the role of the component factory is to perform the activities of
processing and providing existing reusable software components.
The agents are assigned in the following way

Project Organization Component Factory

• Designer/Integrator/ • Component Manipulator
Shopfloor Coordinator • Experience Modeler

• Developer • Experience Base Manager
• Adapter

21

2-83

10000174

Figure 7a

The Clustered Architecture

2-84
10000174

In a detached camponentfactary architecture (Figure 7b)no development takes place in the
project organization but only design and integration. The project organization develops its design
of the system based on the information existing in the experience base and requests from the
component factory all necessary developments. Then It integrates the components received from
the component factory according to the design. The agents are assigned in the following way

Project Organization Component Factory

• Designer • Shopfloor Coordinator
• Integrator - Developer

• Adapter
• Component Manipulator
• Experience Modeler
• Experience Base Manager

The activities of the agents that form the kernel of the component factory (Component
Manipulator. Experience Modeler. Experience Base Manger) don't change in the two
Instantlatlons.However. the role of the component factory in the detached architecture is much
more relevant because it encompasses activities that are both synchronous and asynchronous
with the project organization.

An evaluation of the two instantiations can be performed using the GQM approach
mentioned earlier. In order to compare the two architectures we can develop, for instance, the
GQM models having as

• Object: the clustered and the detached architecture:

• Focus: characteristics such as performance, functionality and evolutionary
nature;

• Viewpoint: the technical management of the organization

• Purpose: the evaluation of the architecture

• Environment: the specific organization

From these goals It is possible to derive questions and metrics that allow us to collect data
to perform the comparison. Without getting into the details of a particular application, we can
make the following general remarks, based on the characteristics that we have listed as focus of
the evaluation:

22

2-85

10000174

Figure 7b

The Detached Architecture

PROJECT

ORGANIZATION

10000174

2-86

• Performance: the level of productivity and serviceability of the project
organization/component factory system.

o In the clustered architecture, the pro) ect organization develops the components that
are not available, therefore, if it has enough resources, it performs probably faster
because there is less communication overhead and more pressure for their delivery.
On the other hand the components developed in the framework of a project are more
context dependent and this puts more load on the component factory and in
particular on the Component Manipulator.

o In the detached architecture there is more emphasis on developing general purpose
components In order to serve more efficiently several project organizations: planning
is easier and the optimization of resources is more effective. On the other hand there
are more chances for bottlenecks and for periods of inactivity due to a lack of
requests from the projects, that would affect the overall performance of the
organization.

• Functionality: the conformance to the operating characteristics of an organization
producing software using reusable components

r*t

o In the clustered architecture all functions are Implemented but the most critical
ones are concentrated on the Designer/Integrator/Shopfloor Coordinator. This
means that errors and operating failures of this agent can affect the functionality of
the whole organization.

o In the detached architecture the high modularity of functions reduces the impact of
errors and failures of one agent but increases the possibility of communication
errors.

• Evolutionary nature:

o The clustered architecture is much closer to the way software is currently
Implemented and therefore its impact on the organization would be less drastic.

o The detached architecture provides the component factory with enormous
possibilities for adaptation and configuration making continuous improvement easier
and less expensive.

The detached architecture is probably better suited for environments where the practice
of reuse is somewhat formalized and mature. An organization that is just starting should probably
instantiate its component factory using the clustered architecture and then, when it reaches a
sufficient level of maturity and improvement with this architecture, start implementing the
detached architecture to continue the improvement. The improvement paradigm, as applied to the

23

2-87

10000174

component factory In the last section, provides a methodology for a step-by-step approach to this
Implementation. In this way the organization takes advantage of the flexibility and evolutionary
nature of this approach, that are among the primary benefits of reasoning in terms of
instantiations of a reference architecture.

7.2 THE TOSHIBA SOFTWARE FACTORY

Afurther illustration of the concepts of reference architecture and instantiation comes from
the analysis of a real case study.

One of the most significant accomplishments In the attempt to make software development
into an industrial process Is represented by the experience of Toshiba Corp. in establishing, in
1977, the Fuchu Software Factory to produce application programs for Industrial process control
systems [Matsumoto 1987]. In 1985 the factory employed 2,300 people and shipped software at
a monthly rate of 7.2 million EASL1 per month.

The organizational structure of Fuchu Software Factory is designed to achieve a high level
of reusability (Figure 8). Projects design. Implement and test the application systems reusing parts
that are found in a Reusable Software Items Database. Just to give an idea of the size of an
application system developed by a project, we have an average size of 4 million EASL but there
are projects that go up to 21 millions EASL. The parts are made available by a Parts
Manufacturing Department based on the requirements specified by a Software Parts Steering
Committee made of Project people and of Parts manufacturing People. Statistics on alteration and
utilization of parts are processed and maintained by the Parts Manufacturing Department.

The conceptual architecture of the Fuchu Software Factory (Figure 9) presents the
replication of some agents:

• Project Organization

• Shopfloor Coordinator this agent performs the functions of the Software Parts
Steering Committee. It Is very much project oriented but some of its functions, such
as planning for reuse can be identified with some functions of the Experience
Modeler In the reference architecture therefore we can position it at the border
between project organization and component factory.

• Designer 1: this agent designs the application system and the components that have
been deemed project specific by the Coordinator.

• Developer 1: this agent develops the software components specified by Designer 1.

1 EASL: Equivalent Assembler Source Line of code

24

2-88

10000174

Figure 8

The Toshiba Fuchu Software Factory

SOFTWARE PARTS STEERING COMMITTEE

2-89

10000174

Figure 9

The Toshiba Software Factory Architecture

2-90
10000174

Integrator this agent assembles the system using the components received from
Developer 1 and from the component factory according to the design provided by
Designer 1. and verifies its conformance with the requirements.

• Component Factory

• Designer 2: this agent designs the components that have been deemed reusable by
the Coordinator.

• Developer 2: this agent develops the software components specified by Designer 2.

• Component Adapter and Manipulator this agent can be identified with the Parts
Manufacturing Department that adapts and supplies parts under request and. based
on the statistics on the utilization of the software parts contained in the database,
modifies and Improves those parts.

• Experience Base Manager: this agent is in charge of the management of the Parts
Center and. In particular, of the access to the Reusable Software Items Database.

A function that Is not explicitly implemented In this architecture is the experience modeling
function even though the factory uses state-of-the-art techniques to manage its projects. The
absence of formal experience modeling is probably one of the causes for which, according to the
data reported by Matsumoto. the major factor affecting productivity is the reuse of code (52.1%)
while improvement of processes, techniques and tools have a less significant impact.

8. CONCLUSIONS

Flexible automation of software development combined with reuse of life cycle products
seems the most promising program to solve many of the quality and productivity problems of the
software Industry. It is very likely that in the coming years we will see a wide and deep change in
this industry, similar to the one that took place in manufacturing through the introduction of CIM
(Computer Integrated Manufacturing).

The abstraction levels and the reference architecture presented in this paper are aimed at
providing a framework to make both automation and reuse happen. The major benefits of this
approach are

• a better understanding of reuse and of the requirements that need to be satisfied in
order to implement it In a cost-effective way;

25

2-91

10000174

• the possibility of using a quantitative approach, based on models and metrics, in order
to analyze the tradeoffs In design associated with the component factory use;

• the fonnalization of the analysis of the software development process and organization
with a consequent enhancement of the possibilities for automation:

• the definition and the use of an evolutionary model for the improvement of a reuse-
oriented production process.

One of the major problems the software industry is facing today, when using automated
production support tools, like the CASE tools (application generators, analysis and design tools,
configuration management systems, debuggers, etc.). are rigidity and lack of integration. These
problems affect dramatically also the chances to reuse life cycle products across different projects.

Tools modeled over the reference architecture would represent a significant step towards
the solution of those problems because the interfaces would be specified and standardized. An
organization would have the possibility of using different set of methodologies and tools in different
contexts without dramatic changes to the parts of the organization that are not affected by the
specific choice. Besides, different alternatives can be analyzed and benchmarked based on the
input provided by the experience base on the performance of methods and tools in similar
situations.

This aspect of simulation based on historical data and formal models, is one of the most
important benefits of the proposed approach and is one of the focuses of our research. The
development of a complete specification for a component factory and its execution in a simulation
environment using historical data as well as the study of the connection between application
architecture and factory architecture will be the main goals of our future work in this field.

8. REFERENCES
•

[Arango 1989)
G. Arango, "Domain Analysis: From Art to Engineering Discipline." Proceedings of the Fifth
International Workshop On Software Specification and Design (Software Engineering Notes,
VoL 14. No. 3). May 1989. pp. 152 - 159.

[Basill 1984|
V.R.Basili. "Quantitative Evaluation of Software Methodology". Computer Science Technical
Report Series. University of Maryland. College Park. MD. July 1985, CS-TR-1519.

[Basill and Weiss 1984]
V.RBasili, D.M.Weiss, "A Methodology for Collecting Valid Software Engineering Data".
IEEE Transactions on Sqftu>are Engineering. November 1984, pp. 728-738.

26

2-92

10000174

[Basill and Rombach 1991]
V.RBasill. H.D.Rombach, "Support for Comprehensive Reuse", Software Engineering
Journal, July 1991. (also. Computer Science Technical Report Series, University of
Maryland. College Park. MD. February 1991. CS-TR-2606 and UMIACS-TR-91-23).

(Basill 1989]
V.RBaslll. "Software Development: A Paradigm for the Future (Keynote Address)".
Proceedings COMPSAC '89. Orlando. FL. September 1989. pp.471-485.

[Biemans 1986]
F.Blemans. "Reference Model of Production Control Systems", in Proceedings oflECON 86,
Milwaukee. September 29 - October 3. 1986.

[Caldlera and Basill 1991]
G.Caldiera, V.RBasili, 'Identifying and Qualifying Reusable Software Components", IEEE
Computer, Vol.24. No.2. Feb. 1991. pp.61-70.

[Caldlera 1991]
G.Caldiera. "Domain Factory and Software Reusability", Proceedings of the Software
Engineering Symposium S.E.SY. 1991. Milano. Italy. May 1991.

[Cusumano 1989]
M JLCusumano, "The Software Factory: A Historical Interpretation". IEEE Software. March
1989, pp.23-30.

[Demlng 1986] .
W.Edwards Deming, Out of the Crisis, MIT Center for Advanced Engineering Study, MIT
Press. Cambridge. MA. 1986

[Freeman 19831
P.Freeman, "Reusable Software Engineering Concepts and Research Directions", ITT
Proceedings of the Workshop on Reusability in Programming. 1983. pp. 129-137.

[Joo 1990]
Bok-Gyu Joo. "Adaptation and Composition of Program Components", PhD Thesis.
Department of Computer Science. University of Maryland. College Park. MD. January
1990.

(Matsumoto 1986]
Y.Matsumoto. "Management of Industrial Software Production", IEEE Computer. Vol.17.
No.2. February 1984. p.59-72.

27

2-93

10000174

[Matsumoto 1987]
Y.Matsumoto, "A Software Factory: An Overall Approach to Software Production", In
P.Freeman (Ed.). Tutorial: Software Reusability. Computer Society Press. Washington. DC.
1987. pp. 155-178.

IMcDroy 1969]
M. McDroy. "Mass Produced Software Components". Software Engineering Concepts and
Techniques. Proceedings of the NATO Conference on Software Engineering, 1969.

(Neighbors 1989]
J.M.Neighbors, "Draco: A Method for Engineering Reusable Software Systems", in
T.J.Blggerstaffand A. J.Perlis (Eds.). Software Reusability - Volume 1: Concepts andModels.
ACM Press. New York. NY. 1989. pp.295-319.

tTracz 1987]
W. Tracz. "Ada Reusability Efforts: A Survey of the State of the Practice," Proceedings of the
Joint Ada Conference, Fifth National Conference on Ada Technology and Washington Ada
Symposium. U.S. Army Communications-Electronics Command. Fort Monmouth, New
Jersey, pp.35-44.

28

2-94

10000174

UMIACS-TR-91-69 May 1991
CS-TR-2672

A Pattern Recognition Approach for
Software Engineering Data Analysis*

L.C. Briand, V.R. Basil! and W.M. Thomas

Institute for Advanced Computer Studies and
Department of Computer Science

University of Maryland
College Park, MD 20742

Abstract

In order to understand, evaluate, predict, and control the software development process with regard
to such perspectives as productivity, quality, and reusability, one needs to collect meaningful data
and analyze them in an effective way. However, software engineering data have several inherent
problems associated with them and the classical statistical analysis techniques do not address these
problems very well. In this paper, we define a specific pattern recognition approach for analyzing
software engineering data, called Optimized Set Reduction (OSR), that overcomes many of the
problems associated with statistical techniques. OSR provides mechanisms for building models for
prediction that provide accuracy estimates, risk management evaluation and quality assesssment.
The construction of the models can be automated and evolve with new data over time to provide
an evolutionary learning approach (the Improvement Paradigm) to software modeling and mea-
surement. Experimental results are provided to demonstrate the effectiveness of the approach for
the particular application of cost estimation modeling.

"Research for this study was supported in part by NASA grant NSG 5123, Coopers & Lybrand (IAP member)
and Vitro Corporation (IAP member).

2-95
10000174

1 Introduction

Managing a large scale software development requires the use of quantitative models to
provide insight and support control based upon historical data from similar projects. This
implies the need for a quantitative approach.

• to build models of the software process, product, and other forms of experience (e.g.,
effort schedule, reliability, ...) based upon common characteristics for the purpose of
prediction.

• to recognize and quantify the influential factors (e.g., personnel capability, storage
constraints, ...) on various issues of interest (e.g., productivity improvement, effort
estimation, ...) for the purpose of understanding and monitoringthe development.

• to evaluate software products and processes from different perspectives (e.g.. produc-
tivity, fault rate) by comparing them with projects with similar characteristics.

• to identify strengths and weaknesses in the current environment.

• to understand what we can and cannot predict and control so we can monitor it more
carefully.

In Section 2 of this paper, we discuss the needs and the constraints in building effective
models for the software development environment. In Section 3, we review the failings of
the classical statistical approaches with regard to software engineering data. We offer a
new approach for analyzing software engineering data in Section 4, called Optimized Set
Reduction (OSR), that overcomes many of the problems associated with statistical tech-
niques. The approach is based upon pattern recognition techniques tailored to the software
engineering field and offers advantages that overcome many of the problems associated with
statistical techniques.

Besides overcoming some of the drawbacks of statistical analysis for software engineering
model building, OSR provides mechanisms for building models for prediction that provide
estimates of the accuracy of the prediction, models for risk management evaluation for the
risk areas of interest, and quality assessment relative to the pertinent quality models.

The construction of the models can be automated and evolve with new data over time to
provide an evolutionary learning approach to software modeling and measurement in order
to support software development management.

In Section 5, experimental results are provided to demonstrate the effectiveness of the
approach for the particular application of cost estimation modeling. The data set used
are the COCOMO [BOE81] and Kemerer [KEM87] data sets. Although the particular
example of cost estimation is chosen, the approach is also being used for other forms of
model building, e.g., the building of models for maintenance.

Section 6 discusses some general issues related to multivariate data analysis in the context
of OSR. A paradigm that defines the learning aspects of software development and man-
agement (called the Improvement Paradigm) is described in Section 7 and it is shown how
OSR performs with the learning and model refinement issues in the IP framework.

1

2-97

1000°1"PRECEDING PAGE BLANK NOT FILMED

2 Requirements for an Effective Data Analysis Procedure

Based upon the constraints associated with the data and the analysis procedures, we gen-
erate a set of requirements for model building approaches. In the text that follows, we will
refer the variable to be assessed as the "Dependent Variable" (DV)(e.g. productivity, fault
rate) and the variable explaining the phenomenon as "Independent Variables" (IV) (e.g.
personnel skills, data base size) [BOE81]. We will see later on that all the issues related
to prediction, evaluation and risk management may be formalized under this form. The
various IVs will form the dimensions of an Euclidian space called the "sample space" in the
following text.

2.1 Constraints related to Software Engineering Data

Model building in Software Engineering is faced with the following difficulties:

• C\: There is no theory proven to be effective in any environment that would give a
formal relationship among measured metrics in the development process. Therefore
the capabilities of classical statistical approaches seem very limited and statistical
simulation (i.e. Monte Carlo approach) appear improbable.

• CT.: The best we can do is make assumptions about the probability density distribu-
tions, with respect to the dependent and independent Variables of interest, with very
little evidence to support our assumptions.

• €3: The sample size is usually small relative to the requirements of the classical
statistical techniques, the quality of the data collected, and the number of significant
independent variables (IV). This is due to the nature of the studied objects in software
engineering and it is difficult to avoid (e.g. software system, module, change, defect
...).

• €4: "Software engineering modelers" have to deal with missing, interdependent and
non-relevant independent variables: This is due to a lack of understanding of the
software development process.

• C$: Both data defined on a continuous (i.e. ratio, interval) and a discrete (i.e. nomi-
nal, ordinal) range have to be handled. Collecting data in a production environment
is a difficult task and discrete data collection is sometimes performed to facilitate the
measurement process. Also, the nature of some of the data may be discrete.

2.2 Requirements to alleviate these constraints

Matching the constraints, we can define requirements for effective data analysis procedures
by the following list:

• #1 [matches Ci,Ci]: The data analysis procedure should avoid assumptions about
the relationships between the Variables regarding the probability density distribution
on the IV and DV ranges.

2-98
10000174

C-2-

• RI [C*3, C^]: A mechanism is needed to evaluate accuracy for each performed estima-
tion. The variations of accuracy lie in a large range depending on the object to be
assessed. For example, you may want to assess a software project from the point of

' view of productivity.

£3 The amount of available relevant data may differ according to the character-
istics of the project to be assessed (i.e. location of the project in the sample
space). For example, you may have more data with respect to data processing
business applications than with respect to real time systems. In small samples,
this phenomenon can have significant consequences.

€4 The performed data collection may be more suitable to certain kinds of objects
than others. For example, measuring objectively time constraints for real time
systems may be difficult and therefore may introduce uncertainty in assessement.

• RZ [C^]: The data analysis procedure must be as robust as possible to missing, non-
relevant, interdependent IVs and outliers. Then, some procedures must be available
in order to detect and alleviate the effects related to these kind of disturbances in the
data set.

• R* [€5]: The data 'analysis procedure must be able to handle easily both discrete and
continuous metrics without biasing the results obtained.

3 Statistical Background in the Field

Most of the studies in software engineering have been based on multiple regression and
related techniques (e.g. F tests, stepwise selection). These procedures do not seem to
match most of the previously denned requirements for the following reasons:

• The adjusted coefficient of correlation is a parameter globally calculated over all the
data points. It is the ratio of the variance explained by the calculated correlation
versus the variance still unexplained. This does not provide accuracy of individual
estimations (see requirement R-i). Calculating confidence intervals does not seem pos-
sible with an acceptable accuracy. Their calculations are based on an approximation
of the distribution (i.e. normal) and variance of the residuals in the studied popu-
lation. Too few data are usually available to make a reasonable estimation of the
variance. Moreover, we should not expect a constant variance all over the regression
space. The disturbance due to some missing independent variables in the regression
equation may have a variable intensity in different parts of the regression space. Con-
sidering that in the field of Software Engineering we already make approximations on
the mathematical shape of the regression function, with weak theories to support our
assumptions, this variability may be significant.

• This technique is very sensitive to perturbations related to missing, interdependent
and non-relevant metrics (i.e. independent variables) [DIL84]. Procedures to deal
with these problems are complex and errorprone (e.g stepwise selection, F partial

2-99
10000174

tests, detection of outliers). These problems make difficult any quantitative analysis
of the development environment and affect the accuracy of predictions.

• Continuous metrics are at times difficult to compare because the calculated re-
gression coefficients are dependent on their corresponding measurement units. The
classical way to solve this problem is to work with Beta coefficients (i.e. standardized
regression coefficients). The dependent variable and the independent variables are di-
vided by their standard deviation before calculating the regression equation. In other
words, Ws and DVs are normalized to their variability. This way, the used regression
parameters become unitless numbers and are independent of the magnitude of units.
However, the magnitude of the Beta coefficients are dependent on the variability of
the independent variables in the particular sample that provide the data. This is
another cause of innacuracy in the performed estimations.

• Discrete metrics are very difficult to handle because the notion of distance between
categories would be required to build Multiple Regression based models. Then, some
strong assumptions are necessary to integrate these data in a regression calculation
(i.e. assumptions about the relative distances between the denned categories). The
usual way to handle categorical data is to create a regression parameter for each
category of each categorical metric (i.e. dummy variable). For example, The value of
each parameter is either 1 or 0 according to the categories to which the object to be
assessed belongs. Two major drawbacks may be identified:

— The number of regression parameters increases rapidly with the number of cat-
egorical metrics.

- The discrete values (e.g. 0, l)assigned to these parameters are arbitrary and
then make the calculated regression coefficient meaningless for analyzing the
respective influence of the various regression parameters. No beta-coefficient can
be calculated.

There have been some significant attempts to develop alternative techniques to regression
based procedures to analyze software engineering data. The use of statistical classification
techniques has been used to make predictions with respect to errorprone modules in large
scale software systems [SEL88]. These experiments showed encouraging and interesting
results. However, if we consider the usual data availability in Software Engineering, the
used data set was very large (5000 data points). The objective was simply to classify
objects among two categories (i.e. non errorprone and errorprone modules) and not to
come up with a comprehensive data analysis procedure. These experiments opened a door
to a huge research field to be investigated.

4 A Pattern Recognition Approach for Analyzing Data

Based upon pattern recognition principles [TOU74], we propose a data analysis procedure
that is intended to fulfill, to a certain extent, the previously described requirements for
effective data analysis. This procedure and the main principles supporting are described in
this section.

2-100
10000174

4.1 Description of the Main Underlying Technique

The technique has as its goal the recognition of patterns in a data set. These patterns
are used as a basis for understanding and assessing the development process, product and
environment.

4.1.1 The Basic Concepts and Terminology

• A learning sample consists of N vectors (UVi, /Vi,,-, ...,7Vn,,-), i € (1, ...,JV), con-
taining one dependent and n independent variables. These vectors are denned in an
Euclidian space called the "sample space". These vectors, which we will call pattern
vectors, represent measurements taken in the environment.

• A measurement vector is denned as the set of independent variable values repre-
senting a particular object whose dependent variable value is to be predicted. That
is, it is a pattern vector without the dependent variable.

• To be able to make predictions on the dependent variable, its range has to be
sub-divided or grouped into what we will call DV classes. These classes correspond
to natural situations that can be encountered in the measurement environment, with
respect to the dependent variable, e.g. productivity. If the Dependent Variable is
either "ratio", "interval" or "ordinal", the dependent variable range is sub-divided
into intervals, if the Dependent Variable is "nominal", categories may be grouped
into a smaller set of classes. They are called "states of nature" in decision theory and
"pattern classes" in the pattern recognition field [TOU74]. We have. chosen the name
DV classes in order to make the connection with a classical statistical approach for
multivariate analysis.

• To be able to use the independent variables as a basis for predicting the dependent
variable, they, like the Dependent variables, must be mapped into IV classes by sub-
dividing or grouping.

• A pattern is denned as a non-uniform distribution of probabilities across the DV
classes.The further a distribution is from uniformity, the more the pattern is considered
as significant (measurable metric developed below).

4.1.2 A Particular Pattern Recognition Process

The problem of predicting the dependent variable for a particular project can be stated as
follows: Given a particular measurement vector (MV), determine the probability that the
actual dependent variable value lies in each of the DV classes. The shape of the probability
density function on the DV class range associated with MV is unknown. The goal and the
basic principle of this process is to find a subset of pattern vectors in the data set, whose
values for the independent variable are similar to the values for the independent variable of
MV and show a significant pattern among the DV classes.

2-101
10000174

Taking this approach in the ideal, we can assume that given a learning sample, LS, and
a measurement vector, MV, we could select an ideal subset of all the pattern vectors in
LS having the exact same IV instances as MV (Figure 1). However, since we are usually
working with small samples and numerous independent variables the ideal subset is typically
too small to be useful, so this ideal approach is not applicable.

Figure 1 - Ideal approach

Measurement Vector = {IV1 := Clot, IV2 := C2Jt, IV3 := C3a}

With Out being any single class on the IVn range

IDEAL
SUBSET

sC3Jt

Nevertheless, we need to find a subset, SS, of LS that contains pattern vectors similar to
MV with respect to some IVs and that yields significant patterns. SS must be large enough
to be usable (notion defined below) and must contain sufficiently homogeneous pattern
vectors to yield significant patterns. To extract SS from LS, we have to select a subset of
IVs among those available, that will be used to select the pattern vectors that will form
SS. The pattern vectors matching the MV instances with respect to the selected IVs will
be extracted from LS. This IV selection will be performed in a stepwise manner and based
upon a selection function SF (Figure 2). In other words, each pattern resulting from a
potential IV selection will be evaluated using SF which provides information on the degree
of significance of the pattern.

2-102
10000174

Figure 2 - Pattern recognition process

P(DS)

•*> DV

P(SS1)

DV

| SF(SS2) > SF(SS1) > SF(DS)|
P(SS2)

A
IV2 = C2jt
IV1=CUc

«. DV

Two reasons justify a stepwise process:

• We wish to stop the subsetting whenever the resulting subset SS is too small.

• If we increase the pattern significance progressively, set reduction after set reduction,
we increase the probability of not getting a good pattern purely by chance due to
the small size of the sample on which the pattern is based. A constant trend is more
convincing than a single pattern based oh a small sample.

In the Software Engineering Laboratory at the University of Maryland, a set of experiments
have led us to develop the following pattern recognition process (called Optimized Set
Reduction) applied for any MV:

• Step 1: DV classes are formed either by dividing the DV range into intervals or by
grouping the defined DV categories. For optimal results, a similar number of pattern
vectors should be in each class. The mechanism for creating classes is further described
below.

• Step 2: IV classes are formed in a similar way.

• Step 3: The learning sample is successively decomposed into subsets. At each step, an
IV is selected (according to a selection function described below) and the objects
having the same instance for the FV as the object to be assessed are extracted to

2-103
10000174

form the reduced subset. This is done recursively on the reduced subsets. We call the
performed process an Optimized Set Reduction.

• Step 4: When a predefined condition is reached, the reduction stops. This condition
will be referred to as the termination criteria and will be discussed below. The
subsets resulting from this criteria are called the terminal subsets.

•• Step 5: The pattern vectors in the terminal subset(s) are then used to calculate
probability that the actual dependent variable value lies in each of the DV classes.
Several alternatives may be considered for calculating these probabilities and two of
them are described below.

The resulting probabilities (that form the obtained pattern) may be used either for DV
predictions, risk management or quality evaluation in a way that will be described
in Section 4.3.

Despite an apparent simplicity, this approach opens up a set of research questions associated
with each of the steps, that need to be further investigated. The details of each of the steps,
as well as the open questions are discussed here:

• Which IV selection function should be used as a reduction mechanism (Step 3)?

The best we have found so far is Entropy (F). The measure of entropy generalized
for TO classes from information theory can be used as the impurity evaluation function
[BRE84, SEL88]:

t=i

where P(d/x) is the conditional probability of i of belonging to

the DV class Ct, i € (l,...,m).

We assume that the lower the entropy the more likely we are to have found a significant
pattern. This assumption has been supported by the performed experiments: a good
correlation between Entropy and MRE (i.e. Magnitude of Relative Error) has been
observed. The selected IV is the one, that minimizes the defined selection function.

How is the termination criteria determined (Step 4)?

The termination criteria needs to be tuned to the environment, i.e. the available data
set. Logically, if measuring the significance of a pattern by calculating its entropy is
reasonable, then the entropy should be strongly correlated to the observed prediction
accuracy (i.e. Magnitude of Relative Error for continuous DVs and Misdassification
Rate for discrete DVs). Therefore, an estimation of the prediction MRE /MR is
possible by looking at the decomposition entropy. There are two bounds on the
calculation. If there were no termination criteria, the reduction could decompose
to a subset of a single pattern vector, yielding the meaningless minimum entropy of
zero. On the other hand, if we stop the reduction too soon, we have not sufficiently
decomposed the data set to provide an the most accurate

8

2-104
10000174

characterization of the object to be assessed. Thus we are interested in achieving an
accurate approximation of the selection function based upon some minimum num-
ber of pattern vectors in. the terminal subsets. To find this minimum number, we
must experiment with the learning sample by examining the correlation between the
MRE I.MR and the selection function (e.g., entropy). If this correlation becomes too
weak, then the acceptable minimal number of pattern vectors in a subset should be
increased. The goal is to find a compromise between a good correlation and a sufficient
number of decompositions to provide a reasonable accuracy for predicting the .value
of the DV. This determines the number of pattern vectors used as our termination
criteria (Figure 3).

• How to create suitable DV and IV classes (Steps 1 and 2)?

Whenever the variable is either continuous or ordinal, the range is divided in a fixed
number of classes. This number may be fixed through a trial and refinement procedure
(Figure 3).

At least two concurrent factors have to be taken into account:

- The amount of data available: Increasing the number IV classes decreases the
average number of reductions during the OSR process, because the average set
reduction rate (ratio # of pattern vectors before red./ # of pattern vectors after
red.) decreases. This tends to decrease the DV prediction accuracy. Whenever
the number of DV classes increases, the ratio # pattern vectors / # of DV classes
decreases and the calculation of the conditional probabilities is less accurate.
Thus the strength of the correlation Accuracy/Entropy is also very dependent
on the number of denned DV classes. So decreasing the number of DV classes
is also a way of improving the correlation. One has to determine, based on the
learning sample, which of the two solutions: decreasing the number of DV classes
or increasing the termination criteria, is affecting the DV prediction accuracy the
most.

Figure 3 - Tuning the OSR parameters

TCr»

Action 2

Parameters
are

suitable

I ACTION 1:1 Increase
TC or decrease
number of DV
classes

| ACTION 2;

2-105

10000174

— The granularity of the classes: Decreasing the number of DV or IV classes may
make predictions more inaccurate because you may be missing real distinctions
in the values of the data. Granularity is clearly dependent upon the ability to
collect the data accurately. The required accuracy of the DV prediction is a
major criterion for DV granularity.

Whenever the variable is nominal, categories may be grouped to form IV or DV classes.
With respect to DVs, the grouping will depend on the classification to be performed
and also the size of the data set , as above. For IVs, grouping may be subjective
and depends upon the goals of the analysis. For example, assume one wishes to
predict productivity and one of the available IVs is "Programming language used". If
the possible instances for the variable ^ire "COBOL, FORTRAN, ADA, C++," one
could create a class "high level language" containing ADA, C++ (because they allow
better rates of code reuse and easier testing procedures) and a second class "Low level
languages" containing COBOL, FORTRAN. If the amount of data makes it possible,
four classes with the four programming languages may be used.

How does one estimate the conditional probabilities that the object to be assessed
falls into the various DV classes (Step 5)?

A simple rule would be to calculate the probabilities as the ratios of pattern vectors
falling into the various categories versus the total number of pattern vectors. This
is the only solution for discrete DVs because. there is no notion of distance in the
range of values. A more refined approach for continuous DVs might be to sum the
distances between the subset pattern vectors and the class mean for each of the DV
classes. Call this TDn, where n represents the class index. Note that TDn is inversely
proportional to the concentration of pattern vectors around the class mean for class
n. Then calculate:

i_c_TDn_\

where m is the number of DV classes.

This formula assumes that the probability is inversely related to the total distance
(TDn) of the pattern vectors to the class mean. This approach refines the probability
calculation since it takes into account the distances between the subset of pattern
vectors and the class means, no just their membership in a specific class. We can fur-
ther refine this probability calculation by defining TD as the sum of the exponentials
of the distances in order to decrease the weight of the pattern vectors furthest from
some particular class mean.

v
The OSR process could be improved by investigating the following issues:

• Could non-parametric statistical classification techniques (e.g. A"-nearest neighbors)
[COV67] be used in order to improve the accuracy of the results ?

10

2-106
10000174

These techniques could be used, for example, in the terminal subsets to help refine the
results in cases where the entropy is high. The Jf-nearest neighbors technique yielded
interesting results in experiments on data sets other than the one used as illustration

. in this paper. This approach needs to be further investigated in order to come up
with effective empirical procedures.

• Could some decomposition heuristics be used to improve the pattern recognition pro-
cess effectiveness?

