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ABSTRACT

A multigrid method is presented for the calculation of three-dimensional turbulent jets in

crossflow. Turbulence closure is achieved with either the standard k-, model or a Reynolds

Stress Model (RSM). Muldgid acceleration enables convergence rates which are far superior

to that for a single grid method to be obtained with both turbulence models. With the k-€

model the rate approaches that for laminar flow, but with RSM it is somewhat slower. The

increased stiffness of the system of equations in the lhtter may be reponsible. Computed results

with both turbulence models are compared with experimental data for a pair of opposed jets in

crossflow. Both models yield reasonable agreement with mean flow velocity, but RSM yields

better predition of the Reynolds stresses.

NOMENCLATURE

cl, Cs constants in Reynolds stress model

c/z, col, c,2 constants in k - _ turbulence modM

D jet diameter

f near-wall proximity function in Reynolds stress model

G rate of production of turbulent kinetic energy

H height of duct

k turbulent kinetic energy

P pressure

R jet to crossflow velocity ratio

S€ source term for dependent variable
U_ crossflow velocity

Ui cartesian velocity components

u2 . 2 . 2 Reynolds normal stresses in cartesian directions
1' u2' u3,



UlU2_ ttlU3_ u2u 3 Reynolds shear stresses

Vj jet velocity

yJ cartesian coordinates

cr,fl,7 constants in Reynolds stress model

_ij Kronecker delta

rate of dissipation of turbulent kinetic energy

t; von Karman constant

/z molecular viscosity

pt turbulent eddy viscosity

p density

crq_ turbulent Pmndtl/Schmidt number for
(b General representation of dependent variable

Superscripts

1 lateral direction

2 vertical direction

3 longitudinal direction

INTRODUCTION

Three-dimensional turbulentjets in crossflow have important engineering applications in both

confined and unconfined environments. Examples of jets issuing into confined crossflow include

internal cooling of turbine blades, dilution air jets in combustion chambers, jets from V/STOL

aircraft in transition flight, etc. The examples of turbulent jets issuing into unconfined (semi-

infinite) crossflow are even more numerous. These include discharges from cooling towers or

chimney stacks into the atmosphere or sewerage and waste heat into water bodies, film-cooling

of turbine blades, etc.

The interaction of the jets with the crossflowhas been investigated in numerous experimental

studies [1-6]. Crabb et al [2] present a comprehensive review of pre 1980 studies, most of which

only deal with mean flow properties. Measurements of turbulent properties can be found in [2-
6]. Numerous computational studies of the generic problem of turbulent jets in crossflow are

also reported in the literature [7-10]. Demuren [11] presents an extensive review of the various

modeling approaches. Due to computational expense, none of the earlier studies use sufficiently

fine grids. In a recent paper, Claus and Vanka [12] present a systematic study of the effect of grid

resolution on the mean flow and turbulence fields. These show that for computational grids up to



96 X 96 X 256 grid-independent solutions could not be obtained. They use a multigrid method

so that the natural progression for grid refinement is to double the number of grid points in each

direction, which is more stringent than the grid-dependency tests in most other studies. There

have also been frequent questions as to the role of the turbulence model in predicting correctly

this rather complicated flow. Most computationsemploy the k-_turbulence model which assumes

gradient diffusion relations for the Reynolds stress and an isotropic eddy-viscosity distribution.

Andreopoulos and Rodi [4] show by analyzing their measurements of Reynolds stresses and the

velocity gradients that this approach is only partly supported by experimental evidence. In some

regions, the turbulent stress field is out of balance with the mean velocity strain field so that

the Boussinesq eddy-viscosity hypothesis would require negative eddy viscosities which the k-€

turbulence does not allow for. Further, locations of zero stresses do not coincide with those

with zero velocity gradients.

The present study attempts to address both the problems of grid resolution and the turbulence

model. Computations are performed with a multi-grid procedure which enables convergence on

very fine grids within a relatively small number of iterations. The Reynolds stresses are computed
with a second-moment turbulence closure model as well as the standard k-€ model.

