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FOREWORD

The Software Engineering Laboratory (SEL) is an organization sponsored by the
National Aeronautics and Space Administration/Goddard Space Flight Center
(NASA/GSFC) and created for the purpose of investigating the effectiveness of soft-
ware engineering technologies when applied to the development of applications soft-
ware. The SEL was created in 1976 and has three primary organizational members:

NASA/GSFC, Systems Development Branch

University of Maryland, Department of Computer Science

Computer Sciences Corporation, Systems Development Operation

The goals of the SEL are (1) to understand the software development process in the
GSFC environment; (2) to measure the effect of various methodologies, tools, and
models on this process; and (3) to identify and then to apply successful development
practices. The activities, findings, and recommendations of the SEL are recorded in the
Software Engineering Laboratory Series, a continuing series of reports that includes
this document.

The major contributor to this document is

Scott Green (NASA/GSFC)

Additionally, the following persons contributed significantly:

Victor Basili (University of Maryland)
Salty Godfrey (NASA/GSFC)
Frank McGarry (NASA/GSFC)
Rose Pajerski (NASA/GSFC)
Sharon Waligora (Computer Sciences Corporation)

Single copies of this document can be obtained by writing to

Systems Development Branch
Code 552
Goddard Space Flight Center
Greenbelt, Maryland 20771
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ABSTRACT

IWjidjagimentdescribes the Software Engineering Laboratory (SEL) cleanroom proc-
ess model J The model is based on data and analysis from previous cleanroom efforts
within the SEL and is tailored to serve as a guideline in applying the methodology to
future production software efforts. It.deseribesjhe phases that are part of the process
model life cycle from the delivery of requirementsto the start of acceptance testing/for
each defined phase, a set of specific activities is discussed, and the appropriate data
flow is described. This.document-also-presents pertinent managerial issues, key simi-
larities and differences between the SEEs cleanrtiom process model and the standard
development approach used on SEL projects, and significant lessons learned from
prior cleanroom projects. It is intended that the process model described.in.this-docu-
ment will be further tailored as additional SEL cleanroom projects are analyzed.
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SECTION 1—INTRODUCTION

This document describes the cleanroom process model to be used on Flight Dynamics
Division (FDD) software systems, based on results and analysis of the cleanroom meth-
odology as applied to previous FDD software development efforts. The process model
described in this document is a combination of actual activities applied on earlier ef-
forts and suggested enhancements for future projects. The information presented here
should serve as a guideline in applying the methodology to projects within the FDD.
However, this document is intended for use as a supplement to organized training in
the methodology before any cleanroom project is initiated, and not as a replacement for
appropriate training.

This document is primarily targeted for software developers and project leaders on
cleanroom projects and is appropriate for Goddard Space Flight Center (GSFC) and
contractor personnel within the Software Engineering Laboratory (SEL). Addi-
tionally, recommended SEL software development procedures should be followed
when a specific description is not contained in this document (References 1 and 2).
Updates to the process model, and therefore to this document, are expected as further
analysis is performed and additional development efforts are completed.

1.1 DOCUMENT OVERVIEW

Section 1 describes the document's purpose and intended audience, and supplies back-
ground information for the remainder of the document. Section 2 describes the key
similarities and differences between the SEL cleanroom model and the standard SEL
development approach. Section 3 outlines some specific managerial and configuration
control activities that need to be addressed during a SEL cleanroom project. Section 4
contains a summary of significant lessons learned from past cleanroom development
efforts. Section 5 presents the detailed cleanroom process model and provides pictorial
representations of the technical components in that process model. A glossary, list of
references, and appendix outlining the steps in box structure expansion are also
included.

1.2 THE SOFTWARE ENGINEERING LABORATORY

The SEL is sponsored by the National Aeronautics and Space Administration (NASA)/
GSFC to investigate the effectiveness of software engineering technologies when ap-
plied to the development of applications software (Reference 3). It was organized in
1976 with the following goals:

1. To understand the software development process in a particular environment

2. To measure the effects of various development techniques, models, and tools
on this development process

3. To identify and apply improved methodologies in the GSFC environment.
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The principal participants in the SEL are the Systems Development Branch of the FDD
of NASA/GSFC, the Department of Computer Science of the University of Maryland,
and the Systems Development Operation of Computer Sciences Corporation. Over
the past 15 years, the SEL has investigated numerous techniques and methods involving
dozens of projects in order to understand and improve the software development
process in the FDD environment.

13 THE CLEANROOM METHODOLOGY

The cleanroom methodology was selected for study in the SEL for a variety of reasons
(Reference 4). The SEL was interested in optimizing the software development proc-
ess and improving the effectiveness of software testing, thereby reducing the rework ef-
fort that encompasses a significant portion of the FDD development effort
(Reference 5). The cleanroom methodology also displayed the potential to increase
software quality and reliability without negatively affecting productivity, an area of in-
terest in any software environment. Additionally, the cleanroom methodology pre-
sented an opportunity to increase the SEEs understanding in the application of a
development methodology with previously limited exposure in the software commu-
nity.

The cleanroom software development methodology was conceived in the early 1980s by
Dr. Harlan Mills while at IBM (References 6—10). The term "cleanroom" originates
in the integrated circuit (1C) production process, where ICs are assembled in dust-free
"clean rooms" to prevent the destructive effects of dust. When applying the cleanroom
methodology to the development of software systems, the primary focus is on software
defect prevention rather than defect removal.

The goal of cleanroom software engineering is to incrementally build an error-free
product through statistical quality control. The essential elements stress the use of a
structured development approach and include an emphasis on human discipline in the
software process. These elements are enforced in four significant areas. First, there is a
distinct separation of specific development and test activities. Second, developers rely
on peer review and code reading as the primary verification techniques. Third, the pur-
pose of testing is for quality assessment rather than for debugging or detection of de-
fects. Finally, a top-down development approach with emphasis on incremental builds
is followed to allow early assessment of product quality. Figure 1-1 illustrates the SEL
cleanroom build process.
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SECTION 2—RELATIONSHIP TO THE TRADITIONAL SEL
APPROACH

This section describes some important similarities and differences between the SEEs
cleanroom process model and the traditional development approach used on SEL proj-
ects.