The simplest way of building an optimized set is to select in a stepwise manner the IVs
yielding the best decomposition entropy until the Termination Criteria is reached as
described above. Although this is certainly the fastest way of generating an optimized
set, it is not the most efficient in terms of pattern recognition. One can imagined
more sophisticated heuristics for example to get better entropies and therefore more
accurate estimations. The user could select, for the 5 first stages of reduction, the A
IVs yielding the best decomposition entropies. Then, in order to make an estimation of
the studied dependent variable, the user would have to consider 5^ terminal subsets
(each of them yielding an independent result). These results can be weighted and
averaged. The weights can be calculated using, for each terminal subset, the respective
entropy and/or number of pattern vectors. Moreover, the variance of the obtained
results is another insight into the reliability of the prediction.

4.2 Optimized Set Reduction and Decision Trees

The reader may notice similarities with decision tree techniques (e.g. the use of entropy as
a selection function). However, the approach differs in several critical points, the two most
significant discussed below. Moreover, unlike decision trees whose the goal is classification
[BRE84], the goal of OSR is the estimation of the conditional probabilities on DV ranges
associated with specific pattern vectors. These probabilities are intended to be used for
prediction, risk management and quality evaluation as described in Section 4.3.

Decision trees and OSR use different decomposition strategies. For example, Selby and
Porter identified two different selection functions (linear and logarithmic) [SEL88]. Since
the two functions showed similar behaviors and only the logarithmic function is generalizable
to N classes where N > 2 (note that decision trees usually deal with binary decisions), we
have been using the logarithmic function, i.e., the information theory entropy function.
Even with this function, some heuristics still need to be developed in order to improve the
IV selection and the pattern recognition process. In the decision tree approach, one set
of pattern vectors is decomposed by selecting the IV yielding the best average weighted
entropy across the various formed subsets. This decomposition is repeated in each branch
of the formed tree until the predefined termination criterion is met. The Optimized Set
Reduction approach tends to be more effective in recognizing significant patterns. The
following example illustrates a typical case where the difference is noticable:

Let us assume that Complexity (CPLX) and Personnel capability (PERS) are among
several IVs available for the decomposing the available data set, 5, to predict the depen-
dent variable, productivity. S can be decomposed into two pairs of subsets 551,552 and

11

2-107
10000174

553,554 using CPLX and PERS, respectively. Assume that 551 and 552 contain re-
spectively low and high complexity projects. In a similar way, assume that 553 and 554
contain projects with low and high experience personnel, respectively.

Let the average entropies for each of the two decompositions be El and E2 where El < El.
The IV CPLX is thus selected for the first decomposition step of the decision tree. Now
suppose the entropy(SSl) > entropy(SSS) because for a low complexity system, PERS is
the most influential parameter. However, suppose entropy(S52) < entropy(SSA) because
CPLX is still the most significant IV for complex systems. If we want to assess an object
(e.g. project) ol that falls in either 551 or 554 (according to the selected decomposition),
the result will be different according to which fo the two decomposition techniques is used.
For the decision tree and OSR techniques, the subsets used for estimating productivity will
be 551 and 553, respectively. To assess an object o2 that falls in either 552 or 554, the
result with both techniques will be the same: 552 will be used.

This example shows that the OSR technique is more effective since it always selects the
decomposition that yields the best entropy for the object to be assessed and is therefore more
likely to achieve better entropy values with fewer levels of decomposition. This property is
crucial if you consider that the number of possible decompositions is very limited for small
samples.

In conclusion, the decision tree technique may be seen as an optimized partition of the data
set. The OSR approach is a set reduction process for recognizing the most significant (with
respect to its pattern) subset for the specific object being assessed. This makes the OSR
technique more calculation intensive, but all automatable.

Another important difference between the OSR and decision tree technique is the definition
of the decomposition termination criterion. In the decision tree approach, the termination
criteria is some minimal class conditional probability. If one of the two classes of the DV
range is above this probability, it is selected as the one to which the object to be classified
belongs. This selection appears to be arbitrary. In the OSR approach, the termination cri-
teria is based upon the need to evaluate the accuracy of the prediction, i.e., it is determined
by the correlation between accuracy, e.g., MRE and the selection function, e.g., entropy.

4.3 Prediction, evaluation and risk management

The three processes, prediction, quality evaluation and risk assessment, are all based on the
recognized patterns and follow a similar quantitative approach even though they apparently
deal with three different purposes.

• Prediction:

In this case, one is interested in estimating only one Dependent Variable based on
the set of available Independent Variables. The dependent variable is a measurable
object characteristic that is not known or accurately estimatable at the time it is
needed. For example, one may wish to predict the error rate expected for a particular
project development process in order to determine whether to apply a particular code
inspection intensive development process. So, one tries to estimate the error rate

12

2-108
10000174

based on other characteristics (TVs) that may be measured, evaluated subjectively
with a reasonable accuracy, or estimated through other models.

If the dependent variable is defined on a continuous range (i.e. the notion of distance
between two values on the range is meaningful), the following approach may be used:
by dividing the DV range into m successive intervals (d classes: t € (l...m)) and
calculating P(dfx) for each of them, we have in fact approximated the actual density
function P(DependentVariable/x) by assuming it to be uniform in each class C1,.

Therefore, the following expected /i,- value can be calculated on C,:

.„ , . . , , lower boundary .Ci + upper Jboundary_d
Hi = E[Productivity/Ct, x] = —

In other words, the actual density function is approximated by a histogram, where
each column represents the conditional probability of a particular pattern vector x
that lies in a particular DV class C1,. No assumption has been made with respect to
the form of this probability density function.

The expected value on the total DV range can be approximated as follows:

E[Prod/x] = M » f) P(Ct/x) x /it-
i=l

This expected value can be used as an estimate of the Dependent Variable. The
average error interval that can be expected may be estimated quite accurately by
using the correlation of accuracy to entropy. This correlation will be confirmed by the
experiments described in Section 5.

If the Dependent Variable is defined on a discrete range, then prediction becomes a
classification problem:

Given a set of probabilities that a particular pattern vector x belongs to each DV
class C,-, the decision maker must decide to which class to assign z. The class with
the highest probability may not always be chosen. Rather, we may choose the class
based upon the loss associated with incorrect classifications. This is the Bayesian
approach. A risk (or loss) matrix L has to be denned by the decision maker where
Lij represents the loss of having chosen the strategy appropriate for Cj when the DV
class (or state of nature) is actually C,. A Bayesian classifier [TOU74] will try to
minimize the conditional average risk or loss Rj(x) (j = 1 ... m) considering the m
defined DV classes.

£>(*) = £>jP(C,-/z)
1=1

P(d/x) represents the probability that pattern vector x comes from the pattern class
C1,. The bayesian classifier assigns a pattern vector x to the class j with the lowest R
value.

13

2-109

10000174

Risk management:

Software development organizations are interested in assessing the risk associated with
management and technical decisions in order to guide and improve the development
processes. Referencing [CHA89], the risk associated with an action (e.g. software
development) may be described through three dimensions:

— Dl: The various possible outcomes

- D2: The potential loss associated with them

- D3: The chance of occurrence for each outcome

One encounters multiple kinds of interdependent risks during software development
(e.g. technical, schedule, cost) [CHA89] and this make risk management and models
complex. Also, the notion of risk is by definition subjective because the associated
loss strongly depends upon one's point of view. Charette in [CHA89] writes:" One
individual may view a situation in one context, and another may view the exact
same situation from a completely different one". According to his/her goals and
responsibilities, one will define the risk in different ways, in the form of various models.

If we try to make the link between the above description of risk and OSR, the following
straightforward associations may be established:

- Outcomes (i.e. dimension Dl) and DV classes.

- Potential loss (i.e. dimension J?2) and distance on the DV range between the
DV class mean and the planned DV value.

- Chance of occurrence (i.e. dimension D3) and conditional probability for each
DV class.

In order to analyze risk during software development, we propose the following ap-
proach based upon OSR:

First, based on the three previously described risk dimensions, we calculate the ex-
pected difference (distance on the range) between planned and actual values for each
DV representing a potential risk (e.g. schedule, effort,...). Let us call these distances
"DV expected deviations". From a decision maker's perspective, the potential loss
resulting from his/her decisions is intrinsically a function of several DV expected de-
viations that may be seen as a specific and subjective risk model. Therefore, a "loss
function" is used as a risk analysis model and may be defined as a function that
combines several DV expected deviations, parameters (e.g. reflecting management
constraints) and constants (e.g. weights). The calculation details are illustrated in
the example below.

Decision making will result in various sets of IV instances and therefore will have an
impact on the numerical results of an OSR. Through this mechanism, management
choices will have an impact directly on the calculated DV plan/actual deviations and
indirectly (i.e. through the selected loss function) on the calculated potential loss.

Consider the following example with the two continuous DVs, productivity and fault
rate. A budget and schedule have been imposed on the project manager by upper

14

2-110
10000174

management. Therefore a specified productivity PT will be required to reach the man-
agement goals. From the point of view of the project manager, the risk of failure may
be represented as a simple function calculating the Productivity Expected Deviation
(FED):

t'=i

where m is the mean of C,

According to the result of this estimation, the project manager will be able assess
the difficulty of the job and make a decision with respect to the development process
in order to alleviate the staff loading and make a suitable trade-off between quality
and productivity. Some analysis can be performed by the manager to see how the
risk evolves according to controllable project parameters (i.e. some .of the Indepen-
dent variables). If the project manager wants to make a risk/effort trade-off, in order
to improve competitiveness on a commercial proposal for example, he/she can cal-
culate how the risk evolves according to the productivity required. Based on these
observations, a suitable risk/effort tradeoff can be selected to maximize chances of
success.

One's perspective of risk may be more complex than the previously defined function,
FED. For example, assume that a contractor wishes to define risk of financial loss
if the system is delivered late and/or there are effort overruns. One can define the
Schedule Expected Deviation (SED) as the expected delay, i.e., the difference between
the planned and predicted schedule and the Effort Expected Deviation (EED) as the
expected effort overrun, i.e., the difference between the planned and predicted effort
expenditures. Then

_ __ Eatimated^Size
— pEDxAvg^Team-Sizc
_ Estimated-Size- -

where Estimated ̂ Size is either a parameter, like AvgJTeam-Size (i.e.

provided as an input by the manager), or another Dependent Variable (i.e. result of
an OSR using some Function Point-like metrics, for example, as IVs). So the financial
loss function can be defined as a function of both variables SED and EED.

Now suppose that the cost of delay on a particular contract is exponential to the
delay itself. This exponential assumption is based upon predictions with respect to
the delay of other projects dependent upon the completion of this project and the
resulting compensations to be given to the customer. Thus, the SED needs to be
weighted by some Cost per Delay Unit that is an exponential function of SED, call
this CDU '. Also suppose that CEU is the average Cost per Effort Unit, i.e., the
average cost per staff hour for the specific project development team.

Then we can define

FinancialJoss = SED x CDU + EED x CEU

15

2-111
10000174

• Quality Evaluation:

In any quality model, you need a baseline in order to be able to make sensible

comparisons. For example, let us assume that the quality perspectives of interest (i.e.
quality drivers) are productivity and fault-rate since management views quality as
reliable and inexpensive software.

Assume that using some project features as IVs, the OSR approach yields clear pat-
terns (i.e. low entropy) with respect to productivity in the available data set. These
patterns represent the expected productivity distributions in the current development
environment for the project under study. The relationship between the actual pro-
ductivity for the project under study and the expected value of the predicted patterns
provides the basis for quality evaluation, from the productivity perspective.

For example, suppose the actual productivity for the project under study falls far
below the expected value of the predicted patterns. This implies that the quality
of the project with respect to productivity is low. Using the pattern as a basis of
comparison, we may ask where the difference comes from.

Several causes may be investigated: incomplete or inadequate data collection, some
possible new features or variables affecting the development process, or, of course, the
process quality (e.g. process conformance) is quite low.

In order to quantify quality, from the perspective of productivity, according to some
quality model, a quality value could be defined as a function the distance between the
actual productivity and predicted value(s) of productivity based on the recognized
pattern(s).

This distance may be defined' as:

m

Prod-deviation = AP - ^ P(Ci/x) x m
i=i

with AP the actual measured productivity.

If we try to include in the quality model both the Fault-rate and Productivity qual-
ity drivers and we assume an approach similar to the Prod-deviation evaluation for
calculating a Fault-deviation, then a global quality evaluation may be formalized by
the following quality model.

Let us define NFD as Fault jdeviation (i.e. fault rate deviation) normalized by the
fault rate standard deviation in the available data set and NPD as the equivalent
variable for Prodjdeviation. Based upon these unitless deviations, we define the
following quality model:

- If NFD < 0, NPD > 0, the larger \NF D x NPD\ is, the better the quality.

- If NFD > 0, NPD < 0, the larger \NFD x NPD\ is, the worse the quality.

- If both NFD and NPD are negative, the larger $£§ is> tte better the quality.

- If both NFD and NPD are positive, the smaller $£§ is, the worse the quality.

16

2-112

10000174

- If both NFD and NPD have the same sign and p has a value close to 1,
then quality may be assessed as average or nominal.

This particular quality model takes into account two dependent variables and illus-
trates that a quality model may be a subjective function of several distances on the
rerspective dependent variable ranges. This model might be modified, according to
the user perspective of quality, to change the weighting of the various DVs or factors,
e.g., doubling the effect of fault rate in the evaluation of quality.

4.4 Development Environment Analysis

The user may wish to analyze the collected historical data in order to get some intuition
about the development environment (e.g. what significant features affect productivity?).
This could help an organization improve its development process(es) and management tech-
niques by tailoring them to their environment.

To obtain experimental results, one may perform an OSR on each of the pattern vectors in
the available data set, using all other pattern vectors as the learning sample. Based on the
N Optimized Set Reductions (N being the number of pattern vectors in the test sample),
the occurrences of each IV in the JV terminal subsets are counted and weighted.

Several possibilities are available to weight the counts :

• according to the ranks where they appear in the terminal subsets

• according to the number of data points on which they are selected.

• according to the entropy variations they create

This count should give an insight into the significance ranking (according to the dependent
variable) of the available IVs in the development environment where the data has been
collected. Obviously, these counts can be performed on subsets of the data set and compared
(e.g. real time versus business applications).

If an IV is known from experience as very influential but it does not appear very often in
the terminal subsets, several reasons are possible :

• the IV represents a factor that is very influential with respect to the dependent variable
but is quite constant in the development environment. This may due to inappropriate
interval boundaries on the range of the independent variable that do not sufficiently
differentiate the objects of study in the learning sample. This ability to differentiate
may change over time with the evolution of technology.

• the IV is not selected because it is highly interdependent with other available IVs
selected during the set reductions (this issue is explained more in detail in Section 6).

• an innacurate data collection

17

2-113

10000174

5 Experimental Results

In this section we demonstrate the effectiveness of the approach by applying the OSR mod-
eling process to the problem of cost estimation and showing that OSR is able to recognize
meaningful patterns on the available data sets. Although we will only be dealing with the
prediction capability, this experiment can be viewed as demonstrating the effectiveness of
the risk assessment and quality evaluation capabilities since the three processes have been
shown in Section 4.3 to all be based on the conditional probabilities estimated on the de-
pendent variable range. Therefore the accuracy of the three formulas are all dependent on
the significance of the recognized patterns.

We will also determine the most influential factors affecting productivity, regardless of the
development environment. We will do this by assessing the significance of each factor in
predicting productivity. We will then analyze the results to determine if they are reasonable.

The largest part of our data set comes from the COCOMO database published in 1981 (63
data points/pattern vectors) [BOE81]. A second source of data is provided by Kemerer (15
data points), collected in a COCOMO format and published in 1987 [KEM87].

The first data set is a mix of business, system, control, high level interface and scientific
applications. A significant percentage of these projects has been developed in FORTRAN
(38%) and a very small number in Cobol (8%). The second set of projects reflects a variety of
data processing applications most of them developed in Cobol (87%). The following sections
describe an experimental evaluation of the OSR technique as applied to effort estimation
based upon these two data sets. Results obtained with the OSR approach are compared to
results from other standard approaches in order to provide some basis for comparison.

In the following sections, we use three different data analysis procedures to make cost
predictions for the fifteen Kemerer's projects based on their COCOMO cost drivers:

• the OSR approach.

• a calibrated intermediate COCOMO model.

• a pure regression approach.

In what follows, we will use the term data set to refer to the COCOMO and Kemmerer
data sets, the test sample refers to the Kemerer data set which is the sample on which we
are going to assess the OSR capabilities, and the learning sample for each optimized set
reduction is the data set minus the project we are trying to assess.

Thus, 15 optimized set reductions will be performed, one for each of the test sample pattern
vectors. Each time, the pattern vector to be assessed will be removed from the whole data
set to form the learning sample (77 projects) in order to get realistic results. This would be
similar to a situation where an organization has collected data about 77 projects and wants
to assess a new project.

However, the reader must consider that various subsets of the 78 projects have been devel-
oped in various environments, at different points in time and collected by different people

18

2-114

10000174

according to different procedures, in different organizational structures. The difficulties in
tailoring the COCOMO cost drivers to various environments causes a loss of consistency in
the data collection regardless of the analysis technique. Moreover, it is important to notice
that the project productivities lie over a very large range (i.e. from 20 to 2491 LOC/MM).
The 78 pattern vector data set is small enough to assess the capability of the approach
to deal with small samples. The number of independent variables used (15) compared to
the available data set and the nature of these IVs (i.e. ordinal, nominal) make any pure
regression analysis based approach difficult to apply.

In.order to evaluate the performance of the OSR technique, we will first reference the results
obtained by Kemerer in using some of the main models available:

. SLIM: MRE=772%

• Intermediate COCOMO: MRE=583%

• FP: MRE=103%

• ESTIMACS: MRE=85%

According to the author, one of the reasons for which the last two models yielded substan-
tially better results is that they are built on business data processing application projects.
Since the data used to develop the FP and ESTIMACS models were either not available or
not provided in a COGOMO format, we cannot include them in our data set even though
they may be more suitable as a learning sample for the fifteen projects of the test sample.

5.1 Understanding and assessing the cost of development using OSR

As the Dependent Variable, we use project productivity (i.e. size/effort). The size metric
used is the "Adjusted Delivered Source Instruction" as defined in COCOMO, and the effort
unit is staff-months. The Independent variables are the COCOMO cost drivers. The ranges
for all but one (SCED) of the IVs have been decomposed into two intervals (i.e. the
boundary being located either just below or above nominal depending on the IV) and the
DV range into five intervals containing an equivalent number of pattern vectors, to the
extent possible.

Using the termination approach defined in Section 4.1, the termination criterion was set
to 8 projects, after being tuned based upon the learning sample. No more sophisticated
decomposition heuristic was used.

Table 1 gives the results for each of the fifteen data points of the test sample. The five
columns contain the project number, the actual productivity, the predicted productivity,
the actual effort, the predicted effort and the entropy yielded by the OSR processes.

19

2-115

10000174

Table 1

PROJECT

1

2

3

4

5

6

7

8

9

10

1 1

12

13

14

15

Actual
prod

884

491

580

2467

1338

595

1853

1535

2491

542

983

557

1028

667

861

Predicted
prod

299

935

674

643

952

1 196

1016

1006

431

1028

1028

1025

1035

1070

964

Actual
effort

287

82

1107

87

336

84

23

130

1 16

72

258

231

157

247

70

Predicted
effort

846

44

668

333

473

42

42

199

670

38

247

125

155

154

62

ENTROPY

0.63

0.24

045

0.06

0.27

0.47

0.47

052

0.56

0.06

0.06

006

0.06

0.27

006

Despite an encouraging average prediction accuracy which is discussed below, the three
data points with highest productivity (project 4, 7 and 9 in Table 1) yield large effort
overestimation. These three projects have a productivity far above the other 75 projects of
the learning sample and these productivity values might be the result of several problems:

• the size evaluation (i.e. adjusted KDSI) has not been performed according to the rules
described in [BOE81]. This lead to a size overestimation.

• something occurred that was not captured by the 15 COCOMO cost drivers.

More information on these particular projects would be necessary in order to make a more
. thorough analysis. However, in order to keep these three projects from introducing noise in
our analysis, we will also analyze the results obtained by removing them from the learning
sample.

Tables 2.1 and 2.2 summarize the previous results by giving, for three entropy intervals, the
average Magnitude of Relative Error of the effort estimation in the respective intervals for

20

2-116
10000174

each modeling technique, (columns MRE-OSR, -CC for calibrated COCOMO and -SR
for stepwise regression), and the percent of the test sample falling in that interval, (column
%T5). Table 2.1 takes into account the projects 4,7,9 and Table 2.2 ignores them. This
provides some insight into the correlation between the accuracy of the effort estimation and
the entropy.

Table 2.1

SUBSET

F <- 0.06

0.06 < F<- 0.47

0.47< F<- 0.63

1RE-OSR

653

503

2463

MRE-CC

343

168%

6228

MRE-SR

783

803

2613

3TS

403

403

203

Table 2.2

SUBSET

F <-0.06

0.06 < F<- 0.47

0.47< F<- 0.63

1RE-05R

2I3

433

(243

hRE-CC

333

SIX

763

MRE-SR

473

603

1053

3 T S

423

423

163

The reader should notice from Table 2.2 that as the entropy gets lower, the accuracy (i.e.
MRE) gets higher. Therefore, whenever one makes an estimate, the entropy of the pattern

21

2-117
10000174

on which the estimate is based is calculable and provides an assessment of the accuracy
of the estimate. For example, if the obtained entropy is around 0.06, you know that the
expected accuracy should be around 21%, according to the results obtained in Table 2.2. In
Table 2.1, the results seem disturbed by the three high productivity projects. They create
large standard deviations with respect to the accuracies in each entropy interval. Table
2.3 gives the standard deviations calculated in each interval. The first column takes into
account the three high productivities projects. The second one ignores them.

Table 2.3

SUBSET

F <• 0.06

0.06 < F<- 0.47

0.47< F<« 0.63

50-15

102

9

323

SD-12

20

4

58

According to the second column of Table 2.3, the standard deviations of the average accuracy
in the two lower entropy intervals are relatively small showing that the prediction accuracy
may be estimated with a reasonable precision. If the entropy is below 0.06, the accuracy
has a high probability of being under 41% (average MRE plus the standard deviation in
this specific entropy category). For example, if the distribution of the residuals around the
average MRE is assumed Normal, then this probability value lies around 85%. Since the
highest entropy interval contains only two projects, it is difficult to draw any conclusion
from its high standard deviation. However, a high standard deviation of the MRE values
should be expected in high entropy categories since patterns are not very significant and
therefore yield inaccurate predictions.

A problem that may affect the analysis is that the estimation accuracy may be disturbed
significantly when the actual productivities of projects are dose to the extreme boundaries
of the productivity ranges. This is because the density of projects in these parts of the
range may be much lower than projects found in the middle of interval ranges. Only
intuition based upon understanding the particular situation can help the manager detect an
unusual, extremely low/high productivity so the effort estimate may be increased/decreased.
Obviously, something that has never or rarely occurred is difficult to predict.

In summary, based on Table 2.2, the results are very encouraging, especially if we consider
that we are using only fifteen new projects and with different profiles. That is, despite the
constraints, impressive results (averageMRE = 32%) was achieved in 84%.of the cases

22

2-118
10000174

(projects 4,7,9 are ignored). We have dearly satisfied requirement R-i from Section 2.2.
Another important point is that no assumptions have been made of the kind discussed in
requirement R\.

Thus, someone with only 15 projects specific to his/her environment may use the COCOMO
data set to form a learning sample on which to construct an OSR model and get some useful
predictions.

In order to determine the most influential factors affecting productivity, counts of occur-
rences of the various independent variables have been performed according to the description
given in Section 4.4. Table 3 has three different columns. The first gives the raw counts of
occurrences, i.e., the number of occurrences of each IV used to create some decomposition
for the given test sample. The second gives the same counts of occurrences weighted ac-
cording to the level of decomposition where the independent variables appears in the OSR
processes (e.g. if an IV appears at the level two of a decomposition then its occurrence count
increases by I/level = 0.5). The third column shows the total variation of the productivity
mean due to each cost driver in the fifteen OSRs performed. This table gives several in-
sights into the influence of each of the fifteen cost drivers on the productivity of the fifteen
business applications studied. The three columns give three different perspectives of the
impact of each cost driver on the predictive ability of the model.

Table 3

C. DRIV

RELY

DATA

CPLX

TIME

STOP

VIRT

TURN

ACAP

AEXP

PCAP

LEXP

VEXP

MODP

TOOL

SCED

OCC

2

3

I

1

1 1

4

4

7

\

7

0

1

1

0

0

W. OCC

1.33

2.33

0.25

0.33

10.5

2.66

1.83

3.5

0.33

2.66

0

0.5

0.5

0

0

MEAN VAR.

720

594

270

280

2770

65

85

706

350

2075

0

268

270

0

0

23

2-119

10000174

When a factor yields a low number of occurrences, several causes may be considered:

• The factor is quite constant in the learning sample and therefore will not help in
differentiating projects. It should be noted that when a factor is constant in an
environment, there is a loss of information about the effects of that variable.

• The factor has not much influence on the Dependent variable studied.

• There is an interdependence between the IV and some more influential IV.

Table 4 provides an assessment of the influence of the cost drivers on productivity relative
to only one of the three columns from Table 3, the unwieghted occurrences. Table 4 has 2
columns: the first one gives non-weighted counts of occurrences and the second one shows
the cost drivers matching them. Two distinct cost driver subsets may be observed that
yield very different counts of occurrences (< 4, > 7). Considering the test sample size, we
may only say that there is clearly a set of three very influential cost drivers for which the
data collection must be as accurate and consistent as possible, (ACAP, PCAP, STOR).

Table 4

- occ

0

1

2

3

4

7

1 1

Cost Drivers

. Tool, Seed, Lexp

Cplx, Time, Aexp.Vexp.Moap

Peiy

Data

Virt, Turn

Acap, Pcap

Stor

Storage constraints appear to be very significant. This makes sense for systems focusing
on data processing and dealing with very large amounts of data. The data set shows that
most of these fifteen projects fall in the categories "high" and "very high" with respect
to the cost driver DATA which makes the previous statement reasonable. The cost driver

24

2-120
10000174

STOR appeared at the top level of decomposition in ten of the fifteen OSRs performed.
The average entropy for the ten projects is much lower (i.e. 0.17) than the average entropy
for the five projects where STOR was not used (i.e. 0.52). This furthers the argument that
STOR is very significant for the prediction ability of the OSR model for this particular
test sample. STOR was not used in any case where storage constraints were rated above
nominal. As a consequence, high storage constraints make productivity difficult to predict
for this particular data set.

Of course, as shown in Software Engineering Economics [BOE81], the staff capabilities
(Analyst, Programmers) play a crucial role in achieving optimal productivity. When STOR,
ACAP and PCAP were all included in the decompositions, the entropies were the best
obtained (i.e. 0.06). Therefore, ACAP and PCAP seem to significantly improve the average
entropy of the recognized patterns (i.e. 0.06 instead of 0.17). Moreover, all the projects
where ACAP and PCAP were used had high capability teams. This shows that productivity
predictability is more accurrate at higher ranges of capabilities.

Table 4 shows that the reliability and complexity factors have a weaker influence on pro-
ductivity than expected (according to the results published in [BOE81]). However, the fact
that most of the fifteen projects of the test sample fall in the "nominal" category and there
are no extreme complexities or reliabilities present may explain the lack of significance of
these parameters for this particular test sample.

Therefore, based on the above examples, it should be noted that the significance of the IVs
(i.e. cost drivers) in predicting productivity seems to be very dependent on the-localization
of the test sample pattern vectors on the IV ranges themselves. STOR does not seem to
help predict productivity when the storage constraints are high in the range (i.e. above
nominal). In this case, the variability (and the entropy) in the produced patterns is larger
and therefore STOR is not selected in the decompositions. The same phenomenon may be
observed for low ranges of PCAP and ACAP. With respect to CPLX and RELY, results
are more difficult to interpret because of the lack of variation in the test sample. However,
their low significance in the test sample might be explained as a consequence of the nominal
reliability and complexity of the projects included in the test sample. Considering that
most of these projects are business data processing applications, this result seems to make
sense.

Neither "Virtual machine volatility" (VIRT) nor "Virtual machine experience" (VEXP)
show much influence here on productivity. There is nothing in the data that explains this
result and therefore we may conclude that these factors are not significant. The factors
MODP (i.e. modern programming practices) and TOOL (i.e. use of software tools) show
almost no significance. This result contradicts the results shown in COCOMO. No interde-
pendence with other factors was detected in the data set. This latter result may be due to
a weak variability in the level of technology involved in the system developments or incon-
sistent data collection between the two data sets used. For example, the definitions of the
MODP categories are quite fuzzy and leave room for interpretation and inconsistencies.

AEXP also has minimal impact. This may be understandable in this context where the
application domain of these 15 projects does not involve high-technology or mathematically
intensive problems. LEXP shows no influence on productivity. Considering the low com-

25

2-121
10000174

plexity of the programming language COBOL, the learning process for this language may be
estimated as very fast for any experienced programmer. SCED (i.e. schedule constraints)
shows no impact on productivity and therefore confirms the conclusions of the COCOMO
model.

According to the counts of occurrences in Table 4, the three most influential cost drivers
(i.e. ACAP, PCAP, STOR) belong to the category of the seven most influential cost drivers
in the COCOMO's cost driver ranking, despite the different nature of the considered fifteen
projects.

5.2 Effort Estimation Using a Regression Tailored COCOMO

To allow for an evaluation of value of the OSR technique for the prediction of productivity
and effort, a comparison with more conventional techniques is provided. In Section 5.1, we
referenced an evaluation by Kemerer [KEM87], where the average MRE was 583%. However,
the model overpredicted on every project, so it seems that COCOMO may be calibrated
too high for this environment. It seems unfair to directly compare uncalibrated results to
the results obtained through the OSR technique. In this section we describe an experiment
in tailoring the intermediate COCOMO model to the data supplied by Kemmerer using
regression based techniques. The calibration technique chosen was the one that most closely
resembled the previously described OSR experiment. A new model was developed from
project data from both COCOMO and Kemerer, using the intermediate-COCOMO project
information. The base data set for the experiment was the data points of the GOCOMO
model, along with all but one of the data points from Kemerer's data set. The mode of
the removed project was determined, and a model was developed from all of the projects of
that mode from the base data set, with the local data points being weighted three times the
COCOMO data points. A regression was performed on the equation ln(E/ir) = A + bln(S)
(where TT is the product of the effort multipliers) to determine the best values for the constant
term a (where a = eA) and the scale factor b. The values of the effort multipliers were not
adjusted in any way. The model for the prediction of effort then becomes E = TraS6.

26

2-122
10000174

This model was then evaluated by comparing its prediction to the actual effort for the
remaining project. This experiment was done for each of the 15 projects in the Kemerer
data set. Table 5 provides a summary of the experiment:

Table 5

PfO]6d

1

2

3

4

s
6

7

8

9

10

11

12

13

14

IS

Predicted
effort

230.9

54.5

1641.6

120.2

849.5

187.5

163.7

303.7

2105.8

68.2

294.7

134.9

264.1

383.0

41.7

MRE

.196

.339

.483

.383

1.526

1.232

6.055

1.33

17.153

.053

.139

.415

.682

.551

.403

The results are not so good. The average MRE overall is 206%; however, if project 9 (an
apparent outlier) is removed from the data set, MRE is reduced to 99%. The results for
projects of the semi-detached mode were better than either of the other modes. This was
expected, as there are many more projects in this mode than in either of the other modes.
For the semi-detached mode, the average MRE is 44%, with 3 of the 9 projects having an
MRE of < 20%. For the other modes, there may not be enough data points to accurately
adjust the model to local environment. For the 2 projects categorized as organic mode,
the average MRE was 104%, and for the 4 embedded mode projects, the average MRE was
623%. Removing project 9 from the data set lowers the embedded mode average MRE to
259%. The model still tends to overpredict, with overestimations on 2/3 of the projects,
which furthers the notion that the COCOMO cost multipliers are not representative of the
local projects. Further experimentation indicated that the best prediction could be obtained
by ignoring the mode and all the effort multipliers, and utilizing only the local effort and size
data in the development of.the model. The fact that the mode was not useful when tailoring
the model is either due to the small number of data points in the organic and embedded
modes, or an indication that mode is not significant in this environment. This indicates
that the COCOMO effort multipliers are either not significant in this environment, or that
they do not have the appropriate values for this environment. Unfortunately, since the data

27

2-123
10000174

set is small, and the original values for the COCOMO effort multipliers were developed
somewhat heuristically, we can not accurately adjust the values to be useful for prediction
in this environment.