MATHEMATICAL MODEL

Mean Flow Equations

In the present work, the time-averaged, three dimensional, steady-state equations governing

the turbulent flow form the basis for the numerical method. The equations may be expressed,
in conservative form and cartesian tensor notation as:

Continuity

b_y_(pUt)=0 (1)

Momentum

O._p 0 --p ttiU 1 -_ [.t Jr -- (2)t(putui)= + \ oyt y j
with i = 1, 2, 3 and I = 1, 2, 3 representing properties in the lateral, vertical and longitudinal
directions, respectively, yi (= yl, y2, y3) represent the Cartesian coordinates; Ui the Cartesian
velocity components; P the pressure; p the density and/_ the molecular viscosity. The equations
are expanded with Einstein's summation rule for repeated indices. -puiu I represents the
Reynolds stress tensor which is symmetric with 6 independent components to be determined
before the mean flow equations can be closed. This is the task of the turbulence model.



Turbulence Models

In the present work, the Reynolds stresses are determined from either the k-, model described

in detail by Launder and Spalding [13] or the quasi-isotropic version of the Reynolds stress
models of Launder, Reece and Rodi [14], hereafter denoted LRR.

In the k-, model, the Reynolds stresses are calculated _,ith the Boussinesq eddy viscosity
hypothesis as"

--#uiu/ --" flt_, 0y I -b "_yi] -- gpk 6il (3)

where 6i]is the Kronecker delta which is equal to unity when i=l and zero when i#l. The form

of equation (3) ensures that the trace of tensor _ is equal to twice the turbulent kinetic energy.

#t is the eddy viscosity given by:

k2
#t = c,p---, (4)
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Thus, in other to compute #t, the distributions of the turbulent kinetic energy k and its rate of

dissipation, over the computational domain are required. These are obtained by solving the
transport equations:

(putk)= k,,k + c- p, (5)

(pUt,) = _ _ _yt + c,lG_ - c,2 p--ff (6)

where G is the rate of production of turbulent kinetic energy by the interaction of the Reynolds

stresses with the mean flow, given by:

OUt

G = -p umut_ym (7)

Theempiricalconstantsappearinginequations(4)-(7)arec#--0.09,c,i,=1.44,c,2=1.92,crk=l.0
and a,=l.3. Equations (1)-(9) form a closed set which can be solved with a numerical method

to yield the distributions of the three velocity components, the pressure, and the six components
of the Reynolds stresses.

The Reynolds stress model does not assume the Boussinesq hypothesis. Rather, exact trans-

port equations can be derived by combining the Navier-Stokes equations with their time-averaged

versions, the so-called Reynolds equations. This does not, however, solve the turbulence closure

problem since the equations contain terms of higher order which cannot be calculated exactly

but must be modeled or approximated. The presumption then is that since these terms am third-

moment statistics inaccuracies in approximating them will have much smaller effect on the mean
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flow than errors in modeling the second-moments. If the proposals of LRR [14] model 1 are

adopted to approximate the pressure-strain, diffusion and dissipation terms, the resulting system

of equations can be written in cartesian tensor notation as:

b_y_(pUt_-r_)= 0 [ k _'_
I_ou, _OU,l

- P{(_- '_)[uiu'-_TYJ+uju'°-;rY_] (8)
OUi _OUt] 2 OUt- Z _-__y,+uju,-_y_] +_ij(_+Z)U-_m0--_

k/'OUi OUi'_ Clg f. 2 2_..
+'7 _-'_-yi +-_yj] +'--_'_uiuj-- 5_ijk ) +g o _}

a, t, 7, Cl and cs are empirical coefficients given by: a--0.7636--0.06f; _---'0.1091+0.06f;

7=0.182; c1=1.5-0.50f; and Cs--0.22. f is a wail-proximity function which takes a value of
t

unity near walls and zero in a homogeneous flow with no walls. Thus an attempt is made

to interpolate the coefficients between values found empirically in two asymptotic flows. The

method for calculating f is described in detail by Demuren and Rodi [15]. Equations (1), (2), (6)

and (8) now form a closed set which should be solved simultaneously by the numerical method
to determine the mean-flow and turbulence fields.

