
SOFTWARE E^4GINEERING LABORATORY SERIES SEL-91-OG4

SOFTWARE ENGINEERING
LABORATORY (SEL)

CLEANROOy PROCESS MODEL

NOVEMBER 1991

(NASA-TM-105509) SOFTWARE ENGINEERING
LABORATORY (SEL) CLEANRQOM PROCESS MODEL
(NASA) 67 p CSCL Q9B

N92-18272

Unclas
G3/61 0068917

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbeli, Maryland 20771

SOFTWARE ENGINEERING LABORATORY SERIES SEL-91-004

SOFTWARE ENGINEERING
LABORATORY (SEL)

CLEANROOM PROCESS MODEL

NOVEMBER 1991

fVJ/NSA
National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

FOREWORD

The Software Engineering Laboratory (SEL) is an organization sponsored by the
National Aeronautics and Space Administration/Goddard Space Flight Center
(NASA/GSFC) and created for the purpose of investigating the effectiveness of soft-
ware engineering technologies when applied to the development of applications soft-
ware. The SEL was created in 1976 and has three primary organizational members:

NASA/GSFC, Systems Development Branch

University of Maryland, Department of Computer Science

Computer Sciences Corporation, Systems Development Operation

The goals of the SEL are (1) to understand the software development process in the
GSFC environment; (2) to measure the effect of various methodologies, tools, and
models on this process; and (3) to identify and then to apply successful development
practices. The activities, findings, and recommendations of the SEL are recorded in the
Software Engineering Laboratory Series, a continuing series of reports that includes
this document.

The major contributor to this document is

Scott Green (NASA/GSFC)

Additionally, the following persons contributed significantly:

Victor Basili (University of Maryland)
Salty Godfrey (NASA/GSFC)
Frank McGarry (NASA/GSFC)
Rose Pajerski (NASA/GSFC)
Sharon Waligora (Computer Sciences Corporation)

Single copies of this document can be obtained by writing to

Systems Development Branch
Code 552
Goddard Space Flight Center
Greenbelt, Maryland 20771

111 PRECED^G PAGE BLANK NOT FILMED
10000099 '

ABSTRACT

IWjidjagimentdescribes the Software Engineering Laboratory (SEL) cleanroom proc-
ess model J The model is based on data and analysis from previous cleanroom efforts
within the SEL and is tailored to serve as a guideline in applying the methodology to
future production software efforts. It.deseribesjhe phases that are part of the process
model life cycle from the delivery of requirementsto the start of acceptance testing/for
each defined phase, a set of specific activities is discussed, and the appropriate data
flow is described. This.document-also-presents pertinent managerial issues, key simi-
larities and differences between the SEEs cleanrtiom process model and the standard
development approach used on SEL projects, and significant lessons learned from
prior cleanroom projects. It is intended that the process model described.in.this-docu-
ment will be further tailored as additional SEL cleanroom projects are analyzed.

10000099

PRECEDE PAGE BLANK NOT FILMED

—.H

Table of Contents

Section 1—Introduction 1-1

1.1 Document Overview 1-1

1.2 The Software Engineering Laboratory 1-1

1.3 The Cleanroom Methodology 1-2

Section 2—Relationship to the Traditional SEL Approach 2-1

2.1 Key Similarities 2-1

2.1.1 Requirements and Specifications 2-1

2.1.2 Documentation . 2-1

2.13 Communication With Requirements Team 2-1

2.1.4 Formal Reviews 2-1

2.2 Key Differences 2-2

2.2.1 Separate Teams 2-2

2.2.2 Computer Access 2-2

2.2.3 Box Structure Design 2-3

2.2.4 Software Verification 2-3

2.2.5 System Testing Approach 2-3

2.2.6 Acceptance Test Support 2-3

Section 3—Management and Configuration Control Activities 3-1

3.1 Team Structure Definition 3-1

3.2 Build Schedule Definition 3-1

3.3 Configuration Control Procedures 3-1

Section 4—Lessons Learned 4-1

Section 5—The SEL Cleanroom Process Model Phases 5-1

5.1 Requirements Analysis Phase 5-3

5.1.1 Activity: Box Abstraction 5-3

Vll

10000099
PRECEDING PAGE BUWy NOT FILMED

Table of Contents (Cont'd)

Section 5 (Cont'd)

5.2 Design Phase 5-5

5.2.1 Activity: User Input Identification 5-7

5.2.2 . Activity: Black Box Refinement 5-7

5.2.3 Activity: State Box Refinement 5-9

5.2.4 Activity: Clear Box Refinement 5-10

5.2.5 Activity. Box Structure Review 5-12

5.2.6 Activity: Component Design Review 5-13

5.3 Code Phase 5-14

5.3.1 Activity: Component Implementation 5-16

5.3.2 Activity: Component Code Review 5-16

5.3.3 Activity: Fault Isolation 5-18

5.3.4 Activity: Component Modification 5-19

5.4 Pretest Phase 5-20

5.4.1 Activity: Test Item Description 5-20

5.4.2 Activity: System Input Identification 5-22

5.4.3 Activity: Test Item Mapping 5-23

5.4.4 Activity: Required Output Data Identification 5-24

5.4.5 Activity: JCL Generation 5-25

5.5 Test Phase 5-26

5.5.1 Activity: System Integration 5-26

5.5.2 Activity: Test Case Generation 5-29

5.5.3 Activity: Test Case Execution 5-30

5.5.4 Activity: Test Case Validation 5-31

viii

10000099

Table of Contents (Cont'd)

Appendix—Box Structure Algorithm

Glossary

References

Standard Bibliography of SEL Literature

IX

10000099

List of Illustrations

Figure

1-1 SEL deanroom Build Process 1-3

5-1 Cleanroom Process Model Phase Data Flow 5-2

5-2 Requirements Analysis Activity 5-3

5-3 Design Activities 5-6

5-4 Code Activities 5-15

5-5 Pretest Activities 5-21

5-6 Test Activities 5-27

10000099

SECTION 1—INTRODUCTION

This document describes the cleanroom process model to be used on Flight Dynamics
Division (FDD) software systems, based on results and analysis of the cleanroom meth-
odology as applied to previous FDD software development efforts. The process model
described in this document is a combination of actual activities applied on earlier ef-
forts and suggested enhancements for future projects. The information presented here
should serve as a guideline in applying the methodology to projects within the FDD.
However, this document is intended for use as a supplement to organized training in
the methodology before any cleanroom project is initiated, and not as a replacement for
appropriate training.

This document is primarily targeted for software developers and project leaders on
cleanroom projects and is appropriate for Goddard Space Flight Center (GSFC) and
contractor personnel within the Software Engineering Laboratory (SEL). Addi-
tionally, recommended SEL software development procedures should be followed
when a specific description is not contained in this document (References 1 and 2).
Updates to the process model, and therefore to this document, are expected as further
analysis is performed and additional development efforts are completed.

1.1 DOCUMENT OVERVIEW

Section 1 describes the document's purpose and intended audience, and supplies back-
ground information for the remainder of the document. Section 2 describes the key
similarities and differences between the SEL cleanroom model and the standard SEL
development approach. Section 3 outlines some specific managerial and configuration
control activities that need to be addressed during a SEL cleanroom project. Section 4
contains a summary of significant lessons learned from past cleanroom development
efforts. Section 5 presents the detailed cleanroom process model and provides pictorial
representations of the technical components in that process model. A glossary, list of
references, and appendix outlining the steps in box structure expansion are also
included.

1.2 THE SOFTWARE ENGINEERING LABORATORY

The SEL is sponsored by the National Aeronautics and Space Administration (NASA)/
GSFC to investigate the effectiveness of software engineering technologies when ap-
plied to the development of applications software (Reference 3). It was organized in
1976 with the following goals:

1. To understand the software development process in a particular environment

2. To measure the effects of various development techniques, models, and tools
on this development process

3. To identify and apply improved methodologies in the GSFC environment.

1-1
10000099

The principal participants in the SEL are the Systems Development Branch of the FDD
of NASA/GSFC, the Department of Computer Science of the University of Maryland,
and the Systems Development Operation of Computer Sciences Corporation. Over
the past 15 years, the SEL has investigated numerous techniques and methods involving
dozens of projects in order to understand and improve the software development
process in the FDD environment.

13 THE CLEANROOM METHODOLOGY

The cleanroom methodology was selected for study in the SEL for a variety of reasons
(Reference 4). The SEL was interested in optimizing the software development proc-
ess and improving the effectiveness of software testing, thereby reducing the rework ef-
fort that encompasses a significant portion of the FDD development effort
(Reference 5). The cleanroom methodology also displayed the potential to increase
software quality and reliability without negatively affecting productivity, an area of in-
terest in any software environment. Additionally, the cleanroom methodology pre-
sented an opportunity to increase the SEEs understanding in the application of a
development methodology with previously limited exposure in the software commu-
nity.

The cleanroom software development methodology was conceived in the early 1980s by
Dr. Harlan Mills while at IBM (References 6—10). The term "cleanroom" originates
in the integrated circuit (1C) production process, where ICs are assembled in dust-free
"clean rooms" to prevent the destructive effects of dust. When applying the cleanroom
methodology to the development of software systems, the primary focus is on software
defect prevention rather than defect removal.

The goal of cleanroom software engineering is to incrementally build an error-free
product through statistical quality control. The essential elements stress the use of a
structured development approach and include an emphasis on human discipline in the
software process. These elements are enforced in four significant areas. First, there is a
distinct separation of specific development and test activities. Second, developers rely
on peer review and code reading as the primary verification techniques. Third, the pur-
pose of testing is for quality assessment rather than for debugging or detection of de-
fects. Finally, a top-down development approach with emphasis on incremental builds
is followed to allow early assessment of product quality. Figure 1-1 illustrates the SEL
cleanroom build process.

1-2
100000%

cr
-Q
O

k*

11

oc
Qa.

i-fe-»5
>i

§!>

s

"

.2

(0
(0
oo
2
Q.

O

oI
co
o
O

UJ
(O

O)

IAIV31iN31flld013A3a NV311S3J.

1-3

10000099

SECTION 2—RELATIONSHIP TO THE TRADITIONAL SEL
APPROACH

This section describes some important similarities and differences between the SEEs
cleanroom process model and the traditional development approach used on SEL proj-
ects.

2.1 KEY SIMILARITIES

The products and activities contained in this section are similar to items found in the
SEL's Recommended Approach to Software Development (Reference 1) arid Manager's
Handbook for Software Development (Revision 1) (Reference 11) and can be followed in
the cleanroom process model by applying the minor adjustments noted.