5.3 Effort Estimation Using a Pure Regression Approach

We performed a standard regression process having the following characteristics:

The dependent variable of the regression was productivity, as in the OSR experiment previ-
ously described. A linear functionnal form was used for the regression equation. The fifteen
COCOMO cost drivers were the potential parameters included in the equation. Then a
stepwise selection of the regression parameters was run based on the F partial values of the
various regression parameters [DIL84].

The results for all the fifteen projects are the following:

• R2 = 0.36

• MRE = 115%

If projects 4,7,9 are removed from the test sample (see previous sections), then the results
are improved:

. R2 = 0.54

• MRE = 62%

Detailed results are provided in Table 6.

28

2-124

10000174

Table 6

Project

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

PrKfccud
Pfftduciivrty

553.5

628.9

849.6

740.7

S78.1

1049.1

659.9

620.2

370.2

489.0

384.0

1304.9

1159.9

1292.2

939.6

PrwfiCMd
Effort

458.2

64.4

529.7

289.5

778.2

47.7

65.2

322.5

780.7

79.8

662.0

98.6

139.1

127.5

64.1

MRE

.596

.219

.522

2.331

1.314

.433

1.809

1.475

5.73

.108

1.559

.573

.114

.483

.083

5.4 A Comparison of the Three Techniques

Comparing the results of the OSR and regression based techniques leads to several observa-
tions. First, for this data set, the OSR technique provides a significantly better prediction
than either a tailored COCOMO or a stepwise regression. For 10 of the 15 projects, the
prediction of the OSR model was more accurate than that of both regression models. If
outliers are not removed, the two regression based models had an average MRE of 206% and
115% respectively, while the OSR model had an average MRE of 94%. If the projects 4,7
and 9 that showed extremely high productivities are not considered, the MRE for the re-
gression models becomes61% and 62% respectively, while the OSR model is 47%. Moreover,
the OSR results were obtained without using the notion of "development mode", making
the estimation process easier. The results for OSR are much better that the regression
techniques in the two lower entropy categories (32% vs. 57% and 54% respectively for the
calibrated COCOMO and the stepwise regression models). This result should have been
expected since poor entropy implies that no significant pattern has been found and so the
poor entropy projects bias the OSR results negatively. Consequently, in the highest entropy
category, regression based techniques can perform better.

A second benefit of the OSR technique its ability to provide an indication of the expected
accuracy of the prediction, as demonstrated by the clear correlation of MRE to entropy.
Projects with characteristics that have previously shown widely varying productivities (i.e.
no clear patterns) are flagged with high entropies, allowing the manager to recognize that

29

2-125
10000174

the prediction may be suspect. The regression based models provide no such indication of
the accuracy for an individual prediction.

For exmaple, the tailored COCOMO model provided relatively accurate predictions for
projects of the semi-detached mode (an average MRE of 32%), except for a poor prediction
for project 8, with an MRJE of 133%. The prediction for project 8 using the OSR model
was more accurate (MRE of 53%); however the prediction was nagged with a high entropy,
indicating an unstable prediction. The regression based models provide no indication of the
potential of the innacurate prediction, while the OSR technique indicates that no significant
pattern has been recognized in the available data set. The worse prediction obtained by
applying the OSR technique was for project 1 (if you eliminate projects 4,7,9 whose the
bad results are likely to be due to extreme productivities and missing FVs). In agreement
with the expectation, this poor prediction is visibly flagged with the worse entropy (i.e.
0.63) among the fifteen projects of the test sample.

Despite this important advantages of the OSR technique with respect to prediction, the
regression based approaches may be very useful because their prediction abilities appear
better when OSR yields bad entropies (see Table 2.2), i.e., when no significant pattern has
been recognized. Therefore, an overall prediction process could be defined as a combination
of all the modeling techniques previously cited.

6 Data Analysis Disturbances

The decision maker will have to take into consideration the following issues in order to
perform a sensible analysis. These problems will have to be better understood and investi-
gated. Some procedures will have to be defined, from the perspective of the OSR approach,
in order to alleviate their effects on the data analysis. This section of the paper does not
give definitive solutions but rather poses the issues in dear terms and shows how an OSR
approach might deal with the described problems.

6.1 Interdependence among explanatory variables

There are two different kinds of interdependence between two variables FVi and JV2, i.e.
positive and negative correlation. The first case is where the two variables have a similar
influence on a Dependent Variable defined on a continuous range (e.g. DV decreases when
either IV\ or TV-j increases). For example, let's suppose the dependent variable is produc-
tivity and for the given applications, code complexity is strongly correlated with the size
of the database (i.e. number of entities and relationships for a relational model) . Both
have a tendency to decrease productivity. The variables do not lose their explanatory power
and will be effective for prediction using an "optimized set reduction" approach. However,
the count of occurrences will be disturbed and will not represent accurately the indepen-
dent influences of either "code complexity" or "database size" on productivity. There is a
causality relationship between the two independent variables. A large "database size" will
systematically create a high "code complexity". Thus, the numbers of occurrences for both
the independent variables cannot be considered distinctively. However, the two variables

30

2-126

10000174

may be combined in a higher level IV called for example "System Complexity".

In the second case, the two variables have an opposite influence on the dependent variable.
For example, the DV being productivity and due to an effective project management or-
ganization, experienced programmers are assigned on complex programs. This situation is
much more harmful in the sense that the two IVs lose their explanatory power (i.e. the
productivity will not seem to decrease with complexity). They are not likely to be selected
in the decompositions of the OSRs despite their strong influence on productivity. The accu-
racy of the results should not be significantly affected. However, the actual impact of these
factors on productivity becomes difficult to assess. With respect to the previous example,
using the ratio Complexity/Experience as an IV could be a solution to investigate in order
to minimize the impact of interdependence.

If a missing IV is interdependent with available IV in the data set, then the previously
described problems occur and become even more difficult to detect.

From an OSR perspective, an easy way of measuring the interdependence between two
positively correlated IVs IVP and IVq is to calculate the variation of occurrences 0P if IVq

is withdrawn from the used IV set.

Let us define:

• IV Si (IV set 1) = /VS2 - IV,,

• Onp being the counted occurrences with TV Sn for /Vp,n € (1, 2)

The Level of Interdependence (LI) between Ap and Aq can be define as follows :

where the higher the value of LI, the greater the effect of interdependence on the analysis
of the influence of the factors.

The effects of interdependence are not avoidable independent of the modeling technique.
The only solution consists in taking a larger sample, preferably in a way that decreases
interdependence between IVs. However, being able to detect such phenomena in the data
set in a simple and effective way, is required in order to partially fulfill the requirement R3

(Section 2.2).

This issue is still to be further investigated in order to come up with a well defined procedure
based on OSR, correlation matrices, etc. and refined based upon lessons learned from
experiments.

6.2 Outliers and Missing Independent Variables

The detection of outliers based on multiple regression is quite subjective and difficult to
perform. Outliers are defined as: "Observations that have a disproportionate influence on
the calculated model" [DIL84]. Some techniques are available to evaluate the influence

31

2-127

10000174

of a data point (or a group of data points) on the regression coefficients, coefficient of
determination, or residuals. However, no objective rule or heuristic exists to determine the
level when a (group of) data point has a "disproportionate influence". Also one outlier may
mask the effect of another and the detection process may become even less effective. Then,
you have to examine the influential effects of subsets of data points. It may be difficult to
apply (in JV-dimension space with N greater than 2) because there is no simple way (e.g.,
visually) of selecting the right group of data points in order to avoid the "masking effect".

Outlier detection in the context of an "Optimized Set Reduction" becomes much easier
and more objective and therefore partially fulfills #3. By performing OSRs, you obtain
patterns on the DV range. If some data points are far from the main distribution forming
the pattern, then they may be considered as outliers matching the following definition :
"Outliers correspond to objects that do not lie in the expected DV intervals because the
data collection has not captured the phenomenon responsible for the different behavior of
these objects with respect to the DV". According to this definition, outliers are strongly
related to the "missing independent variable" issue. Therefore, analyzing the outliers may
lead to redefining the data collected.

In Section 5, three among the 78 projects present in the data set had extremely high
productivities (i.e. projects 4, 7, 9 in the Kemerer data set). Accordingly, these three
extremely high productivities were not explained by the fifteen defined cost drivers and are
typical examples of outliers.

7 Learning using an OSR approach

Understanding, evaluating, predicting, and controlling software development requires the
ability to build quantitative models of various software processes, products, and other forms
of experience, e.g. resource estimation and allocation, defect prediction, reusability. Model
development is further complicated by the fact that organizations change and our knowledge
evolves over time. Therefore it is necessary that the models evolve over time in an effective
way, e.g., valid, cost-effective.

Based upon our experience in trying to evaluate and improve software quality in several
organizations [BAS85, BW81, RB87, SB88] a quality-oriented, evolutionary life cycle model
has been developed, called the Improvement Paradigm (IP) [BAS89, BR88]. The IP is
measurement based and requires the development of models that can learn and evolve with
an organization.

The IP is defined as a set of six activities:

• 51: Characterize the current project and its environment.

• 52: Set up goals and refine them into quantifiable questions and metrics for successful
project performance and improvement over previous project performances.

• 53: Choose the appropriate software project execution model for this project and
supporting methods and tools.

32

2-128

10000174

• 54: Execute the chosen processes and construct the products, collect the prescribed
data, validate it, and analyze the data to provide feedback in real-time for corrective
action on the current project.

• 55: Analyze the data to evaluate the current practices, determine problems, record
the findings and make recommendations for improvement for future projects. This
is an off-line process which involves the structuring of experience so that it can be
reused in the future.

• 56: Package the experience in the form of updated and refined models and other
forms of structured knowledge gained from this and prior projects and save it in an
experience base so it is available for future projects.

In the context of the Improvement Paradigm, two distinct kinds of improvement goals can
be seen. First, the manager wants to improve the models that are being used to describe
the processes of the environment. Additionally, it is desireable to improve the processes
themselves to better meet organizational goals. Unfortunately, these improvement goals
conflict. As the processes change, the models that describe these processes may lose there
validity. In an environment featuring a great deal of change and experimentation with
new methods, techniques and tools, it is essential that the models be refined and assessed
continuously.

The OSR approach can be used to address both improvement goals. Analysis of the patterns
found in projects with higher or lower productivities can help to focus areas of improve-
ments in the development processes. For example, it may be noticed that projects with tight
timing constraints and teams with little prior experience with the target machine typically
have low productivities. The manager may choose to ensure that on projects with such
timing constraints, the team must have significant target machine experience. Similarly,
if a particular project profile yields a high entropy value (indicating widely varying pro-
ductivities), the manager may make changes to the development process to obtain a more
predictable project.

As the processes evolve, the OSR automatically incorporates the new experience into the
models. Future predictions will be based on both the new and the old data in a manner
transparent to the user. However, some independent variables may become less significant
as the technology evolves (e.g. complexity, storage constraints). This may be easily ob-
served by taking several test samples covering the time range and comparing the counts of
occurences. If a trend is observed, then one of the two following conclusions may be drawn:

• Ideally, the more one collects data, the better are the chances of improving the pro-
cess. However, if a metric is expensive to collect and it appears insignificant in the
OSR experiments, the team in charge of the data collection might stop collecting the
corresponding factors in order to lower the measurement cost.

• The intervals on an IV range, as currently defined, have become unsuitable over time.
For instance, let us say the new systems have become more reliable. As a consequence,
most of them will fall in the category "very high" and the factor RELY will lose its

33

2-129

10000174

explanatory power over time. The way data are collected and/or the way the IV range
is divided must be changed in order to improve the prediction process.

8 Conclusions

The Optimized Set Reduction (OSR)has been developed in order to address the specific
data analysis issues within the software development process, as denned by the Improvement
Paradigm. The procedure has the following positive characteristics that allow prediction,
risk assessment and quality evaluation:

• It makes no assumptions with respect to probability density functions on the depen-
dent and independent variable ranges. It does not attempt to fit data to predefined
distributions, rather it uses the data to approximate the actual distribution (i.e. pat-
terns). Also, no particular mathematical relationship between the DV and IVs needs
to be assumed. Thus OSR seems to fulfill RI .

• It allows an estimation of accuracy for each analysis so we can answer the question :
is the estimation usable? This fulfills R?.

• It is robust to non-relevant and missing metrics and allows a more objective way of
dealing with outliers. First, the OSR process is intended to select the combination
of IVs yielding the best patterns and therefore selects automatically the most signifi-
cant group of IVs. Significance has been evaluated by calculating the entropy of the
distributions on the DV range. Non-relevant IVs will not be chosen. Second, OSR
detects outlier more easily because it analyzes distributions on the DV range as op-
posed to influencing analysis of pattern vectors in the multi-dimension sample space.
Third, OSR provides an easier way of detecting missing significant IVs by two differ-
ent means, the recognition of bad entropies and the detection of outliers. The issue
of interdependence between IVs requires more investigation. #3 is therefore partially
fulfilled.

• It handles discrete and continuous IVs in a natural way and therefore meets R4.

• It provides an automated refinement of the model as new data is incorporated into
the data set.

• The process for selecting TVs, among those available in the data set, can be automated.
Thus, the prediction process may be effectively automated and supported by a tool.

• It provides more objective baselines for comparisons and therefore allows more sensible
evaluations (e.g. product and process quality). Then learning procedures, based on
more objective quantitative evaluation, may be more accurate and effective.

• The use of the approach supports common sense and intuition as opposed to com-
plex mathematical assumptions. Therefore, project managers are more able to plan,
predict, control and make corrective actions supported by intuition.

34

2-130
10000174

Finally, the results of the preliminary experiments have been encouraging. They strengthen
the idea that predictions may be accurate enough to be usable, despite the inherent con-
straints of software measurement in a production environment (see 2.1).

A prototype tool supporting the OSR approach is being developed at the University of
Maryland as a part of the TAME project.

Future research directions for this work include:

• refine the OSR process by addressing the issues presented in Section 4.1.2.

• analyze other data sets that highlight the issues related to discrete DVs.

• address the unsolved issues related to data interdependence.

9 Acknowledgements

We thank G. Caldiera, L. Kanal, C. Kemerer, B. Pugh and M. Zelkowitz for their excellent
suggestions for improving both the structure and the content of this paper.

References

[SB88] R.W. Selby and V. Basili, "Analyzing Error-prone System Coupling and Cohesion",
TR-88-46, Institute for advanced Computer Studies, University of Maryland, College
Park, MD, June, 1988.

[RB87] H.D. Rombach and V. Basili "A Quantitative assessement of Software Maintenance:
An Industrial Case Study', Conference on Software Maintenance, Austin, TX, Septem-
ber, 1987.

[BW81] V. Basili and D.M. Weiss "Evaluation of a Software Requirement Document by
Analysis of Change Data", Proceedings of the Fifth International Conference on S.E.,
San Diego, CA, March 1981, pp. 314-323.

[BAS85] V. Basili, "Can we Measure Software Technology: Lessons Learned from 8 Years
of Trying", Proceedings of the Tenth Annual Software Engineering Workshop, NASA
Goddard Space Flight Center, Greenbelt, MD, December, 1985.

[BAS89] V. Basili, "Software Development: A Paradigm for the Future (Keynote Address)",
Proceedings COMPSAC '89, Orlando, FL, September, 1989.

[BR88] V. Basili and H. D. Rombach, "The TAME Project: Towards Improvement-
Oriented Software Environments" IEEE Trans. Software Engineering 14 (6), June,
1988

[BOE81] B. Boehm, "Software Engineering Economics", Prentice Hall editions, 1981.

35

2-131

10000174

[CHA89] R. Charette, "Software Engineering Risk Analysis and Management", Me Graw-
Hill, 1989.

[KEM87] C. Kemerer, "An Empirical Validation of Software Cost Estimation Models",
Communications of the ACM, 30 (5), May, 1987.

[DIL84] W. R. Dillon, "Multivariate Analysis: Methods and Applications", Wiley and Sons.
1984

[SEL88] Selby and Porter "Learning from examples: Generation and Evaluation of Decision
trees for Software Resource Analysis", IEEE Trans. Software Eng., 1988

[BRE84] Breiman and al. "Classification And Regression Trees", Wadsworth, Brooks/cole
advanced books and softwares, 1984.

[TOU74] Tou and Gonzalez "Pattern Recognition Principles", Addison-Wesley Publishing
Company, 1974.

[COV67] Cover and Hart "Nearest Neighbor Pattern Classification", IEEE Trans. Infor-
mation Theory, IT-13: 21-27, 1967

36

2-132

10000174

SECTION 3—SOFTWARE MEASUREMENT STUDIES

The technical paper included in this section was originally prepared as indicated below.

• "Paradigms for Experimentation and Empirical Studies in Software Engi-
neering," V. R. Basili and R. W. Selby, Reliability Engineering and System
Safety, January 1991

3-1
10000174

Reliability Engineering and System Safety 32 (1991) 171-191

Paradigms for Experimentation and Empirical Studies in
Software Engineering

Victor R. Basili

Department of Computer Science. University of Maryland.
College Park. Maryland 20742. USA

&

Richard W. Selby

Department of Information and Computer Science, University of California,
Irvine. California 92717. USA

ABSTRACT

The software engineering field requires major advances in order to attain the
high standards of quality and productivity that are needed by the complex
systems of the future. The immaturity of the field is reflected by the fact that
most of its technologies have not yet been analyzed to determine their effects
on quality and productivity. Moreover, when these analyses have occurred the
resulting guidance is not quantitative but only ethereal. One fundamental area
of software engineering that is just beginning to blossom is the use of
measurement techniques and empirical methods. These techniques need to be
adopted by software researchers and practitioners in order to help the field
respond to the demands being placed upon it. This paper outlines four
paradigms for experimentation and empirical study in software engineering
and describes their interrelationships: (1) Improvement paradigm (2) Goal-
question-metric paradigm. (3) Experimentation framework paradigm, and
(4) Classification paradigm. These paradigms are intended to catalyze the
use of measurement techniques and empirical methods in software
engineering.

1 INTRODUCTION
'£.'•* *"

We have been struggling with the problems of software development for
many years.1-2 Organizations have been clamoring for mechanisms to

171

Reliability Engineering and System Safety 0951-8320/91 ,'$03-50 C 1991 Elsevier Science
Publishers Ltd; Enaland. Printed in Great Britain

3-3
10000174

PRECEDING PAGE BLANK NOT FILMED -̂ ?^̂ -««^̂ SMUS

172 Victor R. Basili, Richard W. Selby

improve the quality and productivity of software. We have evolved from
focusing on the project, e.g. schedule and resource allocation concerns, to
focusing on the product, e.g. reliability and maintenance concerns, to
focusing on the process, e.g. improved methods and process models.3 ~ 6 We
have begun to understand that software development is not an easy task.
There is no simple set of rules and methods that work under all circumstances.
We need to better understand the application, the environment in which we
are developing products, the processes we are using and the product
characteristics required.

For example, the application, environment, process and product
associated with the development of a toaster and a spacecraft are quite
different with respect to hardware engineering. No one would assume that
the same educational background and training, the same management and
technical environment, the same product characteristics and constraints, and
the same processes, methods and technologies would be appropriate for
both. They are also quite different with respect to software engineering.

We have not fully accepted the need to understand trte differences and
learn from our experiences. We have been slow in building models of
products and processes and people for software engineering even though we
have such models for other engineering disciplines. Measurement and
evaluation have only recently become mechanisms for defining, learning and
improving the software process and product.7-8

We have not even delineated the differences between such terms as
technique, method, process and engineering. For the purpose of this paper
we define a technique as a basic technology for constructing or assessing
software, e.g. reading or testing. We define a method as an organized
management approach based upon applying some technique, e.g. design
inspections or test plans. We define a process model as an integrated set of
methods that covers the life cycle, e.g. an iterative enhancement model using
structured designs, design inspections, etc. We define software engineering as
the application and tailoring of techniques, methods and processes to the
problem, project and organizational characteristics.

There is a basically experimental nature to software development We can
draw analogies from disciplines such as experimental physics and the social
sciences. As such we need to treat software developments as experiments
from which we can learn and improve the way in which we build software.

2 THE IMPROVEMENT PARADIGM

Based upon our experiences in trying to evaluate and improve the quality in
several organizations.9"13 we have concluded that a measurement and

3-4

10000174

Paradigms for experimentation and empirical studies 173

analysis program that extends through the entire life cycle is a necessity. This
program requires a long-term, quality-oriented, organizational we/a-life-
cycle model, which we call the Improvement Paradigm.14'15 The paradigm
has evolved over time, based upon experiences in applying it to improve
various software related issues, e.g. quality and methodology. In its current
form it has five essential aspects:

1. Characterizing the environment. This involves understanding the
project and its context qualitatively and quantitatively so that the correct
decisions can be made.

It requires data that characterizes the resource usage, change and defect
histories, product dimensions and environmental aspects for prior projects,
and predictions for the current project. It involves information about what
processes, methods and techniques have been successful in the past on
projects with these characteristics. It provides a quantitative analysis of the
environment and a model of the project in the context of that environment.

2. Planning. This involves articulating the specific qualities we expect
from the process and product and their interrelationships. There are two
integrated activities to planning that are iteratively applied:

(a) Defining goals for the software process and product operationally
relative to the customer, project and organization. This consists of a
top-down analysis of goals that iteratively decomposes high-level
goals into detailed subgoals. The iteration terminates when it has
produced subgoals that we can measure directly. This approach
differs from the usual in that it defines goals relative to a specific
project and organization from several perspectives. The customer,
the developer and the development manager all contribute to goal
definition. It is. however, the explicit linkage between goals and
measurement that distinguishes this approach. This not only defines
what good is but provides a focus for what metrics are needed.

(b) Choosing and tailoring the process model, methods and tools to
satisfy the project goals relative to the characterized environment.
Understanding the environment quantitatively allows us to choose
the appropriate process model and fine tune the methods and tools
needed to be most effective. For example, knowing prior defect
histories allows us to choose and fine tune the appropriate
constructive methods for preventing those defects during develop-
ment (e.g. t ra ining in the application to prevent errors in the problem
statement) and assessment methods that have been historically most
effective in detecting those defects (e.g. reading by stepwise
abstraction for interface faults).

3-5
10000174

174 Victor R. Basili, Richard W. Selby

3. Execution. This involves the construction of the products according to
the process model chosen in step 2 and the collection and validation of the
prescribed data. It is essentially the running of the experiment.

4. Analysis. This involves an analysis of the project relative to its goals to
check for successes and failures.

We must conduct data analysis during and after the project. The
information should be disseminated to the responsible organizations. The
operational definitions of process and product goals provide traceability
back and forth to metrics. This permits the measurement to be intepreted in
context ensuring a focused, simpler analysis. The goal-driven operational
measures provide a framework for the kind of analysis needed. During
project development, analysis can provide feedback to the current project in
real-time for corrective action.

5. Learning and feedback. This involves the synthesis of information
gained from executing the project into models and other forms of structured
knowledge so that we can better understand the nature of software
development and can package that understanding for future projects.

The results of the analysis and interpretation phase can be fed back to the
organization to change the way it does business based upon explicitly
determined successes and failures. For example, understanding that we are
allowing faults of omission to pass through the inspection process and be
caught in system test provides explicit information on how we should
modify the inspection process. Quantitative histories can improve that
process. In this way, hard-won experience is propagated throughout the
organization. We can learn how to improve quality and productivity, and
how to improve definition and assessment of goals. This step involves the
organization of the encoded knowledge into an information repository or
experience base to help improve planning, development, and assessment.

The Improvement Paradigm is based upon the assumption that software
product needs directly affect the processes used to develop and maintain
products. We must first specify project and organizational goals and their
achievement level. This specification helps determine our processes. In other
words, we cannot define the processes and then determine how we are going
to achieve and evaluate certain project characteristics. We must define the
project goals explicitly and quantitatively and use them to drive the process.

As it stands, the Improvement Paradigm is a generic process whose steps
need to be instantiated by various support mechanisms. It requires a
mechanism for defining operational goals and transforming them into
metrics (step 2a). It requires a mechanism for evaluating the measurement in
the context of the goals (step 4). It requires a mechanism for feedback and
learning (step 5). It requires a mechanism for storing experience so that it can
be reused on other projects (steps 1.2b). It requires automated support for all

3-6
10000174

Paradigms for experimentation and empirical studies 175

of these mechanisms. In the following sections, we discuss mechanisms that
can be used to support these activities.

3 THE GOAL/QUESTION/METRIC PARADIGM

The Goal/Question/Metric (GQM) Paradigm is a mechanism for defining
and evaluating a set of operational goals, using measurement on a specific
project (see Fig. 1). It represents a systematic approach for setting the project
goals tailored to the specific needs of an organization, defining them in an
operational, tractable way by refining them into a set of quantifiable
questions that in turn implies a specific set of metrics and data for collection.
It involves the planning of the experimental framework. It includes the
development of data collection mechanisms, e.g. forms, automated tools, the
collection and validation of data, and the analysis and interpretation of the
collected data and computed metrics in the appropriate context of the
questions and the original goals. In controlled experiments, the questions
can be viewed as hypotheses. As such they can be formulated to the degree of
formalization necessary for the experimental environment.

The process of setting goals and refining them into quantifiable questions
is complex and requires experience. In order to support this process, a set of
templates for setting goals, and a set of guidelines for deriving questions and
metrics has been developed.15 These templates and guidelines reflect our

Gl

Ml M2 M3 M4 M5 M6
Fig. 1. The goal,question metric paradigm. Goals = Gi. Questions = Qi. Metrics = Mi.

3-7
10000174

176 Victor R. Basili. Richard W. Selby

experience from having applied the GQM Paradigm in a variety of
environments.

Goals are defined in terms of purpose, perspective and environment.
Different sets of guidelines exist for defining product-related and process-
related questions. Product-related questions are formulated for the purpose
of defining the product (e.g. physical attributes, cost, changes and defects,
user context), defining the quality perspective of interest (e.g. functionality,
reliability, user friendliness), and providing feedback from the particular
quality perspective. Process-related questions are formulated for the
purpose of defining the process (e.g. process conformance. domain
conformance), defining the quality perspective of interest (e.g. reduction of
defects, cost effectiveness of use), and providing feedback from the particular
quality perspective.

The GQM Paradigm provides a mechanism for supporting step 2a of the
Improvement Paradigm, which requires a mechanism for defining
operational goals and transorming them into metrics that can be used for
characterization, evaluation, prediction and motivation. It supports step 3
by helping to define the experimental context and providing mechanisms for
the data collection, validation and analysis activities. It also supports steps 4
and 5 by providing quantitative feedback on the achievement of goals.

The GQM Paradigm was originally used to define and evaluate goals for a
particular set of projects in a particular environment, analyzing defects for a
set of projects in the NASA/GSFC environment.16 The application involved
a set of case study experiments.

In the context of the Improvement Paradigm, the use of the GQM
Paradigm is expanded. Now, we can use it for long range corporate goal
setting and evaluation. We can improve our evaluation of a project by
analyzing it in the context of several other projects. We can expand our level
of feedback and learning by defining the appropriate synthesis procedure for
lower-level into higher-level pieces of experience. As part of the
Improvement Paradigm we can lean more about the definition and
application of the GQM Paradigm in a formal way, just as we would learn
about any other experiences.

The GQM Paradigm was expanded to include various types of experi-
mental approaches including controlled experiments.14'17"20 This permits
us to mix various types of formal experiments with actual project develop-
ments, so we can increase our understanding in more formal ways.

4 THE EXPERIMENTATION FRAMEWORK PARADIGM

An Experimentation Framework Paradigm for software engineering
research is summarized in Fig. 2.18 This framework represents a refinement

3-8
10000174

Paradigms for experimentation and empirical studies Ml

I. Definition
Motivation

Understand
Assess
Manage
Engineer
Learn
Improve
Validate
Assure

Object
Product
Process
Model
Metric
Theory

Purpose
Characterize
Evaluate
Predict
Motivate

Perspective
Developer
Modifier
Maintainer
Project manager
Corporate manager
Customer
User
Researcher

Domain
Programmer
Program/project

Scope
Single project
Multi-project
Replicated project
Blocked subject-

project

II. Planning
Design

Experimental designs
Incomplete block
Completely randomized
Randomized block
Fractional factorial

Multivariate analysts
Correlation
Factor analysis
Regression

Statistical models
Non-parametric
Sampling

Criteria
Direct reflections of cost/quality

Cost
Errors
Changes
Reliability
Correctness

Indirect reflections of cost/quality
Data coupling
Information visibility
Programmer comprehension
Execution coverage
Size
Complexity

Measurement
Metric definition

Goal-question-metric
Factor-criteria-metric

Metric validation
Data collection

Automatability
Form design anc test

Objective vs. subjective
Level of measurement

Nominal/classificatory
Ordinal/ranking
Interval
Ratio

III. Operation
Preparation

Pilot study
Execution

Data collection
Data validation

Analysis
Quantitative vs. qualitative
Preliminary data analysis

Plots and histograms
Model assumptions

Primary data analysis
Model application

IV. Interpretation
Interpretation context

Statistical framework
Study purpose
Field of research

Extrapolation
Sample representativeness

Impact
Visibility
Replication
Application

Fig. 2. Summary of the experimenlaiion framework paradigm.

oftheGQM Paradigm for experimentation. As defined in Ref. 18. it consists
of four categories corresponding to phases of the experimentation process:
(I) definition, (II) planning. (Il l) operation, and (IV) interpretation. The
experiment definition phase is a formalization of the goal setting com-
ponents of the GQM Paradigm, which corresponds to step 2a in the
Improvement Paradigm. The experiment planning phase corresponds to the
components of the GQM Paradigm for choosing the experimental design,
the metrics, and the data collection forms (which also is part of step 2a in the
Improvement Paradigm). The experiment operation phase corresponds to
the analysis component of the GQM Paradigm and to the execution and
analysis steps of the Improvement Paradigm (steps 3 and 4). The experiment
interpretation phase corresponds to the interpretation component of the
GQM Paradigm and to the learning and feedback step of the Improvement
Paradigm (step 5). The following sections discuss the four phases of the
Experimentation Paradigm in greater detail.

3-9
10000174

178 Victor R. Basili, Richard W. Selby

4.1 Experiment definition

The first phase of the experimental process is the study definition phase. The
study definition phase contains six parts: (A) motivation, (B) object, (C)
purpose, (D) perspective, (E) domain and (F) scope. Most study definitions
contain each of the six parts; an example definition appears in Fig. 3.

There can be several motivations, objects, purposes, or perspectives in an
experimental study. For example, the motivation of a study may be to
understand, assess, or improve the effect of a certain technology. The 'object
of study' is the primary entity examined in a study. A study may examine the

Definition element Example

Motivation
Purpose
Object
Perspective
Domain: programmer
Domain: program
Scope

To improve the unit testing process.
characterize and evaluate
the processes of functional and structural testing
from the perspective of the developer
as they are applied by experienced programmers
to unit-size software
in a blocked subject-project study.

Fig. 3. Study definition example.

final software product, a development process (e.g. inspection process,
change process), a model (e.g. software reliability model), etc. The purpose of
a study may be to characterize the change in a system over time, to evaluate
the effectiveness of testing processes, to predict system development cost by
using a cost model, to motivate the validity of a theory by analyzing
empirical evidence, etc. (For clarification, the usage of the word 'motivate' as
a study purpose is distinct from the study 'motivation'.) In experimental
studies that examine 'software quality', the interpretation usually includes
correctness if it is from the perspective of a developer or reliability if it is from
the perspective of a customer. Studies that examine metrics for a given
project type from the perspective of the project manager may interest certain
project managers, while corporate managers may only be interested if the
metrics apply across several project types.