2.1 KEY SIMILARITIES

The products and activities contained in this section are similar to items found in the
SEL's Recommended Approach to Software Development (Reference 1) arid Manager's
Handbook for Software Development (Revision 1) (Reference 11) and can be followed in
the cleanroom process model by applying the minor adjustments noted.

2.1.1 Requirements and Specifications

The requirements definition team delivers the requirements, functional, and mathe-
matical specifications to the cleanroom project team in the same format historically
used in the FDD environment. These documents are used throughout the cleanroom
process model and are not listed as specific input to individual cleanroom activities.
However, they do provide a baseline for the requirements analysis, design, and pretest
phases.

2.1.2 Documentation

The standard set of SEL documentation is generated for the cleanroom model, includ-
ing a software development plan, requirements analysis report, user's guide, system de-
scription, and software development history report. Design documents and test plans
are also produced, although the specific contents and structure may deviate from tradi-
tional SEL documentation and are based on the activities and products required as part
of the model.

2.1.3 Communication With Requirements Team

As with all SEL projects, well-defined communication channels between the develop-
ment and requirements teams are an essential element in the success of the software
life cycle. Typically, question/answer and specification modification forms are de-
signed to document the communication and allow information to pass between teams.
These processes remain in the SEL cleanroom model and, in fact, become more signifi-
cant in light of the development team's effort to always produce error-free software.
Because the cleanroom process relies on stable specifications as a basis, the discipline
in the process is often useful in forcing specification deficiencies into the open (Refer-
ence 8).

2.1.4 Formal Reviews

The SEEs two formal reviews—Preliminary Design Review (PDR) and Critical Design
Review (CDR)—remain within the cleanroom structure, although their placement in

2-1
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the life cycle is not as clearly defined since the design/code/test activities are not entirely
sequential, but rather iterative within builds.

The PDR should occur at approximately the same point as in the standard SEL method-
ology; that is, after the high-level functional breakdown of the system has been defined.
In the design phase preceding the PDR, the box structure algorithm should be used in
documenting the system and subsystem structures. Generally, no code or build testing
activities will have occurred by PDR, although a build content schedule should be in
place.

The CDR should be viewed as a status update, occurring after the iterative develop-
ment activities have begun. The review should be scheduled sometime between the de-
livery of the first and second builds to the test team. Since the total system design will
not be complete at this time, the contents of the review should focus on management
and build status rather than on the detailed technical design of the system. However,
open design issues should be indicated and their impact addressed.

As a complement to the traditional SEL reviews, additional but less formal Build
Design Reviews (BDRs) should be scheduled during the design and implementation of
each build. Whereas the CDR targets its material to the management level, a BDR
should focus on the specific detailed design material, with the requirements team
analysts as the intended audience. A BDR should be scheduled as the build process
shifts from box structure design and review into the actual coding activities for the build.
This allows the requirements team to review the design with minimal impact to the soft-
ware product, thereby reducing rework for the development team.

2.2 KEY DIFFERENCES
The items contained in this section highlight the primary differences between the SEL
cleanroom process model and the traditional SEL development approach.

2.2.1 Separate Teams
Unlike the traditional SEL project team, the cleanroom project team is divided into two
distinct teams: a development team and a test team. The development team is respon-
sible for designing and coding the software; the test team handles all integration and
system testing activities. However, the two teams work together as a single unit in anal-
ysis of the requirements and in support of acceptance testing.

2.2.2 Computer Access
The development team completes all design and implementation of the system without
access to the target computer. The software is passed to the test team after the devel-
opers complete desktop verification; the test team handles all compilation and integra-
tion activities. No unit testing occurs within the cleanroom process model.

Although coding on the target machine is prohibited, the use of personal computers
(PCs) and text files is encouraged as a mechanism for recording the code and uploading
it to the testers.

2-2
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2.2.3 Box Structure Design

The introduction of box structures as proposed by Mills (References 6 and 10) provides
a formal design method for the. development team to document and verify the software
design. Box structure design is a stepwise refinement and verification process that de-
scribes components in three forms: black boxes, state boxes, and clear boxes.

A black box provides an external view of the component based on data abstraction
usage. A state box provides an intermediate internal view of the component based on
internal state and the use of internal data abstractions. A clear box provides a more
detailed internal view in which sequential or concurrent usage of additional data
abstractions replaces the state box's internal data. The clear box view may also indicate
the need for decomposition of additional black boxes.

2.2.4 Software Verification i

Since access to the target computer and compiler is denied, the development team must
rely on team reviews and code reading as the key techniques for software verification.
These techniques replace unit testing as the guide for determining when the software
components should be placed under configuration control.

2.2.5 System Testing Approach

The evolution of the cleanroom testing approach (Reference 9) is based on a goal of
verifying reliability rather than detecting errors. System testing in the cleanroom proc-
ess model is based on a statistical profile of how the system will be used operationally,
rather than the traditional SEL functional testing approach based on system capabili-
ties. By testing according to operational concepts, paths of the system used most fre-
quently will be tested most thoroughly. Thus, the amount of time spent in testing
various paths will directly correspond to the expected use of the system.

However, situations may occur where it is necessary to ensure adequate testing of sys-
tem paths labeled as critical or essential, even though the operational distribution may
indicate a low likelihood of expected use. The cleanroom process model does not pro-
hibit targeted testing on these areas, but carefully removes these test scenarios from any
statistical analysis.

Cleanroom testing is also driven by the fact that the development team delivers the soft-
ware in increments. Although all tests are designed to execute the entire system, the
successive addition of capabilities governs the functions available for execution.
Therefore, the complete system is not actually tested until the delivery of the final build
from the development team.