2.1.1 Requirements and Specifications

The requirements definition team delivers the requirements, functional, and mathe-
matical specifications to the cleanroom project team in the same format historically
used in the FDD environment. These documents are used throughout the cleanroom
process model and are not listed as specific input to individual cleanroom activities.
However, they do provide a baseline for the requirements analysis, design, and pretest
phases.

2.1.2 Documentation

The standard set of SEL documentation is generated for the cleanroom model, includ-
ing a software development plan, requirements analysis report, user's guide, system de-
scription, and software development history report. Design documents and test plans
are also produced, although the specific contents and structure may deviate from tradi-
tional SEL documentation and are based on the activities and products required as part
of the model.

2.1.3 Communication With Requirements Team

As with all SEL projects, well-defined communication channels between the develop-
ment and requirements teams are an essential element in the success of the software
life cycle. Typically, question/answer and specification modification forms are de-
signed to document the communication and allow information to pass between teams.
These processes remain in the SEL cleanroom model and, in fact, become more signifi-
cant in light of the development team's effort to always produce error-free software.
Because the cleanroom process relies on stable specifications as a basis, the discipline
in the process is often useful in forcing specification deficiencies into the open (Refer-
ence 8).

2.1.4 Formal Reviews

The SEEs two formal reviews—Preliminary Design Review (PDR) and Critical Design
Review (CDR)—remain within the cleanroom structure, although their placement in

2-1
10000099

the life cycle is not as clearly defined since the design/code/test activities are not entirely
sequential, but rather iterative within builds.

The PDR should occur at approximately the same point as in the standard SEL method-
ology; that is, after the high-level functional breakdown of the system has been defined.
In the design phase preceding the PDR, the box structure algorithm should be used in
documenting the system and subsystem structures. Generally, no code or build testing
activities will have occurred by PDR, although a build content schedule should be in
place.

The CDR should be viewed as a status update, occurring after the iterative develop-
ment activities have begun. The review should be scheduled sometime between the de-
livery of the first and second builds to the test team. Since the total system design will
not be complete at this time, the contents of the review should focus on management
and build status rather than on the detailed technical design of the system. However,
open design issues should be indicated and their impact addressed.

As a complement to the traditional SEL reviews, additional but less formal Build
Design Reviews (BDRs) should be scheduled during the design and implementation of
each build. Whereas the CDR targets its material to the management level, a BDR
should focus on the specific detailed design material, with the requirements team
analysts as the intended audience. A BDR should be scheduled as the build process
shifts from box structure design and review into the actual coding activities for the build.
This allows the requirements team to review the design with minimal impact to the soft-
ware product, thereby reducing rework for the development team.

2.2 KEY DIFFERENCES
The items contained in this section highlight the primary differences between the SEL
cleanroom process model and the traditional SEL development approach.

2.2.1 Separate Teams
Unlike the traditional SEL project team, the cleanroom project team is divided into two
distinct teams: a development team and a test team. The development team is respon-
sible for designing and coding the software; the test team handles all integration and
system testing activities. However, the two teams work together as a single unit in anal-
ysis of the requirements and in support of acceptance testing.

2.2.2 Computer Access
The development team completes all design and implementation of the system without
access to the target computer. The software is passed to the test team after the devel-
opers complete desktop verification; the test team handles all compilation and integra-
tion activities. No unit testing occurs within the cleanroom process model.

Although coding on the target machine is prohibited, the use of personal computers
(PCs) and text files is encouraged as a mechanism for recording the code and uploading
it to the testers.

2-2
10000099

2.2.3 Box Structure Design

The introduction of box structures as proposed by Mills (References 6 and 10) provides
a formal design method for the. development team to document and verify the software
design. Box structure design is a stepwise refinement and verification process that de-
scribes components in three forms: black boxes, state boxes, and clear boxes.

A black box provides an external view of the component based on data abstraction
usage. A state box provides an intermediate internal view of the component based on
internal state and the use of internal data abstractions. A clear box provides a more
detailed internal view in which sequential or concurrent usage of additional data
abstractions replaces the state box's internal data. The clear box view may also indicate
the need for decomposition of additional black boxes.

2.2.4 Software Verification i

Since access to the target computer and compiler is denied, the development team must
rely on team reviews and code reading as the key techniques for software verification.
These techniques replace unit testing as the guide for determining when the software
components should be placed under configuration control.

2.2.5 System Testing Approach

The evolution of the cleanroom testing approach (Reference 9) is based on a goal of
verifying reliability rather than detecting errors. System testing in the cleanroom proc-
ess model is based on a statistical profile of how the system will be used operationally,
rather than the traditional SEL functional testing approach based on system capabili-
ties. By testing according to operational concepts, paths of the system used most fre-
quently will be tested most thoroughly. Thus, the amount of time spent in testing
various paths will directly correspond to the expected use of the system.

However, situations may occur where it is necessary to ensure adequate testing of sys-
tem paths labeled as critical or essential, even though the operational distribution may
indicate a low likelihood of expected use. The cleanroom process model does not pro-
hibit targeted testing on these areas, but carefully removes these test scenarios from any
statistical analysis.

Cleanroom testing is also driven by the fact that the development team delivers the soft-
ware in increments. Although all tests are designed to execute the entire system, the
successive addition of capabilities governs the functions available for execution.
Therefore, the complete system is not actually tested until the delivery of the final build
from the development team.

2.2.6 Acceptance Test Support

During acceptance testing, the development and test teams work together to resolve
software anomalies. The development team is responsible for making all software

2-3
10000099

changes and verifying their correctness. The test team is responsible for confirming
that the operational scenario in which any failure was found can be executed success-
fully. The test team also continues to handle configuration control of the system, down-
loading components upon request to the development team for correction. A
representative from both teams should attend acceptance test sessions and status meet-
ings to gather information and provide preliminary assessment of problems.

2-4
10000099

SECTION 3—MANAGEMENT AND CONFIGURATION CONTROL
ACTIVITIES

In addition to the technical activities performed by the development and test teams,
several management and configuration control issues need to be addressed as part of
the SEL cleanroom process model.

3.1 TEAM STRUCTURE DEFINITION

A decision must be made early in the life cycle concerning the staffing of the develop-
ment and test teams. Staffing levels should be sufficient, and actual staffing assign-
ments must be carefully evaluated. Attention should be given to adequate application
and skill expertise in addition to previous cleanroom experience, especially when much
of the project staff is unfamiliar with the methodology.

As a general guideline, development teams should have three or four members, to
facilitate the peer review process. For test teams, a minimum of two testers must be
assigned to allow support and review of the testing activities. On projects consisting of
several subsystems, development and test team members may be assigned to multiple
subsystems.

3.2 BUILD SCHEDULE DEFINITION

The build schedule should be defined before the PDR. The build schedule should out-
line the number of incremental builds in the development effort, the contents of each
build, and the target date for delivery of the build from the development team to the test
team. Since successful execution of the schedule depends on sufficient timespans for
the technical teams to complete their assigned tasks, input from the team leaders
should be solicited. Attention should also be given to creating builds that result in a
smooth and testable pipeline of software increments. It is important that the build
increments be reasonable in scope and size for the development team as well as the test
team, since both work in parallel and the amount of inactive time for each must be mini-
mized.

33 CONFIGURATION CONTROL PROCEDURES

Generally, the test team is responsible for defining and executing configuration control
procedures in the cleanroom process model. However, input and recommendations
from the project leader and development team leader should be considered when de-
fining the procedures to be followed.

Configuration control procedures for transferring new and modified components be-
tween the teams should be documented, and decisions on the organization and layout
of all required system libraries should be made. System libraries will generally be

3-1
10000099

needed for PC source code, mainframe source code, mainframe stubs, mainframe non-
executable libraries (NCALs) or object code, mainframe load modules, and mainframe
job control language (JCL). Configuration control procedures for adding, logging, de-
leting, and moving components between libraries must also be defined. All configura-
tion control procedures should be recorded in a formal configuration management
plan.

3-2
10000099

SECTION 4—LESSONS LEARNED

This section contains 10 significant lessons learned from previous SEL projects devel-
oped using the SEL cleanroom process model. The items presented here cover a wide
range of process model activities and have been incorporated into the appropriate
phase descriptions in Section 5.

1. The SEL cleanroom process model should be viewed as dynamic. The meth-
odology itself is still maturing, and there may not be a concrete answer to
every problem or question that arises. Since the model is being applied to
production software, decisions must frequently be made to allow the project
to continue toward its required completion date.

2. The cleanroom methodology relies heavily on a team-oriented development
approach. Individual preferences and styles must sometimes be sacrificed in
an effort to adopt standards that ease the task of understanding and review-
ing peer work.

3. Concerns such as changes to specifications, application experience, and the
psychological impact of the methodology on team members appear to have
little or no impact on the applicability of the cleanroom process in the FDD
environment.

4. A higher percentage of the total project effort is spent in design activities on
cleanroom projects than is found on projects that follow the standard SEL
development approach.

5. The cleanroom methodology reemphasizes the benefits of peer code review
found in previous SEL studies. In addition to finding coding errors, a concen-
trated code reading process uncovers nonexecution faults (e.g., prologs, pro-
gram design language (PDL), comments) to keep all components consistent,
accurate, and up to date.

6. The testing activities used in the cleanroom model are less well-defined than
the development activities. This may lead to greater experimentation and
deviation from project to project with respect to the actual testing approach
followed by the test team.

7. The number of components reviewed in the team inspections will probably
range from 3 to 10. The variation depends on the frequency of reviews, the
schedules of team members, and the size or complexity of the components
being reviewed.

8. Having multiple code readers results in measurably more effective reviews
than does having one reader. Previous SEL cleanroom efforts have shown

. 4-1
10000099

that, often, each fault is discovered by only one reader, even when multiple
readers are used. Only a small percentage of the total faults are typically un-
covered by all readers for any given component.

9. When examining the code phase effort, approximately the same percentage
of effort is spent code reading as code writing.

10. Although a separation of team functions is essential in the cleanroom model,
informal meetings and discussions between the development and test team
leaders are often beneficial in isolating the true source of software failures.

4-2
10000099

SECTION 5—THE SEL CLEANROOM PROCESS MODEL PHASES

The SEL cleanroom process model is composed of five distinct phases: requirements
analysis, design,.code, pretest, and test This section provides a detailed breakdown of
the activities that constitute each of these phases. Each phase is further associated with
the particular team responsible for performing the activities within that phase. Fig-
ure 5-1 shows the five phases and the high-level data flow among them.

The process model begins with the delivery of the requirements specifications, func-
tional specifications, and mathematical specifications from the requirements organiza-
tion. The requirements analysis phase is performed jointly by the development and test
teams and serves to resolve ambiguities, incorporate corrections into the specifications,
and facilitate a common discovery process in understanding the problem.