If the terms involving gradients of the Reynolds stresses on the r.h.s, of Eq. (2) are treated

explicitly the system of equations will be very stiff and it will be extremely difficult to obtain

a converged solution with an iterative scheme. The stiffness can be reduced considerably by

splitting the Reynolds stress uiu t into two parts:

7\_v, +_,, (9)

The first part is treated explicitly. The second part is added to the molecular diffusion term

and treated implicitly. The modified momentum equation has the form:

0-_ O__.p O [_puiu---_t+ (l_+ pt)(OUi OU,_] (10,(pUtU_)= Oy' + -_V' \-bTvt+-b-Jv_)
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Discretization Method

A finite-volume numerical method is use,d in the present study to convert the transport

equationsfrom partial-differentialform to algebraicones which are then solved iteratively_The

computationdomain is divide,d into a finitegridof control volumes(CV) with the unknownvalue

of the dependentvariables assumedstored at the center of each CV, i.e. a non-staggeredgrid
arrangement is used. The conservation equations are satisfied over each CV by using Green's

theorem to convert volume integrals of the equations to surface integrals which represent the
fluxes in and out of its six surfaces. Now these fluxes must be related to nodal values which

are located at the center of the CV's. Figure 1 shows a typical CV with its six neighbouring

nodes. The diffusion fluxes are approximated with central differences. The convection terms

require special treatment. It is well known that central difference approximation of convection

terms in highly convective flows leads to odd-even decoupling, non-physical oscillatory solution,

and perhaps instability. To overcome the odd-even decoupling problem it has been popular in
incompressible flow codes [16] to stagger the nodes for the velocity components by half a

cell in each direction relative to the other nodes, whereas in compressible flow codes [17] a

fourth-order artificial dissipation term is added to the density equation. Examination of the

continuity equation shows that it contains only convection terms, hence the odd-even decoupling

problem results from mainly using central differences in this equation. In compressible flow

Codesthe dependent variable resulting from this equation is the density, hence the form of the

artificial dissipation term. Most incompressible flow codes do not solve equation (1) directly

but solve a form of poisson equation for pressure derived by combining equations (1)and (2).

Hence, staggering of the grid nodes indirectly introduces upwind differences for pressure, and

since the stabilizing properties of upwind differencing is due indirectly to the introduction of

artificial diffusion/dissipation, both approaches are successful for similar reasons. Rhie [18]

has analyzed the stability of pressure based solvers on a non-staggered grid using a fourth-

order artificial dissipation pressure tenn. This practice is followed in the present work. The

difference in practice so far appears to be largely historical. Incompressible flow codes were

originally designed for internal flows and finite differences were used on rectangular grids where

staggering was very easy to implement. With the conversion to finite volume formulation and

the need for curvilinear grids staggering became messy and the approach of Rhie and Chow [19]

has now become common practice. This is also sometimes called "momentum interpolation"

[20], a terminology which is unfortunate since it clouds the real process. Compressible flow

codes on the other hand, required body-fitted coordinates so that grid staggering was never an
attractive option.



Someform of upwindingor artificialdissipationis a!sorequiredfor theremainingequations.
For these the hybrid(central/upwind)differencescheme[16] is adopted.Withtheseapproxima-
tions the unknownnodal value is linked to those of its six nearestneighboursby an algebraic
equationof the form:

ApCp= _ AnbCnb+ S_ (11)
nb

wherenb= E, W, N, S, U, D and € representsany of the dependentvariables.

Boundaryconditionsare usedto specifythe dependentvariablevalues alongthe six bound-
aries. Four types of boundaryconditionsare encounteredin the present study; namely inlet,
outlet, symmetryplanes and walls. Inlet conditionsare specifiedfrom experimentaldata, if
known. The outlet is an outflowboundaryalong which the first derivativeof all variablesis
set to zero. Along symmetryplanes the normalgradientof all variablesis set to zero, and the
normalvelocityis also zero. The wallsare treatedspeciallybecauseintegrationof the equations
is not carried all the way down to the walls, but the wall-functionmethod [13, 15] is used to
prescribevalues of dependentvariablesalong the nearest grid nodes.

The equationset for all internalnodesin the computationaldomainmust be solvedsimulta-
neously. An ADI schemeis utilizedfor this purpose. The equationsare solvedin a sequential
manner,one variableat a time, basedon the SIMPLECalgorithmdescribedby van Doormaal
andRaithby[21]. In thepresentmultigridcontext,this algorithmservesprimarilyas a relaxation
schemewiththeimportantrequirementbeingits smoothingproperties.ShawandSivaloganathan
[22]haveshownthat theSIMPLEalgorithmon whichit is basedhas goodsmoothingproperties.
One cycle of the relaxationschemehas the followingsteps:

1. Solvethe Ut momentumequationusing availablepressurefield.

2. Then the U2 momentumequation.

3. Then the U3 momentumequation.

4. Computemass fluxesthrough the faces of CV by linear interpolationof velocityfield
plusfourth orderartificialdissipationtermsin pressure. (Asexplainedthis is equivalent
to upwind weightingof pressure gradients).