2.2.6 Acceptance Test Support

During acceptance testing, the development and test teams work together to resolve
software anomalies. The development team is responsible for making all software
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changes and verifying their correctness. The test team is responsible for confirming
that the operational scenario in which any failure was found can be executed success-
fully. The test team also continues to handle configuration control of the system, down-
loading components upon request to the development team for correction. A
representative from both teams should attend acceptance test sessions and status meet-
ings to gather information and provide preliminary assessment of problems.
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SECTION 3—MANAGEMENT AND CONFIGURATION CONTROL
ACTIVITIES

In addition to the technical activities performed by the development and test teams,
several management and configuration control issues need to be addressed as part of
the SEL cleanroom process model.

3.1 TEAM STRUCTURE DEFINITION

A decision must be made early in the life cycle concerning the staffing of the develop-
ment and test teams. Staffing levels should be sufficient, and actual staffing assign-
ments must be carefully evaluated. Attention should be given to adequate application
and skill expertise in addition to previous cleanroom experience, especially when much
of the project staff is unfamiliar with the methodology.

As a general guideline, development teams should have three or four members, to
facilitate the peer review process. For test teams, a minimum of two testers must be
assigned to allow support and review of the testing activities. On projects consisting of
several subsystems, development and test team members may be assigned to multiple
subsystems.

3.2 BUILD SCHEDULE DEFINITION

The build schedule should be defined before the PDR. The build schedule should out-
line the number of incremental builds in the development effort, the contents of each
build, and the target date for delivery of the build from the development team to the test
team. Since successful execution of the schedule depends on sufficient timespans for
the technical teams to complete their assigned tasks, input from the team leaders
should be solicited. Attention should also be given to creating builds that result in a
smooth and testable pipeline of software increments. It is important that the build
increments be reasonable in scope and size for the development team as well as the test
team, since both work in parallel and the amount of inactive time for each must be mini-
mized.

33 CONFIGURATION CONTROL PROCEDURES

Generally, the test team is responsible for defining and executing configuration control
procedures in the cleanroom process model. However, input and recommendations
from the project leader and development team leader should be considered when de-
fining the procedures to be followed.

Configuration control procedures for transferring new and modified components be-
tween the teams should be documented, and decisions on the organization and layout
of all required system libraries should be made. System libraries will generally be
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needed for PC source code, mainframe source code, mainframe stubs, mainframe non-
executable libraries (NCALs) or object code, mainframe load modules, and mainframe
job control language (JCL). Configuration control procedures for adding, logging, de-
leting, and moving components between libraries must also be defined. All configura-
tion control procedures should be recorded in a formal configuration management
plan.
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SECTION 4—LESSONS LEARNED

This section contains 10 significant lessons learned from previous SEL projects devel-
oped using the SEL cleanroom process model. The items presented here cover a wide
range of process model activities and have been incorporated into the appropriate
phase descriptions in Section 5.

1. The SEL cleanroom process model should be viewed as dynamic. The meth-
odology itself is still maturing, and there may not be a concrete answer to
every problem or question that arises. Since the model is being applied to
production software, decisions must frequently be made to allow the project
to continue toward its required completion date.

2. The cleanroom methodology relies heavily on a team-oriented development
approach. Individual preferences and styles must sometimes be sacrificed in
an effort to adopt standards that ease the task of understanding and review-
ing peer work.

3. Concerns such as changes to specifications, application experience, and the
psychological impact of the methodology on team members appear to have
little or no impact on the applicability of the cleanroom process in the FDD
environment.

4. A higher percentage of the total project effort is spent in design activities on
cleanroom projects than is found on projects that follow the standard SEL
development approach.

5. The cleanroom methodology reemphasizes the benefits of peer code review
found in previous SEL studies. In addition to finding coding errors, a concen-
trated code reading process uncovers nonexecution faults (e.g., prologs, pro-
gram design language (PDL), comments) to keep all components consistent,
accurate, and up to date.

6. The testing activities used in the cleanroom model are less well-defined than
the development activities. This may lead to greater experimentation and
deviation from project to project with respect to the actual testing approach
followed by the test team.

7. The number of components reviewed in the team inspections will probably
range from 3 to 10. The variation depends on the frequency of reviews, the
schedules of team members, and the size or complexity of the components
being reviewed.

8. Having multiple code readers results in measurably more effective reviews
than does having one reader. Previous SEL cleanroom efforts have shown

. 4-1
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that, often, each fault is discovered by only one reader, even when multiple
readers are used. Only a small percentage of the total faults are typically un-
covered by all readers for any given component.

9. When examining the code phase effort, approximately the same percentage
of effort is spent code reading as code writing.

10. Although a separation of team functions is essential in the cleanroom model,
informal meetings and discussions between the development and test team
leaders are often beneficial in isolating the true source of software failures.
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SECTION 5—THE SEL CLEANROOM PROCESS MODEL PHASES

The SEL cleanroom process model is composed of five distinct phases: requirements
analysis, design,.code, pretest, and test This section provides a detailed breakdown of
the activities that constitute each of these phases. Each phase is further associated with
the particular team responsible for performing the activities within that phase. Fig-
ure 5-1 shows the five phases and the high-level data flow among them.

The process model begins with the delivery of the requirements specifications, func-
tional specifications, and mathematical specifications from the requirements organiza-
tion. The requirements analysis phase is performed jointly by the development and test
teams and serves to resolve ambiguities, incorporate corrections into the specifications,
and facilitate a common discovery process in understanding the problem.

After the requirements analysis phase, the process model specifies independent activi-
ties for each team to perform. The development team begins the incremental design
phase and code phase build activities, using box structure refinement to document the
design process and peer code review to verify software correctness before delivery to
the. test team. Concurrently, the test team initiates the pretest phase by defining the
statistical test approach to be followed and preparing for the development team's soft-
ware build deliveries.

The structured team reviews held while designing and coding the software components
are an essential part of the cleanroom process model. These peer review activities re-
place the traditional unit testing as the key verification technique for individual soft-
ware components. It is this strong reliance on human discipline in the software
verification process that separates cleanroom from most traditional software develop-
ment methodologies.