After the requirements analysis phase, the process model specifies independent activi-
ties for each team to perform. The development team begins the incremental design
phase and code phase build activities, using box structure refinement to document the
design process and peer code review to verify software correctness before delivery to
the. test team. Concurrently, the test team initiates the pretest phase by defining the
statistical test approach to be followed and preparing for the development team's soft-
ware build deliveries.

The structured team reviews held while designing and coding the software components
are an essential part of the cleanroom process model. These peer review activities re-
place the traditional unit testing as the key verification technique for individual soft-
ware components. It is this strong reliance on human discipline in the software
verification process that separates cleanroom from most traditional software develop-
ment methodologies.

Upon delivery of builds from the development team, the test team begins the test phase
activities, generating and executing the statistical tests and validating the results. Since
the development and test efforts both affect the build process, clear and concise proce-
dures for transferring software and handling failures are required. Although the devel-
opment team makes all software corrections, discussion between testers and
developers is often useful in isolating the actual failure source.

The remainder of this section contains an explanation of each cleanroom process
model activity, grouped according to the five phases cited. Each activity is organized
into the following segments:

• Completed by: the team responsible for performing the activity

• Description: a description of the activity

• Input Activities: input required from other cleanroom activities

• Output Activities: output required for other cleanroom activities

5-1
10000099

co
D>

S
Q.

S

verified new components and stubs. COFs

verified modified components. SFRs. CRFs

test case printout, SFR

compilation listing, SFR

8

2
'5

co

£

A

pa
ss

ag
e

cr
ite

ria

)

<a
~

(i
C Q_

E co"Is,co c
S-S

, —

in
te

gr
at

io
n

JC
L

1 — ,

ex
ec

ut
io

n
JC

L

S

u.
2

CO
(0

Q.
"3
•o
O

CO
CO
Ou
O

OI
CD
.2
O

U)

1

5-2
10000099

• Exit Criteria: general questions that may assist in determining completion of
the activity

• Notes: information or guidelines that may assist in understanding or com-
pleting the activity

5.1 REQUIREMENTS ANALYSIS PHASE

The requirements analysis phase consists of one cleanroom activity: box abstraction.
The activity is performed jointly by the development and test teams to foster a common
understanding of the requirements and specifications. Figure 5-2 shows the data flow
resulting from requirements analysis activity.

black box representation of system

10000099g-002

Figure 5-2. Requirements Analysis Activity

Requirements analysis begins upon delivery of the requirements specifications, func-
tional specifications, and mathematical specifications from the requirements organiza-
tion. The goal of analyzing the contents of the documents for completeness, clarity,
consistency, and feasibility is similar to the traditional SEL recommended approach
(Reference 1). The primary difference lies in the process used to record the analysis,
namely box abstraction.

The black box representations produced in this phase are used as a baseline for the de-
velopment and test teams to complete the remainder of the SEL cleanroom process
model activities.

5.1.1 Activity: Box Abstraction

Completed by: Development Team and Test Team

Description: The development and test teams attend specification walkthroughs given
by the requirements team and analyze the requirements specifications, functional spec-
ifications, and mathematical specifications using the following process:

• Create clear box representations of the system as follows:

— Convert functional specifications data flows to clear box representa-
tions of the system

5-3
10000099

— Submit formal questions to account for any inconsistencies, ambigui-
ties, or errors in specifications

— Integrate answers to formal questions and information discussed at
walkthroughs into clear box representations

— Review and improve clear box representations at team meetings

• Create state box representations of the system as follows:

— Convert clear box representations to state box representations of the
system

— Submit formal questions to account for any inconsistencies, ambigui-
ties, or errors in specifications

— Integrate answers to formal questions and information discussed at
walkthroughs into state box representations

— Review and improve state box representations at team meetings

• Create black box representations of the system as follows:

— Convert state box representations to black box representations of the
system

— Submit formal questions to account for any inconsistencies, ambigui-
ties, or errors in specifications

— Integrate answers to formal questions and information discussed at
walkthroughs into black box representations

— Review and improve black box representations at team meetings

The teams also generate a requirements analysis report that highlights to-be-
determined (TBD) items and concerns revealed through analysis of the requirements
and specifications documents.

Input Activities: None

Output Activities:

• Black box refinement

— Black box representations of the system

• User input identification

- Black box representations of the system

5-4
10000099

• Test item description

— Black box representations of the system

• System input identification

- Black box representations of the system

Exit Criteria:

• Do the development and test teams have a sufficient understanding of the
system to begin their respective tasks?

• Are the specifications complete enough to define the necessary box repre-
sentations?

• Have all inconsistencies, clarifications, and errors been submitted through
the formal question-and-answer process?

Have development and test team members been identified by the conclusion
of this activity?

Notes:

• Developers and testers work together as a single project team during this ac- •••
tivity.

• The project team should not make any assumptions when analyzing the speci- :

fications; all input, processes, and output must be defined completely.

• The data dictionary provided in the specifications should be analyzed thor- --.,
oughty for completeness.

• A formal question must be submitted for all discrepancies uncovered; re-
liance on verbal answers should be avoided.

• The project leader must ensure that questions, answers, and specification
modifications are distributed to all team members.

• Management should expect a higher staffing level than is normally associated
with comparable activities on projects following the traditional SEL develop-
ment methodology.

5.2 DESIGN PHASE

The design phase consists of six activities: user input identification, black box refiner
ment, state box refinement, clear box refinement, box structure review, and component
design review. The development team performs these activities. Figure 5-3 shows the
data flow for design activities.

5-5
10000099

I

I

£
8.<n
"5

I
3
§Ifl
£
Q.
£

I

I

CO
0

(0
CP
Q

in
S
o>

5-6
10000099

Input to the design phase includes the black box representations produced in the re-
quirements analysis phase and a list of all required system output from the test team.
End products include a list of all NAMELISTs and user input for the test team and the
verified prologs that are used to begin the implementation process.

The black/state/clear box structure design activities used in this phase are iterative; they
continue until all clear boxes are designed so that they contain no additional black
boxes and all PDL has been verified.

5.2.1 Activity: User Input Identification

Completed by: Development Team

Description: The development team generates the preliminary system NAMELISTs
and user input. The input is distributed to the test team to assist in its identification of
all potential system input.

Input Activities:

• Box Abstraction

— Black box representations of the system

Output Activities:

• System input identification

— System user inputs

Exit Criteria:

• Has all user input been identified and distributed to the test team before the
total input description has been completed?

• Has the development team reviewed the user input?

Notes:

• Updates to the NAMELISTs and user input should be distributed to the test
team as further design is completed.

• Information gathered by the test team from discussions with the analysts
should be shared with the development team.

5.2.2 Activity: Black Box Refinement

Completed by: Development Team

Description: The development team defines black boxes that will represent the various
functions of the system. Specifically, the development team completes steps 1 and 2 of
the box structure algorithm (see Appendix).

5-7
10000099

Functions that may not have been directly described by the specifications (e.g., high-
level system drivers) need to be defined. Some black boxes may be usable from those
that were generated during box abstraction. Simple functions that do not need to retain
data and do not break down into lower functions may be fully designed at this point.

Additional black boxes may be identified as future clear boxes are defined, expanded,
and verified. These clear boxes then become input to the black box refinement process.

Completion of black box design for a component will provide information for the fol-
lowing sections of the prolog:

• Module name

• Purpose

• Arguments (preliminary)

• Requirements reference

• Method/PDL (preliminary)

Black boxes need to go through a team box structure review. Baseline diagrams should
be generated and updated as new components are identified.

Input Activities:

• Box abstraction

— Black box representation of system

• Box structure review

— Verified clear box design

Output Activities:

• Box structure review

— Black box design

• State box refinement

— Preliminary prologs for new components

Exit Criteria:

• Are all stimuli clearly defined for each box?

• Are all responses clearly defined in terms of stimuli for each box?

• Has the author verified the correctness of the box design?

• Has a review been scheduled?

5-8
10000099

Notes:

• Team conventions for notation should be followed when describing the black
boxes.

• Most of the black boxes designed here will be different from the black box
representations for the box abstraction effort.

• The black/state/clear box activities are done iterativety until a box is derived
that can be mapped directly to a single component, with no remaining boxes
inside it.

5.23 Activity: State Box Refinement

Completed by: Development Team
i

Description: The development team refines the black boxes into state boxes. A state
box design is added to black boxes that require retained data by following steps 3,4,5,
and 6 of the box structure algorithm (see Appendix).

State boxes are a refinement of the design black boxes, and those derived during this
activity will probably be different from boxes used in box abstraction. COMMON
blocks and other schema for holding state data should be defined.

Completion of state box design for a component will provide information for the fol-
lowing sections of the prolog:

• Arguments (updated)

• COMMON blocks referenced

• Method/PDL (updated)

State boxes need to go through a team box structure review. Baseline diagrams should
also be updated as necessary.

Input Activities:

• Box structure review

- Verified black box design

• Black box refinement

— Preliminary prologs for new components

Output Activities:

• Box structure review

— State box design

5-9
10000099

• Clear box refinement

— Preliminary prologs for new components

Exit Criteria:

• Have all retained data been identified?

• Has the author verified the correctness of the box design?

• Has a review been scheduled?

Notes:

• Team conventions for notation should be followed when describing the state
boxes. ,

• Most of the state boxes designed here will be different from the state box rep-
resentations for the box abstraction effort.

• If there is no need for retained data, black and state boxes are identical.

• The black/state/clear box activities are done iterativery until a box is derived
that can be mapped directly to a single component, with no remaining boxes
inside it.

5.2.4 Activity: Clear Box Refinement

Completed by: Development Team

Description: The development team refines the state boxes into clear boxes by follow-
ing steps 7,8,9, and 10 of the box structure algorithm (see Appendix).

Clear box designs should provide definitions of all local variables and complete method
descriptions for the functions defined in the box structures. The clear box design should
also provide all information to complete the component prolog, including:

•. Arguments (updated)

• Method/PDL (updated)

• External references

The completed prolog should provide references to all system output as required by the
test team for validation of test items.

After clear boxes have been expanded, additional black boxes may need to be defined.
Step 11 of the box structure algorithm should be followed for these expanded black
boxes (see Appendix).

5-10
10000099

All clear boxes can be mapped directly to component prologs and PDL, which should
be verified through a component design review. The baseline diagrams should be mo-
dified to reflect the addition of any new black boxes.

Input Activities:

• Box structure review

— Verified state box design

• State box refinement

- Preliminary prologs for new components

• Output data identification

- Required system output

Output Activities:

• Box structure review

— Clear box design r

• Component design review

— Prologs for new components

Exit Criteria:

• Is all information needed for completion of the prolog available?

• Has the author verified the correctness of the design?

• Have any additional black boxes derived from this clear box been identified?

