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SECTION 1 - EXECUTIVE SUMMARY

This report is the Final Management Project Report as called for in the NASA Grant and

Cooperative Agreement Handbook (NHB 5800.1 A) for the cooperative research agreement titled

"Research Relative to Telemetry Downlink Interfaces and Level-Zero Processing." This is NASA

Cooperative Agreement number NCC 5-40.

This report covers the following topics

a) a description of the project task areas,

b) the project schedule,

c) the project status to date,

d) and other accomplishments relevant to the project's work.

This report covers the period from 1 October 1988 through 30 September 1991 and includes the

contributions of all New Mexico State University faculty and students associated with the project.



SECTION 2 - PROJECT PERSONNEL

The research technical areas being investigated under the cooperative research agreement are as

follows:

a) Processing of space-to-ground data frames,

b) Parallel architecture performance studies, and

c) Parallel programming techniques.

Additionally, there are the associated administrative areas of managing the grant which are

a) University administrative details and

b) Technical liaison between New Mexico State University and Goddard Space Flight Center.

There were management changes to the tasks through the life of the project. The final alignment
?

of NMSU faculty members associated with each of these task areas are as follows:

a) Dr. Stephen Horan - team leader for the study of the processing of space-to-ground data

frames and the project administrative and technical liaison,

b) Dr. Javin Taylor - team leader for the study of parallel architecture performance, and

c) Dr. Joseph Pfeiffer - team leader for the study of parallel programming techniques.

Additionally, Dr. Frank Garden was supported under this research activity during 1989.

To assist the NMSU faculty in the conduct of this research, the following students were

employed as either graduate research assistants or as undergraduate research assistants at least

part of the time during this agreement, as indicated:



a) Karim Al Hussini (graduate)

b) Edward Atel (undergraduate)

c) Georghios Georghiou (graduate),

d) Omar Hasan (graduate),

e) Mary Kennedy (graduate)

f) Brian Kopp (graduate)

g) Jaime Lara (graduate),

h) Michael Milyard (undergraduate),

i) Richard Oliver (graduate),

j) Krist Peterson (graduate),

k) John Poison (graduate),

1) Michael Ross (graduate),

m) O. Rich Smith (undergraduate),

n) James Thomas (graduate), and

o) John Watson (graduate).



SECTION 3 - PROJECT TASK AREAS

The technical work for this cooperative agreement is being divided into three sub-projects as

follows:

I. Project 1: Processing Space-to-Ground Data Frames

Project Task Leader: Dr. Stephen Horan

Sub-project Areas

a. Study the functions required by the Space-to-Ground Transport (S/GT) and Level-Zero

Processing (LZP) requirements.

b. Reconcile the CDC ETTS and Ford Aerospace simulations of S/GT and LZP require-

ments using available commercial simulation tools.

c. Study and evaluate the criteria, assumptions, and methodology defined in the CSC

studies.

d. Investigate partitioning of the S/GT and LZP requirements. Determine partitioning

alternatives, constraints, and resource requirements.

e. In concert with, or as an extension to, the CSC studies, develop representative simu-

lation models of S/GT and LZP to evaluate the performance benefits of parallel

processing.



II. Project 2: Parallel Architecture Performance Studies

Project Task Leader: Dr. Javin Taylor

Sub-Project Areas

a. Thoroughly study and understand the CDOS functions and matching of the CDOS

functions to particular computer architectures, as described in the pertinent CSC

documents.

b. Study and expand the CSC computer architecture classes and the matching of the

CDOS functions to particular parallel computer architectures.

c. Validate the CSC reports with respect to parallel processing as it applies to the CDOS

functions, especially the DHC mass-storage functions. Validate the CSC com-

parisons of parallel processing with serial processing. Study extending the CSC

results to the Connection machine and neural networks.

d. Simulate pertinent CSC architecture/CDOS function matches using commercial simula-

tion tools.

e. Evaluate local parallel-processing architecture with respect to the CSC computer

architecture classes and the matching of the CDOS functions to particular architec-

tures. Develop computer simulation models for this architecture using commercial-

ly-based simulation tools.



III. Project 3: Parallel Programming Techniques

Project Task Leader: Dr. Joseph Pfeiffer

Sub-project Areas

a. Select algorithms and develop benchmarks for low-level and high-level language

evaluation. Develop benchmarks for operating system evaluation.

b. Survey and evaluate parallel processor operating systems including UNIX, MACH, and

proprietary operating systems.

c. Evaluate ADA support in parallel implementation of benchmarking algorithms.

d. Survey and evaluate high-level language and development tools availability for candi-

date vendors selected in b. Consider source-level debuggers and programming

support for Ada.

e. Survey and evaluate low-level language and development tools availability for can-

didate vendors selected in b. Consider machine-level debuggers.



4 - OTHER ACCOMPLISHMENTS

A. DEGREES AWARDED

From the list of graduate students, Mary Kennedy and John Poison have received their

MS degrees using this research as their projects. John Watson is using this research and is

expected to finish his PhD in 1992. Krist Peterson and John Poison have used the support of this

project to pursue their PhD studies although their doctoral research has not been completed.

B. PAPERS PRESENTED

As submitted previously, papers dealing with this research have been presented as follows:

a) Stephen Horan made presentations at the 1989 International Telemetering Conference and the

CACI Simulation Conference,

b) John Watson John Poison, and Dr. Pfeifer made presentations at the 1990 International

Telemetering Conference,

c) Drs. Taylor and Horan presented the development of the simulation laboratory resources,

partially funded by this effort, at the 1990 ASEE Conference.



5 - ADMINISTRATIVE PROBLEMS

We identified several problems with the accomplishment of the research tasks undertaken

in this problem. The primary one was due to the distance between Las Cruces and GSFC. This

prevented timely interaction between GSFC and the NMSU personnel. This was most telling

when requirements for the CDOS would change or the CCSDS standards would be updated. At

times, we were operating one year behind the latest changes. This meant that assumptions and

methods were always changing and lagging behind current thinking. This could be changed on

similar projects in the future by making the objectives more abstract and independent of work

that may come under procurement confidentiality restrictions.

By the nature of the NASA communications structure and CCSDS protocols, they are not

familiar to students brought on-board as research assistants and to most faculty. Much of the

time working with students was spent educating them on the ways in which NASA communica-

tions operate. More time in the schedule was needed to perform this education process.

The combination of both effects did generate several schedule slips which made the

research effort less effective than could have been. We believe that significant results were

obtained, although, perhaps not those initially sought.
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1. DATA TRANSMISSION REQUIREMENTS

by

Stephen Horan, PhD
John C. Watson

Department of Electrical and Computer Engineering
New Mexico State University

Box 30001, Dept. 3-O
Las Cruces, NM 88003-0001

ABSTRACT

The study of data transport requirements has been conducted to understand the
protocol requirements, transmission options, and methodology for predicting
performance. In this report, we review previous simulation methodology and
results and contrast that with the improved methodology developed here. That
methodology is then applied to the transport of data in a space-station-like
environment. From a review of CCSDS protocol requirements, we also review
some areas for further research.

1.1 SIMULATION METHODOLOGY

Many different approaches can exist to study the transport of data from space payloads
to the ground for processing. In this research effort, we have concentrated on the application
of commercial tools to the problem to assess the prospects for transporting Space Station
Freedom types of traffic loads to the ground via the Space Network. In this area, we have
attempted to re-create some of the previous studies to validate our models and to better under-
stand some of the history of previous projects. In this effort, we have looked at the CDC and
Ford Aerospace studies. We will then present the methodology we believe to be superior to
those studies to give (1) a more flexible means of simulating the process and (2) a more
correct view of the data transport process. We will also give our review of some of the tools
that are available for simulation methods.

1.1.1 PREVIOUS SIMULATION STUDIES

The two major efforts relevant to this research work were conducted by CDC and
Ford Aerospace. In this section we briefly review those efforts.

CDC STUDY

Control Data Corporation (CDC) conducted a study to explore the benefits of packet



processing technology for space data transport. Their study was basically built around their
Cyber computer architecture. They conducted simulation studies of the performance of a
packet pointer processing architecture for processing space data. Mary Kennedy of New
Mexico State University, in her Master's Technical Report, conducted a shadow simulation of
the CDC project using the Network II.5 simulator. While Kennedy was able to validate the
basic approach used by CDC, she found some serious problems. For example, the simulator
used differing levels of resolution in each of its two parts. While this is, in general, a reason-
able approach, especially when high-level languages are being used, the two parts used some
differing assumptions as to what was exactly happening. Kennedy was unable to verify sev-
eral assumptions on processing speeds and ordering.

FORD AEROSPACE STUDY

After the CDC study, Ford Aerospace performed a more general simulation with their
FAST simulator. FAST is a proprietary tool written in ADA and runs on a VAX workstation.
FAST does have the potential to modify the input data set for varying traffic loads. However,
problems with FAST from our point of view include the following:
a) the means to change system parameters are not simple or obvious,
b) the data traffic is composed of one long data set for each traffic source,
c) the traffic really does not appear to have any traffic statistical dynamics included.
This last point is the most troublesome since packet statistical dynamics contain all of the
"interesting" features of the data transport.

1.1.2 IMPROVED METHODOLOGY

As an improvement to the state of the data transport simulation art, we attempted to be
more realistic and more user-friendly about the methodology for simulating the data transport
process. This methodology includes the use of (1) commercial simulators, (2) high-level
simulation languages, (3) linear programming. The commercial simulators were thought to
provide the following advantages:

a) ease of configuration for varying scenarios,
b) standard tools for modeling generic components (processors, transmission buses, software

processes, etc.),
c) easy validation of the model because we would be using pre-developed building blocks.

The use of linear programming techniques was included to speed up the optimization
process. Commercial simulators can allow iteration through parameters, however, that can be
a long process if the iterations do not start near an optimal configuration. We also decided to
use a high-level language simulation tool to the suite to allow for cross-checking of results.



BASIC METHOD AND TOOLS

The commercial simulation tools that were chosen to work with were

a) Network II.5 - a Simscript-derivative marketed by CACI and available for use on VAX,
SUN, and PC platforms, and

b) BONeS - a tool marketed by COMDISCO for use on a SUN platform.

The high-level simulation language chosen to work with was GPSS which was avail-
able for use on a mainframe. The linear programming model was LPDEMO also available
for us on the PC.

The methodology for performing the simulation was to

a) parameterize the traffic model from the CDOS Traffic Model (CDOS 0915.0002 V3.1) into
a series of statistical drivers partitioned by virtual channel,

b) encode the CCSDS data transport protocol for the space-segment into a series of constraint
equations for the linear programming model,

c) encode the FDDI LAN parameters into a series of constrain equations for the linear pro-
gramming model,

d) find the optimal configuration for LAN and packet parameters from the linear program-
ming model by optimizing over several transport frames,

e) use Network II.5 and GPSS models of the same traffic, protocol, and LAN configuration to
see how the optimization works with full statistical variation and determine resource
implications.

From this methodology, suite of simulation results is being developed that will define
a parameter space for optimum data transport parameters.

COMPARISON OF COMMERCIAL SIMULATOR TOOLS

The exercise of the simulators for this research tested the capabilities and usefulness of
the commercial simulators. The paper "Validation of Priority FDDI LAN Simulators" at-
tached to this report contains the results full testing of the simulators using the priority FDDI
token LAN as a test article and then comparing the models with theoretical results. The
results can be summarized as follows in Table 1. In defense of Network II.5, with CACI's
help, we were eventually able to remove the disagreements with theory in simulating the
priority token ring simulations. However, this was by introducing simulation constructs that
either should have been part of the native package or been explicitly documented in the user's
manual. We seriously doubt that a naive user would come up with this construct on their
own. Hence, we still keep our overall rating of Network II.5 lower than it would have been
if this were not a problem.



Table 1. Comparison of Experience with FDDI Simulation Models

Attribute

Model Development

Automatic Model
Iterations

Level of Parameter
Detail

Ease of Modifica-
tion

Relative Execution
Speed

Execution Platforms

Single Asynchron-
ous Priority Simula-

tions

Multiple Asyn-
chronous Priority

Simulations

GPSS

extensive hand cod-
ing

not available

as extensive as user
codes

base code needs to
be edited

fast

mainframe

excellent agreement
with theory

excellent agreement
with theory

BONeS

extensive combination
of model primitives

input parameter

extensive

graphical block
diagram based user
interface with user
input of parameters

slow

SUN-4

excellent agreement
with theory

excellent agreement
with theory

Network H.5

fixed input param-
eters from a fixed
menu of options

not available

moderate

structured user
interface with

menus

moderate

SUN-4, VAX
workstation, PC

disagreement with
theory

severe disagree-
ment with theory

1.2 SIMULATION MODEL

The simulation model developed here is based on the CCSDS Principal Network
Structure illustrated in Figure 1. This is based on the CCSDS 701.0-B-l and related protocol
standards. This structure is amplified by the assumption of the on-board communications
architecture consisting of an FDDI LAN structure as given by I.E. Smith, D. Willett, and S.
Paul, "Overview of the Space Station Communications Networks," IEEE Networks Magazine,
Sept. 1990. This is illustrated in Figure 2. The details of the FDDI token ring come from
the applicable industry standards. The data traffic was generated through a synthesis of the
CDOS Traffic Model Version 3.1.

From these sources, the first step was to generate a statistical traffic model to cut
down the number of drivers, and thereby increase simulation effectiveness, for the model.
The results of the consolidation of the traffic is as shown in Tables 2 and 3.
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Figure 1 - CCSDS Principal Network Structure.
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Table 2. Low Data Rate Aggregate Results

Upper Limit (Kbps)

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

Percentage of Total

0.28

0.63

15.86

17.22

45.32

18.45

1.87

0.31

0.06

Cumulative Percentage

0.28

0.91

16.77

33.99

79.31

97.76

99.63

99.94

100
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Payload Data

FDDI Local Area Network

CCSDS Transfer Frame Construction

Space Channel

Figure 2 - Space Station LAN Structure.

Table 3. High Data Rate Aggregate Results

Upper Limits (Mbps)

30.0

60.0

90.0

120.0

150.0

180.0

210.0

240.0

270.0

Percentage of Total

80.01

2.43

6.95

6.29

2.05

1.82

0.30

0.03

0.11

Cumulative Percentage

80.01

82.44

89.40

95.69

97.74

99.56

99.86

99.89

100



Next, a linear program for optimal results was developed. This model included as
constraints

a) the size of PDUs for the various services and protocol levels,
b) the FDDI frame PDU size, >
c) the FDDI timing,
d) the CADU timing on the Space Network,
e) assumed locations of buffers and buffer sizes, and
f) traffic model source amounts, including video data.

From this constraint list, optimal, parameters were determined by optimizing not over one
CADU frame but over many. The optimization criterion was minimizing the amount of fill
data sent during each CADU. From this optimization, data transport throughput results were
obtained as given in Figure 3.

Next, these models are configured as Network II.5 models and GPSS models. Both
methods were chosen to
a) provide cross-checks on results and
b) provide information on relative ease of making the models.

The preliminary results are illustrated in Figures 4 and 5. These results are prelimi-
nary and the investigation is continuing to produce the full parameter space. The expected
outputs of the simulation models include information on the following parameters

a) required on-board buffer space,
b) channel usage efficiency (ratio of fill to actual data),
c) reaction to traffic transients, and
d) data arrival timing.

The basic results to-date indicate that the CCSDS protocol standards can play effec-
tively with the FDDI data transport on-board and with the Space Network channel.

1.4 EXTENSIONS FOR FURTHER WORK

The studies here can be used as a base methodology for further investigations of the
space data transport areas. In particular, studies can be extended to the following areas:

a) utilizing the priority levels in the FDDI to affect data transport from different virtual chan-
nels; the present scheme treats all virtual channels with the same priority,

b) looking at the effects of lossless data compression on the transport; this would lessen the
amount of data to be transported and affect the ground-segment processing for packet
switching, and

c) CCSDS protocol testing to fully verify end-to-end protocol operations to convert the stan-
dards from paper artifacts to actual, working models.
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Figure 4 FDDI LAN Configuration and Simulated Fill Minimization and Buff-
er Requirements
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GPS68SNG Chart 3
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GPS68SNG Chart 1
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GPS68SNG Chart 2
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Figure 5 Dual LAN Simulation Results
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GPS68DFM Chart
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GPS68DFM Chart 2

GPSS Model Grade 3 Buffer Capacity
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GPS68DUALVID Chart 1
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Sample LPDEMO Listing



DUAL300
I ISIS: NONE

OBJECTIVE: MAX
CONSTRAINTS: 38

VARIABLES: 40
SLACKS: 4

DATE 02-17-1992
TIME 15:22:22

TURN (VIDbw+. . +GS3bw) +2*VIDtf +2*AUDtf +( AUDf ta+ . .+G2Bfta)

viobw<=ioo

AUDIO AUDbw<=.512
j

(. !2data GS2bw<=300

CS3data GS3bw<=300

CADU30ms (Header*. .+FILLtf ) =6 8000

i buhdr Header=320

HDRcrcta HDRcrc-.0533*Nv=0

} -IDscta -226.7*VIDbw+VIDtf=0

MJDscta 3*AUDtf-AUDfta=0

AdDfddi -680*AUDbw+AUDfta=0

( iBFlta 680*GS2bw-GS2bta-G2Afta-G2Bfta=0

G2BFlsz -.l*GS2bta+G2BUFl=0
"' f

( ^JBF2ta 3*GS2tf+GS2tfb-G2Afta-G2Bfta=0

G.2BF2sz -.l*GS2tfb+G2BUF2=0

fcJBFlta 680*GS3bw-GS3bta~G3Afta-G3Bfta=0

C ,5BFlsz -.l*GS3bta+G3BUFl=0

G3BF2ta 3*GS3tf-G3Afta-G3Bfta+GS3tfb=0

-.l*GS3tfb+G3BUF2=0

GS3tf-33.73*Nv=0

t-^CDUnum GS2tf-29.57*Nc=0

T^ta RStf-4.267*Nc=0

CRCta CRCtf-.0533*Nv=0

1 ODI f ma AUDf ta+G3Af ta+G2Af ta-FDDIAt+HDAf ta+TokenA+RingA+FILLA=0

FDDIfmb G3Bfta+G2Bfta-FDDIBt+HDBfta+TokenB+RingB+FILLB=iO

VCDUnum

-l̂ C



FuDIrota

F blrotb
j

FDDIhdra

F blhdrb

F-DDItoka

Flbltokb

j
FDDIlatb

F ]DItota

Frpltotb

GJBUFfddi

G jBUFfddi

G2BUFtf

G 'BUFtf

-FDDIAt+36l*NAf=0

-FDDIBt+361*NBf=0

1.8*NAf-HDAfta=0

1.8*NBf-HDBfta=0

-.88*NAf+TokenA=0

-.88*NBf+TokenB=0

-10*NAf+RingA=0

-10*NBf+RingB=0

FDDIAt=68000

FDDIBt=68000

G2BUF1=0

G3BUF1=0

G2BUF2=0

G3BUF2=0



"JUAL300 SOLUTION IS MAXIMUM RETURN 177088.1288 DATE
PRIMAL PROBLEM SOLUTION

VARIABLE
VIDbw

mAUDbw
jGS2bw
GS3bw
Header

WHDRcrc
h/iotf
AUDtf
GS2tf
GS3tf
RStf
.CRCtf
FILLtf
GS2bta
G2BUF1
,3S2tfb
32BUF2
GS3bta
33BUF1
¥v
Nc
MJDfta
J3Afta
G3Bfta
G2A£ta
'i2Bfta
JDDIAt
FDDIBt
-|Af
iBf
HDAfta
^DBfta
bkenA
rbkenB
RingA
* ingB
,,J33tfb
G3BUF2
FILLA
f kLLB
S.I
S.. 2
M3
I,. 4

STATUS
BASIS
BASIS
BASIS
BASIS
BASIS
BASIS
BASIS
BASIS
BASIS
BASIS
BASIS
BASIS
BASIS
BASIS
BASIS
NONBASIS
BASIS
BASIS
BASIS
BASIS
NONBASIS
BASIS
BASIS
BASIS
NONBASIS
NONBASIS
BASIS
BASIS
BASIS
BASIS
BASIS
BASIS
BASIS
BASIS
BASIS
BASIS
NONBASIS
BASIS
NONBASIS
NONBASIS
NONBASIS
NONBASIS
BASIS
BASIS

VALUE
100.00000
.51200000
.00000000
192.46307
320.00000
68.935977
22670.000
116.05333
.00000000
43624.962
.00000000
68.935977
1131.1123
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
1293.3579
.00000000
348.16000
65263.364
65611.524
.00000000
.00000000
68000.000
68000.000
188.36565
188.36565
339.05817
339.05817
165.76177
165.76177
1883.6565
1883.6565
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
300.00000
107.53693

RETURN/UNIT
1.0000000
1.0000000
1.0000000
1.0000000
.00000000
.00000000
2.0000000
2.0000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
.00000000
.00000000
.00000000
.00000000 v

.00000000

.00000000

.00000000

.00000000

.00000000

.00000000

.00000000

.00000000

.00000000

.00000000

.00000000

.00000000

.00000000

.00000000

TIME

VALUE/UNIT
1.0000000
1.0000000
1.0000000
1.0000000
.00000000
.00000000
2.0000000
2.0000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
1.0014706
1.0014706
454.40000
453.33333
.00000000
.00000000

02-17-1992
15:22:37

NET RETURN
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000

-1.0014706
-1.0014706
-454.40000
-453.33333
.00000000
.00000000



DUALS 00
i
I

CONSTRAINT
•[DEO
JjDIO
GS2data
j|S3data
•kDU30ms
vCDUhdr
HDRcrcta
* IDscta
-_JDscta
AUDfddi
f'2BFlta
2BFlsz

G2BF2ta
«2BF2sz
, jJBFlta
oSBFlsz
G3BF2ta
3BF2sz

• CDUnum
CVCDUnum
~Sta
RCta

FDDIfma
FDDIfmb
DDIrota

xbDIrotb
FDDIhdra
DDIhdrb
JDDItoka
FDDItokb
^DDIlata
DDIlatb
FDDItota
FpDItotb
* 2BUFfddi
j3BUFfddi
G2BUFtf
KBBUFtf

SOLUTION IS MAXIMUM
RIGHT-HAND-SIDE RANGES

STATUS
BINDING
BINDING
NONBINDING
NONBINDING
NONBINDING
NONBINDING
NONBINDING
BINDING
BINDING
BINDING
BINDING
BINDING
NONBINDING
NONBINDING
BINDING
BINDING
NONBINDING
NONBINDING
NONBINDING
NONBINDING
NONBINDING
NONBINDING
BINDING
BINDING
BINDING
BINDING
BINDING
BINDING
BINDING
BINDING
BINDING
BINDING
BINDING
BINDING
BINDING
BINDING
NONBINDING
NONBINDING

DUAL VALUE
454.40000
453.33333
.00000000
.00000000
.00000000
.00000000
.00000000
2.0000000 "
.66666667
.66519608
.00147059
-.01470588
.00000000
.00000000
.00147059

-.01470588
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
1.0014706
1.0014706
-.03517631
-.03517631
1.0014706
1.0014706
-1.0014706
-1.0014706
-1.0014706
-1.0014706
.96629428
.96629428
.01470588
.01470588
.00000000
.00000000

RETURN 177088.1288 DATE 02-17-1992
TIME 15:23:03

RHS VALUE
100.00000
.51200000
300.00000
300.00000
68000.000
320.00000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
68000.000
68000.000
.00000000
.00000000
.00000000
.00000000

MINIMUM
.00000000
.00000000
.00000000
192.46307
66868.888
.00000000

-68.935977
-22670.000
-348.16000
-348.16000
.00000000
-20400.000
.00000000
.00000000

-130874.89
-7312.5113
-130874.89
.00000000

-357902.62
.00000000
.00000000

-68.935977
-65263.364
-65611.524
-68000.000
-68000.000
-65263.364
-65611.524
-165.76177
-165.76177
-1883.6565
-1883.6565
360.83418
.00000000
.00000000
.00000000
.00000000
.00000000

MAXIMUM
104.98947
96.487535
NONE
NONE
NONE

1451.1123
1131.1123
1131.1123
3393.3370
65263.364
204000.00
.00000000
.00000000
.00000000
73125.113
.00000000
3382.6466
.00000000
43624.962
NONE