5. Computemass sourceerrors.

6. Solvean equationfor the correctionto the pressurefieldnecessaryto eliminatethemass
sourceerrors, and then correct the pressureand velocityfields



Multigrid Procedure

In the present work the FAS-FMG (full approximation storage - full multigrid) algorithm

originally developed by Brandt [23] is employed to solve the mean-flow equations. The present

implementation derives from previous work by Demuren [24]. The main differences relate to

the changes to the relaxation scheme due to non-staggered grids and the sequential solution

steps discussed in the preceding section. Numerical experiments showed no advantage in

using the coupled approach proposed by Vanka [25] implemented in [24], and it can be shown

mathematically that it is less stable in a single-grid procedure. Further, the sequential approach

is more easily vectorizable.

The multigrid process starts on the coarsest grid with relaxation cycles repeated until

convergence. The next finer grid is then generated by halving the sizes of control volume

sides in each direction. The coarse grid results are then prolongated onto the fine grid to provide

initial conditions. The multigrid process then cycles b,etween the two grids until convergence is

obtained on the finer grid. The next finer grid is then generated and initialized as before. The

MG process now cycles between the three grids until convergence. The present implementation

uses V-cycles with 1 relaxation sweep on the finest grid before residuals are restricted to a

coarser grid, and 1 relaxation is also performed on each intermediate grid. 5 relaxation sweeps

are performed on the coarsest grid. This is not the most efficient cycling scheme, but it was

found to be a good compromise between robustness and efficiency in a wide range of test cases.

Restriction and prolongation operators are required to transfer the fine grid approximations

and residuals onto coarse grids and the coarse grid corrections onto the fine grid, respectively.

Residuals are restricted by simply summing the residuals of the eight fine grid CV's that make

up each coarse grid CV. Otherwise, trilinear interpolation is used for restricting the primitive
variables or prolongating the corrections.

The equations for turbulent quantities k, _ and _ are only solved on current finest grid level

during the MG process. Values required for diffusion fluxes or source terms on coarser grids are

restricted from these. In future work, the MG process will be extended to these variables as well.

The scheme must be modified however to ensure that k, _ and the normal stress components

u_, u_ and u32can never become negative at any stage.



RESULTS AND DISCUSSION

Computational Details

The test case for the present work is selected from experimental studies of pairs of opposed

jets discharging normally into a cross-stream reported by Atkinson et al [3]. Figure 2 shows

a schematic diagram. Two jets of equal diameter D issue at the same velocity from opposite

pipes into a cross stream. The channel height is equal to 4D and the width is 12D. The jet to

crossflow velocity ratio R is 1.8 and the Reynolds number based on the crossstream velocity and

channel height is 1.1xl05. An indication of the grid distribution is given in Fig. 3 which shows

the velocity vectors in the center plane computed on the finest grid of a 3-level MG scheme.

The coarsest grid has (!2x10x22) points in the (yl, y2, y3) directions. There are two planes of

symmetry so computations are only performed for a quarter section of the flow domain which

extends from 4D upstream of the jet hole to 14D downstream. The vector plots show that the

jets from opposite sides impinge at the mid-plane about 1D downstream.

Convergence Rates

In order to evaluate the multigrid performance laminar flow calculations were made for the

configuration of Fig. 2, but with the outlet plane at 4D downstream of the jet hole, and a

crossstream Reynolds number of 100. Three calculations were made: single grid, 2-1evel MG

and 3-1evelMG. The finest grid in each case has (42x34x82) points in the (yl, y2, y3) directions.

The residuals of the momentum and continuity equations are plotted against the number of

iterations in Fig. 4. MG acceleration is clearly demonstrated, with reduction of 3-4 orders of

magnitude in about 50 cycles, corresponding to a spectral radius (error reduction rate per cycle)

of about 0.85. Figure 5 shows the history of the U2 and U3 velocity components at a typical

point (1D, 1D, 1D) in the domain. The 3-level MG results reach the asymptotic values in about

5 cycles, the 2-level MG in about 30 cycles and the single grid results are still long ways away.