• Has a review been scheduled?

Notes:

• Team conventions for notation should be followed when describing the clear
boxes.

• Most of the clear boxes designed here will be different from the clear box rep-
resentations for the box abstraction effort.

• The black/state/clear box activities are done iterativety until a box is derived
that can be mapped directly to a single component, with no remaining boxes
inside it.

5-11
10000099

5.2.5 Activity: Box Structure Review

Completed by: Development Tbam

Description: The development team reviews the box structures to understand the sys-
tem design, identify potential problems, and resolve ambiguities. The following proc-
ess is used:

1. The box structure designs are distributed to the reviewers a few days before
the scheduled review.

2. Reviewers prepare for the review by independently studying the material to
be presented.

3. At the review, the box structures are examined, and questions and comments
are discussed. All problems should be noted on a master copy of the design
materials.

4. A decision is made at the end of the review on the necessity of a rereview of
the material.

5. The design is corrected by the author and reviewed again, if necessary.

Input Activities:

• Black box refinement

- Black box design

• State box refinement

- State box design

• Clear box refinement

— Clear box design

Output Activities:

• State box refinement

- Verified black box design

• Clear box refinement

— Verified state box design

• Black box refinement

- Verified clear box design

5-12
10000099

Exit Criteria:

• Have reviewers decided whether another review is necessary?

• Have all corrections or changes been noted on a master copy of the design
material being reviewed?

• Have all changes and corrections been incorporated into the design?

Notes:

• It may be convenient in some instances to review black and state boxes to-
gether.

• Although box structure reviews are intended to be less formal than compo-
nent design reviews or component code reviews, their importance should not
be diminished

5.2.6 Activity: Component Design Review

Completed by: Development Tfeam

Description: The development team reviews component prologs and PDL to confirm
functionality and identify errors, using the following process: "

1. The component prologs and PDL are distributed to the reviewers a few days
before the scheduled review.

2. The reviewers prepare for the review by independently studying the material
to be presented.

3. At the review, the component designs are examined, and questions and com-
ments are discussed. All errors and action items should be noted on a Com-
ponent Status Form.

4. A decision is made at the end of the review on the necessity of a rereview of
the material.

5. The design is corrected by the author and reviewed again, if necessary.

Input Activities:

• Clear box refinement

— Prologs for new components

Output Activities:

• Component implementation

— Verified prologs for new components

5-13
10000099

Exit Criteria:

• Have reviewers decided whether another review is necessary?

• Have all changes, corrections, and actions been noted on the data collections
forms?

• Have all changes and corrections been incorporated into the prologs and
PDL?

• Does the development team have sufficient information to begin coding?

Notes:

• Emphasis during these reviews is on fault isolation rather than fault correc-
tion.

• In addition to the author, there should be at least two other reviewers for
each set of material.

• It may be useful to keep a marked-up master copy of the component prolog
and PDL during the review.

• Each component prolog and PDL will probably require two or three reviews.

• All faults should be noted on Component Status Forms, including cosmetic
errors.

• Any person on the development team should be able to begin coding a com-
ponent once it has passed this review stage; each reviewer should review as
though he or she will be the person required to code the component.

• Every reviewer must be able to completely understand the contents of the
prolog; a single reviewer's objection is sufficient to force some rework to the
component.

53 CODE PHASE

The code phase consists of four activities: component implementation, fault isolation,
component modification, and component code review. The development team per-
forms these activities. Figure 5-4 shows the data flow between the code activities.

Inputs to the code phase include the verified prologs from the Design phase, along with
Software Failure Reports (SFRs) and associated testing documentation from the test
team. End products include new and modified components, verified for correctness by
the development team.

The development team uses the verified prologs to generate the corresponding soft-
ware components. The development team is also responsible for isolating faults in

5-14
10000099

t

I
o
-a
o
O

U)

o>
U.

to

§
g
a.

T3
.2

1

1co
to
o>
c

1
c
o
'IB
'3.

1

I i

M
oc
ll
Ua

CO

a
D
|

*n
Q.

8
to
£

5-15
10000099

previously delivered builds and modifying the appropriate components. All compo-
nents must pass through a code review process before being delivered to the test team.

5.3.1 Activity: Component Implementation
Completed by: Development Team

Description: The development team writes code for each component, based on the veri-
fied prologs and PDL. Components should be coded according to the build schedule
and the planned delivery of builds to the test team. All required component stubs that
are needed for testing of the build must also be generated.

Input Activities:

• Component design review

- Verified prologs for new components

Output Activities:

• Component code review

— New components

— Component stubs

Exit Criteria:

• Have the components been coded according to the team's coding standards?

• Has the developer/author examined the code for correctness before passing
it to reviewers?

• Have all required component stubs been written?

Notes:

• Code must be written so that it is easy to follow, understand, and maintain by
someone other than the author.

• Individual coding styles should be eliminated in favor of common team and
SEL coding guidelines.

53.2 Activity: Component Code Review
Completed by: Development learn

Description: The development team reviews the newly coded or modified components
to confirm implementation of the design and identify potential faults, using the follow-
ing process:

1. Component listings are distributed to the reviewers a few days before the
scheduled review.

2. Reviewers prepare for the review by independently code-reading the mate-
rial to be presented.

5-16
10000099 - . .

3. At the review, the components are examined, and questions and comments
are discussed. All errors and action items should be noted on a Component
Status Form.

4. A decision is made at the end of the review on the necessity of a rereview of
the material.

5. The code is corrected by the author and reviewed again, if necessary.

After components have been verified, the appropriate SEL forms are completed:
Component Origination Forms (COFs) for new components and Change Report
Forms (CRFs) and SFRs for modified components.

Input Activities:

• Component implementation

— New components

- Component stubs

• Component modification

— Modified components

— Software Failure Reports

Output Activities:

• System integration

— Verified new components

- Verified component stubs

- Verified modified components

- COFs

- CRFs

- SFRs

Exit Criteria:

• Have reviewers decided whether another review is necessary?

• Have all changes, corrections, and action items been noted on the data
collection forms?

• Have all changes and corrections been incorporated into the software com-
ponents?

5-17
10000099

• Has a COF been completed for each new component?

• Have all necessary CRFs and SFRs been completed for modified compo-
nents?

Notes:

• A master listing of the component should be kept during the review by a des-
ignated recorder, to consolidate all necessary changes.

• Each component should be read by at least two developers other than the
original author.

• Code should be clear, complete, and easily understood by all reviewers; this is
the last chance for the development team to review the components before
they are delivered to the test team.

• Prologs and PDL should be checked for updates during the review of modi-
fied components.

• Changes and corrections should be viewed as constructive and team ori-
ented, not antagonistic.

• Each reviewer should establish a systematic way of reading (e.g., first check-
ing variables, then calling sequences) to avoid oversights. Since developers
will probably have unique styles and therefore differing strengths in their
reading approach, the chance of an error's getting through multiple review-
ers is reduced.

• Code reading by stepwise abstraction is strongly recommended.

• If changes are other than cosmetic, the corrected components should be re-
distributed and reviewed again.

533 Activity: Fault Isolation

Completed by: Development Team

Description: The development team receives an SFR and appropriate compilation/link
listing or test case printout from the test team. The development team uses the in-
formation to isolate the cause of the software failure. When all software components
requiring correction have been identified, the development team requests the test team
to download the components for modification.

Input Activities:

• System integration

— Compilation/link listing

- SFR

5-18
10000099

• Test case validation

— Test case printout

- SFR

Output Activities:

• Component modification

- Faulty components

- SFRs .

Exit Criteria:

• Has the source of the failure been isolated?

• Have all components requiring modification been requested and received
from the test team?

Have proper configuration control measures and procedures been followed
to note which components are being modified by the development team?

Notes:

• The failure source should be carefully isolated before any components are
requested for modification.

• Up-to-date bluebook listings should be kept to aid in the fault isolation proc-
ess.

• The development team should initially attempt to isolate the failure source
by examining the design and test case printout. However, it may become nec-
essary to request additional diagnostic data to assist in tracking the problem.

• Informal discussions with the test team may be useful in gathering informa-
tion about the failure.

53.4 Activity: Component Modification

Completed by: Development Tfeam

Description: The development team modifies the requested components after receiv-
ing them from the test team.

Input Activities:

• Fault Isolation

— Faulty components

- SFRs

5-19
10000099

Output Activities:

• Component Code Review

— Modified components

- SFRs

Exit Criteria:

• Have the components been modified according to the team's coding
standards?

• Has the developer/modifier examined the code for correctness before pass-
ing it to others for review?

• Have all necessary prologs and PDL been updated?

Notes:

• Corresponding prolog and PDL updates must be made whenever a compo-
nent is modified.

• Team coding standards should be followed during all modifications.

5.4 PRETEST PHASE

The pretest phase consists of five activities: test item description, input description,
output data identification, test item mapping, and JCL generation. The test team per-
forms these activities. Figure 5-5 shows the data flow for pretest activities.

Input includes the black box representations from the requirements analysis phase and
the list of system input from the development team's design efforts. End products in-
clude a list of required system output for the development team and a description of all
test items, passage criteria, system input values and probabilities, and JCL to be used in
the testing process.

The goal of the pretest phase is to prepare the test team for the beginning of testing
activities upon delivery of the first build from the development team. By the conclusion
of these activities, the test team should have a clear understanding of most system input
and system operational scenarios.

5.4.1 Activity: Test Item Description

Completed by: lest Team

Description: The test team identifies all test items and the passage criteria to be used for
each. The specifications are examined to identify significant and testable elements.
These may include output from specific equations, values of intermediate parameters

5-20
10000099

2

o
c
o•a

I

CO
£±s

i

•9in

1

5-21

10000099

in equations, entire subfunctions (e.g., the reading of NAMELISTs), and options or
displays that are part of the user interface. The test team must also define passage
criteria to serve as a guideline in validation descriptions of each specific test item.
Multiple testers should review the functional specifications, the list of test items, and
the passage criteria to ensure correctness, feasibility, and complete system coverage.

Input Activities:

• Box abstraction

- Black box representations of the system

Output Activities:

• Test item mapping

- Test items

— Passage criteria

• Required output data identification

— Test items

- Passage criteria

Exit Criteria:

• Has the list of test items been reviewed to ensure complete system coverage?

• Have the passage criteria for each test item been reviewed by another tester
for completeness, correctness, and feasibility?

Notes:

• The test team must ensure that all pertinent test items are specified; this list
of test items will be the foundation for the test team's activities throughout
the testing process.

• As modifications are made to the specifications, additional test items may
need to be identified.

5.42 Activity: System Input Identification

Completed by: Test Team

Description: The test team determines the operational profile of the system, identifies
all potential input to the system, and determines the possible ranges for each input
value. Probabilities of selection are assigned to each value or set of values in the range,

5-22
10000099

based on the system operational scenarios. These distributions are used in the statisti-
cal test case generation.