1131.1123
1131.1123
3382.6466
3382.6466
1858050.0
1867962.1
339.05817
339.05817
65263.364
65611.524
65263.364
65611.524
71505.786
71505.786
20400.000
7312.5113
NONE
NONE
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Sample Network II.5 Listing



CACI NETWORK II.5 RELEASE 7.02 02/14/1992 16:04:12 PAGE

DUAL FDDI LAN SPACE DATA COMMUNICATIONS SYSTEM MODEL

1 *DUAL FDDI LAN SPACE DATA COMMUNICATIONS SYSTEM MODEL
2 ***** NETIN RELEASE 7.02 THIS FILE SAVED 12/16/1991 08:45:42
3
4 ***** GLOBAL VARIABLES
5 GLOBAL FLAGS =
6 ANTITHETIC VARIATE = NO
7 RANDOMIZER = 0
8 MINIMIZE RANDOM SEED ARRAY = NO
9 NETIN TIME UNITS = SECONDS

10 ITERATE BY PRIORITY = NO
11 CLOCK = YES
12 CLOCK INCREMENT = .002 SECONDS
13 BATCH = YES
14 INPUT LISTING = YES
15 DEFAULT LISTING = NO
16 LENGTH = 0.078 SECONDS
17 RESET STATISTICS = 0.010 SECONDS
18 RUNTIME WARNINGS = TERMINAL
19 PLOT DATA FILE = NO
20 WIDE REPORTS = NO
21 TRACE = NO
22
23 ***** SEMAPHORES
24 SOFTWARE TYPE = SEMAPHORE
25 NAME = TICK.1A
26 INHIBIT RESPONSE = YES
27 MAXIMUM PENDING RESPONSES = 999
28 NAME = TICK.2A
29 INHIBIT RESPONSE = YES
30 MAXIMUM PENDING RESPONSES = 999
31 NAME = TICK.3A
32 INHIBIT RESPONSE = YES
33 MAXIMUM PENDING RESPONSES = 999
34 NAME = TICK.4A
35 INHIBIT RESPONSE = YES
36 MAXIMUM PENDING RESPONSES = 999
37 NAME = TICK.IB
38 INHIBIT RESPONSE = YES
39 MAXIMUM PENDING RESPONSES = 999
40 NAME = TICK.2B
41 INHIBIT RESPONSE = YES
42 MAXIMUM PENDING RESPONSES = 999
43 NAME = TICK.3B
44 INHIBIT RESPONSE = YES
45 MAXIMUM PENDING RESPONSES = 999
46 NAME = TICK.4B
47 INHIBIT RESPONSE = YES
48 MAXIMUM PENDING RESPONSES = 999
49
50 ***** STATISTICAL DISTRIBUTION FUNCTIONS



CACI NETWORK II.5 RELEASE 7.02 02/14/1992 16:04:12 PAGE

DUAL FDDI LAN SPACE DATA COMMUNICATIONS SYSTEM MODEL

51 STATISTICAL DISTRIBUTIONS =
52 NAME = PKTLEN
53 TYPE = PATTERN
54 TABLE =

VALUE = 1000.000
57 NAME = PACKET ST
58 TYPE = PATTERN
59 TABLE =

VALUE = 0.
62 NAME = G2 PACKET IAT
63 TYPE = PATTERN
64 TABLE =

VALUE = 33.333
67 NAME = G3 PACKET IAT
68 TYPE = PATTERN
69 TABLE =

VALUE = 25.000
72 NAME = AUDIO PACKET IAT
73 TYPE = PATTERN
74 TABLE =

VALUE = 1953.125
77 NAME = VIDEO PACKET IAT
78 TYPE = PATTERN
79 TABLE =

VALUE = 40.000
82 NAME = FDDI.FM
83 TYPE = PATTERN
84 TABLE =

VALUE = 1000.000
87 NAME = FILL DATA
88 TYPE = FILE.LINEAR
89 A = -1.000000
90 B = 10200.000000
91 LOWER.BOUND = 0.
92 UPPER.BOUND = 10200.000000
93 NAME = VALID DATA
94 TYPE = FILE.LINEAR
95 A = 1.000000
96 B = 0.
97 LOWER.BOUND = 0.
98 UPPER.BOUND = 10200.000000
99 NAME = RSCLEN

100 TYPE = PATTERN
101 TABLE =

VALUE = 125.490
104 NAME = CRCLEN
105 TYPE = PATTERN
106 TABLE =

VALUE = 6.275
109 NAME = HDRLEN



CACI NETWORK II.5 RELEASE 7.02 02/14/1992 16:04:12 „ PAGE

DUAL FDDI LAN SPACE DATA COMMUNICATIONS SYSTEM MODEL

110 TYPE = PATTERN
111 TABLE =

VALUE = 4.706
114
H5 ***** PROCESSING ELEMENTS
116 HARDWARE TYPE = PROCESSING
117 NAME = G2A TRAFFIC
118 BASIC CYCLE TIME = .010000 MIC
119 INPUT CONTROLLER = YES
120 INSTRUCTION REPERTOIRE =
121 INSTRUCTION TYPE = WRITE
122 NAME ; WRITE G2 DATA TO BUFFER
123 STORAGE DEVICE TO ACCESS ; GRADE 2 BUFFER
124 FILE ACCESSED ; G2 ASYNC DATA
125 NUMBER OF BITS TO TRANSMIT ; PKTLEN
126 REPLACE FLAG ; NO
127 RESUME FLAG ; NO
128 ALLOWABLE BUSSES ;
129 G2A BUS
130 INSTRUCTION TYPE = MESSAGE
131 NAME ; SEND G2 DATA PACKET
132 MESSAGE ; PKT_G2A
133 LENGTH ; PKTLEN
134 DESTINATION PROCESSOR ; FDDI 1A
135 QUEUE FLAG ; NO
136 RESUME FLAG ; NO
137 ALLOWABLE BUSSES ;
138 G2A BUS
139 NAME = G2B TRAFFIC
140 BASIC CYCLE TIME = .010000 MIC
141 .. INPUT CONTROLLER = YES
142 ' INSTRUCTION REPERTOIRE =
143 INSTRUCTION TYPE = WRITE
144 NAME ; WRITE G2 DATA TO BUFFER
145 STORAGE DEVICE TO ACCESS ; GRADE 2 BUFFER
146 FILE ACCESSED ; G2 ASYNC DATA
147 NUMBER OF BITS TO TRANSMIT ; PKTLEN
148 REPLACE FLAG ; NO
149 RESUME FLAG ; NO
150 ALLOWABLE BUSSES ;
151 G2B BUS
152 INSTRUCTION TYPE = MESSAGE
153 NAME ; SEND G2 DATA PACKET
154 MESSAGE ; PKT_G2B
155 LENGTH ; PKTLEN
156 DESTINATION PROCESSOR ; FDDI IB
157 QUEUE FLAG ; NO
158 RESUME FLAG ; NO
159 ALLOWABLE BUSSES ;
160 G2B BUS



CACI NETWORK II.5 RELEASE 7.02 02/14/1992 16:04:12 PAGE

DUAL FDDI LAN SPACE DATA COMMUNICATIONS SYSTEM MODEL

161 NAME = G3A TRAFFIC
162 BASIC CYCLE TIME = .010000 MIC
163 INPUT CONTROLLER = YES
164 INSTRUCTION REPERTOIRE =
165 INSTRUCTION TYPE = WRITE
166 NAME ; WRITE G3 DATA TO BUFFER
167 STORAGE DEVICE TO ACCESS ; GRADE 3 BUFFER
168 FILE ACCESSED ; G3 ASYNC DATA
169 . NUMBER OF BITS TO TRANSMIT ; PKTLEN
170 REPLACE FLAG ; NO
171 RESUME FLAG ; NO
172 ALLOWABLE BUSSES ;
173 G3A BUS
174 INSTRUCTION TYPE = MESSAGE
175 NAME ; SEND G3 DATA PACKET
176 MESSAGE ; PKT_G3A
177 LENGTH ; PKTLEN
178 DESTINATION PROCESSOR ; FDDI 2A
179 QUEUE FLAG ; NO
180 RESUME FLAG ; NO
181 ALLOWABLE BUSSES ;
182 G3A BUS
183 NAME = G3B TRAFFIC
184 BASIC CYCLE TIME = .010000 MIC
185 INPUT CONTROLLER = YES
186 INSTRUCTION REPERTOIRE =
187 INSTRUCTION TYPE = WRITE
188 NAME ; WRITE G3 DATA TO BUFFER
189 STORAGE DEVICE TO ACCESS ; GRADE 3 BUFFER
190 FILE ACCESSED ; G3 ASYNC DATA
191 NUMBER OF BITS TO TRANSMIT ; PKTLEN
192 REPLACE FLAG ; NO
193 RESUME FLAG ; NO
194 ALLOWABLE BUSSES ;
195 G3B BUS
196 INSTRUCTION TYPE = MESSAGE
197 NAME ; SEND G3 DATA PACKET
198 MESSAGE ; PKT_G3B
199 LENGTH ; PKTLEN
200 DESTINATION PROCESSOR ; FDDI 2B
201 QUEUE FLAG ; NO
202 RESUME FLAG ; NO
203 ALLOWABLE BUSSES ;
204 G3B BUS
205 NAME = AUDIO DATA A
206 BASIC CYCLE TIME = .010000 MIC
207 INPUT CONTROLLER = YES
208 INSTRUCTION REPERTOIRE =
209 INSTRUCTION TYPE = MESSAGE
210 NAME ; SEND AUDIO DATA PACKET



CACI NETWORK II.5 RELEASE 7.02 02/14/1992 16:04:12 n PAGE

DUAL FDDI LAN SPACE DATA COMMUNICATIONS SYSTEM MODEL

211 MESSAGE ; PKT.AUDA
212 LENGTH ; PKTLEN
213 DESTINATION PROCESSOR ; FDDI 3A
214 . QUEUE FLAG ; YES
215 RESUME FLAG ; NO
216 ALLOWABLE BUSSES ;
217 FDDI LAN A
218 INSTRUCTION TYPE = SEMAPHORE
219 NAME ; SUBTRACT 1 FROM TICK.4A
220 SEMAPHORE ; TICK.4A
221 SET/RESET FLAG ; RESET
222 NAME = AUDIO DATA B
223 BASIC CYCLE TIME = .010000 MIC
224 INPUT CONTROLLER = YES
225 INSTRUCTION REPERTOIRE =
226 INSTRUCTION TYPE = MESSAGE
227 NAME ; SEND AUDIO DATA PACKET
228 MESSAGE ; PKT.AUDB
229 LENGTH ; PKTLEN
230 DESTINATION PROCESSOR ; FDDI 3B
231 • QUEUE FLAG ; YES
232 RESUME FLAG ; NO
233 ALLOWABLE BUSSES ;
234 FDDI LAN B
235 INSTRUCTION TYPE = SEMAPHORE
236 NAME ; SUBTRACT 1 FROM TICK.4B
237 SEMAPHORE ; TICK.4B
238 SET/RESET FLAG ; RESET
239 NAME = VIDEO DATA
240 BASIC CYCLE TIME = .010000 MIC
241 INPUT CONTROLLER = YES
242 INSTRUCTION REPERTOIRE =
243 INSTRUCTION TYPE = MESSAGE
244 NAME ; SEND VIDEO DATA PACKET
245 MESSAGE ; PKT_VID
246 LENGTH ; PKTLEN
247 DESTINATION PROCESSOR ; CADU GEN
248 QUEUE FLAG ; NO
249 RESUME FLAG ; NO
250 ALLOWABLE BUSSES ;
251 CADU GEN BUS
252 NAME = FDDI 1A
253 BASIC CYCLE TIME = .010000 MIC
254 INPUT CONTROLLER = YES
255 INSTRUCTION REPERTOIRE =
256 INSTRUCTION TYPE = READ
257 NAME ; READ G2 DATA FROM BUFFER
258 STORAGE DEVICE TO ACCESS ; GRADE 2 BUFFER
259 FILE ACCESSED ; G2 ASYNC DATA
260 NUMBER OF BITS TO TRANSMIT ; FDDI.FM