Upon delivery of builds from the development team, the test team begins the test phase
activities, generating and executing the statistical tests and validating the results. Since
the development and test efforts both affect the build process, clear and concise proce-
dures for transferring software and handling failures are required. Although the devel-
opment team makes all software corrections, discussion between testers and
developers is often useful in isolating the actual failure source.

The remainder of this section contains an explanation of each cleanroom process
model activity, grouped according to the five phases cited. Each activity is organized
into the following segments:

• Completed by: the team responsible for performing the activity

• Description: a description of the activity

• Input Activities: input required from other cleanroom activities

• Output Activities: output required for other cleanroom activities
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• Exit Criteria: general questions that may assist in determining completion of
the activity

• Notes: information or guidelines that may assist in understanding or com-
pleting the activity

5.1 REQUIREMENTS ANALYSIS PHASE

The requirements analysis phase consists of one cleanroom activity: box abstraction.
The activity is performed jointly by the development and test teams to foster a common
understanding of the requirements and specifications. Figure 5-2 shows the data flow
resulting from requirements analysis activity.

black box representation of system

10000099g-002

Figure 5-2. Requirements Analysis Activity

Requirements analysis begins upon delivery of the requirements specifications, func-
tional specifications, and mathematical specifications from the requirements organiza-
tion. The goal of analyzing the contents of the documents for completeness, clarity,
consistency, and feasibility is similar to the traditional SEL recommended approach
(Reference 1). The primary difference lies in the process used to record the analysis,
namely box abstraction.

The black box representations produced in this phase are used as a baseline for the de-
velopment and test teams to complete the remainder of the SEL cleanroom process
model activities.

5.1.1 Activity: Box Abstraction

Completed by: Development Team and Test Team

Description: The development and test teams attend specification walkthroughs given
by the requirements team and analyze the requirements specifications, functional spec-
ifications, and mathematical specifications using the following process:

• Create clear box representations of the system as follows:

— Convert functional specifications data flows to clear box representa-
tions of the system

5-3
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— Submit formal questions to account for any inconsistencies, ambigui-
ties, or errors in specifications

— Integrate answers to formal questions and information discussed at
walkthroughs into clear box representations

— Review and improve clear box representations at team meetings

• Create state box representations of the system as follows:

— Convert clear box representations to state box representations of the
system

— Submit formal questions to account for any inconsistencies, ambigui-
ties, or errors in specifications

— Integrate answers to formal questions and information discussed at
walkthroughs into state box representations

— Review and improve state box representations at team meetings

• Create black box representations of the system as follows:

— Convert state box representations to black box representations of the
system

— Submit formal questions to account for any inconsistencies, ambigui-
ties, or errors in specifications

— Integrate answers to formal questions and information discussed at
walkthroughs into black box representations

— Review and improve black box representations at team meetings

The teams also generate a requirements analysis report that highlights to-be-
determined (TBD) items and concerns revealed through analysis of the requirements
and specifications documents.

Input Activities: None

Output Activities:

• Black box refinement

— Black box representations of the system

• User input identification

- Black box representations of the system

5-4
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• Test item description

— Black box representations of the system

• System input identification

- Black box representations of the system

Exit Criteria:

• Do the development and test teams have a sufficient understanding of the
system to begin their respective tasks?

• Are the specifications complete enough to define the necessary box repre-
sentations?

• Have all inconsistencies, clarifications, and errors been submitted through
the formal question-and-answer process?

Have development and test team members been identified by the conclusion
of this activity?

Notes:

• Developers and testers work together as a single project team during this ac- •••
tivity.

• The project team should not make any assumptions when analyzing the speci- :

fications; all input, processes, and output must be defined completely.

• The data dictionary provided in the specifications should be analyzed thor- --.,
oughty for completeness.

• A formal question must be submitted for all discrepancies uncovered; re-
liance on verbal answers should be avoided.

• The project leader must ensure that questions, answers, and specification
modifications are distributed to all team members.

• Management should expect a higher staffing level than is normally associated
with comparable activities on projects following the traditional SEL develop-
ment methodology.

5.2 DESIGN PHASE

The design phase consists of six activities: user input identification, black box refiner
ment, state box refinement, clear box refinement, box structure review, and component
design review. The development team performs these activities. Figure 5-3 shows the
data flow for design activities.
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Input to the design phase includes the black box representations produced in the re-
quirements analysis phase and a list of all required system output from the test team.
End products include a list of all NAMELISTs and user input for the test team and the
verified prologs that are used to begin the implementation process.

The black/state/clear box structure design activities used in this phase are iterative; they
continue until all clear boxes are designed so that they contain no additional black
boxes and all PDL has been verified.

5.2.1 Activity: User Input Identification

Completed by: Development Team

Description: The development team generates the preliminary system NAMELISTs
and user input. The input is distributed to the test team to assist in its identification of
all potential system input.

Input Activities:

• Box Abstraction

— Black box representations of the system

Output Activities:

• System input identification

— System user inputs

Exit Criteria:

• Has all user input been identified and distributed to the test team before the
total input description has been completed?

• Has the development team reviewed the user input?

Notes:

• Updates to the NAMELISTs and user input should be distributed to the test
team as further design is completed.

• Information gathered by the test team from discussions with the analysts
should be shared with the development team.

5.2.2 Activity: Black Box Refinement

Completed by: Development Team

Description: The development team defines black boxes that will represent the various
functions of the system. Specifically, the development team completes steps 1 and 2 of
the box structure algorithm (see Appendix).
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Functions that may not have been directly described by the specifications (e.g., high-
level system drivers) need to be defined. Some black boxes may be usable from those
that were generated during box abstraction. Simple functions that do not need to retain
data and do not break down into lower functions may be fully designed at this point.

Additional black boxes may be identified as future clear boxes are defined, expanded,
and verified. These clear boxes then become input to the black box refinement process.

Completion of black box design for a component will provide information for the fol-
lowing sections of the prolog:

• Module name

• Purpose

• Arguments (preliminary)

• Requirements reference

• Method/PDL (preliminary)

Black boxes need to go through a team box structure review. Baseline diagrams should
be generated and updated as new components are identified.