Two important domains that are considered in experimental studies of
software are (i) the individual programmers or programming teams (the
'teams') and (ii) the programs or projects (the 'projects'). Teams' are (possibly
single-person) groups that work separately, and 'projects' are separate
programs or problems on which teams work. Teams may be characterized
by experience, size, organization, etc.. and projects may be characterized by
size, complexity, application, etc. A general classification of the scopes of
experimental studies can be obtained by examining the sizes of these two
domains considered (see Fig. 4). Blocked subject-project studies examine

3-10
10000174

Paradigms for experimentation and empirical studies 179

#Teams per ^Projects
project

one

more than
one

one more than one

Single project

Replicated
project

Multi-project
variation

Blocked
subject-project

Fig. 4. Experimentaiion scopes.

one or more objects across a set of teams and a set of projects. Replicated
project studies examine object(s) across a set of teams and a single project,
while multi-project variation studies examine object(s) across a single team
and a set of projects. Single project studies examine object(s) on a single team
and a single project. As the representativeness of the samples examined and
the scope of examination increase, the wider-reaching a study's conclusions
become.

4.2 Experiment planning

The second phase of the experimental process is the study planning phase.
The following sections discuss aspects of the experiment planning phase: (A)
design. (B) criteria and (C) measurement.

The design of an experiment couples the study scope with analytical
methods and indicates the domain samples to be examined. Fractional
factorial or randomized block designs usually apply in blocked subject-
project studies, while completely randomized or incomplete block designs
usually apply in multi-project and replicated project studies.21-22

Multivariate analysis methods, including correlation, factor analysis and
regression,23"25 generally may be used across all experimental scopes.
Statistical models may be formulated and customized as appropriate.25

Non-parametric methods should be planned when only limited data may be
available or distributional assumptions may not be met.26 Sampling
techniques27 may be used to select representative programmers and
programs/projects to examine.

Different motivations, objects, purposes, perspectives, domains and
scopes require the examination of different criteria. Criteria that tend to be
direct reflections of cost and quality include cost.28 ~32 errors/changes.33 ~ 38

reliability39"46 and correctness.47"49 Criteria that tend to be indirect

3-11
10000174

180 Victor R. Basili, Richard W. Selby

reflections of cost and quality include data coupling,12-50"53 information
visibility,54'56 programmer understanding,57"60 execution coverage61"63

and size/complexity.64"66

The concrete manifestations of the cost and quality aspects examined in
the experiment are captured through measurement. Paradigms assist in the
metric definition process: the goal-question-metric paradigm17-67"69 and
the factor-criteria-metric paradigm.70'71 Once appropriate metrics have
been defined, they may be validated to show that they capture what is
intended.29-72"76 The data collection process includes developing auto-
mated collection schemes77 and designing and testing data collection
forms.67 '78 The required data may include both objective and subjective
data and differents levels of measurement: nominal (or classifacatory),
ordinal (or ranking), interval or ratio.26

4.3 Experment operation

The third phase of the experimental process is the study operation phase.
The operation of the experiment consists of (A) preparation, (B) execution
and (C) analysis. Before conducting the actual experiment, preparation may
include a pilot study to confirm the experimental scenario, help organize
experimental factors (e.g. subject expertise), or inoculate the sub-
jects.19-60-74-79"81 Experimenters collect and validate the defined data
during the execution of the study.35-73 The analysis of the data may include a
combination of quantitative and qualitative methods.82 The preliminary
screening of the data, probably using plots and histograms, usually proceeds
the formal data analysis. The process of analyzing the data requires the
investigation of any underlying assumptions (e.g. distributional) before the
application of the statistical models and tests.

4.4 Experiment interpretation

The fourth phase of the experimental process is the study interpretation
phase. The interpretation of the experiment consists of (A) interpretation
context. (B) extrapolation and (C) impact. The results of the data analysis
from a study are interpreted in a broadening series of contexts. These
contexts of interpretation are the statistical framework in which the result is
derived, the purpose of the particular study, and the knowledge in the field of
research.77 The representativeness of the sampling analyzed in a study
qualifies the extrapolation of the results to other environments.17 Several
follow-up activities contribute to the impact of a study: presenting/
publishing the results for feedback, replicating the experiment,21-22 and
actually applying the results by modifying methods for software
development, maintenance, management and research.

3-12
10000174

Paradigms for experimentation and empirical studies 181

5 THE CLASSIFICATION PARADIGM

As stated earlier the Improvement Paradigm needs to be instantiated at
further levels of detail and be automated whenever possible. One specific
approach that can be automated for product assessment is the Classification
Paradigm.83 The Classification Paradigm provides input for what data are
needed in the characterization phase of the Improvement Paradigm (step 1),
focuses on specific types of goals (step 2a in the Improvement Paradigm),
and automates the analysis based upon the specific product goals (step 4 in
the Improvement Paradigm).

The Classification Paradigm is motivated by the '80:20 rule'. According to
the rule, approximately 20% of a software system is responsible for 80% of
the errors, human effort, changes, etc. The Classification Paradigm casts this
phenomenon as a classification problem. Metric-based classification trees
are constructed to identify those software components that are likely to be in
the 'troublesome 20%' of the system. The classification trees are based on
measurable attributes of software components and are automatically
generated using data from past releases and projects. The trees provide a
basis for forecasting which components on a current or future project are
likely to share the same 'high-risk' properties. Examples of high-risk
properties include components likely to be error-prone, change-prone,
costly to develop, or contain errors in certain classes. Classification trees
help localize the components likely to have these properties, and therefore
enable developers to improve quality efficiently by focusing resources on
high-payoff areas. Classification trees are tailorable to each development
environment, using different metrics to classify different sets of components
in different environments.

The Classification Paradigm supports a particular type of goal
(corresponding to step 2a in the Improvement Paradigm), namely the
identification of components likely to have certain properties based on
historical data. The measurements used to characterize the components are
determined by the classification tree generation algorithms (step 1 in the
Improvement Paradigm). The metric data collected from the current project
is automatically analyzed by the classification trees (step 4 in the
Improvement Paradigm).

The classification trees use software metrics .to characterize the software
components. In other paradigms, metrics have primarily been used as
barometers of goodness or badness with respect to quality and cost. This
paradigm uses metrics to assess degrees of differentiation among software
components. A simple example of a hypothetical metric-based classification
tree is shown in Fig. 5. In the classification tree approach, the members of a
set of software 'objects' (e.g. modules, subsystems) are classified as being

3-13
10000174

182 Victor R. Basili, Richard W. Selbv

Nonreal-time

0-150 > 150

"+" = Classified as likely to have errors of type X

"—" = Classified as unlikely to have errors of type .Y

Fig. 5. Example (hypothetical) software metric classification tree. There is one metric at
each diamond-shaped decision node. Each decision outcome corresponds to a range of
possible metric values. Leaf nodes indicate whether or not an object is likely to have some

properly, such as high error-proneness or errors in a certain class.

inside or outside a 'target class' of objects. The objects inside and outside the
target class are called positive and negative instances, respectively. A
classification tree generation tool examines candidate metrics and recur-
sively formulates a classification tree to identify all positive instances but
no negative instances. The classification tree leaf nodes contain a probability
(e.g. a simple 'yes' or 'no') to indicate whether a component is likely to be in
the target class based on calibrations from previous releases and projects.
The resulting classification tree then becomes the basis for forecasting
whether an object, previously unseen, is a positive or negative instance.

An overview of the Classification Paradigm appears in Fig. 6. The
paradigm has been applied in two validation studies using data from
NASA83 and Hughes.84 The three central activities in the paradigm are: (i)

3-14

10000174

Paradigms for experimemation and empirical studies 183

Data Management
and

Calibration

Classification
Tree

Generation

Analysis
and

Feedback

Feedback

Fig. 6. Overview os classification tree approach.

data management and calibration, (ii) classification tree generation, and (iii)
analysis and feedback of newly acquired information to the current project.
Note that the process outlined in Fig. 6 is an iterative paradigm. The
automated nature of the classification tree approach allows classification
trees to be easily built and evaluated at many points in the lifecycle of an
evolving software project, providing frequent feedback concerning the state
of the software product.

5.1 Classification tree generation

This central activity focuses on the processes necessary to construct
classification trees and prepare for later analysis and feedback. During this
phase the target classes to be characterized by the trees are defined. Criteria
are established to differentiate between members and non-members of the
target classes. For example, a target class such as error-prone modules could
be defined as those modules whose total errors are in the upper 10% relative
to historical data. A list of metrics to be used as candidates for inclusion in
the classification trees is passed to the historical data retrieval process. A

3-15

10000174

184 Victor R. Basili, Richard W. Selby

common default metric list is all metrics for which data are available from
previous releases and projects.

Importantly, one must determine the remedial actions to apply to those
components identified as likely to be members of the target class. For
example, if a developer wants to identify components likely to contain a
particular type of error, then he should prescribe the application of testing or
analysis techniques that are designed to detect errors of that type. Another
example of a remedial plan is to consider redesign or reimplementation of
the components. It is important to develop these plans early in the process
rather than apply ad hoc decisions at a later stage.

Metric data from previous releases and projects as well as various
calibration parameters are fed into the classification tree generation
algorithms.83 The tree construction process develops characterizations of
components within and outside the target class based on measurable
attributes of past components in those categories. Classification trees may
incorporate metrics capturing component features and interrelationships, as
well as those capturing the process and environment in which the
components were constructed. Collection of the metrics used in the decision
nodes of the classification trees should begin for the components in the
current project. These data are stored for future use and passed, along with
the classification trees, to the analysis and feedback activity.

5.2 Data management and calibration

Data management and calibration activities concentrate on the retention
and manipulation of historical data as well as the tailoring of classification
tree parameters to the current development environment. The tree
generation parameters, such as the sensitivity of the tree termination criteria,
need to be calibrated to a particular environment. For further discussion of
generation parameters and examples of how to calibrate them, see Refs 83
and 84. Classification trees are built based on metric values for a group of
previously developed components, which is called a 'training set". Metric
values for the training set. as well as those for the current project, are
retained in a persistent storage manager.

5.3 Analysis and feedback

In this portion of the paradigm, the information resulting from the
classification tree application is leveraged by the development process. The
metric data collected for components in the current project are fed into the
classification trees to identify components likely to be in the target class. The
remedial plans developed earlier should now be applied to those targeted

3-16
10000174

Paradigms for experimentation and empirical studies 185

components. When the remedial plans are being applied, insights may result
regarding new target classes to identify and further fine tuning of the
generation parameters.

6 THE TAME PROJECT

The TAME project15'63 recognizes the need to characterize, integrate and
automate the various activities involved in instantiating the Improvement
Paradigm for use on projects. It delineates the steps performed by the project
and creates the idea of an experience base as the repository for what we have
learned during prior developments. It recognizes the need for constructive
and analytic activities and supports the tailoring of the software
development process.

The TAME system offers an architecture for a software engineering
environment that supports the goal generation, measurement and
evaluation activities (see Fig. 7). It is aimed at providing automated support
for managers and engineers to develop project specific goals and specify the
appropriate metrics needed for evaluation. It provides automated support
for the evaluation and feedback on a particular project in real-time as well as
help prepare for post mortem analyses.

The TAME project was initiated to understand how to automate as much
of the Improvement Paradigm as possible using whatever current
technology is available and to determine where research is needed. It
provides a vehicle for defining the concepts in the paradigm more rigorously.

A major goal for the TAME project is to create a corporate experience
base which incorporates historical information across all projects with
regard to project, product and process data, packaged in such a way that it
can be useful to future projects. This experience base would contain as a
minimum the historical database of collected data and interpreted results,
the collection of measured objects such as project documents, and collection
of measurement plans such as GQM models for various projects. It should
also contain combinations and syntheses of this information to support
future software development and maintenance.

TAME is an ambitious project. It is assumed it will evolve over time and
that we will learn a great deal from formalizing the various aspects of the
Improvement Paradigm as well as integrating the various subactivities. It
will result in a series of prototypes, the first of which is to build a simple
evaluation environment. Building the various evolving prototypes and
applying them in a variety of project environments should help us learn and
test out ideas.

TAME provides mechanisms for ins tant ia t ing the Improvement

3-17

10000174

186 Victor R. Basili. Richard W. Selbv

v^msks

rspeetiveX

struc-

tive

ana-

lytic

characteriiing

characterize

environment

planning

what '

set •

j, goals !
T*

. *^~

R(ecord) ,,

how

plan

for

construction

t 4-
plan

for

analysis

executing

construct

t 4-1 T — i
|— >

analyee

>t
U(se)

- product plans (e.g., design documentation standard,
programming language def., complexity model)

- process plans (e.g., life-cycle models, methods, tools,
measurement plans, measurement tools)

- products (e.g., requirements, design, measurement data)

- other process/product knowledge
(e.g., cost models, lessons learned)

EXPERIENCE BASE

Fig. 7. The TAME system.

Paradigm by providing an experience base to allow the storing of experience
so that it can be used on other projects (steps 1.2a), further defining the
various steps to be performed (steps 1.2,4. 5). and automating whatever is
possible.

7 CONCLUSION

Understanding the impact of software technologies is fundamental to the
advancement of software research and practice. This understanding has
suffered because of the lack of scientific assessment of their effect on software
development and maintenance. The paradigms described in this paper are
intended to help advance the use of measurement and empirical methods in
software engineering. They offer a form of the scientific method for
experimentation in the software domain. These paradigms have been used in
a variety of environments. They permit a mix of experimental designs.

3-18

10000174

Paradigms for experimentation ami empirical studies 187

ranging from case studies to blocked subject-project studies, to live under
the same framework. They provide mechanisms for integrating what has
been learned from various types of experiments to help create formal bases
of knowledge. They provide a framework for improving the experimental
process as well as our understanding of the nature of the object of study.

ACKNOWLEDGEMENTS

This work was supported in part by the National Aeronautics and Space
Administration under grant NSG-5123. and Insti tute for Advanced
Computer Studies of the Universi ty of Maryland (UM1ACS). Also
supported in part by the National Science Foundation under grant CCR-
8704311 wi th cooperation from the Defense Advanced Research Projects
Agency under Arpa order 6108. program code 7T10: National Aeronautics
and Space Administration under grant NSG-5123: and National Science
Foundation under grant DCR-8521398.

REFERENCES

1. Boehm. B. W.. Software engineering. IEEE Transactions on Computers. C-
25(12) (Dec. 1976) 1226-41. "

2. Zelkovvitz. M. V.. Yeh. R. T.. Hamlet. R. G.. Gannon. J. D. & Basiii. V. R..
Software engineering practices in the US and Japan. IEEE Computer. 17(6)
(J u n e 1984) 57-66.

3. Basiii. V. R. & Turner. A. J.. I te ra t ive enhancement: A practical technique for
software development. IEEE Transactions on Software Engineering. SE-114)
(Dec. 1975).

4. Boehm. B. W.. A spiral model of software development and enhancement. IEEE
Computer. 21(5) (May 1988) 61-72.

5. Mills. H. D., Dyer, M. & Linger. R. C. Cleanroom software engineering. IEEE
Software. 4(5) (Sept. 1987) 19-25.

6. Royce. W. W.. Managing the development of large software systems: Concepts
and techniques. Proc. WESCOS. Aug. 1970.

7. Basiii. V. R.. Data collection, validation, and analysis. In Tutorial on Moilelsaiul
Metrics for Software Management and Engineering. IEEE Computer Society.
New York. 1980. pp. 3IO-L3. IEEE Catalog No. EHO-167-7.

8. Boehm. B. W.. Brown. J. R. & Lipow. M.. Quant i ta t ive evaluation of software
qual i ty . Proc. Second Int. Conf. Software En^ng. IEEE. New York. 1976.
pp. 592-605.

9. Basiii. V. R.. Can we measure software technology: Lessons learned from 8 years
of tryina. Proc. Tenth Annual Software Engineering Workshop. N'ASA.GSFC.
Greenbelt. MD. 1985.

10. Basiii. V. R. & Weiss. D. M.. Evaluation of a software requirements document by
analysis of change data. Proc. Fifth Int. Conf. Software Engng. IEEE. New York.
198L pp. 314-23.

3-19

10000174

188 Victor R. Basili, Richard W. Selby

11. Rombach, H. D. & Basili. V. R., A quantitative assessment of software
maintenance: An industrial case study. Proc. Conf. Software Maintenance.
IEEE, New York, 1987.

12. Selby, R. W. & Basili. V. R.. Analyzing error-prone system coupling and
cohesion. Technical Report TR-88-46, Institute for Advanced Computer
Studies. University of Maryland. College Park. Maryland. June 1988.

13. Weiss, D. M. & Basili, V. R., Evaluating software development by analysis of
changes: Some data from the software engineering laboratory. IEEE
Transactions on Software Engineering, SE-1K2) (Feb. 1985) 157-68.

14. Basili. V. R., Quantitative evaluation of software engineering methodology.
Proc. First Pan Pacific Computer Conf., Melbourne, Australia. 10-13 September
1985. (Also available as Technical Report TR-1519. Department of Computer
Science, University of Maryland. College Park. July 1985.)

15. Basili. V. R. & Rombach, H. D.. The tame project: Towards improvement-
oriented software environments. IEEE Transactions on Software Engineering,
SE-14(6) (June 1988) 758-73.

16. Basili, V. R. & Weiss. D. M., A methodology for collecting valid software
engineering data. IEEE Transactions on Software Engineering, SE-10(6) (Nov.
1984) 728-38.

17. Basili. V. R. & Selby. R. W.. Data collection and analysis in software research
and management. Proceedings of the American Statistical Association and
Biometric Society Joint Statistical Meetings, Philadelphia, PA, 13-16 August
1984.

18. Basili, V. R., Selby, R. W. & Hutchens, D. H.. Experimentation in software
engineering. IEEE Transactions on Software Engineering, SE-12(7) (July 1986)
733-43.

19. Basili, V. R. & Selby, R. W., Comparing the effectiveness of software testing
stratesies. IEEE Transactions on Software Engineering, SE-13(12) (Dec. 1987)
1278-96.

20. Selby, R. W., Basili. V. R. & Baker. F, T., Cleanroom software development: An
empirical evaluation. IEEE Transactions on Software Engineering. SI-13(9)
(Sept. 1987) 1027-37.

21. Box, G. E. P.. Hunter, W. G. & Hunter, J. S.. Statistics for Experimenters. John
Wiley, New York, 1978.

22. Cochran. W. G. & Cox, G. M. Experimental Designs. John Wiley. New York,
1950.

23. Mulaik. S. A., The Foundations of Factor Analvsis. McGraw-Hill, New York,
1972.

24. Neter, J. & Wasserman. W., Applied Linear Statistical Models. Richard D.
Irwin, Inc., Homewood, IL, 1974.

25. SAS Institute, Statistical Analvsis System (SAS) User's Guide. Box 8000. Cary.
NC 27511. 1982.

26. Siegel, S.. Nonparametric Statistics for the Behavioural Sciences. McGraw-Hill.
New York. 1955.

27. Cochran. W. G.. Sampling Techniques. John Wiley. New York. 1953.
28. Wolverton, R.. The cost of developing large scale software. IEEE Transactions

on Computers. 23(6) (1974).
29. Walston. C. E. & Felix. C. P., A method of programming measurement and

estimation. IBM Systems Journal. 16(1) (1977) 54-73.

3-20
10000174

Paradigms for experimentation and empirical studies 189

30. Putnam, L., A general empirical solution to the macro software sizing and
estimating problem. IEEE Transactions on Software Engineering. SE-4(4)
(1978).

31. Bailey, J. W. & Basili. V. R., A meta-model for software development resource
expenditures. Proc. Fifth Int. Conf. Software Engng. San Diego. CA. 1981.
pp. 107-16.

32. Boehm. B. W., Software Engineering Economics. Prentice-Hall. Enelewood
Cliffs. NJ, 1981.

33. Endres, A. B.. An analysis of errors and their causes in software systems. IEEE
Transactions on software engineering, SE-1(2) (June 1975) 140-9.

34. Basili, V. R. & Weiss. D. M., Evaluation of a software requirements document
by analysis of change data. Proc. Fifth Int. Conf. Software Engng. San Dieco,
CA. 9-12 March 1981, pp. 314-23.

35. Weiss, D. M. & Basili, V. R., Evaluating software development by analysis of
changes: Some data from the software engineering laboratory. IEEE
Transactions on Software Engineering, SE-1K2) (Feb. 1985) 157-78.

36. Albin, J. L. & Ferreol, R., Collecte et analyse de mesures de logiciel (collection
and analysis of software data). Technique et Science Informatii/uex. 1(4| (1982)
297-313; Rairo ISSN 0752-4072.

37. Ostrand. T. J. & Weyuker. E. J., Collecting and categorizing software error data
in an industrial environment. Journal of Svstems ami Software. 4 (1984)
289-300.

38. Basili. V. R. & Perricone, B. T., Software errors and complexity: An empirical
investigation. Communications of the ACM. 27(1) (Jan. 1984) 42-52.

39. Currit, P. A., Dyer, M. & Mills. H. D., Certifying the reliabil i ty of software.
IEEE Transactions on Software Engineering. SE-12(I) (January 1986) 3-11.

40. Jelinski, Z. & Moranda. P. B., Applications of a probability-based model to a
code reading experiment. Proc. IEEE S\inpo.siiim on Computer Software
Reliability. New York, 1973, pp. 78-81.

41. Goel, A. L.. Software reliability and estimation techniques. Technical Report
RADC-TR-82-263, Rome Air Development Center. Griffiss Air Force Base.
NY. October 1982.

42. Littlewood. B., Stochastic reliability growth: A model for fau l t renovation
computer programs and hardware desiens. IEEE Transactions on Reliahilin: R-
30(4) (1981).

43. Littlewood, B. & Verrall. J. L., A Bayesian rel iabi l i ty growth model for
computer software. Applied Statistics. 22(3) (1973).

44. Musa. J. D.. A theory of software rel iabil i ty and its application. IEEE
Transactions on Software Engineering, SE-K3) (1975) 312-27.

45. Musa. J. D.. Software reliability measurement. Journal of Svstems and Software.
1(3)(1980)223-41.

46. Shanthikumar. J. G., A statistical time dependent error occurrence rate software
reliability model with imperfect de-bugging. Proc. 1981 National Computer
Conference. June 1981.

47. Floyd. R. W.. Assigning meaning to programs. Am. Math. Soc.. 19 (1967).
48. Hoare, C. A. R.. An axiomatic basis for computer programming. Communica-

tions of the ACM. 12(10) (Oct. 1969) 576-83.
49. Linger. R. C.. Mills. H. D. & Witt. B. I.. Structured Programming: Theory and

Practice. Addison-Weslev. Reading. MA. 1979.

3-21
10000174

190 Victor R. Basili, Richard W. Selby

50. Hutchens. D. H. & Basili, V. R., System structure analysis: Clustering with data
bindings. IEEE Transactions on Software Engineering, SE-11(8) (Aua. 1985)
749-57*!

51. Emerson. T.. A discriminant metric for module cohesion. Proc. Seventh Int.
Co/!/! Software Engng. IEEE. New York, 1984. pp. 294-303.

52. Stevens, W. P., Myers, G. J. & Constantine, L. L., Structured desien. IBM
Systems Journal. 13(2) (1974) 115-39.

53. Myers, G. J., Composite/Structured Design. Van Notrand Reinhold, New York,
1978. -

54. Parnas, D. L.. A technique for module specification with examples.
Communications of the ACM. 15 (May 1972).

55. Parnas. D. L.. On the criteria to be used in decomposing systems into modules.
Communications of the A CM. 15(12) (1972) 1053-8.

56. Gannon. J. D.. Katz. E. E. & Baisli. V. R.. Measures forada packages: An in i t ia l
study. Communications of the ACM, 20(7) (July 1986) 616-23.

57. Shneiderman. B.. Mayer. R. E.. McKay, D. & Heller, P., Experimental
investigations of the uti l i ty of detailed flowcharts in programming. Communica-
tions of the A CM. 20(6) ("l 977) 373-81.

58. Soloway. E., Ehrlich. K... Bonar, J. & Greenspan. J., What do novices know
about programming? In Directions in Human Computer Interactions, ed. A.
Badre & B. Shneiderman. Ablex. Inc.. 1982.

59. Weinberg. G.. The Psvchologv of Computer Programming. Van Nostrand
Rheinhold. New York.' 1971."

60. Weissman. L.. Psychological complexity of computer programs: An experi-
mental methodology. S1GPLAN Notices. 9(6) (June 1974) 25-36.

61. Stucki. L. G.. New directions in automated tools for improving software quali ty.
In Current Trends in Programming Methodology, ed. R. T. Yeh. Prentice Hall.
Englewood Cliffs. NJ. 1977.

62. Basili. V. R. & Ramsey. J. R.. Structural coverage of functional testing.
Technical Report TR-1442. University of Maryland. Department of Computer
Science. College Park. MD. Sept. 1984.

63. Basili. V. R. & Rombach, H. D.. Tailoring the software process to project goals
and environments. In Proc. Ninth Int. Conf. Software Engr. IEEE. New York.
1987. pp. 345-57.

64. Basili. V. R. & Hutchens. D. H.. An empirical study of a syntactic metric family.
IEEE Transactions on Software Engineering. SE-9(6) (Nov. 1983) 664-72.

65. Halstead. M. H.. Elements of Software Science. North Holland. New York.
1977.

66. McCabe. T. J,. A complexity measure. IEEE Transactions on Software
Engineering. SE-2(4) (Dec. 1976) 308-20.

67. Basili. V. R. & Weiss. D. M.. A methodology for collecting valid software
engineering data. IEEE Transactions on Software Engineering. SE-10(6) (Nov.
1984) 728-~38.

68. Basili. V. R. & Selby. R. W.. Four applications of a software data collection and
analysis methodology. Proc. NATO Advanced Study Institute: The Challenge of
Advanced Computing Technology to Svstem Design Methods. Durham. Ju ly
29-Aug. 10. 1985.

69. Selby. R. W.. Evaluations of software technologies: testing. CLEAN-ROOM,
and Metrics. PhD thesis. Department of Computer Science, University of
Marvland. College Park. 1985.

3-22
10000174

Paradigms for experimentation and empirical studies 191

70. Cavano, J. P. & McCall. J. A.. A framework for the measurement of software
quality. Proc. Software Quality and Assurance Workshop. San Dieeo. CA. Nov.

. 1978. pp. 133-9.'
71. McCall. J. A.. Richards. P. & Walters. G.. Factors in software quality. Technical

Report RADC-TR-77-369. Rome Air Development Center. Griffiss Air Force
Base. New York. Nov. 1977.

72. Basili; V. R.. Tutorial on Models and Metrics for Software Management and
Engineering. IEEE Computer Society. New York. 1980.

73. Basili. V. R.. Selby, R. W. & Phillips. T. Y.. Metric analysis and data validation
across FORTRAN projects. IEEE Transactions on Software Engineering. SE-
9(6) (Nov. 1983)652-63.

74. Curtis. B.. Sheppard. S. B. & Mil l iman. P. M.. Third time charm: stronger
replication of the abi l i ty of software complexity metrics to predict programmer
performance. Proc. Fourth Int. Conf. Software Engng. IEEE. New York. 1979.
pp. 356-60.

75. Feuer. A. R. & Fowlkes. E. B.. Some results from an empirical study of
computer software. In Fourth Int. Conf. Software Engng. IEEE. New York.
1979. pp. 351-5.

76. Zolnowski. J. C. & Simmons, D. B.. Taking the measure of program complexity.
Proc. National Computer Conference. 1981. pp. 329-36.

77. Basili. V. R. & Reiter. R. W.. A controlled experiment quant i ta t ively comparing
software development approaches. IEEE Transactions on Software Engineer-
ing. SE-7 (May 1981).

78. Basili. V. R.. Zelkowitz. M. V.. McGarry. F. E. Jr. Reiter. R. W.. Truszkowski.
W. F. & Weiss, D. L.. The software engineering laboratory. Technical Report
Rep. SEL-77-001. NASA/Goddard Space Flight Center. Greenbell. MD. May
1977.

79. Curtis. B.. Sheppard. S. B.. Mil l iman. P.. Borst. M. A. & Love. T.. Measuring the
psychological complexity of software maintenance tasks with the Halstead and
McCabe metrics. IEEE Transact ions on Software Engineering. SE-5(2) (March
1979)96-104. "

80. Hwang. S-S. V.. An empirical study in functional testing. Department of
Computer Science. Universi ty of Maryland. College Park. Scholarly Paper 362.
Dec. 1981.

81. Miara. R. J.. Musselman. J. A.. Navarro. J. A. & Shneiderman. B.. Program
indentation and comprehensibility. Communications of the ACM. 26(11) (Nov .
1983)861-7.

82. Bogdan. R. C. & Biklen. S. K.. Qualitative Research for Education: An
Introduction to Theory and Methods. 1982.

83. Selby. R. W. & Porter. A. A.. Learning from examples: Generation and
evaluation of decision trees for software resource analysis. IEEE Transactions
on Software Engineering. 14(12) (Dec. 1988) 1743-57.

84. Selby. R. W. & Porter. A. A.. Software metric classification trees for guiding the
maintenance of large-scale systems. Proc. Conf. Software Maintenance. IEEE.
New York. 1989 (to appear)'.

3-23

10000174

SECTION 4—ADA TECHNOLOGY STUDIES

The technical papers included in this section were originally prepared as indicated
below.

• "Object-Oriented Programming Through Type Extension in Ada 9X,"
E. Seidewitz,y4dfl Letters, March/April 1991

• "An Object-Oriented Approach to Parameterized Software in Ada,"
E. Seidewitz andM. Stark, Proceedings of the Eighth Washington Ada Sympo-
sium, June 1991

• "Designing Configurable Software: COMPASS Implementation Concepts,"
E. W. Booth and M. E. Stark, Proceedings ofTri-Ada 1991, October 1991

4-1
10000174

OBJECT-ORIENTED PROGRAMMING THROUGH TYPE EXTENSION
IN ADA 9X

Ed Seidewitz
NASA Goddard Space Flight Center

Code 552.2
Greenbelt MD 20771

(301)286-7631
<eseidewitz%gsfcmail@ames.arc.nasa.gov>

1. INTRODUCTION

There have been a number of proposals for extensions to Ada to make it a "true" object-
oriented programming language and there currently exist a number of object-oriented Ada
preprocessors (for example, Classic-Ada from Software Productivity Solutions and DRAGOON
from TXT). However, with the current Ada 9X effort there is s real possibility of adding
object-oriented features to the new standard. A number of the submitted Ada 9X revisions
requests asked for such features [Ada9X 89], and the draft Ada 9X requirements call out
inheritance and polymorphism as "study issues" for the Mapping/Revision team [Ada9X 90].

However, in all this discussion, it is often unclear why such features should be added to Ada. It
is important that Ada 9X not simply incorporate "object-orientation" because it is a currently
popular buzzword, and it is also important that any new language features fit smoothly into the
existing language "philosophy".

In this paper, I will indicate, through a simple running example, how the addition of object-
oriented features might indeed be useful in Ada, and how they might be added to the language
by building on existing Ada 83 features. This is presented in the hope that it will clarify some
of the issues, stimulate thought and show that such features can be incorporated into Ada
without doing violence to the current language design.

2. APPROACH

It has become accepted that Ada 83 is not really an "object-oriented programming language"
(see, for example, [Seidewitz 87] and [Meyer 88]). This is because Ada does not support the
features of inheritance, dynamic binding and polymorphism to the extent required of a "true"
object-oriented programming language. Nonetheless, "object-oriented design" (such as in
[Booch 88] and [Seidewitz 86]) is now widely accepted as the preferred approach to the design of
software to be written in Ada. This is because Ada does provide encapsulation and abstract
data types through the facilities of packages and private types, and traditional functionally-
oriented methods do not provide proper guidance on the use of these features.

Now, it would certainly be possible to add a new object-oriented "class" construct to Ada. This
is the approach taken by the preprocessor vendors. Proposals to introduce a "package type"
capability (by analogy with "task types") have the same basic effect. However, such a new
construct would strongly overlap the existing abstract data type capabilities provided by private
types. Further, it would not be consistent with the fundamental approaches to encapsulation
and typing taken in Ada 83.

4-3
10000174

PRECEDING PAGE BLANK NOT FILMED

In a typical object-oriented programming language, a class acts both as the type of a set of
objects and as a program module [Meyer 88]. Inheritance, dynamic binding and polymorphism
are provided through the type aspect of classes. Encapsulation and information hiding are
provided through the module aspect of classes. In Ada, however, type definition is separated
from program modularization (with the arguable exception of task types).

Object-oriented programming languages also generally require reference semantics [Meyer 88].
That is, names always contain pointers to objects, and two names may point to the same object.
Ada, .however, is based on value semantics, where each name contains an actual value and
assignment requires an implicit copy operation. Reference semantics may be introduced in an
Ada program only through explicit use of access types.