CACI NETWORK II.5 RELEASE 7.02 02/14/1992 16:04:12 , PAGE

DUAL FDDI LAN SPACE DATA COMMUNICATIONS SYSTEM MODEL

261 DESTROY FLAG ; YES
262 PARTIAL FLAG ; YES
263 RESUME FLAG ; NO
264 ALLOWABLE BUSSES ;
265 G2A BUS
266 INSTRUCTION TYPE = MESSAGE
267 NAME ; SEND DATA PACKET ON FDDI
268 MESSAGE ; GS2.1A
269 LENGTH ; PKTLEN
270 DESTINATION PROCESSOR ; FDDI 3A
271 QUEUE FLAG ; YES
272 RESUME FLAG ; NO
273 ALLOWABLE BUSSES ;
274 FDDI LAN A
275 INSTRUCTION TYPE = SEMAPHORE
276 NAME ; SUBTRACT 1 FROM TICK.1A
277 SEMAPHORE ; TICK.1A
278 SET/RESET FLAG ; RESET
V279 NAME = FDDI IB
280 BASIC CYCLE TIME = .010000 MIC
281 INPUT CONTROLLER = YES
282 INSTRUCTION REPERTOIRE =
283 INSTRUCTION TYPE = READ
284 NAME ; READ G2 DATA FROM BUFFER
285 STORAGE DEVICE TO ACCESS ; GRADE 2 BUFFER
286 FILE ACCESSED ; G2 ASYNC DATA
287 NUMBER OF BITS TO TRANSMIT ; FDDI.FM
288 DESTROY FLAG ; YES
289 PARTIAL FLAG ; YES
290 RESUME FLAG ; NO
291 ALLOWABLE BUSSES ;
292 G2B BUS
293 INSTRUCTION TYPE = MESSAGE
294 NAME ; SEND DATA PACKET ON FDDI
295 MESSAGE ; GS2.1B
296 LENGTH ; PKTLEN
297 DESTINATION PROCESSOR ; FDDI 3B
298 QUEUE FLAG ; YES
299 RESUME FLAG ; NO
300 ALLOWABLE BUSSES ;
301 FDDI LAN B
302 INSTRUCTION TYPE = SEMAPHORE
303 NAME ; SUBTRACT 1 FROM TICK.IB
304 SEMAPHORE ; TICK.IB
305 SET/RESET FLAG ; RESET
306 NAME = FDDI 2A
307 BASIC CYCLE TIME = .010000 MIC
308 INPUT CONTROLLER = YES
309 INSTRUCTION REPERTOIRE =
310 INSTRUCTION TYPE = READ
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311 NAME ; READ G3 DATA FROM BUFFER
312 STORAGE DEVICE TO ACCESS ; GRADE 3 BUFFER
313 FILE ACCESSED ; G3 ASYNC DATA
314 NUMBER OF BITS TO TRANSMIT ; FDDI.FM
315 DESTROY FLAG ; YES
316 PARTIAL FLAG ; YES
317 RESUME FLAG ; NO
318 ALLOWABLE BUSSES ;
319 G3A BUS
320 INSTRUCTION TYPE = MESSAGE
321 NAME ; SEND DATA PACKET ON FDDI
322 MESSAGE ; GS3.2A
323 LENGTH ; PKTLEN
324 DESTINATION PROCESSOR ; FDDI 3A
325 QUEUE FLAG ; YES
326 RESUME FLAG ; NO
327 ALLOWABLE BUSSES ;
328 FDDI LAN A
329 INSTRUCTION TYPE = SEMAPHORE
330 NAME ; SUBTRACT 1 FROM TICK.2A
331 SEMAPHORE ; TICK.2A
332 SET/RESET FLAG ; RESET
333 NAME = FDDI 2B
334 BASIC CYCLE TIME = .010000 MIC
335 INPUT CONTROLLER = YES
336 INSTRUCTION REPERTOIRE =
337 INSTRUCTION TYPE = READ
338 NAME ; READ G3 DATA FROM BUFFER
339 STORAGE DEVICE TO ACCESS ; GRADE 3 BUFFER
340 FILE ACCESSED ; G3 ASYNC DATA
341 NUMBER OF BITS-'TO TRANSMIT ; FDDI.FM
342 DESTROY FLAG ; YES
343 PARTIAL FLAG ; YES
344 RESUME FLAG ; NO
345 ALLOWABLE BUSSES ;
346 G3B BUS
347 INSTRUCTION TYPE = MESSAGE
348 NAME ; SEND DATA PACKET ON FDDI
349 MESSAGE ; GS3.2B
350 LENGTH ; PKTLEN
351 DESTINATION PROCESSOR ; FDDI 3B
352 QUEUE FLAG ; YES
353 RESUME FLAG ; NO
354 ALLOWABLE BUSSES ;
355 FDDI LAN B
356 INSTRUCTION TYPE = SEMAPHORE
357 NAME ; SUBTRACT 1 FROM TICK.2B
358 SEMAPHORE ; TICK.2B
359 SET/RESET FLAG ; RESET
360 NAME = FDDI 3A
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361 BASIC CYCLE TIME = .010000 MIC
362 INPUT CONTROLLER = YES
363 INSTRUCTION REPERTOIRE =
364 INSTRUCTION TYPE = WRITE
365 NAME ; WRITE ASYNC DATA TO BUFFER
366 STORAGE DEVICE TO ACCESS ; FDDI 3 BUFFER
367 FILE ACCESSED ; ASYNC DATA
368 NUMBER OF BITS TO TRANSMIT ; FDDI.FM
369 REPLACE FLAG ; NO
370 RESUME FLAG ; NO
371 ALLOWABLE BUSSES ;
372 CADU GEN BUS
373 INSTRUCTION TYPE = WRITE
374 NAME ; WRITE HEADER DATA TO BUFFER
375( STORAGE DEVICE TO ACCESS ; FDDI 3 BUFFER
376 FILE ACCESSED ; ASYNC DATA
377 NUMBER OF BITS TO TRANSMIT ; HDRLEN
378 REPLACE FLAG ; NO
379 RESUME FLAG ; NO
380 ALLOWABLE BUSSES ;
381 CADU GEN BUS
382 INSTRUCTION TYPE = MESSAGE
383 NAME ; SEND DATA PACKET TO CADU GEN
384 MESSAGE ; PKT.THREE
385 LENGTH ; PKTLEN
386 DESTINATION PROCESSOR ; CADU GEN
387 QUEUE FLAG ; NO
388 RESUME FLAG ; NO
389 ALLOWABLE BUSSES ;
390 CADU GEN BUS
391 NAME ; SEND G2 DATA TO RS CODE GEN
392 MESSAGE ; RSC
393 LENGTH ; 10 BITS
394 DESTINATION PROCESSOR ; RS CODE GEN
395 QUEUE FLAG ; NO
396 RESUME FLAG ; NO
397 ALLOWABLE BUSSES ;
398 CADU GEN BUS
399 NAME ; SEND G3 DATA TO CRC CODE GEN
400 MESSAGE ; CRC
401 LENGTH ; 10 BITS
402 DESTINATION PROCESSOR ; CRC CODE GEN
403 QUEUE FLAG ; NO
404 RESUME FLAG ; NO
405 ALLOWABLE BUSSES ;
406 CADU GEN BUS
407 INSTRUCTION TYPE = SEMAPHORE
408 NAME ; SUBTRACT 1 FROM TICK.3A
409 SEMAPHORE ; TICK.3A
410 SET/RESET FLAG ; RESET
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411 NAME = FDDI 3B
412 BASIC CYCLE TIME = .010000 MIC
413 INPUT CONTROLLER = YES
414 INSTRUCTION REPERTOIRE =
415 INSTRUCTION TYPE = WRITE
416 NAME ; WRITE ASYNC DATA TO BUFFER
417 STORAGE DEVICE TO ACCESS ; FDDI 3 BUFFER
418 FILE ACCESSED ; ASYNC DATA
419 NUMBER OF BITS TO TRANSMIT ; FDDI.FM
420 REPLACE FLAG ; NO
421 RESUME FLAG ; NO
422 ALLOWABLE BUSSES ;
423 CADU GEN BUS
424 INSTRUCTION TYPE = WRITE
425 NAME ; WRITE HEADER DATA TO BUFFER
426 STORAGE DEVICE TO ACCESS ; FDDI 3 BUFFER
427 FILE ACCESSED ; ASYNC DATA
428 NUMBER OF BITS TO TRANSMIT ; HDRLEN
429 REPLACE FLAG ; NO
430 RESUME FLAG ; NO
431 ALLOWABLE BUSSES ;
432 CADU GEN BUS
433 INSTRUCTION TYPE = MESSAGE
434 NAME ; SEND DATA PACKET TO CADU GEN
435 MESSAGE ; PKT.THREE
436 LENGTH ; PKTLEN
437 DESTINATION PROCESSOR ; CADU GEN
438 QUEUE FLAG ; NO
439 RESUME FLAG ; NO
440 ALLOWABLE BUSSES ;
441 CADU GEN BUS
442 NAME ; SEND G2 DATA TO RS CODE GEN
443 MESSAGE ; RSC
444 LENGTH ; 10 BITS
445 DESTINATION PROCESSOR ; RS CODE GEN
446 QUEUE FLAG ; NO
447 RESUME FLAG ; NO
448 ALLOWABLE BUSSES ;
449 CADU GEN BUS
450 NAME ; SEND G3 DATA TO CRC CODE GEN
451 MESSAGE ; CRC
452 LENGTH ; 10 BITS
453 DESTINATION PROCESSOR ; CRC CODE GEN
454 QUEUE FLAG ; NO
455 RESUME FLAG ; NO
456 ALLOWABLE BUSSES ;
457 CADU GEN BUS
458 INSTRUCTION TYPE = SEMAPHORE
459 NAME ; SUBTRACT 1 FROM TICK.3B
460 SEMAPHORE ; TICK.3B
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461 SET/RESET FLAG ; RESET
462 NAME = RS CODE GEN
463 BASIC CYCLE TIME = .010000 MIC
464 INPUT CONTROLLER = YES
465 INSTRUCTION REPERTOIRE =
466 INSTRUCTION TYPE = WRITE
467 NAME ; WRITE RS CODE BITS TO BUFFER
468 STORAGE DEVICE TO ACCESS ; FDDI 3 BUFFER
469 FILE ACCESSED ; ASYNC DATA
470 NUMBER OF BITS TO TRANSMIT ; RSCLEN
471 REPLACE FLAG ; NO
472 RESUME FLAG ; NO
473 ALLOWABLE BUSSES ;
474 CADU GEN BUS
475 NAME = CRC CODE GEN
476 BASIC CYCLE TIME = .010000 MIC
477 INPUT CONTROLLER = YES
478 INSTRUCTION REPERTOIRE =
479 INSTRUCTION TYPE = WRITE
480 NAME ; WRITE CRC CODE BITS TO BUFFER
481 STORAGE DEVICE TO ACCESS ; FDDI 3 BUFFER
482 FILE ACCESSED ; ASYNC DATA
483 NUMBER OF BITS TO TRANSMIT ; CRCLEN
484 REPLACE FLAG ; NO
485 RESUME FLAG ; NO
486 ALLOWABLE BUSSES ;
487 CADU GEN BUS
488 NAME = CHANNEL
489 BASIC CYCLE TIME = .010.000 MIC
490 INPUT CONTROLLER = YES
491 INSTRUCTION REPERTOIRE =
492 INSTRUCTION TYPE = PROCESSING
493 NAME ; SEND CHANNEL ACCESS DATA UNIT
494 TIME ; 1 CYCLES
495 NAME = CADU GEN
496 BASIC CYCLE TIME = 0. MIC
497 INPUT CONTROLLER = YES
498 INSTRUCTION REPERTOIRE =
499 INSTRUCTION TYPE = READ
500 NAME ; READ ASYNC DATA FROM BUFFER
501 STORAGE DEVICE TO ACCESS ; FDDI 3 BUFFER
502 FILE ACCESSED ; ASYNC DATA
503 DESTROY FLAG ; YES
504 PARTIAL FLAG ; YES
505 RESUME FLAG ; NO
506 ALLOWABLE BUSSES ;
507 CADU GEN BUS
508 NAME ; READ PCA.PDU FROM BUFFER
509 STORAGE DEVICE TO ACCESS ; VCDU DZ BUFFER
510 FILE ACCESSED ; CHANNEL ACCESS SLOT
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511 NUMBER OF BITS TO TRANSMIT ; 10200
512 DESTROY FLAG ; YES
513 PARTIAL FLAG ; YES
514 RESUME FLAG ; NO
515 ALLOWABLE BUSSES ;
516 CADU GEN BUS
517 INSTRUCTION TYPE = WRITE
518 NAME ; WRITE FILL DATA TO BUFFER
519 STORAGE DEVICE TO ACCESS ; VCDU DZ BUFFER
520 FILE ACCESSED ; CHANNEL ACCESS SLOT
521 NUMBER OF BITS TO TRANSMIT ; FILL DATA
522 --' REPLACE FLAG ; NO
523 RESUME FLAG ; NO
524 ALLOWABLE BUSSES ;
525 CADU GEN BUS
526 NAME ; WRITE VALID DATA TO BUFFER
527 STORAGE DEVICE TO ACCESS ; VCDU DZ BUFFER
528 FILE ACCESSED ; CHANNEL ACCESS SLOT
529 NUMBER OF BITS TO TRANSMIT ; VALID DATA
530 REPLACE FLAG ; NO
531 RESUME FLAG ; NO
532 ALLOWABLE BUSSES ;
533 CADU GEN BUS
534 INSTRUCTION TYPE = MESSAGE
535 NAME ; GENERATE CADU PDU
536 MESSAGE ; CADU.PDU
537 LENGTH ; 10200 BITS
538 DESTINATION PROCESSOR ; CHANNEL
539 QUEUE FLAG ; NO
540 RESUME FLAG ; NO
541 -"ALLOWABLE BUSSES ;
542 CADU GEN BUS
543 NAME = PHANTOM STATION A
544 BASIC CYCLE TIME = 0. MIC
545 INPUT CONTROLLER = YES
546 INSTRUCTION REPERTOIRE =
547 INSTRUCTION TYPE = SEMAPHORE
548 NAME ; ADD 1 TO TICK.1A
549 SEMAPHORE ; TICK.1A
550 SET/RESET FLAG ; SET
551 NAME ; ADD 1 TO TICK.2A
552 SEMAPHORE ; TICK.2A
553 SET/RESET FLAG ; SET
554 NAME ; ADD 1 TO TICK.3A
555 SEMAPHORE ; TICK.3A
556 SET/RESET FLAG ; SET
557 NAME ; ADD 1 TO TICK.4A
558 SEMAPHORE ; TICK.4A
559 SET/RESET FLAG ; SET
560 NAME = PHANTOM STATION B
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561 BASIC CYCLE TIME = 0. MIC
562 INPUT -CONTROLLER = YES
563 INSTRUCTION REPERTOIRE =
564 INSTRUCTION TYPE = SEMAPHORE
565 NAME ; ADD 1 TO TICK.IB
566 SEMAPHORE ; TICK.IB
567 SET/RESET FLAG ; SET
568 NAME ; ADD 1 TO TICK.2B
569 SEMAPHORE ; TICK.2B
570 SET/RESET FLAG ; SET
571 NAME ; ADD 1 TO TICK.3B
572 SEMAPHORE ; TICK.3B
573 SET/RESET FLAG ; SET
574 NAME ; ADD 1 TO TICK.4B
575 . SEMAPHORE ; TICK.4B
576 SET/RESET FLAG ; SET
577
578 ***** TRANSFER DEVICES
579 HARDWARE TYPE = DATA TRANSFER
580 NAME = G2A BUS
581 CYCLE TIME = 0. MIC
582 BITS PER CYCLE = 1
583 CYCLES PER WORD = 8
584 WORDS PER BLOCK = 1024
585 WORD OVERHEAD TIME = .001000 MIC
586 BLOCK OVERHEAD TIME = 0. MIC
587 PROTOCOL = FIRST COME FIRST SERVED
588 BUS CONNECTIONS =
589 G2A TRAFFIC
590 GRADE 2 BUFFER
591 FDDI 1A
592 NAME = G2B BUS
593 CYCLE TIME = 0. MIC
594 BITS PER CYCLE = 1
595 CYCLES PER WORD = 8
596 WORDS PER BLOCK = 1024
597 WORD OVERHEAD TIME = .001000 MIC
598 BLOCK OVERHEAD TIME = 0. MIC
599 PROTOCOL = FIRST COME FIRST SERVED
600 BUS CONNECTIONS =
601 G2B TRAFFIC
602 GRADE 2 BUFFER
603 FDDI IB
604 NAME = G3A BUS
605 CYCLE TIME = 0. MIC
606 BITS PER CYCLE = 1
607 CYCLES PER WORD = 8
608 WORDS PER BLOCK = 1024
609 WORD OVERHEAD TIME = .001000 MIC
610 BLOCK OVERHEAD TIME = 0. MIC
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611 PROTOCOL = FIRST COME FIRST SERVED
612 BUS CONNECTIONS =
613 G3A TRAFFIC
614 GRADE 3 BUFFER
615 FDDI 2A
616 NAME = G3B BUS
617 CYCLE TIME = 0. MIC
618 BITS PER CYCLE = 1
619 CYCLES PER WORD = 8
620 WORDS PER BLOCK = 1024
621 WORD OVERHEAD TIME = .001000 MIC
622 BLOCK OVERHEAD TIME = 0. MIC
623 PROTOCOL = FIRST COME FIRST SERVED
624 BUS CONNECTIONS =
625 G3B TRAFFIC
626 GRADE 3 BUFFER
627 FDDI 2B
628 NAME = CADU GEN BUS
629 CYCLE TIME = 0. MIC
630 BITS PER CYCLE = 1
631 CYCLES PER WORD = 8
632 WORDS PER BLOCK = 1024
633 WORD OVERHEAD TIME = 0. MIC
634 BLOCK OVERHEAD TIME = 0. MIC
635 PROTOCOL = FIRST COME FIRST SERVED
636 BUS CONNECTIONS =
637 VIDEO DATA
638 FDDI 3A
639 FDDI 3B
640 FDDI 3 BUFFER
641 VCDU DZ BUFFER
642 RS CODE GEN
643 CRC CODE GEN
644 CADU GEN
645 CHANNEL
646 NAME = FDDI LAN A
647 CYCLE TIME = .008000 MIC
648 BITS PER CYCLE = 1
649 CYCLES PER WORD = 4
650 WORDS PER BLOCK = 3200
651 WORD OVERHEAD TIME = .008000 MIC
652 BLOCK OVERHEAD TIME = 0. MIC
653 PROTOCOL = PRIORITY TOKEN RING
654 TOKEN PASSING TIME =0.1
655 BUS CONNECTIONS =
656 FDDI 1A
657 KEY =1.0
658 SYNCHRONOUS =-200.0 MIC
659 MINIMUM SYNCHRONOUS PRIORITY =
660 TARGET TOKEN ROTATION TIMES =
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661 PRIORITY 4 = 2500.0 MIC
662 PRIORITY 1 = 2500.0 MIC
663 FDDI 2A
664 KEY =2.0
665 SYNCHRONOUS = 200.0 MIC
666 MINIMUM SYNCHRONOUS PRIORITY =
667 TARGET TOKEN ROTATION TIMES =
668 PRIORITY 4 = 2500.0 MIC
669 PRIORITY 1 = 2500.6 MIC
670 FDDI 3A
671 KEY =3.0
672 SYNCHRONOUS = 200.0 MIC
673 MINIMUM SYNCHRONOUS PRIORITY =
674 TARGET TOKEN ROTATION TIMES =
675 PRIORITY 4 = 2500.0 MIC
676 PRIORITY 1 = 2500.0 MIC
677 AUDIO DATA A
678 KEY =4.0
679 SYNCHRONOUS = 200.0 MIC
680 MINIMUM SYNCHRONOUS PRIORITY =
681 TARGET TOKEN ROTATION TIMES =
682 PRIORITY 4 = 2500.0 MIC
683 PRIORITY 1 = 2500.0 MIC
684 NAME = FDDI LAN B
685 CYCLE TIME = .008000 MIC
686 BITS PER CYCLE = 1
687 CYCLES PER WORD = 4
688 WORDS PER BLOCK = 3200
689 WORD OVERHEAD TIME = .008000 MIC
690 BLOCK OVERHEAD TIME = 0. MIC
691 ' PROTOCOL = PRIORITY TOKEN RING
692 TOKEN PASSING TIME =0.1
693 BUS CONNECTIONS =
694 FDDI IB
695 KEY =1.0
696 SYNCHRONOUS = 200.0 MIC
697 MINIMUM SYNCHRONOUS PRIORITY =
698 TARGET TOKEN ROTATION TIMES =
699 PRIORITY 4 = 2500.0 MIC
700 PRIORITY 1 = 2500.0 MIC
701 FDDI 2B
702 KEY =2.0
703 SYNCHRONOUS = 200.0 MIC
704 MINIMUM SYNCHRONOUS PRIORITY =
705 TARGET TOKEN ROTATION TIMES =
706 PRIORITY 4 = 2500.0 MIC
707 PRIORITY 1 = 2500.0 MIC
708 FDDI 3B
709 KEY =3.0
710 SYNCHRONOUS = 200.0 MIC
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711 MINIMUM SYNCHRONOUS PRIORITY = 7
712 TARGET TOKEN ROTATION TIMES =
713 PRIORITY 4 = 2500.0 MIC
714 PRIORITY 1 = 2500.0 MIC
715 AUDIO DATA B
716 KEY =4.0
717 SYNCHRONOUS = 200.0 MIC
718 MINIMUM SYNCHRONOUS PRIORITY = 7
719 TARGET TOKEN ROTATION TIMES =
720 PRIORITY 4 = 2500.0 MIC
721 PRIORITY 1 = 2500.0 MIC
722
723 ***** STORAGE DEVICES
724 HARDWARE TYPE = STORAGE
725 NAME = GRADE 2 BUFFER
726 WORD ACCESS TIME =0.0 MIC
727 BITS PER WORD = 8
728 WORDS PER BLOCK = 1024
729 READ OVERHEAD TIME PER WORD ACCESS =0.0 MIC
730 WRITE OVERHEAD TIME PER WORD ACCESS =0.0 MIC
731 OVERHEAD TIME PER BLOCK ACCESS =0.0 MIC
732 CAPACITY = 100000000000. BITS
733 NUMBER OF PORTS = 2
734 NAME = GRADE 3 BUFFER
735 WORD ACCESS TIME =0.0 MIC
736 BITS PER WORD = 8
737 WORDS PER BLOCK = 1024
738 READ OVERHEAD TIME PER WORD ACCESS =0.0 MIC
739 WRITE OVERHEAD TIME PER WORD ACCESS =0.0 MIC
740 OVERHEAD TIME PER BLOCK ACCESS =0.0 MIC
741 CAPACITY = 100000000000. BITS
742 NUMBER OF PORTS = 2
743 NAME = FDDI 3 BUFFER
744 WORD ACCESS TIME =0.0 MIC
745 BITS PER WORD = 8
746 WORDS PER BLOCK = 1024
747 READ OVERHEAD TIME PER WORD ACCESS =0.0 MIC
748 WRITE OVERHEAD TIME PER WORD ACCESS =0.0 MIC
749 OVERHEAD TIME PER BLOCK ACCESS =0.0 MIC
750 CAPACITY = 10000000. BITS
751 NUMBER OF PORTS = 2
752 NAME = VCDU DZ BUFFER
753 WORD ACCESS TIME =0.0 MIC
754 BITS PER WORD = 8
755 WORDS PER BLOCK = 1024
756 READ OVERHEAD TIME PEP WORD ACCESS =0.0 MIC
757 WRITE OVERHEAD TIME PER WORD ACCESS =0.0 MIC
758 OVERHEAD TIME PER BLOCK ACCESS =0.0 MIC
759 CAPACITY = 10200. BITS
760 NUMBER OF PORTS = 2
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761
762 ***** MODULES
763 SOFTWARE TYPE = MODULE
764 NAME = FDDI 1A MODULE
765 PRIORITY = 4
766 INTERRUPTIBILITY FLAG = NO
767 CONCURRENT EXECUTION = NO
768 START TIME = PACKET ST
769 ALLOWED PROCESSORS =
770 FDDI 1A
771 REQUIRED MESSAGES =
772 PKT_G2A
773 REQUIRED SEMAPHORE STATUS =
774 RUN WHEN ; TICK.1A
775 IS ; > 0
776 INSTRUCTION LIST =
777 EXECUTE A TOTAL OF ; 1 SEND FDDI 1A FRAME
778 ANDED SUCCESSORS =
779 CHAIN TO ; FDDI 1A MODULE
780 WITH ITERATIONS THEN CHAIN COUNT OF ;
781 NAME = FDDI IB MODULE
782 PRIORITY = 4
783 INTERRUPTIBILITY FLAG = NO
784 CONCURRENT EXECUTION = NO
785 START TIME = PACKET ST
786 ALLOWED PROCESSORS =
787 FDDI IB
788 REQUIRED MESSAGES =
789 PKT_G2B
790 REQUIRED SEMAPHORE STATUS =
791 RUN WHEN ; TICK.IB
792 IS ; > 0
793 INSTRUCTION LIST =
794 EXECUTE A TOTAL OF ; 1 SEND FDDI IB FRAME
795 ANDED SUCCESSORS =
796 CHAIN TO ; FDDI IB MODULE
797 WITH ITERATIONS THEN CHAIN COUNT OF ;
798 NAME = FDDI 2A MODULE
799 PRIORITY = 1
800 INTERRUPTIBILITY FLAG = NO
801 CONCURRENT EXECUTION = NO
802 START TIME = PACKET ST
803 ALLOWED PROCESSORS =
804 FDDI 2A
805 REQUIRED MESSAGES =
806 PKT_G3A
807 REQUIRED SEMAPHORE STATUS =
808 RUN WHEN ; TICK.2A
809 IS ; > 0
'810 INSTRUCTION LIST =
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811 EXECUTE A TOTAL OF ; 1 SEND FDDI 2A FRAME
812 ANDED SUCCESSORS =
813 CHAIN TO ; FDDI 2A MODULE
814 WITH ITERATIONS THEN CHAIN COUNT OF ; 0
815 NAME = FDDI 2B MODULE
816 PRIORITY = 1
817 INTERRUPTIBILITY FLAG = NO
818 CONCURRENT EXECUTION = NO
819 START TIME = PACKET ST
820 ALLOWED PROCESSORS =
821 FDDI 2B
822 REQUIRED MESSAGES =
823 PKT_G3B
824 REQUIRED SEMAPHORE STATUS =
825 RUN WHEN ; TICK.2B
826 IS ; > 0
827 INSTRUCTION LIST =
828 EXECUTE A TOTAL OF ; 1 SEND FDDI 2B FRAME
829 ANDED SUCCESSORS =
830 CHAIN TO ; FDDI 2B MODULE
831 WITH ITERATIONS THEN CHAIN COUNT OF ; 0
832 NAME = FDDI 3A AUD MODULE
833 PRIORITY = 7
834 INTERRUPTIBILITY FLAG = NO
835 CONCURRENT EXECUTION = NO
836 START TIME = PACKET ST
837 ALLOWED PROCESSORS =
838 FDDI 3A
839 REQUIRED MESSAGES =
840 PKT.AUDA
841 REQUIRED SEMAPHORE STATUS =
842 RUN WHEN ; TICK.3A
843 IS ; > 0
844 INSTRUCTION LIST =
845 EXECUTE A TOTAL OF ; 1 RECEIVE AUDIO FRAME
846 EXECUTE A TOTAL OF ; 1 SUBTRACT I FROM TICK.3A
847 ANDED SUCCESSORS =
848 CHAIN TO ; FDDI 3A AUD MODULE
849 WITH ITERATIONS THEN CHAIN COUNT OF ; 0
850 NAME = FDDI 3B AUD MODULE
851 PRIORITY = 7
852 INTERRUPTIBILITY FLAG = NO
853 CONCURRENT EXECUTION = NO
854 START TIME = PACKET ST
855 ALLOWED PROCESSORS =
856 FDDI 3B
857 REQUIRED MESSAGES =
858 PKT.AUDB
859 REQUIRED SEMAPHORE STATUS =
860 RUN WHEN ; TICK.3B
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861 IS ; > 0
862 INSTRUCTION LIST =
863 EXECUTE A TOTAL OF ; 1 RECEIVE AUDIO FRAME
864 EXECUTE A TOTAL OF.; 1 SUBTRACT 1 FROM TICK.3B
865 ANDED SUCCESSORS =
866 CHAIN TO ; FDDI 3B AUD MODULE
867 WITH ITERATIONS THEN CHAIN COUNT OF ; 0
868 NAME = FDDI 3A G2 MODULE
869 PRIORITY = 4
870 INTERRUPTIBILITY FLAG = NO
871 CONCURRENT EXECUTION = NO
872 START TIME = PACKET ST
873 ALLOWED PROCESSORS =
874 FDDI 3A
875 REQUIRED MESSAGES =
876 GS2.1A
877 REQUIRED SEMAPHORE STATUS =
878 RUN WHEN ; TICK.3A
879 IS ; > 0
880 INSTRUCTION LIST =
881 EXECUTE A TOTAL OF ; 1 RECEIVE G2 DATA FRAME
882 EXECUTE A TOTAL OF ; 1 WRITE HEADER DATA TO BUFFER
883 EXECUTE A TOTAL OF ; 1 SUBTRACT 1 FROM TICK.3A
884 ANDED SUCCESSORS =
885 CHAIN TO ; FDDI 3A G2 MODULE
886 WITH ITERATIONS THEN CHAIN COUNT OF ; 0
887 NAME = FDDI 3B G2 MODULE
888 PRIORITY = 4
889 INTERRUPTIBILITY FLAG = NO
890 CONCURRENT EXECUTION = NO
891 START TIME = PACKET ST
892 ALLOWED PROCESSORS =
893 FDDI 3B
894 REQUIRED MESSAGES =
895 GS2.1B
896 REQUIRED SEMAPHORE STATUS =
897 RUN WHEN ; TICK.3B
898 IS ; > 0
899 INSTRUCTION LIST =
900 EXECUTE A TOTAL OF ; 1 RECEIVE G2 DATA FRAME
901 EXECUTE A TOTAL OF ; 1 WRITE HEADER DATA TO BUFFER
902 EXECUTE A TOTAL OF ; 1 SUBTRACT 1 FROM TICK.3B
903 ANDED SUCCESSORS =
904 CHAIN TO ; FDDI 3B G2 MODULE
905 WITH ITERATIONS THEN CHAIN COUNT OF ; 0
906 NAME = FDDI 3A G3 MODULE
907 PRIORITY = 1
908 INTERRUPTIBILITY FLAG = NO
909 CONCURRENT EXECUTION = NO
910 START TIME = PACKET ST
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911 ALLOWED PROCESSORS =
912 FDDI 3A
913 REQUIRED MESSAGES =
914 GS3.2A
915 REQUIRED SEMAPHORE STATUS =
916 RUN WHEN ; TICK.3A
917 IS ; > 0
918 INSTRUCTION LIST =
919 EXECUTE A TOTAL OF ; 1 RECEIVE G3 DATA FRAME
920 EXECUTE A TOTAL OF ; 1 WRITE HEADER DATA TO BUFFER
921 EXECUTE A TOTAL OF ; 1 SUBTRACT 1 FROM TICK.3A
922 ANDED SUCCESSORS =
923 CHAIN TO ; FDDI 3A G3 MODULE
924 WITH ITERATIONS THEN CHAIN COUNT OF ; 0
925 NAME = FDDI 3B G3 MODULE
926 PRIORITY = 1
927 INTERRUPTIBILITY FLAG = NO
928 CONCURRENT EXECUTION = NO
929 START TIME = PACKET ST
930 ALLOWED PROCESSORS =
931 FDDI 3B
932 REQUIRED MESSAGES =
933 GS3.2B
934 REQUIRED SEMAPHORE STATUS =
935 RUN WHEN ; TICK.3B
936 IS ; > 0
937 INSTRUCTION LIST =
938 EXECUTE A TOTAL OF ; 1 RECEIVE G3 DATA FRAME
939 EXECUTE A TOTAL OF ; 1 WRITE HEADER DATA TO BUFFER •
940 EXECUTE A TOTAL OF ; 1 SUBTRACT 1 FROM TICK.3B
941 ANDED SUCCESSORS =
942 CHAIN TO ; FDDI 3B G3 MODULE
943 WITH ITERATIONS THEN CHAIN COUNT OF ; 0
944 NAME = CRC CODE GEN MODULE
945 PRIORITY = 7
946 INTERRUPTIBILITY FLAG = NO
947 CONCURRENT EXECUTION = NO
948 START TIME = PACKET ST
949 ALLOWED PROCESSORS =
950 CRC CODE GEN
951 REQUIRED MESSAGES =
952 CRC
953 INSTRUCTION LIST =
954 EXECUTE A TOTAL OF ; 1 WRITE CRC CODE BITS TO BUFFER
955 ANDED SUCCESSORS =
956 CHAIN TO ; CRC CODE GEN MODULE
957 WITH ITERATIONS THEN CHAIN COUNT OF ; 0
958 NAME = RS CODE GEN MODULE
959 PRIORITY = 7
960 INTERRUPTIBILITY FLAG = NO
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1 WRITE G2 DATA TO BUFFER
1 SEND G2 DATA PACKET

961 CONCURRENT EXECUTION = NO
962 START TIME = PACKET ST
963 ALLOWED PROCESSORS =
964 RS CODE GEN
965 REQUIRED MESSAGES =
966 RSC
967 INSTRUCTION LIST =
968 EXECUTE A TOTAL OF
969 ANDED SUCCESSORS =
970 CHAIN TO ; RS CODE GEN MODULE
971 WITH ITERATIONS THEN CHAIN COUNT OF
972 NAME = G2A TRAFFIC MOD
973 PRIORITY = 0
974 INTERRUPTIBILITY FLAG = NO
975 CONCURRENT EXECUTION = NO
976 ITERATION PERIOD = G2 PACKET IAT
977 START TIME = PACKET ST
978 ALLOWED PROCESSORS =
979 G2A TRAFFIC
980 INSTRUCTION LIST =
981 EXECUTE A TOTAL OF
982 EXECUTE A TOTAL OF
983 NAME = G2B TRAFFIC MOD
984 PRIORITY = 0
985 INTERRUPTIBILITY FLAG = NO
986 CONCURRENT EXECUTION = NO
987 ITERATION PERIOD = G2 PACKET IAT
988 START TIME = PACKET ST
989 ALLOWED PROCESSORS =
990 G2B TRAFFIC
991 INSTRUCTION LIST =
992 EXECUTE A TOTAL OF
993 EXECUTE A TOTAL OF
994 NAME = G3A TRAFFIC MOD
995 PRIORITY = 0
996 INTERRUPTIBILITY FLAG = NO
997 CONCURRENT EXECUTION = NO
998 ITERATION PERIOD = G3 PACKET IAT
999 START TIME = PACKET ST
1000 ALLOWED PROCESSORS =
1001 G3A TRAFFIC
1002 INSTRUCTION LIST =
1003 EXECUTE A TOTAL OF
1004 EXECUTE A TOTAL OF
1005 NAME = G3B TRAFFIC MOD
1006 PRIORITY = 0
1007 INTERRUPTIBILITY FLAG = NO
1008 CONCURRENT EXECUTION = NO
1009 ITERATION PERIOD = G3 PACKET IAT
1010 START TIME = PACKET ST