Input Activities:

• Box abstraction

— Black box representation of system

• Box structure review

— Verified clear box design

Output Activities:

• Box structure review

— Black box design

• State box refinement

— Preliminary prologs for new components

Exit Criteria:

• Are all stimuli clearly defined for each box?

• Are all responses clearly defined in terms of stimuli for each box?

• Has the author verified the correctness of the box design?

• Has a review been scheduled?
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Notes:

• Team conventions for notation should be followed when describing the black
boxes.

• Most of the black boxes designed here will be different from the black box
representations for the box abstraction effort.

• The black/state/clear box activities are done iterativety until a box is derived
that can be mapped directly to a single component, with no remaining boxes
inside it.

5.23 Activity: State Box Refinement

Completed by: Development Team
i

Description: The development team refines the black boxes into state boxes. A state
box design is added to black boxes that require retained data by following steps 3,4,5,
and 6 of the box structure algorithm (see Appendix).

State boxes are a refinement of the design black boxes, and those derived during this
activity will probably be different from boxes used in box abstraction. COMMON
blocks and other schema for holding state data should be defined.

Completion of state box design for a component will provide information for the fol-
lowing sections of the prolog:

• Arguments (updated)

• COMMON blocks referenced

• Method/PDL (updated)

State boxes need to go through a team box structure review. Baseline diagrams should
also be updated as necessary.

Input Activities:

• Box structure review

- Verified black box design

• Black box refinement

— Preliminary prologs for new components

Output Activities:

• Box structure review

— State box design

5-9
10000099



• Clear box refinement

— Preliminary prologs for new components

Exit Criteria:

• Have all retained data been identified?

• Has the author verified the correctness of the box design?

• Has a review been scheduled?

Notes:

• Team conventions for notation should be followed when describing the state
boxes. ,

• Most of the state boxes designed here will be different from the state box rep-
resentations for the box abstraction effort.

• If there is no need for retained data, black and state boxes are identical.

• The black/state/clear box activities are done iterativery until a box is derived
that can be mapped directly to a single component, with no remaining boxes
inside it.

5.2.4 Activity: Clear Box Refinement

Completed by: Development Team

Description: The development team refines the state boxes into clear boxes by follow-
ing steps 7,8,9, and 10 of the box structure algorithm (see Appendix).

Clear box designs should provide definitions of all local variables and complete method
descriptions for the functions defined in the box structures. The clear box design should
also provide all information to complete the component prolog, including:

•. Arguments (updated)

• Method/PDL (updated)

• External references

The completed prolog should provide references to all system output as required by the
test team for validation of test items.

After clear boxes have been expanded, additional black boxes may need to be defined.
Step 11 of the box structure algorithm should be followed for these expanded black
boxes (see Appendix).
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All clear boxes can be mapped directly to component prologs and PDL, which should
be verified through a component design review. The baseline diagrams should be mo-
dified to reflect the addition of any new black boxes.

Input Activities:

• Box structure review

— Verified state box design

• State box refinement

- Preliminary prologs for new components

• Output data identification

- Required system output

Output Activities:

• Box structure review

— Clear box design r

• Component design review

— Prologs for new components

Exit Criteria:

• Is all information needed for completion of the prolog available?

• Has the author verified the correctness of the design?

• Have any additional black boxes derived from this clear box been identified?

• Has a review been scheduled?

Notes:

• Team conventions for notation should be followed when describing the clear
boxes.

• Most of the clear boxes designed here will be different from the clear box rep-
resentations for the box abstraction effort.

• The black/state/clear box activities are done iterativety until a box is derived
that can be mapped directly to a single component, with no remaining boxes
inside it.
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5.2.5 Activity: Box Structure Review

Completed by: Development Tbam

Description: The development team reviews the box structures to understand the sys-
tem design, identify potential problems, and resolve ambiguities. The following proc-
ess is used:

1. The box structure designs are distributed to the reviewers a few days before
the scheduled review.

2. Reviewers prepare for the review by independently studying the material to
be presented.

3. At the review, the box structures are examined, and questions and comments
are discussed. All problems should be noted on a master copy of the design
materials.

4. A decision is made at the end of the review on the necessity of a rereview of
the material.

5. The design is corrected by the author and reviewed again, if necessary.

Input Activities:

• Black box refinement

- Black box design

• State box refinement

- State box design

• Clear box refinement

— Clear box design

Output Activities:

• State box refinement

- Verified black box design

• Clear box refinement

— Verified state box design

• Black box refinement

- Verified clear box design

5-12
10000099



Exit Criteria:

• Have reviewers decided whether another review is necessary?

• Have all corrections or changes been noted on a master copy of the design
material being reviewed?

• Have all changes and corrections been incorporated into the design?

Notes:

• It may be convenient in some instances to review black and state boxes to-
gether.

• Although box structure reviews are intended to be less formal than compo-
nent design reviews or component code reviews, their importance should not
be diminished

5.2.6 Activity: Component Design Review

Completed by: Development Tfeam

Description: The development team reviews component prologs and PDL to confirm
functionality and identify errors, using the following process: "

1. The component prologs and PDL are distributed to the reviewers a few days
before the scheduled review.

2. The reviewers prepare for the review by independently studying the material
to be presented.

3. At the review, the component designs are examined, and questions and com-
ments are discussed. All errors and action items should be noted on a Com-
ponent Status Form.

4. A decision is made at the end of the review on the necessity of a rereview of
the material.

5. The design is corrected by the author and reviewed again, if necessary.

Input Activities:

• Clear box refinement

— Prologs for new components

Output Activities:

• Component implementation

— Verified prologs for new components
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Exit Criteria:

• Have reviewers decided whether another review is necessary?

• Have all changes, corrections, and actions been noted on the data collections
forms?

• Have all changes and corrections been incorporated into the prologs and
PDL?

• Does the development team have sufficient information to begin coding?

Notes:

• Emphasis during these reviews is on fault isolation rather than fault correc-
tion.