The approach I will take here is to provide basic object-oriented features by building on the
existing Ada typing and encapsulation systems instead of adding features that overlap with
them. I will use the Ada access type mechanism to introduce, reference semantics when
necessary for object-oriented extensions. In general, my approach is to add only those features
necessary to replace the typical work-arounds, such as "call-throughs" and "case-selections",
currently used when trying to program in an object-oriented style in Ada 83.

3. TYPE EXTENSION

Consider a simple monetary account data type expressed as a record with two fields, along with
some obvious operations:

package Finance is

type ACCOUNT_NUMBER is range 0..99999;
type MONEY is delta 0.01 range -1_000_000.0..1_000_000.0;

type ACCOUNT is
record

Identity : ACCOUNT_NUMBER;
Balance : MONEY;

end record;

procedure Deposit
(Into_Account: in out ACCOUNT; The_Amount: in MONEY);

procedure Withdraw
(From_Account: in out ACCOUNT; The_Amount: in MONEY);

function Current Balance (Of_Account: ACCOUNT)
return MONEY; ~

end Finance;

For the moment we will ignore issues of encapsulation and information hiding (we will return to
these issues in Section 5).

Now, there are different types of accounts which we may wish to keep distinct. We can derive
such types from the above ACCOUNT type:

4-4
10000174

with Finance;
package Bank is

type RATE is delta 0.0001 range 0.0..1.0;
type INTERVAL is new NATURAL;

type SAVINGS_ACCOUNT is new Finance.ACCOUNT;

function Interest Earned
(On_Account
At_Rate
Over_Time

return MONEY;

end Bank;

SAVINGS_ACCOUNT;
RATE;
INTERVAL)

The new SAVINGS_ACCOUNT type in effect "inherits" the ACCOUNT operations as derived
subprograms (note that these operations must be immediately defined in the visible part of a
package along with the type in order to be "derivable" [LRM 3.4]). In addition, we may define
new operations which apply solely to the SAVINGS_ACCOUNT type, such as the function
Interest_Earned, shown above.

Ada thus currently allows us to derive new types which inherit operations from their parent
types, and to which we may add new operations. However, suppose we wish to add the
appropriate interest rate as a field of the SAVINGS_ACCOUNT type, rather than as an argument to
the Interest_Earned function? This kind of incremental extension is an important part of
object-oriented approaches to design and programming.

Unfortunately, there is no easy way in Ada 83 to extend the Finance.ACCOUNT type with this
new field. We could redefine the SAVINGS_ACCOUNT type from scratch, but this seems wasteful,
since the new type is still mostly the same as the old one. Alternatively, we could define the
new type as: *

with Finance;
package Bank is

type RATE is delta 0.0001 range 0.0..1.0;
type INTERVAL is new NATURAL;

type SAVINGS_ACCOUNT is
record

Parent : Finance.ACCOUNT;
Interest_Rate : RATE;

end record;

procedure Deposit ...
procedure Withdraw ...
function Current_Balance ...
function Interest_Earned ...

end Bank;

However, we have now lost the automatic derivation of ACCOUNT operations. This forces us to
write "call-through" subprograms such as:

4-5
10000174

separate(Bank)
procedure Deposit

(Into_Account : in out SAVINGS_ACCOUNT;
The_Araount : in Finance.MONEY) is

begin
Finance.Deposit (Into_Account.Parent, The_Amount);

end Deposit;

Such call-through subprograms are mechanical to provide, but tedious to code and maintain
manually. A straightforward solution would be to provide for record type extension within Ada
(this is the approach taken by Wirth in his new language Oberon [Wirth 88a,b,c]). For reasons
which will become clearer as we go along, we will limit type extension to records explicitly
•declared as "extendible".

For example:

package Finance is

type ACCOUNT_NUMBER is range 0..99999;
type MONEY is delta 0.01 range -1_000_000.0..1_000_000.0;

type ACCOUNT (<>) is
record

Identity : ACCOUNT_NUMBER;
Balance : MONEY;

end record;

end Finance;

The syntax (which is not crucial to the discussion) is intended to indicate extension through
similarity to parametrized record types and unconstrained arrays.

The basic idea of type extension is simple. We can define the Deposit, W i t h d r a w and
Current.Balance operations on the extendible Finance.ACCOUNT type. We may then derive
new types which inherit these operations and which may also add new fields to the parent type.
For example:

4-6
10000174

with Finance;
package Bank is

type RATE is delta 0.0001 range 0.0..1.0;
type INTERVAL is new NATURAL;

type GENERAL_ACCOUNT is new Finance.ACCOUNT (null);

type SAVINGS_ACCOUNT is
new Finance.ACCOUNT (Interest_Rate: RATE);

type CHECKING_ACCOUNT is
new Finance.ACCOUNT
(Minimum_Balance : Finance.MONEY;
Service_Charge : Finance.MONEY);

end Bank;

Note how the list of new fields replaces the box <> in ACCOUNT" (<>) . The nu l l in the
definition of GENERAL_ACCOUNT indicates that no new fields are added. Note also that any of
the above types could have been themselves declared extendible by including (<>) in their
definition.

With the above definitions through type extension, derived versions of the ACCOUNT operations
are inherited by the new types. No new code need be written or generated for these derived
subprograms, since they can only refer to the common fields defined in ACCOUNT. We can then
add new operations to the derived types, such as the Interest_Earned function for
SAVINGS_ACCOUNT. We can redefine the basic ACCOUNT operations, for example by defining the
CHECKING_ACCOUNT Withdraw operation to charge a service fee if the account balance falls
below a minimum:

separate(Bank)
procedure Withdraw

(Froin_Account : in out CHECKING_ACCOUNT;
Thejtoiount : in Finance.MONEY) is

begin
Finance.Withdraw (Finance.ACCOUNT(From_Account), The_Amount);
if Finance.Current_Balance(Finance.ACCOUNT(From_Account))

< From_Account.Minimum_Balance then
Finance.Withdraw (Finance.ACCOUNT(From Account),

From_Account.Service_Charge);
end if;

end Withdraw;

Note the use of type conversion to allow use of the parent operations.

4. POLYMORPHISM AND DYNAMIC BINDING

Suppose that we wish to store in an array the set of all accounts belonging to a single bank
customer. Now, a customer may have an arbitrary number of accounts, each of which may be
either a general account, a savings account or a checking account. We thus need a supertype
which encompasses the union of all account types. Ignoring type extension for the moment, this

4-7

10000174

is currently done in Ada 83 using a variant record:

type ACCOUNTJTYPE Is (GENERAL, SAVINGS, CHECKING);
type ANY_ACCOUNT (Kind: ACCOUNTJTYPE := GENERAL) is

record
case ACCOUNT TYPE is

when GENERAL -> A_General_Account
when SAVINGS => A_Savings_Account
when CHECKING => A_Checking_Account

end case;
end record;

Bank.GENERAL_ACCOUNT;
Bank.SAVINGS_ACCOUNT.;
Bank.CHECKING ACCOUNT;

Note the use of a default discriminant value in the definition of ANY_ACCOUNT. This allows us
to define the required array type [LRM 3.7.2] as:

type CUSTOMER_ACCOUNTS is
array (POSITIVE range <>) of ANY_ACCOUNT;

However, this means that in the general case each element of a CUSTOMER_ACCOUNTS array may
have to be allocated space for the largest possible account record, in this case a
CHECKING_ACCOUNT (though some compilers may be able to provide smart optimizations in
special cases). For other variants, some space will be wasted. In this example, the wasted space
is not too large, but in many cases, where the sizes of a variants differ more widely, this waste
can be intolerable.

To avoid this, we could instead define a CUSTOMER_ACCOUNTS as an array of pointers to account
records:

type ACCOUNT_REFERENCE is access ANY_ACCOUNT;
type CUSTOMER_ACCOUNTS is

array (POSITIVE range <>) of ACCOUNT_REFERENCE;

Each record accessed through a CUSTOMER_ACCOUNTS array may now be dynamically allocated
just the right amount of space. Note also that the default discriminant value is no longer
useful, since it is illegal anyway to change the discriminant of a dynamically allocated record
[LRM 4.8]. Thus we could just as well define the type ANY_ACCOUNT without the default

type ANY_ACCOUNT (Kind: ACCOUNT_TYPE) is ...

In this case, the original definition of CUSTOMER_ACCOUNTS would be illegal, and the use of an
access type would be required to construct a CUSTOMER_ACCOUNTS array [LRM 3.7.2].

The A N Y _ A C C O U N T variant allows us to define a'n effectively heterogeneous list such as
CUSTOMER_ACCOUNTS, but all our operations are still defined on individual account types. Thus,
to operate on any element of CUSTOMER_ACCOUNTS we must branch on the discriminant Kind to
select the appropriate operation. This burden can be reduced somewhat by collecting such case
selections into operations on the variant type ANY_ACCOUNT. For example:

4-8
10000174

procedure Deposit
(Into_Account : in out ANY_ACCOUNT;

The_Amount : in Finance.MONEY) is
begin

case Into_Account.Kind is
when GENERAL =>

Bank.Deposit (Into Account.A_General_Account, The_Amount);
when SAVINGS => .

Bank.Deposit (Into_Account.A_Savings_Account, The_Amount);
when CHECKING =>

Bank.Deposit (Into_Account.A_Checking_Account, The_Amount);
end case;

end Deposit;

As with call-through subprograms, such case-selection subprograms are mechanical to write, but
tedious to code and maintain. The definition of the account types as extensions of ACCOUNT in
the last section does not solve this problem. The new types were defined there as derived types,
and thus are all distinct (though mutually convertible) types. What we really want now is for,
e.g., S A V I N G S _ A C C O U N T to be a subtype of A C C O U N T , in the same way tha t
ANY_ACCOUNT(SAVINGS) is a subtype of ANY_ACCOUNT. The following definitions are consistent
with the type extension notation of the last section: ° •

with Finance;
package Bank is

type RATE is delta 0.0001 range 0.0..1.0;
type INTERVAL is new NATURAL;

subtype GENERAL_ACCOUNT is Finance.ACCOUNT(null);

subtype SAVINGS_ACCOUNT is
Finance.ACCOUNT(Interest_Rate: RATE);

subtype CHECKING_ACCOUNT is
Finance.ACCOUNT
(Minimum_Balance : Finance.MONEY;
Service_Charge : Finance.MONEY);

function Interest Earned
(On_Account
At_Rate
Over_Time

return MONEY;

SAVINGS_ACCOUNT;
RATE;
INTERVAL)

procedure Withdraw
(From_Account : in out CHECKING_ACCOUNT;
The_Amount : in Finance.MONEY);

end Bank;

Just as in the case of an unconstrained variant record, it is now impossible to predict ahead of
time what the size of a value of type ACCOUNT will be. Thus, ACCOUNT must be considered an
unconstrained type. This is why extendible records must be explicitly declared as such.
Extendible records are unconstrained and cannot be used directly in variable declarations.
However, extensions which are not themselves extendible (such as the above account types,

4-9
10000174

including the nul 1 extension) are constrained and may be used in variable declarations.

Following the rules for unconstrained types, an extendible type cannot be used directly in an
array definition or record field definition, but it can be used in an access type definition or in
the declaration of a subprogram parameter. Thus we can define a CUSTOMER_ACCOUNTS array
type similarly to the case of an unconstrained variant record without discriminant defaults:

type ACCOUNT_REFERENCE Is access Finance.ACCOUNT;
type CUSTOMER_ACCOUNTS is

array (POSITIVE range <>) of ACCOUNT_REFERENCE;

Each component of a CUSTOMER_ACCOUNTS array may now point to a value of any subtype of
ACCOUNT, just as we want.

The ACCOUNT operations Deposit, Withdraw and Current_Balance are still defined exactly as
in the last section. However, now they may be considered polymorphic. That is, rather than
conceptually haying multiple, overloaded, derived Deposit subprograms, one single Deposit
subprogram may act on values of any ACCOUNT subtype, and similarly for other operations.
Thus, it is possible to make a Deposit call on an element of CUSTOMER_ACCOUNTS without any
need to define a case-selection or any other additional subprogram:

Deposit (Fred_Accounts(3).all, 100.00);

where Fred_Accounts(3).a l1 may be a GENERAL_ACCOUNT, SAVINGS_ACCOUNT or
CHECKING_ACCOUNT.

As in the last section, we have defined two new subprograms in the Bank package. The
function B a n k . I n t e r e s t _ E a r n e d is a new operation restricted to the subtype
SAVINGS ACCOUNT. The procedure Bank.Withdraw is a redefinition of the Withdraw operation
for the subtype CHECKING_ACCOUNT. Any value of type ACCOUNT may be passed to these
subprograms, but if that value is not of the appropriate subtype, then Constraint_Error will
be raised at run time. Thus, for .example, we must be careful to use Finance. Wi thdraw for
values of subtypes GENERAL_ACCOUNT and SAVINGS_ACCOUNT, but to use Bank.Withdraw for
values of subtype CHECKING_ACCOUNT. If, on the other hand, we attempt to make both
Withdraw operations directly visible (say through a use F inance ,Bank ; clause), than an
unqualified (or unrenamed) call to Withdraw will be ambiguous and therefore illegal, since
overloading resolution does not consider the subtypes of parameters (LRM 8.7]. This is because
Ada 83 requires static binding of subprograms to subprogram calls.

Static binding means that it is possible to determine at compile time exactly what subprogram
will be called at each call statement. However, it is not possible to resolve at compile time a
call to the overloaded Wi thdraw procedures based solely on the subtype of an argument,
because the subtype of a value can in general only be determined at run time. Note that this
was not an issue when CHECKING_ACCOUNT was a derived type of ACCOUNT, as in the last
section, because arguments of a derived type are distinguishable at compile time from arguments
of the parent type.

Thus, in Ada 83 we must explicitly check the subtype of an ACCOUNT before making a qualified
call to either F inance .Wi thdraw or Bank.Withdraw. However, this means that a general
method of handling withdrawals from any of the accounts in a CUSTOMER_ACCOUNTS array once
again requires the introduction of case statements or case-selection subprograms. To avoid this,
we need to allow dynamic overloading of operations of subtypes of extendible types. With the
appropriate definitions of Bank.Withdraw for CHECKING_ACCOUNT and Finance.Withdraw for
other subtypes of ACCOUNT, the following is dynamically botaid:

4-10
10000174

Withdraw (Fred_Accounts(3).all, 100.00);

Instead of an explicit case selection on the subtype of Fred_Accounts(3) .all, this call will
implicitly and dynamically select the appropriate Withdraw subprogram for the subtype (the
parent operation Finance.Withdraw if GENERAL_ACCOUNT or SAVINGS_ACCOUNT, the redefined
operation B a n k . W i t h d r a w if CHECKING_ACCOUNT). This is truly dynamic, since, through
reassignment, Fred_Accounts(3) may point to values of different subtypes of ACCOUNT at
different times (assuming Fred_Accounts is a variable, not a constant).

5. ENCAPSULATION

Rather than defining ACCOUNT as a visible record type, it would be better to define it as a
private type, and hide the type representation. To maintain ACCOUNT as an extendible type,
however, it must still be declared as such:

package Finance is

type MONEY is delta 0.01;
type ACCOUNT (<>) is private;

private

type ACCOUNT (<>) is
record

Identity : ACCOUNT_NUMBER;
Balance : MONEY;

end record;

end Finance;

This is similar to including a discriminant in a private type definition.

Now, we could define a SAVINGS_ACCOUNT private type through type extension, but currently
Ada requires private types to be new types, not subtypes [LRM 7.4.1]:

4-11

10000174

with Finance;
package Bank is

type RATE is delta 0.0001 range 0.0..1.0;
type INTERVAL is new NATURAL;

type SAVINGS_ACCOUNT is private;

procedure Initialize ...
procedure Deposit ...
procedure Withdraw ...
function Current_Balance ...
function Interest_Earned ...

private

type SAVINGS_ACCOUNT is
new Finance.ACCOUNT(Interest_Rate: RATE);

end Savings;

Type extension has simply been used here as a convenient way to implement the new private
type. Outside the body of package Bank, all connection between SAVINGS_ACCOUNT and
ACCOUNT has been lost. This is why all ACCOUNT operations needed to be redeclared in package
Bank above.

Retaining the benefits of polymorphism and dynamic binding along with encapsulation requires
the introduction of a "private extension" mechanism:

with Finance;
package Bank is

type RATE is delta 0.0001 range 0.0..1.0;
type INTERVAL is new NATURAL;

subtype SAVINGS_ACCOUNT is Finance.ACCOUNT(private);

procedure Initialize ... '
function Interest_Earned ...

private

subtype SAVINGS_ACCOUNT is
Finance.ACCOUNT(Interest_Rate: RATE);

end Bank;

The new type SAVINGS_ACCOUNT is now a subtype of ACCOUNT, just as before. Thus all
operations on ACCOUNT immediately apply to SAVINGS_ACCOUNT, and only new or modified
operations (such as Interest_Earned) need to be declared in the package specification.
However, note that the representation of ACCOUNT is not visible within the body of package
Bank. Thus, unlike most object-oriented programming languages, the supertype ACCOUNT
presents the same interface to subtypes such as SAVINGS_ACCOUNT as to any other "client" (see
also [Snyder 861).

4-12

10000174

6. CONCLUSION

The combination of a package defining an extendible private type or subtype corresponds to the
usual object-oriented concept of a class. There are, of course, a number of additional issues
which I have not addressed at all in this paper. These include (at least):

o The definition of "virtual" or "deferred" subprograms declared as operations of a
supertype, but with bodies defined only for subtypes.

o The interaction of object-oriented features with the Ada concepts of block
structured scoping, generics and tasking.

o The question of whether, to allow dynamically bound subtype operations on
supertype variables, raising Constraint_Error (or some other exception) at
run-time if the operation is not possible.

Such issues must be resolved in any complete design for object-oriented features in Ada.
However, they do not strongly impact on the basic discussion of whether not to include object-
oriented features in Ada at all.

I personally think that inclusion of some object-oriented features in Ada 9X is crucial. I th ink
it is valid to worry that lack of such features will make Ada less attractive relative to other
languages (such as C++ [Stroustrop 86]). However, features should not be included in Ada 9X
simply because they are popular elsewhere. Rather, we need to understand why these other
languages are popular and whether they satisfy needs which could and should be satisfied by
Ada 9X.

REFERENCES

[Ada9X 89]
Ada 9X Project, Revision Request Report, Office of the Under Secretary of Defense
for Acquisition, August 1989

[Ada9X 90]
Ada 9X Project, Draft Ada 9X Requirements Document (Version 3.3), Office of the
Under Secretary of Defense for Acquisition, August 1990

[Booch 88]
Grady Booch, Software Engineering with Ada (2nd Edition), Benjamin-Cummings ,
1988

[LRM]
Department of Defense, Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A-1983, February 1983

[Meyer 88]
Bertrand Meyer, Object-Oriented Software Construction, Prentice-Hall, 1988

[Seidewitz 87]
Ed Seidewitz, ' "Object-Oriented Programming in Smalltalk and Ada" in
Proceedings of the ACM Conference on Object-Oriented Programming. Systems. Languages and
Applications, SICPLAN Notices, December 1987

4-13
10000174

[Seidewitz 86]
Ed Seidewitz and Mike Stark, General Object-Oriented Software Development,
Goddard Space Right Center, SEL-86-002, August 1986

[Snyder 86]
Alan Snyder, "Encapsulation and Inheritance in Object-Oriented Programming
Languages* in Proceedings of the ACM Conference on Object-Oriented Programming, Systems,
Languages and Applications, SICPLAN Notices, November 1986

[Stroustrop 86]
Bjarne Stroustrop, The C++ Programming Language, Addison-Wesley, 1986

[Wirth 88a]
N. Wirth, "Type Extensions", ACM Transactions on Programming Languages and Systems, April
1988

[Wirth 88b] •
N. Wirth, "From Modula to Oberon", Software Practice and Experience, July 1988

[Wirth 88c]
N. Wirth, "The Programming Language Oberon", Software Practice and Experience, July 1988

4-14

10000174

AN OBJECT-ORIENTED APPROACH TO PARAMETERIZED SOFTWARE IN ADA
Eighth Washington Ada Symposium, June, 1991

Ed Seidewia and Mike Stark

Flight Dynamics Division
Code 552

Goddard Space Flight Center
Greenbelt MD 20771

(301)286-7631

1. INTRODUCTION

A parameterized software system is one that can be
configured by selecting generalized models and providing
specific parameter values to fit those models into a general
design [Suric 1990]. This is in contrast to the top-down
development approach where a system is designed first,
and software is reused only when it fits into the design.
The concept of parameterized software is particularly
useful in a development environment such as the Goddard
Space Flight Center Flight Dynamics Division (FDD),
where successive systems have similar characteristics.

1.1 Parameterized Systems

Rather than being a monolithic piece of code, a
parameterized system instead consists of a library of
components which can be interconnected in both standard
and novel ways. A configuration process produces a
program for a specific application task from a
parameterized system. This process involves the selection
of appropriate components, their interconnection according
to a standard architecture and the provision of values for
relevant parameters. The configuration process replaces
the normal development cycle for the program.

The packaging and generic features of the Ada
language are particularly useful in creating the components
of such a parameterized system. Ada packages allow
tightly coupled data and functionality to be grouped
together in a single component, while generics allow these
components to be completely decoupled from other
components. While parametrizing all the external
dependencies of a component through generic parameters

may seem extreme, it both allows the component to be
defined in a completely stand-alone manner and
interconnected with other components in flexible ways.

What we term parameterized systems are thus seen to
be the kind of software which tends to evoke analogies
with hardware. That is, the components of a parameterized
system are analogous- to standard hardware components
with well defined interfaces which may be interconnected
in various architectures. Achieving such a way of doing
business in software development has been an extremely
attractive, but so far mostly elusive, goal.

While there are a number of difficulties with achieving
true parameterized software systems, perhaps the biggest
problem is in constructing truly generalized components.
Except in the simplest cases (such as standard data
structures) it seems to be impossible to design the
packaging and parametrization of a component a priori to
any understanding of how that component might be
applied. Thus, there is an increasing realization of the need
for the design of components to be based on an analysis of
the domain in which the component will be used
(Prieto-DUz 1990]. For example, a domain analysis approach
was used to identify components for the Common Ada
Missile Packages (CAMP) project [CAMP 1990). In fact, we
consider domain analysis to be exactly the process of
specifying a parameterized software system, in much the
same way that system analysis is the process of specifying
a more traditional software system.

Currently, the FDD at Goddard has plans to develop a
parameterized system known as the Combined Operational
Mission Planning and Attitude Support System
(COMPASS) [DeFazioa«l.l99i]. The specification and
implementation approaches planned for COMPASS arc
based on previous methodology work in the FDD and
experience with reusable Ada simulator components
[Booth and SuiV 1989]. However, COMPASS is considerably
larger in size and scope than any other A'da system
developed in the FDD. Indeed, rather than specifying

4-15

10000174

COMPASS in terms of a single domain, we have found it
necessary to consider COMPASS to cover three related
domains, two application domains and a supporting core
domain. The Ada code developed for these domains is
expected to be on the order of 1 million lines (measured as
terminal semicolons).

1.2 Overview ;

In this paper we present an overview of the
specification and implementation approaches being used
for COMPASS. While these approaches have been
developed specifically for COMPASS, we feel that they
can also provide a basis for more general methods for
developing parameterized software. In the following
sections we highlight the object-oriented nature of our
approach and how we have adapted object-oriented
concepts and techniques for COMPASS.

The domain analysis approach used for COMPASS
has evolved out of work over the past two years in the
Attitude Support application domain. The resulting
specification concepts, discussed in Section 2, are strongly
object-oriented (Seidewitz « ai. 199!]. The object-oriented
paradigm allows both the precise definition of required
domain functionality and clear classification of that
functionality. Classification is extremely important for
organizing a problem domain and is also key to
generalizing the specifications.

Another crucial benefit of the object-oriented approach
is that the components of a parameterized system may be
identified with a class specified during domain analysis.
Thus the implementation approach for COMPASS,
discussed in Section 3, uses Ada packages to implement
classes [Booth «nd Su* 1991]. We note two important
consequences of the use of Ada as -our implementation
language. First, our object-oriented specifications
explicitly show the dependencies between classes. This is
necessary to build a comprehensible "map" of the problem
domain. However, as we stated earlier, our goal is to use
Ada genetics to completely parametrize all dependencies
between components. Thus, instead of directly reflecting
specified dependencies in the implemented components,
the explicit dependencies in the specifications are used to
identify the generic parameters for the implemented
components.

The second consequence results from the lack of "full"
object-oriented programming features in Ada: the Ada
typing system cannot directly accommodate the object-
oriented superclass/subclass hierarchy (see also the
discussion in (Seidewitz 1987] and (Seidewiui99il). Rather
than trying to closely simulate this hierarchy in some way

in the Ada components, we have simply chosen to not
implement superclasses as generalized components.
Instead, categories can be generated in a straightforward
way during the configuration process (Booth and Sunk 1991].

2. SPECIFICATION APPROACH

Domain analysis is largely a process of understanding
an application domain and then documenting that
understanding in a clear, formal manner. To gain an
understanding of an application domain, the domain
analyst must first learn the fundamental terms and concepts
of the domain. These concepts provide the basic
vocabulary which may then be used to document the
detailed functionality of the domain. This vocabulary is
built based on an analysis of existing systems, future
requirements and the knowledge of domain experts.

One of the COMPASS application domains involves
ground operations to support the determination and control
of the orientation (or- attitude) of a spacecraft A major
area of this domain is driven by the processing of sensor
data received from the spacecraft. Thus the concepts of
sensor and measurement are crucial for understanding the
domain. Further, there are several different types of
sensors which may be on board a spacecraft, such as sun
sensors, star trackers and horizon scanners. The
processing of measurements from these sensors requires
mathematical models of the sensors. These models in turn
require models of the environment such as star map, sun
ephemeris, and horizon radiance.

An object-oriented approach is very natural for
formalizing an analysis such as this (see also
[Shlaer and Mellor 1988; Coad and Youidon 1991]). For OUT

purposes, an object is a model of a specific concept in the
application domain. This model includes both attributive
data (or data parameters) that describe the object and
operational functionality (provided by a set of functions)
that specifies appropriate processing. Note that this is the
key concept of the object-oriented approach: appropriate
data are packaged together with all associated functionality
to specify an object in the application domain.

2.1 Classes

A doss is a group of objects specified together. All
objects in a class share the same specifications of data and
functionality. This class specification is effectively a
"template" for individual objects of the class. For
example, an individual star tracker is modeled as an object.
The set of all star tracker objects is grouped together into a
single class. While each star tracker object remains
distinct, they all share a common specification model (each

4-16
10000174

star tracker "works the same" as the others). Internal Data

All objects of the same class thus have the same kinds
of data parameters, and each parameter has a well-defined
type which specifies its possible values. Each individual
object of a class has specific values for each parameter
within the appropriate types, though these values may vary
over time.

In the COMPASS specification approach, an object
may have any of the following three types of parameters:

• Configuration parameters are used to specialize a
general algorithm to a particular mission These
parameters are set during the configuration process,
and do not change during the normal operation of a
configured program.

• Operation parameters have values supplied by the
user. The user can set and change these parameters
during normal use of a configured program.

Internal data defines the current "state" of the object
This state may evolve over time according to the
specification of the processing associated with the
object (These parameters correspond to instance
variables in object-oriented programming
terminology.)

For example, consider a simple Star Tracker class.
The following is pan of the specification for this class
giving examples of each of the above types of parameters:

Class Star Tracker

Configuration Parameters

Name Type
Radians

Description
The nominal alignment angles
of the sensor as mounted on the
spacecraft body

Operation Parameters

Name Type Description
b Unitless (3x1) Measurement bias correction

Name Type
H Unitless

Unitless

Description
Horizontal position in the field
of view of the current star being
tracked

Vertical position in field of view
of the current star being tracked

At any one point in time, a specific star tracker has
specific values for each of these parameters. How these
values may vary over time is different for each type of data
parameter. In this example, the alignment of each star
tracker object would be set when the parameterized system
is configured for a specific use (at configuration time).
However, the user could set specific bias corrections for
each star tracker (at run time). Finally, the values of the
internal data evolve as specified by the internal processing
associated with a star tracker, such as the response to
commands and requests for measurements.

Objects can also be more abstract For instance, an
Analytical Orbit class might specify elements of the orbit
as operation parameters and maintain the position and
velocity of a spacecraft as internal data. An Estimator
might have configuration parameters indicating what is to
be estimated and maintain the current estimation state error
as internal data.

Classes provide a delineation and description of
objects in the application domain. This structure also
provides a natural framework for specifying the
functionality required in the application domain. To do
this, each class has an associated set of functions that
specify the processing required for each object in that class.
For example, a Star Tracker class might have functions
that simulate the operation of a SUIT tracker.

The specification of a class includes detailed
specifications for each function associated with the class.
Each function belongs to one of two groups. Constructor
functions act as commands to an object to initiate some
processing. This processing may involve alteration of
internal data and or interaction with other objects. For
example. Star Tracker constructors might include functions
to Enable the sensor and Break Track of the current star.

Selector functions, on the other hand, do not alter
internal data. Selectors simply respond to requests for an
object to provide a result based on internal data. For
example, the Star Tracker class could have a selector to
provide a Measurement based on internal data on the

4-17

10000174

currently tracked star.

We observe the convention that functions must be
either constructors or selectors, but not both. That is, a
function may not both alter internal data and provide a
result based on that data. This convention helps make class
specifications less complicated, more easily understood,
and less likely to be overspecified.

The sole means for object interaction is for one object
to request the processing specified in a function of another
object. Such a request is a message that passes from the
sending object to the receiving object This message
includes the name of the requested function and any
required function arguments. In the case of a selector, the
receiving object responds with an appropriate result.

One class depends on another if objects of the-first
class send messages to objects of the second class.
Dependencies model the relationships between application
domain concepts. Thus, a star tracker object would depend
on a star map object, while a sun sensor object would
depend on a sun model.

2.2 Categories

Since parameterized software must be highly
generalized, its specification will include a large number of
different classes. These classes must be organized in a
manner which follows the conceptual hierarchy of the
application domain. For example, the Star Tracker class is
a subclass of a more general Sensor class. This Sensor
superclass would also include such classes as Sun Sensor
and Horizon Scanner.

In general, superclasses may themselves be subclasses
of yet more general classes. However, in COMPASS we
have found it sufficient to limit ourselves to a shallow two-
level hierarchy. We refer to superclasses as categories and
every class must belong to a category, even if it is
(initially) the only member of its category.

In the general object-oriented approach, a superclasses
also provides specifications of data and functionality which
may be inherited by its subclasses. This provides a
mechanism for factoring out common properties of
subclasses so they do not have to be repeatedly respecified.
Rather surprisingly, we .have not found this to be a
particularly important mechanism so far for COMPASS
specifications. Instead, a COMPASS category simply
specifies a common functional interface for its member
classes. That is, all objects of any class in a category must
respond to a common set of messages, although they will
generally respond in different ways. (In object-oriented

programming terms, categories are abstract superclasses.)
For example, all Sensor classes must have a Measurement
selector, but the Star Tracker class would specify different
processing for this function than the Sun Sensor class.

The specification of a category includes a list of
messages accepted by objects of every class in that
category. For example, the following is a simplified
specification for the Sensor category:

Category Sensor

Constructors

Message
Initialize

Argument
S

PowerJDn S

Power_Off S

Simulate S

Output

Selectors

Argument/
Message Response
Measurement S

Description
Initialize sensor S

Turn on sensor S

Turn off sensor S

Simulate sensor S
observations at
timet

Store the current
measurement of
sensor S into the
data base

Type Description
Sensor v is the current

measurement

Type
Sensor

Sensor

Sensor

Sensor

Seconds

Sensor

Real (3x1) for sensor S

The specification of each class in a category must
include specifications for all functions necessary to
respond to the messages listed for the category. This
makes the classes in the category largely interchangeable
from the point of view of other classes, as required for
reconfiguration. However, sometimes a class will have
functionality that is not readily generalized to other classes
in its category. For example, the Star Tracker constructors
Set Track and Break Track would not readily generalize to
other Sensor classes. Thus, while each class must specify
at least all functions required for its category, it may also
specify additional functions unique to that class.