1 WRITE RS CODE BITS TO BUFFER

1 WRITE G2 DATA TO BUFFER
1 SEND G2 DATA PACKET

1 WRITE G3 DATA TO BUFFER
1 SEND G3 DATA PACKET



CACI NETWORK II.5 RELEASE 7.02 02/14/1992 16:04:12

DUAL FDDI LAN SPACE DATA COMMUNICATIONS SYSTEM MODEL

PAGE 21

WRITE G3 DATA TO BUFFER
SEND G3 DATA PACKET

SEND AUDIO DATA PACKET
SUBTRACT 1 FROM TICK.4A

1011 ALLOWED PROCESSORS =
1012 G3B TRAFFIC
1013 INSTRUCTION LIST =
1014 EXECUTE A TOTAL OF ; 1
1015 EXECUTE A TOTAL OF ; 1
1016 NAME = AUDIO DATA A MOD
1017 PRIORITY = 7
1018 INTERRUPTIBILITY FLAG = NO
1019 CONCURRENT EXECUTION = NO
1020 ITERATION PERIOD = AUDIO PACKET IAT
1021 START TIME = PACKET ST
1022 ALLOWED PROCESSORS =
1023 AUDIO DATA A
1024 REQUIRED SEMAPHORE STATUS =
1025 RUN WHEN ; TICK.4A
1026 IS ; > 0
1027 INSTRUCTION LIST =
1028 EXECUTE A TOTAL OF ; 1
1029 EXECUTE A TOTAL OF ; 1
1030 NAME = AUDIO DATA B MOD
1031 PRIORITY = 7
1032 INTERRUPTIBILITY FLAG = NO
1033 CONCURRENT EXECUTION = NO
1034 ITERATION PERIOD = AUDIO PACKET IAT
1035 START TIME = PACKET ST
1036 ALLOWED. PROCESSORS =
1037 AUDIO DATA B
1038 REQUIRED SEMAPHORE STATUS =
1039 RUN WHEN ; TICK.4B
1040 IS ; > 0
1041 INSTRUCTION LIST =
1042 EXECUTE A TOTAL OF ; 1
1043 EXECUTE A TOTAL OF ; 1
1044 NAME = VIDEO DATA MOD
1045 PRIORITY = 0
1046 INTERRUPTIBILITY FLAG = NO
1047 CONCURRENT EXECUTION = NO
1048 ITERATION PERIOD = VIDEO PACKET IAT
1049 START TIME = PACKET ST
1050 ALLOWED PROCESSORS =
1051 VIDEO DATA
1052 INSTRUCTION LIST =
1053 EXECUTE A TOTAL OF ; 1 SEND VIDEO DATA PACKET
1054 NAME = CHANNEL MOD
1055 PRIORITY = 0
1056 INTERRUPTIBILITY FLAG = NO
1057 CONCURRENT EXECUTION = NO
1058 START TIME = PACKET ST
1059 ALLOWED PROCESSORS =
1060 CHANNEL

SEND AUDIO DATA PACKET
SUBTRACT 1 FROM TICK.4B
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1061 REQUIRED MESSAGES =
1062 CADU.PDU
1063 INSTRUCTION LIST =
1064 EXECUTE A TOTAL OF
1065 NAME = CADU GEN MOD
1066 PRIORITY = 0
1067 INTERRUPTIBILITY FLAG
1068 CONCURRENT EXECUTION =
1069 ITERATION PERIOD = 34.
1070 START TIME = PACKET ST
1071 ALLOWED PROCESSORS =
1072 CADU GEN
1073 INSTRUCTION LIST =
1074 EXECUTE A TOTAL OF ;
1075 EXECUTE A TOTAL OF ;
1076 EXECUTE A TOTAL OF ;
1077 EXECUTE A TOTAL OF ;
1078 EXECUTE A TOTAL OF ;
1079 NAME = BROADCAST TICK A
1080 PRIORITY = 0
1081 INTERRUPTIBILITY FLAG ••
1082 CONCURRENT EXECUTION =
1083 ITERATION PERIOD =8.0
1084 START TIME = PACKET ST
1085 ALLOWED PROCESSORS =
1086 PHANTOM STATION A
1087 INSTRUCTION LIST =
1088 EXECUTE A TOTAL OF ;
1089 EXECUTE A TOTAL OF ;
1090 EXECUTE A TOTAL OF ;
1091 EXECUTE A TOTAL OF ;
1092 NAME = BROADCAST TICK B
1093 PRIORITY = 0
1094 INTERRUPTIBILITY FLAG =
1095 CONCURRENT EXECUTION =
1096 ITERATION PERIOD = 8.0
1097 START TIME = PACKET ST
1098 ALLOWED PROCESSORS =
1099 PHANTOM STATION B
1100 INSTRUCTION LIST =
1101 EXECUTE A TOTAL OF ;
1102 EXECUTE A TOTAL OF ;
1103 EXECUTE A TOTAL OF ;
1104 EXECUTE A TOTAL OF ;
1105
1106 ***** FILES
1107 SOFTWARE TYPE = FILE
1108 NAME = G2 ASYNC DATA
1109 NUMBER OF BITS =
1110 INITIAL RESIDENCY = '

1 SEND CHANNEL ACCESS DATA UNIT

= NO
NO
0 MIC

1 READ ASYNC DATA FROM BUFFER
1 WRITE FILL DATA TO BUFFER
1 WRITE VALID DATA TO BUFFER
1 READ PCA.PDU FROM BUFFER
1 GENERATE CADU PDU

= NO
NO
MIC

1 ADD 1 TO TICK.1A
1 ADD 1 TO TICK.2A
1 ADD 1 TO TICK.3A
1 ADD 1 TO TICK. 4A

: NO
NO
MIC

1 ADD 1 TO TICK.IB
1 ADD 1 TO TICK.2B
1 ADD 1 TO TICK.3B
1 ADD 1 TO TICK.4B
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1111 GRADE 2 BUFFER
1112 READ ONLY FLAG = NO
1113 NAME = G3 ASYNC DATA
1114 NUMBER OF BITS = 0.
1115 INITIAL RESIDENCY =
1116 GRADE 3 BUFFER
1117 READ ONLY FLAG = NO
1118 NAME = ASYNC DATA
1119 NUMBER OF BITS = 0.
1120 INITIAL RESIDENCY =
1121 FDDI 3 BUFFER
1122 READ ONLY FLAG = NO
1123 NAME = CHANNEL ACCESS SLOT
1124 NUMBER OF BITS = 0.
1125 INITIAL RESIDENCY =
1126 VCDU DZ BUFFER
1127 READ ONLY FLAG = NO
1128
1129 ***** MACRO INSTRUCTIONS
1130 SOFTWARE TYPE = MACRO INSTRUCTION
1131 NAME = SEND FDDI 1A FRAME
1132 NUMBER OF INSTRUCTIONS ; 1
1133 INSTRUCTION NAME ; READ G2 DATA FROM BUFFER
1134 NUMBER OF INSTRUCTIONS ; 1
1135 INSTRUCTION NAME ; SEND DATA PACKET ON FDDI
1136 NUMBER OF INSTRUCTIONS ; 1
1137 INSTRUCTION NAME ; SUBTRACT 1 FROM TICK.1A
1138 NAME = SEND FDDI IB FRAME
1139 NUMBER OF INSTRUCTIONS ; 1
1140 INSTRUCTION NAME ; READ G2 DATA FROM BUFFER
1141 NUMBER OF INSTRUCTIONS ; 1
1142 INSTRUCTION NAME ; SEND DATA PACKET ON FDDI
1143 NUMBER OF INSTRUCTIONS ; 1
1144 INSTRUCTION NAME ; SUBTRACT 1 FROM TICK.IB
1145 NAME = SEND FDDI 2A FRAME
1146 NUMBER OF INSTRUCTIONS ; 1
1147 INSTRUCTION NAME ; READ G3 DATA FROM BUFFER
1148 NUMBER OF INSTRUCTIONS ; 1
1149 INSTRUCTION NAME ; SEND DATA PACKET ON FDDI
1150 NUMBER OF INSTRUCTIONS ; 1
1151 INSTRUCTION NAME ; SUBTRACT 1 FROM TICK.2A
1152 NAME = SEND FDDI 2B FRAME
1153 NUMBER OF INSTRUCTIONS ; 1
1154 INSTRUCTION NAME ; READ G3 DATA FROM BUFFER
1155 NUMBER OF INSTRUCTIONS ; 1
1156 INSTRUCTION NAME ; SEND DATA PACKET ON FDDI
1157 NUMBER OF INSTRUCTIONS ; 1
1158 INSTRUCTION NAME ; SUBTRACT 1 FROM TICK.2B
1159 NAME = RECEIVE AUDIO FRAME
1160 NUMBER OF INSTRUCTIONS ; 1
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1161 INSTRUCTION NAME ; WRITE ASYNC DATA TO BUFFER
1162 NUMBER OF INSTRUCTIONS ; 1
1163 INSTRUCTION NAME ; SEND DATA PACKET TO CADU GEN
1164 NAME = RECEIVE G2 DATA FRAME
1165 NUMBER OF INSTRUCTIONS ; 1
1166 INSTRUCTION NAME ; SEND G2 DATA TO RS CODE GEN
1167 NUMBER OF INSTRUCTIONS ; 1
1168 INSTRUCTION NAME ; WRITE ASYNC DATA TO BUFFER
1169 NUMBER OF INSTRUCTIONS ; 1
1170 INSTRUCTION NAME ; SEND DATA PACKET TO CADU GEN
1171 NAME = RECEIVE G3 DATA FRAME
1172 NUMBER OF INSTRUCTIONS ; 1
1173 INSTRUCTION NAME ; SEND G3 DATA TO CRC CODE GEN
1174 NUMBER OF INSTRUCTIONS ; 1
1175 INSTRUCTION NAME ; WRITE ASYNC DATA TO BUFFER
1176 NUMBER OF INSTRUCTIONS ; 1
1177 INSTRUCTION NAME ; SEND DATA PACKET TO CADU GEN
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ABSTRACT

This paper describes GPSS/H, Network DL5, and Block Oriented Network Simulator (BONeS)
models of a ten-node, priority-sensitive FDDI LAN. The performance of the rings are compared
with theoretical results for these configurations. The purpose for creating the FDDI ring
simulation models is to verify model performance of and identify differences in the simulation
packages. These differences become important when simulating special features of the FDDI
MAC protocol such as the effect of packet collisions on the ring and clobbered overhead bits
within a transmitted packet. As a result of these simulations, considerable differences are found
in the degree of ease in configuring a simulation model, the necessary run times, and the level
of accuracy of the results.

INTRODUCnON

The Fiber Distributed Data Interface (FDDI) was developed using fiber optics and a token ring

media access control (MAC) protocol to provide a 100-Megabit-per-second data transfer rate

between high performance peripherals. Priority levels can be added to the algorithm for sending

the data across the LAN to manage the traffic flow when differing types of service are needed.

Several articles have been written describing the theory and performance of the FDDI token ring

MAC protocol which enables the high data transfer rates for both synchronous and asynchronous

data without violating the minimum guaranteed synchronous bandwidth at each station. The

purpose of this paper is to apply the theories developed for the FDDI token ring performance to



benchmark the ease-of-use and performance of three commercial simulation software packages

/
in simulating priority-sensitive FDDI Local Area Networks. Simulation results obtained using

GPSS/H [1], Network H.5 [2], and BONeS [3] FDDI token ring simulation models will be

presented and compared with the theoretical results. After validation of the simulators and

benchmarking the FDDI LAN models, the packages will be used to simulate various FDDI LAN

configurations such as the proposed Space Station Freedom onboard data management system

[4] shown in Figure 1 where FDDI LAN's will provide the backbone for transferring payload and

core engineering data.

Baseband Signal Processor

Payload Data Sources

Audio Data

Video Data c=

High-Rate Paylaod Data i=

Figure 1 - SSF Onboard FDDI LAN Structure.
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Space-to-
Groimd
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The FDDI token ring media access control protocol was formalized by the American National



Standards Institute [5] and is intended to interconnect high-performance engineering workstations

and computer mainframes using fiber optic cable. The FDDI token ring MAC protocol provides

each user with a minimum guaranteed synchronous bandwidth which will be satisfied before

asynchronous data transmission will be performed on the ring. This ensures that time-critical

synchronous data such as digitized voice and real-time control will not be distorted. The FDDI

token ring MAC protocol uses a token to control ring access and station token holding time. The

speed at which the token completes its journey around the FDDI ring determines the transmission

bandwidth of each station. During initialization, each station computes its target token rotation

time (TTRT) which is the maximum time allowed for the token to circulate the ring and return

to the sender without violating that station's bandwidth requirements. The minimum token

rotation time required to satisfy the synchronous bandwidth requirements of all active stations

on the ring will be selected during the FDDI ring initialization process. The FDDI token ring

MAC protocol enables the FDDI LAN to achieve high data transfer rates by allowing each station

the authority to regenerate the expired token without waiting for residual frame data bits to be

received which reduces the effect of ring propagation delays.

Eight priority levels are available in the FDDI token ring MAC protocol for the transmission

of asynchronous data. Each priority level specifies the time duration (bandwidth) in which the

station receiving the token may transmit asynchronous data. Asynchronous data transmission by

a station can be performed only if the target token rotation time has not expired. If the TTRT

has expired, the station's Late_Ct is incremented. The Late_Ct indicates the number of times the

token rotation timer exceeded the target token rotation timer at a station. Should a station's

token rotation timer exceed the TTRT with the Late_Ct not zero, ring recovery will be initiated.



A station determines whether the TTRT has expired by comparing the TTRT with the station's

Token Rotation Timer (TRT) which measures the time interval between token reception by the

station. If the TRT exceeds the TTRT, asynchronous data transmission cannot be performed.

The TTRT affects only the asynchronous data transmission of a station since the FDDI token ring

MAC protocol guarantees that a station's synchronous bandwidth will be preserved. MJ.

Johnson [6] has formally proven that the maximum token rotation time of the FDDI token ring

MAC protocol does not exceed twice the target token rotation time (TTRT) regardless of the

offered load.

FDDI TOKEN RING UTILIZATION

The FDDI Token Ring MAC protocol was designed to accommodate varying data traffic load

levels. The FDDI token ring will always sustain the minimum synchronous offered load

regardless of the level of asynchronous data traffic intensity. Under heavy offered traffic load

conditions, the FDDI token ring may be restricted to accommodate only synchronous and high

priority asynchronous data packets. As the offered load level drops, asynchronous data packets

of lower priority may be transmitted. The target token rotation time for each asynchronous data

traffic priority class determines which asynchronous data packets are transmitted. The FDDI

token ring MAC protocol was designed to keep the FDDI token ring fully utilized.

The token rotation time will depend on the token hold times for each station on the FDDI ring

and the station to station propagation delay. The medium propagation delay for the fiber optic

cable specified in the FDDI standards is approximately 5 microseconds per kilometer [2]. D.



Dykeman and W. Bux [7] analyzed the FDDI token ring MAC protocol and developed the

following equation for maximum throughput of the FDDI ring:

_ (n * tot_tx_time + n2 * tr_Ha'/utow)*u _ m
~ ~, ,n * totjxjtime + n * £c_wwwfow + (/r + 2n +l)*r_7

where n = number of active stations
u = transmission rate

tx_window = T_Opr-r_I
TjOpr = token-holding time threshold for the asynchronous priority level in use

r_I - total ring latency time (propagation delay plus sum of station latencies)
totjxjime = CEILING(tx_window/F)*F

F = frame transmission time

Taking the limit of equation (1) as the number of stations goes to infinity, D. Dykeman and W.

Bux developed the following result:

limit
>

The maximum throughput obtained using (1) will then be compared with the results given by the

simulation packages to verify the GPSS/H, Network n.5, and BONeS FDDI token ring simulation

models.

GPSS/H MODEL

A 10-node FDDI ring simulation model was developed using GPSS/H. GPSS/H is a general,

high-level simulation language and therefore does not include a software model for the FDDI ring



or any other communications or computer structure. Therefore, the 10-node FDDI ring model

was developed from using the standard protocol definition. The purpose for developing the

GPSS/H model was to verify the internal operation of the token rotation timers and logic of the

FDDI token ring transfer device protocol by giving direct access to the details of the protocol.

The GPSS/H model also provides verification of the Network II.5 and BONeS model simulation

results because the latter are, essentially, black boxes whose internals are not under direct control

of the user other than through the parameters passed to the user interface. An advantage to using

GPSS/H is that the model can be tuned to include as much detail as necessary to describe the

FDDI ring. The cost for this tuning access is the complexity of the GPSS/H program which will

increase as you improve the detail of the FDDI ring simulation model. The software

development of the GPSS/H model was extensive compared to the Network II.5 and BONeS

models which include internal software modules to simulate the FDDI transfer device protocol.

The GPSS/H model can usually perform a 50-second simulation of the 10-node FDDI ring model

in less than five minutes depending on the system load. The relatively rapid execution time for

the GPSS/H model enables FDDI ring performance plots to be obtained with minimal delay. An

advantage to using discrete-event simulation modeling such as GPSS/H is that the simulation

duration can be increased without increasing the number of transactions since transactions are

destroyed during the course of the simulation.

Each station in the GPSS/H FDDI token ring local area network was modeled as shown in

Figure 2. In the GPSS/H model, each transaction represents the received token. The Generate

block shown in Figure 2 generates the token. The Gate block allows the token to be received

only if the token is inactive at the other nodes. The Gate block also permits the data station to



Figure 2 - GPSS/H Data Node Model,

receive the token only if it is the station's turn to send data on the ring. In a hardware

implementation of the FDDI ring the scheduling of stations would be performed by their physical

location on the ring. However, the GPSS/H software implementation of the FDDI ring must

ensure that all stations receive equal access to the ring. The Delay block models the ring

propagation delay between nodes on the FDDI ring. The data station computes the Token

Rotation Time (TRT) by subtracting the previous value of the simulation clock time when the

token was last received from the current simulation clock time. The data station compares the

TRT with the Target Token Rotation Time (TTRT) for the asynchronous data priority level

assigned to the data. If the TRT is less than the asynchronous TTRT, there is residual token

holding time for the node to send asynchronous data packets on the FDDI ring. Asynchronous

data packets will be sent on the FDDI ring until the TTRT expires or all of the queued data



packets have been sent The number of queued data packets depends on the station offered load

which can be varied for making throughput performance plots. If the TTRT is less than the TRT,

insufficient time remains for asynchronous data transmission at the node and the token must be

reset

NETWORK IL5 MODEL

The CACI Network IL5 simulation software includes the FDDI token ring bus configuration

as one of its transfer device options. The Priority Token Ring protocol modeled by CACI allows

user selection of the Token Passing Time, Synchronous Allocation, Minimum Synchronous

Priority, and Target Token Rotation Times for each station. The Token Passing Time represents

the time required to pass the token between stations. The Network n.5 package does not

explicitly model the FDDI data frame, rather, for each block of data transmitted, an overhead

time for framing bits can be specified to emulate the frame overhead characteristics. The

Network H.5 FDDI ring model assumes that stations are equally spaced around the FDDI ring.

The Synchronous Allocation represents the guaranteed amount of time that a station may hold

the token. The Synchronous Allocation ensures that all stations will be allotted the minimum

synchronous bandwidth as specified in the FDDI Token Ring Media Access Control Protocol [5].

The Minimum Synchronous Priority restricts usage of the station minimum synchronous

bandwidth to the desired transmission priority level. The Target Token Rotation Times specify

different asynchronous transmission priority levels at each station.

The Network IL5 simulation model for the FDDI local area network was developed using ten

data stations where each data station was modeled as shown in Figure 3. The Data Packet

8



DATA PACKET
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TOKEN RING

INTERFACE

MODULE

/- ,̂

Figure 3 - NETWORK H.5 Data Node Model.

Generator in Figure 3 represents the processing element which generates data packets to be sent

on the FDDI ring. The packet arrival rate is adjusted by changing the packet interarrival time

setting. The packet generator processing element also sets a semaphore flag to indicate the

number of packets generated. The packet accounting information provided by the semaphore is

required to control read/write access to the first-in-first-out (FIFO) buffer. The FIFO buffer was

included to determine the storage capacity required to accommodate the data packet queue at

each of the Token Ring Interface Modules. The Token Ring Interface Module for each station

transfers data packets from the FIFO buffer to the FDDI token ring when it receives the token.

The FIFO buffer was included to accommodate data packets which may require temporary

storage while waiting for access to the FDDI token ring. Since the FDDI token ring MAC

protocol guarantees the allotted synchronous bandwidth to each station, the FIFO buffer will only



store asynchronous data packets.

BLOCK ORIENTED NETWORK SIMULATION (BONeS) MODEL

The Block Oriented Network Simulator (BONeS) includes a detailed simulation model of the

FDDI media access control (MAC) protocol. The FDDI MAC protocol is modeled using discrete

network devices such as traffic generators, data insertion modules, delay modules, memory units,

arithmetic units, and timers. The BONeS version of the FDDI MAC protocol simulates the

MAC_Data.Req, MAC_Data_Status.Ind, and MACJData.Ind service primitives specified in the

FDDI standard. The BONeS software package includes the FDDI MAC node in its database

which can be copied into a simulation model of the FDDI ring. The flexibility of the BONeS

FDDI simulation model results in part from the use of data structures to store the data fields of

the token and frame. For example, the frame data structure includes fields for the Source ED,

Destination ID, Service Class, Priority, Information, Frame Length, Time Received by MAC, and

Time Exited MAC Queue. The number of data fields can be increased as required to include

more detail in the FDDI simulation model. Similarly, the token data structure includes data fields

to define the Source which created the token, the Source which captured the token, token Length,

Time Received, and Total Correction Time.

The BONeS version of the FDDI MAC protocol can be applied to the simulation of data

packets which have been corrupted on the ring by altering the traffic generator parameters within

the FDDI node module. The BONeS version can also be used to simulate data stations which

change the Priority levels of each frame. The Priority Level of an FDDI node can be modeled

using a variable which allows it to change after each frame transmission. The BONeS version

10



of the FDDI MAC protocol is very detailed and complete. Consequently, simulation time using

BONeS is excessive (benchmark simulations used here generally required 36 hours or more user

time on a SUN-4). The BONeS 10-node FDDI ring simulation model shown in Figure 4 was

developed using the supplied FDDI MAC node simulation model included in the BONeS FDDI

database. The FDDI node parameters were altered to reflect the same model as described in the

GPSS/H and Network II.5 simulation models. The BONeS simulation package allows module

parameters to be iterated if necessary for the purpose of making data plots. The BONeS 10-node

FDDI ring simulation model shown in Figure 4 was developed for the simulation benchmarks

studied here.

SINGLE ASYNCHRONOUS PRIORITY CLASS SIMULATION RESULTS

The GPSS/H, BONeS, and Network H.5 token ring model simulation results were compared

with the theoretical results for the Single Asynchronous Priority Level Case described by D.

Dykeman and W. Bux as given in equation (1) above. A single asynchronous priority level was

assigned to each of the ten stations connected to the FDDI ring in the GPSS/H and Network H.5

simulation models. The data traffic generators were set to deliver a 100 Mbps offered load to

the FDDI ring. Maximum throughput was determined by summing the total number of

completed data packet transfers on the FDDI ring, multiplying this sum by the packet length, then

dividing by the simulation duration. The maximum throughput as a function of ring latency plot

shown in Figure 5 describes the GPSS/H, BONeS, and Network H.5 simulation results for ten

stations, a 12620-bit packet length, and a single asynchronous priority level for each data station

with TTRTs of 5 milliseconds and 10 milliseconds. The ring latency was varied from 0.110 to

11
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1.610 psec which represents FDDI rings from 22 kilometers to 322 kilometers in length. The

GPSS/H model simulation results deviated from the theoretical approximation for maximum

throughput developed by D. Dykeman and W. Bux by less than one percent. The BONeS results

also agree with the theoretical results very well. The Network II.5 models did not follow the

predicted results very well at all. No amount of varying the configuration of the model changed

the Network II.5 performance in this simulation experiment The theoretical maximum

throughput vs ring latency for ten stations determined from (1) was included in the plot of Figure

5 to verify model simulation results. The theoretical maximum throughput results as the

number of stations goes to infinity do not differ significantly from the theoretical ten station

results. The Maximum Throughput vs Ring Latency plot in Figure 5 shows that the maximum

throughput of the FDDI ring will decrease as you increase the size of the ring. The size of the

13



FDDI ring will have a greater impact on utilization than will the number of stations if the station

latency is not excessive compared to the station to station propagation delay.