Of course, the FMG scheme ensures that the initial values on fine grids are good guesses of the

final answer since they are interpolated from converged coarse grid results. Each MG cycle of

the 3-grid-level calculations took 2 seconds of CPU time on the Cray YMP, 25% of which was

overhead for prolongations, restrictions and smoothings on coarser grids.

The residual histories for laminar, k-€ model and RSM calculations on the 3-1evelMG are

compared in Fig. 6. There is again rapid convergence in the first 50 cycles, thereafter the

convergence rate deteriorated with the complexity of the system of equations. The turbulent

flow computations were made at Re = 1.1xlO5, so they are not for exactly the same conditions
as the laminar fow.
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Grid Dependency

It has not been possible to confirm grid independency within the limits of the available

computer resources. Figure 8 compares vertical profiles of the streamwise velocity component

in the center plane at 6D and 8D computed with a 3-level MG and a 4-level MG. The k-,

model is used in both computations. Significant differences exist only near the mid-plane at

6D, but at 8D the results are quite close. The differences are much smaller than those reported

by Claus and Vanka [12] in their study of a row of jets in crossflow. The differences are also

small in comparison with deviations from experimental data. It should be noted that there is

an eightfold difference in the number of grid points utilized. Calculations with RSM also show

similar changes with grid refinement. In the light of these, all subsequent results to be presented

are for calculations on the 3-level grid.

Comparison with Experiment
|

The present computationswith the two turbulencemodels, on a 3-level grid, arecompared

with experimentalresults of Atkinson et al [3]in Figs. 9-11. Verticalprofilesof the strearnwise

velocity componentarecompared in Fig. 9. The RSM predictshigher magnitudesnear the mid-

plane and lowermagnitudesnear the wall. In termsof agreementwith experimentaldata, there is
little to choose between them. The largest deviationfrom experimentaldatais'at t2D. Although

the profilesare the same shape the experimentaldata indicatemagnitudeswhich are 20%lower.

In fact, the data show 10-15% reductionin the streamwise velocity between 8D and 12D. This
is unusualsince it would be expected that the flow should tend towards more uniformitywith

distancedownstream,and the normalizedstreamwisevelocity should approachunityratherthan

deviate furtherfrom it. It is possible that there is a systematicerror in the experimentaldata.

The Reynolds stresses are compared along the centerplane, at axial locations 8D and 12D
in Figs. 10 and 11, respectively. The k< model consistently overpredicts the normal stresses.

This indicates that the turbulentkinetic energyis overpredicted. The culprit is likely to be the

production term G (equation 7) which is known to lead to infinite turbulent kinetic energy

near the impingement point in a stagnation flow, when used in conjunction with the eddy

viscosity hypothesis. The RSM producesnormal stresseswhich are in better agreement with the

measurements,except u_ near the mid plane. At 8D both models predict excessive shear stress

magnitudesin comparison with experimentaldata. At 12D, the RSM results agree better with

the data. Another unusualfeature of the data is that they indicate an increase in shear stress in

going from 8D to 12D, whereasone would expecta decrease,as the computationsshow. These

experimentsare,of course, quite difficult to perform. A slight difference in the flow properties

of the opposingjets may lead to significantdeviations from symmetry about the mid-planeand
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perhaps unsteadiness and other unexpected effects. On the other hand, the RSM predictions are

far from perfect. The present version of RSM, based on the proposals of LRR [14], is one of

the simplest and most widely tested. However, it is known to have shortcomings in complex

flows with strong swirl and curvature. Recently, more complex RSM have been proposed by

Craft, Fu, Launder and Tselepidakis [26] and Speziale, Sarkar and Gatski [27]. The former has

demonstrated improved predictions of strongly swirling flows and the latter has performed better

in homogeneous shear flows with rotation. They are however still at an early stage of testing

and validation in a wider range of flows. For example, initial application to homogeneous shear

flow with curvature (Tselepidakis,provate communication) did not replicate such improvements.

CONCLUDING REMARKS

A multigrid procedure for calculating turbulent jets in crossflow has been presented. Multi-

grid convergence rates are demonstrated for laminar flow. There is some degradation in perfor-

mance with increase in complexity of the turbulence 'model, but the convergence rates are still

quite impressive in comparison to those for single grids. The two turbulence models predict

nearly the same level of agreement of mean streamwise velocity with experimental data. But

the RSM predicts Reynolds stresses which are in much better agreement with experiments.
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