• In addition to the author, there should be at least two other reviewers for
each set of material.

• It may be useful to keep a marked-up master copy of the component prolog
and PDL during the review.

• Each component prolog and PDL will probably require two or three reviews.

• All faults should be noted on Component Status Forms, including cosmetic
errors.

• Any person on the development team should be able to begin coding a com-
ponent once it has passed this review stage; each reviewer should review as
though he or she will be the person required to code the component.

• Every reviewer must be able to completely understand the contents of the
prolog; a single reviewer's objection is sufficient to force some rework to the
component.

53 CODE PHASE

The code phase consists of four activities: component implementation, fault isolation,
component modification, and component code review. The development team per-
forms these activities. Figure 5-4 shows the data flow between the code activities.

Inputs to the code phase include the verified prologs from the Design phase, along with
Software Failure Reports (SFRs) and associated testing documentation from the test
team. End products include new and modified components, verified for correctness by
the development team.

The development team uses the verified prologs to generate the corresponding soft-
ware components. The development team is also responsible for isolating faults in
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previously delivered builds and modifying the appropriate components. All compo-
nents must pass through a code review process before being delivered to the test team.

5.3.1 Activity: Component Implementation
Completed by: Development Team

Description: The development team writes code for each component, based on the veri-
fied prologs and PDL. Components should be coded according to the build schedule
and the planned delivery of builds to the test team. All required component stubs that
are needed for testing of the build must also be generated.

Input Activities:

• Component design review

- Verified prologs for new components

Output Activities:

• Component code review

— New components

— Component stubs

Exit Criteria:

• Have the components been coded according to the team's coding standards?

• Has the developer/author examined the code for correctness before passing
it to reviewers?

• Have all required component stubs been written?

Notes:

• Code must be written so that it is easy to follow, understand, and maintain by
someone other than the author.

• Individual coding styles should be eliminated in favor of common team and
SEL coding guidelines.

53.2 Activity: Component Code Review
Completed by: Development learn

Description: The development team reviews the newly coded or modified components
to confirm implementation of the design and identify potential faults, using the follow-
ing process:

1. Component listings are distributed to the reviewers a few days before the
scheduled review.

2. Reviewers prepare for the review by independently code-reading the mate-
rial to be presented.
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3. At the review, the components are examined, and questions and comments
are discussed. All errors and action items should be noted on a Component
Status Form.

4. A decision is made at the end of the review on the necessity of a rereview of
the material.

5. The code is corrected by the author and reviewed again, if necessary.

After components have been verified, the appropriate SEL forms are completed:
Component Origination Forms (COFs) for new components and Change Report
Forms (CRFs) and SFRs for modified components.

Input Activities:

• Component implementation

— New components

- Component stubs

• Component modification

— Modified components

— Software Failure Reports

Output Activities:

• System integration

— Verified new components

- Verified component stubs

- Verified modified components

- COFs

- CRFs

- SFRs

Exit Criteria:

• Have reviewers decided whether another review is necessary?

• Have all changes, corrections, and action items been noted on the data
collection forms?

• Have all changes and corrections been incorporated into the software com-
ponents?
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• Has a COF been completed for each new component?

• Have all necessary CRFs and SFRs been completed for modified compo-
nents?

Notes:

• A master listing of the component should be kept during the review by a des-
ignated recorder, to consolidate all necessary changes.

• Each component should be read by at least two developers other than the
original author.

• Code should be clear, complete, and easily understood by all reviewers; this is
the last chance for the development team to review the components before
they are delivered to the test team.

• Prologs and PDL should be checked for updates during the review of modi-
fied components.

• Changes and corrections should be viewed as constructive and team ori-
ented, not antagonistic.

• Each reviewer should establish a systematic way of reading (e.g., first check-
ing variables, then calling sequences) to avoid oversights. Since developers
will probably have unique styles and therefore differing strengths in their
reading approach, the chance of an error's getting through multiple review-
ers is reduced.

• Code reading by stepwise abstraction is strongly recommended.

• If changes are other than cosmetic, the corrected components should be re-
distributed and reviewed again.

533 Activity: Fault Isolation

Completed by: Development Team

Description: The development team receives an SFR and appropriate compilation/link
listing or test case printout from the test team. The development team uses the in-
formation to isolate the cause of the software failure. When all software components
requiring correction have been identified, the development team requests the test team
to download the components for modification.

Input Activities:

• System integration

— Compilation/link listing

- SFR
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• Test case validation

— Test case printout

- SFR

Output Activities:

• Component modification

- Faulty components

- SFRs .

Exit Criteria:

• Has the source of the failure been isolated?

• Have all components requiring modification been requested and received
from the test team?

Have proper configuration control measures and procedures been followed
to note which components are being modified by the development team?

Notes:

• The failure source should be carefully isolated before any components are
requested for modification.

• Up-to-date bluebook listings should be kept to aid in the fault isolation proc-
ess.

• The development team should initially attempt to isolate the failure source
by examining the design and test case printout. However, it may become nec-
essary to request additional diagnostic data to assist in tracking the problem.

• Informal discussions with the test team may be useful in gathering informa-
tion about the failure.

53.4 Activity: Component Modification

Completed by: Development Tfeam

Description: The development team modifies the requested components after receiv-
ing them from the test team.

Input Activities:

• Fault Isolation

— Faulty components

- SFRs
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Output Activities:

• Component Code Review

— Modified components

- SFRs

Exit Criteria:

• Have the components been modified according to the team's coding
standards?

• Has the developer/modifier examined the code for correctness before pass-
ing it to others for review?

• Have all necessary prologs and PDL been updated?

Notes:

• Corresponding prolog and PDL updates must be made whenever a compo-
nent is modified.

• Team coding standards should be followed during all modifications.

5.4 PRETEST PHASE

The pretest phase consists of five activities: test item description, input description,
output data identification, test item mapping, and JCL generation. The test team per-
forms these activities. Figure 5-5 shows the data flow for pretest activities.