4-18
10000174

Generally, it is better for a class to depend on a
category rather than specific classes within a category. For
example, consider an Estimator class that specifies objects
for estimating parameters of interest based on sensor data.
Such an estimation technique may be generalized to only
depend on functionality defined in the general class Sensor,
not on the particulars of any subclass. Thus, such a
specification is valid for any spacecraft, no matter what its
specific complement of on-board sensors. This is the
motivation for making all classes in a category "look the
same" to other classes.

2.3 Subsystems

To organize the specifications for a large application
domain, we divide the domain into groups of categories
called subsystems. A subsystem contains all categories
necessary to specify the functionality in a specific high-
level area of processing. The goal is to group together
categories containing classes that are operationally often
needed together and are interdependent on each other.
COMPASS subsystems are similar in some respects to
"subjects" in (Coad and Yourdon 1991).

The formalization of dependencies provides a "map"
of each subsystem in an application domain. This map
may be presented graphically in a dependency diagram
(which are comparable to the diagrams used in
(Coad and Yourdon 1991: SUaer and Mellor 1988]). Figure 1 shows

a dependency diagram for an extremely simplified version
of the COMPASS Estimation subsystem, which deals with
parameter estimation. In this diagram, arrows represent
dependencies between classes. To simplify (he diagram,
dependencies that are common to a number of classes or an
entire category are shown by grouping the classes.
Diagrams such as this, along with full textual specifications
of each category and class, provide the formal specification
of the application domain.

The Estimation subsystem shown in Figure 1 is an
example -of an application subsystem. An application
subsystem specifies a major area of functionality in a
specific COMPASS application domain. Further, each
application subsystem has an associated set of actions. The
actions of a subsystem are analogous, at a higher level, to
the functions of an object Actions identify the higher-
level capabilities of the subsystem as a whole. The action
specification shows 'what messages are sent to initiate the
processing required for each capability.

Actions also provide the basis for specifying
interaction with the user of a configured program. They
define the smallest processing steps of direct interest to a
user. The user may select from a specific set of actions at

category

classes

one-to-many
dependency

Sun

Star Map

Earth

category from a
core subsystem

Sensor

Sun Sensor

Star Tracker

Horizon Scanned

Figure 1 Dependency Diagram for the Estimation
Subsystem

specified decision points. Actions act as "buttons" that,
when pressed, initiate some activity by a subsystem and
cause a transition to a new decision point. Thus, a dialog
with the user may be specified using a state transition
formalism. This formalism is used to specify a number of
possible drivers for each application subsystem.

A second type of subsystem is a core subsystem. A
core subsytem is a pan of the specification for the common
core software on which all COMPASS application
software may be built. Core subsystems do not have
actions and drivers. Instead, they provide functionality
available to all application subsystems, while application
subsystems are specific to certain application domains
(this is somewhat akin to the domain hierarchies discussed
in [Pricto-Diaz 1990]). The Spacecraft Model subsystem
shown in Figure 2 is an example of a core subsystem.

The Spacecraft Structure category in Figure 2 is also
an example of the specification of aggregate objects. In
this example, the physical structure of a spacecraft is
composed of a main body with a number of other
components attached to it. These structural components
are objects with their own attributes and functionality (e.g.,
it may be possible to command them to move relative to
the spacecraft body).

4-19

10000174

Spacecraft Structure

Fixed Properties

1 Multi-Component j
\
\

\
Spacecraf

Spacecraft Surface

Flat
Sphere
Cylinder

/
Body

| Component | '

Figure 2 Dependency Diagram for the Spacecraft Model
Subsystem

Rather than introducing a new notation specifically for
such aggregation (such as the "whole-part structures" in
[Coad and Yourdon 1991]), we have found it sufficient for
COMPASS to simply model aggregation using
dependencies. Thus, the Spacecraft Structure has a one-to-
many dependency on the Spacecraft Component category
(as shown in Figure 2). The Spacecraft Structure category
specifies properties related to the spacecraft as a whole
(such as the overall mass and moment-of-inertia) while the
Spacecraft Component category deals with individual
properties of components (such as component mass and
orientation).

Even given the Spacecraft Structure aggregate,
though, some classes may still depend directly on
individual components. For instance, a model of all the
external surfaces of a spacecraft is required to compute
such things as the atmospheric drag on the spacecraft.
Each surface in this model is a surface of some spacecraft
component This is shown in Figure 2 as a dependency
between the Spacecraft Surface category and the
Spacecraft Component category.

2.4 Configuration

As described above, application domain specifications
are written in terms of classes of objects and their
allowable interdependencies. To configure a
parameterized system, however, one must specify specific
objects of interest and their actual interdependencies. For
example, a specific spacecraft may have one star tracker,
and two sun sensors, modeled as instances of the general

Star Tracker and Sun Sensor classes. These objects are
specified by providing values for all configuration
parameters (such as the alignment of the star tracker) and
identifying objects to satisfy all dependencies (such as a
star map object that may be used by the star tracker model).
For COMPASS we use a tabular form for these
specifications, with configuration parameter and
dependency names from the class specification and a
column of values for each class instance.

Categories also play an important role in the
configuration process. To aid the process, each category
has associated rules for using member classes for specific
applications. For example, the Sensor category might have
the usage rule "Use zero or more Sensor objects from
appropriate classes for each mission". On the other hand,
an Orbit category might have a usage rule 10 "Use one
Orbit object for each spacecraft handled in a mission-
suppon task". In effect, the analyst specifying an
application program can follow the dependency arrows on
the dependency diagram "maps" of the application domain,
selecting objects from various categories following the
usage rules.

Typically, an application of a-parameterized system
will require the configuration of a number of programs. In
the case of COMPASS, such an application generally
corresponds to the support of the "mission" of a single
spacecraft. The support of a typical mission requires
various analysis, data processing and operations programs.
Since all these programs relate to the same spacecraft, they
will share many of the same models, especially from the
core domain. Thus, many objects may be specified on a
"per mission" rather than "per program" basis. This set of
objects provides a common repository for information on
the mission as it evolves from early definition stages to
launch. Additional objects may be specified on a "per
program" basis.

Application programs are themselves specified based
on a single driver from a specific application subsystem.
This driver provides the basis for "gluing together" various
objects specified from classes in the application subsystem
and supporting core subsystems. For example, a program
to provide real-time estimates of the spacecraft attitude
might be specified based on a Real-Time Estimation driver
of the Estimation subsystem, using an object from the
Sequential Estimator class, various sensor objects, etc. On
the other hand, a program to provide definitive (highest
accuracy) estimates would be based on a Non-Real-Time
Estimation driver, using the most accurate Batch
Estimation algorithm, but the same sensor objects and
other spacecraft models.

4-20
10000174

Note that the COMPASS configuration approach is
fundamentally different from the more typical view of
object-oriented system specification. In the latter view,
classes specify objects that are created and destroyed when
the specified system is run. In the COMPASS approach, in
contrast, classes in a domain specification specify objects
which are created at configuration time. No additional
objects are created when the configured program is run.
Instead, the already existing objects interact by passing
data which are not themselves considered to be objects (for
COMPASS this data tends to be such things as numbers,
vectors, matrices, etc.). This is thus a "hybrid" rather than
a "pure" object-oriented view. This view allows us to give
a clear, precise definition to the configuration process and
is particularly appropriate when the specified software is to
be implemented in a modular language such as Ada.

Nevertheless, in a more general parameterized system
approach, it may be useful to retain a more dynamic object-
oriented run time viewpoint. In this case, it would be
possible to specify some objects as "fixed" at configuration
time, while others could be created and destroyed at run
time. Alternatively, one could consider the data passed
between objects created at configuration time to
themselves be objects from a domain at an even lower level
than the core domain. This low level "computational"
domain would define standard classes of data types which
are implicit in the application and core domains. Objects
of these classes could be dynamically created and
manipulated at run-time, while objects of the application
and core domains would be fixed at configuration time.
This latter approach might be particularly appropriate for
software to be implemented in a "pure" object-oriented
language.

3. IMPLEMENTATION APPROACH

The COMPASS implementation concepts are based on
a tailored version of the general reuse model proposed by
Booth and Stark (Booh ind Suik 1989; suit 1990]. This model
separates reusable software components into a number of
layers. The following three layers are the most relevant to
the COMPASS implementation concepts:

• The domain language layer provides a virtual
language for expressing the functionality and data of
problem domain objects and classes. This layer
defines basic utilities which are taken as given in the
specifications (such as vector and matrix arithmetic in
COMPASS).

• The domain object layer provides definitions for
problem domain classes. Specified classes are directly
implemented in this layer.

• The architecture layer binds the domain components
and generalized services to a specific system
architecture. This layer contains modules that
combine the domain objects and classes with the
services that make them work within a system
architecture. It also provides the "glue" that dictates
how modules are connected to form an executable
system.

This section will focus mainly on the domain object and
architecture layers for COMPASS.

3.1 Class Packages

Classes in the specification are implemented as
parameterized components in the domain object layer.
These class packages are actually parameterized in two
ways. First, an outer generic package parameterizes
dependencies on domain language layer utilities. This
generic exports the abstract data type (private type) which
actually defines the elass. Second, one or more nested
generics parameterize the dependencies on other classes
that are given explicitly in the class specification. This
structure is shown pictorially in Figure 3 and is discussed
further in the following.

generic

P

e

ackage Generic_Star_Tracker Is

(̂ ""ADT)̂

generic

package Model Is

end Model;

generic

procedure Output Is

end Model;

nd Generic_Star_Tracker;

Figure 3 Structure of the Class Package for
Star Tracker

Consider the class package that implements the Star
Tracker class. The outer generic formal part of this
component parameterizes dependencies on such types as

4-21

10000174

vectors and matrices as well as operations on these types,
such as matrix multiplication:

with Index_Types; - import constrained indices
generic

type TIME is private;
type REAL is digits o;
type VECTORS is

array (Index_Types.INDEX3) of REAL;
type MATRIX33 is

array(Index_Types.INDEX3,Index_Types.INDEX3)
of REAL;

with function "*" (M : MATRIX33; V: VECTORS)
return VECTORS is o;

package Generic_Star_Tracker is

end Generic_Star_Tracker,

The types and subprograms used to instantiate
Generic_Star_Tracker come from utility packages in the
domain language layer. The utility packages can be for
very general domains (such as linear algebra), or can be
tailored to a specific domain (such as spacecraft orbit
representations). The important idea is that all the types
and functions needed to express the Star Tracker
algorithms are imported through generic parameters. This
allows COMPASS class packages to be instantiated in any
system that provides the required types and subprograms
and makes the COMPASS classes independent of the
COMPASS system architecture.

When instantiated, the Star Tracker class exports the
private type ADT, which defines all the data specified for
the class:

generic

package Generic_Star_Tracker is

type ADT is private;

type PARAMETERS is record
— configuration parameters
Theta : REAL;
Phi : REAL;
Psi : REAL;

-- operation parameters
Bias_Corrcction : VECTORS;

end record;

procedure Set_Parameters (
S : in out ADT;
To_The_Values : in PARAMETERS);

function Parameter_Values (S : ADT)
return PARAMETERS;

private

type ADT is
record

- internal data
H : REAL := 0.0;
V : REAL := 0.0;
Power_Is_On : BOOLEAN := FALSE;

- parameters
The_Parameters: PARAMETERS;

end record;

end Generic_Star_Tracker,

Each item of internal data becomes a component of the
record defined fat ADT. The last component of ADT is of
type PARAMETERS. This data type defines the
configuration and operation parameters for the class. A
constructor Set parameters and a selector
Parameter^Values are defined to allow access to
configuration and operation parameters.

The remainder of the generic package specification for
GenericJSiar_Tracker defines the functionality associated
with the class. The procedures and functions specified in
this package match the constructors and selectors specified
for the class. Generally, a subset of these operations do not
depend on any other class for their implementation. For
example, the constructors Power_0n and Power_Off affect
only the ADT record component PowerJsjOn. Operations
such as this are primitive operations of the type ADT:

generic

package Generic_Slar_Tracker is

type ADT is private;

— constructors
procedure Power_On (S : in out ADT);
procedure Power_Off (S : in out ADT);

4-22
10000174

- class specific operations
procedure Set_Track (S : in out ADT);
procedure Break_Track (S : in out ADT);

- selector
function Measurement (S : ADT)

return VECTORS;

end Generic_Star_Tracker,

Of course, usually some of the operations defined in a
class package will depend on other classes. As discussed
in Section 2.1, such dependencies are given explicitly in
the class specification. Class packages, however,
completely parameterize dependencies using generic units
nested within the class package. A dependency is
parameterized using a generic formal private type and
generic formal subprograms for any operations. The
dependency itself is then coded as a generic formal
parameter of the private type.

For example, the Star Tracker operations Initialize and
Simulate depend on being able to access a Star Map
catalog to get stars in the field of view of the sensor.
Similarly, the Output operation depends on being able to
Write data to a Measurement Data file. These
dependencies are reflected in the Generic_Star_Tracker
class package as follows:

generic

package Generic_Star_Tracker is

type ADT is private;

generic
type STAR_MAP is private;
type STARSJN_VffiW

is array (POSITIVE range o) of VECTORS;
with function Stars_In_Reld_Of_View (

From_Map : STAR_MAP;
Around_Vector : VECTORS;
Cone_Angle : REAL)
return STARSJN_VffiW;

The_Map: STAR_MAP;

package Model is

procedure Initialize (S : in out ADT);
procedure Simulate (

S : in out ADT;
AtJTime : in TIME);

end Model;

generic
type MEASUREMENT_DATA is private;
with procedure Write (

To_File : in out MEASUREMENT_DATA;
From_Sensor : in ADT;
At_Time : in TIME;
The_Data : in VECTORS);

The.File: MEASUREMENT_DATA;

procedure Output (S : in ADT);

end Generic_Star_Tracker;

Note that two nested generics are used above because
the dependency of Initialize and Simulate on a Star Map is
independent of the dependency of Output on a
Measurement Data file. The basic Star Tracker abstract
data type may be used along with instances of either or
both nested generics, depending on what subset of Star
Tracker capabilities is needed to meet the particular system
requirements. One may even use the package without
instantiating either of the generics, if that is sufficient for
the system being configured.

The factoring of class dependencies into multiple
nested generics provides the ability to define precise
increments of functionality for a system configuration. In
effect, instantiating different combinations of nested
generics provides different subclass extensions of the basic
class defined by the abstract data type and its'primitive
operations. Thus, this approach provides some of the
combinatorial simplification of the "mixin" approach to
multiple inheritance (see, for example, (Moon 1986:
(Bndu «nd Cook 1990]). It may also be compared to the use
of "friend classes" in C++ (Siromtrop 1986].

The dependencies in the Generic_Star_Tracker class
above are all one-to-one dependencies. Objects in the
Estimator category, however, have a one-to-many
dependency on objects in the Sensor category (see Figure
1). Thus, this dependency must be implemented as a
generic formal array of Sensor objects. For example,
consider a simplified class package for the Sequential
Estimator class:

4-23
10000174

generic
- domain language layer dependencies

package Generic_Sequential_Estimator is

type ADT is private;

- primitive operations

- non-primitive operations
generic

type SENSOR is private;
with function Measurement (S: SENSOR)

return VECTORS;

type SENSORJNDEX is (<>);
type SENSOR.ARRAY is

array (SENSOR_INDEX range o) of SENSOR;
The_Sensors: SENSOR_ARRAY;

package Model is
procedure Initialize (E: in out ADT);
procedure Advance (E : in out ADT);
procedure Update (E: in out ADT);

end Model;

private

end Generic_Sequential_Estimator,

One-to-many dependencies require the addition of a
generic formal array type and a generic formal array index
type to the formal pan of a nested generic. The Sequential
Estimator operations defined in the nested generic can then
loop through 'the array index. For instance, the Update
operation calls the Measurement operation on each sensor
in the array TheJSensors to gather the vectors needed by
the estimation algorithm. Note that (he fact that the
specification indicated a dependency on a category rather
than a specific class is irrelevant once the dependency is
parameterized.

As the above two examples show, Ada packaging
provides certain advantages over typical object-oriented
class constructs, with powerful faculties for parameterizing
and grouping the definition of an abstract data type,
associated concrete data types, and increments of extended
functionality. However, Ada does not provide any support
for superclasses, and thus it is not possible to implement
categories in a generalized way in Ada. Thus rather than
implementing categories as generalized components, they
must be constructed as pan of the configuration process, as

discussed in Section 3.3. (Note that various constructs
proposed for Ada 9X language revision should alleviate
this situation [Ada9X 1991)).

3.2 Module Packages

For each class package defined in the domain object
layer, there are one or more module packages defined in
the architecture layer. Module packages serve two
purposes. The first is to provide for the definition of a
specific set of objects in a configured application program.
The second purpose is to provide the capabilities needed to
use the generalized objects within a specific system
architecture. For example, the COMPASS architecture
calls for operation parameters to be passed from the
COMPASS user interface to the application program as a
block of text. The Star JTracker-JAodule is responsible for
providing the subprograms needed to convert this text to
data of the appropriate PARAMETERS type and passing the
data to the proper Star Tracker object. The remainder of
this subsection will focus on the first purpose.

Class packages define an abstract data type which may
be used to define an arbitrary number of objects. In
contrast, a module package is an abstract state machine
which maintains only a fixed number of objects of a given
class as required in a specific application program. These
objects are indexed by an enumeration type given as a
generic formal parameter. The module package then
reexports functionality from the class package in terms of
this enumeration type. Each module package defined for a
class package provides the functionality obtained by
instantiating a specific subset of the nested generics.

For example, the Generic_Star_Tracker class package
described in Section 3.1 has two nested generics. Thus,
there may be as many as four module packages associated
with this class package, corresponding to instantiating
neither nested generic, either one, or both. Each of these
module packages must itself have as generic parameters all
information necessary to instantiate the appropriate nested
generics.

The following Star Tracker module package provides
the functionality obtained by instantiating the nested
generic package Model but not the nested generic
procedure Output:

4-24
10000174

generic
type TRACKERJ4AME is (o);

type STAR_MAP is private;
type STARS_IN_VIEW is

array (POSITIVE range o) of VECTORS;
with function Stars_In_Field_Of_View (

From_Map : STAR_MAP;
Around_Vector : VECTOR3;
Cone_Angle : REAL)
return STARS_IN_VIEW;

The_Map: STAR.MAP;

package Siar_Tracker_Module is

procedure Set_Parameters (
S : in TRACKER.NAME;
To_The_Values : in PARAMETER_VALUES);

- constructors
procedure Initialize (S : in TRACKER_NAME);
procedure PowerJDn (S : in TRACKER_NAME);

procedure Simulate (
S : in TRACKER_NAME;
At_Time : in TIME);

- selector
function Measurement (S : TRACKER_NAME)

return VECTORS;

end Star_Tracker_Module;

The generic formal part for this module package includes
the Star Map dependency required by Model. It also
declares operations that correspond to Model operations
(Initialize and Simulate) as well as primitive abstract data
type operations.

A module package is implemented with a state that is
defined in terms of the abstract data type from a class
package. This means that the module package must use an
instantiation of the class package. In COMPASS, these
instantiations are compiled into a library of generalized
components, with the actual parameters being provided by
components in the domain language layer. For example,
the instantiation of Generic Star Tracker is:

with Generic_Star_Tracker, Calendar, Linear_Algebra;
use Calendar, Linear.Algebra;
package Siar_Tracker is new Generic_Star_Tracker

(TIME, REAL, VECTORS, MATRIX33);

The domain language layer packages Calendar and
Unear_Algebra export the subprograms needed to
instantiate Generic_Star_Tracker. The use of "is o"
notation frees the human developer from writing the whole
tedious list of utility functions.

The instantiated package Star_Tracker is imported
into the body of the Star_Tracker_Module. The
appropriate nested generics are then instantiated within this
body:

with StarJTracker;
package body Star_Tracker_Module is

type MODULE_STATE is
array (TRACKER_NAME) of Star_Tracker.ADT;

State: MODULE_STATE;

package Model is new Star_Tracker.Model
(STAR_MAP, STARS_IN_VIEW,

Stars_In_Field_Of_View, The_Map);

procedure Initialize (S : in TRACKER_NAME) is
begin

Model.Initialize (State(S));
end Initialize;

procedure BreakJTrack (S : in TRACKER_NAME) is
begin

Star_Tracker.Break_Track (State(S));
end Break_Track;

end Star_Tracker_Module;

The state of the Star_Tracker_Module is defined as an
array of star tracker objects, as defined by the type
Star_TrackerADT. These data are accessed through calls
to module operations that reexport the operations defined
on S tar_Tracker ADT. A module subprogram such as
Break_Track has the object name 5 as an input of the
enumerated type TRACKER_NAME. This subprogram in
turn calls Star_TrackerJ)reak_Track to act on object
State(S). The subprogram Initialize, on the other hand,
calls ModeUnitialize, using an instance of the nested
package Star_TrackerModel. In either case, the actual
data processing is performed by a subprogram from the
class package, whether it is imported directly or is defined
in a nested generic.

4-25
10000174

Note that the object name for the module operations is
an "in" parameter, as it merely denotes the correct object
The object sent to a constructor operation from the class
package, however, will have its state updated. Thus the
corresponding class procedure takes the object as an "in
out" parameter.

3.3 Configuration

To build an application program, one must first define
the objects used, then instantiate the modules associated
with these objects, then configure a driver to communicate
with the user interface. This subsection focuses on the first
two steps.

All the objects required in a configured application
program are defined in a single enumeration type. The
literals of this type name each object used in the
application program. The class/category hierarchy is
reflected in appropriate definitions of subtypes of this
enumeration type.

For example, the following package defines the
objects required to configure a simple estimation program
with two sun sensors and one star tracker

package Mission_Objects is

type OBJECTS is (
— data read by estimator
MEASUREMENT,
- dynamic model used in estimation
DYNAMICS,
— models used by sensors
SUN, STARS,
- sun sensor models

. SUN_SENSOR 1, SUN_SENSOR2,
--' star tracker model
TRACKER,
- sequential estimator
ESTIMATOR);

- Sensor category
subtype SENSORS is

OBJECTS range SUN SENSOR1..TRACKER;
type SENSOR.LIST is

array (POSITIVE range o) of SENSORS;

- Sun Sensor class
subtype SUN_SENSORS is

SENSORS range SUN_SENSOR1..SUN_SENSOR2;
type SUN_SENSOR_LIST is

array (POSITIVE range o) of SUN_SENSORS;

-Star Tracker class
subtype STAR_TRACKERS is

SENSORS range TRACKER-TRACKER;
type STARJTRACKERJLJST is

array (POSITIVE range o) of STARJTRACKERS;

end MissionJDbjects;

In this package, the subtype SENSORS includes .all the
objects that are in the Sensor category, and the subtypes
SUNJENSORS and STARJRACKERS include the
sensors in those respective classes.

The objects defined in MissionJDbjects are used to
instantiate the appropriate module packages. These
instantiations provide the functionality required for each
object For example, the following is the instantiation of
Star Map functionality for object STARS:

with Star_Map_Module;
with MissionJDbjects; use MissionJDbjects;
package Mission.Stars is

new Star_Map_Module (Catalog_Name => STARS);

This package is in turn used to instantiate the Star Tracker
module package:

with Star_Tracker_Module, Mission_Stars;
with MissionJDbjects; use MissionJDbjects;
package Mission_Star_Trackers is

new Star_Tracker_ModuIe (
TRACKER.NAME => STARJTRACKERS,
SKYMAP => OBJECTS,
Thejvlap => STARS,
STARS JN_VffiW => Mission_Stars.STAR_LIST,
StarsJnjMeldJDfJView

=>Mission_Stars.StarsJnJneldJDf_View);

The library instantiation MissionJSun Sensor is created in
a similar way.

The sensor packages defined above are needed to
instantiate the Sequential ̂ Estimator_Module. However,
both the sensor packages export different Measurement
selectors. Mission SunJSensorMeasurement must be used
for SUN_SENSOR1 and SUNJENSOR2, while
Mission_Star_TrackerMeasurement must be used for
TRACKER.

Now, we would like to be able to write the
instantiation for a Sequential Estimator in terms of a
Mission_Sensor_Category package which defines a
Measurement selector that works for all sensors:

4-26
10000174

with Sequemial_Estimator_Module,
Mission_Sensor_Category;

with Mission_Objects; use Mission_Objects;
package Mission_Estimaior is

new SequentialJEstimator_Module (
SENSOR => SENSORS,
SENSORJNDEX =>POSmVE.
SENSOR_ARRAY => SENSOR_LIST,
The_Sensors

=> (SUN_SENSOR1, TRACKER),
Measurement

=> Mission_Sensor_Category.Measurement);

This package uses one sun sensor and one star tracker to
provide two vector measurements. The estimator may use
these measurements to generate estimates of, e.g. the
spacecraft attitude.

Unfortunately, as discussed in Section 3.1, there is no
generalized component from which
MissionjSensor_Category may be instantiated. Thus, we
must create a mission-specific category package whose
specification declares the common operations of the
category, and whose body routes calls to modules of the
appropriate class. Thus the implementation of the Sensor
category for our estimator has the following package
specification:

with Calendar, Linear_Algebra, Mission_Objects;
use Calendar, Linear_Algebra;
package Mission_Sensor_Category is

subtype SENSOR is Mission_Objects.SENSORS;

- constructors
procedure Initialize (S : in SENSOR);
procedure Power_On (S : in SENSOR);
procedure Power_Off (S : in SENSOR);
procedure Simulate (

S : in SENSOR;
At_Time : in TIME);

- selector
function Measurement (S : SENSOR)

return VECTORS;

end Mission_Sensor_Category;

The body of this category package imports all
instantiations of module packages for objects in the
category. Each subprogram in the package then has a case
statement that routes calls to the corresponding subprogram
in the appropriate module instantiation:

- module instantiations
with Mission_Sun_Sensors, Mission_Star_Trackers;

package body Mission_Sensor_Category is

'function Measurement (S : SENSOR)
return VECTORS is

begin

caseS is
when Mission_Objects.SUN_SENSORS =>

return Mission_Sun_Sensors.Measurement(S);
when Mission_Objects.STAR_TRACKERS =>

return Mission_Star_Trackers.Measurement(S);
end case;

end Measurement;

end Mission_Sensor_Category;

In effect, the branch on mission-specific sensor type which
might appear in the estimator in a monolithic, multi-
mission support program has been instead moved outside
of the generalized estimator and localized in the mission-
specific Mission_Sensor_Caiegory package.

Note that the interface provided by a category package
is similar to that provided by a generic module package. In
fact, the package specification is quite general except for
the dependence on the mission-specific package
MissionjObjects. However, the category package cannot
simply be made generic, as the package body depends on
the particular module package instantiations used for a
given program.

It is possible, though, to provide a template for a
category package that includes much of the code for the
package. This template then includes slots for, e.g., the
name of the object package and the name of the appropriate
enumeration type, which must be filled in by editing the
text, rather than through generic parameters. This
approach is actually consistent and straightforward enough
that it should be possible to automate the tedious process of
generating such packages.

Actuallyr, our approach to classes and categories does
seem to have some advantages of its own. The typical
object-oriented implementation results in a light coupling
between classes and superclasses, defeating our goal of
individually reusable parameterized components. In fact,
the unfortunately common misuse of the inheritance
features of object-oriented languages can result in
superclass hierarchies which actually decrease reusability

4-27

10000174

and increase maintenance costs (see, for example,
(Wild 1990]).

In contrast, the COMPASS implementation concepts
reflect a constructive approach to the implementation of
superclasses. Our approach only couples the instantiations
of components during system configuration, though this
does require the generation of mission-specific category
packages, which act as "glue" during this interconnection.
Our approach also has trouble elegantly handling the
implementation of common superclass functionality and
rich, deep superclass hierarchies. However, we do not
expect this to be a problem for COMPASS, since we have
found the specification of common, generalized interfaces
to be significantly more important than small scale code
sharing during development Further, we have also found
that limiting the domain specifications to only two levels of
classification (class and category) actually makes these
specifications clearer and easier for our mission analysts to
use.

4. CONCLUSION

Both the specification and implementation concepts
for COMPASS are firmly based on our experiences to date
with Ada and object-oriented methodology. These
concepts then evolved through actual application on the
COMPASS project. A considerable amount of actual
domain analysis has already been carried out using the
COMPASS specification concepts over the last year and a
half. The implementation concepts have only been applied
so far to a small amount of prototype code, but are based
on considerable experience with generic simulation
components. We plan to begin implementation of
production COMPASS code late in 1992 with development
complete in 1997.

During the evolution of the COMPASS concepts there
has been a continuing tension between the need to provide
powerful conceptual tools and the desire to keep the
approach as simple as possible. If the concepts are not
powerful enough, then it becomes prohibitively convoluted
to specify and implement a parameterized system. On the
other hand, if the approach is too complicated, it will be
difficult to learn and apply.

The result of this tension has been a conscious
decision on our pan to adopt only those features of the
object-oriented approach which seem crucial for our
purposes. Thus, as discussed at various points earlier, our
approach perhaps does not have the full generality of some
object-oriented methodologies. On the other hand, what
has been incorporated into our concepts is the result of
real-world tradeoffs in our application domain and is

tailored specifically for parameterized systems. Thus we
feel that the concepts we are developing for COMPASS
can provide a comprehensive approach to specifying and
implementing parameterized systems in Ada. And even
though our approach is still evolving, it already provides a
firm basis for development of an architecture of
parameterized systems in general.

4-28
10000174

REFERENCES

Ada 9X1991 Ada 9X Project Report, Draft Mapping
Document, Office of the Under Secretary of Defense
for Acquisition, February, 1991

Booth and Stark 1989 E. Booth and M. Stark, "Using
Ada Generics to Maximize Verbatim Software Reuse",

• Proceedings ofTri-Ada '89, November 1989

Booth and Stark 1991 E. Booth and M. Stark,
COMPASS Implementation Concepts, Goddard Space
Flight Center Flight Dynamics Division, 550-
COMPASS-105 (Draft), February 1991

Bracha and Cook 1990 G. S. Bracha and W. Cook,
"Mixin-based Inheritance", Proceedings of the
Conference on Object-Oriented Programming,
Systems. Languages and Applications I European
Conference on Object-Oriented Programming,
SIGPLAN Notices, October, 1990

CAMP 1990 Common Ada Missile Packages,
Developing and Using Ada Parts in Real-Time
Embedded Applications, McDonnell Douglas Missile
Systems Company, April 1990

Coad and Yourdon 1991 P. Coad and E. Yourdon,
Object-Oriented Analysis, Yourdon Press, 1991

DeFazio et al. 1991 R. DeFazio., G. Meyers, C.
Newman, R. Pajerski, K. Peters, E. Seidewitz and W.
Weston, COMPASS High-Level Requirements,
Architecture, and Operation Concepts, Goddard Space
Flight Center, Flight Dynamics Division, 550-
COMPASS-102, April 1991

Moon 1986 D. A. Moon, "Object-Oriented
Programming with Flavors", Proceedings of the
Conference on Object-Oriented Programming,
Systems, Languages and Applications, SIGPLAN
Notices, November, 1986

Prieto-Diaz 1990 R. Prieto-Diaz, "Domain Analysis:
An Introduction", Software Engineering Notes, April
1990

Seidewitz 1987 Seidewitz, E., "Object-Oriented
Programming in Smalltalk and Ada", Proceedings of
the Conference on Object-Oriented Programming,
Systems, Languages and Applications, SIGPLAN
Notices, December, 1987

Seidewitz 1991 E. Seidewitz, "Object-Oriented
. Programming through Type Extension in Ada 9X",

Ada Letters, March/April 1991

Seidewitz et al. 1991 E. Seidewitz, R. Bakos and G.
Klitsch, COMPASS Specification Concepts, Goddard
Space Flight Center, Flight Dynamics Division, 550-
COMPASS-103, April 1991

Shlaer and Mellor 1988 S. Shlaer and S. Mcllor,
Object-Oriented Systems Analysis: Modeling the
World in Data, Prentice-Hall, 1988

Stark 1990 M. Siark, "On Designing Parameterized
Systems Using Ada", Proceedings of the Seventh
Washington Ada Symposium, June 1990

Stroustrop 1986 B. Stroustrop, The C++ Programming
Language, Addison-Wesley, 1986

Wild 1990 F. Wild, "A Comparison of Experiences
with the Maintenance of Object-Oriented Systems:
Ada vs. C++", Proceedings ofTri-Ada '90, December
1990

4-29
10000174

DESIGNING CONFIGURABLE SOFTWARE:
COMPASS IMPLEMENTATION CONCEPTS

Eric W. Booth, Computer Sciences Corporation
Michael E. Stark, NASA/Goddard Space Flight Center

INTRODUCTION

The Flight Dynamics Division (FDD) of NASA's Goddard
Space Flight Center has employed object-oriented methods
and the Ada language on spacecraft attitude simulators since
1985. While software reuse trends on the first three
projects were promising (see Figure 1), the level of reuse
was not significantly higher than that on recent FORTRAN
simulators developed using structured analysis and design
techniques. Further, any productivity or quality
improvements were lost in the cost of technology
transition.