Input Activities:

• Box abstraction

- Black box representations of systems

• User input identification

- System user input

Output Activities:

• Test case generation

— System input

- Ranges for system input

- Probabilities for system input values

Exit Criteria:

• Has all potential system input been identified?

• Have distribution ranges and associated probabilities been assigned for each
. system input?

Notes: *

• All resources should be examined in understanding the operational profile of
the system: interviews with operators and analysts, demonstrations of similar
systems, personal experiences, specification documents, and operational
concepts documents.

• The information gathered by the test team may also be beneficial to the de-
velopment team in its understanding of how the system should function.

• Testers should submit formal questions to document concerns whenever it is
unclear to them how the system will actually be used operationally.

5.43 Activity: Test Item Mapping

Completed by: Test Team

Description: The test team maps each test item to the earliest build where that test item
can be tested and validated. When major or critical test items cannot be fully validated
until late builds, intermediate elements may become new test items with passage crite-
ria of their own.

5-23
10000099

Input Activities:

• Test item description

— Test items

— Passage criteria

Output Activities:

• Test case generation

— Test items organized by builds

— Passage criteria

• Test case validation

— Test items organized by builds

— Passage criteria

Exit Criteria:

• Do testers have a complete list of test items organized by builds?

• Is each test item mapped to a single build?

Notes:

• The complete list of test items organized by builds is one of the primary ele-
ments used by the test team during the actual testing process.

• Passage criteria should be defined as new test items are identified.

5.4.4 Activity: Required Output Data Identification

Completed by: Test learn

Description: The test team identifies all data that must be available as output from the
system to facilitate the testing process. The list of required output data is passed to the
development team and should include all output needed for verification and validation
of the specified test items.

Input Activities:

• Test item description

— Test items

— Passage criteria

5-24
10000099

Output Activities:

• Clear box refinement

- Required system output

Exit Criteria:

• Has the test team thoroughly analyzed what data need to be available to
verity all test items?

• Has the test team submitted the list of necessary output in time for the devel-
opment team to include it in the appropriate box refinements?

Notes:

• The output information should be passed on to the development team as
early as possible to minimize rework on its part; updates to the list should be
passed over as soon as they are known.

• The development team may make the required output available in many dif-
ferent formats (e.g., displays, reports, and debug).

• If the same data item is required at different points in the processing stream,
it should be listed as a separate item each time it is needed.

• The list of output data generated in this activity is based solely on the needs of
the test team and may be different from the system output listed by the re-
quirements team in the functional specifications.

5.4.5 Activity: JCL Generation

Completed by: Test Team ':

Description: The test team generates all JCL required to compile, link, and execute the
test cases.

Input Activities: None

Output Activities:

• System integration

- Integration JCL

• Test case execution

- Execution JCL

Exit Criteria:

• Has all required JCL been generated?

• Has all required JCL been reviewed by another member of the test team?

Notes: None

5-25
10000099

5.5 TEST PHASE

The test phase consists of four activities: system integration, test case generation, test
case execution, and test case validation. The test team performs these activities. Fig-
ure 5-6 shows the data flow between the test activities.

Input from the pretest phase includes the defined set of test items, passage criteria, and
system input descriptions. These are used in the generation and validation of test cases.
Verified software components and associated SEL forms are input from the develop-
ment team's coding effort for integration of the system. The required integration and
execution JCL are also input from the pretest activities. The primary end products from
the phase are the SFRs generated when failures occur in the integration or execution
process. The test team transfers these reports, along with any other pertinent informa-
tion, to the development team for fault isolation and correction.

5.5.1 Activity: System Integration

Completed by: Test Team

Description: For new build deliveries, the development team delivers components,
COMMON blocks, BLOCK DATAs, NAMELISTs, and necessary component stubs to
the test team, along with the corresponding COF. The development team places the
new source code into the PC system library. The test team then uploads the new code to
the mainframe system library and uploads the required stubs to the mainframe stubs
library. The test team logs components using COF information and submits the forms
to the SEL database personnel.

After modifying faulty components, the development team delivers components,
COMMON blocks, BLOCK DATAs, and NAMELISTs downloaded for correction
back to the test team, along with the corresponding CRFs and SFRs. The development
team places the modified source code into the PC system library. The test team then
uploads the modified code to the mainframe system library. The test team records the
appropriate information from the CRFs and SFRs and submits the forms to the SEL
database personnel.

The test team creates and submits compilation JCL for the appropriate components.
An SFR is generated for each component that does not compile cleanly, and those com-
ponents are transferred back to the development team. When all components and
component stubs required for a given build have been successfully compiled, the test
team creates and submits JCL to create a load module. An SFR is generated for any
failure that can be traced to a software component.

Input Activities:

• Component code review

— Verified new components

— Verified component stubs

5-26
10000099

CO

I
CO
.o

10

§
O)

5-27

10000099

— Verified modified components

- COFs

- CRFs

- SFRs

• JCL generation

— Integration JCL

Output Activities:

• Fault isolation

— Compilation listing

- SFR

• Test case execution

— Load module

Exit Criteria:

• For new source code, does the delivery represent a complete build?

• Have all COFs been included with the delivery?

• Have all required component stubs been included with the delivery?

• For modified source code, have all CRFs and SFRs been included with the
delivery?

• Have all components downloaded to the development team for modification
been accounted for?

• Have all components compiled cleanly?

• Have SFRs been generated for all components with compilation errors?

• Has a load module been created without software component errors?

Notes:

• The development team corrects all compilation errors and warnings.

• If a component replaces a previously delivered component stub, the test team
assures that the corresponding stub has been deleted from the stubs library.

5-28
10000099

5.5.2 Activity: Test Case Generation

Completed by: Test Team

Description: The test team determines how many test cases are needed for each build to
satisfy the validation of test items associated with the build. For statistically generated
test input values, a test case generator, random number generator, or data simulator
can be used to generate actual test case values. Internal team peer inspections should
be used after a set of test cases has been generated to assure completeness.

After examining the statistically generated test cases, a decision must be made regard-
ing specific test items that are considered critical but are not sufficiently exercised in the
existing set of test cases. If additional test cases are desired, they may be generated
without reliance on the statistical probabilities for input ranges. However, these non-
statistically generated test cases should be noted as such, and the results should not be
included in mean-time-to-failure (MTTF) evaluations.

Input Activities:

• System input identification

- System input

- Ranges for system input

— Probabilities for system input values

• Test item mapping '• '•

— Test items organized by builds :

— Passage criteria .

Output Activities:

• Test case execution

- Test cases

- Test data

Exit Criteria:

• Are test cases for the build complete and ready to be executed?

• Have all proposed test cases been reviewed by another test team member?

Notes:

• Only statistically generated test cases should be used in MTTF evaluations.

• The test team should use nonstatisticalty generated tests judiciously, they
should be reserved for critical test items that the test team feels must be

5-29
10000099

evaluated without regard to their probable occurrence in the program's op-
erational scenarios.

5.5 J Activity: Test Case Execution

Completed by: Test Team

Description: The test team executes the test case and initiates a corresponding Test
Status Form (TSF). All pertinent information is recorded on the TSF, including any
unplanned deviation from the defined test.

Input Activities:

• Test case generation

- Test case

- Test data

• JCL generation

— Execution JCL

• System integration

— Load module

Output Activities:

• Test case validation

- Test case printout

- TSF

Exit Criteria:

• Has the test case been executed successfully, without test team error?

• Has all pertinent information been included on the TSF?

Notes:

• The test team should keep all test-related information well organized and
easily retrievable, including test case printouts and TSFs.

• A review of previously executed test cases may be beneficial in the validation
and fault isolation of a current test.

• The TSF should provide sufficient information to allow the test team to du-
plicate the test, if necessary.

5-30
10000099

5.5.4 Activity: Test Case Validation

Completed by: Test Team

Description: The test team analyzes the test results, validating that they fulfill the test
item passage criteria and are consistent with any expected results. For any test item that
does not pass, the test team initiates an SFR and returns it, along with appropriate test
case printouts, to the development team for fault isolation.

Input Activities:

• Test item mapping

- Test items organized by build

— Passage criteria

• Test case execution

- lest case printout

- TSF

Output Activities:

• Fault isolation

- Test case printout

- SFR

Exit Criteria:

• Have all test items corresponding to the test case been evaluated?

• Have all necessary SFRs been generated?

Notes:

• The test team may use a variety of tools in the validation process, including
simulators, comparison software, and hand calculations.

• The test team should pass all pertinent test case execution information to the
development team to aid in the fault isolation process.

5-31
10000099

APPENDIX—BOX STRUCTURE ALGORITHM

The 11 steps used in the box structure algorithm outlined by Mills (References 6 and 10)
are as follows:

1. Define Black Box Stimuli—Determine every possible stimulus for the black
box.

2. Define Black Box Behavior—For every possible stimulus, determine its com-
plete response in terms of its stimulus history.

3. Discover State Data Requirements—For each response, describe its stimu-
lus history as a state data requirement.

4. Define the State Data—Select the subset of the required state data that is to
be maintained as state data at this level. \

5. Design the State Box—For the state data selected at this level, determine the
internal black box required for the state box.

6. Verify the State Box—Verify the correctness of the state box with respect to
the required black box behavior.

7. Discover State Data Accesses—For each item of state data and each possible
stimulus, determine all possible ways of accessing the data.

8. Define Data Abstractions—Develop a schema to organize state data into
data abstractions so they may be effectively accessed.

9. Design the Clear Box—Develop uses of the defined data abstractions to re-
place the internal black box of the state box.

10. Verify the Clear Box—Verify the correctness of the clear box with respect to
the state box.

11. Repeat Stepwise Expansion Until Complete—For every new data abstrac-
tion, repeat steps 1—10 of the algorithm until acceptable program and data
descriptions are reached.