The target token rotation time (TTRT) limits the residual time remaining on the token for

asynchronous data transmission. The greater the value of the TTRT for a given asynchronous

data priority class, the greater the residual time remaining on the token for asynchronous data

transmission on the FDDI ring. Asynchronous data transmission will commence only if the

TTRT for the asynchronous data priority level of the frame to be transmitted equals or exceeds

the station TRT. When one increases the TTRT for an asynchronous data priority class, the

maximum throughput increases as shown in the Maximum Throughput vs TTRT plot shown in

Figure 6. The results shown in Figure 6 were from the simulation of ten identical stations where

100

0 20 40 60 80 100 120 140 160 180 200

Target Token Rotation Time (usecoods)

- Theo. n=10 -*- Theo. n=rf -sts- GPSS

• Network II.S -t- BONeS

Figure 5 - Ring Throughput vs. TTRT.
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each station has the same TTRT for asynchronous data transmission. The TTRT was varied from

0 to 200 psec with a 1000-bit packet length. The FDDI ring latency was 20 psec which

represents a ring length of about 4 kilometers. The GPSS/H results for Throughput vs TTRT

agree with the theoretical results from Dykeman and Bux [6] within one percent The Network

II.5 model results for Maximum Throughput vs TTRT deviate from the theoretical results shown

in Figure 6 for TTRTs less than 60 microseconds. The Network II.5 model maximum throughput

for TTRTs between 60 and 120 microseconds tends to follow the theoretical results shown in

Figure 6 until it saturates at about 83 Mbps. The Network n.5 simulation software includes the

Priority Token Ring Protocol transfer device which was used to model the 10-node FDDI ring.

The code contained within the Network IL5 Priority Token Ring Protocol software module is not

available for inspection or alteration by the user. The BONeS 10-node FDDI simulation results

tend to follow the theoretical results shown in Figure 6 with a TTRT offset. The BONeS

simulation model maximum throughput results shown in Figure 6 required more than 60 hours

user time to simulate on a SUN-4. The deviation between the theoretical and BONeS model

maximum throughput vs TTRT results may be due to the high level of detail in the BONeS

model.

MULTIPLE ASYNCHRONOUS PRIORITY LEVELS

The FDDI MAC protocol allows stations to be assigned priority levels for asynchronous data

transmission. Each priority level will have a different target token rotation time assignment. The

higher priority stations will have longer TTRT's which will enable them to capture the token for

a longer period of time for transmitting asynchronous data. Dykeman and Bux developed a
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simulation model for multiple asynchronous priority levels which was used as a reference for

the GPSS/H, Network n.5, and BONeS 10-node FDDI ring simulation models. The data stations

were assigned the priority levels and asynchronous TTRTs given in Table 1. To emulate the

conditions under which Dykeman and Bux developed their throughput estimation, the packet

length was 12620 bits and the ring latency was 1.0236 msec in the simulation models. The

theoretical results for the multiple asynchronous priority level case described by Dykeman and

Bux are shown in Figure 7. The theoretical case describes 11 stations connected to the FDDI

ring with three idle stations.

The GPSS/H, Network n.5, and BONeS 10-node FDDI ring simulation models duplicate the

\
theoretical model except for not including the eleventh "inactive" station and reducing the data

traffic throughput from stations nine and ten by assigning Priority Level 0. The Throughput vs

Arrival Rate Per Priority plot shown in Figure 8 was produced from the BONeS 10-node FDDI

ring simulation model. As can be seen in Figure 8, as the offered load increases the higher

priority asynchronous traffic occupies more of the FDDI ring bandwidth. Throughput from the

lower priority traffic stations falls off as the higher priority stations dominate the FDDI ring

allocation as the offered load increases. At an offered load of 1.0, the Priority 7 and Priority 6

data stations have throughputs of about 70 and 30 Mbps, respectively.
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Station Priority TTRT

1
2
3
4
5
6
7
8
9

10
11

0
1
2
3
4
5
6
7

inactive
inactive
inactive

1.5 msec
6.2 "

14.0 "
25.0 "
39.0 "
56.2 "
76.9 -
100.0 '

Table 1. Priority and TTRT Assignments for Theoretical Model

0 20 10 60 80 IOC

ARRIVAL RATE P£R P R I O R I T Y LEVEL (ftoos)

Figure 7. Theoretical Throughput vs Arrival Rate per Priority Level [8]
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A similar result can be observed using the GPSS/H model of the 10-node FDDI ring where the

Throughput vs Arrival Rate Per Priority plot is shown in Figure 9.

100

50 60 70 80 90 100
Arrival Rate per Priority (Mbps)

Figure 9. Throughput vs Arrival Rate Per Priority for GPSS/H Model

The Network II.5 simulation model of the 10-node FDDI ring produced an output that showed

a constant throughput for all offered loads regardless of the priority level of the data. This leads
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to a question in our minds about the level of detail modeled in the Network n.5 FDDI protocol

model. Since the user does not have access to the details of the simulation model, it is difficult

to know what exactly is happening in this case.

SUMMARY

The GPSS, BONeS, and Network approaches to modeling FDDI networks contain many tradeoffs

for the simulation user. Table 2 lists some of those tradeoffs and summarizes our opinions on

how the three packages fair in these categories.

CONCLUSIONS

The level of complexity of the FDDI LAN simulation model depends on the problem to be

solved. For example, if the desired simulation result is an estimate for the throughput of the

FDDI ring when representative stations are modeled, a GPSS/H simulation model which requires

little simulation time may be suitable. If the desired result involves analyzing the performance

the FDDI ring after the overhead bits in circulating packets have been corrupted, a detailed model

such as the Block Oriented Network Simulator would be required. The complex FDDI ring

simulation models which include details about the frame and token will generally require many

hours of simulation time. A suggested modeling approach would be to use a fast simulation

model such as GPSS/H and Network H.5 to develop an approximate solution. Then refine the

solution by including specific details about the model in a complex simulation package such as

the Block Oriented Network Simulator.
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Table 2. Comparison of Experience with FDDI Simulation Models.

Attribute

Model Development

Automatic Model
Iterations

Level of Parameter
Detail

Ease of
Modification

Relative Execution
Speed

Execution Platforms

Single
Asynchronous

Priority Simulations

Multiple
Asynchronous

Priority Simulations

GPSS

extensive hand
coding

not available

as extensive as user
codes

base code needs to
be edited

fast

mainframe

excellent agreement
with theory

excellent agreement
with theory

BONeS

extensive
combination of

model primitives

input parameter

extensive

graphical block
diagram based user
interface with user
input of parameters

slow

SUN-4

excellent agreement
with theory

excellent agreement
with theory

Network n.5

fixed input
parameters from a

fixed menu of
options

not available

moderate

structured user
interface with

menus

moderate

SUN-4,
VAXstation, PC

disagreement with
theory

severe
disagreement with

theory
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2. PARALLEL ARCHITECTURE PERFORMANCE STUDIES

Javin M. Taylor
John Poison

A. K. Petersen

2.1 INTRODUCTION

Section 2.2 describes discusses various hardware platforms for the Data
Handling Service. The previous semi-annual reports [10-12] and references [3] and [4]
have discussed in detail the DHC homoforms associated with an architecture presently
under development in the Electrical & Computer Engineering Department at New Mexico
State University. This architecture, conceived by Dr. Eric Johnson, is based on a 64-
processor global memory message passing architecture comprised of 25 MHz
microprocessors. Continuing analysis shows that this architecture can accommodate four
concurrent 300 Mbps data streams resulting in an aggregate bandwidth of 1.2 Gbps.
This architecture is an excellent choice of the Data Handling Center. The inclusion of a
DMA bus has increased the efficiency of this architecture.

In addition, different implementations are discussed and compared, issues requiring
additional research are mentioned, and recommendations are made.

Section 2.3 describes construction of a NETWORK II.5 simulation model of the Data
Interface Facility (DIF). The model is concerned with data buffered and sent out by the
DIF, and in particular, sent to the Data Handling Service. In an attempt to overcome
several problems in the use of the NETWORK II.5 simulator, several other simulators were
evaluated. GPSS/H was chosen and a model of the DIF was written to parallel the
NETWORK II.5 version.

Section 2.4 identifies a commercially available storage facility, called the Mass Storage
System (MSS) which can handle the extraordinary storage required to archive the data
flowing out of the DHC.

2.2 HARDWARE PLATFORMS FOR THE DATA HANDLING SERVICE (John Poison)

2.2.1 Introduction

The Electrical and Computer Engineering Department at New Mexico State University in
Las Cruces, New Mexico has been studying advanced space data systems for NASA
under the Advanced Telemetry Processing Pilot Program since 1988. The ATP3 research
project has been studying the space-based network proposed by NASA. This section
of the final report is a summary of the work done by myself and others in relation to the
Data Handling Center.

In the Space Station era, the volume of telemetry data is enormous. In 1988, projected
bandwidths were in excess of 900 million bits per second (Mbps). In 1988, the available



processing power was not capable of handling this data rate. Analysis and simulations
indicate this is no longer the case; there are hardware platforms capable of performing
level zero processing on high speed telemetry data.

In section 2.2.2., a summary of areas investigated is presented with important details and
revelations. These areas include preliminary investigations of multiprocessor systems,
detailed simulation studies of the Virtual Port Memory Multiprocessor Architecture, and
analytical studies of several alternatives.

In section 2.2.3., different implementations are discussed and compared. In section
2.2.4., issues in this part of the report requiring additional research are discussed. The
most important issue considered by this phase of study requiring further research is the
cost of designing and implementing the software for the Data Handling Service. Finally,
in section 2.2.5., final recommendations are made as a result of this research.

2.2.2 Background

The research done on the Data Handling Service can be divided into three phases. The
first phase is the initial investigation about the characteristics of the Data Handling Service
(DHS) and is discussed in section 2.2.2.1. The second research phase is a simulation
of a system that fits the DHS problem well, The second phase is discussed in section
2.2.2.2. The third phase is an examination of alternatives and is presented in section
2.2.2.3.

2.2.2.1 Preliminary Investigation

Initial problem requirements indicated the DHS is required to handle four 300 Mbps serial
data links simultaneously. There are no SISD computers available that can handle one
data bit every 3.3 nS on four channels. Thus, alternative approaches are considered.

SIMD computers are not a good choice because the packets arrive serially. Also, the
processing for the three grades of service is slightly different with some grades
maintaining packet order (scientific data) and others putting in fill data for lost packets
(video).

The data is sufficiently diverse to eliminate systolic arrays. Data flow machines are not
sufficiently well developed to lend themselves to an easy implementation and easy
maintenance. The key point pushing the choice of MIMD for the DHS is the
independence of one packet from another. This is particularly true when the packets are
on different virtual channels.

Initially, a hypercube architecture was examined as a possible DHS platform. This was
quickly dismissed due to data movement problems and required Operating System
features. There is simply insufficient bandwidth between nodes and from the external
world to the hypercubes to facilitate a Data Handling Service. In short, hypercubes are
number crunchers not real time data movers.



This leaves the global memory MIMD computers as the logical alternative. Since most
of the level zero processing uses integer instructions, high speed floating point units will
be used very little. Pipelined arithmetic units capable of billions of floating point
operations per second are useless in the DHS. Any pipelining is done at a much higher
level. A pipeline with data packets flowing through it is a much better approach. Finally,
problem requirements indicate the DHS handles the data packets in real time. This
implies a multitasking operating system. Thus, the second phase of research was
started. In the next section, a simulation of a Virtual Port Memory Multiprocessor is
presented.

2.2.2.2 High Level Simulation of the Virtual Port Memory Machine

The Data Handling Service is a small piece of a much larger system. The DHS must be
reliable and flexible. The Data Interface Facility is the data source for the DHS. The DHS
processes this data and passes it along to the end users. The Virtual Port Memory
machine can satisfy the requirements of the DHS suggested by Computer Sciences
Corporation in [1] and [2]. A more complete discussion of this section may be found in
[10] and [11].

2.2.2.2.1 NASA's Spaced Based Network Requirements

All space communications are routed through the TDRSS, Tracking Data Relay Satellite
System. There will be two TDRS in the east and two in the west. All four of the 300
Mbps channels are directed to NASA's ground terminal at the White Sands Test Facility
near Las Cruces, New Mexico. The ground terminal feeds a facility called the Data
Interface Facility, DIF. The processing done at the DIF has not been finalized. However,
the data rate into and out of the DIF is physically limited 1200 Mbps as 4 independent,
serial 300 Mbps channels.

The data produced by the DIF is sent to the Data Handling Service. Level zero
processing is done at the DHS before the data is finally relayed over land based networks
or domestic satellite networks to the owners of the data. Level zero processing involves
reordering of packets, conversion of some data from encoded form to engineering units,
reversing the order of priority playback data, and archiving data for up to two years [3,4].
Figure 1 shows how the space based network components are connected.

The three major data components are video, audio, and experimental data. The video
data is high priority and high rate. Audio data is low rate and high priority. These two
data types can tolerate some errors. The final data type is experiment data. This data
can tolerate very few errors but does not have to get to the user immediately, only
correctly. This errorless requirement may mean longer download times.

Telemetry is transmitted in frames called Virtual Channel Access Protocol Data Units or
VCA-PDUs. These frames have headers and trailers that contain virtual channel
information and Reed-Solomon check symbols. The VCA-PDUs are fixed length to ease
synchronization. A complete description of VCA-PDUs can be found in [3,4].
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Figure 1 - Space Based Network

The DHS performs two major procedures on a VCA-PDU. Packet processing is
performed and the information is finally passed on to the end users over land based or
domestic satellite networks [1]. Computer Science Corporation specifies the
transformations to be performed by the DHS in a two part report [1,2].

The packet processing is broken up into 5 major steps. Sequentially, the steps are
accept input data, demultiplex by virtual channel number, demultiplex by spacecraft
identification number and application identification number, reassemble packets, and
select storage method. The packet reassembly is monitored and statistics are kept for
the DHS operators [1]. The accept input data step is simply taking the data from the
transmission media or physical layer and buffer it in memory for processing. The rate at
which CADUs arrive is enormous. A single processor can not handle all of the data.
Thus, the synchronization markers are removed and the VCA-PDUs are divided among
many processors by virtual channel number and spacecraft id number. This reduces the
rate at which VCA-PDUs must be processed by a single processor. The VCA-PDUs are
the product of the Data Link Layer encapsulation service. They are smaller pieces of
large blocks of information, or they are small blocks of information with some filler. The
pieces of large blocks must be ordered and assembled. This is done by the reassemble
packet function. Finally, some of the data must be archived before being passed onto
the end users. This is done in the select storage phase.



There are two steps for distributing data. They are retrieve data from the database and
distribute data over the networks. This procedure is also monitored and statistics kept
for the operators [1]. This seems simple, however, there is a conversion between
network protocols at this step when the information is taken from the space based
network and put on a domestic network.

2.2.2.2.2 Virtual Port Memory Multiprocessor Architecture

A Virtual Port Memory Multiprocessor Architecture is a Global Memory Message Passing,
GMMP, machine. VPM machines are described by Johnson [5] and are general purpose
computing machines. The VPM machine is defined as follows:

A virtual port memory multiprocessor architecture provides each process of a
computation or concurrent system with a private virtual address space and pass
by value message passing primitives, based upon an underlying hardware
structure consisting of a shared memory, equally accessible to all processors, and
a pass by reference message network [5].

The example machine which Johnson describes may have a total of 256 processing
elements, I/O controllers, and user interface processors. A four processor prototype of
this machine is under development in the Electrical and Computer Engineering
Department, New Mexico State University in Las Cruces, New Mexico.

The prototype of the VPM architecture at NMSU is shown in Figure 2. The Interprocessor
Message Bus, 1MB, is a relatively low bandwidth bus that messages are passed over.
Messages are passed between processes. The message unit at the Processing Element
(PE), Input Output Controller (IOC), or User Interface Processor (UIP) catches all
messages intended for a process that is running on the attached PE, IOC, or UIP.

The global memory in the VPM Prototype is a paged segmentation scheme. A pointer
to a segment of memory is a common message. The receiving processes' segment table
is updated to show a new segment, and the page frames in the global memory are
marked as "copy on write" which effectively gives both the sending process and the
receiving process its own copy of the data. If one of the processes writes to one of the
common pages a new copy is created for that process and the two pages are not
marked as copy on write. Similarly, multiple processes can see the same physical pages
of memory as long as the copy on write status is maintained [6].

Each PE board is made up of a message unit, a processor, and a large cache memory
[5]. The message unit is responsible for sending and receiving messages over the 1MB.
The large cache memory is used so that the PE can run as long as possible without
using the shared Data Transfer Bus (DTB). The width of the DTB is the same as the
length of a line in the cache for ease of implementation. The UIP boards run user's
interface programs such as UNIX-like shells. The IOC boards handle all Input and Output
devices such as line printers, disk drives, and ethernet connections. There are many
types of lOCs that are required.
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Figure 2 - Prototype VPM Machine

When a processor requests a memory reference that can not be handled by the local
cache, a request is made to the global memory for the appropriate location. First, the
Transaction Request Bus, TRB, is acquired for the request and the appropriate address
is placed on the bus. This reaches the Address Translation cache, ATran, which
performs the virtual to physical address translation. This usually takes a single clock
cycle to complete. However, if the ATran cache can not handle the translation, a software
exception is made to update the ATran cache appropriately and then the translation is
completed. Finally, the memory request is queued up in a FIFO register at a memory
bank, and the memory cycle is performed. The data is transferred over the DTB.

2.2.2.2.3 Software and Process Communication

There are three pieces of hardware a packet, VCA-PDU, encounters on its way through
the Data Handling Service. In order, they are an input IOC, one or more PE, and an
output IOC. An input IOC is the piece of hardware that will accept input data, and



demultiplex by spacecraft identification number and virtual channel number. The
spacecraft identification number and virtual channel number make up a segmented
address space for virtual channels. This segmented address space, VCDU identifier in
the VCA-PDU header, is used for the demultiplexing operation. Data frames that consist
of fill data are thrown away at the input IOC. Specifically, fill frames are not put into main
memory. Once the VCA-PDU is in main memory, a message is sent over the 1MB to the
process which is responsible for processing that frame. This message contains the
segment number where the VCA-PDU is located in memory. Once this message is sent,
the IOC releases the segment from its segment table. This effectively gives ownership
of the memory that holds the transfer frame to the process that handles the frame. If
there is no process responsible for handling the newly arrived frame, a message is sent
to an error handling process which checks the header, if possible, and issues appropriate
messages to a Data Handling Service error process or to the Data Interface Facility.

The processes that are responsible for handling transfer frames execute on the
processing elements in the VPM architecture. There are many identical processors.
However, there are not as many processors as there are segmented virtual channels.
Thus, many processes may execute on a given processor. Each process handles a
specific virtual channel. These processes are different for each virtual channel. However,
there are some common functions among processes. Each process will prepare the data
for archiving and distribution. However, some data may not be archived, and some data
may not be distributed. A few virtual channels will be devoted to priority playback data,
and these processes will have to reverse the order of the data bits. The variety of
functions performed at this stage is limited only by the number of payloads. When
processing is complete, a message is sent to an output IOC. This message, in general,
contains a segment that holds a list of segments that have prepared data in them. These
segments are given to the IOC as described in [3].

An output IOC is responsible for archiving and distributing the transformed data. The first
segment is read into memory. This segment is examined for instructions as to where to
send the data, how to archive the data, and where the data is located in memory. The
data may be relayed to multiple users over networks and could be archived in multiple
locations. However, the data is read from the VPM's main memory just one time. Just
like the input IOC, the output IOC does simple operations in the same manner each time.

The global memory in the VPM architecture is used to hold packets as they are
processed, to hold all code, and to hold all operating system data structures. This
memory requires a very high bandwidth in and an equally high bandwidth out. Thus, the
main memory in the VPM machine is made from video random access memory or VRAM
[3].

Four input lOCs are required to put the transfer frames into the global memory and pass
a message to the process that is handling a particular frame's virtual channel number.
The transfer frames arrive by a serial link. This link may be an RF link or it may be a fiber
optic link, but this data must be converted to a parallel form for storage into memory.



Also, a 16 bit CRC code must be generated for each packet and stored after it in memory
[3].

When a packet has arrived the contents of the VRAM shift register must be moved into
the DRAM array. This takes one memory cycle or 80 ns. The 427 ns required to fill up
a high speed shift register provides plenty of time for this memory cycle [4].

The interface to the output IOC is not clearly defined. However, the second serial port
on the VRAM will be used to removed the data from main memory when necessary. This
data will be buffered locally in RAM by the IOC until two functions are complete. These
are the archive and distribute data functions described earlier.

It is possible to build a disk drive that has an input and output bandwidth in excess of
300 Mbps. This will be used to buffer the data because a disk drive's memory is non-
volatile. Eventually, the data will be moved from this disk drive to some other disk drive.
This is very similar to the memory hierarchy used in modern workstations. While the
archiving is being performed, the data will be put on the domestic networks destined for
the end user.

2.2.2.2.4 Processing Time Models

CACI's NETWORK II.5 simulation package is used to determine the significant parameters
for the Virtual Port Memory Multiprocessor Architecture. The width of the DTB, the width
of the 1MB, the number of PEs, and the average processing time are found. A complete
description of the simulation can be found in [3]. A discussion of NETWORK 11.5 can be
found in [7] and [8].

NETWORK 11.5 simulates processing elements, transfer devices, and storage devices.
Modules represent processes executing on the processing elements. Processing
elements are defined by their instructions. Transfer devices are described by their
physical attributes and protocol. Storage devices are described by their access time,
resident files, size limitations, and number of access ports. Modules can be triggered or
started by sending a message to a processing element.

The simulation model provides the ability to thoroughly analyze the VPM design. There
are many design requirements that need to be evaluated. Analysis indicated that the
following criteria needed to be evaluated first to determine if the VPM architecture was
capable of meeting CSC's functional requirements for the Data Handling Service.

• Width of the Data Transfer Bus
• Width of the Interprocessor Message Bus
• Number of Processing Elements
• Average Processing Time per Packet
• Resident Time in Memory

Simulations are updated to reflect changes in DHS requirements, hardware specifications,
and software specifications.



The simulation was used to determine the width of the DTB. The width of the DTB was
increased until its simulated utilization was less than 50%. Only powers of 2 were used
for the number of bits retrieved and the frequency of operation was fixed at 16 MHz. The
low frequency is a requirement because the DTB runs across a backplane bus. It is
important to note that on average 1.5 bytes of packet data is accessed for each byte of
packet data. This simulates the manipulation of pointers to data and writing them back
to the global memory. A DTB running at 16 MHz should be 128 bits wide.

Then the processing time simulation was used to determine the width of the 1MB. The
messages passed over the 1MB were simulated at 128 bits because this is the required
length of a message that passes a segment number. An 1MB running at 16 MHz should
be 16 bits wide.

The simulation was used to determine the number of Processing Elements required to
perform a minimum average processing time of 300 microseconds, approximately 1
instruction per byte of data plus message overhead times using a 25 MHz CISC
processor. There should be 64 Processing Elements in the DHS.

Finally, the average processing time was increased so that all PEs were near 100%
utilized. This average processing time was found to be approximately 425 microseconds.
For a 25 MHz CISC processor this is approximately 1625 instructions or 1.6 instructions
per byte of data. Considering the quantity of video data and how little processing is done
to it, video data is simply passed on to the output IOC by the PE, the average is small.
The experiment data will have plenty of time for level zero processing. Also, when the
data rate is not running at its peak rate, each packet can take a little longer.

According to the simulation, the maximum time a single packet spent in memory was
1200 microseconds. Each packet requires a whole page frame of memory which is
currently 2 Kbytes, and according to Little's law the number of packets in memory does
not exceed 176 [9]. Thus, approximately 360 Kbytes of memory is all that is required to
buffer packets in memory.

The 128 bit wide DTB implies memory banks that are 128 bits wide. Using VRAM chips,
each bank has 4 Mbytes of memory. Thus, 8 banks of memory are used to give the
machine 32 Mbytes of global memory. This allows each input IOC 2 banks to use for
placing packets in memory. The remaining memory is required for storing code and data
structures for the VPM machine.

2.2.2.3 Alternative Approaches

Analysis indicates a system running at 256 MIPS with appropriate I/O bandwidth can
handle the DHS. This assumes little interference among processors, and some operating
system overhead. The 1200 Mbps requirement need not be met at all times. If it is not
met, rate buffering is required. However, a system capable of 256 MIPS will require little
rate buffering.



Convex Computer Corporation is a vendor that produces one of the proposed hardware
platforms. Convex's C-2 line is capable of handling the DHS function, and some of its
short comings will be eliminated in their next generation. Alliant Computer Corporation
is another vendor that is currently capable of processing the space-based network
packets. The last vendor discussed is Aptec, a maker of I/O busses. A more complete
discussion of these alternatives may be found in [12].