40-

1st Project ' 2nd Project ' 3rd Project I
Figure 1. Initial Reuse Trends r-\

The team developing the fourth Ada simulator project had
the opportunity to use a different approach because another,
very similar, system was known to be coming in the near
future. With this in mind, the team designed the fourth
simulator using a generic architecture that could be
instantiated for the forthcoming simulator as well. The
reusability effect of this generic architecture on the fifth and
sixth Ada simulators is shown in Figure 2.

4th Project 5th Project 6th Project
Figure 2. Impact of a Generic Architecture

The fifth simulator reused the entire generic architecture and
achieved a reuse level of 90 percent. The sixth simulator
achieved a still higher reuse level. Figure 3 shows die
dramatic impact of the generic architecture on successive
projects: the level of effort to develop a similar system has
been reduced by more than 50 percent, the project duration
has decreased by more than 60 percent, and the number of
errors per delivered source instruction has been reduced by
90 percent [Booth and Luczak 1990, Groveman 1991].

30

.
o
<n
T3
C
10

o
o

-1

3rd 4th 5th 6th
Project Project Project Project

Figure 3. Benefits of a Generic Architecture

Because of the demonstrated success of using object-
oriented methods and Ada to develop a generic architecture.

-1-

10000174

PRECEDING PAGE BLANK NOT FILMED

the FDD is concentrating effort on capturing the most
successful of these software reuse strategies and techniques
and scaling them to a much larger software system.

This paper presents the high-level architectural approach
taken by the FDD to specify and design this large software
system: the Combined Operational Mission Planning and
Attitude Support System (COMPASS).

COMPASS OVERVIEW

The specification and implementation approaches planned
for COMPASS are based on an evolving object-oriented
methodology in the FDD and on experience with reusable
Ada software [Booth and Stark 1989].
However, COMPASS is considerably
larger in size and scope that any other Ada
system developed in the FDD. -The Ada
code to be developed for COMPASS is
estimated to be on the order of 1 million
lines (measured by terminal semicolons).

The high-level architecture for COMPASS
[Defazio 1990] calls for the separation of
the application software from the
framework provided by the user
interface/executive. (UIX). The UIX
includes the Operation Interface, from
which the user runs an application; the
Configuration Interface, from which
applications are built; the Database
services; and the Executive services. Fur-
thermore, the application software is to be
implemented using Ada, and the UIX is to
be implemented using commercial
standards such as Motif, TCP/IP, and
UNIX. Figure 4 shows the relationship
among the components of UIX framework
and the components of the application
software.

aspects of the COMPASS architecture. The most impor-
tant of these constraints are that the implementation con-
cepts must flow from the specification concepts for
COMPASS [Seidewitz 1990] and that they must fit the
architecture defined for the UDC [Seidewitz and Green 1990].

The specification concepts call for an object-oriented ap-
proach to producing generalized specifications. The specifi-
cations group the functionality and data associated with ob-
jects from the problem domain into classes. These classes
can be physical objects such as a Sun sensor or abstract ob-
jects such as a numeric integrator. A collection of common
classes represents a category. For example, all sensor
classes provide the ability to produce a measurement and to

Figure 4.

Application programs will be configured from a set of gen-
eralized components and executed on various hardware plat-
forms in the FDD; the UIX processes will all execute on
UNIX workstations. Application programs will communi-
cate with each other and with the UIX through platform
services. Application program interface (API) packages are
provided as Ada interfaces to these platform services.

The implementation concepts for COMPASS [Booth and
Stark 1991] define how the Ada application components are
to be designed. These concepts are based on FDD's success-
ful experiences with Ada, on research into large-scale soft-
ware reuse, and on constraints imposed by the interrelated

Application Software Within the Framework
of the COMPASS Architecture

model the effects of sensor misalignment. Therefore, all
sensors are specified within a sensor category. The category
concept merely specifies the common interface to its
member classes; the classes contain the implementation of
data and methods.

A subsystem is an aggregation of related categories. For
example, a flight-dynamics subsystem would contain cate-
gories for orbit dynamics and for force models. Subsystems
can be configured into application programs. Subsystems
include the specification of user actions such as "advance
propagator to time t." and drivers that specify the
interaction between the application program and the
Operation Interface using a state transition model.

-2-

4-32
10000174

COMPASS
IMPLEMENTATION
CONCEPTS

The implementation concepts for
COMPASS are based on the layered
software reuse model defined in Stark
1990. Table 1 shows a further
refinement of this model including
examples specific to COMPASS.

There are three major layers in this
model:

• Application Layer
• Problem Domain Layer
• Services Layer

Each major layer is composed of two
levels. Each level uses and builds on
the functionality provided by lower
levels; levels are not allowed to use (or
in any way depend on) functionality
provided in higher levels.

Table 1. The Layered Software Reuse Model

LAYERS

Application

Problem
Domain

Services

LEVELS

Application
Architecture
Components

Application
Modules

Domain
Classes

Domain Language

System-
Independent
Services

System-
Dependent
Services

EXAMPLES

UARS_Objects,
UARS_Orbit_
Model_Category

Two_Body_
Orbit_Module

Two_Body_
Orbit_Class

Ephemeris_
Types,
Linear_Algebra

Interface
Generics, Booch
Components

Application
Program
Interfaces (APIs)

PORTABILITY

it

PORTABLE

LEVELS

PORTABILITY
LEVEL

NON-PORTABLE
LEVEL

a .

While this software reuse model is
language independent, the generic unit
feature of the Ada language provides the ability to
parameterize component dependencies within and between
levels. Components in the domain and service layers can
therefore be used within different applications. Similarly,
this approach allows domain objects and classes to be used
with different sets of utility packages that provide domain-
language functionality. Finally, all components in the
portable layers can be used as a system on any platform that
can fill in the required system-dependent services of the
(lowest) non-portable level.

The next three sections of this paper describe the detailed
implementation concepts associated with the three major
layers, beginning with the lowest layer, services.

Services Layer

The services layer consists of two levels: the system-,
independent services level and the system-dependent services
level. The system-independent services level contains the
portable interface domain-independent utilities such as the
Booch components [Booch 1987). In the COMPASS
concepts, the system dependent services are more
interesting.

COMPASS applications access platform services through
application program interfaces (APIs). These services are

used to communicate with the Operation Interface for that
system, and they are implemented as general-purpose C
routines that access standard capabilities such as TCP/IP
network communications software. The C APIs are
imported into Ada using pragma Interface, and generic units
tie strongly typed Ada to virtually untyped C.

Figure 5 shows these services components as a layered
model. Use of the platform services is demonstrated by the
example of passing orbit data (time, position, and velocity)
to the Operation Interface for display.

Ada Platform Service
Generic: Specification

Ada Platform Service
Generic: Body

Ada API package
specification

pragma interface to C

C API routines

PORTABILITY
LEVEL

NON-PORTABLE
LEVELS

li

Figure 5. Implementation Concept for the
Services Layer

-3-

4-33

10000174

The following is a partial specification for a generic data
object:

with Communication_Services_Types;
generic

type ITEM is private;
package Generic_Sequential_Transient_Data is
type DATA_OBJECT is limited private;

procedure Write (
To_The_Object: in out DATA_OBJECT;
Value: in ITEM);

private
type DATA_OBJECT is record

Socket
: Communication Services_Types.SOCKET_ID;

Time_Out_Interval
: Communication_Services_Types. INTERVAL;

end record;
pragma Inline (Open, Close. Read. Write,...);

end Generic_Sequential_Transient_Data;

This package can be instantiated to allow an application
program to transmit data to another process such as the
Operation Interface. This package is similar to the
predefined I/O packages in that, while its implementation is
system dependent, its specification provides a system-
independent visible part. Portable code can therefore be
written using Generic_Sequential_Transient_Data, just as
portable code can be written using package DireciJO.

The private part of the package contains all of the system
dependencies. The above example shows a package targeted
to the 386/486 workstations that run SCO Unix.
Therefore, it uses sockets for interprocess communications.
The VAX version of this package could define type
DATAJDBJECT in terms of VMS mailboxes, without
changing the visible pan.

The following shows the implementation of Generic.
Sequential_Transient_Data;

with Communication_Services;
package body Generic_Sequential_Transienl_Data is

procedure Write (
To_The_Object : in out DATA_OBJECT;
Value : in ITEM) is

use CommumcaUon_Services;
begin

Send_Data_Over_Socket (
Socketjdentifter => To_The_Object.SOCKET,
Data_Buffer => Value'ADDRESS,
Length_Of_Buffer => Value'SIZE / 8.
Time_Out_Interval

=>To_The_Object.Time_Out_Interval);
end Write:

end Generic_Sequential_Transient_Data;

The write operation simply calls the Send_Data_Over_
Socket procedure exported by the Ada API package
Communication_Services. The Socket_Identifier and
Time_Out_Interval come directly from To_The_Objects,
while the address and amount of data come from the
attributes of Value, which is the data being written. The
following example shows the Ada API package; the pragma
Interface. Name is specific to the Alsys compiler under
SCO Unix.

with System, Communicalion_Services_Types;
use Communication_Services_Types;
package Communication_Services is

function Send_Data_Over_Socket (
Socketjdentifier ; SOCKETJD;
Data_Buffer
Length_Of_Buffer
Time_Out_lnterval
return INTEGER;

System. ADDRESS;
NATURAL;
INTERVAL)

p r i v a t e
— Alsys Ada interface pragmas to (routine S_SEND)
pragma Interface (C, Send_Data_Over_Socket);
pragma .Interface.Name
(Send_Data_Over_Socket, "S_SEND");

end Commumcation_Services;

It is possible, but not straightforward, to write a single API
package for interprocess communication in which the
visible pan would provide the operations read, write, open,
and close and the hidden pan would contain the data
representation and interfaces. We chose the layered model
to simplify the application programmer's use of the APIs.
Note that the programmer need not remember that type
ADDRESS is defined in package System, or that the 'SIZE
attribute is measured in bits; the generic package hides these
factors. The use of pragma Inline in package Generic.
Sequential_Transient_Data guarantees that the extra layer of
components does not affect performance.

This design of the platform services layer should be more
easily maintained because the interface to the C code is
contained in one package and the view presented to the
higher levels is in a separate generic package.

Problem Domain Layer

The problem domain layer of the software reuse model (see
Table 1) defines classes relevant to the problem domain and
is divided into two levels: the domain language level and
the domain classes level. The domain language level
provides the domain-specific language, or utilities, to the
domain classes level. The domain classes level defines the
classes of actual objects from the problem domain.
Moving through the reuse model from the lowest level to

4-34

10000174

the higher levels highlights the recurring pattern of
narrowing the domain while building on the lower levels.

Domain Language Level

The domain language level is implemented as a set of
interdependent library instantiations of generic utility
packages that export the types and operations needed to
implement problem domain classes. The domain language
level is divided into several sublevels with the lower levels
supporting a wider range of applications and the upper
levels being tailored to a narrower, more specific domain.
Figure 6 shows the three major domain language sublevels.

Flight Dynamics Services Level

Math
Services

General
Services

Domain Specific

IT

Domain General

Figure 6. Implementation Concept for the
Domain Language Level

The general services level contains packages such as
Booch's String_Utilities and Floating_Poim_Utilities. The
math services level contains trigonometric functions, linear
algebra, and a random-number generator. The flight
dynamics services level contains packages exporting various
representations of spacecraft orbit and attitude.

Packages from the general services and math services levels
are reusable outside the flight dynamics domain because
they are independent of the flight dynamics services level.
However, the converse is not true; orbit types and
operations in the flight dynamics services level depend on
vector types and operations in the math services layer.

The generic formal parts of the Generic_Linear_Algebra and
Generic_Math_Functions packages are shown in the fol-
lowing example:

generic
type SCALAR Is digits o:
Pi: In SCALAR

:= 4.14159_26535_89793_23846_26433;
E: in SCALAR

:= 2.71828_18284_59045_23536_02874;
package Generic_Math_Functions is

end Generic_Math_Functions;

generic
type REAL is digits o:
with function Sqrt (X : in REAL)

return REAL is o;
package Generic_Linear_Algebra is

end Generic_Lineai_ Algebra ;

The following example shows the interdependent library
unit instantiations of these packages:

package NumehcJTypes is
type R E A L Is digits IS;

end Numeric_Types;

with Numeric_Types, Generic_Math_Functions;
package Real_Math_Functions is

new Generic_Math_Functions
(SCALAR => Numeric_Types.REAL);

with Numeric_Types, Generic_Linear_Algebra;
with Real_Math_Functions;
package Rea]_Linear_Algebra is

new Generic_Linear_Algebra
(SCALAR => Numeric_Types.REAL

Sqrt => Real_Math_Functions.Sqrt):

The advantage of this design technique is that the generic
packages are independent implementations. The linear
algebra package does not depend on this particular
mathematical functions package; it only requires a real data
type and a square root function. While the generic
implementations are independent, the instantiations are
interdependent. This means that the domain language
packages need to be designed as a set to ensure that all
generic units are compatible. The alternate design is to nest
an instantiation of Generic_Math_Functions within the
body of Generic_Linear_Algebra. However, this creates a
dependency on a specific math package, reducing the
generality of Generic_Linear_Algebra.

Another consideration in designing domain language level
components is the use of exported types and operations in
higher levels. In the domain objects level, the necessary
types and operations are imported via generic formal
parameters. The domain language level exports a mix of
scalar, private, array, and record types. For scalar types,
standard formal parameters such as "type X is digits o"
are sufficient. For private types, the generic formal
parameter must also be a private type.

Array types can also be used as generic parameters. The
only difficulty is that generic discrete types cannot be
constrained to a fixed length, and mere are instances where
this would be useful. For example, COMPASS has a
linear algebra package exporting 3-vectors and 3x3 matrices.
To import the indices for these arrays, the package
IndexJTypes is defined, and all packages using 3-vectors and
3x3 matrices must import Index_Types to get array indices.
This introduces a modest but still undesirable coupling of
generic class package's to a specific index types package.

4-35

10000174

Record types cannot be generic formal parameters, but they
can be imported either as generic private types with
subprograms to access record elements or by "witbing" the
package exporting the type. Again, using a generic formal
private type parameter defers the coupling until
instantiation at the cost of generating additional data access
subprograms, both in the exporting package specification
and the importing generic formal pan. The tradeoff between
these two approaches is being analyzed through
prototyping.

Domain Classes Level

The domain classes level of the problem domain layer is
implemented as a set of completely independent generic
library unit packages that define the classes that correspond
to actual objects in the problem domain. For example, a
Sun sensor is a common object in the flight dynamics
domain. The set of all Sun sensors is grouped together into
the Sun-sensor class and implemented in Ada as a generic
abstract data type (ADT) package. These library unit
generic packages export various nested generic units as well
as the ADT. This allows different instances (i.e., uses) of
the class in different applications within the flight dynamics
domain. The following partial specification provides a
concrete example of how a Sun-sensor class might be
implemented:

generic
type TIME is private:
type RADIANS is digits <>:
type REAL is digits <>;
type INDEX Is range o;
type VECTOR is array (INDEX) of REAL;
type MATRIX is array (INDEX, INDEX) of REAL;
with function "•" (M : in MATRIX; V : in VECTOR)

return VECTOR is o;

package Generic_Sun_Sensor_Class is
type ADT is private;
type PARAMETERS is record

Azimuth : RADIANS;
Elevation : RADIANS;

end record;
procedure Set_Parameters

(S : in out ADT; To : in PARAMETERS);
generic

with function Body_to_Sensor_Frame
(At_Time : in TIME) return MATRIX is o;

package Model is
procedure Initialize

(S : in out ADT; At.Time : in TIME):
procedure Simulate

(S : in out ADT; At_Time : in TIME);

end Model;

private
type ADT is record

Enabled
Power

: BOOLEAN;
: BOOLEAN;

The_Parameters : PARAMETERS;
end record;

end Generic_Sun_Sensor_Class;

The design for each generic class package calls for three
basic sections: the generic formal parameters section, the
visible section, and the private section. The generic formal
parameters section contains the generic formal type
parameters necessary for the type declaration of the initial
parameters (defined in the visible section), and common
formal subprogram parameters. For COMPASS, this
section includes standard types and subprogram parameters
such as a real vector and matrix type and trigonometric
functions.

The visible section contains a private type, a parameters
type, and one or more nested generic package declarations.
The operations parameter type is declared in the visible
section because it is needed by other packages that interface
with the user and handle input/output. The private section,
of course, contains the complete definition of the ADT
structure used throughout the generic class.

The library unit generic class package is instantiated in the
domain classes level using the packages provided by the
domain language level. However, the nested generic
packages are left for the next highest level to instantiate as
needed because the necessary instances depend on the type of
application.

Just as the generic packages in the domain language classes
level were required to be compatible, the generic packages
in the domain classes level must be compatible with the
lower levels of the reuse model. To ensure (his, the
problem domain layer must be specified, designed, and
implemented as a set of compatible generic packages. That
is, overall domain class architecture must be defined using
domain analysis [Seidewitz and Stark 1991] and followed
throughout the development.

In addition, the generic formal parameters for the Generic,
Sun_Sensor_Class package are compatible with the types
and subprograms from the domain language level. The
instantiation of the Generic_Sun_Sensor_Class library unit
might look something like that shown in the following
example:

4-36
10000174

w i t h Generic_Sun_Sensor
Calendar. Numeric_Types,
Index_Types. Linear_Algebra;

package Sun_Sensor_Class is
new Generic_Sun_Sensor_Class (

TIME => Calendai.TIME;
RADIANS => Numeric_Types.RADIANS;
REAL => NumericJTypes.REAL;
INDEX => Index_Types.INDEX3;
VECTOR => Lioear_Algebra.VECTOR3;
MATRIX => Linear_Algebra.MATRIX33;
"*" => Linear_Algebra.-»');

Note that the instantiation would not be compatible if
either the VECTOR or MATRIX generic formal parameters
were declared as unconstrained arrays. For example, assume
that the generic formal array types were declared as follows:

type VECTOR is array
(INDEX range o) of REAL;

type MATRIX is array
(INDEX range o, INDEX range o) of REAL;

The instantiation would not be valid with an actual array
type parameter that was constrained. While this is a
simplified example, the implication is that compatibility
among generic units must exist between levels as well as
within each level. The same implication applies when
going from the domain classes layer to the application
layer.

In general, incompatibility among a hybrid collection of
generic units is often the reason that supposedly reusable
components are not reused within the context of a system
architecture. The use of consistent object-oriented
specification and implementation concepts eliminates (his
problem in COMPASS.

Application Layer

As in the two lower layers, the application layer is
composed of two separate levels: the application modules
level and the application architecture components level.

Application Modules Level

The problem domain layer defines the classes for the
domain but does not specify bow. or where the generic
actual parameters of these classes are declared. The
application modules level contains generic abstract state
machines (ASMs), each defining an array of an ADT and
declaring a state variable of that array type in the body. An
ASM as described here is referred to as a module in
COMPASS.

The following example shows the specification of the
Generic_Sun_Sensor_Module. Notice that the module is
divided into two basic sections, the generic formal
parameters section and the visible section.

generic
-- Module formal parameters
type SENSOR_NAME Is (o);

type COSINE MATRIX is private;
type ATTTTUDE_DYNAMICS is (o);
with function Current_Attitude

(A : in ATTTTUDE.DYNAMICS; T : in TIME)
return COSINE_MATRIX is o.

with function Sun_Position_GCI
(AtJTime : in TIME)
return COSINE.MATRDC is o,

package Generic_Sun_Sensor_Module is
— constructors
procedure Initialize (

The_Sensor : in SENSOR_NAME;
At_Time : in TIME);

procedure Simulate
The_Sensor: in SENSOR_NAME;
At_Time : in TIME);

— selectors
function Measurement

The_Sensor : in SENSOR_NAME;
Al_Time : in TIME);
return SENSOR.MEASUREMENT;

end Generic_Sun_Sensor_Module;

The module's generic formal parameters section contains
two kinds of generic formal parameters: module-specific
parameters and formal parameters needed to instantiate the
generic packages nested in the class package. The module-
specific parameters will minimally include an enumerated
type parameter that is used to name each object contained
by the module (type SENSOR.NAME in this example).

The rest of the module's visible section contains the
constructors and selectors that correspond to the class.
While these appear very similar to the generic class, there is
one subtle and important difference: the names of the
objects are passed to the constructors and selectors in the
module. The actual data is passed by the module to the
instantiation of the generic class. This distinction becomes
clearer in view of the structure of the module's body.

The following example shows the structure of a typical
module body. The module body contains an array type
definition, an array variable declaration, and, of course,
subprogram bodies.

4-37

10000174

with Sun_Sensor_Class:
package body Generic_Sun_Sensor_Module is

—Instantiation of nested generic Model
package Model is new Sun_Sensor_Class.Model

(COSINE_MATRIX, ATTITUDE.DYNAMICS);

type SENSOR.ARRAY is -STATE DATA:
array (SENSOR_NAME)
of Sun_Sensor_Class.ADT;

State : SENSOR_ARRAY; --An airay of sensors
-indexed by names

— constructors
procedure Initialize (

The_Sensor : in SENSOR_NAME; -Name is passed
At_Time : in TIME) is -into the module

begin -and used to ref
Model.Initialize -the state and

(State(Tbe_Sensor), At_Time); -call the Model.
end Initialize;
procedure Simulate (is

The_Sensor : in SENSOR.NAME;
AtJTime : in TIME) is

begin
Model.Simulate(State(The_Sensor), At_Time);

end Simulate;

— selectors
function Measurement (

The_Sensor : in SENSOR_NAME; '-Name is passed
At_Time : in TIME) -into the module
return SENSOR_MEASUREMENT is

b e g i n -and used to ref
return Model.Measurement —the state and

(State(The_Sensor). At_Time); -call the Model.
end Measurement;

end Generic_Sun_Sensor_Module;

Each module depends on a corresponding instantiation of
the generic class, which imposes a hard coupling between
the module and the generic class. That is, this dependency
is not a parameter; it is part of the overall COMPASS
architecture.

The module body imports the instantiation of the the
Generic_Sun_Sensor_Class package, which exports the
Model package and ADT. The module state data is an array
of ADT parameters indexed by name; the names are
supplied as an enumeration type to the module at
instantiation. The ADTs are provided by the instantiation
of the generic class. For example, if there were two Sun
sensors on a particular spacecraft, access to the current state
is possible only within the module body. This is shown as
State(The_Sensor) in the subprograms in the module body.

Different application programs within the same domain
might use different module generics that each use the same
class instantiation. The application modules level,
therefore, specifies one or more modules per class
instantiation, depending upon the number of different

application programs. For a given application program in
the domain (e.g., a simulator application in the flight
dynamics domain) the application module level would
define modules specific to the application but generic with
respect to any given mission. The next level defines the
mission-specific parameters to complete the instantiation of
a given application program.

Application Architecture Components Level

The top-level components of a COMPASS application are
contained in the application architecture-components level.
This level includes the mission-specific packages, such as
the module instantiations, a mission objects package,
category packages, and drivers.

Instantiation of a module is the first step toward
configuring COMPASS software to a specific mission.
The following example shows how a particular module
might be instantiated:

with Generic_Sun_Sensor_Module.
Mission_Objects,
Attitude_Module;

package Sun_Sensor_Module is
new Generic Sun_Sensor_Module (
SENSOR.NAME => Mission.Objects.SENSORS.
ATmt)DE_DYNAMlCS =>

MissionJ3bjects.ATTITUDE_DYNAMICS.
Current_Attitude => Attitude_Module.GCI_lo_BCS);

Notice that mission-specific packages are introduced with
context clauses. The following sample mission-specific
package, Mission_Objects, describes the objects, classes,
and categories used for a given mission in terms of an
enumeration type and its subtypes. This particular package
is used for module instantiation as well as for category
packages in the implementation concepts. Similar
missions may be able to share (reuse) some of these module
instantiations, assuming that the mission characteristics
required by the instantiations are identical.

package Mission_Objects is
type OBJECTS Is (

ATTITUDE,
SUN_SENSOR1, SUN_SENSOR2,
EARTH_SENSOR1, EARTH_SENSOR2);

subtype ATTITUDE.DYNAMICS is
OBJECTS range ATnTUDE..AT*nTUDE;

subtype SENSORS is - category
OBJECTS range SUN_SENSOR1..EARTH_SENSOR2;

subtype SUN SENSORS is - class
SENSORS range SUN_SENSOR1..SUN_SENSOR2:

subtype EARTH SENSORS is - class
SENSORS range EARTH_SENSOR1..EARTH_SENSOR2;

end Mission_Objects;

4-38
10000174

The dependency diagram for this particular module
instantiation may be represented as shown in Figure 7. The
mission-specific components of the diagram are all located
in the application architecture components level.

Application
Architecture
Components
Level

Figure 7. Module Dependency Diagram

A category is implemented as a nongeneric package that
groups, by way of context clauses, a set of similar modules
defining a common interface across member classes. For
example, the Sun_Sensor_Module might be "withed" into a
Sensor_Category package. The Sensor_Category package
could also depend on such modules as Star_Tracker_Module
or Earth_Sensor_Module. Member classes of a category
will be mission specific because the context clauses are
static, rather than dynamic, parameters. However, standard
category packages may be defined that limit the changes to
the category package body.

The package specification of a category package defines a
common subprogram interface for its member classes. For
example, all sensor classes must have a simulate function
subprogram, but that subprogram would be implemented
for the Sun-sensor class differently than for the Earth-sensor
class. The following example shows a sample sensor

category specification. Note that this specification may be
reusable across multiple missions.

with Linear_Algebra, Calendar. Mission_Objects;
package Mission_Sensor_Category is

subtype SENSORS Is
Mission_Objects.SENSORS;

subtype TIME is Calendar.TIME;
subtype VECTORS is Linear_Algebra.VECTOR3;
—category constructors
procedure Initialize

(A: In SENSORS; At_Time : in TIME);
procedure Simulate

(A : In SENSORS; At_Time : in TIME);
-category selectors
function Measurement

(A : in SENSORS; At_Time : in TIME)
return VECTORS;

end Mission_Sensor_Category;

The category specification defines all subprograms common
to each class in that category. However, a class will
sometimes have functionality that is not readily generalized
to other classes in the category. For example, the Star.
Tracker class may have a procedure Break_Track that would
not readily generalize to other Sensor classes. Therefore,
while each class must implement at least all subprograms
called out for its category, it may also implement additional
subprograms unique to that class.

The following example shows the corresponding category
package body. Notice that this particular mission has two
kinds of sensor, Sun and Earth.

— Actual module dependencies are shown here
with Sun_Sensor_Module;
with Earth_Sensor_Module;
package body Mission_Sensor_Category is

procedure Initialize
^ (A : in SENSORS;

At_Time : in TIME) is
begin

case A \s
when SUN.SENSORS =>

Sun_Sensor_Module.Initialize (A, At_Time);
when EARTH_SENSORS =>

Eartb_Sensor_Module.Initialize (A, At_Time);
end case:

end Initialize;

end Mission_Seosor_Category;

The Sun_Sensor_Module is architecturally identical to the
Eanh_Sensor_Module. However, the Sun_Sensor_Module
implementation is different The category package contains
only subprograms common to both modules. A category
subprogram calls the module subprogram for the appropri-
ate subtype range that contains the sensor name. The

4-39

10000174

actuator names and subtype range declarations are defined in
the Mission_Objects package.

Figure 8 shows the dependency diagram for this particular
mission's sensor category package. Lower-level details of
the utility and module packages are omitted for clarity.

package bodies for the dialog and the category packages
constitute the only executable code that needs to be written
for an application program.

Application
Architecture
Components
Level

Application
Module f Generic
Level I Earth Sensor

Module

Domain

Figure 8. Category Dependency Diagram

Drivers manage the interaction of the application program
and the Operation Interface through a generic package that
drives the modules and a "dialog package" that manages the
interaction with the user interface (see Figure 9). To
accomplish this, the driver and dialog packages need to talk
to each other. To avoid cyclic dependencies, the driver is
instantiated using parameters exported by modules and the
dialog package specification. The dialog package body then
calls the driver instance to determine the current state of the
system, calls modules to select data for user reports, and
calls APIs to send the report data and request the user's next
choice of action.

In this design, the generic driver's only function is to
implement the state transition model specified in the
generalized application specifications. The body of the
dialog package implements the reports and user options
required for a specific mission planning configuration. The

Application
Architecture
Components

Level

Services
Layer

Figure 9. Driver Dependency Diagram

PROTOTYPING STATUS AND
OBSERVATIONS

The implementation concepts are currently being prototyped
by developing a small mission-planning system. The
prototyping has shown that the generalized COMPASS
specifications can be implemented as a set of generalized
components. The single exception to this statement is the
implementation of categories. Each category subprogram
calls the corresponding routine in the appropriate module;
"appropriate" is not defined until a set of modules is defined
for a particular configuration. This means that a developer
must write case statements to dispatch calls on a category.
The Ada 9X type extension mechanisms described in [Ada
9X 1991] should allow generalized categories to be
implemented as reusable components, at which point all
generalized specifications will have corresponding
generalized implementations.

The prototype team has observed that these concepts are not
easily learned but are easily applied once they become
understood. The first observation probably reflects the
team's inexperience with Ada, coupled with the extensive
use of generics. The second results from the direct mapping
between the specification and the implementation of a

-10-

4-40
10000174

problem domain class. The lessons learned from the
prototyping will undoubtedly improve the implementation
concepts and drive the FDD's Ada training curriculum.

The prototyping has shown that the techniques and models
discussed in Booth and Stark 1989 can be used to define a
workable approach to designing large reconfigurable
systems. The first application prototype, completed in
July of 1991, consists of an orbit propagator program and
an operation interface. Approximately 85 percent of the
propagator code is composed of generalized components mat
would be reused verbatim in an operational COMPASS
program. This initial measurement shows that, so far, the
implementation concepts are consistent with the project's
reuse goals. Measurements such as this will be collected
throughout the project to rate the success of the
implementation concepts.

In "Planning the Software Industrial Revolution" [Cox
1990], Brad Cox extends the concepts of software "chips" to
higher levels of integration such as "cards" or "racks." The
Ada language provides a means of achieving "software ICs"
through the package and generic unit features. The
COMPASS implementation concepts, along with the
COMPASS system architecture, are a means toward
achieving the higher levels of integration that Cox
envisions.

REFERENCES

Ada9X 1991 Ada 9X Project Report, Draft Mapping
Document, Office of the Undersecretary of Defense for
Acquisition, February 1991

Booch 1987 G. Booch, Software Components with
Ada, Menlo Park, CA: Benjamin Cummings, 1987

Booth and Stark 1989 E. Booth and M. Stark, "Using
Ada Generics to Maximize Verbatim Software Reuse",
Proceedings ofTri-Ada '89, October 1989

Booth and Luczak 1990 E. Booth and R. Luczak,
Extreme Ultraviolet Explorer (EUVE) Telemetry
Simulator Software Development History, FDD/552-
90/045, June 1990

Booth and Stark 1991 E. Booth and M. Stark,
COMPASS Implementation Concepts, Goddard Space
Flight Center, Flight Dynamics Division, 550-
COMPASS-105 (Draft), February 1991

Cox 1990 B. Cox "Planning the Software Industrial
Revolution," IEEE Software, November 1990

DeFazio 1990 R. DeFazio, et. al., COMPASS High-
Level Requirements, Architecture, and Operation
Concepts, Goddard Space Flight Center, Flight
Dynamics Division, 550-COMPASS-102, March 1990

Groveman 1991 B. Groveman, et. al.. Solar, Anomalous,
Magnetospheric Particle Explorer (SAMPEX)
Telemetry Simulator Software Development History,
Goddard Space Flight Center, Flight Dynamics
Division, FDD-552-91/007, May 1991

Seidewitz 1990 E. Seidewitz et. al., C O M P A S S
Specification Concepts, Goddard Space Flight Center,
Flight Dynamics Division, 550-COMPASS-103,
March 1990

Seidewitz and Siark 1991 E. Seidewitz and M, Stark, "An
Object-Oriented Approach to Parameterized Software in
Ada", Proceedings of Eighth Washington Ada
Symposium, June 1991

Seidewitz and Green 1990 E. Seidewitz and D. Green,
COMPASS System Architecture Concepts, Goddard
Space Flight Center, Flight Dynamics Division,
FDD/552-90/075, March 1990

Stark 1990 M. Stark, "On Designing Parameterized
Systems Using Ada", Proceedings of the Seventh
Washington Ada Symposium, June 1990

-11-

4-41
10000174

AUTHOR BIOGRAPHIES

Michael E. Stark, NASA, Goddard Space Right Center.
As a software engineer for GSFC's Flight Dynamics
Division, Mr. Stark is is responsible for research activities
on the Software Engineering Laboratory and is the Attitude
Support team leader for the COMPASS project In addition
to leading the Attitude Support team, Mr. Stark also leads
the development of the COMPASS implementation
concepts and is involved in the prototyping of COMPASS
application programs. Before becoming COMPASS team
leader, he was a principle designer on GSFC's first Ada
development project and coauthor of the Generalized Object-
Oriented Development Methodology. He has also
developed simulation software for the ERBS, COBE, and
UARS projects. Mr. Stark holds a B.S. degree in
mathematics and economics from Oberlin College and an
M.S. degree in computer science from The Johns Hopkins
University.