A-l
10000099

GLOSSARY

BDR Build Design Review

CDR Critical Design Review

COF Component Origination Form

CRF Change Report Form

FDD Flight Dynamics Division

GSFC Goddard Space Flight Center

1C integrated circuit

JCL job control language

MTTF mean-time-to-failure

NASA National Aeronautics and Space Administration

NCAL nonexecutable library

PC personal computer

PDL program design language

PDR Preliminary Design Review

SEL Software Engineering Laboratory

SFR Software Failure Report

TBD to be determined

TSF Test Status Form

G-l
10000099

REFERENCES

1. SEL-81-205, Recommended Approach to Software Development, F. E. McGarry,
G. Page, S. Eslinger, et aL, April 1983

2. SEL-86-001, Programmer's Handbook for Flight Dynamics Software Develop-
ment, R. Wood and E. Edwards, March 1986

3. SEL-81-104, The Software Engineering Laboratory, D. N. Card, E E. McGarry,
G. Page, et aL, February 1982

4. SEL-90-002, The Cleanroom Case Study in the Software Engineering Laboratory:
Project Description and Earfy Analysis, S. Green et al., March 1990

5. SEL-86-006, "Determining Software Productivity Leverage Factors in the SEL,"
Proceedings From the Eleventh Annual Software Engineering Workshop,
F. McGarry, S. Voltz, and J. Valett, December 1986

6. H. D. Mills, "Stepwise Refinement and Verification in Box-Structured Sys-
tems," IEEE Software, June 1988, pp. 23-36

7. R. H. Cobb and H. D. Mills, "Engineering Software Under Statistical Quality
Control," IEEE Software, November 1990, pp. 44-54

8. H. D. Mills, M. Dyer, and R. C. Linger, "Cleanropm Software Engineering,"
IEEE Software, September 1987, pp. 19-24

9. M. Dyer, "An Approach to Statistical Testing for Cleanroom Software Develop-
ment," IBMTR. 86.0002, August 12,1983

10. H. D. Mills, "Cleanroom Software Engineering," Aerospace Software Engineer-
ing, 1990

11. SEL-84-101, Manager's Handbook for Software Development (Revision 1),
L. Landis, F. McGany, S. Waligora, et al., November 1990

R-l
10000099

STANDARD BIBLIOGRAPHY OF SEL LITERATURE

The technical papers, memorandums, and documents listed in this bibliography are or-
ganized into two groups. The first group is composed of documents issued by the Soft-
ware Engineering Laboratory (SEL) during its research and development activities.
The second group includes materials that were published elsewhere but pertain to SEL
activities.

SEL-ORIGINATED DOCUMENTS

SEL-76-001, Proceedings from the First Summer Software Engineering Workshop,
August 1976

SEL-77-002, Proceedings From the Second Summer Software Engineering Workshop,
September 1977

SEL-77-004, A Demonstration of AXES for NAVPAK, M Hamilton and
S. Zeldin, September 1977

SEL-77-005, GSFCNAVPAKDesign Specifications Languages Study, P. A. Scheffer and
C. E. Velez, October 1977

SEL-78-005, Proceedings From the Third Summer Software Engineering Workshop,
September 1978

SEL-78-006, GSFC Software Engineering Research Requirements Analysis Study,
P. A. Scheffer and C. E. Velez, November 1978

SEL-78-007, Applicability of the Rayleigh Curve to the SEL Environment, T. E. Mapp,
December 1978

SEL-78-302, FORTRAN Static Source Code Analyzer Program (SAP) User's Guide
(Revision 3), W. J. Decker, W. A. Taylor, et al., July 1986

SEL-79-002, The Software Engineering Laboratory: Relationship Equations,
K. Freburger and V. R. Basili, May 1979

SEL-79-003, Common Software Module Repository (CSMR) System Description and
User's Guide, C. E. Goorevich, A. L. Green, and S. R. Waligora, August 1979

SEL-79-004, Evaluation of the Caine, Farber, and Gordon Program Design Language
(PDL) in the Goddard Space Flight Center (GSFC) Code 580 Software Design Environ-
ment, C. E. Goorevich, A. L. Green, and W. J. Decker, September 1979

SEL-79-005, Proceedings From the Fourth Summer Software Engineering Workshop,
November 1979

BI-1

10000229
1113/1400

SEL-80-002, Multi-Level Expression Design Language-Requirement Level (MEDL-R)
System Evaluation, W. J. Decker and C E. Goorevich, May 1980

SEL-80-003, Multimission Modular Spacecraft Ground Support Software System (MMS/
GSSS) State-of-the-Art Computer Systems/Compatibility Study, TWelden,
M. McClellan, and P. Liebertz, May 1980

SEL-80-005,y4 Study of the Musa Reliability Model, A. M. Miller, November 1980

SEL-80-006, Proceedings From the Fifth Annual Software Engineering. Workshop,
November 1980

SEL-80-007, An Appraisal of Selected Cost/Resource Estimation Models for Software
Systems, J. F. Cook and F. E. McGany, December 1980

SEL-80-008, Tutorial on Models and Metrics for Software Management and Engineering,
V. R. Basili, 1980

SEÎ 81-008, Cost and Reliability Estimation Models (CAREM) User's Guide, J. F. Cook
and E. Edwards, February 1981

SEÎ 81-009, Software Engineering Laboratory Programmer Workbench Phase 1 Evalua-
tion, W. J. Decker and F. E. McGarry, March 1981

SEL-81-011, Evaluating Software Development by Analysis of Change Data,
D. M. Weiss, November 1981

SEL-81-012, The Rayleigh Curve as a Model for Effort Distribution Over the Life of
Medium Scale Software Systems, G. O. Picasso, December 1981

SEL-Sl-Q13,Proceedings of the Sixth Annual Software Engineering Workshop, December
1981

SEL-81-014, Automated Collection of Software Engineering Data in the Software Engi-
neering Laboratory (SEL), A. L. Green, W. J. Decker, and F. E. McGarry, September
1981

SEÎ 81-101, Guide to Data Collection, V. E. Church, D. N. Card, F. E. McGarry, et al.,
August 1982

SEL-81-104, The Software Engineering Laboratory, D. N. Card, F. E. McGarry,
G. Page, et al., February 1982

SEL-81-107, Software Engineering Laboratory (SEL) Compendium of Tools (Revision 1),
W. J. Decker, W. A. Taylor, E. J. Smith, et al., February 1982

SEL-81-110, Evaluation of an Independent Verification and Validation (IV&V) Methodol-
ogy for Flight Dynamics, G. Page, F. E. McGarry, and D. N. Card, June 1985

BI-2
10000229
1113/1400

SEÎ 81-205, Recommended Approach to Software Development, F. E. McGany,
G. Page, S. Eslinger, et al., April 1983

SEL-82-001, Evaluation of Management Measures of Software Development, G. Page,
D. N. Card, and F. E. McGany, September 1982, vols. 1 and 2

SEL-82-004, Collected Software Engineering Papers: Volume 1, July 1982

SEL-82-007, Proceedings of the Seventh Annual Software Engineering Workshop,
December 1982

SEL-82-008, Evaluating Software Development by Analysis of Changes: The Data From
the Software Engineering Laboratory, V. R. Basil! and D. M. Weiss, December 1982

SEÎ 82-102, FORTRAN Static Source Code Analyzer Program (SAP) System Description
(Revision 1), W. A. Taylor and W. J. Decker, April 1985

SEL-82-105, Glossary of Software Engineering Laboratory Terms, T. A Babst,
M. G. Rohleder, and F. E. McGany, October 1983

SEL-82-1006, Annotated Bibliography of Software Engineering Laboratory Literature,
L. Morusiewicz and J. Valett, November 1991

SEL-83-001, An Approach to Software Cost Estimation, F. E. McGany, G. Page,
D. N. Card, et al., February 1984

SEL-83-002, Measures and Metrics for Software Development; D. N. Card,
F. E. McGany, G. Page, et al., March 1984

SEL-83-003, Collected Software Engineering Papers: Volume II, November 1983 ?
"£'.

SEL-83-006, Monitoring Software Development Through Dynamic Variables,
C. W. Doerflinger, November 1983

SEL-83-007, Proceedings of the Eighth Annual Software Engineering Workshop,
November 1983

SEL-83-106, Monitoring Software Development Through Dynamic Variables (Revi-
sion 1), C. W. Doerflinger, November 1989

SEÎ 84-003, Investigation of Specification Measuresforthe Software Engineering Labora-
tory (SEL), W. W. Agresti, V. E. Church, and F. E. McGany, December 1984

SEL-84-004, Proceedings of the Ninth Annual Software Engineering Workshop,
November 1984

SEL-84-101, Manager's Handbook for Software Development (Revision 1), L. Landis,
F. E. McGany, S. Waligora, et al., November 1990

SEL-85-001, A Comparison of Software Verification Techniques, D. N. Card,
R. W. Selby, Jr., F. E. McGany, et al., April 1985

BI-3
10000229
1113/1400

SEL-85-002, Ada Training Evaluation and Recommendations From the Gamma Ray
Observatory Ada Development Team, R. Murphy and M. Stark, October 1985

SEL-85-003, Collected Software Engineering Papers: Volume III, November 1985

SEL-85-004, Evaluations of Software Technologies: Testing, CLEANROOM, and
Metrics, R. W. Selby, Jr., and V. R. Basili, May 1985

SEL-85-005, Software Verification and Testing, D. N. Card, E. Edwards, F. McGany,
and C. Antle, December 1985

SEL-85-Q06, Proceedings of the Tenth Annual Software Engineering Workshop,
December 1985

SEL-86-001, Programmer's Handbook for Flight Dynamics Software Development,
R. Wood and E. Edwards, March 1986

SEÎ 86-002, General Object-Oriented Software Development, E. Seidewitz and
M. Stark, August 1986

SEL-86-003, Flight Dynamics System Software Development Environment (FDSISDE)
Tutorial, J. Buell and P. Myers, July 1986

SEÎ 86-004, Collected Software Engineering Papers: Volume IV, November 1986

SEL-86-005, Measuring Software Design, D. N. Card et al., November 1986

SEL-86-006, Proceedings of the Eleventh Annual Software Engineering Workshop,
December 1986

SEL-87-001, Product Assurance Policies and Procedures for Flight Dynamics Software
Development, S. Perry et al., March 1987

SELrS7-002,Ada® Style Guide (Version 1.1), E. Seidewitz et al., May 1987

SEL-87-003, Guidelines for Applying the Composite Specification Model (CSM),
W. W. Agresti, June 1987

SEL-87-004, Assessing the Ada® Design Process and Its Implications: A Case Study,
S. Godfrey, C. Brophy, et al., July 1987

SEL-87-008, Data Collection Procedures for the Rehosted SEL Database, G. Heller,
October 1987

SEL-87-009, Collected Software Engineering Papers: Volume V, November 1987

SEL-87-010, Proceedings of the Twelfth Annual Software Engineering Workshop,
December 1987

SEL-88-001, System Testing of a Production Ada Project: The GRODY Study, J. Seigle,
L. Esker, and Y. Shi, November 1988

BI-4
10000229
1113/1400

SEL-88-002, Collected Software Engineering Papers: Volume VI, November 1988

SEL-88-003, Evolution of Ada Technology in the Flight Dynamics Area: Design Phase
Analysis, K. Quimby and L. Esker, December 1988

SEL-88-004, Proceedings of the Thirteenth Annual Software Engineering Workshop,
November 1988