Input includes the black box representations from the requirements analysis phase and
the list of system input from the development team's design efforts. End products in-
clude a list of required system output for the development team and a description of all
test items, passage criteria, system input values and probabilities, and JCL to be used in
the testing process.

The goal of the pretest phase is to prepare the test team for the beginning of testing
activities upon delivery of the first build from the development team. By the conclusion
of these activities, the test team should have a clear understanding of most system input
and system operational scenarios.

5.4.1 Activity: Test Item Description

Completed by: lest Team

Description: The test team identifies all test items and the passage criteria to be used for
each. The specifications are examined to identify significant and testable elements.
These may include output from specific equations, values of intermediate parameters
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in equations, entire subfunctions (e.g., the reading of NAMELISTs), and options or
displays that are part of the user interface. The test team must also define passage
criteria to serve as a guideline in validation descriptions of each specific test item.
Multiple testers should review the functional specifications, the list of test items, and
the passage criteria to ensure correctness, feasibility, and complete system coverage.

Input Activities:

• Box abstraction

- Black box representations of the system

Output Activities:

• Test item mapping

- Test items

— Passage criteria

• Required output data identification

— Test items

- Passage criteria

Exit Criteria:

• Has the list of test items been reviewed to ensure complete system coverage?

• Have the passage criteria for each test item been reviewed by another tester
for completeness, correctness, and feasibility?

Notes:

• The test team must ensure that all pertinent test items are specified; this list
of test items will be the foundation for the test team's activities throughout
the testing process.

• As modifications are made to the specifications, additional test items may
need to be identified.

5.42 Activity: System Input Identification

Completed by: Test Team

Description: The test team determines the operational profile of the system, identifies
all potential input to the system, and determines the possible ranges for each input
value. Probabilities of selection are assigned to each value or set of values in the range,

5-22
10000099



based on the system operational scenarios. These distributions are used in the statisti-
cal test case generation.

Input Activities:

• Box abstraction

- Black box representations of systems

• User input identification

- System user input

Output Activities:

• Test case generation

— System input

- Ranges for system input

- Probabilities for system input values

Exit Criteria:

• Has all potential system input been identified?

• Have distribution ranges and associated probabilities been assigned for each
. system input?

Notes: *

• All resources should be examined in understanding the operational profile of
the system: interviews with operators and analysts, demonstrations of similar
systems, personal experiences, specification documents, and operational
concepts documents.

• The information gathered by the test team may also be beneficial to the de-
velopment team in its understanding of how the system should function.

• Testers should submit formal questions to document concerns whenever it is
unclear to them how the system will actually be used operationally.

5.43 Activity: Test Item Mapping

Completed by: Test Team

Description: The test team maps each test item to the earliest build where that test item
can be tested and validated. When major or critical test items cannot be fully validated
until late builds, intermediate elements may become new test items with passage crite-
ria of their own.
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Input Activities:

• Test item description

— Test items

— Passage criteria

Output Activities:

• Test case generation

— Test items organized by builds

— Passage criteria

• Test case validation

— Test items organized by builds

— Passage criteria

Exit Criteria:

• Do testers have a complete list of test items organized by builds?

• Is each test item mapped to a single build?

Notes:

• The complete list of test items organized by builds is one of the primary ele-
ments used by the test team during the actual testing process.

• Passage criteria should be defined as new test items are identified.

5.4.4 Activity: Required Output Data Identification

Completed by: Test learn

Description: The test team identifies all data that must be available as output from the
system to facilitate the testing process. The list of required output data is passed to the
development team and should include all output needed for verification and validation
of the specified test items.

Input Activities:

• Test item description

— Test items

— Passage criteria
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Output Activities:

• Clear box refinement

- Required system output

Exit Criteria:

• Has the test team thoroughly analyzed what data need to be available to
verity all test items?

• Has the test team submitted the list of necessary output in time for the devel-
opment team to include it in the appropriate box refinements?

Notes:

• The output information should be passed on to the development team as
early as possible to minimize rework on its part; updates to the list should be
passed over as soon as they are known.

• The development team may make the required output available in many dif-
ferent formats (e.g., displays, reports, and debug).

• If the same data item is required at different points in the processing stream,
it should be listed as a separate item each time it is needed.

• The list of output data generated in this activity is based solely on the needs of
the test team and may be different from the system output listed by the re-
quirements team in the functional specifications.

5.4.5 Activity: JCL Generation

Completed by: Test Team ':

Description: The test team generates all JCL required to compile, link, and execute the
test cases.

Input Activities: None

Output Activities:

• System integration

- Integration JCL

• Test case execution

- Execution JCL

Exit Criteria:

• Has all required JCL been generated?

• Has all required JCL been reviewed by another member of the test team?

Notes: None
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5.5 TEST PHASE

The test phase consists of four activities: system integration, test case generation, test
case execution, and test case validation. The test team performs these activities. Fig-
ure 5-6 shows the data flow between the test activities.

Input from the pretest phase includes the defined set of test items, passage criteria, and
system input descriptions. These are used in the generation and validation of test cases.
Verified software components and associated SEL forms are input from the develop-
ment team's coding effort for integration of the system. The required integration and
execution JCL are also input from the pretest activities. The primary end products from
the phase are the SFRs generated when failures occur in the integration or execution
process. The test team transfers these reports, along with any other pertinent informa-
tion, to the development team for fault isolation and correction.

5.5.1 Activity: System Integration

Completed by: Test Team

Description: For new build deliveries, the development team delivers components,
COMMON blocks, BLOCK DATAs, NAMELISTs, and necessary component stubs to
the test team, along with the corresponding COF. The development team places the
new source code into the PC system library. The test team then uploads the new code to
the mainframe system library and uploads the required stubs to the mainframe stubs
library. The test team logs components using COF information and submits the forms
to the SEL database personnel.

After modifying faulty components, the development team delivers components,
COMMON blocks, BLOCK DATAs, and NAMELISTs downloaded for correction
back to the test team, along with the corresponding CRFs and SFRs. The development
team places the modified source code into the PC system library. The test team then
uploads the modified code to the mainframe system library. The test team records the
appropriate information from the CRFs and SFRs and submits the forms to the SEL
database personnel.