Eric W. Booth, Computer Sciences Corporation. As a
software engineer for CSC, Mr. Booth is a task leader on
the Systems, Engineering, and Analysis Support Program
in the Flight Dynamics Technology Group, where he leads
research activities on the Software Engineering Laboratory
task supporting Goddard Space Flight Center's Flight
Dynamics Division. Before becoming SEL task leader, he
led the team that designed and developed a generic software
architecture for the Upper Atmosphere Research Satellite
telemetry simulator. Mr. Booth holds a B.S. degree in
mathematics from the State University of New York at
Oneonta and an M.S. degree in computer science from The
Johns Hopkins University.

-12-

442

10000174

STANDARD BIBLIOGRAPHY OF SEL LITERATURE

The technical papers, memorandums, and documents listed in this bibliography are or-
ganized into two groups. The first group is composed of documents issued by the Soft-
ware Engineering Laboratory (SEL) during its research and development activities.
The second group includes materials that were published elsewhere but pertain to SEL
activities.

SEL-ORIGINATED DOCUMENTS

SEL-76-001, Proceedings From the First Summer Software Engineering Workshop,
August 1976

SEL^77-002, Proceedings From the Second Summer Software Engineering Workshop,
September 1977

SEL-77-004, A Demonstration of AXES for NAVPAK, M.Hamilton and
S. Zeldin, September 1977

SEÎ 77-005, GSFCNAVPAKDesign Specifications Languages Study, P. A. Scheffer and
C. E. Velez, October 1977

SEL-78-005, Proceedings From the Third Summer Software Engineering Workshop,
September 1978

SEL-78-006, GSFC Software Engineering Research Requirements Analysis Study,
P. A. Scheffer and C. E. Velez, November 1978

SEL-78-QQ7, Applicability of the Rayleigh Curve to the SEL Environment, T. E. Mapp,
December 1978

SEÎ 78-302, FORTRAN Static Source Code Analyzer Program (SAP) User's Guide
(Revision 3), W. J. Decker, W. A. Taylor, et al., July 1986

SEL-79-002, The Software Engineering Laboratory: Relationship Equations,
K. Freburger and V. R. Basili, May 1979

SEL-79-003, Common Software Module Repository (CSMR) System Description and
User's Guide, C. E. Goorevich, A. L. Green, and S. R. Waligora, August 1979

SEL-79-004, Evaluation of the Caine, Farber, and Gordon Program Design Language
(PDL) in the Goddard Space Flight Center (GSFC) Code 580 Software Design Environ-
ment, C. E. Goorevich, A. L. Green, and W. J. Decker, September 1979

SEL-79-005, Proceedings From the Fourth Summer Software Engineering Workshop,
November 1979

BI-1

10000229
1113/1400 XJ _ 2

SEL-80-002, Multi-Level Expression Design Language-Requirement Level (MEDL-R)
System Evaluation, W. J. Decker and C. E. Goorevich, May 1980

SEL-80-003, Multimission Modular Spacecraft Ground Support Software System (MMS/
GSSS) State-of-the-Art Computer Systems/Compatibility Study, T. Welden,
M. McClellan, and P. Liebertz, May 1980

SEI^80-005,y4 Study of the Musa Reliability Model, A. M. Miller, November 1980

SEÎ 80-006, Proceedings From the Fifth Annual Software Engineering Workshop,
November 1980

SEL-80-007, An Appraisal of Selected Cost/Resource Estimation Models for Software
Systems, J. F. Cook and E E. McGany, December 1980

SEL-80-008, Tutorial on Models and Metrics for Software Management and Engineering,
V. R. Basili, 1980

SEL-81-008, Cost and Reliability Estimation Models (CAREM) User's Guide, J. F. Cook
and E. Edwards, February 1981

SEL-81-009, Software Engineering Laboratory Programmer Workbench Phase 1 Evalua-
tion, W. J. Decker and F. E. McGany, March 1981

SEÎ 81-011, Evaluating Software Development by Analysis of Change Data,
D. M. Weiss, November 1981

SEÎ 81-012, The Rayleigh Curve as a Model for Effort Distribution Over the Life of
Medium Scale Software Systems, G. O. Picasso, December 1981

SEL-81-Q13,Proceedings of the Sixth Annual Software Engineering Workshop, December
1981

SEL-81-014, Automated Collection of Software Engineering Data in the Software Engi-
neering Laboratory (SEL), A. L. Green, W. J. Decker, and F. E. McGany, September
1981

SEL-81-101, Guide to Data Collection, V. E. Church, D. N. Card, F. E. McGany, et al.,
August 1982

SEÎ 81-104, The Software Engineering Laboratory, D.N. Card, FE. McGany,
G. Page, et al., February 1982

SEL-81-107, Software EngineeringLaboratory (SEL) Compendium of Tools (Revision 1),
W. J. Decker, W. A. Taylor, E. J. Smith, et al., February 1982

SEI^81-110,£vafaarton of an Independent Verification and Validation (IV&V) Methodol-
ogy for Flight Dynamics, G. Page, F. E. McGany, and D. N. Card, June 1985

BI-2
10000229
1113/1400

SEL-81-205, Recommended Approach to Software Development, E E. McGany,
G. Page, S. Eslinger, et al., April 1983

SEL^82-001, Evaluation of Management Measures of Software Development, G. Page,
D. N. Card, and F. E. McGany, September 1982, vols. 1 and 2

SEL-82-004, Collected Software Engineering Papers: Volume 1, July 1982

SEL-82-007, Proceedings of the Seventh Annual Software Engineering Workshop,
December 1982

SEL-82-008, Evaluating Software Development by Analysis of Changes: The Data From
the Software Engineering Laboratory, V. R. Basil! and D. M. Weiss, December 1982

SEL-82-W2,FORTRANStatic Source CodeAnalyzerProgram (SAP) System Description
(Revision 1), W. A. Taylor and W. J. Decker, April 1985

SEÎ 82-105, Glossary of Software Engineering Laboratory Terms, T. A. Babst,
M. G. Rohleder, and F. E. McGany, October 1983

SEÎ 82-1006, Annotated Bibliography of Software Engineering Laboratory Literature,
L. Morusiewicz and J. Valett, November 1991

SEL-83-001, An Approach to Software Cost Estimation, F. E. McGany, G. Page,
D. N. Card, et al., February 1984

SEL-83-002, Measures and Metrics for Software Development, D.N. Card,
F. E. McGany, G. Page, et al., March 1984

SEL-83-003, Collected Software Engineering Papers: Volume II, November 1983

SEÎ 83-006, Monitoring Software Development Through Dynamic Variables,
C. W. Doerflinger, November 1983

SEL-83-007, Proceedings of the Eighth Annual Software Engineering Workshop,
November 1983

SEÎ 83-106, Monitoring Software Development Through Dynamic Variables (Revi-
sion I), C. W. Doerflinger, November 1989

SEI^84^3,InvestigationofSpecificationMeasuresfortheSoftwareEngineeringLabora-
tory (SEL), W. W. Agresti, V E. Church, and E E. McGany, December 1984

SEÎ 84-004, Proceedings of the Ninth Annual Software Engineering Workshop,
November 1984

SEL-84-101, Manager's Handbook for Software Development (Revision 1), L. Landis,
F. E. McGany, S. Waligora, et al., November 1990

SEL-85-001, A Comparison of Software Verification Techniques, D. N. Card,
R. W. Selby, Jr., F. E. McGany, et al., April 1985

BI-3

10000229
1113/1400

SEÎ 85-002, Ada Training Evaluation and Recommendations From the Gamma Ray
Observatory Ada Development Team, R. Murphy and M. Stark, October 1985

SEÎ 85-003, Collected Software Engineering Papers: Volume III, November 1985

SEÎ 85-004, Evaluations of Software Technologies: Testing, CLEANROOM, and
Metrics, R. W. Selby, Jr., and V. R. Basili, May 1985

SEL-85-005, Software Verification and Testing, D. N. Card, E. Edwards, F. McGarry,
and C. Antle, December 1985

SEÎ 85-006, Proceedings of the Tenth Annual Software Engineering Workshop,
December 1985

SEL-86-001, Programmer's Handbook for Flight Dynamics Software Development,
R. Wood and E. Edwards, March 1986

SEL-86-002, General Object-Oriented Software Development, E. Seidewitz and
M. Stark, August 1986

SEL-86-003, Flight Dynamics System Software Development Environment (FDS/SDE)
Tutorial, J. Buell and P. Myers, Jury 1986

SEÎ 86-004, Collected Software Engineering Papers: Volume IV, November 1986

SEL-86-005, Measuring Software Design, D. N. Card et al., November 1986

SEL-86-006, Proceedings of the Eleventh Annual Software Engineering Workshop,
December 1986

SEL-87-001, Product Assurance Policies and Procedures for Flight Dynamics Software
Development, S. Perry et al., March 1987

SELr87-002,Ada® Style Guide (Version 1.1), E. Seidewitz et al., May 1987

SEÎ 87-003, Guidelines for Applying the Composite Specification Model (CSM),
W. W. Agresti, June 1987

SEL-87-004, Assessing the Ada® Design Process and Its Implications: A Case Study,
S. Godfrey, C. Brophy, et al., July 1987

SEÎ 87-008, Data Collection Procedures for the Rehosted SEL Database, G. Heller,
October 1987

SEL-87-009, Collected Software Engineering Papers: Volume V, November 1987

SEL-87-010, Proceedings of the Twelfth Annual Software Engineering Workshop,
December 1987

SEL-88-001, System Testing of a Production Ada Project: The GRODY Study, J. Seigle,
L. Esker, and Y. Shi, November 1988

BI-4
10000229
1113/1400

SEÎ 88-002, Collected Software Engineering Papers: Volume VI, November 1988

SEÎ 88-003, Evolution of Ada Technology in the Flight Dynamics Area: Design Phase
Analysis, K. Quimby and L. Esker, December 1988

SEL-88-004, Proceedings of the Thirteenth Annual Software Engineering Workshop,
November 1988

SEÎ 88-005, Proceedings of the First NASA Ada User's Symposium, December 1988

SEL-89-002, Implementation of a Production Ada Project: The GRODY Study,
S. Godfrey and C. Brophy, September 1989

SEÎ 89-003, Software Management Environment (SME) Concepts and Architecture,
W. Decker and J. Valett, August 1989

SEL-89-004, Evolution of'Ada Technology in the Flight Dynamics Area: Implementation/
Testing Phase Analysis, K Quimby, L. Esker, L. Smith, M. Stark, and F. McGany,
November 1989

SEÎ 89-005, Lessons Learned in the Transition to Ada From FORTRAN at NASA/
Goddard, C. Brophy, November 1989

SEL-89-006, Collected Software Engineering Papers: Volume VII, November 1989

SEÎ 89-007, Proceedings of the Fourteenth Annual Software Engineering Workshop,
November 1989

SEL-89-008, Proceedings of the Second NASA Ada Users' Symposium, November 1989

SEL-89-101, Software Engineering Laboratory (SEL) Database Organization and User's
Guide (Revision 1), M. So, G. Heller, S. Steinberg, K. Pumphrey, and D. Spiegel,
February 1990

SEL-90-001, Database Access Manager for the Software Engineering Laboratory
(DAMSEL) User's Guide, M. Buhler, K. Pumphrey, and D. Spiegel, March 1990

SEÎ 90-002, The Cleanroom Case Study in the Software Engineering Laboratory: Project
Description and Earfy Analysis, S. Green et al., March 1990

SEL-90-003,y4 Study of the Portability of an Ada System in the Software Engineering Labo-
ratory (SEL), L. O. Jun and S. R. Valett, June 1990

SEÎ 90-004, Gamma Ray Observatory Dynamics Simulator in Ada (GRODY) Experi-
ment Summary, T. McDermott and M. Stark, September 1990

SEÎ 90-005, Collected Software Engineering Papers: Volume VIII, November 1990

SEL-90-006, Proceedings of the Fifteenth Annual Software Engineering Workshop,
November 1990

BI-5

10000229
1113/1400

SEL-91-001, Software Engineering Laboratory (SEL) Relationships, Models, and Man-
agement Rules, W. Decker, R. Hendrick, and J. Valett, February 1991

SEL-91-003, Software Engineering Laboratory (SEL) Ada Performance Study Report,
E. W. Booth and M. E. Stark, July 1991

SEL-91-004, Software Engineering Laboratory (SEL) Cleanroom Process Model,
S. Green, November 1991

SEL-91-005, Collected Software Engineering Papers: Volume IX, November 1991

SEL-91-102, Software Engineering Laboratory (SEL) Data and Information Policy (Revi-
sion 1), F. McGarry, August 1991

SEL-RELATED LITERATURE
4Agresti, W. W., V. E. Church, D. N. Card, and P. L. Lo, "Designing With Ada for Sat-
ellite Simulation: A Case Study," Proceedings of the First International Symposium on
Ada for the NASA Space Station, June 1986
2Agresti, W. W., F. E. McGarry, D. N. Card, et al., "Measuring Software Technology,"
Program Transformation and Programming Environments. New York: Springer-Verlag,
1984

JBailey, J. W, and V. R. Basili, "A Meta-Model for Software Development Resource
Expenditures," Proceedings of the Fifth International Conference on Software Engineer-
ing. New York: IEEE Computer Society Press, 1981
8Bailey, J. W., and V. R. Basili, "Software Reclamation: Improving Post-Development
Reusability," Proceedings of the Eighth Annual National Conference on Ada Technology,
March 1990
JBasili, V. R., "Models and Metrics for Software Management and Engineering,"
ASME Advances in Computer Technology, January 1980, vol. 1

Basili, V. R., Tutorial on Models and Metrics for Software Management and Engineering.
New York: IEEE Computer Society Press, 1980 (also designated SEL^80-008)

3Basili, V. R., "Quantitative Evaluation of Software Methodology," Proceedings of the
First Pan-Pacific Computer Conference, September 1985

7Basili, V. R., Maintenance = Reuse-Oriented Software Development, University of
Maryland, Technical Report TR-2244, May 1989

7Basili, V. R., Software Development: A Paradigm for the Future, University of Maryland,
Technical Report TR-2263, June 1989

8Basili, V. R., "Viewing Maintenance of Reuse-Oriented Software Development,"
IEEE Software, January 1990

BI-6

10000229
1113/1400

ili, V. R., and J. Beane, "Can the Parr Curve Help With Manpower Distribution
and Resource Estimation Problems'?, "Journal of Systems and Software, February 1981,
vol. 2, no. 1

ili, V. R., and G. Caldiera, A Reference Architecture for the Component Factory,
University of Maryland, Technical Report TR-2607, March 1991

ili, V. R., and K. Freburger, "Programming Measurement and Estimation in the
Software Engineering Laboratory," Journal of Systems and Software, February 1981,
vol. 2, no. 1
3Basili, V. R., and N. M. Panlilio-Yap, "Finding Relationships Between Effort and
Other Variables in the SEL," Proceedings of the International Computer Software and
Applications Conference, October 1985
4Basili, V. R., and D. Patnaik,^ Study on Fault Prediction and Reliability Assessment in
the SEL Environment, University of Maryland, Technical Report TR-1699, August 1986
2Basili, V. R., and B. T. Perricone, "Software Errors and Complexity: An Empirical
Investigation," Communications of the ACM, January 1984, vol. 27, no. 1
1Basili, V. R,, and T. Phillips, "Evaluating and Comparing Software Metrics in the Soft-
ware Engineering Laboratory," Proceedings of the ACM SIGMETRICS Symposiumf
Workshop: Quality Metrics, March 1981
3Basili, V. R., and C. L. Ramsey, "ARROWSMTTH-P— A Prototype Expert System for
Software Engineering Management," Proceedings of the IEEE/MITRE Expert Systems
in Government Symposium, October 1985

Basili, V. R., and J. Ramsey, Structural Coverage of Functional Testing, University of
Maryland, Technical Report TR-1442, September 1984

Basili, V. R., and R. Reiter, "Evaluating Automatable Measures for Software Develop-
ment," Proceedings of the Workshop on Quantitative Software Models for Reliability,
Complexity, and Cost. New York: IEEE Computer Society Press, 1979
5Basili, V. R., and H. D. Rombach, "Tailoring the Software Process to Project Goals
and Environments," Proceedings of the 9th International Conference on Software Engi-
neering, March 1987
5Basili, V. R., and H. D. Rombach, "T A M E: Tailoring an Ada Measurement Envi-
ronment," Proceedings of the Joint Ada Conference, March 1987
5Basili, V. R., and H. D. Rombach, "T A M E: Integrating Measurement Into Software
Environments," University of Maryland, Technical Report TR-1764, June 1987
6Basili, V. R., and H. D. Rombach, "The TAME Project: Towards Improvement-
Oriented Software Environments," IEEE Transactions on Software Engineering, June
1988

BI-7

10000229
1113/1400

7Basili, V. R., and H. D. Rombach, Towards A Comprehensive Framework for Reuse: A
Reuse-Enabling Software Evolution Environment, University of Maryland, Technical
Report TR-2158, December 1988
8Basili, V. R., and H. D. Rombach, Towards A Comprehensive Framework for Reuse:
Model-Based Reuse Characterization Schemes, University of Maryland, Technical
Report TR-2446, April 1990

ili, V R., and H. D. Rombach, Support for Comprehensive Reuse, University of
Maryland, Technical Report TR-2606, February 1991
3Basili, V. R., and R. W. Selby, Jr., "Calculation and Use of an Environment's Charac-
teristic Software Metric Set," Proceedings of the Eighth International Conference on Soft-
ware Engineering. New York: IEEE Computer Society Press, 1985

Basili, V R., and R. W. Selby, Jr., Comparing the Effectiveness of Software Testing Strate-
gies, University of Maryland, Technical Report TR-1501, May 1985
3Basili, V. R., and R. W. Selby, Jr., "Four Applications of a Software Data Collection
and Analysis Methodology," Proceedings of the NATO Advanced Study Institute, August
1985
5Basili, V R., and R. Selby, "Comparing the Effectiveness of Software Testing Strate-
gies," IEEE Transactions on Software Engineering, December 1987

ili, V R., and R. W. Selby, "Paradigms for Experimentation and Empirical Studies
in Software Engineering," Reliability Engineering and System Safety, January 1991
4Basili, V R., R. W. Selby, Jr., and D. H. Hutchens, "Experimentation in Software
Engineering," IEEE Transactions on Software Engineering, July 1986
2Basili, V. R., R. W. Selby, and T. Phillips, "Metric Analysis and Data Validation Across
FORTRAN Projects," IEEE Transactions on Software Engineering, November 1983
2Basili, V. R., and D. M. Weiss,>l Methodology for Collecting Valid Software Engineering
Data, University of Maryland, Technical Report TR-1235, December 1982
3Basili, V. R., and D. M. Weiss, "A Methodology for Collecting Valid Software Engi-
neering Data," IEEE Transactions on Software Engineering, November 1984
1Basili, V. R., and M. V. Zelkowitz, "The Software Engineering Laboratory: Objec-
tives," Proceedings of the Fifteenth Annual Conference on Computer Personnel Research,
August 1977

Basili, V. R., and M. V. Zelkowitz, "Designing a Software Measurement Experiment,"
Proceedings of the Software Life Cycle Management Workshop, September 1977
1Basili, V. R., and M. V. Zelkowitz, "Operation of the Software Engineering Labora-
tory," Proceedings of the Second Software Life Cycle Management Workshop, August
1978

BI-8
10000229
1113/1400

ili, V. R., and M. V. Zelkowitz, "Measuring Software Development Characteristics
in the Local Environment," Computers and Structures, August 1978, vol. 10

Basili, V R., and M. V. Zelkowitz, "Analyzing Medium Scale Software Development,"
Proceedings of the Third International Conference on Software Engineering. New York:
IEEE Computer Society Press, 1978

, E. W., and M. E. Stark, "Designing Configurable Software: COMPASS Imple-
mentation Concepts," Proceedings ofTri-Ada 1991, October 1991

L. C, V. R. Basili, and W. M. Thomas,y4 Pattern Recognition Approach for Soft-
ware Engineering Data Analysis, University of Maryland, Technical Report TR-2672,
May 1991

5Brophy, C. E., W. W. Agresti, and V. R. Basili, "Lessons Learned in Use of Ada-
Oriented Design Methods," Proceedings of the Joint Ada Conference, March 1987

6Brophy, C. E., S. Godfrey, W. W. Agresti, and V R. Basili, "Lessons Learned in the
Implementation Phase of a Large Ada Project," Proceedings of the Washington Ada
Technical Conference, March 1988

2Card, D. N., "Early Estimation of Resource Expenditures and Program Size,"
Computer Sciences Corporation, Technical Memorandum, June 1982

2Card, D. N., "Comparison of Regression Modeling Techniques for Resource Estima-
tion," Computer Sciences Corporation, Technical Memorandum, November 1982

3Card, D.N., "A Software Technology Evaluation Program," Annais do XVIII
Congresso Nacional de Informatica, October 1985

5Card, D. N., and W. W. Agresti, "Reserving the Software Science Anomaly," The Jour-
nal of Systems and Software, 1987

6Card, D. N., and W. W. Agresti, "Measuring Software Design Complexity," The Jour-
nal of Systems and Software, June 1988

4Card, D. N., V E. Church, and W. W. Agresti, "An Empirical Study of Software Design
Practices," IEEE Transactions on Software Engineering, February 1986

Card, D. N., V E. Church, W. W. Agresti, and Q. L. Jordan, "A Software Engineering
View of Flight Dynamics Analysis System," Parts I and n, Computer Sciences Corpora-
tion, Technical Memorandum, February 1984

Card, D. N., Q. L. Jordan, and V. E. Church, "Characteristics of FORTRAN Modules,"
Computer Sciences Corporation, Technical Memorandum, June 1984

5Card, D. N., F. E. McGarry, and G. T. Page, "Evaluating Software Engineering
Technologies," IEEE Transactions on Software Engineering, Jury 1987

BI-9

10000229
1113/1400

3Card, D. N., G. T. Page, and F. E. McGany, "Criteria for Software Modularization,"
Proceedings of the Eighth International Conference on Software Engineering. New York:
IEEE Computer Society Press, 1985
1Chen, E., and M. V. Zelkowitz, "Use of Cluster Analysis To Evaluate Software Engi-
neering Methodologies," Proceedings of the Fifth International Conference on Software
Engineering. New York: IEEE Computer Society Press, 1981
4Church, V.E., D. N. Card, W.W.Agresti, and Q. L. Jordan, "An Approach for
Assessing Software Prototypes," ACM Software Engineering Notes, July 1986
2Doerflinger, C. W., and V R. Basili, "Monitoring Software Development Through
Dynamic Variables," Proceedings of the Seventh International Computer Software and
Applications Conference. New York: IEEE Computer Society Press, 1983

Doubleday, D., ASAP: An Ada Static Source Code Analyzer Program, University of
Maryland, Technical Report TR-1895, August 1987 (NOTE: 100 pages long)
6Godfrey, S., and C. Brophy, "Experiences hi the Implementation of a Large Ada
Project," Proceedings of the 1988 Washington Ada Symposium, June 1988

Hamilton, M., and S. Zeldin,^ Demonstration ofAXES for NAVPAK, Higher Order
Software, Inc., TR-9, September 1977 (also designated SEL-77-005)
5Jeffery, D. R., and V. Basili, Characterizing Resource Data: A Model for Logical
Association of Software Data, University of Maryland, Technical Report TR-1848, May
1987
6Jeffery, D. R., and V R. Basili, "Validating the TAME Resource Data Model," Pro-
ceedings of the Tenth International Conference on Software Engineering, April 1988
5Mark, L., and H. D. Rombach, A Meta Information Base for Software Engineering,
University of Maryland, Technical Report TR-1765, July 1987
6Mark, L., and H. D. Rombach, "Generating Customized Software Engineering
Information Bases From Software Process and Product Specifications," Proceedings of
the 22nd Annual Hawaii International Conference on System Sciences, January 1989
5McGany, F. E., and W. W. Agresti, "Measuring Ada for Software Development in the
Software Engineering Laboratory (SEL)," Proceedings of the 21st Annual Hawaii
International Conference on System Sciences, January 1988
7McGarry, E, L. Esker, and K. Quimby, "Evolution of Ada Technology in a Production
Software Environment," Proceedings of the Sixth Washington Ada Symposium
(WADAS), June 1989
3McGarry, F. E., J. Valett, and D. Hall, "Measuring the Impact of Computer Resource
Quality on the Software Development Process and Product," Proceedings of the
Hawaiian International Conference on System Sciences, January 1985

BI-10
10000229
1113/1400

National Aeronautics and Space Administration (NASA), NASA Software Research
Technology Workshop (Proceedings), March 1980
3Page, G., F. E. McGany, and D. N. Card, "A Practical Experience With Independent
Verification and Vali dation," Proceedings of the Eighth International Computer Software
and Applications Conference, November 1984
5Ramsey, C. L., and V. R. Basili, An Evaluation of Expert Systems for Software Engi-
neering Management, University of Maryland, Technical Report TR-1708, September
1986
3Ramsey, J., and V. R. Basili, "Analyzing the Test Process Using Structural Coverage,"
Proceedings of the Eighth International Conference on Software Engineering. New York:
IEEE Computer Society Press, 1985
5Rombach, H. D., "A Controlled Experiment on the Impact of Software Structure on
Maintainability," IEEE Transactions on Software Engineering, March 1987
8Rombach, H. D., "Design Measurement: Some Lessons Learned," IEEE Software,
March 1990

^ombach, H. D., "Software Reuse: A Key to the Maintenance Problem," Butterworth
Journal of Information and Software Technology, January/February 1991
6Rombach, H. D., and V R. Basili, "Quantitative Assessment of Maintenance: An
Industrial Case Study," Proceedings From the Conference on Software Maintenance,
September 1987
6Rombach, H. D., and L. Mark, "Software Process and Product Specifications: A Basis
for Generating Customized SE Information Bases," Proceedings of the 22nd Annual
Hawaii International Conference on System Sciences, January 1989
7Rombach, H. D., and B. T. Ulery, Establishing a Measurement Based Maintenance
Improvement Program: Lessons Learned in the SEL, University of Maryland, Technical
Report TR-2252, May 1989
6Seidewitz, E., "Object-Oriented Programming in Smalltalk and Ada," Proceedings
of the 1987 Conference on Object-Oriented Programming Systems, Languages, and
Applications, October 1987
5Seidewitz, E., "General Object-Oriented Software Development: Background and
Experience," Proceedings of the 21st Hawaii International Conference on System
Sciences, January 1988
6Seidewitz, E., "General Object-Oriented Software Development with Ada: A Life
Cycle Approach," Proceedings of the CASE Technology Conference, April 1988
9Seidewitz, E., "Object-Oriented Programming Through Type Extension in Ada 9X,"
Ada Letters, March/April 1991

BI-11

10000229
1113/1400

4Seidewitz, E., and M. Stark, "Tbwards a General Object-Oriented Software Develop-
ment Methodology," Proceedings of the First International Symposium on Ada for the
NASA Space Station, June 1986
9Seidewitz, E., and M. Stark, "An Object-Oriented Approach to Parameterized Soft-
ware in Ada," Proceedings of the Eighth Washington Ada Symposium, June 1991
8Stark, M., "On Designing Parametrized Systems Using Ada," Proceedings of the
Seventh Washington Ada Symposium, June 1990
7Stark, M. E. and E. W. Booth, "Using Ada to Maximize Verbatim Software Reuse,"
Proceedings ofTRI-Ada 1989, October 1989
5Stark, M., and E. Seidewitz, "Towards a General Object-Oriented Ada lifecycle,"
Proceedings of the Joint Ada Conference, March 1987
8Straub, P. A., and M. V. Zelkowitz, "PUC: A Functional Specification Language for
Ada," Proceedings of the Tenth International Conference of the Chilean Computer Science
Society, Jury 1990
7Sunazuka, T., and V. R. Basili, Integrating Automated Support for a Software Manage-
ment Cycle Into the TAME System, University of Maryland, Technical Report TR-2289,
July 1989

Turner, C, and G. Caron,^4 Comparison of RADC and NASA/SEL Software Develop-
ment Data, Data and Analysis Center for Software, Special Publication, May 1981

Turner, C., G. Caron, and G. Brement, NASA/SEL Data Compendium, Data and
Analysis Center for Software, Special Publication, April 1981
5Valett, J. D., and F. E. McGany, "A Summary of Software Measurement Experiences
in the Software Engineering laboratory," Proceedings of the 21st Annual Hawaii
International Conference on System Sciences, January 1988
3Weiss, D. M., and V. R. Basili, "Evaluating Software Development by Analysis of
Changes: Some Data From the Software Engineering Laboratory," IEEE Transactions
on Software Engineering, February 1985
5Wu, L., V. R. Basili, and K. Reed, "A Structure Coverage Tbol for Ada Software Sys-
tems," Proceedings of the Joint Ada Conference, March 1987
1Zelkowitz, M. V, "Resource Estimation for Medium-Scale Software Projects," Pro-
ceedings of the Twelfth Conference on the Interface of Statistics and Computer Science.
New York: IEEE Computer Society Press, 1979
2Zelkowitz, M. V, "Data Collection and Evaluation for Experimental Computer
Science Research," Empirical Foundations for Computer and Information Science (Pro-
ceedings), November 1982

BI-12
10000229
1113/1400

6Zelkowitz, M. V, "The Effectiveness of Software Prototyping: A Case Study," Pro-
ceedings of the 26th Annual Technical Symposium of the Washington, D. C., Chapter of the
ACM, June 1987

6Zelkowitz, M. V, "Resource Utilization During Software Development," Journal of
Systems and Software, 1988

8Zelkowitz, M. V, "Evolution Towards Specifications Environment: Experiences With
Syntax Editors," Information and Software Technology, April 1990

Zelkowitz, M. V, and V. R. Basili, "Operational Aspects of a Software Measurement
Facility," Proceedings of the Software Life Cycle Management Workshop, September 1977

BI-13

10000229
1113/1400

NOTES:
1This article also appears in SEL-82-004, Collected Software Engineering Papers:
Volume!,July 1982.

2This article also appears in SEL-83-003, Collected Software Engineering Papers:
Volume II, November 1983.

3This article also appears in SEÎ 85-003, Collected Software Engineering Papers:
Volume III, November 1985.

4This article also appears in SEL-86-004, Collected Software Engineering Papers:
Volume IV, November 1986.

5This article also appears in SEL-87-009, Collected Software Engineering Papers:
Volume V, November 1987.

6This article also appears in SEL/-88-002, Collected Software Engineering Papers:
Volume VI, November 1988.

7This article also appears in SEL-89-006, Collected Software Engineering Papers:
Volume VII, November 1989.

8This article also appears in SEl̂ 90-005, Collected Software Engineering Papers:
Volume VIII, November 1990.

9This article also appears in SEÎ 91-005, Collected Software Engineering Papers:
Volume IX, November 1991.

BI-14

10000229
1113/1400