SEL-88-005, Proceedings of the First NASA Ada User's Symposium, December 1988

SEL-89-002, Implementation of a Production Ada Project: The GRODY Study,
S. Godfrey and C. Brophy, September 1989

SEL-89-003, Software Management Environment (SME) Concepts and Architecture,
W. Decker and J. Valett, August 1989

SEL-89-004, Evolution of Ada Technology in the Flight Dynamics Area: Implementation/
Testing Phase Analysis, K. Quimby, L. Esker, L. Smith, M. Stark, and F. McGany,
November 1989

SEÎ 89-005, Lessons Learned in the Transition to Ada From FORTRAN at NASA/
Goddard, C. Brophy, November 1989

SEL-89-006, Collected Software Engineering Papers: Volume VII, November 1989 ,s

SEL-89-007, Proceedings of the Fourteenth Annual Software Engineering Workshop,
November 1989

SEL-89-008, Proceedings of the Second NASA Ada Users' Symposium, November 1989

SEL-89-101, Software Engineering Laboratory (SEL) Database Organization and User's
Guide (Revision 1), M. So, G. Heller, S. Steinberg, K. Pumphrey, and D. Spiegel,
February 1990

SEL-90-001, Database Access Manager for the Software Engineering Laboratory
(DAMSEL) User's Guide, M. Buhler, K. Pumphrey, and D. Spiegel, March 1990

SEL-90-002, The Cleanroom Case Study in the Software Engineering Laboratory: Project
Description and Earfy Analysis, S. Green et ah, March 1990

SEL-90-003,v4 Study of'the Portability ofan Ada System in the Software EngineeringLabo-
ratory (SEL), L. O. Jun and S. R. Valett, June 1990

SEL-90-004, Gamma Ray Observatory Dynamics Simulator in Ada (GRODY) Experi-
ment Summary, T. McDermott and M. Stark, September 1990

SEL-90-005, Collected Software Engineering Papers: Volume VIII, November 1990

SEL-90-006, Proceedings of the Fifteenth Annual Software Engineering Workshop,
November 1990

BI-5

10000229
1113/1400

SEL-91-001, Software Engineering Laboratory (SEL) Relationships, Models, and Man-
agement Rules, W. Decker, R. Hendrick, and J. Valett, February 1991

SEL-91-003, Software Engineering Laboratory (SEL) Ada Performance Study Report,
E. W. Booth and M. E. Stark, July 1991

SEÎ 91-004, Software Engineering Laboratory (SEL) Cleanroom Process Model,
S. Green, November 1991

SEL-91-005, Collected Software Engineering Papers: Volume IX, November 1991

SEL-91-102, Software Engineering Laboratory (SEL) Data and Information Policy (Revi-
sion 7), E McGarry, August 1991

SEL-RELATED LITERATURE
4Agresti, W. W., V. E. Church, D. N. Card, and P. L. Lo, "Designing With Ada for Sat-
ellite Simulation: A Case Study," Proceedings of the First International Symposium on
Ada for the NASA Space Station, June 1986
2Agresti, W. W., F. E. McGarry, D. N. Card, et al, "Measuring Software Technology,"
Program Transformation and Programming Environments. New York: Springer- Verlag,
1984

Bailey, J. W., and V. R. Basili, "A Meta-Model for Software Development Resource
Expenditures," Proceedings of the Fifth International Conference on Software Engineer-
ing. New York: IEEE Computer Society Press, 1981
8Bailey, J. W., and V. R. Basili, "Software Reclamation: Improving Post-Development
Reusability," Proceedings of the Eighth Annual National Conference on Ada Technology,
March 1990

ili, V. R., "Models and Metrics for Software Management and Engineering,"
ASME Advances in Computer Technology, January 1980, vol. 1

Basili, V. R., Tutorial on Models and Metrics for Software Management and Engineering.
New York: IEEE Computer Society Press, 1980 (also designated SEL-80-008)
3Basili, V. R., "Quantitative Evaluation of Software Methodology," Proceedings of the
First Pan-Pacific Computer Conference, September 1985
7Basili, V. R., Maintenance = Reuse-Oriented Software Development, University of
Maryland, Technical Report TR-2244, May 1989
7Basili, V. R., Software Development: A Paradigm for the Future, University of Maryland,
Technical Report TR-2263, June 1989
8Basili, V. R., "Viewing Maintenance of Reuse-Oriented Software Development,"
IEEE Software, January 1990

BI-6
10000229
1113/1400

ili, V. R., and J. Beane, "Can the Parr Curve Help With Manpower Distribution
and Resource Estimation Problems?, "Journal of Systems and Software, February 1981,
vol. 2, no. 1

ili, V. R., and G. Caldiera, A Reference Architecture for the Component Factory,
University of Maryland, Technical Report TR-2607, March 1991

*Basili, V. R., and K. Freburger, "Programming Measurement and Estimation in the
Software Engineering Laboratory," Journal of Systems and Software, February 1981,
vol. 2, no. 1
3Basili, V. R., and N. M. Panlilio-Yap, "Finding Relationships Between Effort and
Other Variables in the SEL," Proceedings of the International Computer Software and
Applications Conference, October 1985
4Basili, V. R., and D. Patnaik,^ Study tin Fault Prediction and Reliability Assessment in
the SEL Environment, University of Maryland, Technical Report TR-1699, August 1986
2Basili, V. R., and B. T. Perricone, "Software Errors and Complexity: An Empirical
Investigation," Communications of the ACM, January 1984, vol. 27, no. 1
1Basili, V. R., and T. Phillips, "Evaluating and Comparing Software Metrics in the Soft-
ware Engineering Laboratory," Proceedings of the ACM SIGMETRICS Symposium/
Workshop: Quality Metrics, March 1981
3Basili, V. R., and C. L. Ramsey, "ARROWSMTTH-P— A Prototype Expert System for
Software Engineering Management," Proceedings of the IEEE/MITRE Expert Systems
in Government Symposium, October 1985

Basili, V. R., and J. Ramsey, Structural Coverage of Functional Testing, University of
Maryland, Technical Report TR-1442, September 1984

Basili, V. R., and R. Reiter, "Evaluating Automatable Measures for Software Develop-
ment," Proceedings of the Workshop on Quantitative Software Models for Reliability,
Complexity, and Cost. New York: IEEE Computer Society Press, 1979
5Basili, V. R., and H. D. Rombach, "Tailoring the Software Process to Project Goals
and Environments," Proceedings of the 9th International Conference on Software Engi-
neering, March 1987
5Basili, V. R., and H. D. Rombach, 'TAME: Tailoring an Ada Measurement Envi-
ronment," Proceedings of the Joint Ada Conference, March 1987
5Basili, V. R.,andH. D. Rombach, "TAME: Integrating Measurement Into Software
Environments," University of Maryland, Technical Report TR-1764, June 1987
6Basili, V. R., and H. D. Rombach, "The TAME Project: Towards Improvement-
Oriented Software Environments," IEEE Transactions on Software Engineering, June
1988

BI-7
10000229
1113/1400

7Basili, V. R., and H. D. Rombach, Towards A Comprehensive Framework for Reuse: A
Reuse-Enabling Software Evolution Environment, University of Maryland, Technical
Report TR-2158, December 1988
8Basili, V. R., and H. D. Rombach, Towards A Comprehensive Framework for Reuse:
Model-Based Reuse Characterization Schemes, University of Maryland, Technical
Report TR-2446, April 1990

ili, V. R., and H. D. Rombach, Support for Comprehensive Reuse, University of
Maryland, Technical Report TR-2606, February 1991
3Basili, V. R., and R. W. Selby, Jr., "Calculation and Use of an Environment's Charac-
teristic Software Metric Set," Proceedings of the Eighth International Conference on Soft-
ware Engineering. New York: IEEE Computer Society Press, 1985

Basili, V. R., and R. W. Selby, Jr., Comparing the Effectiveness of Software Testing Strate-
gies, University of Maryland, Technical Report TR-1501, May 1985
3Basili, V. R., and R. W. Selby, Jr., "Four Applications of a Software Data Collection
and Analysis Methodology," Proceedings of the NATO Advanced Study Institute, August
1985
5Basili, V. R., and R. Selby, "Comparing the Effectiveness of Software Testing Strate-
gies," IEEE Transactions on Software Engineering, December 1987

ili, V. R., and R. W. Selby, "Paradigms for Experimentation and Empirical Studies
in Software Engineering," Reliability Engineering and System Safety, January 1991
4Basili, V R., R. W. Selby, Jr., and D. H. Hutchens, "Experimentation in Software
Engineering," IEEE Transactions on Software Engineering, July 1986
2Basili, V R., R. W. Selby, and T Phillips, "Metric Analysis and Data Validation Across
FORTRAN Projects," IEEE Transactions on Software Engineering, November 1983
2Basili, V. R., and D. M. Weiss,̂ Methodology for Collecting Valid Software Engineering
Data, University of Maryland, Technical Report TR-1235, December 1982
3Basili, V. R., and D. M. Weiss, "A Methodology for Collecting Valid Software Engi-
neering Data," IEEE Transactions on Software Engineering, November 1984
1Basili, V R., and M. V. Zelkowitz, "The Software Engineering Laboratory: Objec-
tives," Proceedings of the Fifteenth Annual Conference on Computer Personnel Research,
August 1977

Basili, V. R., and M. V Zelkowitz, "Designing a Software Measurement Experiment,"
Proceedings of the Software Life Cycle Management Workshop, September 1977

ili, V. R., and M. V. Zelkowitz, "Operation of the Software Engineering Labora-
tory," Proceedings of the Second Software Life Cycle Management Workshop, August
1978

BI-8
10000221)
1113/1400

1Basili, V. R., and M. V. Zelkowitz, "Measuring Software Development Characteristics
in the Local Environment," Computers and Structures, August 1978, vol. 10

Basili, V. R., and M. V. Zelkowitz, "Analyzing Medium Scale Software Development,"
Proceeding? of the Third International Conference on Software Engineering. New York:
IEEE Computer Society Press, 1978
9Booth, E. W., and M. E. Stark, "Designing Configurable Software: COMPASS Imple-
mentation Concepts," Proceedings of Tri-Ada 1991 , October 1991