2.2.2.3.1 Convex 230i

The Convex 230i computer system is a member of the second generation of Convex
Computer Corporation products. The Convex C-2 line is air cooled which greatly reduces
the operation costs and maintenance staff. Figure 3 shows a C-240 system. A Convex
C-240 system has a mean time between failure of approximately 41 days.
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Figure 3 - Convex C-240 Computer System

The C-230i is a specialized Convex system. There are three processors and two I/O
modules. The C-2 line can have one to four processing elements and one or two I/O



modules. The total number of major components can not exceed five due to the 5 X 8
crossbar switch. Thus, the 230i system is filled to capacity. This configuration was
implemented for a customer that had high I/O bandwidth requirements by Convex's
Special Systems Group.

The three processors are capable of 55 MIPS each. They are also capable of vector
floating point operations (50 MFLOPS each). A data cache is associated with each
processor. It is a write through cache with hardware invalidation between processors for
coherency. The cache is bypassed for vector operations.

Parallelism is accomplished in the Convex systems by vectorization of inner loops and
parallel execution of outer do-loops along with concurrent execution of independent
processes on multiple CPUs. There is a specialized set of communication registers
visible to all processing elements where work in progress is posted. If a processor
becomes idle, it first checks the communication registers for work already in progress.
If there is work in progress that the idle processor can help with, it does so. If no work
in progress is posted, the operating system takes over and schedules a new process
(ready) to the idle processing element.

The memory system in the Convex computers is arranged in 8 banks. There can be up
to 4 Gigabytes of physical memory. However, they are currently shipping systems with
only 2 Gigabytes. Memory is connected to I/O and processing elements via a 5 X 8
crossbar or crosspoint switch. The crossbar has 200 Mbytes/sec of bandwidth for each
of the 5 access paths.

I/O in the Convex system is memory mapped. The two I/O channels in the C-230J system
have 200 Mbytes/sec each. This bandwidth is utilized by two proprietary buses called
P-Buses. Each P-Bus is capable of 80 Mbytes/Sec The Special Systems Group of
Convex would build any specialized hardware required to interface the 230i to the DIP
and to the NASA network.

The Convex computer systems use a flavor of Unix as an operating system. The DHS
application software will have to be developed to run on the 230i system. Convex
supports the Ada language (validated by Ada Joint Program Office). Convex also
supports C and several popular versions of Fortran.

One possible implementation will have a process ready to execute that handles a specific
virtual channel. These processes will be multitasked on the three processors and will
handle packets as they arrive. Once a packet has been processed, it will be archived
and passed along to its end user.

The Convex I/O subsystems are capable or will soon be capable of supporting many
standard interfaces. These interfaces include DECnet, TCP/IP, Convex NFS, Network
Computing System or NCS, Ultranet, and Hyperchannel. Other interfaces include
VMEbus, HiPPI or HSP, IDC, and SNA.



Convex Computer Corporation is closely associated with E-Systems. E-Systems is
discussed in another part of this report but the close association between the two
companies is beneficial because E-Systems is a likely choice for the database hardware.
1400 Tera Bytes or 1.4 Peta Bytes is approximately the storage required for the DHS and
E-Systems has a system on the drawing board that is easily capable of archiving the
data.

„ /

2.2.2.3.2 Alliant

The Alliant FX/2800 system is a shared memory parallel architecture. The system may
contain 28 processors. The processors are based on Intel's i860 RISC microprocessor.
This 64 bit processor contains floating point hardware as well as superscalar modes.

The 28 CPU system is capable of 1 GFIops and 1000 VAX MIPS (Dhrystone). This is
sufficient processing power. However, the system only has a single I/O module and at
least 4 of the processing modules will have to be replaced with I/O modules. A single I/O
module can handle 2 channels at 40 MBytes/Sec each. The system can be configured
with a variety of modules. Given the appropriate ratio of I/O modules to CPU modules,
the FX/2800 system can implement the DHS.

The modules are connected to the main memory via an 8 X 16 crossbar switch capable
of 1.28 GBytes/Sec. There are cache memories, connected to memory via a 640
MByte/Sec bus, that can be configured up to 4 MBytes in size. The physical main
memory can be 1 GByte in size.

The Alliant line of computers use a UNIX like operating system. Applications for the
Alliant can be developed in Fortran, C, or Ada. Also, I/O interfaces such as TCP/IP,
DECnet, NFS, NCS, NQS, X-Windows (ver. 11), Ultranet, and VMEbus are supported and
available.

2.2.2.3.3 Aptecl/OBus

The Aptec I/O Bus system is a high performance bus. The system is similar to a bus
based, shared memory multiprocessor computer. The difference lies in the fact that none
of modules are used for computation. The shared memory of the bus is used for
buffering. This memory is very large (1 GByte).

The peak bandwidth of the Aptec bus is 200 Mbytes/Sec. Individual modules can sustain
50 Mbytes/Sec. Thus, a single module can interface to a single DIF 300 Mbps channel.
If the utilization of the space link is below 50% the Aptec bus can certainly handle the
necessary bandwidth. However, future Aptec products may be capable of peak space
link bandwidth.

An Aptec I/O bus requires some processing capabilities to handle the Data Handling
Service. One approach is to allow the I/O bus memory to be accessed by a computer
system. The data can be manipulated in the shared memory before passing out of the



system. However, this approach involves modifying hardware not intended for this type
of application.

2.2.3 Comparisons

The best understood implementation of the Data Handling Service is the Virtual Port
Memory Multiprocessor Architecture version. This is due to the extensive simulations.
The VPM machine is an excellent choice for functionality. The system is scalable,
modular, inexpensive, and flexible. It also degrades gracefully under processor failures.
However, this is not a commercially available system.

The Convex system can handle the DHS with some minor hardware interfaces being
produced by their Special Applications group. This system is scalable, but its scaling
must be done in large steps. Future systems will be able to handle more data than the
Space Based Network is capable of producing. The system is modular. The modularity
is also coarse. Convex systems are not inexpensive, however, the large software base
and customer support is beneficial and non existent with the VPM system. The Convex
system is also flexible. The Convex will degrade gracefully but in larger steps.

The other two alternatives presented are less adequate. The Alliant system has more
processors than the Convex. However, the bandwidth limitations of the Alliant's I/O
system is a fatal flaw for the DHS problem. This may change in the near future. The
Aptec I/O bus is incapable of handling the DHS processing requirements and does not
appear if it will be able to in the near future.

2.2.4 Issues Requiring Additional Research

Hardware platforms are produced in an engineering fashion. Also, the same platform
may be used for any number of applications. However, the software for an application
is unique. The DHS is a new application. Thus, the software for the DHS must be
developed.

Software development costs are significant for any large system. Anything that can
reduce the software development cost is important. A good software development
environment is one major asset when producing a software package. The Convex
systems have such an environment. The VPM machine does not.

A first generation machine such as the VPM does not have the reliability the older Convex
systems do. Also, the VPM machine does not have a well established corporation for
production and maintenance. The Convex systems have an extensive customer support
staff for consultation on operations.

The enormous bandwidths of the Space Based Network produce a vast quantity of data
for archiving. The only system we are aware of that is capable of storing 1400 Tera Bytes
of data is produced by E-Systems. The Convex corporation has a close relationship with



E-Systems, and they have worked together in developing the mass storage system. This
relationship will ease the interfacing of the DHS system to the mass storage facility.

2.2.5 Recommendations

The Convex system is currently the best choice for a hardware platform for the DHS. The
number of processors is increasing and the older system is capable of handling the DHS
now. The I/O bandwidth of the Convex system is adequate and increasing.

The software development costs will be enormous and the development environment on
the Convex platform will ease this development. The interface between the DHS and
storage system is already established. Finally, the large body of software running on the
Convex systems is a great asset.
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2.3 NETWORK 11.5 DATA INTERFACE FACILITY (DIF) MODEL (A. K. Petersen)

Construction of a Network 11.5 simulation model of the Data Interface Facility (DIF) was
accomplished. The model is logically partitioned into three segments: creation, reception,
and transmission.

The creation segment simulates the TDRSS by creating data packets. The data is
composed of two types: high and low rate traffic. Low rate packets represent normal
traffic, and constitute a steady stream of information. High rate packets (often referred
to as burst rate packets) arrive much less frequently, but require almost 100% of the
space channel for several seconds. The current burst rate is represented as a 3 second
burst, every 5 minutes, at 85% capacity. Taken together, these two classes of traffic
utilize approximately 10% of the available down-link bandwidth. An average of 1 % of the
arriving packets are modeled as being garbled.

Approximately every 90 minutes, the communications channel is interrupted as the Space
Station passes out of contact with the TDRSS. During this Zone Of Exclusion (ZOE) the
spacecraft must queue it's Earth bound traffic. This loss of signal lasts from 0 to 14
minutes, with a mean at 7. Once the signal is reacquired, the queued data (and real time
data) are dumped to Earth at the capacity of the space channel. This priority playback
traffic is the driving force behind the amount of buffering needed in the Data Interface
Facility.

The reception segment of the model simulated the front end of the DIF. At this point,
data packets are read from the space channel and queued in the buffer.

The third segment of the DIF model is the out link transmission to the DHC. This part of
the model was separated from the other functions because the exact nature of the data
link between the DIF and the DHC has not been decided. In the best case scenario, the
DHC is located physically near the DIF, and a fiber optic land line will connect them. This
communication medium can keep up with the space channel data rate and, therefor,
eliminates the need for a buffer.

However, the possibility exists that the DIF and the DHC will be separated by thousands
of miles. A communications satellite is the most likely link between the two. Use of an
existing DOMSAT has been purposed. Since the bandwidth of this satellite is only 50
Mhz, a large buffer will be needed to average and match data rates from the 300 MHz
TDRSS link.

During the modeling of the reception segment of the DIF simulation, one problem has
been found: Network II.5. Originally the model required 52 hours to simulate one hour
of real time. Much of this time was spent simulating operations which Network II.5 either
did not support directly, or worse, supported incorrectly (particularly semaphores). Two
upgrades to Network II.5 have become available since this task was undertaken. The
latest version appears to have solve many of these problems, allowing the simulation to
be re-written in a more straight forward fashion. As a result, the simulated-to-real time



ratio has fallen to 6:1. Six to one is still not very good if several hours of time are to be
simulated, as is the case to fully analyze the effects of several ZOE's.

A second major problem is the Sun 4/280 has a mean-time-between-failure (MTBF) rate
of about 6 days. As a result, only half the simulation runs ever complete. The amount
of usable data obtained is, thus far, meager. The few results currently available are found
under "RESULTS", below. Special complaints should be made to CACI concerning the
limited number of digits available for results in the printouts. This model overflows the
field after only 45 minutes of simulated time.

With respect to the DIP simulation effort, effective simulation requires either using a faster
(which probably means lower level) simulator, like SimScript, or access to a faster
computer (like a Cray).

The complete Network II.5 model has been included in Section 2.3.3.

2.3.1 GPSS/H DIP Model

In an attempt to overcome Network II.5 problems (outlined above), several other
simulators were evaluated. For a variety of reasons, Wolverine Software's GPSS/H was
chosen. A model of the DIP has been written (see Section 2.3.4) to parallel the Network
II.5 version.

GPSS/H is currently running on a SUN 3 with a simulation-to-computer time ratio of
approximately 70:1. Although this does not seem to be much better than Network II.5,
two factors must be considered when trying to compare run times. Network II.5 reports
connect time, while GPSS/H reports CPU time. Thus Network II.S's simulation times are
influenced by the load on the machine, GPSS/H's figures are not. Secondly, GPSS/H
is running on a much less powerful platform. We have access to GPSS/H on an IBM
ES-9000, which should be remarkably faster.

GPSS/H is a transaction based simulator, as opposed to Network II.S's event driven
simulation. This difference results in a radical change in the appearance of the model
when translating into GPSS/H. Additionally, GPSS/H handles it's random number
generators in a manner which makes use of the normal distribution impractical for time
values. Thus, normal distributions in Network II.5 have been changed to triangular in
GPSS/H. These two differences between simulators produces slight, but noticeable,
differences in the results. Therefore, care should be exercised when comparing the two
sets of results.

2.3.2 Results

A steady state analysis of the DIP reveals the DOMSAT link will be approximately 62%
utilized at the beginning of the Space Station Freedom project. This assumes only 10%
of the available TDRSS bandwidth will be used. There is not much room to expand. This



bottleneck would, of course, be eliminated if the DIP and DHC where within fiber-optic-link
distance of each other.

More importantly, though, is the delay experienced by the data packets during high rate
traffic periods. This is at it's worst immediately following a ZOE. All the priority playback
data, as well as the normal data will be sent to earth at 300 Mb/s, thus overwhelming the
DOMSAT's 50 Mb/s capacity. The amount of memory required to buffer this data, and
the delay involved are two questions which these models can answer.

The results available to date indicate 16,000 packets (16 MB) will need to be buffered.
An arbitrary packet should not expect to have to wait more than 250 microseconds in the
buffer. Note this delay value does not take into account retransmission requests from the
DHC as the result of DOMSAT corruption.

2.3.2 Recommendations

The Network II.5 model should be abandoned, unless a super computer can be found.
Even then, the Network II.5 model should be used only as a sanity check on a more
efficient simulator. For the moment, GPSS/H seems to be satisfactory. The model needs
to be run long enough to simulate 1-2 days of real time. A way needs to be found to
pipe the DOMSAT traffic to a model of the DHC as it's input.



2.3.3 Network 11.5 Data Interface Facility Model Script

The Network 11.5 model is commented as much as Network allows, but additional notes
may be helpful. A Network 11.5 model consists of a collection of entities. There is no
significance to the order or placement of the entity definitions in the script, as the
behavior of each is completely defined by it's definition. This feature makes a Network
11.5 script difficult to understand and visualize.

Conceptually, a flow chart would be the most logical way to describe a Network 11.5
model, but the complexity of describing all the possible mutual dependencies make the
flow chart as hard to read as the original script.

The entities are divided into classes as follows:

Global Variables: Global variables act as compiler directives, allowing batch
mode operation. They are fairly self-explanatory.

6 Statistical Distributions: Each statistical distribution function (SDF) defines the type of
distribution, the bounds, and a random number stream.

LOW RATE ITERATION How often a low rate burst occurs.
Low rate bursts simulate normal, background, traffic.
Examples include space station status, health and welfare,
voice, etc. The mean value was chosen to obtain the desired
TDRSS utilization of 10%.

LOW RATE DURATION How many packets (1024 bytes
each) are in each low rate burst.

HIGH RATE ITERATION How often a high rate burst occurs.
High rate bursts simulate the transfer of large amounts of
data. Examples include instrument data and video.

HIGH RATE DURATION How many packets (1024 bytes
each) are in each high rate burst.

ZOE ITERATION How often a Zone of Exclusion is
encountered. The ZOE results from the space station being
out of contact with a TDRSS.

ZOE DURATION How long each Zone of exclusion lasts,
measured in TDRSS packet frames.

4 Processing Elements: Each processing element (PE) has an individual clock speed
and instruction set.



SPACE STATION This PE generates the low and high rate
data packets. The clock speed is arbitrary but was chosen
to make specification of the data packet iteration periods
convenient. Each data packets is represented by a count of
the semaphore INSTRUMENT DATA.

TDRSS This PE represents the downlink from the space
station to the D!F. The clock speed is equal to the time
needed to transmit one data packet (1024 bytes + 32 sync
bits).

DIP This PE represents the data interface facility. The
packets are checked for errors here. Bad packets are
discarded and a retransmission is requested. As with the
Space Station, the clock speed was chosen for convenience.
Received packets are represented as counts of the
semaphore RAW DATA. Checked (good) packets are
represented by counts of the semaphore PROCESSED DATA.

DOMSAT This PE represents the uplink from the DIP to the
DHC. The clock speed is equal to the time needed to
transmit one data packet (1024 bytes + 32 sync bits).
Transmitted data packets are represented by counts of the
semaphore USER DATA.

10 Software Modules: Each software module represents a program or task which a
processor must execute. Modules may be started by a wide
variety of combinations of circumstances. Once started, a
module directs the PE to execute a series of instructions.
Upon completion, a module may call (chain to) another
module.

INITIALIZE SPACE STATION Executes only once, at the
beginning of the simulation on PE SPACE STATION. Resets
the INSTRUMENT DATA semaphore.

CREATE LOW RATE VCDU'S Executes every LOW RATE
ITERATION microseconds, on PE SPACE STATION.
Increments the INSTRUMENT DATA semaphore by LOW
RATE DURATION.

CREATE HIGH RATE VCDU'S Executes every HIGH RATE
ITERATION microseconds, on PE SPACE STATION.
Increments the INSTRUMENT DATA semaphore by HIGH
RATE DURATION.



INITIALIZE TDRSS Executes only once, at the beginning of
the simulation, on PE TDRSS. Resets the RAW DATA
semaphore.

TRANSMIT ONE VCDU VIA TRDSS Executes anytime the
INSTRUMENT DATA semaphore has a count greater than 0,
on PE TDRSS. Decrements the INSTRUMENT DATA
semaphore, waits for one TDRSS packet time, then
increments the RAW DATA semaphore. Chains to itself to be
ready for the next packet.

ZONE OF EXCLUSION Executes every ZOE ITERATION
microseconds, on PE TDRSS. The high priority of this
module allows it to take control of PE TDRSS for ZOE
DURATION packet frames. While this module is in control,
module TRANSMIT ONE VCDU VIA TDRSS (see above)
cannot execute, simulating a break in the downlink.

INITIALIZE DIP Executes only once, at the beginning of the
simulation, on PE DIP. Resets the PROCESSED DATA
semaphore.

SANITY CHECK Executes anytime the RAW DATA
semaphore has a count greater than 0, on PE DIP.
Decrements the RAW DATA semaphore, waits long enough
to check the data packet for errors. 99.9% of the time, this
module increments the PROCESSED DATA semaphore to
simulate an error free (good) packet. 0.01% of the time this
module increments the INSTRUMENT DATA semaphore to
simulate a request for retransmission of a bad data packet.
Chains to itself to be ready for the next packet.

INITIALIZE DOMSAT Executes only once, at the beginning of
the simulation, on PE DOMSAT. Resets the USER DATA
semaphore.

TRANSMIT ONE VCDU VIA DOMSAT Executes anytime the
PROCESSED DATA semaphore has a count greater than 0,
on PE TDRSS. Decrements the PROCESSED DATA
semaphore, waits for one DOMSAT packet time, then
increments the USER DATA semaphore. Chains to itself to be
ready for the next packet.

1 Instruction Mix: Each instruction mix (IM) is translated into one of several
instructions, based on assigned probabilities.



1 Macro Instruction:

4 Semaphores:

HANDLE ONE RAW VCDU This mix determines whether a
data packet received at the DIP is good or bad.

Each macro instruction (Ml) expands into a number of
instructions, allowing instructions which are commonly used
together to be collected and referred to by a single name.

GENERATE ONE PACKET Used to create the individual
packets of a low or high rate burst. Waits some time for the
packet to be generated, then increments the INSTRUMENT
DATA semaphore.

Each semaphore is a counter which can never be
decremented below zero. The value of the semaphore can
be changed in zero time. Semaphores may be incremented,
decremented, or set to an arbitrary value.

INSTRUMENT DATA Represents the data packets, onboard
the Space Station, waiting to be sent to Earth. Reset (set to
zero) by INITIALIZE SPACE STATION. Incremented by
CREATE LOW RATE VCDU'S, CREATE HIGH RATE VCDU'S,
and SANITY CHECK (bad packets). Decremented by
TRANSMIT ONE VCDU VIA TDRSS.

RAW DATA Represents the data packets, received by the
DIP, waiting to be error checked. Reset (set to zero) by
INITIALIZE TDRSS. Incremented by TRANSMIT ONE VCDU
VIA TDRSS. Decremented by SANITY CHECK (good
packets).

PROCESSED DATA Represents the data packets, in the DIP,
waiting to be sent to the DHC. Reset (set to zero) by
INITIALIZE DIP. Incremented by SANITY CHECK (good
packets). Decremented by TRANSMIT ONE VCDU VIA
DOMSAT.

USER DATA Represents the data packets, received by the
DHC. Reset (set to zero) by INITIALIZE DOMSAT.
Incremented by TRANSMIT ONE VCDU VIA DOMSAT.

Beginning on the next page is the actual Network II.5 script. Comments are introduced
by an asterisk (*) in column 1.



*SSISDIFV.10

* NETWORK II.5 SIMULATION SCRIPT

* SPACE STATION INFORMATION SYSTEM (SSIS)
* DATA INTERFACE FACILITY (DIF)

* A.K. PETERSEN, NEW MEXICO STATE UNIVERSITY

***** NETIN RELEASE 6.03 THIS FILE SAVED 06/13/1991 15:13:17

***** GLOBAL VARIABLES
GLOBAL FLAGS =

ANTITHETIC VARIATE = NO
RANDOMIZER = 2
MINIMIZE RANDOM SEED ARRAY = NO
NETIN TIME UNITS = SECONDS
ITERATE BY PRIORITY = YES
CLOCK = YES
BATCH = YES
INPUT LISTING = YES
DEFAULT LISTING = NO
LENGTH = 7200.0 SECONDS
RUNTIME WARNINGS = TERMINAL
PERIODIC REPORTS = 24

SEMAPHORE
SNAPSHOT
INSTRUCTION

PLOT DATA FILE = NO
WIDE REPORTS = NO
TRACE = NO

***** STATISTICAL DISTRIBUTION FUNCTIONS
STATISTICAL DISTRIBUTIONS =
*
* HOW OFTEN A LOW RATE BURST OCCURS
* UNITS ARE MICROSECONDS
* CURRENT MEAN: 2666.66667 PACKETS/SECOND
*

NAME = LOW RATE ITERATION
TYPE = NORMAL
MEAN = 375.000000
STANDARD.DEVIATION = 25.000000
LOWER.BOUND = 0.
UPPER.BOUND = 1000.000000



STREAM = 1
*
* HOW MANY VCDU'S ARE SENT IN LOW RATE BURST
* UNITS ARE PACKETS PER BURST
* CURRENT MEAN: 1 PACKET
*

NAME = LOW RATE DURATION
TYPE = EXPONENTIAL
MEAN = 1.000000
LOWER.BOUND = 1.000000
UPPER.BOUND = 8.000000
STREAM = 2

*
* HOW OFTEN HIGH RATE BURSTS OCCUR
* UNITS ARE MICROSECONDS
* CURRENT MEAN: 5 MINUTES
*

NAME = HIGH RATE ITERATION
TYPE = NORMAL
MEAN = +3.000000E+008
STANDARD.DEVIATION = 15000000.000000
LOWER.BOUND = 0.
UPPER.BOUND = +5.000000E+008
STREAM = 3

*
* HOW LONG A HIGH RATE BURST LASTS
* UNITS ARE CPU CYCLES
* CURRENT MEAN: 2.5 SECONDS
*

NAME = HIGH RATE DURATION
TYPE = NORMAL
MEAN = 15200.000000
STANDARD.DEVIATION = 1000.000000
LOWER.BOUND = 0.
UPPER.BOUND = 20000.000000
STREAM = 4

*
* HOW OFTEN THE ZONE OF EXCLUSION OCCURS
* UNITS ARE MICROSECONDS
* CURRENT MEAN: 90 MINUTES
*

NAME = ZOE ITERATION
TYPE = NORMAL
MEAN = +5.400000E+009
STANDARD.DEVIATION = 10000000.000000
LOWER.BOUND = +4.860000E+009



UPPER.BOUND = +5.940000E+009
STREAM = 5

*
* HOW LONG THE ZONE OF EXCLUSION LASTS
* UNITS ARE SECONDS
* CURRENT MEAN: 7 MINUTES
*

NAME = ZOE DURATION
TYPE = NORMAL
MEAN = 420.000000
STANDARD.DEVIATION = 42.000000
LOWER. BOUND = 0.
UPPER.BOUND = 840.000000
STREAM = 6