The test team creates and submits compilation JCL for the appropriate components.
An SFR is generated for each component that does not compile cleanly, and those com-
ponents are transferred back to the development team. When all components and
component stubs required for a given build have been successfully compiled, the test
team creates and submits JCL to create a load module. An SFR is generated for any
failure that can be traced to a software component.

Input Activities:

• Component code review

— Verified new components

— Verified component stubs
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— Verified modified components

- COFs

- CRFs

- SFRs

• JCL generation

— Integration JCL

Output Activities:

• Fault isolation

— Compilation listing

- SFR

• Test case execution

— Load module

Exit Criteria:

• For new source code, does the delivery represent a complete build?

• Have all COFs been included with the delivery?

• Have all required component stubs been included with the delivery?

• For modified source code, have all CRFs and SFRs been included with the
delivery?

• Have all components downloaded to the development team for modification
been accounted for?

• Have all components compiled cleanly?

• Have SFRs been generated for all components with compilation errors?

• Has a load module been created without software component errors?

Notes:

• The development team corrects all compilation errors and warnings.

• If a component replaces a previously delivered component stub, the test team
assures that the corresponding stub has been deleted from the stubs library.
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5.5.2 Activity: Test Case Generation

Completed by: Test Team

Description: The test team determines how many test cases are needed for each build to
satisfy the validation of test items associated with the build. For statistically generated
test input values, a test case generator, random number generator, or data simulator
can be used to generate actual test case values. Internal team peer inspections should
be used after a set of test cases has been generated to assure completeness.

After examining the statistically generated test cases, a decision must be made regard-
ing specific test items that are considered critical but are not sufficiently exercised in the
existing set of test cases. If additional test cases are desired, they may be generated
without reliance on the statistical probabilities for input ranges. However, these non-
statistically generated test cases should be noted as such, and the results should not be
included in mean-time-to-failure (MTTF) evaluations.

Input Activities:

• System input identification

- System input

- Ranges for system input

— Probabilities for system input values

• Test item mapping '• '•

— Test items organized by builds :

— Passage criteria .

Output Activities:

• Test case execution

- Test cases

- Test data

Exit Criteria:

• Are test cases for the build complete and ready to be executed?

• Have all proposed test cases been reviewed by another test team member?

Notes:

• Only statistically generated test cases should be used in MTTF evaluations.

• The test team should use nonstatisticalty generated tests judiciously, they
should be reserved for critical test items that the test team feels must be
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evaluated without regard to their probable occurrence in the program's op-
erational scenarios.

5.5 J Activity: Test Case Execution

Completed by: Test Team

Description: The test team executes the test case and initiates a corresponding Test
Status Form (TSF). All pertinent information is recorded on the TSF, including any
unplanned deviation from the defined test.

Input Activities:

• Test case generation

- Test case

- Test data

• JCL generation

— Execution JCL

• System integration

— Load module

Output Activities:

• Test case validation

- Test case printout

- TSF

Exit Criteria:

• Has the test case been executed successfully, without test team error?

• Has all pertinent information been included on the TSF?

Notes:

• The test team should keep all test-related information well organized and
easily retrievable, including test case printouts and TSFs.

• A review of previously executed test cases may be beneficial in the validation
and fault isolation of a current test.

• The TSF should provide sufficient information to allow the test team to du-
plicate the test, if necessary.
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5.5.4 Activity: Test Case Validation

Completed by: Test Team

Description: The test team analyzes the test results, validating that they fulfill the test
item passage criteria and are consistent with any expected results. For any test item that
does not pass, the test team initiates an SFR and returns it, along with appropriate test
case printouts, to the development team for fault isolation.

Input Activities:

• Test item mapping

- Test items organized by build

— Passage criteria

• Test case execution

- lest case printout

- TSF

Output Activities:

• Fault isolation

- Test case printout

- SFR

Exit Criteria:

• Have all test items corresponding to the test case been evaluated?

• Have all necessary SFRs been generated?

Notes:

• The test team may use a variety of tools in the validation process, including
simulators, comparison software, and hand calculations.

• The test team should pass all pertinent test case execution information to the
development team to aid in the fault isolation process.
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APPENDIX—BOX STRUCTURE ALGORITHM

The 11 steps used in the box structure algorithm outlined by Mills (References 6 and 10)
are as follows:

1. Define Black Box Stimuli—Determine every possible stimulus for the black
box.

2. Define Black Box Behavior—For every possible stimulus, determine its com-
plete response in terms of its stimulus history.

3. Discover State Data Requirements—For each response, describe its stimu-
lus history as a state data requirement.

4. Define the State Data—Select the subset of the required state data that is to
be maintained as state data at this level. \

5. Design the State Box—For the state data selected at this level, determine the
internal black box required for the state box.

6. Verify the State Box—Verify the correctness of the state box with respect to
the required black box behavior.

7. Discover State Data Accesses—For each item of state data and each possible
stimulus, determine all possible ways of accessing the data.

8. Define Data Abstractions—Develop a schema to organize state data into
data abstractions so they may be effectively accessed.

9. Design the Clear Box—Develop uses of the defined data abstractions to re-
place the internal black box of the state box.

10. Verify the Clear Box—Verify the correctness of the clear box with respect to
the state box.

11. Repeat Stepwise Expansion Until Complete—For every new data abstrac-
tion, repeat steps 1—10 of the algorithm until acceptable program and data
descriptions are reached.
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GLOSSARY

BDR Build Design Review

CDR Critical Design Review

COF Component Origination Form

CRF Change Report Form

FDD Flight Dynamics Division

GSFC Goddard Space Flight Center

1C integrated circuit

JCL job control language

MTTF mean-time-to-failure

NASA National Aeronautics and Space Administration

NCAL nonexecutable library

PC personal computer

PDL program design language

PDR Preliminary Design Review

SEL Software Engineering Laboratory

SFR Software Failure Report

TBD to be determined

TSF Test Status Form
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