L. C, V R. Basili, and W. M. Thomas,yl Pattern Recognition Approach for Soft-
ware Engineering Data Analysis, University of Maryland, Technical Report TR-2672,
May 1991
5Brophy, C. E., W. W. Agresti, and V. R. Basili, "Lessons Learned in Use of Ada-
Oriented Design Methods," Proceedings of the Joint Ada Conference, March 1987
6Brophy, C. E., S. Godfrey, W. W. Agresti, and V. R. Basili, "Lessons Learned in the
Implementation Phase of a Large Ada Project," Proceedings of the Washington Ada
Technical Conference, March 1988
2Card, D. R, "Early Estimation of Resource Expenditures and Program Size,"
Computer Sciences Corporation, Technical Memorandum, June 1982 t"
2Card, D. R, "Comparison of Regression Modeling Techniques for Resource Estima-
tion," Computer Sciences Corporation, Technical Memorandum, November 1982.y
3Card, D.N., "A Software Technology Evaluation Program," Annais do XVIII
Congresso Nacional de Informatica, October 1985
5Card, D. N., and W. W. Agresti, "Resolving the Software Science Anomaly," The Jour-
nal of Systems and Software, 1987
6Card, D. N., and W. W. Agresti, "Measuring Software Design Complexity," The Jour-
nal of Systems and Software, June 1988
4Card,D.R,V E. Church, andW. W. Agresti, "An Empirical Study of Software Design
Practices," IEEE Transactions on Software Engineering, February 1986

Card, D. R, V E. Church, W. W. Agresti, and Q. L. Jordan, "A Software Engineering
"View of Flight Dynamics Analysis System," Parts I and n, Computer Sciences Corpora-
tion, Technical Memorandum, February 1984

Card, D. N., Q. L. Jordan, and V. E. Church, "Characteristics of FORTRAN Modules,"
Computer Sciences Corporation, Technical Memorandum, June 1984

5Card, D. R, EE.McGarry, and G.T Page, "Evaluating Software Engineering
Technologies," IEEE Transactions on Software Engineering, July 1987

BI-9
10000229
1113/1400

3Card, D. N., G. T. Page, and F. E. McGarry, "Criteria for Software Modularization,"
Proceedings of the Eighth International Conference on Software Engineering. New York:
IEEE Computer Society Press, 1985

., and M. V. Zelkowitz, "Use of Cluster Analysis To Evaluate Software Engi-
neering Methodologies," Proceedings of the Fifth International Conference on Software
Engineering. New York: IEEE Computer Society Press, 1981
4Church, V.E., D.N. Card, W.W.Agresti, and Q.L. Jordan, "An Approach for
Assessing Software Prototypes," ACM Software Engineering Notes, July 1986
2Doerflinger, C. W., and V. R. Basili, "Monitoring Software Development Through
Dynamic Variables," Proceedings of the Seventh International Computer Software and
Applications Conference. New York: IEEE Computer Society Press, 1983

Doubleday, D., ASAP: An Ada Static Source Code Analyzer Program, University of
Maryland, Technical Report TR-1895, August 1987 (NOTE: 100 pages long)
6Godfrey, S., and C. Brophy, "Experiences hi the Implementation of a Large Ada
Project," Proceedings of the 1988 Washington Ada Symposium, June 1988

Hamilton, M., and S. Zeldin,y4 Demonstration of AXES for NAVPAK, Higher Order
Software, Inc., TR-9, September 1977 (also designated SEL-77-005)
5Jeffery, D. R., and V. Basili, Characterizing Resource Data: A Model for Logical
Association of Software Data, University of Maryland, Technical Report TR-1848, May
1987
6Jeffery, D. R., and V. R. Basili, "Validating the TAME Resource Data Model," Pro-
ceedings of the Tenth International Conference on Software Engineering, April 1988
5Mark, L., and H. D. Rombach, A Meta Information Base for Software Engineering,
University of Maryland, Technical Report TR-1765, July 1987
6Mark, L., and H. D. Rombach, "Generating Customized Software Engineering
Information Bases From Software Process and Product Specifications," Proceedings of
the 22nd Annual Hawaii International Conference on System Sciences, January 1989
5McGarry, F. E., and W. W. Agresti, "Measuring Ada for Software Development hi the
Software Engineering Laboratory (SEL)," Proceedings of the 21st Annual Hawaii
International Conference on System Sciences, January 1988
7McGarry, F, L. Esker, and K. Quimby, "Evolution of Ada Technology in a Production
Software Environment," Proceedings of the Sixth Washington Ada Symposium
(WADAS), June 1989
3McGarry, F. E., J. Valett, and D. Hall, "Measuring the Impact of Computer Resource
Quality on the Software Development Process and Product," Proceedings of the
Hawaiian International Conference on System Sciences, January 1985

BI-10
10000229
1113/1400

National Aeronautics and Space Administration (NASA), NASA Software Research
Technology Workshop (Proceedings), March 1980
3Page, G., F. E. McGarry, and D. N. Card, "A Practical Experience With Independent
Verification and Validation," Proceedings of the Eighth International Computer Software
and Applications Conference, November 1984
5Ramsey, C. L., and V. R. Basili, An Evaluation of Expert Systems for Software Engi-
neering Management, University of Maryland, Technical Report TR-1708, September
1986
3Ramsey, J., and V R. Basili, "Analyzing the Tfest Process Using Structural Coverage,"
Proceedings of the Eighth International Conference on Software Engineering. New York:
IEEE Computer Society Press, 1985
5Rombach, H. D., "A Controlled Experiment on the Impact of Software Structure on
Maintainability," IEEE Transactions on Software Engineering, March 1987
8Rombach, H. D., "Design Measurement: Some Lessons Learned," IEEE Software,
March 1990

^ombach, H. D., "Software Reuse: A Key to the Maintenance Problem," Butterworth
Journal of Information and Software Technology, January/February 1991
6Rombach, H. D., and V. R. Basili, "Quantitative Assessment of Maintenance: An
Industrial Case Study," Proceedings From the Conference on Software Maintenance,
September 1987
6Rombach, H. D., and L. Mark, "Software Process and Product Specifications: A Basis
for Generating Customized SE Information Bases," Proceedings of the 22nd Annual
Hawaii International Conference on System Sciences, January 1989
7Rombach, H. D., and B. T. Ulery, Establishing a Measurement Based Maintenance
Improvement Program: Lessons Learned in the SEL, University of Maryland, Technical
Report TR-2252, May 1989
6Seidewitz, E., "Object-Oriented Programming in Smalltalk and Ada," Proceedings
of the 1987 Conference on Object-Oriented Programming Systems, Languages, and
Applications, October 1987
5Seidewitz, E., "General Object-Oriented Software Development: Background and
Experience," Proceedings of the 21st Hawaii International Conference on System
Sciences, January 1988
6Seidewitz, E., "General Object-Oriented Software Development with Ada: A Life
Cycle Approach," Proceedings of the CASE Technology Conference, April 1988
9Seidewitz, E., "Object-Oriented Programming Through Type Extension in Ada 9X,"
Ada Letters, March/April 1991

BI-11
10000229
1113/1400

4Seidewitz, E., and M. Stark, "Tbwards a General Object-Oriented Software Develop-
ment Methodology," Proceedings of the First International Symposium on Ada for the
NASA Space Station, June 1986

9Seidewitz, E., and M. Stark, "An Object-Oriented Approach to Parameterized Soft-
ware in Ada," Proceedings of the Eighth Washington Ada Symposium, June 1991

8Stark, M., "On Designing Parametrized Systems Using Ada," Proceedings of the
Seventh Washington Ada Symposium, June 1990

7Stark, M. E. and E. W. Booth, "Using Ada to Maximize Verbatim Software Reuse,"
Proceedings ofTRI-Ada 1989, October 1989

5Stark, M., and E. Seidewitz, 'Towards a General Object-Oriented Ada Lifecycle,"
Proceedings of the Joint Ada Conference, March 1987

8Straub, P. A., and M. V. Zelkowitz, "PUC: A Functional Specification Language for
Ada,"Proceedingsoj'the Tenth International Conference of the Chilean Computer Science
Society, July 1990

7Sunazuka, T, and V R. Basili, Integrating Automated Support for a Software Manage-
ment Cycle Into the TAME System, University of Maryland, Technical Report TR-2289,
July 1989

Turner, C, and G. Caron,y4 Comparison of RADC and NASA/SEL Software Develop-
ment Data, Data and Analysis Center for Software, Special Publication, May 1981

Turner, C., G. Caron, and G. Brement, NASA/SEL Data Compendium, Data and
Analysis Center for Software, Special Publication, April 1981

5Valett, J. D., and E E. McGany, "A Summary of Software Measurement Experiences
in the Software Engineering Laboratory," Proceedings of the 21st Annual Hawaii
International Conference on System Sciences, January 1988

3Weiss, D. M., and V. R. Basili, "Evaluating Software Development by Analysis of
Changes: Some Data From the Software Engineering Laboratory," IEEE Transactions
on Software Engineering, February 1985

5Wu, L., V. R. Basili, and K. Reed, "A Structure Coverage Tool for Ada Software Sys-
tems," Proceedings of the Joint Ada Conference, March 1987

1Zelkowitz, M. V., "Resource Estimation for Medium-Scale Software Projects," Pro-
ceedings of the Twelfth Conference on the Interface of Statistics and Computer Science.
New York: IEEE Computer Society Press, 1979

2Zelkowitz, M. V, "Data Collection and Evaluation for Experimental Computer
Science Research," Empirical Foundations for Computer and Information Science (Pro-
ceedings), November 1982

BI-12

10000229
1113/1400

6Zelkowitz, M. V, "The Effectiveness of Software Prototyping: A Case Study," Pro-
ceedingsoj'the26th Annual TechnicalSymposium oj'theWashington, D. C., Chapter of the
ACM, June 1987

6Zelkowitz, M. V, "Resource Utilization During Software Development," Journal of
Systems and Software, 1988

8Zelkowitz, M. V, "Evolution Towards Specifications Environment: Experiences With
Syntax Editors," Information and Software Technology, April 1990

Zelkowitz, M. V, and V. R. Basili, "Operational Aspects of a Software Measurement
Facility," Proceedings of the Software Life Cycle Management Workshop, September 1977

BI-13

10000229
1113/1400

NOTES:
1This article also appears in SEL-82-004, Collected Software Engineering Papers:
Volume I, Jury 1982.

2This article also appears in SEL-83-003, Collected Software Engineering Papers:
Volume H, November 1983.

3This article also appears in SEL-85-003, Collected Software Engineering Papers:
Volume HI, November 1985.

is article also appears in SEL-86-004, Collected Software Engineering Papers:
Volume IV, November 1986.

5This article also appears in SEL-87-009, Collected Software Engineering Papers:
Volume V, November 1987.
6This article also appears in SEL-88-002, Collected Software Engineering Papers:
Volume VI, November 1988.

7This article also appears in SEL-89-006, Collected Software Engineering Papers:
Volume Vn, November 1989.
8This article also appears in SEL-90-005, Collected Software Engineering Papers:
Volume Vm, November 1990.

9This article also appears in SEL-91-005, Collected Software Engineering Papers:
Volume IX, November 1991.

BI-14

10
1113/1400