***** PROCESSING ELEMENTS
HARDWARE TYPE = PROCESSING
*
* ORBITING SPACE STATION
* ONE CPU CYCLE = ONE MICROSECOND
*

NAME = SPACE STATION
BASIC CYCLE TIME = 1.000000 MICROSEC
INPUT CONTROLLER = NO
INSTRUCTION REPERTOIRE =

INSTRUCTION TYPE = PROCESSING
NAME ; DATA GENERATION

TIME ; 1 CYCLES
INSTRUCTION TYPE = SEMAPHORE

NAME ; FLUSH INSTRUMENT DATA
SEMAPHORE ; INSTRUMENT DATA
SET/RESET FLAG ; RESET
EQUAL TO ; 0

NAME ; INCREMENT INSTRUMENT DATA
SEMAPHORE ; INSTRUMENT DATA
SET/RESET FLAG ; SET

*
* TDRSS SATELLITE DOWN-LINK
* ONE CPU CYCLE = ONE TDRSS FRAME TIME
*

NAME = TDRSS
BASIC CYCLE TIME = 27.413330 MICROSEC
INPUT CONTROLLER = NO
INSTRUCTION REPERTOIRE =

INSTRUCTION TYPE = PROCESSING
NAME ; TDRSS ACCESS



TIME ; 1 CYCLES
NAME ; ZOE

TIME ; ZOE DURATION
INSTRUCTION TYPE = SEMAPHORE

NAME ; FLUSH RAW DATA
SEMAPHORE ; RAW DATA
SET/RESET FLAG ; RESET
EQUAL TO ; 0

NAME ; INCREMENT RAW DATA
SEMAPHORE ; RAW DATA
SET/RESET FLAG ; SET

NAME ; DECREMENT INSTRUMENT DATA
SEMAPHORE ; INSTRUMENT DATA
SET/RESET FLAG ; RESET

*
* DATA INTERFACE FACILITY
* ONE CPU CYCLE = ONE MICROSECOND
*

NAME = DIF
BASIC CYCLE TIME = 1.000000 MICROSEC
INPUT CONTROLLER = NO
INSTRUCTION REPERTOIRE =

INSTRUCTION TYPE = PROCESSING
NAME ; ERROR CHECK

TIME ; 1 CYCLES
INSTRUCTION TYPE = SEMAPHORE

NAME ; FLUSH PROCESSED DATA
SEMAPHORE ; PROCESSED DATA
SET/RESET FLAG ; RESET
EQUAL TO ; 0

NAME ; INCREMENT PROCESSED DATA
SEMAPHORE ; PROCESSED DATA
SET/RESET FLAG ; SET

NAME ; INCREMENT INSTRUMENT DATA
SEMAPHORE ; INSTRUMENT DATA
SET/RESET FLAG ; SET

NAME ; DECREMENT RAW DATA
SEMAPHORE ; RAW DATA
SET/RESET FLAG ; RESET

*
* TRANSMIT DATA PACKETS OVER THE DOMSAT LINK
* ONE CPU CYCLE = ONE DOMSAT FRAME TIME
*

NAME = DOMSAT
BASIC CYCLE TIME = 164.480000 MICROSEC
INPUT CONTROLLER = YES



INSTRUCTION REPERTOIRE =
INSTRUCTION TYPE = PROCESSING

NAME ; DOMSAT ACCESS
TIME ; 1 CYCLES

INSTRUCTION TYPE = SEMAPHORE
NAME ; FLUSH USER DATA

SEMAPHORE ; USER DATA
SET/RESET FLAG ; RESET
EQUAL TO; 0

NAME ; INCREMENT USER DATA
SEMAPHORE ; USER DATA
SET/RESET FLAG ; SET

NAME ; DECREMENT USER DATA
SEMAPHORE ; USER DATA
SET/RESET FLAG ; RESET

NAME ; DECREMENT PROCESSED DATA
SEMAPHORE ; PROCESSED DATA
SET/RESET FLAG ; RESET

***** MODULES
SOFTWARE TYPE = MODULE

* INITIALIZE SPACE STATION
* EXECUTES ONLY ONCE, AT THE START OF A SIMULATION
*

NAME = INITIALIZE SPACE STATION
PRIORITY = 100
INTERRUPTABILITY FLAG = NO
CONCURRENT EXECUTION = NO
START TIME = 0.0
ALLOWED PROCESSORS =

SPACE STATION
INSTRUCTION LIST =

EXECUTE A TOTAL OF ; 1 FLUSH INSTRUMENT DATA
*
* CREATE LOW RATE VCDU'S TO SIMULATE NORMAL TRAFFIC
*

NAME = CREATE LOW RATE VCDU'S
PRIORITY = 0
INTERRUPTABILITY FLAG = NO
CONCURRENT EXECUTION = YES
ITERATION PERIOD = LOW RATE ITERATION
ALLOWED PROCESSORS =

SPACE STATION
INSTRUCTION LIST =



NUMBER OF INSTRUCTIONS ; LOW RATE DURATION
INSTRUCTION NAME ; GENERATE ONE PACKET

*
* CREATE HIGH RATE VCDU'S TO SIMULATE BURST TRAFFIC
*

NAME = CREATE HIGH RATE VCDU'S
PRIORITY = 1
INTERRUPTABILITY FLAG = NO
CONCURRENT EXECUTION = YES
ITERATION PERIOD = HIGH RATE ITERATION
ALLOWED PROCESSORS =

SPACE STATION
INSTRUCTION LIST =

NUMBER OF INSTRUCTIONS ; HIGH RATE DURATION
INSTRUCTION NAME ; GENERATE ONE PACKET

*
* INITIALIZE TDRSS LINK
* EXECUTES ONLY ONCE, AT THE START OF A SIMULATION
*

NAME = INITIALIZE TDRSS
PRIORITY = 100
INTERRUPTABILITY FLAG = NO
CONCURRENT EXECUTION = NO
START TIME = 0.0
ALLOWED PROCESSORS =

TDRSS
INSTRUCTION LIST =

EXECUTE A TOTAL OF ; 1 FLUSH RAW DATA
*
* TRANSMIT VCDU'S TO DIF
*

NAME = TRANSMIT ONE VCDU VIA TDRSS
PRIORITY = 0
INTERRUPTABILITY FLAG = YES
CONCURRENT EXECUTION = YES
START TIME = 0.0
ALLOWED PROCESSORS =

TDRSS
REQUIRED SEMAPHORE STATUS =

RUN WHEN ; INSTRUMENT DATA
IS; > 0

INSTRUCTION LIST =
EXECUTE A TOTAL OF
EXECUTE A TOTAL OF
EXECUTE A TOTAL OF

ANDED SUCCESSORS =

1 TDRSS ACCESS
1 DECREMENT INSTRUMENT DATA
1 INCREMENT RAW DATA



CHAIN TO ; TRANSMIT ONE VCDU VIA TDRSS
WITH ITERATIONS THEN CHAIN COUNT OF ; 0

*
* BLOCK LINK TO EARTH DURING ZONE OF EXCLUSION
*

NAME = ZONE OF EXCLUSION
PRIORITY = 10
INTERRUPTABILITY FLAG = NO
CONCURRENT EXECUTION = NO
ITERATION PERIOD = ZOE ITERATION
ALLOWED PROCESSORS =

TDRSS
INSTRUCTION LIST =

EXECUTE A TOTAL OF ; 1 ZOE
*
* INITIALIZE DATA INTERFACE FACILITY
* EXECUTES ONLY ONCE, AT THE START OF A SIMULATION
*

NAME = INITIALIZE DIF
PRIORITY = 100
INTERRUPTABILITY FLAG = NO
CONCURRENT EXECUTION = NO
START TIME = 0.0
ALLOWED PROCESSORS =

DIF
INSTRUCTION LIST =

EXECUTE A TOTAL OF ; 1 FLUSH PROCESSED DATA
*
* CHECK DATA PACKET FOR ERRORS
*

NAME = SANITY CHECK
PRIORITY = 0
INTERRUPTABILITY FLAG = NO
CONCURRENT EXECUTION = YES
START TIME = 0.0
ALLOWED PROCESSORS =

DIF
REQUIRED SEMAPHORE STATUS =

RUN WHEN ; RAW DATA
IS; >0

INSTRUCTION LIST =
EXECUTE A TOTAL OF ; 1 ERROR CHECK
EXECUTE A TOTAL OF ; 1 DECREMENT RAW DATA
EXECUTE A TOTAL OF ; 1 HANDLE ONE RAW VCDU

ANDED SUCCESSORS =
CHAIN TO ; SANITY CHECK



WITH ITERATIONS THEN CHAIN COUNT OF ; 0
*
* INITIALIZE DOMSAT
* EXECUTES ONLY ONCE, AT THE START OF A SIMULATION
*

NAME = INITIALIZE DOMSAT
PRIORITY = 100
INTERRUPTABILITY FLAG = NO
CONCURRENT EXECUTION = NO
START TIME = 0.0
ALLOWED PROCESSORS =

DOMSAT
INSTRUCTION LIST =

EXECUTE A TOTAL OF ; 1 FLUSH USER DATA
*
* TRANSMIT VCDU'S TO USERS
*

NAME = TRANSMIT ONE VCDU VIA DOMSAT
PRIORITY = 0
INTERRUPTABILITY FLAG = NO
CONCURRENT EXECUTION = YES
START TIME = 0.0
ALLOWED PROCESSORS =

DOMSAT
REQUIRED SEMAPHORE STATUS =

RUN WHEN ; PROCESSED DATA
IS ; > 0

INSTRUCTION LIST =
EXECUTE A TOTAL OF ; 1 DECREMENT PROCESSED DATA
EXECUTE A TOTAL OF ; 1 INCREMENT USER DATA
EXECUTE A TOTAL OF ; 1 DOMSAT ACCESS
EXECUTE A TOTAL OF ; 1 DECREMENT USER DATA

ANDED SUCCESSORS =
CHAIN TO ; TRANSMIT ONE VCDU VIA DOMSAT
WITH ITERATIONS THEN CHAIN COUNT OF ; 0

***** INSTRUCTION MIXES
SOFTWARE TYPE = INSTRUCTION MIX
*CREATE A MIXTURE OF GOOD AND BAD VCDU'S

NAME = HANDLE ONE RAW VCDU
INSTRUCTIONS ARE ; 99.9000 % INCREMENT PROCESSED DATA
INSTRUCTIONS ARE ; .1000 % INCREMENT INSTRUMENT DATA
STREAM =101

***** MACRO INSTRUCTIONS
SOFTWARE TYPE = MACRO INSTRUCTION



*
* CREATE A DATA PACKET
*

NAME = GENERATE ONE PACKET
NUMBER OF INSTRUCTIONS ; 1
INSTRUCTION NAME ; DATA GENERATION
NUMBER OF INSTRUCTIONS ; 1
INSTRUCTION NAME ; INCREMENT INSTRUMENT DATA

***** SEMAPHORES
SOFTWARE TYPE = SEMAPHORE

NAME = INSTRUMENT DATA
INHIBIT RESPONSE = YES
MAXIMUM PENDING RESPONSES = 2147283647

NAME = RAW DATA
INHIBIT RESPONSE = YES
MAXIMUM PENDING RESPONSES = 2147283647

NAME = PROCESSED DATA
INHIBIT RESPONSE = YES
MAXIMUM PENDING RESPONSES = 2147283647

NAME = USER DATA
INHIBIT RESPONSE = NO
MAXIMUM PENDING RESPONSES = 2147283647



2.3.4 GPSS/H Data Interface Facility Model Script

The GPSS/H model is commented much more extensively than the Network 11.5 version.
In addition, GPSS/H comes closer to a conventional programming language, and is
therefor easier to read, understand and interpret.

GPSS/H is a transaction based simulator. Data structures called transactions are created
by GENERATE statements (called BLOCKS in the GPSS/H scheme of things).
Transactions are then acted upon by a succession of blocks (statements) in the order
listed by the script (program). The transactions can be though of as 'traveling' through
the model.

The simulation script can be logically divided into sections (analogous to routines in a
conventional programming language). These sections are outlined below:

Symbol Declarations: The character or characters with which a symbol name begins
define the type of symbol:

& Global variable. Declared to either Integer, Real,
Character, or External.

PB$ Transaction byte parameter.
PH$ Transaction half-word parameter.
PF$ Transaction full-word parameter.
PL$ Transaction floating-point parameter.
RV Built-in random variate generator. RVTRI has a

triangular distribution, RVEXPO an exponential,
RVNORM a normal, etc.

FN$ User defined functions.

All other symbolic names are constants used by the
compiler for value substitution at compile time.

Note that members of each class of object (queues,
storages, logic switches, etc) are referred to by
number, QUEUE 1, STORAGE 5, etc. Objects
referenced by symbolic name are automatically
assigned numbers in the order the compiler discovers
them. The EQU directive allows the programmer to
explicitly define the name-to-number relationship in
advance.

Simulation Control: The SIMULATE statement informs the compiler this script is to
be compiled and then run.



Termination Transaction:

Low Rate Data Packets:

High Rate Data Packets:

Zone Of Exclusion:

TDRSS Downlink:

A single transaction is generated at time &LENGTH which is
immediately terminated with a count of one (1) to end the
simulation.

A single transaction is generated every LRITAVG
microseconds (on average) which is marked as being low
rate, then split into FN$LRDUR identical transactions to
represent a low rate burst. Each of these then enter the low
rate queue and, if the model is currently in a zone of
exclusion, the transactions are marked as such and enter the
ZOEWAIT queue. Finally, the low rate packets are transferred
to the TDRSS downlink.

A single transaction is generated every HRITAVG
microseconds (on average) which is marked as being high
rate, then split into HRDUR identical transactions to represent
a high rate burst. Each of these then enter the high rate
queue and, if the model is currently in a zone of exclusion, the
transactions are marked as such and enter the ZOEWAIT
queue. Finally, the high rate packets are transferred to the
TDRSS downlink.

High rate packets have a higher priority than low rate packets,
so they proceed through the model more quickly.

A single transaction is generated every ZEITAVG
microseconds (on average) which enter the ZOEQUE queue,
declares a zone of exclusion, and capture the TRDSS
downlink for ZEDURAVG microseconds. The zone of
exclusion transactions have a higher priority than either high
or low rate data packets, so the TDRSS downlink is blocked
immediately. After the prescribed amount / of time, the
transaction releases the TDRSS downlink, leaves the queue,
and terminates with no count (so the simulation can continue).

Low and high rate data packets enter the TDRSQUE queue
and proceed to capture the TDRSS downlink. The transaction
departs either LRQUE or HRQUE (depending on how the
transaction was flagged at birth), then holds the TDRSS
downlink for the proper frame time. A logic switch is used to
insure no two packets are using the downlink at the same
time. Once the packet has been 'transmitted', it releases the
TDRSS downlink, departs the ZOEQUE queue, and moves on
to the Data Interface Facility.



Data Interface Facility: Data packets arrive at the DIP, enter the DIFQUE queue, and
wait a period of time to simulate error checking. The packets
then leave the DIFQUE queue and either move on to the
DOMSAT uplink (good packets) or to Request Retransmission
(bad packets). Bad packets occur every RETRYAVG packets
(on average).

Request Retransmission: Bad data packets are placed back in LRQUE or HRQUE
(depending on how they were flagged at birth), and 'returned'
to the TDRSS downlink.

DOMSAT Uplink: All good packets are laced in the DOMQUE queue and pass
sequentially through the DOMSAT logic gate as described for
the TDRSS downlink. Once through the DOMSAT uplink,
transactions depart the DOMQUE queue and terminate with
no count (so the simulation can continue).

Control Statements: Control statements are not part of the model, per se, but do
effect the way in which it runs. Sufficient memory is set aside
for COMMON storage (transactions, queues, etc), logic gates
are initialized, and the simulation started. The START
statement defines how many transaction termination counts
are required to end the simulation. Since only the termination
transaction has a non-zero count (low rate, high rate, and
zone of exclusion transactions terminate with no counts) only
one count is specified in the START statement.

The major objects used in the simulation are described below:

Queues: LRQUE Collects statistics on how long a low rate data packet
must wait in the space station before being sent to the DIF
(including ZOE delays).

HRQUE Collects statistics on how long a high rate data
packet must wait in the space station before being sent to the
DIF (including ZOE delays).

ZOEQUE Collects statistics on how long the zones of
exclusion last.

ZOEWAIT Collects statistics on how long packets (both low
and high rate) must wait in the space station as the result of
a zone of exclusion.



Transaction Parameters:

TDRSQUE Collects statistics on how long packets (both low
and high rate) must wart in the space station before being
sent to the DIP (including ZOE delays).

DIFQUE Collects statistics on how long packets (both low and
high rate) take to move through the DIP.

DOMQUE Collects statistics on how long packets (both low
and high rate) must wait in the DIP before gaining access to
the DOMSAT uplink.

BIRTHQUE Holds the number associated with the queue to
which a transaction is assigned at birth. For low rate
transactions BIRTHQUE=LRQUE, for high rate transactions
BIRTHQUE=HRQUE.

LONGWAIT Holds a flag indicating whether or not this
transaction had to wait for a zone of exclusion.
0 No wait was encountered.
1 A wait was encountered.

TDRSS Used to control access to the TDRSS downlink.
RESET The downlink is available for use.
SET The downlink is currently in use.

DOMSAT Used to control access to the DOMSAT uplink.
RESET The uplink is available for use.
SET The uplink is currently in use.

ZONE Used to flag zones of exclusion.
RESET The space station is current in contact with the

DIP, via TRDSS.
SET The space station is in a zone of exclusion.

Beginning on the next page is the actual GPSS/H script. Comments are introduced by
an asterisk (*) in column 1, or text occurring after any arguments.

Logic Switches:



1C

*

SSIS DIP V.2

GPSS/H SIMULATION SCRIPT

SPACE STATION INFORMATION SYSTEM (SSIS)
DATA INTERFACE FACILITY (DIF)

A. K. PETERSEN, NEW MEXICO STATE UNIVERSITY
JULY, 1991

*

*

*
*

*
*

*

*

*

***** FUNCTION DECLARATIONS

LRDUR FUNCTION RN(100),D8 NUMBER OF PACKETS PER
.632>0/.865,1/.950,2/.982>3/.993I4/.997,5/.999,6/1.00I8 LOW RATE BURST

***** ENTITY EQUATES

*
*
LRQUE
HRQUE
ZOEQUE
ZOEWAIT
TDRSQUE
DIFQUE
DOMQUE

*
BIRTHQUE
LONGWAIT

*
TDRSS
DOMSAT
ZONE

EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU

EQU
EQU

1,Q
2',Q
3,Q
4,Q
5,Q
6,Q
7,Q

1.PB
2.PB

1,L
2X

EQU 3,L

QUEUES:
LOW RATE DATA
HIGH RATE DATA
ZONE OF EXCLUSION
WAIT FOR ZOE
INSTRUMENT DATA
PROCESSED DATA
USER DATA

TRANSACTION PARAMETERS:
INITIAL QUE TYPE
ZOE WAIT FLAG

LOGIC SWITCHES:
DOWNLINK GATE
UPLINK GATE

ZONE OF EXCLUSION

***** VARIABLE DECLARATIONS

*
REAL &MINHOUR
REAL &SECMIN
REAL &MICRO

MINUTES PER HOUR
SECONDS PER MINUTE
MICROSECONDS PER SECOND



*

*

*

******
*
HOURS
ERRORCK

*
*
ZEITMN
ZEITAV
ZEITMX
*
ZEDURMN
ZEDURAV
ZEDURMX

*
*
LRITMIN
LRITAVG
LRITMAX

*
*
HRITMN
HRITAV
HRITMX
*
HRDURMIN
HRDURAVG
HRDURMAX

REAL
REAL
REAL

REAL
REAL
REAL
REAL
REAL
REAL

REAL
REAL
REAL

CONSTANT

SYN
SYN

SYN
SYN
SYN

SYN
SYN
SYN

SYN
SYN
SYN

SYN
SYN
SYN

SYN
SYN
SYN

&LENGTH
&TDSTIM
&DOMTIM

&ZEITMIN
&ZEITAVG
&ZEITMAX
&ZEDURMIN
&ZEDURAVG
&ZEDURMAX

1
&HRITMIN
&HRITAVG
&HRITMAX

DEFINITIONS

1
10

75
90
150

0
7
14

I

337
375
412

I

0
5
8

0
15200
25000

SIMULATION LENGTH
TDRSS PACKET TIME
DOMSAT PACKET TIME

ZONE OF EXCLUSION:
1TERATION.-MINIMUM

AVERAGE
MAXIMUM

DURATION: MINIMUM
AVERAGE
MAXIMUM

HIGH RATE PACKETS:
ITERATION:MINIMUM

AVERAGE
MAXIMUM

HOURS OF SIMULATION (IN HOURS)
ERROR CHECK TIME (IN MICROSECONDS)

ZONE OF EXCLUSION:
ITERATION: (IN MINUTES)

MINIMUM
AVERAGE
MAXIMUM

DURATION: (IN MINUTES)
MINIMUM
AVERAGE
MAXIMUM

LOW RATE PACKETS:
ITERATION: (IN MICROSECONDS)

MINIMUM
MEAN
MAXIMUM

HIGH RATE PACKETS:
ITERATION: (IN MINUTES)

MINIMUM
MEAN
MAXIMUM

DURATION: (IN PACKETS/BURST)
MINIMUM
MEAN
MAXIMUM



RETRYMIN SYN
RETRYAVG SYN
RETRYMAX SYN

27
30
35

RETRANSMISSION: (IN MICROSECONDS)
MINIMUM
MEAN
MAXIMUM

*
****** VARIABLE INITIALIZATION

*
*

*
*

LET
LET
LET
LET
LET

LET

LET
LET
LET

LET
LET
LET

LET
LET
LET

&MINHOUR=60.0
&SECMIN=60.0
&MICRO=1.0E6
&TDSTIM=27.41333
&DOMTIM=164.48

MINUTES PER HOUR
SECONDS PER MINUTE
MICROSECONDS PER SECOND
TDRSS PACKET TIME
DOMSAT PACKET TIME

&LENGTH=HOURS*&MINHOUR*&SECMIN*&MICRO

ZONE OF EXCLUSION:
ITERATION:

&ZEITMIN=ZEITMN*&SECMIN*&MICRO MINIMUM
&ZEITAVG=ZEITAV*&SECMIN*&MICRO AVERAGE
&ZEITMAX=ZEITMX*&SECMIN*&MICRO MAXIMUM

DURATION:
&ZEDURMIN=ZEDURMN*&SECMIN*&MICRO MINIMUM
&ZEDURAVG=ZEDURAV*&SECMIN*&MICRO AVERAGE
&ZEDURMAX=ZEDURMX*&SECMIN*&MICRO MAXIMUM

HIGH RATE PACKETS:
ITERATION:

&HRITMIN=HRITMN*&SECMIN*&MICRO MINIMUM
&HRITAVG=HRITAV*&SECMIN*&MICRO AVERAGE
&HRITMAX=HRITMX*&SECMIN*&MICRO MAXIMUM

***** SIMULATION CONTROL
*

SIMULATE
*
***** TERMINATION TRANSACTION
*
LAST GENERATE &LENGTH

TERMINATE 1

***** LOW RATE DATA PACKETS

LRBEGIN GENERATE RVTRI(200,LRITMIN>LRITAVG>LRITMAX)(,>,,_



OPH,OPL,2PB,OPF
ASSIGN BIRTHQUE,LRQUE,,PB
ASSIGN LONGWAIT,0,,PB
SPLIT FN$LRDUR,LRWAIT

LRWAIT QUEUE PB$BIRTHQUE
GATE LS ZONE.LRDONE
ASSIGN LONGWAIT,1,,PB
QUEUE ZOEWAIT

LRDONE TRANSFER .DOWNLINK

***** HIGH RATE DATA PACKETS
*
HRBEGIN GENERATE RVTRKSOO.&HRITMIN.&HRITAVG.&HRITMAX),,,,!,

OPH,OPL,2PB,OPF
ASSIGN BIRTHQUE,HRQUE,,PB
ASSIGN LONGWAIT,0,,PB
SPLIT RVTRI(310,HRDURMIN,HRDURAVG,HRDURMAX),HRWAIT

HRWAIT QUEUE PB$BIRTHQUE
GATE LS ZONE.HRDONE
ASSIGN LONGWAIT,1,,PB
QUEUE ZOEWAIT

HRDONE TRANSFER .DOWNLINK

*****

ZOE

ZONE OF EXCLUSION

GENERATE RVTRKAOO.&ZEITMIN.&ZEITAVG.&ZEITMAX),,,^
QUEUE ZOEQUE
LOGIC S ZONE
LOGIC S TDRSS
ADVANCE RVTRI(410.&ZEDURMIN.&ZEDURAVG.&ZEDURMAXJ.O
LOGIC R TDRSS
LOGIC R ZONE
DEPART ZOEQUE
TERMINATE 0

***** TDRSS DOWNLINK

DOWNLINK QUEUE
GATE LR
LOGIC S
DEPART
VEST E
DEPART

TDRSQUE
TDRSS
TDRSS
PB$BIRTHQUE
PB$LONGWAIT,1 .SENDDOWN
ZOEWAIT



SENDDOWN ADVANCE &TDSTIM.O
LOGIC R TDRSS
DEPART TDRSQUE

*
******
*
DIP

DATA INTERFACE FACILITY

QUEUE
ADVANCE
DEPART
TRANSFER

DIFQUE
ERRORCK.O
DIFQUE
.001,UPLINK,RETRY

******
*
RETRY

*
******
*
UPLINK

REQUEST RETRANSMISSION

QUEUE PB$BIRTHQUE
ADVANCE RVTRKSOO.RETRYMIN.RETRYAVG.RETRYMAX)
TRANSFER .DOWNLINK

DOMSAT UPLINK

QUEUE
GATE LR
LOGIC S
ADVANCE
LOGIC R
DEPART
TERMINATE

DOMQUE
DOMSAT
DOMSAT
&DOMTIM.O
DOMSAT
DOMQUE
0

***** CONTROL STATEMENTS
*

REALLOCATE COM.4000000
INITIAL LR$TDRSS
INITIAL
INITIAL
START
END

LR$DOMSAT
LR$ZONE
1



2.4 STORAGE FACILITY (A. K. Petersen)

The vast quantity of data flowing into the DHC will require an extraordinary storage facility
to archive it. Such a facility has been identified. The Mass Storage System (MSS), built
by the Garland division of E-Systems, Inc. will meet all the requirements. The MSS is
essentially a library of high density tapes, located and loaded by computer controlled
robotic arms.

The MSS is designed to be modular, expandable, and configurable. Figure 1 shows the
floor plan of a basic storage module.

4 Tape Decks

13 TByt.es of Tape

-

I 
R

o
o
o
t IC

 A
rm

 
I

-
13 TBytes of Tape

DC

5.0 ODD

The Data is stored on D-2 high density
tape cartridges. Each cartridge has a
capacity of approximately 70 GBytes
(70 x 109) of information. The tapes are
housed in racks, 4 feet wide, 6 feet high
and 1 foot deep. A single rack will store
13 TBytes (13 x 1012) of data. The racks
are arranged in pairs, each facing the
other.

The robotic arm travels between the two
racks, selecting tapes from either. Pairs of
racks may be adjoined to produce a long
aisle, lined on both sides with tapes. As
the robotic arm selects tapes, a bar code
label on each tape is read by means of a scanner, attached to the arm. In this way, the
identity of the tape is not dependent on it's location.

At one end of the aisle, a rack of 4 tape decks is located. The robotic arm loads tapes
into these decks for data retrieval. If the stored data is to be modified, the updated
information is written back onto the same cartridge. The same decks are loaded with
blank tapes for introducing new data into the system. The tape decks are independent
of each other in the sense that one can be reading a tape while another is writing. Due
to the modular nature of the tape rack, another 4 decks can be located at the other end
of the aisle. Figure 2 illustrates a long aisle with decks at each end.

Figure 4 Basic MSS Module

There is a limit as to how far an
aisle can be extended. The
retrieval time increases as the
mean distance traveled by the
robotic arm increases. The
optimal capacity-to-speed ratio
is achieved with approximately
a 48 foot aisle. This is in the neighborhood of 200 TBytes of data.

Figure 5 Typical MSS Data Aisle

To extend the



capacity of the system beyond this point, and still maintain a reasonable data retrieval
time, additional aisles may be constructed.

Building another aisle next to an existing one does not, however, double the capacity of
the system. A single row of tape racks exists between the aisles. The tapes in this rack
are accessible to the robotic arms in either of the two adjacent aisles. This reduces the
potential of a single point failure (robotic arm) rendering a large amount of data
inaccessible. Figure 3 illustrates a large MSS with three robotic arms. The maximum
capacity offered by the MSS is 10,000 TBytes (1016 bytes).

Figure 6 Typical MSS System

Controlling all this storage is an
array of mini-super computers.
Currently the Convex C-240 is
designated as the control unit.
Depending on the size of the
MSS, more than one computer
may be needed. Each
computer has 500 GBytes of
disk storage attached. This
storage acts as a buffer
between the tapes and the
outside world. The computers
are responsible for managing
this buffer, implementing the migration algorithms which transfer data to and from tape,
and responding to requests for stored data.

Present estimates of the average data access time is on the order of 30 to 45 seconds.
This represents the amount of time needed to locate and load the correct tape cartridge,
transfer at least some of the information to the disk drives, and make it available to the
user. A higher level view is that 30 to 45 seconds may elapse between opening a file and
being able to read it.

One of the most important aspects of the MSS is the fact that the entire storage facility
(computers, tape decks, robotic arms, and tape racks) appear to the outside world to be
a standard Unix device (although a hugh one). Thus no modification of existing software
or operating systems need be made.

The modular nature of the system means it can start small and grow as data storage
requirements and funding increase. To a great extent, new capacity can be added to the
system with out disrupting the existing facility. Modularity also means the
performance/cost ratio can be fine tuned by making the aisles longer or shorter, adding
more aisles, and adjusting the number of tape decks and computer controllers.

One drawback does exist, the MSS has not yet been built. Smaller prototypes are
functioning, but the large system is now only a design. Delivery of the first MSS (to an
"unnamed government agency" at Ft. Mead Maryland) is anticipated in the 1992-93 time



frame. This schedule appears to be firm. The MSS facility is the result of a marriage
among many technologies, all of which exist today. The controlling computers are
available and proven. The tape decks are commercial available, although some
modifications are necessary to implement error detection and correction so as to achieve
the bit error rate needed. The robotic arms are used in the current prototypes, and the
storage media is widely available.

No provisions are currently made for printing the bar code labels attached to each tape
cartridge. This does not present a problem, however. The technology for producing
such labels using dot matrix printers is widespread. Many industries are using automated
label fixing machines, so it would seem this is no more than another instance of
integrating existing technologies.

The largest mechanical problem to be addressed is the mechanism by which new, blank
tape cartridges are introduced to the system. The current method involves placing the
tapes, one at a time, into an import/export cavity. This method is much too slow and
labor intensive for the purposed quantity of data. Some sort of mechanical feeder will
have to be designed which will accept large shipments of blank tapes, and make then
available to the system on demand.

E-Systems has reported no potential problems in meeting all the design criteria of the
Space Station Information System (SSIS) storage facility. These criteria include: data rate,
error rate, capacity, retrieval rate, and reliability. Cost has yet to be determined, but is
estimated in the neighborhood of 2 to 4 millon dollars for the 1400 TBytes required.



Subtask 3

Joseph Pfeiffer, Jr., PhD

1.1. Summary

Subtask three involved two parts: consideration of hardware and software standards applica-
ble to the DHS, and development of benchmarks for evaluating the effectiveness
of hardware and software configurations.

In the standards area, three emerging standards were considered: the POSIX standard for Unix
implementations (IEEE PI003), in particular its realtime extensions (IEEE PI003.4); the
Futurebus+ backplane, and the HiPPI Input/Output architectures. At this time, all three ap-
pear to be well-suited to the task at hand.

A suite of benchmarks was developed capable of evaluating a computer system's disk
response and communications using TCP. Benchmarks were also obtained from Computer
Sciences Corporation for use in evaluating speed of packet dissassembly. Unfortunately,
results from the disk and communications benchmarks require substantial interpretation; at-
tempts to evaluate systems without detailed knowledge of the algorithms used for scheduling
will not be successful. Also, the CSC packet dissassembly benchmark is flawed in its tim-
ings; modifications are required before this benchmark can be considered to give
reliable results.

1.2. Standards

An early conclusion in this study was that hardware and software conforming to published
standards should be used where possible, i.e. where such conforming configurations
have adequate performance. Both vendor-supplied proprietary hardware and software, and
NASA-developed hardware and software, should be used only where absolutely necessary.
This should result in both cost savings and better long-term support. It was found that con-
forming hardware and software is available, or is likely to become available, which is of
sufficiently high performance.

1.2.1. Software

Three options were originally identified for operating system software: software conforming
to POSIX, proprietary vendor software, and a NASA-developed custom operating system.
These options were quickly found to collapse to only two, as vendors are quickly conforming
their operating systems to POSIX. Even those vendors which use proprietary operating sys-
tems (e.g. Digital Equipment Corporation), are offering Unix derivatives as secondary operat-
ing systems (in DEC's case, Ultrix) or providing POSIX-compliant interfaces to their operat-
ing systems. In other cases (e.g. WindRiver's VxWorks), even though the vendor does not
refer to the system as a Unix derivative it is, indeed, POSIX-compliant.



It should be noted that P1003.4, the set of real-time extensions to POSIX, is of most interest
here; however, vendors are not willing to commit themselves to this standard until it has been
finalized. However, it seems clear that they generally do plan- to conform to it at that
time.

The DHS was identified as a time-critical application, leading to the following criteria in
evaluating operating system implementations: efficiency, bounded response, development
environment, and platform independence.

Efficiency
The selected operating system must impose a minimal load on the system, in
order to maximize throughput for a given hardware platform. The efficiency,
as it relates to the DHS problem, can be measured by the use of interprocess
communication (IPC) and I/O benchmarks, as these two operations will domi-
nate the system time required.

Bounded Response
More important than raw performance, however, is that the performance be
predictable. In order to meet the time-critical repsonse needs of real-time data,
it must be possible to bound the response time of all components of the system,
including software.

The response of the system may be sensitive to a number of factors, depending
on coding of the DHS application. In some cases, operating systems which are
not particularly well suited to real time applications may still be useable for
this application through identification of factors affecting maximum response
time, and careful coding. The same benchmarks used to determine throughput
can also be used to determine the distribution of response times.

Development Environment

The primary costs of the DHS project will not be hardware or off-the-shelf
software. Rather, the primary cost will be in GSFC development of software
specific to the DHS application. Consequently, reliability can be enhanced and
development costs substantially reduced through selection of an operating sys-
tem which provides a superior development environment.

Platform Independence

Ideally, the selected operating system should be capable of migrating from one
hardware platform to another easily. This requires the availability of the oper-
ating system on a variety of platforms. The purpose of this requirement is to
reduce the cost of moving the system to a new environment if necessary as a
result of developments following initial development.

P1003.4 was evaluated against these criteria, and found to define appropriate control over



nondeterministic events and documented worst-case response times:

Process Priority Heuristics

P1003.4 defines process priority in terms of a set of runnable process lists, with
one list for each of (at least) 32 priorities. The head of the highest priority
non-empty runnable process is always made a running process.

Priority levels may be either non-preemptive within level (PI003.4 terminology
is SCHED_FIFO), preemptive based on a time slice (SCHED_RR, for round
robin), or a third policy may be used (SCHED_OTHER). The definition of this
third policy, which may function identically to either of the first two or may be
completely different, is left up to the implementation. The scheduling policies
used by processes at a single level may differ. Even though a process may be
running using a non-preemptive scheduling policy, a higher-priority process is
capable of preempting it.

A process with appropriate privileges also has the ability to change the priority
or policy of another process (or of itself)- A process may also voluntarily yield
the CPU.

Page Faults

Processes are able to lock specified memory regions in physical memory.
Either a specified region, the entire program, the program's data segment, the
program's stack segment, or the program's text segment, may be locked. In all
cases other than region locking, subsequent growth in the specified segment
will also be locked in memory.

Disk Priorities

While P1003.4 does not address the problem of disk priorities directly, a con-
cept of real-time files does exist. This permits a process much greater control
over disk accesses than is available in "standard Unix." Some of the items of
a real-time file which the program can control include (among others) the ini-
tial size of the file when allocated; the amount by which the file is extended
when its end is overrun; and whether or not to cache writes. Improved asyn-
chronous IO is also provided by PI003.4; it is possible to read and write to
disk files in parallel with other processing. An asynchronous event is raised
when the IO operation is completed.

Documented Worst-Case Response Time

PI003.4 requires documented worst-case response times, making possible the
accurate estimation of necessary buffer sizes and latency within the DHS. The
models of interprocess and interprocessor communication available with Unix



were also found to be acceptable, and usable across several platforms.

Several vendors' (Alliant, Aptec, Convex, Cray, MODCOMP and Sequent) implementations
were also evaluated in the light of the above criteria. It was found that, perhaps universally
across the industry, vendors' environments either currently are, or soon will be, virtually
identical. These vendors' implementations were all found to be acceptable.

In the light of these findings, it is strongly recommended that the DHS adopt a POSIX-compl-
iant operating system. There is no reason to adopt a custom operating system.

1.2.2. Hardware

Two standards, and one commercial product, were examined. The standards include the
Futurebus+ (IEEE P896.1) backplane and the High Performance Parallel Interface (HiPPI)
input/output architecture. The commerical product was Ultra Technologies' UltraNet.

1.2.2.1. Futurebus+

Futurebus+ is a technology-independent backplane standard supporting packet transfer, per-
mitting estimated bandwidths in excess of lOOOMB/s. Unfortunately, vendor support is, as
yet, lacking. The vendors whose hardware appears most promising (Aptec, Convex) are
based on proprietary busses. When actual product evaluations for purposes of constructing
the DHS are performed, however, presence of Futurebus+ should be regarded as a positive
factor.

1.2.2.2. HiPPI

The HiPPI I/O standard supports transfers of up to 1600 Mbs, which is adequate for the DHS.
Unlike Futurebus+, HiPPI is already well supported by vendors. HiPPI should be adopted
as a requirement for hardware to be used in the DHS.

1.2.2.3. UltraNet

Ultra Network Technologies' UltraNet is an example of new communications technology
which is becoming available. UltraNet supports reliable network communications using
HiPPI I/O at rates of up to one gigabit/sec, which is near the rates required for the DHS. It
supports a TCP software interface, with handling of TCP packets performed within the
network interface. Also of interest is that it is intended to support connections, rather than
connectionless sockets; in contrast to many network technologies currently available, UltraNet
actually provides higher transmission rates for reliable than for unreliable communications. It
is to be expected that similar products, supporting rates sufficient for the DHS, will become
available within the next few years.

1.3. Benchmarks

Benchmark programs have been developed for measuring disk IO and interprocess communi-



cation rates using the Berkeley socket abstraction. Both benchmark sets are capable of doing
automated data acquisition and of separately measuring the elapsed time, user time, and sys-
tem time required for transfers.

1.3.1. Disk IO

The disk IO benchmark measures read and write times to disk. The user is able to specify the
size and number of transfers; additional processing can be simulated through iterating a null
loop. The system load due to the input or output not accounted for in the benchmark itself is
determined by running a separate, low priority process, and measuring the CPU time it is able
to acquire.

Interpretation of the benchmark results is made difficult by the use of asynchronous disk
transfers, and disk buffers, in the operating system. The first problem to arise is that, in order
to operate efficiently, the operating system does not physically write the disk in response to
write requests. Instead, the requests are scheduled and performed in some unspecified order.
Benchmark results have been found to correspond more directly to these operations than to
the actual requests. While it is possible to specify that the requests occur immediately, this
ties the benchmark results to the speed of the disk medium, which produces more serious
distortions than those from the disk scheduling. While not insurmountable, this does require a
significant amount of interpretation. In order to facilitate this interpretation, the disk IO
benchmark provides an accounting of the number of actual physical transfers to be made in
the course of the benchmark execution. Table I shows the form of the output from the bench-
mark. The sample is from a benchmark run on a Sun Sparcstationl+, giving write times.
The results are in the form of a pair of lines for each benchmark.

Table I

1.190000 1.050000 0.080000 1000 1024 1.760000 0.020000 0.520000 126 1
3.430002 2.320000 0.230000 1000 2048 3.510000 0.040000 0.860000 251 0
5.090001 3.480000 0.390000 1000 3072 5.130000 0.020000 1.240000 376 1
6.640002 4.540000 0.480000 1000 4096 6.740000 0.020000 1.670000 501 1
12.850002 9.870000 0.730000 1000 5120 12.920000 0.020000 2.140000 626 157
12.550000 9.260000 0.940000 1000 6144 12.590000 0.020000 2.320000 751 97
17.900001 14.000000 1.080000 1000 7168 17.920000 0.000000 2.830000 876 235
13.250002 9.830000 0.970000 1000 8192 13.920000 0.030000 3.010000 1001 0

The two lines are sometimes reversed, as they are written by two separate processes. The
parent line gives (with the numbers from the first run from Table I inserted as an
example):

1. The number of transfers requested (1000)

2. The size of each requested transfer (1024 bytes)

3. The elapsed time for the benchmark (1.76 seconds)



4. The user time taken by the benchmark (0.02 seconds)

5. The system time taken by the benchmark (0.52 seconds)

6. The number of blocks written to disk (126)

7. The number of blocks read from disk (1)

The child line gives statistics for the child process used to determine the amount of un-
accounted time used. Its fields are:

1. The elapsed time for the child (1.19 seconds)

2. The user time taken by the child (1.05 seconds)

3. The system time taken by the child (0.08 seconds)

In this example, a total of 0.09 seconds of CPU time is not accounted for (using the child
elapsed time measure). This serves to give a worst-case estimate of the unaccounted
overhead. The effect of the scheduling of the disk is clearly seen, for example, in the differ-
ence between the time required for the size 7168 buffer (elapsed time 17.92 seconds) com-
pared to that for the size 8192 buffer (elapsed time 13.92 seconds). It should come as no
surprise that this system performs all disk reads and writes in 8192 byte blocks.

A second problem to arise is in the use of disk buffers. It has been found that in writing, and
then reading, a file there is a possibility that the desired information may already be in the
disk buffers, eliminating the need for a physical disk read. This problem is avoided by ensur-
ing that the files to be read or written must be larger than the disk buffers. The effect can be
seen in Table II, which gives the read times for the same benchmark run.

Table II

0.600000 0.300000 0.000000 1000 1024 0.820000 0.030000 0.410000 1 0
1.210002 0.700000 0.000000 1000 2048 1.350000 0.030000 0.650000 1 0
1.660003 0.890000 0.000000 1000 3072 1.810000 0.020000 0.920000 1 1
2.470000 1.160000 0.000000 1000 4096 2.570000 0.010000 1.310000 1 1
3.300000 1.670000 0.040000 1000 5120 3.280000 0.020000 1.630000 1 66
3.320000 1.730000 0.020000 1000 6144 3.570000 0.010000 1.780000 1 16
4.850002 2.450000 0.180000 1000 7168 4.930000 0.040000 2.270000 1 154
7.410002 4.350000 0.340000 1000 8192 7.430000 0.040000 2.570000 1 322

Essentially no reads are required until the size of the file exceeds four megabytes, as the data
is already in the disk buffers due to previous runs.

1.3.2. Interprocess Communications



A second benchmark measures interprocess communications using TCP and either reliable
(SOCK_STREAM) or unreliable (SOCKJDGRAM) protocols. As before, the user is able to
specify packet size and number of packets to transfer; additional processing can be simulated
with a null loop.

The benchmark is run on two hosts connected by a network, with separate measurements
taken of the sending and the receiving host. When an unreliable protocol is tested, a compli-
cation arises in that the number of packets sent and the number received may differ. In order
to obtain information regarding both the sender and the receiver, two runs are taken. In order
to obtain information about the sender and the number of failing packets, a run is made in
which the receiver attempts to receive as many packets as were sent; the receiver will gener-
ally fail to receive all the packets and will time out in this run. In a second run, the sender
attempts to send twice as many packets as will be received; in this run, information is ob-
tained regarding the receiver.

Table III shows the form of the output from the sender data collection. The results are from
a run using two Sun 3/60 workstations, using an unreliable protocol.

Table III

Thu Jan 23 22:13:57 MST 1992
zia sender data
zia sender: 10000 1 0: 11419 360 10900

10000 256 0: 19140 360 15980zia sender:
zia sender:
zia sender:
zia sender:
zia sender:
zia sender:
zia sender:
zia sender:
zia sender:
zia sender:
zia sender:
zia sender:
zia sender:
zia sender:
zia sender:
zia sender:

10000 512 0:
10000 768 0:
10000 1024 0:
10000 1280 0:
10000 1536 0:
10000 1792 0:
10000 2048 0:
10000 2304 0:
10000 2560 0:
10000 2816 0:
10000 3072 0:
10000 3328 0:
10000 3584 0:
10000 3840 0:
10000 4096 0:

15499 820 14480
17080 740 16080
18680 780 17700
24860 680 23920
30700 800 29660
38339 880 31520
36120 920 33660
45739 460 44140
45340 700 41040
49140 740 42340
52180 780 50660
78640 680 61420
61900 320 58640
63980 400 60360
65240 720 61440

The columns give (using the results from the first row):

1. The number of packets sent (10000)

2. The size of a packet (1 byte)



3. The number of null loop iterations between transfers (0)

4. The elapsed time for the benchmark (11419 milliseconds)

5. The user time (360 milliseconds)

6. The system time (10900 milliseconds)

A surprise in these results is the close correlation between the elapsed time and the system
time.

Table IV shows the form of the receiver data, for the second (receiver data) run. This exam-
ple is shown before the receiver data from the first run, in order to show the "normal" form
of the data.

Table IV

Sat Jan 25 04:14:36
zia receiver data
puye receiver:
puye receiver:
puye receiver:
puye receiver:
puye receiver:
puye receiver:
puye receiver:
puye receiver:
puye receiver:
puye receiver:
puye receiver:
puye receiver:
puye receiver:
puye receiver:
puye receiver:
puye receiver:
puye receiver:

MST 1992

10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000

1 0: 23260 260 4320; 0
256 0: 16539 180 6740; 0
512 0: 15780 460 7860; 0
768 0: 17439 480 8600; 0
1024 0: 19000 400 7440; 0
1280 0: 251202407180; 0
1536 0: 30980 380 8100; 0
1792 0: 32819520 11120; 0
2048 0: 35460320 11040; 0
2304 0: 45479340 11180;0
2560 0: 42559 200 10520; 0
2816 0: 44079480 11340; 0
3072 0: 52759 360 13780; 0
3328 0: 62059 380 13300; 0
3584 0: 59339 400 13960; 0
3840 0: 61100260 14960; 0
4096 0: 62580 280 14900; 0

Here, the first six columns correspond to those in the sender data. The seventh column gives
the number of packets which required more than one read to obtain the complete packet.
When using a reliable protocol, this number is typically large; in some cases, we have seen
nearly all packets arrive broken (this is not a typographical error: using the unreliable proto-
col, packets are occasionally lost altogether, but we rarely see a broken one. Using the reli-
able protocol, while all data does arrive, packets very frequently arrive in pieces).

Table V shows the results of the first run, for the receiver. As can be seen, greater than 1%



of the packets sent may typically be lost.

Table V

Fri Jan 24 22:47:
zia sender data
puye receiver:
puye receiver:
puye receiver:
puye receiver:
puye receiver:
puye receiver:
puye receiver:
puye receiver:
puye receiver:
puye receiver:
puye receiver:
puye receiver:
puye receiver:
puye receiver:
puye receiver:
puye receiver:
puye receiver:

11 MST 1992

10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000

1
256
512
768
1024
1280
1536
1792
2048
2304
2560
2816
3072
3328
3584
3840
4096

0:
0:
0:
0:
0:
0:
0:
0:
0:
0:
0:
0:
0:
0:
0:
0:
0:

11220 260 4140; 0
timed out; received 9949 packets
15299 400 7540; 0
timed out; received 9938 packets
timed out; received 9865 packets
timed out; received 9923 packets
timed out; received 9929 packets
timed out; received 9918 packets
timed out; received 9920 packets
timed out; received 9904 packets
timed out; received 9919 packets
timed out; received 9945 packets
timed out; received 9922 packets
timed out; received 9939 packets
timed out; received 9937 packets
timed out; received 9933 packets
timed out; received 9948 packets

It should be noted that in the receiver data presented here, the system time is substantially
lower than the elapsed time. This is a more expected result.




